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Significance

The arbuscular mycorrhizal (AM) 
symbiosis is considered one of 
the key adaptations that enabled 
colonization of land by plants. 
Here, we identified evolutionarily 
conserved genes, molecular 
pathways, and transcription 
patterns whose association with 
AM symbiosis arose before the 
diversification of land plants. 
Among these, the ARBUSCULAR 
RECEPTOR-LIKE KINASE (ARK) plays 
a crucial role in maintaining 
mutualism in AM symbiosis.  
We demonstrate functional 
conservation of ARK from 
angiosperms to the liverwort 
Marchantia paleacea, which 
confirms that its requirement  
for regulation of symbiosis 
sustenance evolved before the 
most recent common ancestor  
of all land plants.
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The mutualistic arbuscular mycorrhizal (AM) symbiosis arose in land plants more than 
450 million years ago and is still widely found in all major land plant lineages. Despite 
its broad taxonomic distribution, little is known about the molecular components under-
pinning symbiosis outside of flowering plants. The ARBUSCULAR RECEPTOR-LIKE 
KINASE (ARK) is required for sustaining AM symbiosis in distantly related angio-
sperms. Here, we demonstrate that ARK has an equivalent role in symbiosis maintenance 
in the bryophyte Marchantia paleacea and is part of a broad AM genetic program con-
served among land plants. In addition, our comparative transcriptome analysis identified 
evolutionarily conserved expression patterns for several genes in the core symbiotic 
program required for presymbiotic signaling, intracellular colonization, and nutrient 
exchange. This study provides insights into the molecular pathways that consistently 
associate with AM symbiosis across land plants and identifies an ancestral role for ARK 
in governing symbiotic balance.

arbuscular mycorrhizal symbiosis | phylogenetics | bryophyte | signaling | receptor-like kinases

Plants colonized land between 515 and 470 million years ago (mya) (1). A growing body 
of evidence suggests that plant–fungal symbioses were a central component of this evo-
lutionary transition (2–9). The favored candidate for this supporting act is arbuscular 
mycorrhizal (AM) symbiosis, as its monophyletic origin dates back to the most recent 
common ancestor (MRCA) of tracheophytes and bryophytes (6, 7, 9–13). AM symbiosis 
is today the most prevalent form of plant–fungal symbiosis on Earth, occurring across all 
major land plant clades (14).

The association with the fungus improves plant mineral nutrition, in particular 
phosphate, in exchange for organic carbon (15–23). The primary sites of symbiotic 
nutrient exchange are arbuscules, highly branched tree-like hyphal structures which 
develop within plant cells. Each arbuscule is surrounded by a plant-derived periar-
buscular membrane (PAM), which creates an extensive surface area for nutrient and 
signal exchange, thereby contributing to plant and fungal fitness. Plant mutants defec-
tive in either the uptake of phosphate or the delivery of organic carbon to the fungus 
result in shriveled arbuscules and in decreased overall root colonization, suggesting 
that malnourishment of either symbiont is linked to arbuscule development (24–29). 
Fungal fitness however also relies on the serine/threonine ARBUSCULAR RECEPTOR- 
LIKE KINASE 1 (ARK1), which is necessary for maintaining fungal vigor and thus 
symbiotic balance post arbuscule development (30–32). ARK is only found in the 
genomes of AM-competent plants (21, 30) suggesting a conserved role in symbiosis 
across land plants.

Our existing knowledge of the molecular mechanisms governing AM symbiosis 
predominantly relies on evidence obtained from a limited number of angiosperm 
models, while the molecular characterization of bryophytes is at its dawn (13, 33–36). 
To address the knowledge gap, we focused on examining the extent to which ARK’s 
regulatory role is conserved among terrestrial plants. We conducted a comprehensive 
investigation involving phylogenetic analysis, comparative transcriptomics, and gene 
coelimination analysis, using the liverwort Marchantia paleacea as a bryophyte model. 
We identified a core cluster of 56 AM symbiosis genes conserved in flowering plants 
and extant bryophytes. The majority of these genes were transcriptionally up-regulated 
during symbiosis development in M. paleacea and in the angiosperm Medicago trun-
catula, suggesting their ancestral recruitment for AM symbiosis prior to the MRCA 
of land plants. The overlay of gene-trait coelimination and transcriptomic data spot-
lighted ARK as one of the ancestral AM symbiosis genes, and its regulatory role in 
controlling symbiotic balance was indeed confirmed to be evolutionarily conserved 
across land plants.
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Results

Time-Resolved Transcriptional Responses of M. paleacea to AM 
Symbiosis. To understand the molecular changes associated with 
the development of AM symbiosis in bryophytes, we characterized 
the transcriptome of the liverwort M. paleacea at 5, 8, and 11 wk 
post-inoculation (WPI) with Rhizophagus irregularis. R. irregularis 
was previously described to colonize the central part of the thallus 
parenchyma, which will be referred to as the midrib region (22, 34).

During the initial phases of symbiosis (5 WPI), the primary 
fungal structures observed within the inoculated thalli were intra-
cellular hyphae (Fig. 1 A–C). As time progressed, all other fungal 
structures increased in abundance. For instance, arbuscules increased 
from an average 20% thallus length colonization at 5 WPI to an 
average 90% at 11 WPI (Fig. 1C). The distinctive purple pigmen-
tation specific to colonized thallus tissue (22) accumulated propor-
tionally to colonization levels across all time points (Fig. 1C).

Similarly, the number of DE genes increased over time in 
response to progressing AM fungal colonization. This represented 
a fourfold increase between 5 and 11 WPI, from 292 to a total of 
1,145 DE genes, with a distinctive bias towards up-regulated genes 
(80.4%) (Fig. 1 D–H). The overrepresentation of up-regulated 
genes mirrors similar observations in distantly related angiosperm 
models (37–39).

To investigate the identity of DE genes, the transcriptome of 
M. paleacea was functionally annotated. Gene ontology (GO) 
enrichment analysis identified terms significantly overrepresented 
(adjusted P-value > 0.05) across all stages of AM symbiosis: 
“gibberellin biosynthetic process”, “gibbrellin-20-oxidase activity”, 
“oxidoreductase activity”, “nutrient reservoir activity”, “apoplast”, 
“iron ion binding” (Dataset S2). The strongest transcriptional 
response to symbiosis at 11 WPI was additionally enriched in 
terms associated with fatty acid and carbohydrate metabolism and 
with strigolactone biosynthesis (SI Appendix, Fig. S1 and 
Dataset S2). Overall, GO enrichment analysis highlighted that 
hormonal signaling pathways and symbiotic nutrient metabolism–
related processes, which are commonly associated with angiosperm 
symbiosis, are also conserved in bryophyte AM symbiosis.

Identification of Evolutionarily Conserved AM Symbiosis-
Associated Genes through Phylogenetics. We traced the evolutionary 
history of 104 gene families associated with AM symbiosis in 
angiosperms to compare expression patterns of symbiosis-regulated 
genes between M. paleacea and tracheophytes (SI Appendix, Table S4 
and Dataset S3). Each gene family was selected based on at least 
one of three criteria: a) GO enrichment analysis indicated that the 
biological process they contribute to is induced in mycorrhizal M. 
paleacea, b) the evolutionary history of the clade suggests that the 
genes are coeliminated with the loss of AM symbiosis across multiple 
independent events (21, 40, 41), c) experimental evidence supports 
a crucial role for the gene in the regulation of AM symbiosis (42, 
43). For this analysis, 59 publicly available genomes were selected 
from all major land plant clades, including all nonflowering plant 
genomes and a selection of mycorrhizal host and nonhost flowering 
plant models (SI Appendix, Table S5).

Among the 104 families surveyed, 56 displayed distinct ort-
hologs in M. paleacea (Fig. 2A, SI Appendix, Table S4). The major-
ity (49/56) of the evolutionarily conserved gene families (ECGFs) 
included a one-to-one ortholog in M. paleacea, while in 16/56 
ECGFs a single M. paleacea “proto-ortholog” corresponded to 
several angiosperm genes, as a result of one or multiple independ-
ent duplications within the tracheophyte lineage (SI Appendix, 
Table S4). These 56 orthogroups span a variety of biological pro-
cesses required for AM symbiosis: NOPE1 is necessary for 

presymbiotic rhizosphere signaling, RAD1, AP2A, DELLA1, 
NSP1, and NSP2 are involved in transcriptional regulation of the 
symbiosis, and AMT2, PT4, HA1, STR, STR2, and SUT2 are 
required for nutrient exchange at the arbuscule-interface (Fig. 2A 
and SI Appendix, Table S4). Notably, the SUT2 gene was absent 
from the latest version of the M. paleacea genome but was included 
in the 1KP transcriptome (Dataset S3). Of the remaining 48 fam-
ilies examined, no clear ortholog was identified in M. paleacea or 
its sister clade Marchantia polymorpha. However, in many cases, 
orthologs were identified in other bryophytes, suggesting that the 
gene was lost in the genus Marchantia (SI Appendix, Table S4).

To discern whether ECGFs acquired an AM symbiotic function 
before the MRCA of land plants, analysis of gene coelimination 
patterns across multiple independent evolutionary losses was per-
formed. The availability of two liverwort genomes from the same 
genus with M. polymorpha having lost the ability to engage with 
AM fungi (36, 44), allowed us to extend the study of AM gene 
coelimination to include bryophytes alongside Angiosperms. We 
identified 30 gene families only conserved in AM-competent angi-
osperms (21) and in M. paleacea (Fig. 2B). Among these gene 
families, fourteen have experienced the loss of the corresponding 
M. polymorpha gene, indicating that these genes tend to be aban-
doned when symbiosis is lost in plant species. (Fig. 2B and 
SI Appendix, Table S4). For the remaining half of the genes con-
served for symbiosis in angiosperms, an ortholog was identified in 
both the host M. paleacea and the nonhost M. polymorpha, sug-
gesting that the pattern of coelimination was not conserved for 
these families (Fig. 2B). Overall, we found an unprecedented num-
ber of AM genes whose conservation dates back before the MRCA 
of land plants. The recursive coelimination of a subset of these genes 
with the loss of AM symbiosis suggests that the conserved genes 
acquired their symbiotic function in ancestral land plants.

Comparative Analysis Reveals Deep Homologies in Tran­
scriptional Responses to AM Symbiosis from Bryophytes to 
Angiosperms. The symbiotic expression profile of the 56 ECGFs 
was compared between M. paleacea and the angiosperm AM 
symbiosis model M. truncatula (23). Half (28/56) of the genes 
conserved in M. paleacea were DE during symbiosis (Fig.  3 
and SI Appendix, Table S6). In addition, 89.3% (25/28) of the 
evolutionarily conserved genes induced in M. paleacea, were also 
up-regulated in M. truncatula during symbiosis, demonstrating 
their conserved transcriptional regulation across land plants 
(Fig. 3). Several genes with a known role in presymbiotic signaling 
are co-up-regulated in M. paleacea and M. truncatula, notably 
the N-acetylglucosamine transporter NOPE1 (45) and several 
members of the strigolactone biosynthesis pathway (Fig.  3). 
However, the majority of genes coregulated in M. paleacea and 
M. truncatula have been linked to downstream stages of symbiosis: 
transcriptional regulation, arbuscule dynamics, and nutrient 
exchange, including the well-characterized transcription factors 
Required for Arbuscule Development 1 (RAD1) and Ethylene Response 
Factor 1 (ERF1) (Fig. 3 and SI Appendix, Table S6). Taken together, 
the above findings suggest that molecular modules necessary for 
symbiosis establishment and maintenance in angiosperms are 
conserved and induced during liverwort AM symbiosis.

Active gibberellin compounds are not known to be produced in 
bryophytes (44, 46–48). However, gibberellin biosynthetic enzymes 
were identified and significantly up-regulated in both M. paleacea 
and M. truncatula, such as orthologs of Gibberellin-20-oxidases 
(GA20ox) and ent-Kaurene Oxidase (KO) (Fig. 3 and SI Appendix, 
Table S6). Genes involved in earlier stages of the canonical GA 
biosynthesis pathway—ent-Copalyl Diphosphate Synthase (MpaCPS) 
and ent-Kaurene Synthase (MpaKS)—as well as the ent-Kaurenoic D
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Fig. 1.   Transcriptional responses of M. paleacea to R. irregularis colonization. (A) Transversal section of a M. paleacea thallus colonized by R. irregularis; fungal 
structures in the thallus midrib are stained in ink and recognizable by their dark blue coloration. (Scale bar, 100 μm.) (B) Transversal section of an M. paleacea 
thallus colonized by R. irregularis and stained with wheat germ agglutinin (WGA)-Alexa Fluor 488; yellow arrow = fungal hypha, white arrow = arbuscule, magenta 
arrow = fungal vesicle. (Scale bar, 50 μm.) (C) Arbuscular mycorrhiza colonization levels of WT M. paleacea thalli inoculated with R. irregularis at 5, 8, and 11 WPI; 
P = pigment, IH = intracellular hyphae, A = arbuscules, V = vesicles; each independent replicate was screened for all fungal structures over a total of 10 sections, 
the overall ratio of positive observation over the total number of observations is displayed on the y axis. Bars represent the average number of observations 
of each fungal structure across replicates, all biological replicates are shown. (D) Volcano plot of differentially expressed (DE) genes (adjusted P-value < 0.05, 
Log2 fold change > |1|) between mock and R. irregularis-colonized thalli at 5 WPI. Statistically significant DE genes are displayed in magenta. (E) Volcano plot 
of DE genes between mock and R. irregularis-colonized thalli at 8 WPI. (F) Volcano plot of DE genes between mock and R. irregularis-colonized thalli at 11 WPI.  
(G) Venn diagram of up-regulated genes in pairwise comparisons of mock and R. irregularis-colonized thalli. (H) Venn diagram of down-regulated genes in pairwise 
comparisons of mock and R. irregularis-colonized thalli.D
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Acid Oxidase (KAO) were expressed but not induced (Dataset S1). 
Thus, the synthesis of Gibberellin-like diterpenoids might take place 
during bryophyte AM symbiosis.

Despite the overall conservation of transcriptional responses, we 
identified some differences between M. paleacea and M. truncatula 
AM gene expression profiles. In angiosperms, the H+-ATPase HA1 
is responsible for generating the proton gradient required for phos-
phate transport across the PAM (49, 50). Although HA1 is conserved 
in bryophytes (Marpal_utg000008g0017601), it is not induced 
during symbiosis in M. paleacea (SI Appendix, Table S6). Instead, 
three HA proton pumps more distantly related to angiosperm HA1 
were induced in M. paleacea (Marpal_utg000039g0074811, 
Marpal_utg000045g0082001, and Marpal_utg000126g0168721) 
(Dataset S3). The conservation of a cellular function required for 
AM symbiosis might thus not be necessarily mediated by conserva-
tion of a specific gene.

By overlaying the comparative transcriptomics dataset with the 
coelimination analysis across angiosperms and liverworts, we iden-
tified a core set of ten AM-specific gene families: ARK, RAD1, 

ERF1, Replication factor C (RFC), Ammonium Transporter 2 
(AMT2), short-chain Dehydrogenase/reductase (DHY), Stunted 
Arbuscule (STR) and Stunted Arbuscule 2 (STR2), ABC transporter 
B family member 20a (ABCB20a), and ABC transporter B family 
member 20b (ABCB20b) (Fig. 3). The transcriptional induction 
of a representative subset of these gene families during AM sym-
biosis was validated in an independent experiment and confirmed 
(SI Appendix, Fig. S3). In summary, the embryophyte-wide tran-
scriptional induction during symbiosis and the coelimination of 
these genes with the loss of AM symbiosis provide independent 
lines of evidence for their mycorrhizal role before the MRCA of 
land plants.

The Receptor-Like Kinase ARK Is Required for Symbiosis 
Maintenance in Bryophytes. We next wished to address the 
hypothesis that the newly identified set of ancestral AM symbiosis-
associated genes are functionally required for AM symbiosis 
throughout land plants. We concentrated on the M. paleacea ortholog 
of ARK, which is exclusively present in AM symbiosis-competent 
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Fig. 2.   Ancestral AM symbiosis gene families identified through phylogenetics. (A) The core conserved AM symbiosis toolkit evolved before the last common 
ancestor of land plants; evolutionarily conserved genes encompass the following functional groups: presymbiotic signaling, fungal perception and transcriptional 
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land plants (Fig. 3A), and generated CRISPR/Cas9-edited Mpa_ark 
mutants (Fig. 4B and SI Appendix, Fig. S4A).

Nonseed plants share a single copy of ARK, while an ancient 
genome duplication in spermatophytes gave rise to ARK1 and its 
closest paralog ARK2 (Fig. 4A) (30). We generated three CRISPR/
Cas9 lines carrying indel mutations in the second exon of MpaARK 
(Fig. 4B), leading to a premature stop codon ahead of the protein’s 
transmembrane domain (SI Appendix, Fig. S4A). Inoculation with 
R. irregularis resulted in 30 to 50% of thallus colonization in all 
Mpa_ark KO alleles, relative to >90% colonization of wild-type  
M. paleacea after 10WPI (Kruskal–Wallis, P < 0.05) (Fig. 4C). 
Vesicles occupied 80% of the length of wild type thalli but were 
only present along 30% thallus length in the three independent 
ark mutant lines (Fig. 4C) while arbuscule morphology was equiv-
alent to wild type in all colonized Mpa_ark lines (SI Appendix, 
Fig. S6). The M. paleacea ark phenocopies rice ark1 and ark2, 
displaying lower colonization levels, especially for vesicles, while 
maintaining wild-type arbuscule morphology (30, 32). These find-
ings indicate that the requirement for ARK to maintain fungal vigor 
is evolutionarily conserved across angiosperms and bryophytes.

To address functional conservation, we examined whether the  
M. paleacea ortholog of ARK1/ARK2 could functionally complement 
the rice ark1 mutant. The predicted protein sequence of MpaARK 
encodes an extracellular SPARK (similar protein to ARK) domain, 
followed by an alpha-helix transmembrane domain and an intracel-
lular active kinase domain (Fig. 4D). Monocot ARK genes have lost 
their extracellular SPARK domain, which is instead retained in the 
closely related SPARK1 clade (Fig. 4D) (30). As MpaARK encodes 
a SPARK domain, two variants of the construct were designed, to 
include 1) the full-length MpaARK or 2) the signal peptide, 

transmembrane, and kinase domains of MpaARK, mimicking the 
domain structure of OsARK1 (MpaARK-Kin) (SI Appendix, 
Fig. S4B). As previously reported (32), colonization levels in rice 
ark1 were significantly reduced (Fig. 4E), which was particularly 
pronounced for vesicles with 18.8% in the mutant relative to 58.4% 
in the wild type (TukeyHSD, P < 0.05) (Fig. 4E). This stark reduc-
tion in colonization was fully restored to wild type levels when either 
wild type OsARK1, the full-length MpaARK, or the kinase-only 
MpaARK-Kin were introduced in the ark1 mutant background 
(TukeyHSD, P > 0.05) (Fig. 4E). Both the full-length and the 
kinase-only MpaARK sequences also complemented the vesicle 
phenotype of ark1 to the same degree as OsARK1 (TukeyHSD,  
P > 0.05) (Fig. 4E), suggesting that the molecular function of this 
kinase is evolutionarily conserved. Arbuscule morphology was akin 
to wild type across all genotypes and root types observed, as previ-
ously reported for rice ark1 (30, 32). The combined findings from 
phylogenetic analysis, transcriptomics, and experimental data pre-
sented in this research indicate that the essential role of ARK in 
regulating symbiotic balance is ancestral to land plants.

Discussion

We identified a core AM symbiosis genetic programme of 56 genes 
conserved across land plants, from bryophytes to angiosperms. 
Overlaying comparative transcriptomic data with phylogenetic anal-
ysis further corroborated that a large portion of these genes is also 
induced during liverwort M. paleacea symbiosis, providing evidence 
for their activity in bryophyte symbiosis. Our findings are supported 
by earlier phylogenetic studies, which collectively identified 24 of 
these 56 ECGFs to be conserved in bryophytes (13, 36, 51–53). 
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(striped); “angiosperm AM” = the gene clade is conserved across all Angiosperms (white) or it is recursively lost after symbiosis abandonment in Angiosperms 
(gray) (21). “bryophyte AM” = The gene is conserved in the host liverwort M. paleacea and in the nonhost M. polymorpha (white) or lost in the nonhost liverwort 
M. polymorpha (gray).
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Fig. 4.   The function of ARK in AM symbiosis is evolutionarily in land plants. (A). Phylogenetic tree of the URK-2 RLK subfamily comprising the ARK and the 
SPARK clades. Bootstrap values of important nodes are shown; Dark blue = Angiosperm, Host; Light blue = Nonflowering plant, Host; Magenta = Angiosperm, 
Nonhost; Pink = Nonflowering plant, Nonhost. (B) MpaARK gene structure and alignment of independent editing events in three Mpa_ark KO lines; exons are 
boxed and numbered; the position of the gRNA binding site is highlighted by a magenta arrow and magenta text, mutations are highlighted in teal; TM = alpha-
helix transmembrane domain. (C) AM symbiosis phenotype of WT and ark mutant M. paleacea thalli at 10 WPI with R. irregularis; P = pigment, IH = intracellular 
hyphae, A = arbuscules, V = vesicles, S = spores; each bar indicates the average ratio of observations of the respective fungal structure over a total of 10, all 
biological replicates shown; Kruskal–Wallis test was performed to assess significant differences between genotypes, followed by post hoc pairwise comparison 
using Wilcoxon Rank Sum Test; independent genotypes are grouped into significance classes based on test statistics: Different letters represent significant 
difference (Wilcoxon Rank Sum, P-value > 0.05), “ab” is not significantly different from either “a” or “b.” (D) Schematic representation of ARK and SPARK protein 
structures in M. paleacea, M. truncatula, and rice. ARK1 and ARK2 in monocots and KIN6 (ARK2) in M. truncatula have lost their SPARK domain, which is retained 
in the homologous SPARK1 clade (31). (E) Assessment of the AM symbiosis phenotype of WT, ark1−/−, ark1OsARK, ark1MpaARK, and ark1MpaARK-Kinase rice lines inoculated 
with R. irregularis, after 9WPI; each bar indicates the average percentage value of the fungal structure, all biological replicates are shown; T = total colonization,  
A = arbuscules, V = vesicles; An ANOVA test was performed to compare each fungal structure across genotypes, followed by post hoc comparison using a Tukey's 
honest significant difference (HSD) test. Different letters represent significant difference (Tukey HSD, P-value < 0.05).D
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Among these, functional conservation in bryophyte symbiosis was 
recently confirmed for the Calcium- and Calmodulin-dependent 
protein Kinase CCaMK/DMI3 (13), the transcription factors 
CYCLOPS/IPD3 (13) and MpaWRI (MtERF1) (35), and the strigo-
lactone biosynthesis genes MAX1, CCD8, and ZAS (34).

We found several orthologs of PAM-intrinsic proteins to be 
conserved in M. paleacea, which pushes back the core genetic 
program associated with arbuscule development and functioning 
to the MRCA of land plants. In particular, the conservation of the 
symbiotic ammonium transporter AMT2 (54) and the symbiotic 
phosphate transporter PT4 (24, 25, 55), coupled with evidence 
that M. paleacea is capable of taking up symbiosis-derived phos-
phate and nitrogen (22), suggests that the molecular mechanisms 
for symbiotic nutrient uptake are conserved across land plants. 
Despite previous studies suggesting that phosphate transporters 
in flowering plants and liverworts have independent origins (36), 
our analyses point toward a shared origin, indicating that these 
transporters are in fact orthologs.

Of the 56 ECGFs in M. paleacea identified here, 14 lost the 
ortholog in the symbiosis-incompetent M. polymorpha. The early 
loss of these genes after mutualism abandonment across land 
plants strongly suggests that their biological function is solely 
required for AM symbiosis. On the other hand, a second set of 
16 genes were found to be symbiosis-specific in angiosperms (21) 
but conserved across both AM-competent and AM-incompetent 
bryophytes. The presence of these genes in AM-incompetent 
bryophytes suggests that they might be required for biological 
functions that are independent of symbiosis. This is the case for 
the closest homolog of VAPYRIN (VPY), VPY-like. VPY-like is 
conserved in mycorrhizal angiosperms (40), however, the gene is 
required for the regulation of a gametophyte developmental stage 
in the symbiosis-incompetent bryophyte Physcomitrella patens 
(56). VPY and other genes within this subgroup might be simi-
larly required in bryophytes for processes other than AM symbi-
osis, which disappeared in the tracheophyte lineage after the 
switch from a gametophyte- to a sporophyte-dominant life cycle. 
Given the recent loss of AM symbiosis in M. polymorpha (70.7 
to 5 mya) (57), it is also possible that the genetic sequences 
retained in this nonhost liverwort are undergoing early stages of 
pseudogenization, as it was previously reported for CCaMK/
DMI3 (13).

Remarkably, orthologs of ARK are required to sustain AM sym-
biosis in M. paleacea, rice, and M. truncatula, and ark1 mutants 
are distinctly characterized by a diminished presence of fungal 
vesicles in colonized tissue (21, 30). Moreover, the ability of 
MpaARK to fully restore fungal colonization in rice ark1 mutants 
confirms that its signaling function is conserved across more than 
450 million years of plant evolution and that ARK was a compo-
nent of AM symbiosis in its ancestral form. Therefore, the yet 
undisclosed mechanism by which ARK ensures fungal fitness dur-
ing symbiosis establishment, but post arbuscule development, is 
ancestral to land plants. In addition, full-length MpaARK does 
not hinder downstream signaling at the rice PAM, since the native 
MpaARK sequence was able to rescue the mutant phenotype of 
ark1 to the same degree as its variant missing the SPARK domain. 
We conclude that loss of the SPARK domain from monocot ARK 
genes reflects a decreased reliance on ARK for extracellular signa-
ling, a function that may however be provided by other SPARK 
domain–containing proteins in rice (30).

In summary, this research has revealed an unparalleled degree 
of conservation across all terrestrial plants of the genetic machin-
ery that underpins AM symbiosis and of its transcriptional regu-
lation. Our data support the view that the common ancestor of 
embryophytes possessed most of the essential molecular tools 
required for AM symbiosis as we know it today, as evidenced by 
the unaltered molecular function of the MpaARK kinase after 
more than 450 million years of evolution and diversification. The 
strong natural selection under which ARK has been maintained 
for this extensive period of time is not only indicative of the 
central importance of its signaling role but also reflecting the 
substantial benefit that AM symbiosis has provided to land plants 
throughout their evolution.

Materials and Methods

Summary of Plant Material and Growth Conditions for Mycorrhizal 
Assays. M. paleacea wild type corresponded to the earlier published accession 
(13). All rice material arose in the Oryza sativa ssp. japonica cv. Nipponbare back-
ground. For AMS colonization, 4-wk-old M. paleacea thalli were transferred to 
sand pots and inoculated with 4% R. irregularis "crude" inoculum (see extended 
methods in SI Appendix). Plants were grown at 22 °C, 16 h day/night cycle with a 
light intensity of 200 μmol m−2 s−1 PAR. M. paleacea plants were watered three 
times per week with “artificial rainwater solution” (pH 5.8) (4). For AMS coloni-
zation of O. sativa, germinated seedlings were transferred into cones containing 
sand mixed with 300 axenic spores of R. irregularis. Rice plants were fertilized 
twice weekly with Hoagland Solution containing 25 µM KH2PO4 and grown in 
12 h day/night cycles at 28/20 °C and 60% humidity.

The extent of fungal colonization was determined by trypan blue staining. For 
rice, the previously published protocol was used (32). For M. paleacea, thalli were 
harvested and incubated overnight in 10% (w/v) potassium hydroxide, washed 
three times with ddH20, incubated in 0.3 M HCl for 15 min at room temperature, 
then incubated overnight in staining solution [50% (v/v) lactic acid, 25% (v/v) glyc-
erol, 25% (v/v) ddH20, 0.1% (w/v) trypan blue]. For sectioning, stained samples were 
incubated in destaining solution [50% (v/v) lactic acid, 25% (v/v) glycerol, 25% (v/v) 
ddH20] for 1 h, then embedded in 3.5% (w/v) agarose gel. Three transverse sections 
(200 μm) were taken at each of 10 equally distanced positions spanning the length 
of each thallus, using a Hyrax V50 vibratome (Zeiss, Oberkochen, Germany). Three 
sections per position were imaged under a Labophot light microscope (Nikon, 
Minato, Japan) (SI Appendix, Fig. S2). For each biological replicate, fungal structures 
and cell-wall pigment accumulation were quantified by counting their presence 
or absence at each of the 10 transverse positions imaged. The thallus colonization 
ratio of biological replicates was calculated by dividing the total number of obser-
vations of each structure (x) over the total number of transverse positions imaged 
(x/10). The following morphological characteristics were quantified with the above 
method: cell-wall pigment, intracellular hyphae, arbuscules, vesicles, and spores.

Materials and methods are comprehensively detailed in SI Appendix.

Data, Materials, and Software Availability. Transcriptome data have been 
deposited in the National Center for Biotechnology Information Gene Expression 
Omnibus (GSE245702) (58).
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