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ABSTRACT 

Mathematical information is essential for technical work, 
but its creation, interpretation, and search are challenging. 
To help address these challenges, researchers have devel- 
oped multimodal search engines and mathematical question 
answering systems. This monograph begins with a simple 
framework characterizing the information tasks that people 
and systems perform as we work to answer math-related 
questions. The framework is used to organize and relate the 
other core topics of the monograph, including interactions 
between people and systems, representing math formulas in 
sources, and evaluation. We close by addressing some key 
questions and presenting directions for future work. This 
monograph is intended for students, instructors, and re- 
searchers interested in systems that help us find and use 
mathematical information. 
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Preface 

This monograph provides an introduction to the foundations and current 
developments in mathematical information retrieval research, or math 
IR. In this area we focus on systems designed to assist with finding, 
collecting, and using mathematical information. With the advent of 
Large Language Models (LLMs), mathematical question answering is of 
particularly keen interest at the moment. Systems that combine LLMs 
with logic-based systems have been making news by solving problems 
from the International Mathematical Olympiad, for example. 

The authors have spent more than a decade working on systems and 
interfaces for math-aware search engines in web pages, PDF documents, 
and even videos. We have more recently worked with interactive con- 
versational systems for math IR, and looked into applications of LLMs. 
In this monograph we try to summarize what we have learned about 
systems for searching existing sources, and briefly introduce emerging 
math question answering systems that automatically generate responses 
based on usage patterns for text and formulas. 

Our intended audience includes students, instructors, and researchers 
of information science, computer science, and mathematics.1 Because 
the goal of this series is to introduce a topic from its fundamentals and 
then build up to the state-of-the-art, we needed to prioritize making 

1With this said, we have often been ‘unintended’ readers of monographs, and 
warmly welcome anyone with even the slightest interest in what we have to say here. 
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the presentation as clear and concrete as possible. This means that we 
also had to make difficult decisions about what material to include. We 
have focused on covering what we understand to be core topics and 
concerns, rather than provide an exhaustive survey of techniques. For 
those interested in learning more than we could cover here, we refer 
you to other math IR surveys that are available (Zanibbi and Blostein, 
2012; Guidi and Sacerdoti Coen, 2016; Dadure et al., 2024). 

Our approach in this work is searcher-centered, i.e., focused on 
models and systems used directly by people. We acknowledge that there 
are vast bodies of literature concerned with searching and discovering 
mathematical information with little or no human interaction. Important 
examples include automated theorem proving, one of the oldest and 
most influential corners of artificial intelligence research, and work with 
mathematical knowledge databases in the Mathematical Knowledge 
Management community (e.g., at the CICM2 conferences), from which 
much of the early influential work in math IR also originates from. In 
Appendix B we present related work from the theorem proving space, 
but this is only a brief overview, and just the tip of the iceberg. 

Structured representations for formulas and computations precede 
the electronic computer. The tree-based representations for formula 
structure presented in Section 2 were designed to be simple and capture 
key structural properties, i.e., writing lines of symbols for formula 
appearance, and operation hierarchies for mathematical expressions 
represented by formulas. However, we make no assertion of their novelty; 
many analagous representations have been used in papers and systems. 
We’ve found that Symbol Layout Trees (SLTs) and Operator Trees 
(OPTs) generalize the graph types used for recognition and retrieval of 
formulas well. 

We close here with a brief summary of the contents of this monograph. 
The sections of the monograph are summarized visually in Figure 1, 
and in more detail below. 

Section 1 introduces math IR, and presents a framework that unifies 
information seeking activities performed by people and systems in 
(1) the real world, with (2) ‘traditional’ retrieval systems, and (3) 

2https://cicm-conference.org/cicm.php 
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Figure 1: Visual summary of this monograph’s contents 

question answering systems. The framework is organized around 
information needs, sources, and tasks, with an informal ‘source 
jar’ model for human information seeking, and a structured task 
graph for systems. The systems-oriented model is used to organize 
material in Sections 2–6. 

Section 2 considers the types of mathematical information present 
(and missing) in sources, and provides an overview of formula 
representations. The larger focus is annotating sources with addi- 
tional information (e.g., formula representations) and representing 
text and formulas in indexes for ‘sparse’ (i.e., discrete pattern- 
based lookup) and ‘dense’ (i.e., continuous vector space-based 
lookup) retrieval. 

Section 3 presents the math IR tasks addressed in Sections 4–6, along 
with procedures for creating test collections for evaluation, and 
evaluation metrics used in benchmarks. These are presented to- 
gether to emphasize similarities and differences between retrieval 
and question answering tasks. 

Sections 4–6 present past and current systems for formula search, text 
+ formula search (‘math-aware’ search), and question answering. 
These systems depend upon indexing and evaluation techniques 
covered in Sections 2 and 3. Each section begins with a summary 
of test collections for evaluation, followed by a presentation and 
comparison of methods. 
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Section 7 provides a closing summary, a discussion of what math IR 
cannot provide, and directions for future work organized around 
the information task framework from Section 1. 

Richard Zanibbi, Rochester, NY, USA 
Behrooz Mansouri, Portland, ME, USA 
Anurag Agarwal, Rochester, NY, USA 

December 2024 
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Sources and Information Tasks 

We often pause to search when something that we read, watch, or hear 
prompts questions that we want answers to. We then go about finding 
answers using additional sources of information: some already exist, 
some are created in response to requests (e.g., emails or search results), 
and some are created to record and organize what we find. 

In this way, information sources are the backbone of our information 
ecosystems. The sources available to us place a hard limit upon which 
questions we can answer. In addition to the information content in 
a source, its terminology, notation, writing style, and other factors 
determine the amount of information one can recover from a source, 
and how accurately and completely. This is a key reason why math 
instructors that communicate well are so highly regarded: they help us 
more easily understand topics by how they speak, write, and present 
exercises. Through course materials, lectures, and conversations, these 
instructors provide multiple sources tailored to their students’ level of 
understanding and communication style. 

Outside the classroom, we still often find ourselves in need of math- 
ematical information. It might be as simple as finding a formula to 
convert temperatures in Fahrenheit to Celsius, or the formula asso- 

6 



  
 
 
  

1.1. When and Where Do We Search? 7 

ciated with a name (e.g., inverse document frequency). Or the goal 
may be more complex, such as understanding a proof of the sensitivity 
conjecture. 

As we look for answers, we will in some way annotate and organize 
the sources we find in order to identify and apply pertinent information, 
e.g., to find other sources, choose different search terms, execute sug- 
gested exercises, and make notes about partial answers to our questions. 
The effort needed for these tasks depends largely on the content and 
presentation in the sources that we access. To save time, we often create 
additional sources of our own (e.g., bookmarking a web page, placing 
notes in a file, or highlighting a PDF document). 

In this work, when we speak about sources, we are usually referring 
to individual documents, recordings (e.g., videos) or other artifacts 
that contain information. Libraries and other people are of course also 
information sources, in the sense that they can provide information, but 
here we use ‘sources’ to refer to records of specific information. 

To help organize our study of mathematical information retrieval, 
in this section we introduce a framework for information tasks based 
on sources. The framework is built upon two main ideas: 

1. Search begins, progresses, and ends with sources. 
2. Tasks other than search are often needed to find information. 

The key components of the framework are: 

• information needs that individuals have, 
• sources of information that we search, consult, and create, 
• information tasks performed to address information needs, and 
• their roles in search algorithms and user-interfaces. 

In the next section, we consider how these components interact when 
we have a mathematical question that we wish to answer. 

1.1 When and Where Do We Search? 

Some short answers to this question are (1) when we have a question, 
and (2) wherever is easiest. While not very satisfying, these answers are 
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basically correct. Search is generally performed as part of some larger 
information task, and not for its own sake.1 This motivates finding 
quick paths to answers. 

However, technical subjects such as mathematics can be complex. 
Finding and understanding information on math may require multiple 
activities, such as web search, reading sources (e.g., Wikipedia pages 
and textbooks), taking notes, talking to instructors or colleagues, and 
doing exercises. As a result, when retrieving technical material on math 
and other specialized topics (e.g., law, chemistry, music history), it is 
helpful to understand how search interacts with other information tasks. 

To illustrate, consider the more general problem of sensemaking, 
which learning about detailed mathematical topics is closely related to.2 
In sensemaking, we construct a conceptual understanding of a topic with 
many sources, usually along with communicating this understanding. 
Common examples include writing a school term paper on an unfamiliar 
topic (e.g., applications of category theory), or summarizing a complex 
historical event from multiple news reports. 

Sensemaking tasks are challenging because information must be 
found in multiple sources, but also because this information must be 
analyzed, compared, and integrated. These thinking activities often 
require most of the effort for sensemaking. To manage these thinking 
tasks, we record plans, notes, and outlines to organize our work. These 
working documents may be checked repeatedly as we work, and as we 
write our final summary. They are themselves important information 
sources that provide the scaffolding needed to focus and ultimately 
complete work on a sensemaking task. 

To further illustrate information tasks that complement search, 
imagine taking handwritten notes on eigenvectors as described in a 
linear algebra textbook. The notes allow us to annotate this source with 
our own observations, and record them for reference at a later time. 
The analysis and insights in the notes come from applying information 
that we know and find. These notes communicate a new information 
source to a specialized audience: ourselves. 

1A fact that is both important and humbling for IR researchers. 
2See Hearst (2009) for an overview of early research on sensemaking. 
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For our notes to be useful, we organize them. Perhaps this is a purple 
sticky note that we attach to a monitor to check later in the evening. Or, 
perhaps we use a paper notebook with separate sections for different 
subjects, along with other organizational devices (e.g., sticky notes 
acting as bookmarks). We might instead be using a tablet computer, 
which also provides handwriting recognition to convert the notes to 
computer-searchable data (e.g., using Ctrl-f). 

The information tasks above are distinct from a basic search task 
where we submit a query, post a question, or send an email to obtain 
new information sources. However, it turns out that search engines 
implement variations of the same information tasks described above: 
they need to index, communicate, annotate, and apply information in 
sources to be effective. For example, we organize sources when we arrange 
sticky notes by topic and color on a wall, or construct an inverted index 
mapping words or formulas to their document locations: these are both 
forms of indexing. As another example, search engines produce Search 
Engine Result Pages (SERPs) summarizing documents matching a query, 
and question answering systems or AI ‘bots’ produce answers. These 
retrieval system outputs and our notes are communications creating 
new information sources. 

Making notes on a passage requires us to apply information to create 
an annotation: additional information associated with the passage. In 
turn, if those notes were handwritten on a tablet computer, a system 
converting these to text and LAT X for math applies information cap- E 
tured in an algorithm, annotating the notes themselves. We end up 
with a hierarchy of annotations: the notes annotate a passage, while a 
recognition algorithm annotates the notes. 

In our framework we will distinguish different source types, based 
largely on what information tasks they are primarily used for. More 
specifically, we distinguish: 

1. available sources on a topic including search queries and results, 
2. information added to sources (annotation), and 
3. structures and organizations created for search (indexing). 

Getting back to our motivating question, when we have identified a 
mathematical information need, we generally start with questions, and 
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hope to end with one or more information sources that we feel address or 
ideally answer those questions (i.e., relevant sources for the information 
need). Where we search is motivated by the types of sources we expect 
to find from places online and/or the physical world (e.g., conversations 
and post-its). Unless we are casually browsing resources on a topic, the 
places and order in which these sources are found will generally reflect 
attempts to reduce our time and effort.3 Relevant sources are often of 
different types: perhaps a passage in a web page along with a SERP 
page, an answer from an online AI system, an email from a friend, and 
a green sticky note on your monitor. 

From this perspective, math-aware search engines and question 
answering systems are important tools, but only one among many 
resources for finding math information, and only a small part of what 
happens when we search for mathematical information. 

1.2 Information Task Framework 

While we focus in this monograph on information retrieval using com- 
puters, we wish to address sources in their broadest sense here. Not 
all sources are text documents, and not all sources are recorded in 
documents. Consider an informal conversation about Bayesian decision 
theory in the hallway, or observing that there are no clouds in the sky: 
often, your only record of important information is your own memory. 

In addition to textbooks, technical papers, and web pages, in recent 
years the types of resources used to locate mathematical information has 
grown to include substantial amounts of video (Davila et al., 2021) and 
audio, e.g., for course lectures, tutorials, and technical talks. Community 
Question Answering sites and direct question answering is provided 
by resources such as Math Stack Exchange,4 WolframAlpha, and large 
language models such as the Generative Pre-trained Transformer (GPT). 

It is worth noting that when we have found or produced information 
we want to share or reuse, we usually produce a source of information 
ourselves. For example, when we have an answer to a math homework 

3Information foraging theory (Pirolli and Card, 1999) suggests we evolved to 
gather and consume information similar to food, governed by cost-benefit analyses. 

4https://math.stackexchange.com 
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question, we create a physical or digital document, so that this can be 
checked by ourselves and graded by our instructor. If we found a helpful 
video while doing the homework, we might share it in a text message, 
which is itself a form of ‘micro-source.’ 

Differences in Information Sources. Especially when we include in- 
formation obtained directly from our environment along with modern 
computing and communication devices, information sources may come 
in many forms. Sources vary in the dimensions listed below, among 
others. 

• immediacy, e.g., having a conversation vs. reading a transcription 
• authorship, e.g., human, machine generated, environment 
• interactivity, e.g., a human/chatbot conversation vs. a document 
• audience, e.g., grade school students vs. math professors 
• modality, e.g., text, video, audio, or a web page combining these 
• purpose, e.g., textbook, search results, or a search index 
• structure, e.g., free text in a sticky note, vs. a book with chapters 
• length 
• formality, e.g., proof vs. text message 
• style, e.g., how concepts and examples are communicated 
• correctness, e.g., correct vs. incorrect definition or proof 
• completeness, e.g., partial vs. full search index 
• type of information, e.g., technical, notes, communications 

For the immediacy of a source, we are referring to whether the source 
comes directly from observing a person’s environment (e.g., through 
conversation, experimentation, travel, etc.) or is recorded, as in a doc- 
ument or audiovisual recording. Particularly with the advent of large 
language models, authorship and correctness are important concerns. 
In many cases LLMs and other sources may appear credible but are 
incorrect. Knowing how a source is created can help us determine how 
trusting we should be of it when we are uncertain about validity (e.g., 
from the perceived expertise of an author or system). 
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The intended audience and style of a source are also critical concerns. 
They determine the prerequisite knowledge needed to decide whether a 
source is relevant and to interpret and use information in the source. 

Information task types. The primary task types we will use for people 
and systems come from common descriptions of sensemaking and simpler 
information tasks: retrieving, analyzing, and synthesizing. For this 
framework, these tasks are considered at the source level. For 
example, analyzing a source refers to analysis that produces additional 
recorded information for a source (e.g., in a note) rather than reading 
and interpreting a source without producing an observable artifact. 

We subdivide each of these into two subtasks based on how sources 
are created and used, producing six tasks in total, as shown in Fig- 
ure 1.1. The apply task is critical, and used for all other tasks (e.g., 
creating queries, consulting or creating information sources, or gener- 
ating annotations and/or indexes). It is distinct because people often 
apply information without producing observable sources. For example, 
recognizing what a variable represents does not involve creating an an- 
notation, index, or source outside of our own minds. The apply task also 
identifies an important commonality between thought and computation 
(e.g., algorithms): both apply information but using differing levels of 
formality, flexibility, and automation. 

Not all information needs require queries. If we have a helpful 
document describing the inverse document frequency on our laptop, 
we may simply consult it to review previously highlighted passages. 
This locating of items in an available source or across available sources 
through references and links is known as navigation, which is distinct 
from submitting a query to a system or person to find new sources. As 
another example of using navigation to satisfy an information need, in 
some case we may simply use the contents of available sources directly 
(e.g., copying-and-pasting into an online form). 

The process of analyzing a source and recording a map for use in 
retrieval is known as indexing. Consider Figure 1.2, where a book index 
provides a map for the book, so that a reader can quickly navigate to 
parts of the book discussing ‘Terms,’ for example. Contrast this subject 
index with the index used in a traditional term-based search engine, 
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Retrieve Information 

R1 Query to request sources of information 
R2 Consult and interpret available sources, examining and 

navigating within and across sources 

Analyze Information 

A1 Annotate sources with additional information, e.g., notes, add 
formula locations 

A2 Index sources by organizing them for retrieval 

Synthesize Information 

S1 Apply available information that we know, have in available 
sources, or is encoded in algorithms, etc. 

S2 Communicate information by creating new sources 

Figure 1.1: Information task taxonomy. 

⋮ 
TermID, 62 
Term normalization, 30 
Term-partitioned index, 70 
Terms. See also Queries 

BIM ranking function, deriving, 
207 

defined, 3, 21 
function notations, xi 
partitioning, 416 
statistical properties of, 82 
tree-structured dependencies, 213 
vectors, weighting and, 113 

Term weighting. See Weighting 
Test data, 237 
⋮ 

Figure 1.2: Excerpt from the index to “Introduction to Information Retrieval” by 
Manning et al. (2008). 
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which provide a much simpler map known as a concordance recording 
where specific terms appear in documents (Duncan, 2021). While these 
different indices are both used for retrieval, they differ in their scales 
(one document vs. a collection) and intended audiences (human reader 
vs. search algorithm). Other forms of indexing are less formal, such as 
collecting and organizing notes on different sticky notes for easier use. 

As discussed earlier, we distinguish tasks for analyzing sources in 
terms of organizing them for use and retrieval (indexing), and adding 
information to sources (annotation). Annotations are often used in 
indexing sources, such as adding formula locations for PDF documents. 

Source Jar Framework. To put sources and the tasks used to create 
them in a more intuitive relationship, Figure 1.3 visualizes our task 
framework as a jar of sources with a lid. The jar contains immediately 
available sources as marbles in the jar. Each marble has an identifying 
color and shape. The source marbles contain information of different 
types, and may refer to other sources inside and outside of the jar. 
Sources that are directly available are either with us, or inside the jar. 

Information Need: ( Background ) Need description / question 

R1. Query A1. Annotate S1. Apply 

• 
• 
————————-ꢀ  
————————- 

• 
• 
• 
• 

————————-ꢀ  
————————-ꢀ  
————————-ꢀ  
————————- 

• 
• 
• 

————————-ꢀ  
————————-ꢀ  
————————-ꢀ  

R2. Consult A2. Index S2. Communicate 

• 
• 
————————-ꢀ  
————————-ꢀ  

• 
• 
————————-ꢀ  
————————- 

• ————————-ꢀ  

Figure 1.3: Information task framework: the source jar. The jar contains source 
‘marbles.’ As we work we add, create, annotate and organize the sources in the jar, 
and record completed information tasks on the jar labels. 
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The jar lid is labeled with the background of the searcher, and the 
need that information is being retrieved, analyzed, and synthesized 
for. Stickers on the outside of the jar record information tasks that we 
perform to address this need. When we find or create a new information 
source, we add a marble to the jar. 

If a new source annotates another source, we place it in a container 
with the source it describes inside the jar (e.g., using a small plastic box). 
indexing produces a marble containing a description of which sources it 
organizes, and how. We take source marbles and containers out of the 
jar to use them, and return them to the jar when they are no longer 
useful. It is also possible to lose sources when the jar is accidentally left 
open and ‘spilled.’5 When we stop working to find and create sources 
for our information need, we select any sources we might wish to use, 
and then close the lid. 

We can imagine having a shelf of these jars for different information 
needs. For a new information need we create a jar, adding any potentially 
useful initial sources to the jar (possibly from other jars). To reuse or 
get additional information for a need we worked on previously, we open 
a jar from our shelf.6 Just as in the real world, not replacing sources 
in a jar runs the risk that we lose track of it, and have to pick up an 
old jar and work to refind that source, or find a replacement for the 
information in the lost source. 

This informal jar model is intended to roughly capture how people 
experience working with information in a simple way. It captures observ- 
able sources and observable task actions. We tend to move from source 
to source, performing tasks of specific types with a goal in mind. We 
are often unaware of why we performed tasks in a particular order, and 
so this is not represented explicitly, other than as marbles moving in 
and out of the jar and notes for which information tasks were executed 
being written on the outside of the jar. 

5e.g., ‘the dog ate it,’ ‘my internet is down,‘ or ‘I know it’s here...somewhere.’ 
6e.g., ‘Wait; I forgot one of the types of category theory applications I wanted 

to discuss in my paper from my notes...’ 
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1.3 Information Needs and Information Task Strategies 

When searching for mathematical information, what we need to find will 
vary from finding definitions for terminology, math symbols, formulas, 
operational knowledge such as proof techniques, applications of math- 
ematics (e.g., information retrieval models), resources for instructors, 
and detailed information on mathematical spaces, theorems, etc. 

Example 1.1 illustrates information needs that different audiences 
may be seeking to address using the same query, along with a list of 
sources that might be used to address their needs. These needs vary 
from finding definitions to exploring sophisticated relationships between 
the generalization of the theorem in different mathematical structures 
(Hilbert spaces) and applications in other fields (quantum mechanics). 

Example 1.1: Differing Information Needs 

Query: What does a2 + b2 = c2 represent and how is it useful? 

Students might use this query to learn the Pythagoras theorem, and 
perhaps find an example demonstrating the theorem, and a 
possible proof. 

Educators may have similar interests to students, but may seek addi- 
tional resources on how to teach this result. 

Researchers can have very different interests than the other audiences. 
They may be interested in one or more of the following: 

• For a mathematician: Is this true in a general metric space 
and/or a Hilbert space? 

• For a physicist: How is it linked to the probability assign- 
ments in quantum mechanics? 

• For an IR expert: How is it related to probability assign- 
ments in a Hilbert space used in describing interaction for 
information retrieval? 

As a result, the types of sources needed by each audience differ 
dramatically, but the initial (admittedly vague) query is identical: the 
query intent differs for these audiences. For math information needs, we 
have found it important to consider information needs both in terms 
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of the desired information, as well as who is searching, and specificaly 
their mathematical background. Some places where relevant information 
might be found for these information needs include web-pages (MSE, 
Brilliant.org etc.), YouTub e videos, online lecture slides, text documents 
and digital books (e.g., OpenStax, LibreTexts), articles, and online notes 
(e.g., MIT OpenCourseWare). 

For a broader sense of the types of mathematical information needs 
users have online, Table 1.1 illustrates information needs for math 
organized by Broder’s taxonomy of needs/intents behind web search 
queries (Broder, 2002). While some question the usefulness of the 
transactional class in Broder’s model, for math, the transactional class 
is a useful distinction. For example, a user may be looking to refind 
a web page they used to enter formulas in LAT X (i.e., a navigational E 
intent). Or, they may instead be looking to find such a web page for the 
first time, thereby looking to interact/transact with as-yet unknown 
websites (i.e., a transactional intent). 

Within the informational needs class, a distinct subclass of com- 
putational information needs exist. These include needs to evaluate or 
simplify a formula, or to produce a proof for a statement using logical 
operations. It was useful to distinguish questions that were seeking con- 
cepts, proofs, and computation for the ARQMath shared tasks (Mansouri 
et al., 2022b) that we discuss in Section 3. 

In our work we have found it useful to consider math information 
needs in two dimensions, based on the type of information need as 
shown in Table 1.1, and the user’s mathematical background. More 
formally, we have a space/set of mathematical information needs N 
defined by a Cartesian product of possible information needs (T )ypes 
and user/audience (B)ackgrounds (N ∈ T × B). How these types and 
backgrounds interact is illustrated in Example 1.1. 

Information task strategies. For a given information need, it helps to 
think about strategies that might be used to satisfy it. We can sketch 
these in strategy ‘jar’ diagrams as seen in the panel labeled Strategy 
1. The diagrams identify an information need, initial queries, expected 
tasks, readily available sources, and a list of where other relevant sources 
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Table 1.1: Examples of mathematical information needs within Broder’s Taxonomy 
(Broder, 2002). A user’s math background is another dimension. 

Navigational: Find a specific source (‘known item’ retrieval) 
Web page (e.g., for formula entry) 
Document (e.g., Book, Technical Paper) 
YouTube or Khan Academy Video 
Podcast 

Transactional: Find online resources for use/interaction 
Formula entry 
Evaluating and plotting a formula 
Simplification of a formula 
Interactive theorem proving 

Informational: Find information for a topic or question 
Sub-categories: computation, concepts, and proofs 

How to compute an expression (e.g., integral) 

ꢀ  ꢀ  

Symbol and operation definitions (e.g., ζ, 
Concept name(s) associated with a formula 
When is a function not differentiable? 
Who was Gauss? 

) n 
k 

Proof drafts for P = NP 

might be found. We can imagine beginning a new search by writing the 
information need on the lid, putting already available source ‘marbles’ in 
the jar, and then writing planned tasks on the jar labels. For readability, 
we use informal descriptions for the three main task types along with 
initial queries. 

Let us first consider search strategies that might be used by under- 
graduate students, for learning how to complete a square, and to change 
the base of a logarithm (Strategy 1 and Strategy 2). In both examples, 
two queries that might be used are given, and the Synthesis tasks clarify 
the specific information need: the source they want to produce. In the 
first example, this involves completing an exercise on paper, and in 
the second example, obtaining a value from a calculator. Note that for 
the queries containing formulas, students might find it difficult or be 
unable to express the formulas in queries using a standard text query 
box, particularly if they are unfamiliar with LAT X. E 
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Strategy 1: (Student) Completing the Square 
Retrieve: 

Query: how to complete the square 
OR ax2 + bx + c = (⋆)2 + constant? 

Search using the text query or possibly the symbolic query; (⋆) is a wildcard for 
any subexpression. Identify where the general method can be found, and examine 
the proof of the result. 

Analyze: Mark-up/bookmark sources to identify useful information. Use a notebook to 
summarize key details found in sources. Save examples for different cases, e.g., 
a, b > 0 and c ≤ 0. 

Z 

1 
Synthesize: Solve an integration problem on paper, such as dx. 

x
2 + 4x + 3 

Initial Sources: Textbook 

Possible Sources: ChatGPT, YouTube, Prof. X? 

Strategy 2: (Student) Log Base Change 
Retrieve: 

Query: log base change OR how to convert logb x to logc x? 

The student may use the text or symbolic query. Find sources giving the conver- 
sion rule with general bases. 

Analyze: Markup sources and note down where relevant sources are located in a list 
(e.g., in a text file). Save some special cases like converting log x to ln x. 10 

Synthesize: They use this to compute log 13 on a calculator as the log button on 4 

most calculators only represents log (·). 10 

Initial Sources: Web page on log conversion (hard to read) 

Possible Sources: Somewhere online? 

Now let’s consider more advanced information needs for researchers. 
The researchers may be interested in following progress on an old 
conjecture (e.g., Riemann Hypothesis). Or, they may be interested in 
learning about a new possible proof of the problem, or perhaps they 
were unfamiliar with the problem but are curious to know more about 
it. Strategy 3 seeks information and a proof for a problem that was 
posed in 1994. It became a major unresolved question in mathematical 
computer science until 2019, when Hao Huang solved it. Notice that 
our researcher is aware of many places where relevant sources for their 
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Strategy 3: (Researcher) Sensitivity Conjecture 
Retrieve: 

Query: What is Sensitivity Conjecture? Has it been proven? 

Find papers/books defining the conjecture and providing proofs. 

Analyze: Since the conjecture is very technical, retrieved material is annotated with 
sources where terminology in the conjecture can be comprehended. An index 
(graph) is made capturing the chronological account of progress on the proof. 

Synthesize: Results and the methods for proving this conjecture are used for similar 
problems, and new articles/material are created to disseminate the findings. 

Initial Sources: Email from colleague suggesting this might be relevant for my work. 

Possible Sources: online encyclopedias (Wikipedia, Wolfram MathWorld), online Q&A 
sites (MathOverflow.net, AoPS, sciencedirect.com), YouTube videos, online lec- 
ture notes, text documents (e.g., digital books, research articles), online science 
& math magazines (Quanta Magazine), online math databases (Cornell’s mathe- 
matics library, zbMATH Open, A S: Math Reviews) M 

information need may be found in comparison with the undergraduate 
examples. 

As another example, imagine that another researcher encounters 
a technical statement for the sensitivity conjecture, but which does 
not name it. They want to know the status of the statement, and if 
there are associated results they can use in their own work. Here the 
searcher only wants to learn the conjecture’s name, properties, and 
proofs for later reference. The strategy from Strategy 3 needs to be 
altered, as reflected in Strategy 4. In this second case, the researcher 
has a document summarizing the key findings and where sources may 
be found. 

A related challenge is that the interpretation of most mathematical 
expressions is context-dependent, i.e., the same formula may refer to 
different concepts in different contexts. For example, a student looking 
to understand the formula π(m+n) using search will likely end up with 
multiple interpretations, which might represent: 

• the distributive law: π(m + n) = πm + πn, or 
• the value of the prime-counting function that counts the number 

of primes less than or equal to m + n. 
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Strategy 4: (Researcher) Unknown Conjecture 
Retrieve: 

Query: Any set H of 2n−1 + 1 vertices of the n−cube contains a vertex with at 
√ least n neighbors in H. 

The search is done using a textual query with LAT X for the formulas. Related E 
papers/books are collected and consulted for theorem definitions and proofs. 

Analyze: Retrieved sources are annotated with links to other sources where terminology 
used can be comprehended. Highlight the name of the statement when it is found. 

Synthesize: Create document summarizing the theorem name and key details, with 
cites/links to key sources found. Include link to a file directory on a laptop 
where additional notes in text and LAT X files can be found, if any. E 

Initial Sources : Research paper with technical statement of interest 

Possible Sources: online math databases (Cornell’s mathematics library, zbMATH 

Open, A S: Math Reviews), . . . M 

This property of a single object signifying multiple entities is known 
as polysemy, such as the word ‘apple’ being used to represent both a 
food and a company, and often poses challenges for both information 
retrieval and natural language processing. 

User studies and use cases. There are a small number of papers 
examining math retrieval online. We know of just two studies looking 
at user behaviors in text-based search engines for math. The first 
was for the DLMF system (Miller, 2013), which supported text and 
formula search in a standard text box using queries in a LAT X-based E 
formula syntax. Few users at the time visited the site intending to 
search using formulas, most likely because of its novelty, and because 
this capability wasn’t prominently featured on the site. What math 
queries were used were often short, or even single symbols. There also 
tended to be fewer click-throughs to pages from search results, and more 
query reformulation for formula queries; whether users were browsing 
formula search results for interest, had challenges satisfying information 
needs, or some combination of these is unclear. 

The second log study was for a standard text-based search engine 
(Mansouri et al., 2019b). Query logs from a Persian general-purpose 
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search engine were used. Compared to the general case, search sessions 
for math topics were typically longer with more query refinements (i.e., 
changing queries to try and improve results) and were less successful. In 
contrast to the DLMF study, queries were also longer and more varied 
more than queries overall. This was partly because many math queries 
appeared to be questions copy-and-pasted from exercises or homework 
assignments. 

In another interesting study, posts to threads in an online math 
Community Question Answering (CQA) site were studied (MathOver- 
flow7). The authors identified patterns in the collaborative actions they 
exhibit (e.g., providing information, clarifying a question, revising an 
answer) and their impact on the final solution quality (Tausczik et al., 
2014). 

Earlier work considered use cases for math-aware search in a study 
of mathematics graduate students and faculty (Zhao et al., 2008). Sur- 
prisingly the participants did not find formula search was useful overall, 
perhaps because they generally knew the names of entities they wanted 
to search on. The study also points out that the type of a source is an 
important relevance factor (e.g., exercises vs. code). Another analysis 
of expert use cases is also available (Kohlhase and Kohlhase, 2007), in 
which formula search was studied using the MathWebSearch tool. 

1.4 Retrieval Systems 

Figure 1.4 provides an overview of retrieval system interactions with 
people, and the specific sub-tasks from the ‘jar’ framework that they 
perform. Unlike the freely interacting tasks of the ‘jar’ model, retrieval 
systems generally perform information tasks in a fixed order, shown by 
arrows in Figure 1.4. The figure has two main information flows for the 
collection of sources that a retrieval system uses. 

1. Index construction (offline). Information passes from the 
sources at top and flows to the bottom-right, as sources are 
annotated with additional information, and then used to compile 
a searchable index of patterns. The collection index is precomputed 
before the system is used for retrieval. 

7https://mathoverflow.net 
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Figure 1.4: Information tasks in retrieval systems (backend). Arrows show the flow 
of information. All tasks in Figure 1.3 other than Apply are shown. 

2. Retrieval (online). Submitted queries are annotated and then 
matched against patterns in the index, returning one or more 
matching sources. The collection is generally consulted for pas- 
sages, bibliographic data, and other contents when generating the 
result returned to the user. 

Consulting sources. Search engines that match queries to contents in 
sources are a type of filter. A standard search result is useful precisely 
because it contains sources with patterns of information shared with 
the query, omitting all other sources. 

The implementation of consult tasks that access sources is important 
for both index construction and retrieval, and is another way that sources 
are filtered in a retrieval system. Source contents shown in search results 
directly impact our impression of which returned sources are promising. 
Source contents used for index construction define the available patterns 
for matching queries to sources. 
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For example, omitting high frequency terms from queries and sources 
that do not signify a topic (i.e., skipping stop words such as ‘the’) can 
greatly reduce index sizes and increase retrieval speed, but at the risk 
of performing poorly on queries using these terms; a classic example is 
the phrase ‘to be or not to be’ from Shakespeare’s play Hamlet, which 
is instantly recognizable but composed entirely of stop words. 

For math-aware search, a similar decision would be omitting tokens 
and strings representing formulas (e.g., in LAT X source files). Limita- E 
tions on what can be consulted includes formulas in PDF documents, 
which are usually not represented explicitly (Shah et al., 2021). This 
and other missing information can be addressed by annotating sources. 

Annotation and indexing. In addition to selecting source contents in 
the consult step, we will also annotate sources with additional informa- 
tion. This extra information can be used to add patterns for matching 
sources in the index, or to add information to retrieval results. 

For example, some neural net-based techniques such as SPLADE 
automatically add words that do not appear in a source to the inverted 
index (Formal et al., 2021).8 These additional terms are synonyms and 
other words appearing in similar contexts within a training collection. 
For math, a simple example is adding additional representations for 
formulas in sources, such as generating Content MathML for operator 
trees corresponding to formulas represented in LAT X or Presentation E 
MathML, allowing formulas to be searched using both formula appear- 
ance and operation structure. 

From the information obtained through consulting and annotating 
documents, an index of patterns for matching queries is produced. This 
can take different forms, but is generally one or a combination of: 

1. inverted indexes that map patterns to sources and source locations 
(e.g., tokens or paths in graphs for math formulas), and 

2. embedding spaces mapping patterns to points in a vector space, 
where entities with more similar contexts across a collection are 
closer (e.g., words, sentences, and formulas). 

8This augmentation is also applied to queries. Query annotations are called a 
query expansion when they add tokens or other patterns for matching additional 
sources in the collection. 
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Embedding vectors have their own dictionary mapping vectors to specific 
sources or source locations (e.g., when search is done on text passages 
or individual math formulas). This allows sources matched in vectors 
to be consulted when communicating results to users. 

Retrieval: Querying sources and communicating system results. We 
query a collection using the collection index and an annotated query 
containing additional terms and/or an embedding vector. Search using 
inverted indexes is referred to as sparse retrieval, while search using em- 
bedding spaces is referred to as dense retrieval, based on the underlying 
vector representations for each. In particular, term vectors representing 
the presence of words or formula structures in a document are mostly 
zeros. In general, sparse retrieval models such as BM25 that use tokens 
or other source contents directly for lookup are faster (Robertson and 
Zaragoza, 2009), but dense retrieval models such as ColBERT (Khattab 
and Zaharia, 2020) are more effective (Wang et al., 2023; Giacalone 
et al., 2024). Some retrieval models use dense models to improve sparse 
models e.g., SPLADE, mentioned earlier. 

The improved effectiveness of dense retrieval models is partly from 
additional context used in defining patterns, e.g., using the words refer- 
ring to and surrounding a formula to represent a formula in a pattern vs. 
the formula alone. The use of a vector space also provides more holistic 
and flexible pattern matching, e.g., finding source vectors with the most 
similar angles to a query vector, rather than matching query formula 
tokens individually to vocabulary entries in an inverted index. These 
help bridge the vocabulary problem discussed in the next subsection. 

How the final result of a query is communicated (generated) can 
vary substantially, and often makes use of query and source annotations. 
In a traditional search engine, specific sources are matched in the index 
for the query task, with the index comprised of some combination of 
inverted indexes and embedding spaces. Source contents are then used 
to generate a result in the communicate task, using sources and source 
locations matched in the index. 

However, for a generative question answering or retrieval system, the 
result of the query task may be a single vector capturing the similarity 
of patterns in the query to patterns within sources of a very large 
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collection produced using a neural network. This vector is then used in 
the communicate task as a starting point for generating the response, 
for example using a second recurrent neural network trained on the 
collection, possibly along with additional information from the original 
collection of sources (e.g., with references to specific sources). Some are 
used to generate a list of ranked sources directly (Zeng et al., 2024), 
ultimately producing an extractive search result summary based on 
source contents. 

Other recent systems such as Google’s AI search assistant produce 
abstractive summaries of retrieved sources, which summarize matching 
sources but without limiting the summary to contents found in the 
matched sources or their annotations. 

System design. System designers and IR researchers are interested 
in the efficiency and effectiveness of a retrieval system. As seen in 
Figure 1.4, these are observed in live systems through query and user 
interaction logs. For experiments, system results are computed using 
simulated user interactions for a fixed set of queries, and relevance 
scores for sources, along with a description of the information needs 
associated with each query. Designers and researchers also make use of 
additional tools for evaluation, some of which we discuss in Section 3. 

1.5 User Interfaces and System Interactions 

User interfaces play a very important role in mathematical information 
retrieval. In addition to executing queries and returning results, how 
queries are entered, how results are returned, and how other information 
tasks in Figure 1.3 are supported can help speed up or even limit a 
person’s efforts to find and use information. 

We next present a user-centered view of retrieval systems in math 
information tasks. We then share some key challenges for retrieval 
system interaction, along with interface designs aiming to address them. 

Interfaces-in-the-task-loop. Figure 1.5 illustrates a student working 
to change the base of a logarithm (i.e., Strategy 2) using multiple 
retrieval systems. At the bottom-left of Figure 1.5 is a jar holding 
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Figure 1.5: Interacting with multiple retrieval systems (frontend). Each dotted 
arrow represents a retrieval system backend (see Figure 1.4). Sources currently used 
to address the information need are shown in a separate container at bottom right. 

sources the student had on hand when they started searching, new 
sources they find or create, along with other linked sources, e.g., by web 
link, citation, or mention. In addition to these sources, their queries, 
results from queries, and handwritten notes (e.g., from converting bases 
by hand) are also found in the jar. Of these available sources, the ones 
currently being used are at the bottom-right of Figure 1.5. 

Some selected sources being worked with partially or fully answer 
the student’s needs, but others do not, such as sources later deemed 
not relevant. Other selected sources might exercise knowledge such as 
shown for the Apply task in Figure 1.5, or come from other tasks such as 
annotating and indexing sources of interest. Some selected sources may 
be added even after finding answers, perhaps because they provide a 
different perspective, or have a presentation that is easier to understand. 

For more complex tasks, we often see the focus of our selected sources 
drift. In the berry picking model of retrieval (Bates, 1989), people see 
their queries and information needs change as they search and learn. 
Particularly for unfamiliar topics, our needs and queries may change 
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dramatically as our understanding does (Belkin, 1980). For example, 
this is likely to happen when a person explores unfamiliar concepts 
associated with unfamiliar notation. In our jar model, information need 
changes involve changing the jar lid label, perhaps using an orange 
sticky note placed over the original description.9 

What we have in Figure 1.5 is a person generating, selecting. and 
using sources for needs that may change as they work. Retrieval systems 
are a part of this process, but not the focus. 

Interaction challenges. All systems embody design decisions and 
biases. Naturally, no one retrieval system will be ideal for all queries or 
subjects. However, users often have challenges in search that are more 
cognitive than system-related. These are important considerations in 
creating usable systems, particularly for search interfaces (Hearst, 2009; 
White, 2016; Holmes et al., 2019). 

Norman identifies two ‘gulfs’ that limit human task performance 
(Norman, 1988). Broadly speaking, for retrieval systems the two main 
categories of interaction challenges are with expressing queries (a gulf 
of execution) and interpreting search results (a gulf of evaluation). In 
both cases, for unfamiliar topics, the user may be unable to formulate 
an effective query or interpret results reliably precisely because of what 
they do not know, or because their understanding is incorrect (i.e., their 
Anomalous State of Knowledge, Belkin, 1980). 

A common cause of a gulf of execution in query formulation is 
the vocabulary problem, where the terms/patterns a person uses for 
search differ from those used to index sources. For example, in one 
study undergraduate students were challenged while trying to define 

ꢀ  ꢀ  
the binomial coefficient ‘ ’ (Wangari et al., 2014). Because of this n 

k 
notation-based vocabulary problem, the students’ were unable to find 
a definition using standard text search. When allowed to enter the 
expression by hand with automatic translation to LAT X, they found E 
definitions using the same text search engines. 

People sometimes also encounter a gulf of evaluation when trying 
to identify relevant information in search results. Aside from missing 

9Sticky notes: a versatile information tool in this section and in life. 
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relevant items in results due to the vocabulary problem, an important 
factor here is how retrieval results are presented to a user. For example, 
Reichenbach et al. (2014) report statistically significant differences in 
the ability of participants to identify relevant sources in SERPs when 
excerpts present formulas as raw LAT X vs. rendered formulas. Additional E 
gulfs occur when selected excerpts are not relevant for a need, or a 
person lacks the math background to understand a result.10 

Learning new terminology and notation while searching allows a user 
to extend their patterns used to express queries and identify relevant 
results, bridging these gulfs of execution and evaluation. Some of these 
new patterns might be recorded explicitly in a source, e.g., recording 
an unfamiliar notation for eigenvectors on a blue sticky note. 

Query input: math-aware search bars. For the most part, math-aware 
search bars differ in how they include formulas. Perhaps the simplest 
design is for users to enter both text terms and formulas as text. An 
early example is the Digital Library of Mathematical Functions11 which 
accepts LAT X commands for formulas along with text terms in queries E 
(Miller and Youssef, 2003). The more recent Approach Zero system12 
system uses MathQuill13 to render LAT X formulas as they are typed E 
in the search bar, and allows writing lines and argument positions to 
be reached with arrow keys rather than LAT X commands (e.g., for E 
superscripts and fraction denominators). 

To avoid remembering many names for operations and symbols, 
or to avoid unfamiliar LAT X or other syntax for creating formulas, E 
usually a palette of buttons with images for symbols and operations 
accompanies the search bar. Buttons add formula elements including 
operation structures (e.g., fractions, integrals, and radicals) and symbols 
not found on a keyboard (e.g., greek letters such as ζ (zeta)). Query 
bars with palettes often display formulas in a structured editor like 
those in document editors (e.g., Word). Early examples of prototypes 
with symbol/operation palettes include MathWebSearch (Kohlhase and 
Prodescu, 2013) and MIAS (Sojka et al., 2018). 

10Impatience, inattention, mental strain, and tiredness are also factors here. 
11https://dlmf.nist.gov 
12https://approach0.xyz 
13http://mathquill.com 
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As another way to reduce the effort and expertise required for 
formula entry, some search bars also support multimodal formula entry. 
Multimodal query editors allow formulas to be uploaded from images 
or entered using handwriting in addition to standard keyboard and 
mouse-based entry. There are also multimodal tools such as Detexify,14 
which looks up LAT X commands for symbols drawn using a tablet E 
or mouse (Kirsch, 2010). In addition to search, recognizing math in 
handwriting and images has been used for interactive computer algebra 
systems and other applications, and is an active area of research dating 
back to the 1960’s (Zanibbi and Blostein, 2012; Truong et al., 2024). 

An example of a search bar with multimodal formula entry is the 
MathDeck system15 (Diaz et al., 2021). As seen at the top-left in Figure 
1.6, a text search box can be used to enter words and LAT X for formulas. E 
Formulas can also be added from a visual formula editor shown at the 
center-left in Figure 1.6, and using formula ‘chips’ with embedded LAT X E 
(e.g., blue oval at right of the query text box). Like MathQuill and 
structured formula editors, MathDeck renders a formula as it is entered, 
but with more flexible subexpression selection and entry. MathDeck’s 
query and formula entry interface is designed to: 

1. support text entry; natural for text, and one can easily type ‘x + 

2’, or copy-and-paste LAT X with small changes (e.g., a → x) E 
2. provide symbol palettes to help enter symbols and structures 
3. provide handwriting input for those who prefer it, and to avoid 

searching palettes for symbols & structures 
4. support formula reuse in chips; chips can be used in editing, and 

can be exported/shared as images with LAT X metadata E 
5. construct formulas interactively using a structured editor, with 

larger formulas easily built up from smaller pieces. 

Other multimodal query entry interfaces have similar design goals, 
most commonly to support image and keyboard/mouse input. 

Other familiar ways to reduce query and formula entry effort are 
query suggestions and query autocompletion. Their helpfulness is related 

14http://detexify.kirelabs.org/classify.html 
15https://mathdeck.org 
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Figure 1.6: MathDeck query entry, formula chips, and cards (Diaz et al., 2021). 
Chips can be dragged, edited, and combined. Editing may be done using raw LAT X, E 
or a combination of operations, chips, handwriting, and LAT X using the canvas E 
at center. Formula cards (bottom left) contain chips, titles and descriptions. New 
cards can be created by users, and searched by formula & title (video: https: 
//www.youtube.com/watch?v=XfXQhwIQlbc). 

to the principle of recognition over recal l: it is usually easier to recognize 
something we see than recreate the same thing from memory (Hearst, 
2009). As a simple example, a query autocompletion might include a 
concept whose name but not formula we can remember, and allow us 
to quickly select a query containing both. 

To illustrate the communication of retrieval results, we will use a 
system for visual search that uses an inverted index. Figure 1.7 shows 
handwriting in math lecture videos being queried with a LAT X-generated E 
formula image. The inverted index uses pairs of symbols (e.g., (I, n), 
(=, A)) as the vocabulary for lookup. Before searching, the query image 
is annotated with a graph containing nodes for symbols and edges with 
angles between adjacent symbols. 

The inverted index is queried by looking up all adjacent query 
symbol pairs, to find their occurrences in the video collection. Each 
entry in the posting list for a queried symbol pair (e.g., (I, n)) refers to 
an edge connecting the same symbols drawn in a video. Before indexing, 
videos are annotated with keyframes of drawn symbols that overlap in 



  
  

32 Sources and Information Tasks 

Figure 1.7: Tangent-V Formula Search Results (left) and Video Player Supporting 
Navigation (right) (Davila and Zanibbi, 2018). A rendered LAT X formula is used to E 
search handwritten math symbols recognized in a video (Davila and Zanibbi, 2017b). 
Here the user has clicked on the ‘=’ of a matched formula on the whiteboard, and 
this advances the video to where it is first drawn (video: https://www.youtube.com/ 
watch?v=gn24qo1MLN0). 

time along with an adjacency graph for each keyframe. Each edge in a 
keyframe graph is added to the posting list for its pair of symbols, as a 
posting containing a unique identifier for the edge, its keyframe graph, 
and video. In Figure 1.7, zoomed-in video keyframe graphs are shown 
in the results on the left, and keyframe thumbnails are shown at the far 
right. 

Query response: communicating results. It is actually the drawn 
symbol keyframes annotated on videos that are searched. Keyframes are 
scored by the similarity of matched adjacency subgraphs to the query 
graph, based on the similarity of matched symbols (nodes) and their 
angles (edges). In the results shown in Figure 1.7, symbols matched in 
a query/keyframe have the same color, and matched graph edges are 
red. To avoid missing symbols due to recognition errors, symbol pairs 
are indexed using all combinations of possible labels for each symbol. 
This is how n matches M in the second match shown.16 
Let’s consider the results in Figure 1.7 more closely, with associated 

system tasks in Figure 1.4. The query result shows the top-2 matching 

16A variation of adding tokens to queries and documents to increase possible 
matches in an inverted index. Symbol similarity is computed from all label prob- 
abilities assigned to each symbol. Tangent-v has also been used to search formula 
collections using unique symbol labels in PDF (Davila et al., 2019). 
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videos, and not keyframes. To generate this view, the keyframe ranking 
from querying the index is restructured as a video ranking, with videos 
ranked by best keyframe match. Also, the annotated query and videos 
have been consulted to produce the graph matches shown for each video. 
The videos are consulted again for annotations not used for indexing: 
clicking the mouse on a symbol in a result keyframe makes the video 
player jump to where the symbol starts to be drawn. 

How the search results filter and present the videos is motivated 
by tasks users carry out (see Figure 1.5). For example, having symbols 
linked to frames can help people consult videos by quickly navigating to 
where a formula is drawn and discussed. Results rank videos rather than 
keyframes to make the search results more concise and easier to consult. 
The communication, annotation, indexing, and querying tasks can also 
be supported from search results. In MathDeck formulas in results can 
be used directly for search, selected for editing or export, or annotated 
in a card with a title and description. Cards are also automatically 
indexed in a ‘deck’ searchable by formula or title. 

Showing matching graphs in results is more helpful for designers 
than users; simple bolding or highlighting is more common. In contrast, 
MathDeck’s search results highlight matched query words and formulas 
located in PDF documents (e.g., for papers from the ACL Anthology, 
Amador et al., 2023).17 
We’ve used just two systems here to illustrate search results that 

rank sources, and how they interact with human information tasks. 
However, results from other systems have different types. Some systems 
plot, simplify, and/or perform requested operations on formulas, or pro- 
vide solutions for math problems posed in text and/or fomulas directly 
(e.g., using WolframAlpha or a math-aware chatbot). In these cases 
the response is an answer to a (possibly inferred) question, rather than 
a ranked list of sources. These are designated as question answering 
systems, and interactions with chatbots addressing math queries are 
a type of conversational search where clarifying questions and addi- 
tional information may be provided or received in multiple rounds of 
query/result interactions. 

17ACL Anthology search demonstration: https://drive.google.com/file/d/1fbiMy 
HtlfEYUJvmrbZsWzhfL0X_zo9-t/view. 
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Chatbots using Large Language Models (LLMs) have proven intrigu- 
ing and useful in some instances, but there is an increasing awareness 
of issues related to the validity of responses and other substantive con- 
cerns (Bender et al., 2021). However, any retrieval result is only an 
information source – understanding and verifying any source requires 
additional work. Related to this, in Community Question Answering 
platforms (CQAs), many posts request clarification of a question, or 
clarify/correct posted answers and comments.18 This illustrates how 
human responses to math queries also often contain misunderstandings, 
ambiguities and errors. 

Regardless of the result type, how information is chosen and pre- 
sented in results is important. It has a real impact on the usefulness 
of the result as a source of information, and on how tasks other than 
consulting the result itself are supported. In many cases usability testing 
can be used to check the effectiveness of result presentations and other 
interface design elements, and to discover refinements and alternatives.19 

Supporting tasks for individual sources. Programs used to view/con- 
sult sources can also help with the user tasks illustrated in Figure 1.5. 
A nice example is the ScholarPhi system shown in Figure 1.8 (Head 
et al., 2021). Reading formulas can be challenging, as symbols may be 
defined throughout a paper. ScholarPhi provides annotations decorating 
a selected formula/subexpression, providing symbol definitions in-place. 
Definitions are linked to where they appear, and text not associated 
with a selection is greyed out. 

To produce the definition views in ScholarPhi, sources need to be 
annotated with formulas, symbols, and definition locations, and then 
definitions need to be linked with associated entities where they appear 
in the paper (i.e., symbols or subexpressions). Definition segmentation 
and linking entities are performed with natural language processing 
techniques. The original prototype identified math symbols within LAT X E 
source files used to generate PDFs, simplifying formula detection. 

18Including the classic, ‘my correction to @your correction.’ 
19e.g., parts of the MathDeck were usability tested (Dmello, 2019; Nishizawa, 

2020; Diaz, 2021), which led to substantial improvements. 
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Figure 1.8: ScholarPhi system showing definition for math symbols found within 
the same PDF paper (Head et al., 2021). To assist skimming for details, text other 
than for definitions of a selected formula is greyed out (video: https://www.youtube. 
com/watch?v=yYcQf-Yq8B0). 

A second example is the keyframe list at right in Figure 1.7. When 
viewing a video, all keyframes for handwritten content are available in 
a thumbnail list. Keyframes can be selected, and individual symbols 
clicked on to jump to where it is first drawn in the video (similar to the 
search results). This requires annotating video sources with generated 
keyframes produced using computer vision techniques. 

Both ScholarPhi and Tangent-v require generating additional in- 
formation using automated inference (i.e., AI), and their usefulness 
is limited by the accuracy and scalability of the methods employed. 
However, we believe that this is an important future direction for math- 
ematical information retrieval, because the content and organization 
of mathematical sources can be complex. Particularly for non-expert 
users, mature versions of these techniques may be very helpful. 

A number of well-known formats were devised or augmented to 
support detailed annotation with links and tags, including TIFF, PDF, 
and XML. Unfortunately, detailed ‘semantic’ annotation has proven 
difficult at scale despite significant efforts. Some possible reasons include 
the time required to create sources before annotations, the diversity of 
information needs (e.g., which information do we annotate?), attaching 
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large annotations makes files large and unwieldy, and overall progress 
in scalable AI has been slower than many anticipated. 

As AI continues to improve, creating source annotations to support 
examining and navigating math sources and other user information tasks 
within UIs seems likely to be beneficial. Perhaps application-specific 
annotations such as those used in ScholarPhi, Tangent-v, and MathDeck 
are a good starting point. 



  
  

2 

Annotating and Indexing Sources 

In this section we focus on indexing formulas and text in sources, as 
illustrated in Figure 1.4. This requires consulting sources, annotating 
formulas and text with additional information, and then constructing 
‘sparse’ inverted indexes for looking up discrete patterns directly (e.g., 
words or paths in formula trees), and/or ‘dense’ indexes representing 
the same patterns in embedding vectors, which are searched based on 
the similarity of an embedded query pattern with items in the index 
(e.g., using vector angles). With this data, a variety of sparse and 
dense retrieval frameworks can be used for a variety of search, question 
answering, machine learning, and evaluation tasks. 

We will consider each of the three main tasks needed for indexing in 
turn, starting with the types of information and representations used 
in mathematical information sources. 

2.1 Consulting Sources for Mathematical Information 

Let’s first consider how we consult sources for mathematical information 
using some examples. The examples come from technical documents 
and search queries, but much of what will be said applies equally well 
to videos, audio, conversations, text messages, and other source types. 

37 
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We will start with a definition of the Inverse Document Frequency 
(IDF) shown in Example 2.1. IDF is used in a number of influential 
sparse retrieval models including variants of TF-IDF (Term Frequency- 
Inverse Document Frequency) and BM25 (Robertson and Walker, 1994; 
Robertson and Zaragoza, 2009). Its utility comes from a simple but 
profound insight: query terms appearing in fewer documents are rarer 
and thus more specific, and so should be given higher weight when 
ranking documents using matched query terms (Jones, 1972). 

Example 2.1: Inverse Document Frequency (IDF) 

Excerpt from Robertson (2004) 
...Assume there are N documents in the collection, and that term t i 
occurs in n of them . . . the measure proposed by Sparck Jones, as a i 

weight to be applied to term t , is essentially i 

N 
ni 

idf(ti) = log (1) 

Variable and function definitions 
. . . Assume there are N documents in the collection, and that term t i 
occurs in n of them . . . the measure proposed by Sparck Jones, as a i 

weight to be applied to term t , is essentially i 

N 
idf(ti) = log (1) 

ni 

For example, the term ‘BM25’ is predominantly found in sources on 
information retrieval, while the term ‘weight’ is used for many topics 
and in multiple senses, including the heaviness of an object and scaling 
numeric values. When scoring documents against the query ‘BM25 
weight’, matches for ‘BM25’ will have higher IDF scores than ‘weight,’ 
reflecting the narrower usage of ‘BM25.’ 

Despite its brevity, the excerpt in Example 2.1 contains a fair amount 
of directly represented and implied information. Recovering some of 
this information requires pattern matching and inference, i.e., applying 
information known, found in the passage, or found in other sources. To 
illustrate this, we annotated the definition at the bottom of Example 
2.1. Underlining and highlighting are used to associate variables and 
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function names with their definitions in the text. ‘them’ is placed in a 
box with a thin outline to represent the anaphoric (backward) reference 
from ‘them’ to ‘N documents.’ Knowing that ‘them’ refers to documents, 
we can infer that n is the number of documents containing term t . i i 

In this way, gathering information from a source involves a com- 
bination of consulting the source to identify stated information, and 
analyzing the source to reveal additional information from explicit and 
implied linguistic patterns and relationships. Both activities are in- 
formed by available knowledge, i.e., readily available and actionable 
information that we have previously seen or inferred, or find by nav- 
igating to other sources or querying for new sources (e.g., following 
hyperlinks, or asking a person). 

Example 2.2: Information extracted from definition in Example 2.1 

Variables: placeholders for a set of values, similar to common nouns 

• The text identifies N as the number of documents in a collection. 
N is like a common noun, because the collection is not specified. 

• The text defines t as any term appearing n times in a collection, i i 

with shared identifier i, e.g., (t , n ) could be (‘weight’, 11). 3 3 

Functions & Operators: create new from given values, like verbs 

• log: log function with unspecified base. 
• idf(t ): aside from the  unspecified log base, a concrete function i 

in Equation (1). The text says this gives a weight for term t . i 

• Division ( ), application (idf(·), log ·), and equivalence (=) · 
· appearing in Equation (1) that are not defined in the excerpt. 

Additional context: 

• The text indicates Spärck Jones introduced the idf formula in a 
different, unspecified form (Jones, 1972). 

Following this process, we gathered the information shown in Exam- 
ple 2.2. Note that the underlined missing details are deliberate omissions: 

• By not specifying a collection, N is defined for any collection. 
• t and n give any term and a count for documents containing it. i i 
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• Omitting the logarithm base emphasizes that logarithms increase 
with input size (i.e., they are monotonic) and so any base suffices. 

• Function application and the operators used are common, and 
their definitions are assumed to save space and reader effort. 

These omissions are helpful, provided the reader can infer the missing 
details they need: the definition would be longer and harder to read 
otherwise. More generally, what an author chooses to omit is informed 
by (1) the context and focus of discussion, i.e., items discussed earlier 
and the current topic, and (2) the assumed background knowledge of 
the audience. These determine what can and should be left out. 

Note also that Equation (1) on its own conveys only partial infor- 
mation. A formula presents a hierarchy of operations, but its symbol 
definitions and its purpose generally come from surrounding text, other 
formulas, and assumed knowledge. In this example, the text defines all 
variables and the term weighting role of the idf formula, but not the 
operations shown in the formula. 
Let’s next consider an alternative definition for the idf function 

from Equation (1) that uses no mathematical symbols: 

A term’s inverse document frequency is the percentage of 
documents containing the term, inverted and then log-scaled. 

This seems simple enough – we invert the numerator and denominator 
in the percentage of documents containing the term (i.e., ‘flip’ the 
fraction) and convert this value to a logarithm.1 But we lose some useful 
patterns and information when we do not use math notation: 

Visibility: Formulas are italicized and use distinct symbols, making 
them easier to find in sentences (inline). Also, they may be offset 
from the main text and indented (displayed like Equation (1)). 

Compact Reference: Referring to symbol names is more efficient than 
reusing descriptions, e.g., N vs. ‘the number of documents.’ 

Compact Structure: Text describes relationships, while formulas show 
relationships spatially, e.g., Equation (1) vs. the textual definition 
above. A good example is the distributive property from algebra, 
which is easily expressed using: x(y + z) = xy + xz. 

1The log scale reduces the rate at which 
terms completely dominate rank scores. 

i df increases, which avoids having rare 
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Abstraction: Formulas often define properties and patterns applicable 
in multiple contexts. For example, idf can be applied to formulas 
if t is redefined to refer to a unique formula, and n the number i i 

of documents where the formula appears. We can also redefine N 0 

and λ in the decay function N(t) = N e 
in (1) a retirement fund balance, (2) the rate of a chemical reaction, 
or (3) the potential contained in a capacitor. 

to estimate decreases −λt 0 

Judicious use of formulas in technical writing makes mathematical 
information easier to find, analyze, and reuse/adapt. Which things are 
beneficial to formalize in notation again depends upon a document’s 
focus and intended audience. 

Another idf definition and visual formula representations. The 
following is an alternative definition for IDF taken from the Wikipedia 
page for the tf-idf retrieval model. 

The inverse document frequency is a measure of how 
much information the word provides, i.e., how common or 
rate it is across all documents. It is the logarithmically scaled 
inverse fraction of the documents that contain the word 
(obtained by dividing the total number of documents by the 
number of documents containing the term, and then taking 
the logarithm of that quotient): 

N 
idf(t, D) = log 

|{d : d ∈ D and t ∈ d}| 
This definition for the idf formula is essentially equivalent to that in 
Example 2.1. However, the formula used to represent idf has changed. 
The document collection is given explicitly as a parameter D, and 
the number of documents containing a term, previously n , is now the i 

set size for documents containing the term. The term itself is noted 
as simply t, and not ti. Also, the wiki page includes a link to the 
Logarithmic scale article that we can follow to review that concept. 

Example 2.3 provides an excerpt for the embedded formula in the 
tf-idf article HTML page. The formula appearance is represented using 
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Example 2.3: Presentation MathML from Wikipedia tf-idf article 

<math xmlns="http://www.w3.org/1998/Math/MathML" 
alttext="{\displaystyle \mathrm {idf}..."> 

<semantics> 
<mrow class="MJX-TeXAtom-ORD"> 
<mstyle displaystyle="true" scriptlevel="0"> 
<mrow class="MJX-TeXAtom-ORD"> 
<mi>i</mi> 
<mi>d</mi> 
<mi>f</mi> 

</mrow> 
<mo>(</mo> 
<mi>t</mi> 
<mo>,</mo> 
<mi>D</mi> 
<mo>)</mo> 

... 
</mrow> 
<annotation encoding="application/x-tex"> 
{\displaystyle \mathrm {idf} (t,D)= 
\log {\frac {N}{|\{d:d\in D{\text{and}}t\in d\}|}}} 

</annotation> 
</semantics> 

</math> 

Source: https://en.wikipedia.org/wiki/Tf-idf?oldid=1236851603. 

Presentation MathML, which is an XML encoding for the placement of 
symbols on writing lines along with their types (e.g., <mrow> for writing 
lines and token groupings of characters (idf), operators in <mo>, variable 
and function identifiers in <mi>). The LAT X string used to generate E 
the MathML using MathJax2 is included in the outermost <math> tag, 
and in the <annotation> tag near the bottom of of the excerpt.3 Many 
web browsers can render Presentation MathML directly, or can use 
javascript-based LAT X rendering tools, e.g., applying MathJax to the E 
alttext attribute of the <math> tag. 

The vast majority of documents represent formulas by their appear- 
ance, whether as raster images (e.g., pixel-based PNGs), vector images 

2https://www.mathjax.org. 
3The <semantics> tag can be misleading: math operations are not represented. 
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(e.g., SVGs with drawing instructions), LAT X, or Presentation MathML. E 
This is because it is easier to create the appearance of a formula than to 
formally define and represent its operations consistently and correctly. 
We instead use a formula’s appearance to suggest operations and leave 
it to the reader to go through the process of consulting and analyzing 
the formula and its context to infer its meaning. 

This preference for visual representations is equally true for text. We 
write prose using a sequence of characters – we almost never provide a 
fully annotated parse tree or other semantic representation for passages 
(e.g., using first-order logic). 

In general, for human readers semantic annotations have complex 
structure and are often verbose. For example, imagine reading an en- 
hanced version of our list-based summary of the information in Example 
2.1 above, rather than the original passage. How to select and ground 
primitives and relationships in semantic representations is a slippery 
question, and using visual representations avoids this for authors. 

Semantic representations for text and formulas. Despite their ver- 
bosity and complexity, semantic representations are useful when they 
capture information reliably enough for a task of interest (e.g., search 
or question answering). Creating semantic representations manually is 
difficult, however, we can use automated tools for this purpose. Example 
2.4(c) illustrates such a representation for the query: 

Find x + y + z general solution n n n 

As seen in Example 2.4(a), an Abstract Meaning Representation (AMR) 
graph represents text semantics using a hierarchy of subjects, objects, 
actions, and attributes (Langkilde and Knight, 1998). Example 2.4(b) 
shows an Operator Tree (OPT) giving the hierarchy of operations in 
the query formula (i.e., adding the exponentiated variables). Both have 
node and edge annotations capturing types and argument orderings. 

Interestingly, the AMR graph and OPT have similar purposes and 
structure. Both capture a hierarchy of events in a sentence or formula. 
For example, the root of the AMR tree is a verb (find) with a mode 
modifier (imperative) used to indicate that the statement is a com- 
mand rather than a request. The verb has two arguments for who 
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Example 2.4: Augmenting AMR Trees with Operator Trees 

Abstract Meaning Representation (AMR) tree, with inserted op- 
erator tree for formula in the query “Find x +y +z general solution.” n n n 

Integrating OPT into AMR 
you solve-01 U!Plus 

0 
:arg0 0 0 :arg2-of 

thing 
:arg1 :arg1-of O!SUP O!SUP O!SUP 

find-01 

:mode 

general-02 

:math 

EQ:ID 

Math 

0 1 0 1 0 1 

V!x V!n V!y V!n V!z V!n 
:mod imperative 

equal-01 

:arg2 

(a) Abstract Meaning Representation (b) Operator Tree 

you solve-01 

:arg0 SUP 
:arg2-of 

:op0 

. 

. 

. 

:arg1 :arg1-of 
:op0 find-01 

:mode 

thing general-02 
Plus SUP 

:math 

:mod imperative :op0 
equal-01 

:arg2 

SUP 

Math 

(c) Math Abstract Meaning Representation 

receives the command (you) and what is requested: a thing that is the 
general solution to the provided equation. The root of the OPT is an 
unordered addition operator (U!Plus) applied to subexpressions from 
exponentiation operators with ordered arguments (O!SUP). 

To produce the combined MathAMR tree in Example 2.4(c), an 
AMR tree was produced using a neural network after replacing the 
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formula with identifier EQ:ID (see Example 2.4(a)). In Example 2.4(c) 
the identifier node is replaced by the formula OPT with annotation 
changes to match the AMR syntax. MathAMR was used to re-rank 
answers to Math Stack Exchange questions that had been converted to 
this representation (Mansouri et al., 2022c). MathAMR inserts formulas 
at leaf nodes, but for longer passages one can imagine adding additional 
information such as links between variables and their definitions. 

Consulting sources in MathIR systems. As shown in Figure 2.1, 
mathematical information retrieval systems require consulting sources 
for directly observable information, analyze and annotate their contents 
to generate additional information, and then organize this information 
in an index for lookup, search, generating training data, and use in 
evaluation. 

A1. Annotate 
Collection of 

Sources Add information 
to sources 

R2. Consult 
Queries 
*Annotated 

Collection of 
Sources 
*Annotated 

Examine and 
navigate sources 

R1. Query A2. Index 

Request sources 
of information 

Organize sources 
for retrieval 

Collection 
Index 

Figure 2.1: Tasks from Figure 1.4 for Representing Formulas and Text in an Index. 
For context, query annotation and querying the index are shown greyed-out. Content 
in sources is consulted, annotated to add information for text and formulas, and 
then indexed for later use in retrieval systems and system evaluation. 

Unlike people, where we rapidly alternate between consulting and 
analyzing/annotating sources when trying to recover information, for 
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large-scale systems we break processing up into steps to support batch 
processing. The design decisions made for each step are critically im- 
portant. For example, word/sub-word and symbol vocabularies chosen 
to represent source contents impact the reliability of visual or semantic 
annotations and retrieval. We also cannot lookup or search using any- 
thing that we omit from these vocabularies, e.g., if we remove frequent 
words and symbols such as ‘the’ and x to save space. 

In the next section, we focus on annotating formulas and associated 
text with visual and semantic representations to enrich collections, and 
for later use in indexing.4 

2.2 Annotating Formulas: Representations and Canonicalization 

In terms of visual structure, the excerpt in Example 2.1 can be rep- 
resented by a sequential graph of word and formula tokens shown in 
Example 2.5. Each of the blue formula nodes/tokens contain a visual 
structure representable using a Symbol Layout Tree (SLT) as shown for 
the idf formula in Equation (1). The blue nodes for variable names in 
the excerpt text each contain an SLT that can be found in the subtrees 
of the idf SLT. 

SLTs represent the placement of symbols on writing lines using 
spatial relationships between symbols and nested writing lines. An SLT 
is a directed, rooted tree with a parent and child in every relationship – 
the idf node is the root node in our example. The idf and log functions 
are single nodes with their characters grouped into tokens as seen earlier 
in Example 2.3. For easier reading, we have shown adjacent symbols on a 
writing line using undirected edges. The eight spatial relationships used 
in SLTs are: adjacent-at-right, sub/superscript, prefix sub/superscripts 

4Diagrams and other graphics are frequently used in math, but outside of our 
discussion here; e.g., commutative diagrams can be expressed as a matrix-like SLT 
container, but are really directed graphs with nodes/edges labeled by formulas: 

f 
A B 

g 

g◦f 
C 
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Example 2.5: Text tokens, formula tokens, and visual formula structure 

Sequence of text (black) and formula (blue) tokens 

Assume there are N documents in the collection, and that term i occurs in i 

Symbol Layout Tree (SLT) for Equation (1) 

N 

idf ( t ) = log — 

n i 

i 

√ on the left side (e.g., C and 235U), inside (e.g., x), and above/below n 
2 

(e.g., ). N 
N 

In E 
i 

xample 2.1, one piece of missing information that we did not 
annotate is the hierarchy of operations in the idf formula. While a reader 
is unlikely to think about this consciously, interpreting the formula 
essentially involves converting the SLT to an Operator Tree (OPT). 
We saw previously that OPTs are (partial) semantic representation 
giving an operation hierarchy. Example 2.6 illustrates this conversion 
for the idf formula. In OPTs variables and other arguments appear at 
the leaves, with operations above the leaves in internal nodes. While 
SLTs are oriented left-right to reflect reading order, OPTs are oriented 
vertically to reflect operation order. The order of operations is bottom- 
up in the OPT with precedence decreasing away from the leaves, e.g., 
the ‘=’ used to represent a definition is applied last for our idf formula. 

Operations appear directly above their arguments in an operator 
tree. If arguments have different roles (e.g., N and ni in ) this is N 

n i 
captured by their left-right order below the operator. When argument 
order is unimportant, arguments are normally arranged in reading 
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Example 2.6: Translating a Symbol Layout Tree to an Operator Tree 

Symbol Layout Tree (SLT) Operator Tree (OPT) 

= 
N 

— 

n 

idf 

sub 

log 

idf ( t ) = log 
divide 

i 

t i N sub 

i 
n i 

Grey nodes in the SLT indicate parentheses removed in the OPT, where 
they are redundant. SLT subscript edges and fraction line are replaced 
by sub and divide nodes in the OPT. 

order (e.g., per the SLT). In our OPT directed edges indicate ordered 
arguments, and undirected edges indicate unordered arguments for ‘=.’ 

There are some subtleties with mapping formula appearance in an 
SLT to the operations in an OPT. For example, we use a sub operator 
to represent subscripted variable names. If we assume the intended 
semantic, these could be replaced by exponent nodes. However, this 
is not true in general, and so we map to a sub operator instead (e.g., 

2 may be a Cartesian set product). Also, some operations without X 
symbols in SLTs are explicit in OPTs, e.g., xy represents the operation 
x × y. 

In general, we work with fixed operation sets and SLT mappings 
when producing OPTs automatically using tools. In some cases this leads 
to ambiguities or incorrect mappings. This is unfortunately unavoidable, 
because the meanings of symbols are community and context-dependent, 
and symbols are frequently redefined by authors for their own purposes. 
Despite these challenges with conversion, we should note that some 
state-of-the-art formula search engines use OPTs rather than SLTs for 
search, because SLTs do not fully capture the operation hierarchy. 

There has been recent progress in this space. For example, In one ap- 
proach to translating SLT representations as shown earlier for Wikipedia 
(Greiner-Petter et al., 2023), noun phrases associated with SLTs are 
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identified and then used in translating the SLTs to OPTs with addi- 
tional information that allows computable functions to be recovered. 
An augmented LAT X syntax represents this annotated OPT, which is E 
then translated to computable representations for Computer Algebra 
Systems (Maple and Mathematica). Such semantically enriched formula 
encodings for use in CAS and theorem provers have long been a goal 
in the Mathematical Knowledge Management community (MKM), and 
we anticipate that there will be strong renewed interest in this problem 
moving forward. 

SLTs and OPTs in code. Example 2.7 provides code representing the 
idf formula SLT in L ATEX , and two versions of the OPT in Python. 
The LAT X is shorter because it represents only formula appearance. E 
Commands such as \frac helpfully suggest operations, but define only 
the placement of symbols (e.g., above and below a fraction line). We 
also see the LAT X subscript operator in this example (_). E 

For the OPT implementations, all implicitly defined or unspecified 
operators and values from Example 2.1 must be provided to compute 
values. For example, e.g., math.log() uses the base e, and the equals 
operator becomes Python’s end-of-function-signature symbol (:). We 
also add variables and data structures to hold input values for terms, 
term counts, and the number of documents in our collection. The 
function signatures require additional arguments missing in the left- 
hand side of our OPT, because all values must be defined (e.g., for N 
and term counts n). 

The function is defined twice, first using built-in infix operators for 
division (/) and lookup (e.g., n[i]) and a second time using functions 
(idf_prefix). While both produce the same output, note that the first 
version looks closer to the SLT, while the second matches the operation 
hierarchy in the right-hand side of the OPT.5 idf values are assigned 
to the intermediate variable idf_weight, and annotated with their 
associated value of i and text term in the output. 

In the output "document" has an idf value of log 100/100 = 0. This 
5Infix operators provide argument layouts more similar to typeset formulas. This 

may partly explain the popularity of languages with infix math operators vs. purely 
prefix-structured operations (e.g., in idf_prefix() and Lisp). 
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Example 2.7: idf formula in LAT X and Python code E 

LAT X: Symbol Layout Tree representation E 

idf(t_i) = \log \frac{ N }{ n_i } 

Python: Two Operator Tree representations 

import math 
t_all = [ "inverse", "document", "frequency" ] 
n_all = [ 2, 100, 20 ] 
D = 100 
def idf(i, t, n, N): 

idf_weight = math.log( N / n[i] ) 
return( t[i], idf_weight ) 

# Prefix form: ops before args to match OPT RHS 
def divide(a, b): return a / b 
def sub(a, b): return a[b] 
def idf_prefix(i, t, n, N): 

idf_weight = math.log( divide( N, sub(n, i)) ) 
return( sub(t, i), idf_weight ) 

for i in range(len(t_all)): 
print(i, idf(i, t_all, n_all, D)) 

OUTPUT: 0 (’inverse’, 3.912023005428146) 
1 (’document’, 0.0) 
2 (’frequency’, 1.6094379124341003) 

is valid, as the term appears in all documents, and so doesn’t provide 
any distinguishing information. "frequency" appears in 20/100 of the 
documents, and has an idf less than half the value for "inverse", which 
appears in only 2/100 documents. Note that without the log scaling, 
"inverse" would have ten times the idf score of "frequency". 

MathML: Presentation (SLT) and Content (OPT). For MathIR 
systems and evaluation benchmarks, MathML is a file format commonly 
used to represent SLTs and OPTs.6 In MathML, OPTs are normally 

6https://www.w3.org/Math. 



  
  

2.2. Annotating Formulas: Representations and Canonicalization 51 

defined without the additional context needed to compute values that 
we saw for the Python in Example 2.7.7 SLTs are given in Presentation 
MathML, and OPTs in Content MathML. Presentation and MathML 
generated from the LAT X for our idf formula are seen in Example 2.8. E 

Example 2.8: MathML generated from LAT X using LAT XML E E 

idf is undefined in LATEXML a and so , , and are treated as variables. i d f 

= 
N 

— 

n 

times 

f 

log 

idf ( t ) = log 
i d sub divide 

i 

t i N sub 

i 
n i 

Presentation MathML (SLT) Content MathML (OPT) 

<math xmlns=“http://.../MathML”> 
<apply> 

<eq/> 
<apply> 

<times/> 
<ci>i</ci> 
<ci>d</ci> 
<ci>f</ci> 
<msub> 

<ci>t</ci> 
<ci>i</ci> 

</msub> 
</apply> 
<apply> 

<log/> 
<apply> 

<math xmlns=“http://.../MathML”> 
<mi>i</mi> 
<mi>d</mi> 
<mi>f</mi> 
<mo stretchy="false">(</mo> 
<msub> 

<mi>t</mi> 
<mi>i</mi> 

</msub> 
<mo stretchy="false">)</mo> 
<mo>=</mo> 
<mi>log</mi> 
<mo>&#x2061;</mo> 
<mfrac> 

<mi>N</mi> 
<msub> 

<mi>n</mi> 
<mi>i</mi> 

</msub> 
</mfrac> 

<divide/> 
<ci>N</ci> 
<msub> 

<ci>n</ci> 
<ci>i</ci> 

</msub> </math> 

</apply> 
</apply> 

</apply> 
</math> 

ahttps://math.nist.gov/~BMiller/LaTeXML 

7Some tools such as Maple and Mathematica provide MathML annotations and 
values needed to compute values from Content MathML. 
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Being XML-based, the syntax is similar to the prefix representation 
seen for idf_prefix in Example 2.7. Generally speaking, MathML 
commands begin with a start and matching end tag for the command, 
with a list of tags for arguments nested inside. All tags may also contain a 
list of attributes, e.g., xmlns (XML namespace) or stretchy (controlling 
the rendering of brackets). An example is the <apply> command in 
Content MathML, where the first nested tag is an operator, and the 
remaining nested tags are the operator’s arguments. MathML provides 
types for arguments, including <mi> and <ci> for variable identifiers, 
<mn> and <cn> for numbers. In Content MathML, defined operations 
have predefined tags, and so log appears as <log/> in Content MathML 
but as the identifier <mi>log</mi> in Presentation MathML. 

The LAT XML tool used to produce Example 2.8 knows \log is an E 
operator, and inserts an invisible node in the Presentation MathML to 
capture its application to the fraction using hexadecimal Unicode value 
x2061. This symbol does not appear when this formula is rendered. In 
contrast, idf is not a defined operation or function, and is broken up 
into three variables in the SLT and Content MathML. In the Content 
MathML, these variables are multiplied with each other and ti. 

As discussed earlier, a fixed set of definitions must be used to convert 
formulas in LAT X or Presentation MathML to Content MathML. This E 
means that in large collections inconsistencies such as those seen in 
Example 2.7 are common along with the <cerror> tag for unrecognized 
symbols and structures. If these interpretations not intended by their 
authors are consistent in their representation, they still provide patterns 
useful for retrieval and other information tasks. 

Visual and spatial region-based formula representations. Let us now 
consider some other visual approaches to representing formulas. For 
raster (pixel-based) images symbol locations are unknown. However, we 
can represent formulas directly as images, and compare formulas based 
on image similarity (we will return to this in the next section). 

We can also capture symbol layout in raster images using an XY- 
cut tree, as shown in Example 2.9. XY-cut trees partition touching 
pixel groups (connected components) by cutting at horizontal and 
vertical whitespace gaps. The standard method strictly alternates the 
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Example 2.9: Region-based spatial representations for formulas 

XY-Cut Trees (left: Recursive, right: Standard) 

1 y 
2 

1 
2 

y 1 y 
2 

1 1 
2 

y 2 

1 1 2 

Pyramidal Histogram of Characters (XY-PHOC) 

3 

3 

cutting direction, while the recursive version cuts the largest gap in 
either direction (Ha et al., 1995; Nagy and Seth, 1984). Symbols can 
be recognized or features computed from sub-images at nodes for use 
in recognition and retrieval applications (Baker et al., 2010; Zanibbi 
and Yu, 2011). A variant of XY-trees was used in one of the earliest 
systems for parsing math formulas from images (Okamoto and Miao, 
1991).8 XY-trees can also be produced from known symbols, e.g., by 
cutting around symbol bounding boxes. They are also used to segment 
document pages into regions, which was the original purpose. 

For images where symbol locations are known such as in SVG or 
PDF, or using symbol locations from OCR results, we can produce 
additional spatial representations. For example, in the previous section, 
we saw an example of this where line-of-sight graphs over symbols 
were used to search handwritten and typeset math in video keyframes. 
An alternative region-based spatial representation is the Pyramidal 

8Cutting thresholds and rules avoid splitting symbols with multiple components 
√ (e.g., ‘i’) and separate subexpressions from inside radicals (e.g., x). 
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Histogram of Characters (PHOC), which identifies which symbols appear 
in a fixed set of recursively partitioned regions. PHOC was originally 
created for retrieving words in handwritten text (Almazán et al., 2014) 
but can be generalized in a straight-forward way for representing two- 
dimensional structures like formulas (Langsenkamp et al., 2022; Avenoso 
et al., 2021; Amador et al., 2023). 

As shown in Example 2.9, for the XY-PHOC representation the first 
region contains all symbols in a formula. Other regions split the formula 
into 2, 3, or more equal-size regions horizontally or vertically. Later 
versions also used concentric ellipses or rectangles to better capture 
symmetry (e.g., for x + y and y + x). The encoding is compact, using 
one bit vector per unique symbol to record occupied regions. 

Canonicalizing formulas and formula representation tables. Example 
2.10 visualizes common ways to generalize variables and operations in an 
OPT, which can also be applied to SLTs. Applying these transformations 
reduces the number of unique formulas in a collection, making additional 
formulas identical, and others more similar after these transformations 
are applied. The process of reducing variation in representations is 
known as canonicalization. 

At the middle in Example 2.10 we number each unique variable 
from left-to-right in the OPT, starting from 1. This type of numbering 
for entities is known as an enumeration. ‘2’ for i is repeated because it 
appears twice in the expression. We can use enumerations to capture 
formula structure while ignoring variable names. For example, using 
variable enumeration the pythagorean theorem expressed as either 

x
2 + y

2 = z
2 (2.1) 

or 
a
2 + b

2 = c
2 (2.2) 

(2.3) 
has the same form: 

2 2 2 1 + 2 = 3 . 

We can apply this change for both the SLT and OPT representations. 
For formulas, canonicalization often involves normalizing symbols 

and structures as well, e.g., replacing different names for the same 



  
  

2.2. Annotating Formulas: Representations and Canonicalization 55 

Example 2.10: OPT Variable Enumeration and Symbol Types 

Original Operator Tree Enumerated Variables Argument & Operator Types 

= = U 

idf 

sub 

log idf 

sub 

log I 

O 

O 

O divide divide 

t i N sub 1 2 3 sub I I I O 

n i 4 2 I I 

operation with a single name, or always ordering subscripts before 
superscripts in SLTs (e.g., in LAT X or Presentation MathML). Another E 
normalization re-orders variable and constant names lexicographically 
for operators with unordered arguments, e.g., to have both x + y and 
y + x represented by x + y. 

For MathML we often ‘flatten’ nested tags, such as repeated <mrow> 
tags belonging to a single writing line and sequences of unordered 
operations. Both of these transformations for <mrow> and <times> are 
applied in Example 2.8, flattening a chain of <times> nodes into one 
node in the Content MathML and removing <mrow> tags entirely from 
the Presentation MathML. 

At right in Example 2.10 we have an OPT with nodes replaced by 
an assigned type for each symbol. I indicates identifiers (i.e., names) 
for variables and operations/functions like the idf function identifier. 
Note that identifier idf must represent an operation, because it is 
an internal node in the OPT. Other predefined mathematical opera- 
tions are labeled to indicate whether their arguments are (O)rdered 
or (U)nordered. Among other uses, types can be used to permit or 
constrain matches between constants, variables, and operations in two 
formulas. More sophisticated typing schemes have been used, e.g., to 
distinguish numbers from alphanumeric identifiers and greek letters, 
and relational operations from set operations and arithmetic operations. 

Canonicalization can remove unhelpful distinctions, however, too 
much canonicalization can also remove meaningful differences. A com- 
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mon compromise is to annotate all formulas with multiple representa- 
tions stored in tables, including one table for the original encodings 
(usually LAT X and/or Presentation MathML). E 

To annotate sources with different formula representations, each 
formula encountered in a source is assigned a unique integer identifier. 
Tables used to hold each formula representation are sorted by these 
formula instance ids, so that one integer can be used to retrieve any 
representation that we have produced. To save space, often the represen- 
tation tables define only the unique formulas in each representation, and 
we add a second lookup table. The lookup table is used to map formula 
instance ids to unique ids, and the representation tables map unique ids 
to detailed representations (e.g., canonicalized OPTs). This prevents 
detailed representations for x or an isolated canonicalized enumerated 
variable ( 1 ) from being stored millions of times. 

Textual formula annotations: Math entity linking. We can also use 
markup available in sources along with analysis tools to capture formula- 
text relationships such as shown in Example 2.1 and Example 2.4. 
Textual formula annotations can be used for a variety of information 
tasks. For example, using formula symbol identifier descriptions as 
features for automatically generating Mathematics Subject Classification 
(MSC) subject codes (Schubotz et al., 2016). MSC is a collaboratively- 
produced hierarchical classification scheme used to identify subject codes 
for papers in math journals. Recent math-aware search engines have 
also explored using annotated formulas as their collection, including the 
math entity cards in MathDeck (Dmello, 2019) that connect formulas 
to titles and descriptions from Wikipedia. Another retrieval system, 
MathMex (Durgin et al., 2024) indexes formulas that appear with their 
textual descriptions in a document. 

When text annotations for formulas are not provided directly in 
sources, Math Entity Linking (MEL) systems can be used to connect for- 
mulas with their surrounding context. Context may include descriptions 
for formulas and their symbols, other formulas defining symbols in a for- 
mula, and external sources (e.g., linking formulas to Wikipedia pages). 
We note that symbols like x and λ are frequently re-defined within a 
single paper, leading to multiple definitions (Asakura et al., 2022). This 
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complicates the task of coreference resolution, where multiple references 
to the same mathematical symbol or entity need to be identified and 
disambiguated when symbols are redefined (Ito et al., 2017).9 

Most early methods for MEL were rule-based due to the limited data 
available for training machine learning models. One of the earliest textual 
formula annotations linked math expressions to their corresponding 
Wikipedia page (Kristianto et al., 2016b); unfortunately not all math 
expressions have Wikipedia pages, and context provided in the document 
where a formula appears is likely more relevant and/or accurate for the 
formula. Another early system annotated formulas with descriptions 
and relationships to other formulas in dependency graphs (Kristianto 
et al., 2017). Textual descriptions are extracted using an SVM-based 
model to link description nodes to formulas and symbols (Kristianto 
and Aizawa, 2014). References between formula nodes are captured 
through structural matching of formula sub-expressions. 

Later systems including MathAlign (Alexeeva et al., 2020) focused 
on textual annotations within the documents where formulas appear. 
There has also been work on automated variable typing, where pre- 
defined mathematical types (e.g., integer, real) are assigned to variables 
in mathematical formulas using sentences containing descriptions where 
a symbol appears (Stathopoulos et al., 2018). 

The SymLink shared task at SemEval 2022 (Lai et al., 2022) re- 
quired extracting math symbols with their textual descriptions from 
LAT X source files collected from the arXiv. The main task requires this E 
to be performed within a LAT X paragraph. First, all text spans (contigu- E 
ous excerpts) containing math symbols and descriptions are identified, 
and then symbols are matched with their descriptions. The SymLink 
dataset provides more than 31,000 entities and 20,000 relation pairs, 
which allowed modern machine learning models (e.g., BERT-based) to 
be proposed. 

Math entity linking and other forms of annotating text-formula 
relationships are important directions for future research. They are chal- 

9The Math Identifier-oriented Grounding Annotation Tool (MioGatto) (Asakura 
et al., EasyChair, 2021) provides a tool for annotating different roles for formulas 
and symbol, linking identifiers to pre-defined math concepts extracted from the 
document. 
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lenging because incorrect detections can corrupt intended meanings, and 
because mis-detections can lead to cascading errors. This fragility and 
the computational cost of constructing explicit semantic annotations are 
partly responsible for the popularity of dense embedding models, which 
use language statistics to capture associations and usage patterns for 
tokens/formulas/passages etc. However, information-wise embeddings 
capture associations rather than discrete entities and relationships, and 
we expect that combining embeddings with constructing graph-based 
representations will prove beneficial in the future.10 

2.3 Indexing Formulas and Text 

Indexing is a critical component for both the implementation and eval- 
uation of mathematical information retrieval systems discussed in the 
later sections of this work. One might consider indexing to be mostly a 
brute-force compilation and reorganization of source data in a collec- 
tion. In fact, there are quite a number of important encoding details 
(e.g., character encodings, file formats, and their myriad variations), 
organizational and retrieval unit design decisions, and resource con- 
straints such as speed and storage requirements that must be carefully 
addressed if downstream model and evaluation implementation efforts 
are to be reasonable and effective. This is especially true for multimodal 
indexes used for math IR systems, where we may have multiple data 
representations for text, formulas, and their combination.11 

Figure 2.1 illustrates the main tasks for indexing sources. When we 
talk about indexing, we’re actually referring to a process that consults 
sources and annotates sources with additional information, and then 
creates a collection index. We discussed annotating formulas in the pre- 
vious section, but annotations are needed for text as well. For example, 
if we plan to use dense retrieval with sentences, we first need to record 
where sentences are found in sources, e.g., in a table containing pairs of 
start and end character positions. We often also create tables to hold 
metadata such as authors and logical regions such as titles, so that 
these may be quickly accessed or searched separately. 

10There is related research in knowledge graph construction (Zhong et al., 2024). 
11In our experience, implementing new indexing tools is a substantially larger 

effort than implementing retrieval and machine learning models using indexed data. 
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The collection index contains data structures for organizing both 
sources and their contents, along with search indexes that organize 
source contents by patterns generated from sources and their annotations. 
More concretely, indexing involves: 

1. consulting source text and formulas to generate dictionaries for 
fast lookup and analysis of their contents, 

2. adding information to sources through additional dictionaries 
(e.g., formula locations and representations), and 

3. generating inverted index and/or dense vector index files from 
source contents and annotations. 

Locating and extracting formulas from sources. We often start by 
identifying formulas in our sources. Videos and PDF documents generally 
do not identify formula locations, and so we create a table mapping 
integer formula identifiers to their locations. An example is the Page- 
Region-Object tables used for ACL anthology PDFs in the MathDeck 
system (Amador et al., 2023). Each detected formula has an entry with 
integer source and page ids, and two x-y coordinates for the top-left and 
bottom-right corners of a bounding box containing the formula. Formula 
representation tables are then created from the detected formulas. 

For text documents with demarcated formulas (e.g., LAT X and E 
HTML with MathML), we extract encodings for formulas and construct 
the formula representation tables needed. For some applications such 
as generating MathAMR trees or training transformer models such as 
BERT, it can be helpful to replace formulas by an identifier, e.g., <math 
[...] </math> becomes EQ::42. 

Vocabularies for text and formulas. A simple but critical annotation 
are vocabularies. A vocabulary defines a set of unique objects/symbols 
seen in our collection including words, XML tag types, LAT X commands, E 
and other math symbols (e.g., in unicode). Vocabularies for text and 
formulas may be stored separately, together, or both. Different formula 
representations will generally have their own separate vocabularies. In 
general we compile all unique ‘words’ for each vocabulary, prune some 
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of them (e.g., removing rare ‘words’), and then enumerate vocabulary 
items for use in table lookups. 

For formulas, in addition to individual symbols, we often need 
subexpressions or substructures in our formula vocabulary, e.g., for 
formula search. Example 2.11 shows two common techniques for this, 
using unrooted and rooted paths. The example at top shows directed 
paths in an SLT. Shown are all unrooted paths of length 1, and four paths 
of length 2. In the example at the bottom, leaf-root paths that start from 
leaves of an OPT are shown, and we show all such paths for the left-hand 
side of the idf formula. Note that each OPT leaf-root path is a valid 
subexpression with one argument and one or more missing arguments 
and operations, while a number of the SLT paths capture visual patterns, 
but are not valid subexpressions (e.g., ‘(‘ → ‘t’). Both types of paths can 
be extracted from SLTs and OPTs.12 One constraint is that indexing too 
many paths for a formula representation increases index size, and can 
lead to slow retrieval times. So our choice of substructure vocabularies 
such as path types requires careful consideration. 

For example, we can construct a text token vocabulary for use with 
BM25, and a variety of path vocabularies to search OPTs, SLTs, and 
additional canonicalized versions described in the previous section. 

Inverted indexes for sparse retrieval. Among other things, vocabular- 
ies define the patterns that can be used to retrieve information directly 
from index tables. This type of pattern lookup in an index is often 
called ‘sparse’ retrieval, because a standard query can be represented by 
a largely empty vector with bits or counts representing the vocabulary 
terms in the query (Zobel and Moffat, 2006). BM25 is a sparse retrieval 
model, as are formula search models that retrieve formulas from tables 
using paths. A table that maps vocabulary terms to lists of documents, 
formulas or other object identifiers is called an inverted index. 

As an alternative to inverted indexes, people have also used substi- 
tution indexing trees, originally developed for unification and matching 
of predicates in automated theorem proving (Graf, 1995). These trees 

12Anchoring paths only at the root of an SLT or OPT is generally ineffective; many 
helpful patterns are missed. Leaf-root paths on SLTs are an interesting opportunity. 
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Example 2.11: SLT and OPT paths for the idf formula 

Symbol Layout Tree Paths (directed) 
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group OPTs or SLTs with shared structure using a hierarchy of symbol 
and operation replacements and enumerated variables (Kohlhase and 
Sucan, 2006; Schellenberg et al., 2012). Substitution trees represent 
the complete set of possible operation sequences that produce concrete 
formulas in a collection at their leaves. Retrieval finds the most similar 
formulas in the substitution tree through transformations of the query. 

Vector embeddings for dense retrieval. For dense retrieval patterns 
used for search are transformed into embedding vectors, and retrieval 
involves finding some k most similar items based on the geometry of 
the embedding space (e.g., using the cosine of the angles between the 
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vectors). This may be for tokens, sentences, formulas, paths, or other 
objects. A common approach for generating embedding vectors is having 
a neural network play an imitation game where we hide tokens (i.e., 
mask them) in a text sequence or node/edge labels in an input graph 
(e.g., an OPT or SLT), and have the network produce likelihoods for 
every alternative in a vocabulary. During training, this game is played 
repeatedly using a training data set, with network weights updated to 
improve estimates. 

Masking and other self-supervised learning tasks capture a language 
model reflecting the likelihood of objects appearing in similar contexts. 
The often large amounts of computation required is somewhat con- 
fusingly referred to as pre-training because network weights are not 
optimized for retrieval or other tasks aside from the learned probability 
estimates.13 To further improve dense retrieval performance, additional 
learning to rank tasks are run, which require generating ranks for indi- 
vidual sources (point-wise), comparing two items at a time (pair-wise) 
or revising entire rankings (list-wise). This training directly for retrieval 
or other ‘downstream’ tasks after learning a language model is known 
as fine-tuning of network weights for a specific task. 

Learning to rank requires test collections where sources relevant to 
specific queries have been identified, as described in the next section; 
normally relevance labeling is at most partially automated (Faggioli et 
al., 2024). As a result, data available for learning-to-rank is often much 
smaller than for language model learning. In contrast, large amounts 
of pre-training data can be created by randomly hiding labels or other 
random manipulations without human involvement. 

After the embedding network has been trained, items to be indexed 
are converted to embedding vectors and stored in one or more tensors. 
Normally we also produce a companion dictionary mapping the tensor 
rows to integer identifiers for the objects that have been embedded, so 
that we can recover the passage, word, formula or other object they 
come from. 

13‘Pre-trained’ language models often produce surprisingly strong retrieval base- 
lines. For example, symbols or sub-expressions that look quite different may have 
similar vectors if they are often used in similar contexts, because when masking 
these, one or the other will be more likely than other vocabulary items. 
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Math Retrieval Tasks and Evaluation Metrics 

In this section, we introduce the retrieval tasks considered in this mono- 
graph. There are two task types that we consider: search tasks requiring 
a ranked list of sources from a collection, and question answering tasks 
(QA) requiring a single response that may or may not reference sources. 
We categorize these tasks by expected responses below. 

Search Tasks: Return ranked list of sources 
1. Formula search: ranked formulas 
2. Math-aware search: ranked sources or excerpts with formulas 

and text (e.g., passages) 
QA Tasks: Provide question answer possibly with justifications and/or 

step-by-step solutions 
1. Multiple choice: selection from provided alternatives 
2. Value: numbers or strings, possibly in data structures (e.g., 

lists) 
3. Formula: formulas or short programs for computing answers 
(often paired with a value response) 

4. Open response: free response with formulas and text 

63 
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While we have selected these tasks to focus our discussion, this is 
by no means the exhaustive set of information tasks required or studied 
for Math IR. For example, other pertinent tasks include math entity 
linking (Kristianto et al., 2016b), tasks related to theorem proving 
such as natural language premise selection (Ferreira and Freitas, 2020b) 
(see Appendix B), and extraction and annotation of formulas that are 
not explicitly demarcated in collections (e.g., for handwriting, Truong 
et al., 2024, and PDF documents, Shah et al., 2021). Additional tasks 
are described in other surveys of mathematical information retrieval 
(Zanibbi and Blostein, 2012; Guidi and Sacerdoti Coen, 2016; Dadure 
et al., 2024). 

3.1 Evaluation Overview 

Figure 3.1 visualizes the people, data, and processes used to create 
retrieval task data and evaluate search and QA tasks. The figure illus- 
trates an important but easy-to-miss fact: it is people and not formal 
definitions, systems, or algorithms that define retrieval effectiveness, 
and the target responses that retrieval systems are designed to produce. 
More specifically, these roles are: 

• Users: Realistic search queries and questions come from human 
users either directly or from available data (e.g., in query logs). 

• Assessors: Identify relevant sources for search queries, and define 
correct question answers. 

• Designers/Researchers: Collect queries, results, assessments, 
and set the measures and procedures that quantify performance. 

As a result, a chosen evaluation design and the human actors within it 
influence the data produced, along with any observations and conclusions 
made from this data. It is important to consider this when reviewing 
evaluation results in the work of others, and when designing our own 
evaluation frameworks and experiments. 

This dependency of system evaluation on people is unavoidable. The 
tasks retrieval systems perform are motivated by human information 
tasks, which system designers approximate through observation and then 
formalization within a system design. Also, large data sets recorded from 
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Figure 3.1: People, Data, and Methods in Evaluation (expands Figure 1.4). Search 
tasks require rankings sources in a collection, while QA tasks require a single response. 
System information tasks are in gray/hidden: systems are used to sample sources for 
grading search relevance, but are generally unused for QA evaluations. 

users and sources authored by people are human data. Effectiveness 
is measured by how well system outputs imitate human responses 
collected by researchers. For systems utilizing machine learning, desired 
outputs are obtained by repeatedly playing imitation games scored by 
the distance between model outputs and human responses. For these 
reasons, people determine or constrain nearly every aspect of system 
design and evaluation.1 

For search tasks, systems also have a direct role in evaluation aside 
from producing results, sometimes even for their own evaluation. This 
is because we normally pool sources returned from multiple systems 

1This is a feature, not a bug. 
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before assessors make relevance judgements. This does introduce bias in 
evaluation, because only items returned by systems used in pooling are 
assessed. However, most collections are too large to proceed any other 
way, and we can choose metrics to mitigate the effects of this bias on 
evaluation outcomes. 

Evaluation-wise, we focus here on the effectiveness of query results 
as measured offline using test collections. A test collection consists of: 

1. Collection of Sources: sources to be searched for search tasks; 
optional, usually missing for question answering tasks. 

2. Topics: queries to run. For search this also includes query infor- 
mation need descriptions and criteria for relevant sources. For QA 
questions may include context and/or explanations for answer 
requirements. 

3. Responses: includes pooled sources with relevance judgements 
for search tasks, and question answers for QA tasks. 

4. Protocol: metrics and methods for producing evaluation data. 

In addition to being aware of the roles people play in retrieval evaluation, 
it is important to remember test collections provide a sample, and not 
all possible queries and results for a task. As such, the data that we 
collect provides evidence for hypotheses (e.g., system A performs better 
than B for metric M), and not proof (Fuhr, 2017). With that said, 
many valuable things can be learned about system behaviors, evaluation 
data and frameworks, and even retrieval tasks themselves using test 
collections. They allow us to address questions using direct observation 
in addition to observations reported by others.2 
Briefly returning to our ‘jar’ model for information tasks in Section 

1 (Figure 1.3) using test collections for evaluation and related experi- 
ments is an important information synthesis task that involves applying 
information to communicate new information sources such as research 
papers. Reporting informative evaluation data requires significant effort: 
careful checking is needed at every step of data collection, measure- 

2Galileo expressed concern about getting information primarily by following 
entries in book indexes rather than experimentation (see Duncan, 2021, pp. 9-10). 
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ment, analysis, and reporting. Test collections help ease this burden by 
providing standard data sets and methods for system comparison. 

Efficiency metrics. While discovering new retrieval models and 
understanding their information use and effectiveness is generally the fo- 
cus of IR research, for large collections and real-world systems efficiency 
is also very important.3 Metrics such as mean query response time 
(MRT, i.e., average seconds/query), query throughput (i.e., average 
queries/second), and index size on disk and in memory are used to 
evaluate system speed and resource utilization. Efficiency metrics are 
also needed to check tradeoffs between time, space, and effectiveness. 

3.2 Retrieval Tasks: Search and Question Answering 

Some example formula search queries and results are shown in 
Example 3.1. Top-to-bottom, the examples include a formula used 
directly as a query,4 a formula query with wildcard symbols that can be 
replaced by subexpressions, and a contextualized formula search query 
where the context the formula appears is included in the query, and 
returned formulas include their contexts. 

The concrete and wildcard formula queries are symbolic similar- 
ity searches, with relevance determined by just formula appearance 
(SLTs) and/or operations (OPTs). This type of query is motivated by 
information needs including refinding a previously seen formula in a 
document collection, or browsing for similar formulas. Wildcards add 
boolean constraints to queries, as non-wildcard symbols and structures 
are ideally the same or as similar as possible in the formula returned. 
Wildcard names can also indicate repetition, e.g., for wildcards ?f, ?v, 
and ?d in the example. 

Contextualized formula queries include the context where a formula 
appears, incorporating the types of formula-text interactions described 
in the previous section. Here relevance is determined by both the formula 
and the text within which it appears. For example, two instances of the 
formula X2 are distinct if in one context X is defined as a number, and 

3Quoting James Cordy: “Get it right, then make it fast.” We add a proviso: “...but 
have a fast enough version for debugging and study, e.g., using a small collection.” 

4A ‘concrete’ query. 
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Example 3.1: Formula Search Tasks 

Formula similarity search 

Result 
Query 1 2 3 4 5 

y = a+bx 
b−x y = + y = a + bx y = − y = 

a 
+ g(x) = a bx 

c+x 
a bx 
c−x 

bx 
x+c 

x 
x−a 

Formula similarity with wildcards (?w) (Aizawa et al., 2013) 
Query Result 

?f(?v + ?d) − ?f(?v) g(cx + h) − g(cx) 
g′(cx) = lim 

... ... 

1 ?d h h→0 

Contextualized formula search 

Query Result 

I have the sum 1 . . . which can be obtained by manip- 
ulating the second derivative of 

X 

n 

ꢀ  ꢀ  

n 

k 

Xꢀ  ꢀ  

n k 
n 

k 
zk 

k=0 

k=0 

know the result is n2 − 1 but I don’t 
know how you get there. How does 
one even begin to simplify a sum like 
this that has binomial coefficients. 

and let z = 
p/ − p 
(1 ) . . . 

2 Yes, it is in fact possible to sum this. 
The answer is 

X 

n 

ꢀ  ꢀ ꢀ  ꢀ  ꢀ  ꢀ  

n 

k 

m 

k 

m + n 
= 

n 
k=0 

assuming that n ≤ m. This comes 
from the fact that . . . 

in the other it is defined as a set, whereas using symbolic search over 
SLTs, both formulas have the same representation.5 

5For OPTs, the nodes for the variable and squaring operation may or may not 
differ, depending upon how the collection is created (see previous section). 
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Examples of math-aware search and mathematical question answer- 
ing tasks are shown in Example 3.2. We first show an ad-hoc math-aware 
search task with queries that include formulas and text. Ad-hoc refers 
to the fact that queries can vary greatly, and may include patterns that 
are not proper phrases or sentences (e.g., keyword queries, or the query 
‘x 

2 + 5 = 30 x value’). In the example shown, a full question post 
from the Community Question Answering (CQA) platform Math Stack 
Exchange (MSE) is used as a query, and a collection of MSE answer 
posts is searched. 

The bottom portion of Example 3.2 shows two question answering 
tasks. The first is an open response to an MSE question post, that was 
generated using GPT-3 (Mansouri et al., 2022a). The second shows 
math word problems taken from two test collections. In both cases, the 
result should be an answer with two parts: an equation that can be 
used to compute the solution, and the solution value, here a number 
and a number list. Multiple choice questions are also common. These 
require choosing from a small number of provided alternatives (e.g., 4 
for a fourth alternative (d) None of the above). Research-wise, multiple 
choice questions allow varying the complexity of information associated 
with questions and alternative responses, while constraining system 
outputs to an alternative from a small set. In some collections questions 
and multiple choice answers include visual elements such as tables or 
diagrams. Using multiple choice questions makes it possible to study 
this type of multimodal question answering without needing to change 
the response format. 

3.3 Creating Test Collections 

An important first consideration is where to collect queries from, and how 
to select which queries to include. As our goal is evaluating performance 
on real-world tasks, it is usually best if search queries and questions 
come from real-world users and use cases. For example, for search tasks 
topics may come from query logs or community question-answering 
websites. Questions on standardized tests such as the Math SAT are 
commonly used for question answering. In some cases, topics generated 
by the test collection creators are designed to explore specific scenarios 
for new features (e.g., wildcards in formula search queries). 



  
  

70 Math Retrieval Tasks and Evaluation Metrics 

Example 3.2: Math-Aware Search and Question Answering Tasks 

Math-aware search (ad-hoc retrieval) 
Query Result 

I have the sum 1 . . . which can be obtained by manip- 
ulating the second derivative of 

X 

n 

ꢀ  ꢀ  

n 

k 

Xꢀ  ꢀ  

n k 
n 

k 
zk 

k=0 

k=0 

know the result is n2 − 1 but I don’t 
know how you get there. How does 
one even begin to simplify a sum like 
this that has binomial coefficients. 

and let z = 
p/ − p 
(1 ) . . . 

2 Yes, it is in fact possible to sum this. 
The answer is 

X 

n 

ꢀ  ꢀ ꢀ  ꢀ  ꢀ  ꢀ  

n 

k 

m 

k 

m + n 
= 

n 
k=0 

assuming that n ≤ m. This comes 
from the fact that . . . 

Math Question Answering (Mansouri et al., 2022a) 

Query Result 

What does it mean for a matrix 
to be Hermitian? 

A matrix is Hermitian if it is equal to its trans- 
pose conjugate. 

Math word problems 

Result 
Equation Query Answer 

Sarah has 5 pens, David has 3 pens. How many 
pens do they have? 

x = 5 + 3 8 

Find two consecutive integers whose sum is 7. x + (x + 1) = 7 3, 4 

From MathQA (Amini et al., 2019) & Dolphin18K (Huang et al., 2016) 

The final topics sets ideally provide a representative sample for the 
task being evaluated, while including some diversity in topics so that 
different system capabilities are tested. Diversity is sometimes addressed 
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using separate sub-tasks for a test collection. For math retrieval, criteria 
to consider include mathematical subjects covered, modalities in queries 
and responses (e.g., formulas, text, diagrams), and the complexity or 
mathematical difficulty (e.g., target grade levels). 

Train topics, test topics, and cross-validation. Normally a test collec- 
tion divides topics into training and test topics, so that systems can be 
compared using the same test topics, while being tuned using a separate 
group of training topics. This way, all systems take the same ‘test,’ with- 
out having seen the test search queries/questions previously (i.e., not 
‘cheating’). This allows us to observe and compare the information and 
task generalization captured in system data structures (e.g., network 
weights) and algorithms for the same unseen topics. Systems should 
never be tuned on test topics when reporting test results. Published 
benchmarks for test collections are results for test topics by default. 

Training topics are provided for tuning system parameters. To ob- 
tain a more detailed characterization of system behavior using multiple 
train/test splits, cross-validation can be used, and average metric values 
across splits reported, ideally along with a standard deviation to char- 
acterize variance (roughly, consistency across splits). All train and test 
topics may be combined before generating splits for cross-validation, but 
it must be made clear which topics are used and how train/test splits 
are produced (e.g., leave-one-out treats every topic as the test sample 
separately; 5-fold cross validation randomizes the topic order, and then 
makes 5 equal splits, with each split being rotated as the test split, etc.). 
While cross-validation provides more robust evaluation measures, it is 
important to again note that official benchmarks for test collections are 
computed for unseen test topics, and in this case test topics cannot be 
used in training.6 Unless noted otherwise, for benchmarking test topics 
are scored just once, without cross-validation. 

Test collections sometimes include smaller train/test topic sets used 
primarily for development, and/or to make use of the collection easier 
for those new to a task. These can also be safely produced from small 
subsets of training topics (never test topics), and are very helpful for 
fast testing and debugging. 

6This can be easy to miss amongst multiple data set versions. Care is needed. 
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Responses: Pooled relevance judgments for search tasks. For ques- 
tion answering tasks, answer data is often compiled from available 
sources by those creating the test collection. In contrast, for search 
tasks relevance judgements are needed before a test collection can be 
released, as they are required to measure effectiveness. The most com- 
mon approach is shared tasks in which multiple participants run their 
systems on provided search topics, and then share the outputs of their 
runs for pooling as illustrated in Example 3.3. After these assessments 
have been collected, relevance judgements are used to score participants’ 
systems, and the relevance judgements produced are included when the 
final test collection is released.7 

Example 3.3: Creating query relevance judgements (QRels) 

Shared Task 

Topics Collection 
Relevance 
Definition 

QREL 

Trained 
Assessors 

Participants 

Systems 

Ranked 
Results by 
Proposed 
System 

Selecting Top-K 
results for pooling 

In a shared task, all participants have their system(s) search the 
same collection of sources, and use the same topic queries. Assessors 
assign relevance scores to pooled sources, and these assessments are 

7Ideally, the system runs (ranked responses for every topic by each participating 
system) are also included in the test collection for later study and comparison. 
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stored in qrels files (quantitative relevance assessments).8 Shared tasks 
are run frequently at conferences including TREC (Text REtrieval 
Conference), CLEF (Conference and Labs of the Evaluation Forum), 
NTCIR (NII Testbeds and Community for Information access Research), 
and FIRE (Forum for Information Retrieval Evaluation). 

Example 3.4 illustrates relevance assessments using a binary scale 
(i.e., 1 is relevant, 0 non-relevant), and graded relevance where an ordinal 
scale of three or more values is used, e.g., Non-relevant and Low, 
Medium, High relevance. Graded relevances can be easily converted to 
binary relevances by thresholding. For our graded relevance example, we 
might map Non-Relevant, Low (0,1) → 0 (non-relevant), and Medium, 
High (2,3) → 1 (relevant). We also see an example of unknown relevance 
for a formula search in the search results from system A at top (rank 3). 
Model A retrieved a formula that was not included in the pool created 
during the shared task, and so it is missing in the published qrels file. 
We will come back to this later in the section. 

Normally measures of agreement between assessors are reported 
for search test collections. This is done by providing the same set of 
topics among assessors and comparing their assessments with agreement 
measures such as Cohen’s Kappa coefficient. Properly training assessors 
can help increase agreement among assessors. For instance, in ARQMath- 
3 (Mansouri et al., 2022a), for the formula search task, the Cohen’s 
Kappa value increased from 0.21 to 0.52 from the first training to the 
last (third) training session. 

Relevance assessment and tools. Assessing relevance for math search 
is inherently challenging. As discussed in earlier sections, a person’s 
mathematical expertise influences their perception of relevance: a highly 
technical document relevant to an expert might be irrelevant to someone 
with a basic understanding of math. It is necessary for assessors to 
have an appropriate mathematical background and to be trained for 
each search task that they will assess. They should be provided with 
well-defined relevance definitions, including instructions on how to 

8The standard qrels format is from TREC (https://trec.nist.gov/data/qrels_e 
ng). 
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Example 3.4: Relevance Assessments 

Binary and unknown relevance (?) 

Model A Model B 
Rank Formula Relevance Formula Relevance 

1 
2 

3 
4 
5 

y = + 1 
0 

? 
1 
0 

g(x) = 0 
1 

1 
1 
0 

a bx x 
x−a c+x 

y = a + bx y = + 
bx 

a 
c+x 

y = 
y = 

y = 
y = 

+ 
a−bx a bx 

c−x 
x+c 

a + bx a x 
+ x+c b+cx 

g(x) = y = a + bx x 

x−a 

Graded relevance (0-3: Non-, Low, Medium, High) 
Query Result Relevance 

I have the sum 1 . . . which can be obtained (3) High relevance 
by manipulating the sec- 
ond derivative of 

X 

n 

ꢀ  ꢀ  

n 

k 
k 

X 

n 

ꢀ  ꢀ  

k=0 n 

k 
zk 

know the result is n2 − 1 
but I don’t know how you 
get there. How does one 
even begin to simplify a 
sum like this that has bi- 
nomial coefficients. 

=0 k 

and let z = (1 

p/ − p 

) . . . 

2 Yes, it is in fact possible 
to sum this. The answer is 

(0) Non-relevant 

X 

n 

ꢀ  ꢀ ꢀ  ꢀ  ꢀ  ꢀ  

n 

k 

m 

k 

m + n 
= 

n 
k=0 

assuming that n ≤ 
m. 

This comes from the fact 
that . . . 

distinguish between different relevance degrees. It is also a good idea to 
allow assessors to decline assigning a score when they are very uncertain, 
or to consult an expert.9 

9In our own work, a math professor acted in this role. 
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Example 3.5 shows the Turkle interface used for contextualized 
formulas search in the ARQMath shared tasks. Each assessor has an 
account, and is assigned topics to evaluate. Relevance data is compiled 
automatically and converted to qrels files by the system. In the example 
we see a query formula in its MSE question post on the left, and 
two formulas in their MSE answer posts taken the assessment pool. 
Assessors were allowed to view the question threads that queries and 
results appeared in using provided links. On the right we see buttons 
for the 4-level graded relevance scores, and two additional buttons for 
system failure (e.g., when a result is unreadable), and when an assessor 
was uncertain how to rate the result. A box for comments was also 
included, and was primarily used to explain why assessors selected 
“System failure” or “Do not know.” 

An important practical consideration is the time and effort assessors 
require to generate answers or judge relevance for search results. For 
example, in ARQMath the contextualized formula search task had an 
average assessment time of roughly 35 seconds for each formula query 
and candidate formula. Using the same MSE question/answer posts 
there was a second answer retrieval task, where assessors had to decide 
how well an answer addressed a given question. Assessors found this 
task much more difficult, and average assessment time was nearly twice 
as long as for formula search: 64 seconds per answer. 

Responses: Question answers for QA tasks. Unlike search tasks, QA 
test collections may be created without the participation of QA systems 
(i.e., shared tasks are not needed to create QA test collections). A list 
of QA test collections is provided in Section 6. Answers are created, 
annotated, and checked in a variety of ways, with differing levels of effort 
for assessors and test collection creators. For example, LAT X \boxed{} E 
commands already identify final answers for the AMC and AIME QA 
data sets, while the Amazon Figure Eight annotation platform was 
used to manually select operations and arguments from provided lists 
for MathQA. Other collections have assessors generate answers for 
questions directly (GSM8k), or use machine learning techniques to auto- 
matically segment final answer values from available CQA answers (e.g., 
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Example 3.5: Relevance assessment for formula search 
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ARQMath Turkle assessment interface (Formula Search). Left: for- 
mula query highlighted in a question post. Right: two question posts 
containing the same formula. Assessors consider posts when deciding 
relevance for each pooled formula. They could also check question 
threads associated with posts using the ‘Thread’ links. 

from answers posted in YahooAnswers using SVMs for Dolphin18K). 
For AQuA-RAT, crowdsourced workers were used to modify questions 
(e.g., changing variable values) and provided rationales as needed from 
available GMAT and GRE test questions. 

In addition to final answers, some QA test collections include step- 
by-step answers or textual annotations. For machine learning models, 
some of this textual data associated with training topics can be used 
to improve system answers by providing additional contextual data/in- 
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formation, and used to improve generated explanations for answers or 
improve responses to queries and comments in interactive discussion 
(e.g., for large language models). 

In all QA datasets, there are also post-processing steps to normalize 
the format of answers, to avoid missing correct answers. Where people 
are used to generate and annotate answers, the same concerns regarding 
assessor training, consistency, and effort as mentioned for search tasks 
apply here as well. 

3.4 Evaluation Metrics 

To be focused in their purpose, in addition to collecting queries, re- 
sponses, and assessments (e.g., in qrels, or target answer files) test 
collections also need to define the measures of success and how they 
are computed. This way people can use test collections independently, 
and compare their results in a consistent, meaningful way. We want our 
measures to be automated for consistency and to avoid error as well. 

Selecting appropriate evaluation metrics is subtler than it may seem 
at first glance. For example, consider the top-5 retrieval results from 
two formula search models in Example 3.4. Which system would you 
prefer? We might prefer model ‘A’, because the first result is relevant. 
However, for some information needs we may prefer model ‘B’, because 
more relevant formulae are retrieved. This is a simple example of how 
information needs influence which effectiveness metrics are better suited 
to an individual topic or task. 

As another simple example, suppose that we ask a QA system to 
‘provide the value of π’, and that we have stored the answer as 
3.14159. If a single value is expected, we need to define the required 
number of digits for a response to be scored as correct. We might accept 
3.14, but probably not 3; if more digits of π are returned than in our 
stored answer, we probably don’t want to penalize this either. The 
differences in answer formats mean that measures of Accuracy for math 
QA systems include normalizations of target responses and provided 
answers, which include tolerances and constraints to avoid penalizing 
correct answers.10 

10This often loses detail, e.g., is irrational, with infinite decimal places. π 
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Some protocols for evaluation are more complex, such as the use of 
visually distinct formulas for evaluating formula search in ARQMath 
(see Section 4), which impacts pooling for assessment and the scoring of 
search results. To help people using test collections, normally provided 
evaluation scripts are used to run evaluation protocols automatically. 

Search metrics. Table 3.1 presents metrics used to evaluate search 
effectiveness using relevance assessments (i.e., qrels data). Note that 
while most metrics are defined for a single query, they are often reported 
using their average value for a set of test queries. It is helpful when 
standard deviations from the mean are also reported, to characterize 
how much the metric values vary across queries. Most common metrics 
use binary relevance values for their computation. As described earlier, 
we can binarize graded relevance values to compute these metrics. 

There are trade-offs that occur between some of these metrics. A 
classic example is the tradeoff between recal l and precision: the more 
items we return in search results, the more likely that relevant items will 
be included, which tends to increase recall metrics. However, returning 
additional items tends to produce more non-relevant than relevant items, 
which decreases precision metrics. Intuitively, this is because to retrieve 
more items, patterns used for matching need to be less constrained, 
making them more likely to match non-relevant sources. In theory, we 
can return the entire collection for all queries to obtain an average recall 
(R@hit) of 100% because all relevant items are returned. However, the 
average query precision (P@hit) will be close to 0%, because few/none 
of the returned sources are relevant for an individual query. 

Another important trade-off occurs when systems are designed to 
maximize mean reciprocal rank (mRR), the average inverse rank of the 
first relevant hit ( 1), or precision@1, the percentage of queries with r 
a relevant source at rank 1 (i.e., at the top of the ranking). Doing 
this often reduces metrics for effectiveness over a full ranking such as 
mean average precision (mAP) or normalized discounted cumulative 
gain (nDCG). This occurs because using retrieval patterns and scoring 
narrowly focused on matching high relevance sources can bias the model 
away from capturing rarer and/or partial relevance signals. 
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Table 3.1: Search Metrics. By default, sources not in relevant set R are in non- 
relevant set N . S : first k sources returned. Note: reported metrics are typically k 

averaged over queries but only mAP and mRR explicitly mention mean query values. 
Ch. 8 of Croft et al. (2009)’s textbook provides an overview of these metrics. 

Name Formula Description 

Binary Relevance 

RR Reciprocal Rank 1/kf Inverse of rank k for the f 

first relevant source 
1 

X 
mRR Mean Reciprocal Rank RR(q) Avg. RR for query set Q 

|Q| 
|S ∩ R|/|R| 

q∈Q R or R@hit Recall 
R@k 

Percentage relevant in returned 
Percentage relevant in first k 
sources returned 

Recall at (rank) k |S ∩ R|/|R| k 

P or P@hit Precision 
P@k 

|S ∩ R|/|S| Percentage returned in relevant 
Precision at (rank) k |S ∩ R|/k 

Percentage first 
turned in relevant 

k sources re- k 

1 

X 
AP Average Precision P@k(Sk) Avg. P@k for relevant docu- 

|R| ments at ranks K in sources re- k∈K r r 

turned 
1 

X 
mAP Mean Average Precision AP(q) Avg. AP for query set Q 

|Q| q∈Q 

Graded Relevance 

X 

k r
i 

log
2 
i DCG@k Discounted r1 + Sums relevance scores r through 1 

Cumulative Gain =2 r for first k sources returned i k 

using log discount from rank 3 
on 

iDCG@k 

nDCG@k 

Ideal DCG DCG@k for first k pooled assess- 
ment scores after reverse sorting, 
e.g., (a , . . . , a ) = (3, 3, 2, 1, 0) 1 5 

Normalized DCG 
at (rank) k 

DCG@k/iDCG@k Percentage of ideal DCG ob- 
tained for first 
turned 

k sources re- 

nDCG or 
nDCG@hit 

Normalized DCG nDCG@k for k = |S| nDCG for all returned sources S 

Scored Sources Only (N : Non-relevant sources) 
1 

X 
ꢂ1 − 

min(|S
k ∩ N |, |R|)ꢃ Bpref Binary preference Avg. percentage relevant before 

non-relevant for relevant sources; |R| |R| (w. binary relevance) k∈K r 

treats |N | = |R| to balance 
classes. 

M′ Prime metric (as defined for metric M) Compute M with S′ = S ∩ (R ∪ 
e.g., P′@5, nDCG′ N) rather than full ranking S 
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Not all of the retrieval metrics in Table 3.1 behave as expected, or 
are always applied or interpreted appropriately in the research litera- 
ture.11 For example, both mAP and nDCG (nDCG@hit) characterize 
relevance in complete rankings. They are helpful for understanding 
differences between full rankings and the retrieval models that produce 
them. However – most users consider just a small number of results 
returned, and so other measures are more appropriate for user-oriented 
evaluations (e.g., P@5 or nDCG@5). The tendency for users to exam- 
ine few items also motivates the logarithmic discount used for nDCG. 
nDCG@5 gives decreasing credit for relevant items starting at rank 
3, in contrast to P@5 where all relevant items in the top 5 hits have 
the same weight. P@5 uses binary relevance: items are identified as 
either relevant or non-relevant. nDCG@5 instead uses graded relevance, 
where relevance scores may have different ‘levels’ (e.g., 1 for ‘Low,’ 2 
for ‘Medium,’ and 3 for ‘High’ relevance). 

In the end, no metric is better on its own – it depends upon what we 
want to measure. If say we want to know how often relevant items are 
in the top-5 hits, P@5 is simpler to interpret than nDCG@5. But if we 
instead want to characterize how often highly relevant sources appear 
in the top-5 hits, then nDCG@5 is more helpful. 

To avoid bias in model comparisons, even when there are disputed 
or incorrect relevance assessments in a qrels file, we report performance 
measures using the original qrels file. ‘Cleaning up’ a qrels file by adding 
or revising entries is to be avoided, as it prevents direct comparison 
with other published work using the collection: this changes the ideal 
response, and the specific corrections are likely motivated by improving 
performance for a specific system. It is acceptable to note in a paper 
where issues in qrels are found, and in some cases to do additional 
experiments using modified qrels. However, this is only acceptable if 
results using the ‘official’ qrels file from a test collection are reported, 
and the qrels changes are unbiased.12 

11See Fuhr (2017) for a critique of mRR and a proposed replacement, as well as 
common uses of mAP. 

12Automated qrel changes are preferred, e.g., using topic and result data. Manual 
‘cherry-picking’ of qrel topics for a model family is weak science. 
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Qrels and items with unknown relevance. Qrels provide judge- 
ments for pooled sources used in assessment. Unless the collection is 
extremely small, we do not have the relevance judgements for all collec- 
tion sources per topic: only pooled sources are evaluated. This means 
that people using an existing test collection often retrieve sources that 
are unevaluated. This is illustrated for Model A in Example 3.4, where 
the 3rd formula retrieved was not included in the assessment pool for the 
query. This unrated formula will be treated differently, depending upon 
the metrics that we use. By default, unrated hits are considered non- 
relevant, e.g., the Precision@5 (P@5) for Model A giving the percentage 
of relevant items within the first 5 returned would be 2/5. 

Some metrics ignore sources with unknown relevances, such as the 
Bpref and prime (′) metrics shown in Table 3.1. For example, if a 6th 
formula returned by Model A was graded relevant, then the P ′@5 would 
be 3/5; if the 6th formula is non-relevant or no 6th formula was returned, 

′@5 is still 2/5. Ignoring unevaluated items allows evaluation using P 
only graded items in qrels files, and avoids assuming unpooled sources 
are non-relevant.13 

Bpref measures the number of consistent rank preferences of relevant 
vs. non-relevant sources for a query. A relevant source’s preference is 
consistent will all other sources at lower ranks; a non-relevant source is 
inconsistent with relevant sources at lower ranks. Bpref gives no credit 
for a relevant source with ≥ |R| non-relevant sources above it in the 
ranking, where R is the number of relevant sources for a topic/query. 
Relevant sources missing in a ranking are also given no credit. 

Question answering metrics. The main metrics for question answering 
are simpler than for retrieval, as shown in Table 3.2. Most evaluations 
report the percentage of correct responses (with normalizations/toler- 
ances as described earlier) and/or the number of responses that match 
the target answers in the test collection exactly. Some test collections 
report perplexity to characterize system uncertainty in making multiple 
choice question answer selections. Perplexity for the correct answer ac 

13These metrics are also helpful in early design, as models can simply rank scored 
sources. However, metrics obtained this way cannot be compared with published 
systems, because the retrieval step that filters the collection is skipped. 
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Table 3.2: Question Answering Metrics. a : answer for question q . A : prob. k k k 

distribution for possible answers to q (e.g., multiple choice). Note: Metrics are k 

computed using target answers, and text measures are tokenization-dependent. 

Name Formula / Reference Description 

Correctness and Uncertainty 

1 

X 
EM Exact δ(a , q ) Percentage answers identical to tar- k k 

|Q| match rate get answers (δ returns 0/1) q ∈Q k 

1 

X 
Accuracy 

Perplexity 

Correct 
answer rate 

e(a , q ) Percentage answers within toler- 
ance of function e (returns 0/1) 

k k 

|Q| q ∈Q k 

1 1 

X 
Avg. correct an- 
swer perplexity 

Correct answer prob. uncertainty 
as #items chosen from randomly |Q| P(a |A , q ) c k k q ∈Q k 

Similarity to Text Answers (including Rationales, Step-by-Step) 
Token Level 

2RP 
R + P 

Token F1 Token F1 score Harmonic mean: % target answer 
tokens in response (Recall), % re- 
sponse tokens in target answer 
(Precision) 2R

ac
P
ac 

R
ac + Pac 

BERTScore Token F1 w. Highest target/response token pair 
cos. similarities give avg. token sim- 
ilarity for target (Rac), avg. token 

token embedding 
cos similarity 

similarity for response (Pac ) 
N-gram Level 
BLEU Bi-Lingual Evalua- Papineni et al. (2002) [0, 1] score from shared target an- 

swer/response n-grams + penalty 
for short outputs. 

tion Understudy 

sBLEU Sentence-BLUE BLEU for individual sentences. 

String Level 
Edit distance String edit 

distance 
Yu et al. (2016) Operation count to convert one 

string to another (e.g., insert, 
delete, replace). Can be normalized 
to [0, 1] using string lengths. 

δ(a, b) = (a = b); e(a, b) = (normalize(a) = normalize(b)) 
BLEU and edit distance have many variations. 

in the answer probability distribution A for question q is converted k k 

to a random choice between n options, using n = 1/P(a |A , q ) . For c k k 

example, if a model estimates the target answer is 25% likely to be 
correct, then the perplexity is n = 1/0.25 = 4. 

For text responses, open response questions, and comparing expla- 
nations or step-by-step solutions against target answers in a collection, 
text similarity measures are used at the token, n-gram, and string/se- 
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quence levels.14 The token F1 measure is the harmonic mean for the 
percentages of target answer tokens in the response (i.e., recall), and 
response tokens in the target answer (i.e., precision). 

For embedded tokens, a variation called the BERTScore (Zhang 
et al., 2020b) has been used. This is similar to the token F1 score, 
but makes use of a trained embedding model (e.g., BERT). All target 
answer and response tokens are embedded using this model, and the 
highest cosine similarity between each target answer and response token 
is first computed. From these maximum similarities, the average cosine 
similarity for a target answer to a response token is used for recall, and 
the average cosine similarity from a response token to a target answer 
token is used for precision. F1 is then computed as before. Embeddings 
capture token context missing in the token F1 measure, e.g., this can 
avoid penalizing synonyms, but the token F1 measure is more easily 
computed and interpreted. 

Similarity based on token sequences such as n-grams or full strings 
can also be used. BLEU was originally developed to measure the 
success of translations by comparing a translation against one or more 
accepted translations of a sentence (Papineni et al., 2002). It computes 
the similarity of n-grams (i.e., token sequences of a fixed length, for 
different values of n) between a response and target answer(s), with an 
additional penalty for short answers. sBLEU modifies this to compute 
similarity at the sentence level, rather than for complete responses. Edit 
distance considers an entire token sequence, and computes the number 
of operations from a fixed set needed to transform one to the other 
(e.g., insert, delete, replace, Yu et al., 2016). 

For the text similarity measures, it is important to realize that they 
reflect surface structure or correlations learned by a model, and do 
not directly quantify semantic similarity. These metrics are certainly 
correlated with semantic similarity, but they only indirectly capture 
differences in information content between responses and target answers. 
What they actually measure is how closely one string imitates the other 
based on tokens or token embeddings. They are still very useful, but 
one has to be a bit careful about their interpretation. 

14Note: All string-based measures, including token F1 and BERTScore are affected 
by the method used to split words into tokens. 
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3.5 System Comparisons and Statistical Tests 

Imagine that we have two math search systems returning 10 results per 
query for a test collection with binary relevance grades. We determine 
that the average P@10 is 50% for both systems. However: 

1. For the first system, 5 of 10 results are relevant for every query 
(i.e., every query has P@10 of 50%). 

2. For the second system, half of the queries return no relevant 
sources (i.e., P@10 of 0% per query) while the remaining half 
return only relevant sources (i.e., P@10 of 100% per query). 

While the average P@10 scores are identical, we would probably much 
prefer the first system because it is more consistent and avoids missing 
relevant answers altogether. 

To capture variance in our evaluations, such as for rank metrics 
or differences between target and provided numeric answers to ques- 
tions, we want to compare distributions (i.e., sets) of values rather than 
simply averages. Statistical hypothesis tests are used to check whether 
differences in average measures are likely to be stable when running 
additional queries. They include an estimate for the probability of de- 
tecting a difference incorrectly (i.e., a Type-1 error) given as the p-value. 
Generally we consider a p-value less than either 5% or 1% (i.e., p < 0.05 
or p < 0.01, chosen before running an experiment) to be a ‘statistically 
significant’ difference suggesting that the averages are unlikely to be the 
same after running a large number of additional queries/questions.15 
Note that hypothesis tests are probabilistic estimates, and not certain 
answers regarding whether averages are actually different in the limit. It 
is not possible to run all possible queries/questions to know for certain. 
Despite this limitation, statistical tests provide a more rigorous and 
nuanced characterization of differences in metric values than comparing 
average values directly. 

Commonly used statistical hypothesis tests for performance metrics 
include the standard t-test for comparing two distributions, and the Bon- 
feronni corrected t-test when comparing two or more models to a single 

15Important note: using ‘significantly improved’ or ‘significantly different’ without 
a hypothesis test is a short path to having a research paper rejected. 
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baseline system. The correction here adjusts computed p-values when 
multiple comparisons are made, because without correction the proba- 
bility of detecting a difference increases with additional comparisons. 
Many other tests and comparison types are also used. The selection 
of a chosen measure or test is motivated by the goal of a comparison, 
variable data types, and data distribution assumptions (e.g., correlation 
coefficients, χ2 (‘chi-squared’), and Wilcoxon rank sum tests). 

It is also very important when comparing two systems to check raw 
metric values, and to examine the specific topics where performance 
differs substantially. For example, visualizing raw metric data can reveal 
whether metrics are similar across queries/questions, or vary dramati- 
cally (e.g., for the P@10 example from the start of this section). One 
simple approach is to sort the metric values and then produce a ‘ski 
jump’ bar graph. Specific queries/questions where larger differences in 
metric values are seen can help identify specific limitations, patterns of 
behavior, and information use by the models. Equally importantly, this 
also helps identify bugs in system implementations, including where 
computed metrics are unusually strong, but not because the model is 
effective.16 For search tasks, frameworks like PyTerrier17 provide easy 
access to query-specific differences between models, and can be used to 
compute common statistical tests. Additional helpful evaluation tools 
include trec_eval,18 pytrec_eval19 and ranx.20 For QA tasks, frame- 
works such as nltk21 can be used to compute standard text metrics. 
Standard data matrix tools (e.g., Pandas22) and statistical tools (e.g., 
Scipy stats23) can also be used to compile descriptive statistics and 
compute hypothesis tests. 

16Based on a true story. Or three. 
17https://pyterrier.readthedocs.io/en/latest. 
18https://github.com/usnistgov/trec_eval. 
19https://github.com/cvangysel/pytrec_eval. 
20https://github.com/AmenRa/ranx. 
21https://www.nltk.org/. 
22https://pandas.pydata.org. 
23https://docs.scipy.org. 
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Formula Search 

As described in Section 2, the information conveyed in a formula is pri- 
marily structural, representing a hierarchy of operations over arguments. 
This hierarchy can be represented in an operator tree (OPT) obtained 
by mapping symbol layout to an operation hierarchy. For brevity and 
clarity, authors often assume that readers are familiar with common 
operations and variable types for the subject area they are writing upon. 
The full information that a formula conveys and is associated with 
includes these notation conventions and related information presented 
in surrounding text, other formulas, and even other graphics (e.g., ta- 
bles or figures). Considering these pieces of context is very helpful for 
formula search. 

With that said, there are certainly situations where searching for 
isolated formulas is helpful. This includes defining unfamiliar notation, 
re-finding sources using part of a formula (e.g., ctrl-f for formulas), 
browsing through variations of a formula (e.g., loss functions using the 
cross-entropy loss), identifying applications in different domains (e.g., 
medicine vs. computer science), and formula autocompletion. 

86 
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Figure 4.1 illustrates the information tasks used in formula search, 
using the model from Section 1.1 We assume that formulas have already 
been indexed using one or more representations (e.g., sparse and/or 
dense: OPT, SLT, visual-spatial, etc.) as described in Section 2. 

A1. Annotate 
Collection of 

Sources 
*Annotated 

Add information 
to sources 

R2. Consult 
Queries 

Queries *Annotated Examine and 
navigate sources 

S2. Communicate R1. Query 

Results for 
Queries Create new 

information sources 
Request sources 

of information 

Collection 
Index 

Figure 4.1: Information Tasks Performed in Formula Search. Prior to search, formula 
patterns in a collection of sources (e.g., OPT and SLT paths) are enumerated or 
embedded in vectors. These patterns annotate formulas and provide lookup keys 
in the collection index. Formulas in the index with patterns identical to the query 
(sparse retrieval) or similar to the query (dense retrieval) are selected, ranked, and 
then communicated to the user in a new source (e.g., search result page). 

In this section, we first present test collections used for developing 
and evaluating formula search. We then present formula search models 
organized by the formula representations they use, and then summarize 
their effectiveness on the test collections. State-of-the-art models use 
more than one formula representation. This is because dense retrieval 

1Communicating formula search results is important, but little studied. 
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models can more flexibly match related formulas using abstract/latent 
contextual patterns, while concrete patterns (e.g., SLT and OPT paths) 
are better for retrieving highly similar formulas using specific symbols 
and structures. 

4.1 Test Collections for Formula Search 

Relevance definitions for formula search differ based on information 
needs, and formula search relevance definitions have evolved over time 
in test collections. There are two basic formula search tasks that have 
been explored, which differ in their consideration of context. 

1. Isolated: structural similarity of query vs. candidate formulas 
(SLT and/or OPT), sometimes with optional wildcard symbols 

2. Contextual: formula relevance depends upon text where query 
and candidate formulas appear 

Both tasks are illustrated in Example 3.1 from the previous section. 
NTCIR: NTCIR-10 was the first shared math-aware search task 

(Aizawa et al., 2013). It had a formula search subtask, in which systems 
needed to retrieve formulas similar to a given formula query. The 
collection included 100,000 technical papers from arXiv (mathematics, 
physics, and computer science) with 35.5 million formulae. 

In NTCIR-11 the formula search task was a known-item retrieval 
task (Aizawa et al., 2014). The query was either identical to a specific 
formula instance in a Wikipedia article, or a version with wildcard 
replacements for subexpressions. Systems were evaluated based on 
ranks for target formula instances. A Wikipedia page collection with 
mathematical formulas was used, which was much smaller than the 
NCTIR-10 arXiv collection. 

NTCIR-12 introduced the Wikipedia Formula Browsing (WFB) task 
that is similar to NTCIR-10: retrieve relevant formulas for a formula 
query (Zanibbi et al., 2016a). NTCIR-12 uses 319,689 articles from 
English Wikipedia with over 590,000 formulae in the corpus. 

All three test collections use lab-generated topics. In NTCIR-10, 21 
formula queries were chosen by the organizers for arXiv papers, of which 
18 queries included wildcards and 3 were concrete queries. NTCIR-11 
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had 100 queries, with 59 including wildcards, and 41 concrete queries 
without wildcards. Queries were randomly sampled from Wikipedia 
pages and then modified to include query variables. The NTCIR-12 
task had 40 queries, divided into 20 concrete queries and 20 wildcard 
queries. The wildcard queries are created by replacing one or more 
sub-expressions in each concrete formula query with wildcards. The 
intent was to observe differences in retrieval behavior when wildcards 
were added to queries. 
Different pooling processes are used in each NTCIR collection (Man- 

souri et al., 2021a). No pooling was needed for NTCIR-11, because 
retrieval targets were specific formulas. In contrast, every formula in- 
stance was treated as a separate source for the NTCIR-12 WFB. This 
led to limited diversity in the judgement pools after selecting the top-20 
instances from each submitted run. For example, for the query β (a 
short formula consisting of a single symbol), every formula instance in 
the pool of formulas to be judged was β. 

Both the NTCIR-10 and -12 test collections use graded relevance 
(0-2): 2: Relevant (R), 1: Partially Relevant (P), or 0: Non-relevant (N). 
For NTCIR-10, the assessors were mathematicians or math students 
who viewed each formula instance from the judgment pool in isolation, 
considering the query-specific scenario and judgment criteria specified 
for the query. For the NTCIR-12 task there were two groups of assessors, 
with each group independently judging pooled formulas. One group was 
computer science graduate students, and the other was computer science 
undergraduates. Pooled formula instances were shown to the assessors 
in context by highlighting them in sources, but assessors were not asked 
to interpret the pooled formula in that specific context. Instead, the 
assessment was to done based on the pooled formula alone. 

For each topic in NTCIR-11, the single Relevant (R) formula instance 
was defined as the formula instance that had been used as the formula 
query. Note that there may have been other instances of the same 
or similar formulas in the collection, but like all instances of other 
formulas, they would be scored as Non-relevant (N). NTCIR-11 used 
mean reciprocal rank (mRR), which is appropriate for single retrieval 
targets per topic. 
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For assessment, NTCIR-10 and -12 combined the judgments from 
two assessors to form a 5-level “Aggregate” relevance score. This was 
done by summing the two scores from assessors for each pooled formula. 
Relevance scores ranged from 0 (both assessors judged N) to 4 (both as- 
sessors judged R). To compute evaluation measures the 4 level-relevance 
is binarized, by treating scores of 0-2 as non-relevant, scores of 3-4 as 
relevant. 

NTCIR-10 reported P@5, P@10, P@hit (i.e., for all returned results), 
and MAP. NTCIR-12 uses P@k for k = {5, 10, 15, 20}. Later, researchers 
used Bpref (Buckley and Voorhees, 2004) to avoid penalization for 
unevaluated formulas. 

ARQMath: The Answer Retrieval for Question on Math (ARQ- 
Math) lab introduced a contextualized formula search task illustrated 
in Example 3.1. The test collection was developed over three years, gen- 
erating test collections referred to as ARQMath-1 (2020), ARQMath-2 
(2021), and ARQMath-3 (2022). 
ARQMath’s collection consists of question and answer posts from 

a math community question-answering website, Math Stack Exchange 
(MSE). These question posts provide a diversity in subject areas and 
required mathematical expertise, ranging from simple questions from 
high school to advanced topics. Formula queries are taken from question 
posts, and the task is to find relevant formulae inside other question and 
answer posts. All MSE questions and answers posted from 2010 to 2018 
are used as the collection of sources. Formula queries for topics were 
selected from questions posted in 2019 (ARQMath-1), 2020 (ARQMath- 
2), and 2021 (ARQMath-3). Additional training topics are provided in 
the test collection. 

To make topics diverse, ARQMath attached a complexity label to 
topic formulas, dividing them into low, medium, and high-complexity 
topics. Additional details on topic selection can be found elsewhere 
(Mansouri et al., 2021a). To avoid the lack of diversity in pooled formulas 
seen in NTCIR-12, ARQMath pooling selects visually distinct formulas: 
two formulas are visually distinct if their Symbol Layout Trees differ. 
The canonicalized SLT representation from Tangent-S (Davila and 
Zanibbi, 2017a) was used to identify visually distinct formulas when 
two formulas are parseable, or had identical LAT X strings otherwise. E 
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For each visually distinct pooled formula, up to five instances of that 
formula were shown to the assessors. Example 3.5 shows the Turkle2 
interface used for assessment. As shown in the left panel of the figure, 

P ꢀ  ꢀ  
the formula query n k is highlighted in yellow. The assessors can n 

k=0 k 
use the question post to understand the user’s information need. In the 
right panel, two instances of one visually-distinct formula, 

P ꢀ  ꢀ  

n n +k 
k , k=0 

are shown in two different posts. For each instance, the assessor could 
consider the post in which the instance appeared when deciding the 
relevance degree. The final relevance score for a formula is the maximum 
relevance score for any judged instance of that formula. 

While the official evaluation using visually distinct formula pools, 
ARQMath introduced the use of “Big Qrel Files”, where nearly all 
assessment data is provided. This includes assessment for each individual 
formula instance, along with assessor ID. This can be used to study 
effectiveness of formula search models, under assessment of different 
people, and to change how final relevance scores are defined (e.g., using 
average rather than maximum relevance scores). 

ARQMath organizers hired undergraduate and graduate in math- 
ematics or with strong mathematical backgrounds to act as assessors. 
Each year, the assessors were trained by a math professor during three 
training sessions. The sessions included discussing relevance ratings for 
practice topics, with the goal of reducing variation in ratings across 
assessors, and minimizing assessment errors. After some discussion be- 
tween organizers and assessors in ARQMath-1, relevance for retrieved 
formulas was defined as follows: 

For a formula query, if a search engine retrieved one or more in- 
stances of this retrieved formula, would that have been expected to be 
useful for the task that the searcher was attempting to accomplish? 

Assessors assigned each formula instance in the judgment pool one 
of four scores as defined in Table 4.1. For example, if the formula query 

P P 

was 1 , and the formula instance to be judged is 1  , the ∞ 2+cos n 1 2 
n 

n n− assessors would decide whether finding the second formula rather than 
the first would be expected to yield good results. To do this, they 
would review the question post containing the query (and, optionally, 

2https://github.com/hltcoe/turkle. 
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Table 4.1: Relevance scores and definitions for ARQMath Formula Search task. 

Score Rating Definition 

3 
2 
1 
0 

High Just as good as finding an exact match to the formula query would be 
Useful but not as good as the original formula would be 
There is some chance of finding something useful 
Not expected to be useful 

Medium 
Low 
Not Relevant 

the thread containing that question post) to understand the searcher’s 
information need. Here the question post fills a role akin to Borlund’s 
simulated work task (Borlund, 2003), although here the title, body, and 
tags from the question post are included in the topic and may be used 
by retrieval systems. Assessors also consult the posts where retrieved 
formula instances come from (these may be question or answer posts), 
along with the associated thread to see whether the formula would have 
been a useful basis for a search, i.e., how likely useful content would be 
found if this or other instances of the retrieved formula were returned 
by a search engine. 

The ARQMath organizers did make one change to the way this 
relevance definition was interpreted for ARQMath-2 and -3. ARQMath-1 
assessors were instructed during training that if the query and candidate 
formulas had the same appearance, then the candidate was highly 
relevant. For ARQMath-2 and -3, the interpretation of ‘exact match’ 
was clarified to take the formula semantics and context into account. 
For example, variables of different types would not be considered the 
same, even if variable names are identical. This means that an exact 
match with the formula query may be considered not relevant. On the 
other hand, formulas that do not share the same appearance or syntax 
as the query might be considered relevant. This is usually the case 
where both formulas refer to the same concept. For the formula query 

√ √ 
n! has 

(ARQMath query B.277), formula 1+2+3+ ≥ 
S 
n 

n ... + n n 

≥ 
P n 

medium relevance. Both formulas are referring to the AM-GM inequality 
(of Arithmetic and Geometric Means). 

System evaluation is performed after removing duplicate instances 
of visually identical formulas from search results, and then calculating 
effectiveness measures over the ranked series of visually distinct formu- 
las. This is done by replacing each formula instance with its associated 
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visually distinct formula id, and then removing duplicates starting from 
the top of the ranking. To avoid earlier issues with unevaluated hits 
for people using the test collection after assessment was complete, the 
organizers chose the nDCG′ measure (read as “nDCG-prime”) intro- 
duced by Sakai (2007) as the primary measure. The nDCG measure on 
which nDCG is based is widely used when graded relevance judgments ′ 
are available. ARQMath also uses two other measures: Mean Average 
Precision (MAP ), and Precision at 10 (P @10), after removing the ′ ′ 
unjudged hits. For MAP and P @10 High+Medium binarization is ′ ′ 
used, meaning only the medium and high relevance ratings (2 and 3) 
were considered relevant. 

AccessMath. As an example of a very different (albeit small) test 
collection, the AccessMath system described in the first section (Davila 
and Zanibbi, 2018) was developed using lecture videos and LAT X lecture E 
notes produced for those lecture videos.3 

4.2 Formula Retrieval Models 

We have organized formula retrieval models by the formula represen- 
tation they use for search. Some of the representations imply sparse 
vs. dense representations as noted below. A more detailed discussion 
of formula representations can be found in Section 2. The formula 
representation types we distinguish here are: 

Text-Based: Formulas represented by tokens in text encodings (e.g., 
LAT X tokens). Early systems used this with traditional sparse E 
(i.e., inverted index-based) retrieval models such as TF-IDF. 

Tree-Based: Use formula tree representations (e.g., SLT and OPT). 
Retrieval is performed over sparse tuple indexes for substructures 
(e.g., paths, subexpressions) and/or (re-)ranking by tree edit 
distance or graph alignment. 

Visual-Spatial: Captures formula appearance symbolically without 
writing lines (e.g., in SLTs) or operation-argument relationships 
(e.g., in OPTs). 

3Notes: https://www.cs.rit.edu/~dprl/files/TangentV-data_results.zip, 
Videos: https://www.cs.rit.edu/~accessmath/am_videos. 
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Embedding: Text, tree, or visual-spatial representations for formulas 
and/or subexpressions are embedded in vector spaces. Nearest- 
neighbor search using vector similarity identifies candidates. 

Other: Use images or other representations not described above. 

Example 4.1 compares the formulas y = x2 and y = x in different 
representations. At top-left we see a text based representation, where 
we have two lists of tokens produced by linearizing SLTs represented in 
LAT X. At the top-right we have operator and symbol layout trees at E 
left and right respectively. Finally, at the bottom we see the formulas 
represented as vectors (points) in a 3d embedding space. Such a repre- 
sentation can be created from text, tree, or other representation. The 
specific positions of vectors depend upon training data and the training 
tasks, learning algorithms, and loss functions used for embedding. 

Example 4.1: Formula comparison in different representations. 

= 

x 

= 2 
y, =, x, ^, 2 y, =, x y = x y = x 

y ^ y x 

2 

LaTeX Tokens Operator Tree Symbol Layout Tree 

Text-based Tree-based 

y=x 

y=x2 

Embedding-based 

Table 4.2 shows the first formula returned by models using different 
formula representations. Each model has a ‘reasonable’ first hit. While 
it is helpful for identical or near-identical formulas to be highly ranked, 
matching identical/nearly-identical formulas is easy for reasonably ex- 
pressive representations and indexing patterns. 
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Table 4.2: The first formula returned by different search engines for three queries 
of increasing structural complexity. 

Query 

R 

√ 1 sin−1 (x) Model Repr. Cov(x, y) = 0 x! = 2πx ∗  ( )x 
x 
e 0 x 

ꢄ ꢅ R 

√ x 
e 

x sin−1 (x) dx MathDowsers Tree paths COV (X, Y ) = 0 J = a 
0 x! ≈ 2πx · x 

(SLT) 
Tree paths 
(OPT) R 

√ 1 
0 

sin−1 ( 
x) dx = ln 2 x! ∼ 2πx( )x Approach0 Cov(x, y) = 0 π x 

e x 2 

Z 

∞ sin2( ) x √ 

ꢀ  

ꢀ  

ꢀ  

ꢀ  

Tangent-CFT Tree embed. 

XY-PHOC 

cov(y,x) = 0 n! = 2πx 
x x 

e 
1 x 

R 

√ 1 
0 

sin( x dx 
) Visual-spatial Cov(x, y) = 0 n! = 2πx 

x x 
e x 

Effectiveness-wise, the ability to capture relevance for formulas that 
are progressively more distinct from the query is what differentiates most 
formula search models. This is one of the reasons that the ARQMath test 
collections used full rank metrics for ranking formula search systems (i.e., 
nDCG′ , with mAP′ added for comparison), in addition to observing 
metrics focused on the top of a ranking (e.g., P @10, mRR). ′ 

A summary of formula search models is provided in Table 4.3. In 
the remainder of this section, we will discuss the families of formula 
search models based on their representation types. 

4.3 Text-based and Tree-based Models 

It is common to use traditional sparse retrieval models for more complex 
domains such as math. Particularly in the early days of formula search, 
traditional token-based sparse models such as TF-IDF were used. An 
example is one of the earliest large-scale formula search engines created 
for the Digital Library of Mathematical Functions (DLMF) (Miller 
and Youssef, 2003). LAT X is parsed into an SLT-type tree, which is E 
then linearized after normalizing token symbols. Normalizations include 
converting symbols to text tokens, and mapping non-alphanumeric 
characters to alphanumeric strings. For instance, xt−2 = 1 given as 
‘x∧{t-2}=1’ is converted to the token sequence: 

x, BeginExponent, t, minus, 2, EndExponent, Equal, 1. 
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Table 4.3: Formula Search Models. ‘Others’ representations includes images. 

Representation Canonicalization 
Model SLT OPT Others Context Unif. Norm. Rank References 

Text 
DLMF 
ActiveMath 
MathDex 
EgoMath 
MIaS 

✓ ✓ TF-IDF 
Tokens 
TF-IDF 
TF-IDF 
TF-IDF 
LCS. 

Miller and Youssef (2003) 
Libbrecht and Melis (2006) 
Miner and Munavalli (2007) 
Mišutka and Galamboš (2008) 
Sojka and Líška (2011) 

✓ 

✓ 

✓ 

✓ 
✓ 
✓ 
✓ 

✓ 
✓ 
✓ 
✓ 

✓ 
✓ 
✓ 
✓ 

✓ 
✓ 

LCS Pavan Kumar et al. (2012) 

Tree 
MathWebSearch 
WikiMirs 

✓ 
✓ 

✓ 
✓ 

Paths 
TF-IDF 
TED 
Paths 
Paths 
Paths 
BM25+ 
Paths 
BM25+ 
TED 

Kohlhase and Sucan (2006) 
Hu et al. (2013) ✓ ✓ 

✓ 

SimSearch 
MCAT 

✓ 
✓ 
✓ 
✓ 
✓ 

Kamali and Tompa (2013) 
Kristianto et al. (2016a) 
Zanibbi et al. (2016b) 
Davila and Zanibbi (2017a) 
Fraser et al. (2018) 

✓ 

✓ 

✓ 

✓ 

✓ 
✓ 
✓ 
✓ 
✓ 
✓ 

✓ 
Tangent-3 
Tangent-S 
Tangent-L 
Approach0 
MathDowsers 
Tangent-CFTED 

✓ 
✓ 

✓ 
✓ 

Zhong and Zanibbi (2019) 
Ng et al. (2020) 
Mansouri et al. (2020) 

✓ 
✓ 

Embedding 
SMSG5 ✓ ✓ 

✓ 
✓ 
✓ 
✓ 

✓ 

✓ 

Cosine 
Cosine 
Cosine 
Cosine 
Cosine 
Cosine 
Cosine 
Cosine 
Cosine 
Cosine 

Thanda et al. (2016) 
Gao et al. (2017) Formula2vec 

EqEmb. ✓ 
✓ 

Krstovski and Blei (2018) 
Mansouri et al. (2019a) 
Dai et al. (2020) 

Tangent-CFT 
NTFEM 

✓ 
✓ 

Semantic Search 
Forte 

✓ Pfahler and Morik (2020) 
Wang et al. (2021) ✓ 

✓ 
✓ 
✓ 

MathEmb 
MathBERT 
MathAMR 

✓ 
✓ 
✓ 

✓ ✓ Song and Chen (2021) 
Peng et al. (2021a) 
Mansouri et al. (2022d) 

Visual-Spatial 
Tangent-V 
XY-PHOC 
EARN 

✓ 
✓ 
✓ 

Tokens 
Cosine 
K-NN 

Davila et al. (2019) 
Avenoso (2021) 
Ahmed et al. (2021) ✓ ✓ 

Other 
TanAPP ✓ 

✓ 
✓ 
✓ 
✓ 
✓ 

✓ 
✓ 
✓ 
✓ 

✓ 
✓ 
✓ 
✓ 

Ens. Mansouri et al. (2019a) 
Math-L2R 
MathAPP 
FORTEAPP 

SVMrank Mansouri et al. (2021b) 
✓ Ens. 

Ens. 
Peng et al. (2021a) 
Wang et al. (2021) 

A second normalization is canonical orderings: for commutative oper- 
ations where argument order is unimportant (e.g., multiplication and 
addition), a fixed ordering is produced using the lexicographic order of 
argument tokens. After linearization, DLMF creates an inverted index 
used with TF-IDF scoring of query tokens in the same manner as text.4 

Approaches like DLMF later included additional canonicalization 
steps. For example, EgoMath (Mišutka and Galamboš, 2008) canon- 

4Text and formula tokens are stored and retrieved from the same index, using a 
unified token representation. 
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icalizes argument ordering, and enumerates variables and constants, 
using identical symbols to capture variable repetitions.5 For constants, 
formula 74 + a2 + b2 is also indexed as const + a + bconst. With const 

variable normalization, formula a − b is also indexed as id − id . Other 1 2 

normalizations such as removing brackets using distributivity rules are 
also applied. The goal in these normalizations is to increase recall by 
increasing the number of formulas with similar token representations. 

Aside from sparse retrieval, some other approaches such as using the 
Longest Common Subsequence (LCS) of a string (Pavan Kumar et al., 
2012) have been used to produce similarity scores. As before, formulas 
are canonicalized before applying LCS so that each function, variable, 
and number is mapped to a unique token, and constants and variables 
are enumerated. 

Tree-based models. As discussed in Section 2, we normally use graphs 
to represent structured data, and specifically for formulas, trees to cap- 
ture a hierarchy of writing lines in SLTs, and a hierarchy of mathematical 
operations and arguments in OPTs. 

Tree-based approaches can be categorized into two main groups: 
part-based, and full-tree matching. One of the earliest part-based models 
is MathWebSearch (Kohlhase and Sucan, 2006) that relies on subex- 
pression indexing used originally to unify terms in theorem provers 
(substitution indexing trees, Graf, 1995). Using operator trees, relation- 
ships between progressively more concrete formulas are produced by a 
series of variable substitutions. A search for expressions with similar 
operator structures and operands starts from the lowest-precedence 
operators. Nodes in the substitution indexing tree correspond to expres- 
sions with common structures at the top of their operator trees. Moving 
from the root to the leaves of the substitution tree yields increasingly 
concrete expressions (i.e., after more variable replacements). 

Another category of tree-based models represent formula tree sub- 
structures. The Math Indexer and Searcher (MIaS) (Sojka and Líška, 
2011; Ruzicka et al., 2016) system uses Presentation MathML, encod- 
ing subtrees as compact strings. For example, a + b is represented by 

5See Section 2 for discussion of symbol enumeration. 
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math (mi(a) mo(+) mi(b)). A similar approach that uses subtrees of 
differing structural complexity is WikiMirs (Hu et al., 2013). WikiMirs 
creates terms (patterns) for search from SLTs by recursively replacing 

subexpressions with wildcards. For example, the formula (x + 3) × , 
a 
b 

is tokenized into 4 concrete terms, and four generalized terms with 
wildcards for argument subexpressions: 

Concrete terms : { (x + 3) × , (x + 3), , x + 3 } 
a 
b 

a 
b 

Generalized terms : { (∗ ) × ∗ , (∗ ), , ∗  + ∗  } ∗  
∗  

Term construction is performed recursively until no new terms can be 
produced. Unique tokens are enumerated, and then used to create an 
inverted index that is searched using TF-IDF. This system was later 
extended, incorporating text keywords and using operator trees (Gao 
et al., 2016). 

MCAT (Kristianto et al., 2016a) improved part-based retrieval by 
encoding path and sibling information in symbol layout and operator 
trees. Tuples capturing tree paths are used for retrieval patterns in 
an inverted index. In addition to the path-based lookup, this model 
also uses a hashing-based formula structure encoding scheme, and also 
includes text at three levels of granularity. The first level considers 
words around a formula within a context window of size 10, along with 
descriptions and noun phrases in the same sentence as the formula. 
The second level includes all words from the paragraph where the 
formula appeared. At the third level, the title, abstract, keywords in the 
document, descriptions of all the formulas, noun phrases, and all words 
in the document are considered. A formula query combines lookup up 
in multiple inverted indexes for both formula and text representations. 
This was perhaps the first model to capture surrounding context for 
formulas in a detailed manner. 

Tangent. Tangent-3 (Zanibbi et al., 2016b) is a two-stage part- 
based retrieval model. From an SLT, path tuples are generated in the 
form of (s , s , R, #) with parent symbol s , child symbol s , the 1 2 1 2 

spatial relationship sequence R from s to s , and a count used to 1 2 

capture repetitions (#). These tuples are used to identify an initial set 
of top-k candidates using a sparse bag-of-words model, scoring by F1 
(i.e., harmonic mean of tuples matched on the query and a candidate 
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formula, also known as the dice coefficient). Top candidates are then 
re-ranked using full-tree matching, aligning the query SLT to each 
candidate SLT. After alignment, each top-k candidate is scored using 
the harmonic mean of symbol and relationship recall (the Maximum 
Subtree Similarity (MSS)) and two tie-breakers: symbol precision after 
unification, and symbol recall without unification. 

The symbol layout tree representation developed for Tangent-3 
has been used in a number of retrieval models. The model includes 
a container object for matrices, tabular structures, and parenthesized 
expressions, as well as explicit whitespace, and variable and operation 
types attached to names (e.g., N!x for the number x).6 The Tangent-S 
model later included retrieval using both symbol layout and operator 
trees (Tangent-S, Davila and Zanibbi, 2017a). In operator trees, com- 
mutative and non-commutative operators have node type (U!) and (O!) 
for unordered and ordered operations, respectively. Tangent-L (Fraser 
et al., 2018) improved retrieval results further through richer indexing 
patterns/features, and scoring with language statistics using BM25+ 
(Lv and Zhai, 2011). 

The Tangent-L tuple generator was later re-implemented in the 
MathDowsers system (Ng et al., 2020; Ng et al., 2021; Kane et al., 2022). 
The new generator adds additional patterns for repeated symbols, and 
additional normalizations. Normalization rules are defined to support 
operation (‘semantic’) matches. For example, for commutative operators 
(A + B, B + A) and symmetry (A = B, B = A) the order of adjacent 
symbols is ignored. Using a canonical symbol for operator equivalence 
classes, the model also canonicalizes alternative notations (A × B, AB), 
operator unification (A ≺ B, A < B), and inequality equivalence 
(A ≤ B, B ≥ A). This captures OPT-type relationships in an SLT 
representation. 

Approach0. Approach0 is a state-of-the-art formula retrieval model 
that uses OPT leaf-root paths in an inverted index within a two-stage 
model for retrieving operator trees (Zhong and Zanibbi, 2019). An 
illustration of OPT leaf-root paths is shown in Example 2.11. OPTs are 
generated from LAT X using a small but robust expression grammar. To E 

6See Zanibbi et al. (2016b) for details. 
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boost recall, variable enumeration is applied. Like Tangent-3/-S, retrieval 
is performed in two steps. Candidates are first retrieved using matching 
leaf-root paths in a sparse index, and then re-ranked using matches of up 
to three largest common subtrees identified via dynamic programming. 
Similarity is scored by a weighted sum of matched leaves (operands) 
and operators from the common subtrees. In the later version of this 
system text context is used (Zhong et al., 2021). A textual similarity 
score is produced using Lucene BM25, and formula structure-based 
scoring uses the IDF of paths and symbol similarity. These scores are 
combined in a linear combination. 

Full tree matching and tree-edit distance (TED). In addition 
to tree alignments used for reranking in Tangent-3/-S and Approach0, 
full-tree matching from tree-edit distances (TED) have been used. Tree 
edit distance generalizes string edit distance, defined by the number 
of operations needed to convert one tree to the other. The SimSearch 
model uses tree-edit distance (TED) on SLTs directly as the similarity 
measure (Kamali and Tompa, 2013). Three editing operations are used: 
insertion, deletion, and substitution. Example 4.2 shows operations 
converting the SLT for x2 −y to x+y2. Accelerations such as cost-based 
pruning of candidates and caching sub-trees can be used. In SimSearch 
operation costs are defined using the similarity of node labels, a node’s 
parent’s label, and whether they are leaf nodes. The final ranking is the 
inverse edit distance normalized by tree sizes, as given in Equation 4.1. 

dist(T1, T2) 
|T1| + |T2| sim(E1, E2) = 1 − (4.1) 

Example 4.2: Converting SLT x2 − y to x + y2 in three edits: 
Delete 2, replace − by +, and add 2 as superscript of y. 

2 2 

→ → → → 
x - y x + y 

Tangent-CFTED reranks results from a path-based dense retrieval 
model using tree-edit distances (Mansouri et al., 2020). Unlike SimSearch 
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where edit operation weights were defined using heuristics, here weights 
are learned for each edit operation. The model uses inverse edit distances 
for scoring, as shown in Equation 4.2.7 Tangent-CFTED uses both 
symbol layout and operator trees, and the final ranking score is a 
weighted combination of individual rank scores. 

1 
sim(E1, E2) = (4.2) 

T ED(T1, T2) + 1 

4.4 Dense Retrieval with Formula Tree Embeddings 

As for information retrieval and natural language processing in general, 
researchers working in math IR turned to embedding models to avoid 
the types of vocabulary problems that traditional sparse model have, 
and to make greater use of context in patterns used for matching, 
as discussed earlier. Early text embedding models such as Word2Vec 
(Mikolov et al., 2013) produced revolutionary results for text problems. 
These models were then extended to graph data types. The earliest 
approaches to graph embddings were simple: linearizing a graph using 
different traversals, treat nodes as tokens, and then apply Word2Vec. 
Graph embedding models of this type include Node2Vec (Grover and 
Leskovec, 2016) and DeepWalk (Perozzi et al., 2014). 

SMSG5 was the first known embedding model for math formulas, 
and used for re-ranking text-based sparse retrieval results (Thanda 
et al., 2016). For first-stage retrieval formulas in Presentation MathML 
(SLTs) are linearized and indexed as keywords in a sparse index using 
ElasticSearch. For re-ranking the doc2vec embedding model was used 
(Le and Mikolov, 2014) to covert binarized expression trees into real- 
valued vectors. Each operator and its operands are treated as tokens 
for the doc2vec model, and linearized using an in-order traversal. If 
the operand is a subexpression rather than a symbol, a token identifier 
for the subexpression is used. Example 4.3 shows tokens extracted for 
formula x3 +(1+x)2. The tuples/patterns produced are similar to those 
used for other tree part-based retrieval models described above, and 
includes variable and subexpression enumeration. The final similarity 

71 is added to the denominator to avoid division by zero. 
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score for reranked formulas is the cosine similarity of the query and 
candidate vectors. 

Example 4.3: Binary OPT for x3 + (1 + x)2 with tokens generated 
for operator nodes. MiAS, SMSG, WikiMIRS and other 
models index similar patterns. 

Token 

x,^,3 

ID + 

id1 

id2 

id3 

^ ^ 

x 

1,+,x 
x 3 + 2 

id2,^,2 
1 

id1,+,id3 id4 

Tangent-CFT (Mansouri et al., 2019a) was the first dense retrieval 
model to use both symbol layout and operator trees for formula em- 
beddings, using an approach similar to SMSG5. Tangent-S is used to 
generate OPT and SLT path tuples. Canonicalization is performed 
using enumeration of variables and constants, and in later versions, 
operator types. The modified tuples are enumerated and grouped into 
n-grams, which are then embedded individually. This process is shown 
in Figure 4.2, where both the formula query and candidate formula go 
through the same pipeline to generate the vector representations. The 
novelty of this model lies in using an n-gram embedding model, fastText 
(Bojanowski et al., 2017). This approach is better suited for queries not 
seen in the collection, as it represents formulas using subexpressions. 
n-gram vector representations for formulas were averaged to obtain the 
final embeddings used for retrieval, with ranking by cosine similarity. In 
the early version of this model, the vectors of different representations 
(SLT, OPT, Unified SLT) were averaged to get the final vector for a 
formula. Later, this was converted to combining retrieval results from 
each representation using a modified Reciprocal Rank (Mansouri et al., 
2020). A similar approach was applied on other representations such 
as N-ary trees in the N-ary Tree-based Formula Embedding Model 
(NTFEM, Dai et al., 2020). 
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Figure 4.2: Retrieval with Tangent-CFT model. Query and candidate formulas are 
passed to the same pre-processing pipeline to extract their vector representations. 
The cosine similarity between these two vectors is the similarity score. 

The approaches seen so far for embedding use linearized tree rep- 
resentations and apply sequence embedding models. As formulas are 
more naturally represented as trees, graph convolutional neural net- 
works are well-suited to formula embedding. The Semantic Search model 
generates graph representations from Presentation MathML (SLTs), 
and derives context features from tags, attributes, and text (Pfahler 
and Morik, 2020). These features were then used to represent nodes 
as one-hot encoded vectors. A graph convolutional neural was trained 
using two unsupervised tasks: 1) a contextual similarity task where 
labels are generated from the surrounding contexts of mathematical 
expressions, 2) a self-supervised masking task. Other graph-embedding 
approaches have considered using symbol layout and operator trees. 
For example, MathEmb uses operator trees with a Graph Convolution 
Network, Graph SAmple and aggreGatE (GraphSAGE), and a Graph 
Isomorphism Network (Song and Chen, 2021). 

EARN (Ahmed et al., 2021) is a multimodal embedding model that 
takes advantage of both image and graph formula representations. An 
image encoder uses a formula image rendered from LAT X passed to a E 
ResNet model (He et al., 2016), followed by a Bi-LSTM to produce an 
image embedding. For the graph representations, a message-passing- 
based graph encoder is used. The distances between graph-based and 
image-based embeddings are used as patterns for retrieval. The visual 
and graph-based similarities are combined using a linear combination 
in a manner similar to the Tangent-S system. 
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Encoder-decoder architectures have also been used for formula search. 
Similar to NLP tasks, reconstruction (also known as the ‘fake task’) 
where a formula must be decoded from an embedded vector can be used 
to train these architectures. After training, only the formula encoder is 
needed for embedding formulas. FOrmula Representation learning via 
Tree Embeddings (FORTE) uses this architecture by taking an operator 
tree as input, generating the vector embedding, and then reconstructing 
the formula in the decoder (Wang et al., 2021). The encoding process is 
shown in Example 4.4. On the encoder side, trees are traversed depth- 
first, with each node represented by an embedding. To preserve formula 
structure, a positional encoding in a fixed-length vector is concatenated 
to each node embedding. The positional vector represents the binary 
branching path from the root to a node in the tree. On the decoder 
side, this model uses a novel tree beam search generation algorithm to 
reconstruct a slightly different version of the input tree, with attached 
‘end’ nodes. 

Example 4.4: FORTE encoding process for formula x = 2x − 4. 

Formula embedding 

= 0 One-hot encoding 
Depth first traversal 
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1 
1 

1 
0 
1 

Encoder 
x 010 

4 
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Some embedding models include the textual context surrounding a 
formula. Early attempts include an embedding model generating embed- 
dings for words and formulae using textualized formulas (Krstovski and 
Blei, 2018). Linearization is done using SLT tuples from the Tangent-3 
system, after which Word2Vec is used within a larger context window 
size for formulas than words. A similar idea was adopted in the early 
days of BERT transformer models (Devlin et al., 2019), which were 
trained on general text. Later models brought attention to the need 
for specific tokenizers for math. Note that directly fine-tuning a BERT- 
based model for formula search is not ideal, as their tokenizers (byte 
pair encoding or WordPiece) are trained using general text, and may 
not handle formulae correctly (e.g., by splitting LAT X commands). E 
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MathBERT pre-trains a BERT model using two tasks: Masked 
Language Modeling and Context Correspondence Prediction (Peng et al., 
2021a). For formula search, they use a Masked Substructure Prediction 
task as their masking task, with masked structures representing an 
operator along with its parent node and child nodes in an operator tree. 
During training, the input to MathBERT includes formula LAT X tokens, E 
context, and operators: 

[CLS] LAT X [SEP] Context [SEP] (OPT Nodes) E 

with [CLS] and [SEP] defined as special tokens. To further incorporate 
structural information from the operator tree, this model modifies 
the attention mask matrix, leveraging the edges between nodes in the 
operator tree. 

Rather than linearize formulas to produce a unified formula and 
text representation, MathAMR (Mansouri et al., 2022d) uses Abstract 
Meaning Representation (AMR) graphs (Banarescu et al., 2013) to 
produce a structured unified representation. The process to get the 
unified tree representation is shown in Example 2.4. First math formulae 
are enumerated and replaced with a special token ‘EQ:ID’ (where ID 
is an enumeration). Then, an AMR parser produces an AMR tree, 
after which the root of the formula OPT is inserted at the enumerated 
formula node. OPT edge labels are modified to be consistent with AMR 
conventions. A special edge label ‘math’ is added to the set of AMR edge 
labels to indicate a math formula. In the first version, despite having a 
unified tree representation, the AMR tree is linearized and then used 
to fine-tune a Sentence-BERT model. Unfortunately the linearization 
loses structural information, and Sentence-BERT tokenizer may not be 
well-suited to the AMR annotations. 

4.5 Visual-spatial Models and Formula Autocompletion 

Many math formulas in digital libraries are represented in PDF docu- 
ments. Even for online resources such as Wikipedia, formulae are often 
represented by images rather than Presentation MathML or LAT X. E 
Formulae are also often represented as images in videos, handwriting, 
and slide decks. Formulas may be recognized and converted to LAT X E 
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for use with retrieval models that we have discussed. An alternative 
approach is to search using visual-spatial representations of formulae 
that require symbols but no representation of writing lines or operation 
hierarchies. 

Tangent-V retrieves mathematical formulas and other graphics in 
PDF and PNG images (Davila et al., 2019). Built on top of the Tangent-S 
system, Tangent-V utilizes symbol pairs extracted directly from images: 
for PDFs, symbols are taken directly from the file, and for PNGs, 
symbols are identified using an open-source OCR system (Davila et al., 
2014). Line-of-sight graphs are created to capture which pairs of symbols 
are unblocked by other symbols. The visible symbol pairs are indexed 
with their relative angles in a 2 1 D representation to capture symbols 2 
inside square roots and other containers. For search, candidates with 
shared symbol pairs are retrieved from a sparse index, and formulas 
with large differences in displacement angles and/or symbol size ratios 
relative to the query pairs are filtered.8 A re-ranking step aligns matched 
pairs one-to-one with the query, and then the Tangent-S Maximum 
Subgraph Similarity (MSS) from Tangent-S scores candidates by the 
harmonic mean of query node and edge match percentages (F1). 

Another visual-spatial representation is 2d histograms of symbols. 
XY-PHOC uses a sparse visual-spatial representation for retrieval (see 
Example 2.9, Avenoso, 2021). This representation generalizes a one- 
dimensional spatial encoding previously used for word spotting in hand- 
written document images, the Pyramidal Histogram of Characters 
(PHOC) (Sudholt and Fink, 2016). Scoring is done by cosine similarity 
of the PHOC embedding vectors. Formulas are represented by a bag 
of symbols; for each symbol, a binary vector of 29 elements is gener- 
ated, where each element corresponds to a region, and 1 represents the 
existence of that symbol in that region.9 

Later work found that using concentric rectangles improved PHOC- 
based retrieval, and that similar effectiveness is obtained using fewer 
region partitions, e.g., only odd-numbered partitions (i.e., 1, 3, 5, etc.) 
(Langsenkamp et al., 2024). As seen in other formula retrieval models, 

8This is a Boolean query constraining symbol angles and relative sizes. 
9PHOC may be a 2d generalization and/or variation of an unweighted binary 

independence term model (see Croft et al., 2009). 
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using PHOC for part-based rather than whole formula matching can also 
improve retrieval effectiveness (Tucker, 2024). The model is surprisingly 
effective for formula search despite its simplicity; models that incorporate 
IDF-like information (e.g., BM25), SPLADE-like token expansions and 
dense retrieval have not been properly explored with this representation 
yet. Also, because PHOC is domain-agnostic, requiring only a symbol 
vocabulary, it might provide a simple but effective unified representation 
for visual-spatial search of text, formulas, and other graphics. 

Formula autocompletion. Query auto-completion (QAC) can 
help users input queries more quickly, and with formulating queries 
when they have a specific intent but lack a clear way to express it in 
words. For text queries this helps prevent spelling errors, particularly 
on devices with small screens. It was reported in 2014 that for English 
queries, using QAC by selecting suggested completions saved over 50% 
of keystrokes for global Yahoo! searchers (Zhang et al., 2015). 

Formula auto-completion is employed in search engines like Wolfra- 
mAlpha. This system employs prefix matching for retrieving candidates. 
Consequently, mathematical expressions that are reordered around com- 
mutative operators (e.g., a + b = b + a) or use different symbols than 
the query are not presented as candidate completions. 

Despite extensive research in general query autocompletion, formula 
autocompletion remains underexplored. Rohatgi et al. (2019) proposed 
an approach that uses LAT X strings and considers three methods: exact E 
matching, prefix matching, and pattern matching. MathDeck (Diaz 
et al., 2021) uses TangentCFT (Mansouri et al., 2019a) to search a 
small collection of indexed formulae online as a user inputs a formula, 
displaying similar formulas. Both approaches complete the right side of 
a query assuming that the left side has been entered. For math formulas, 
entry is not always left-to-right: for example, when writing fractions or 
integrals. 

For autocompletion, XY-PHOC has been used with conjunctive 
queries where all query symbols must be present in a candidate. An 
additional boolean constraint is also added: that returned formulas must 
contain no fewer symbols than the query. This is the first known model 
to allow symbols to be inserted in any order for formula autocomple- 
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tion, because the XY-PHOC is a spatial representation rather than 
a tree-based one. For evaluation, formula search test collections were 
used. Four different symbol entry orders for XY-PHOC were compared, 
as illustrated in Example 4.5. Experiments confirmed the outside-in 
ordering shown in Example 4.5(c) constrains formula completions most 
quickly, raising target formulas to the top of the completion list using 
fewer symbols on average. 

R 

Example 4.5: Different entry orders for three symbols in ∞ sin(x) dx 0 x 
a) left-right, b) right-left, c) outside-in, d) middle-out. 

∞ sin 
∫ −dx ∫ 

0 
푥 

푥 0 

(a) (b) (c) (d) 

4.6 Retrieval Effectiveness and Combining Representations 

In this section we summarize the effectiveness seen to-date for the 
different retrieval model families presented in this section, using standard 
formula test collections (see Table 4.4). 

Table 4.4: Formula Search Test Collections 

Test Collection Sources Queries Results Metrics 
mAP, NTCIR-10 (2013) arXiv papers Organizersw F in paper 
P@{5,10,hit} 
mRR NTCIR-11 (2014) Wikipedia Individual 

Wiki F (known 
item) 

F in articles 

NTCIR-12 (2016) Wikipedia′ Organizersw F in articles 

F in MSE As 

P@{5,10,15, 
20}, Bpref 
nDCG′, ARQMath-1 (2020) 2018 MSE As 2019 MSE Qs 
mAP′, P′@10 

ARQMath-2 
ARQMath-3 

(2021) 
(2022) 

2020 MSE Qs 
2021 MSE Qs 
Image region 
or LATEX 

AccessMath† (2018) Videos + Image regions 
or LATEX form. 

R@10, 
LATEX notes mRR@10 

F: Formula; As: Answers; Qs: Questions; MSE: Math Stack Exchange 
wWildcard symbols in at least some query formulas 

†Cross-modal or cross-language retrieval; frags.: Fragments (roughly paragraphs) 
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While easier to implement, text-based models are generally less 
effective than other representations for formula search. This is because 
these models do not capture the hierarchical structure of formulas. In 
contrast, the strongest models from the most recent ARQMath formula 
search tasks are tree-based models. Full-tree matching approaches, e.g., 
using tree-edit distance can be time-consuming and seem to be better 
suited for re-ranking. Also, these models are stricter than path-based 
models as they match full tree representations. 

Results from the ARQMath-3 formula search task show tree-based 
approaches obtaining the strongest formula retrieval results. Approach0 
obtains the highest nDCG′ of 0.72. Interestingly, Approach0 uses only 
OPTs for its formula representation. Tangent-CFTED obtains an nDCG′ 
of 0.69 using both SLT and OPT representations.10 MathDowsers uses 
an SLT-based representation, and also obtains a high nDCG score ′ 

of 0.64. There is also evidence that multi-modal representations can 
be helpful. For example, the multimodal image + SLT dense model 
EARN obtained higher Bpref scores compared to the tree-based Tangent- 
S model that it extends (0.69 vs. 0.64 on the NTCIR-12 Wikipedia 
Formula Browsing task). 

Experimental results suggest that despite providing rich contextual 
features, dense formula retrieval models may be better suited for finding 
similar or partially-relevant formulae than very similar or fully relevant 
formulas. The embedding vectors do well at capturing shared contexts, 
but not necessarily specific symbols and structures in current models. 
Given their ability to match similar formulas well, albeit not rank them 
in the ideal order, many approaches use embedding-based models to 
select candidates, and then re-rank the results using similarity scores 
from tree-based models. Looking at the ARQMath-3 formula search 
task, Tangent-CFT’s first stage dense retrieval obtains an nDCG′ of 0.64; 
after re-ranking with tree-edit distance this increases to 0.69. A similar 
pattern is seen for MathBERT on the NTCIR-12 formula browsing task: 
for partial matching the Bpref score is higher than that for reported 
tree-based models (0.74), but drops to 0.61 for full relevance matching. 

10Tangent-CFTED is actually a two-stage model using dense embeddings of tree 
paths for first-stage retrieval, and tree edit distance for reranking. 
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For visual-spatial models, the original XY-PHOC had much lower 
effectiveness than other approaches at ARQMath-3 for full rank metrics 
(nDCG′ of 0.47). However, it was surprisingly competitive in metrics 
focused on the top of rankings (e.g., P @10). Later refinements including ′ 

using additional levels and rectangular regions increased nDCG to ′ 

0.623, and P @10 to 60.9%. These measures were respectively 10% and ′ 

8% lower than the best performing tree-based model at ARQMath-3 
(Approach0). This is interesting because PHOC models use less complex 
representations and a simple sparse retrieval model, and do not employ 
statistical weighting or machine learning (Langsenkamp et al., 2024). 

Ensembling and learning-to-rank. Ensembling and learning-to-rank 
approaches have been used to combine the benefits of different repre- 
sentations, and to combine dense and sparse retrieval models. TanApp 
(Mansouri et al., 2019a), FORTE-App (Wang et al., 2021), and Math- 
App (Peng et al., 2021b) are models that use a linear combination 
of relevance scores from dense embeddings (Tangent-CFT, FORTE, 
and MathBERT, respectively) with tree-based sparse retrieval and 
re-ranking (Approach0). These ensemble models provide better effec- 
tiveness compared to each of the individual models. MathApp and 
TanApp both obtained higher Bpref values on the NTCIR-12 formula 
browsing task compared to their component systems. 

Using learning to rank models for formula search is underexplored. 
An early attempt used RankBoost with formula and text features (Gao 
et al., 2016). A more recent study used only formula features, combining 
similarity features from tree-based and embedding-based models and 
training an SVM-Rank model (Joachims, 2006; Mansouri et al., 2021b). 
The input features in this approach include similarity features from 
tree paths, full-tree matching, and embeddings. The SVM-Rank weights 
allowed observing feature importance. Consistent with results seen for 
the best-performing tree-based retrieval models, it was found that full- 
tree matching features on both symbol layout and operator trees were 
among the important features. 
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Math-Aware Search 

When we have math information needs for topics that include text, 
or are too complex to be addressed by formula search alone, we can 
use math-aware search engines supporting queries with both formulas 
and text. Math-aware search tasks range from the simple ad-hoc query 
“a2 + b2 = c2 proof” to complete questions expressed with formulas and 
text. Math-aware search can be understood as a multi-modal extension 
of traditional text-based search models. 

In this section, we first present test collections for math-aware search. 
We then present multi-modal math-aware search models, which either (1) 
retrieve text and formulas separately and combine relevance scores for 
individual sources, or (2) use a unified formula + text representation to 
retrieve sources directly. Large Language Models (LLMs) have recently 
been applied to math-aware search, including a state-of-the-art model 
that transforms the problem of retrieving question answers. A question 
answer in text/LAT X is generated using an LLM, and the LLM answer E 
is then embedded using a unified formula/text representation to search 
embedded answers rather than the original question. The section closes 
with some additional insights related to math-aware search and LLMs. 

111 
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5.1 Test Collections for Math-aware Search 

As with formula search, currently the primary standard test collections 
are NTCIR and ARQMath.1 Test collections for math-aware search are 
summarized in Table 5.1. 

Table 5.1: Math-aware Search Test Collections. 

Test Collection Sources Queries 
−− 

Results 
−− 

Metrics 
−− MREC (2011) 

(2015) 
arXiv papers 
arXiv papers 
(MREC data) 
arXiv papers 

CUMTC MathOverflow 
Qs 

Papers mAP 

NTCIR-10 (2013) Organizersw Papers mAP, 
P@{5,10,hit} 
mAP, NTCIR-11 (2014) arXiv frags. Organizersw Paper frags. 
P@{5,10,hit}, 
Bpref 

NTCIR-12 (2016) 1. arXiv frags. 1. Organizersw 1. Paper frags. 
2. Wiki articles 
F in MSE As 

P@{5,10,15,20} 
2. Wikipedia′ 2. Organizersw 

2019 MSE Qs ARQMath-1 (2020) 2018 MSE As nDCG′, mAP′, 
P′@10 

ARQMath-2 (2021) 
ARQMath-3 (2022) 
Cross-Math† (2024) 

2020 MSE Qs 
2021 MSE Qs 
ARQMath 1- P′@10, 
3 Qs (4 lan- nDCG′@10 
guages) 

F: Formula; As: Answers; Qs: Questions; MSE: Math Stack Exchange 
wWildcard symbols in at least some query formulas 

†Cross-modal or cross-language retrieval; frags.: Fragments (roughly paragraphs) 

MREC and CUMTC: The first math-aware search collection 
with annotated formulas we are aware of is the Mathematical REtrieval 
Collection2 (MREC) (Líška et al., 2011). MREC consists of 439,423 
scientific documents from arXiv with more than 158 million formulae 
with MathML annotations. Four years later, the Cambridge University 
MathIR Test Collection (CUMTC) (Stathopoulos and Teufel, 2015) 
built on MREC, adding 160 test topics derived from 120 MathOverflow 
discussion threads. This was one of the first attempts to use math 
community question-answering websites for producing real-world topics 
rather than topics created by shared task organizers. CUMTC topics 
were selected from question excerpts from 120 threads. These threads 
have at least one citation to the MREC collection in their accepted 

1Additional details and comparison of these collections are available (Mansouri 
et al., 2021a). 

2https://mir.fi.muni.cz/MREC/index.html. 
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answer.3 The majority of topics (81%) have only one relevant document, 
and 17.5% have two relevant documents. 

NTCIR: NTCIR-10, -11, and -12 used largely the same collections 
as for formula search tasks described in the previous section, consisting 
of arXiv papers and Wikipedia articles. Sources for NTCIR-10 were 
complete technical documents, which makes assessment challenging. 
For NTCIR-11 collection sources were reduced to excerpts (roughly 
paragraphs) resulting in 8,301,578 search units. NTCIR-12 uses the 
NTCIR-11 arXiv collection, along with a collection of (full) Wikipedia 
articles. 

The NTCIR collections contained an increasing number of math- 
aware (formula+text) search topics with assessments for each lab 
(NTCIR-10: 15, NTCIR-11: 50, NTCIR-12: 29 (arXiv collection) + 
30 (Wikipedia collection)). In NTCIR-11, topics (queries) all had at 
least one keyword and one formula. In NTCIR-12, topics were developed 
for two different collections (arXiv and Wikipedia), and all topics con- 
tained at least one formula, however 5 arXiv and 3 Wikipedia topics had 
no keywords. All NTCIR math-aware search topics are lab-generated, 
and only the query is provided with no additional description of infor- 
mation needs and search scenario. Pooling methods also differ between 
the different collections (Mansouri et al., 2021a). 

The assessment process in NTCIR-10 for text+formula searches was 
similar to the formula search task, with the same assessors. Relevance 
was decided from retrieved formulas rather than documents due to their 
size and complexity. For each formula, assessors used a graded 0-2 scale, 
to represent 0: non-relevant (N), 1: partially relevant (PR) or 2: relevant 
(R) judgements. Each formula was assessed by one or two assessors. 

In NTCIR-11, assessors were shown the title of the topic, the rel- 
evance description, and an example hit (if any) as supplementary in- 
formation. For this collection, relevance was determined using roughly 
paragraph-sized sources rather than individual formulas. The assessors 
were undergraduate students in mathematics for the arXiv topics, and 
computer science for the Wikipedia topics. Each hit was evaluated by 
two students, with their judgements combined. Relevance levels were 

3Answer accepted by the user who posted the question. 
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defined the same as for NTCIR-10. The final relevance score from two 
assessments assigned R/R and R/PR to relevant (2), PR/PR, R/N, 
PR/N to partially-relevant (1), and N/N to not relevant (0). 

To evaluate effectiveness, NTCIR-10 uses MAP and P@{5,10, hit}. In 
NTCIR-11 used MAP, P@{5, 10}, and bpref to accommodate unjudged 
instances. NTCIR-12 reported P@{5, 10, 15, 20}. In all cases, relevance 
judgments for sources missing from the pools (as can happen for P@hit 
and MAP) were treated as not relevant. 

ARQMath: ARQMath’s main task is Answer Retrieval, where 
Math Stack Exchange (MSE) question posts containing text and for- 
mulas are used to search MSE answer posts. ARQMath’s topics and 
collection were built as shown in Figure 5.1. All questions and their 
related answers posted from 2010 to 2018 are provided for training, in- 
cluding roughly 1 million questions and 28 million formulas. ARQMath 
topics were selected from new questions posted in 2019, 2020, and 2021. 

Question 

Question Question 

Collection Answer Answer 

Answer Answer Answer 

Question 

Question 

Answer 

Questions in 2019 

ARQMath-1 

Questions in 2020 

ARQMath-2 

Questions in 2021 

ARQMath-3 

Math Stack Exchange Posts from 2010 to 2018 ARQMath Topics for Answer Retrieval Task 

Figure 5.1: Topics and Collection for ARQMath Answer Retrieval Task. Math 
Stack Exchange (MSE) question answers from 2010–2018 are the collection searched, 
while topic questions were posted in 2019 or later. Question and answer posts from 
2010–2018 are also provided for training (i.e., all posts shown at left). 

The answer retrieval task was motivated by three things. First, short 
answer posts are easier to assess, as they usually contain at most a few 
paragraphs, and are organized within question threads. Second, a query 
log analysis showed that the number of question queries was almost 
10% higher for math searches compared to searches on other topics 
(Mansouri et al., 2019b). Third, question posts act as both queries and 
information need descriptions. 

There are 226 assessed test topics in total (ARQMath-1: 77, ARQ- 
Math-2: 71, ARQMath-3: 78), along with assessments for additional 
training topics. ARQMath also provides all system runs used for pooling. 
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This provides a way to study different approaches and understand their 
behavior in greater detail. Assessors use four relevance ratings, as defined 
in Table 5.2. All relevance ratings organized by topic and assessor may 
be found in a ‘big’ qrels file available with the test collection. 

Table 5.2: ARQMath Answer Retrieval: Relevance Assessment Criteria 

Score Rating Definition 

3 
2 

High Sufficient to answer the complete question on its own 
Provides some path towards the solution. This path might come from 
clarifying the question, or identifying steps towards a solution 
Provides information that could be useful for finding or interpreting an 
answer, or interpreting the question 

Medium 

1 

0 

Low 

Not Relevant Provides no information pertinent to the question or its answers. A post that 
restates the question without providing any new information is considered 
non-relevant 

To be selected as a topic, a question needs to contain at least one 
formula. To diversify topics, 3 categorizations were assigned to candidate 
question posts, and a stratified sampling strategy was used to select the 
final topic sets. These categories are: 

1. Topic type: computation, concept or proof 
2. Difficulty: low, medium, and high 
3. Representation dependency: text, formulas, or both 

Assessors were selected from students in mathematics, similar to 
the ARQMath formula search task. For each edition, there were 2-3 
training sessions with a math professor to introduce the task and train 
the assessors. Some questions might offer clues as to the level of mathe- 
matical knowledge on the part of the person posing the question; others 
might not. To avoid assessors having to guess the level of mathematical 
knowledge available to the person posing the question, we asked asses- 
sors to base their judgments on the degree of usefulness for an expert 
(modeled in this case as a math professor) who might then try to use 
that answer to help the person who had asked the original question. 
Finally, for evaluation, the same evaluation measures as the formula 
search task were used: nDCG , MAP and P @10. Prime metrics avoid ′ ′ ′ 

issues with unevaluated hits (see Section 3). 
Cross-lingual math information retrieval: Current test collec- 

tions for math-aware search are primarily developed for the English 
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language, limiting their accessibility and inclusivity. Cross-lingual math 
information retrieval (CLMIR) is a new task, focusing on retrieving 
mathematical information across languages. CLMIR has been explored 
for math-word problems (Tan et al., 2022), where existing datasets were 
translated into Chinese using online machine translators, and manually 
refined the translations. CrossMath (Gore et al., 2024) is a novel CLMIR 
test collection comprised of ARQMath Answer Retrieval task topics that 
have been manually translated into four languages (Croatian, Czech, 
Persian, and Spanish). This collection helps address a research gap in 
need of filling. Some approaches for machine translation of mathematical 
text have been proposed (Ohri and Schmah, 2021; Petersen et al., 2023), 
and we expect more in the future. 

5.2 Searching with Formulas and Text 

Unlike text or formula search where queries and sources have one 
representation, for math-aware search queries and sources combine text 
with one or more formula representations (e.g., SLT, OPT, or LAT X E 
tokens). Because of the different representations (i.e., modalities), this 
is a math-specific variation of multimodal information retrieval (Zhu 
et al., 2024; Shirahama and Grzegorzek, 2016). 

A key challenge in multi-modal search is bridging the gap between 
diverse data types such as text, images, videos, and audio (Bozzon and 
Fraternali, 2010). There are two main approaches for searching multiple 
representations: searching modalities separately and then combining 
rank scores for individual sources (i.e., federated search), or by searching 
a single unified representation for all modalities. Below is a summary of 
approaches for combining formula and text search in sparse and dense 
search indexes. 

Sparse retrieval: 
Formulas are represented using text tokens (e.g., in LAT X) or E 
token sequences annotated on formulas after traversing nodes of 
formula trees (e.g., depth-first traversal of OPT or SLT). These 
formula tokens may represent individual symbols, or tuples, e.g., 
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‘+’ node in OPT for x + 1 as operator-prefix tuple (+, x, 1), or 
(x, 1, →→) for the SLT path from x to 1. 

Federated: text and each formula representation have their own 
inverted index. Query text and formula representations are 
separated before searches are run, and relevance scores are 
combined to score individual sources. 

Unified: text and formula tokens belong to one vocabulary, and 
a ‘traditional’ inverted index is used to search both together 
(see Section 1). Linearized formula tokens are inserted in 
source text before indexing, and text/math tokens produced 
for queries are looked up in the unified inverted index. 

Dense retrieval: 
Formulas and/or subexpressions are annotated with vectors in 
embedding spaces (see Section 2). Before embedding, formula 
representations may be linearized tokens (e.g., LAT X), trees (e.g., E 
OPT, SLT) or other representations (e.g., PHOC). 

Federated: each text granularity (e.g., token vs. sentence) and 
formula representation have separate embeddings. Query 
text and formula vectors return their nearest-neighbors, and 
similarity scores are combined to score individual sources. 

Unified: text and formula elements for sources and queries are 
embedded in the same dense vector space. Multiple space may 
be used for different granularity (e.g., text+math in passages, 
vs. individual math/text token embeddings). Vector(s) for 
sources close to queries in the unified embedding space(s) 
are used to score sources. 

5.3 Federated Search: Combining Formula and Text Results 

With several sparse and dense formula search models available, one 
approach to math-aware search is combining text search with one or 
more separate formula searches, and then combining the results to 
produce scores for matches sources. Techniques for combining results 
include boolean constraints, linearly combining formula and text scores, 
learning-to-rank, and voting methods. 
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Figure 5.2 shows a math-aware search model that uses independent 
searches for text and formulas identify relevant sources (e.g., documents 
or passages). At indexing time, the extractor is used to separate the 
formulas and text of sources into two separate search indexes, and 
formulas are annotated with token sequences for sparse models, or 
embedding vectors for dense models. At query time, the same extractor 
splits a query into sub-queries for text and formulas, and annotates 
formulas with a token sequence or vector. The results from both searches 
are combined into the final score for retrieved sources, and the final 
result is communicated to the user. 

Formula 
Processing Formula 

Index 

Formula 
Search Model 

Collection of 
Sources 

Extractor 
Text 

Processing Text 
Search Model Text 

Index 

Text+Formula 
Query Text 

Search Results 
Formula 

Search Results 

Fused 
Search Results 

Figure 5.2: Federated Search for Formulas and Text. Formulas and text are first 
retrieved and scored independently. Multiple relevance scores for formulas and/or 
text passages from individual sources are then fused before producing a final ranking. 

The first approach that we’ll consider for fusing independent formula 
and text searches is using Boolean queries to filter sources that do not 
contain both formula and text matches. MathWebSearch (Hambasan et 
al., 2014) represents formulas as tokens for OPT subexpressions stored in 
a separate inverted index for formulas (implemented in ElasticSearch). 
Text search results are used to define Boolean queries of the form 
(formula ∨  ... ∨  formula ) ∧  (term ∨  ... ∨  term ), requiring at least 1 n 1 n 

one formula and one text token from the query to match a source. 
Sources without text token matches are removed from the formula rank 



  
 
 
  

5.3. Federated Search: Combining Formula and Text Results 119 

score list, which produces the final ranking. Despite the simplicity of 
this approach, the system achieved a P @5 of 0.79 for the NTCIR-11 
math-aware search task (arXiv paper collection). 

The same boolean constraint is used to filter sources that do not 
contain both formula and text matches in the MIaS system (Sojka 
and Líška, 2011), which uses canonicalized tuples as formula tokens 
(e.g., with variable unification; implemented in Apache Lucene). Rank 
scores for sub-queries generated from different combinations of text and 
formula tokens are used to re-rank the remaining candidates multiple 
ways. Results from this rankings set were interleaved in the final result 
to improve the diversity of returned sources (Sojka et al., 2018). 

Simple averaging and linear combinations of rank scores have also 
been used. For the ARQMath Answer Retrieval task three baselines 
methods were used for answer retrieval: 

1. Tangent-S formula search (linearly combined OPT and SLT scores), 
2. TF-IDF text search, and 
3. average of normalized ([0, 1]) Tangent-S and TF-IDF scores. 

For Tangent-S, the largest formula (SLT) in the question’s title was 
selected, and if no formula was used in the title, the largest formula in 
the question body was used. The combined model was more effective 
then the formula or text model in isolation. 

Linearly combining formula and text rank scores was used in the 
MathDowsers (Ng et al., 2020) system, where Tangent-L results for 
formula search are combined with BM25+ text search by scaling and 
adding relevance scores for sources. For text search, a keyword extraction 
model was used to select tokens in question answer posts for use in 
text queries. MCAT (Kristianto et al., 2016a) also linearly combines 
formula and text rank scores, but for multiple formula (OPT, SLT) 
and text indexes. Text is indexed separately at the paragraph and 
document (title, abstract, keywords, . . . ) levels. This model was the 
most effective for participating teams in the NTCIR-12 math-aware 
search task (arXiv collection), in part due to the rich variety of formula 
and text representations. 

The WikiMirs system (Gao et al., 2016) uses a learning-to-rank 
approach to combining formula and text scores. OPT-like tokens are 
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generated from the SLT representation for a LAT X string, using two E 
representations with (1) concrete symbols, and (2) subexpressions re- 
placed by wildcards (∗ ). Sources are retrieved using inverted indexes for 
text and formula tokens. These candidates are then re-reranked using 
RankBoost (Freund et al., 2003) applied to features focused on formulas. 
This system achieved the highest P@K values among the participating 
teams in the NTCIR-12 math-aware search task (Wikipedia collection). 

MaRec (Math answer Recommender) (Gao and Ng, 2023) uses the 
borda count to combine formulas and text scores for answer retrieval. 
A Naive Bayes classifier is used to categorize topics in answers and 
queries/questions (e.g., algebra, geometry, etc.). At query time, answers 
from topics inferred for the query question are selected, and then ranked 
separately by text and formula similarity. Text similarity is scored by 
the Kullback-Leibler (KL) divergence between question/answer token 
frequency distributions, using a vocabulary chosen from terms charac- 
terizing topics as detected via Latent Dirichlet Allocation (LDA, Blei 
et al., 2003). Formula similarity is computed from average SLT tree-edit 
distances, and a depth score based on the sum of leaf-root OPT path 
lengths. The final rank score uses the Borda Count, adding the number 
of answer posts that rank lower than a source in the formula and text 
rankings. 

Most systems that combine independent formula and text searches 
to date use sparse retrieval (i.e., inverted indexes) to produce the 
initial retrieval results. However, some models combine sparse and dense 
retrieval models. For example, ColBERT (Khattab and Zaharia, 2020) 
has been used for text search, and the similarity scores linearly combined 
with formula search results produced using from Approach0 (described 
in the previous section). The MSM team at ARQMath-3 use Reciprocal 
Rank Fusion (RRF) to combine sparse TF-IDF and BM25 retrieval 
models with a RoBERTa dense retrieval model. Final rank scores for 
sources are computed using Equation 5.1. In the RRF equation, R is 
the set of formula and text rankings, and r(d) is the rank of document d. 
MSM achieved nearly the same nDCG as the top participating system ′ 

at the ARQMath-3 answer retrieval task (0.504 vs. 0.508). 
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1 

X 
RRF(d) = (5.1) 

60 + r(d) 
r∈R 

5.4 Unified Formula + Text Representations 

Combining results from separate indexes for different representations 
can often produce useful results quickly, especially for sparse retrieval 
models. However, the text-notation interactions described in Section 2 
provide important context that is missing when formulas and text are 
indexed separately. We next consider searching unified representations 
for formulas and text. 

DLMF was the earliest unified sparse retrieval model indexed formula 
and text tokens together, using a variation of TF-IDF for scoring (Miller 
and Youssef, 2003). More recently Latent Dirichlet Allocation (LDA) 
has been used to weight formula and text tokens. In these sparse models, 
formulas are represented as LAT X tokens (Yasunaga and Lafferty, 2019) E 
or linearized tree tokens (Thanda et al., 2016), and a single inverted index 
is used to retrieve and score sources. MIaS used a similar approach (Sojka 
et al., 2018). 

The introduction of the ARQMath answer retrieval task coincided 
with the emergence of transformer-based dense retrieval models. A 
common technique is using a pre-trained transformer (e.g., BERT 
variants) that is fine-tuned using pairs of MSE questions and answers 
with their associated assessor relevance ratings. Reusch et al. (2022) 
studied dense retrieval using ColBERT and ALBERT models. To fine- 
tune ALBERT, 1.9M triples containing questions with one relevant and 
one non-relevant answer were fed to the model. The model attempts to 
match assessor scores by classifying answers using the learned vector 
embedding for the [CLS] token that starts each token sequence. A 
similar approach was used to fine-tune ColBERT, but using more 
relevant and non-relevant answers. Somewhat surprisingly, both models 
proved less effective than sparse retrieval models that participated in 
the ARQMath-3 shared task. 

In subsequent work, Reusch et al. (2024) explored how mathematical 
formulas affect a transformer model’s training. They found that trans- 
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former models consider formulas when scoring relevance for answers 
to a given math question, but a study of the transformer attention 
weights for formula and text tokens suggests that structural relation- 
ships between formula tokens are lost, and that the attention maps do 
not capture associations between variables appearing in both questions 
and answers. 

This finding motivates creating transformer-based models that can 
better capture formula structure and interactions. One approach is 
adding additional tokens. The MathPredictor model (Jo et al., 2021) 
extends BERT’s tokenizers to support 2,651 new tokens. This addresses 
the BERT WordPiece tokenizer’s oversegmention of LAT X commands E 
such as ‘\overline’, which is split into three tokens: {\, over, ##line}. 
This allows formulas such as h (in LAT X expressed as $\overline h$) E 
to be correctly tokenized as {$, \overline, h , $ }. The model was then 
fine-tuned using masked tokens in formulas. 

A hybrid approach that incorporates a unified representation with 
independent formula and text searches is taken in the MABOWDOR 
system (Zhong et al., 2023). The PyA0 toolkit is used for preprocessing 
mathematical formulas before tokenization by WordPiece. PyA0 canoni- 
calizes math tokens by merging those likely to be semantically identical, 
such as \emptyset, \empty, and \varnothing. 1,000 new math tokens 
are added to the token vocabulary, and sources are then annotated 
with the formula math tokens, which are treated the same as regular 
text in dense embeddings. The final search combines dense and sparse 
retrieval, and uses both independent and unified formula+text represen- 
tations. A unified single-vector dense retriever is used for passage-level 
representations of formulas and text (DPR, Karpukhin et al., 2020). 
To take advantage of precise formula symbol and structure matching, 
formulas are searched independently using Approach0 (combining path- 
based sparse retrieval with structural alignment). A dense embedding- 
augmented sparse retriever (SPLADE, Formal et al., 2021) is also used 
to search the text independently, and these different retrieval results 
are combined. 

For the MABOWDOR unified representation dense passage retriever, 
a new pre-training dataset for the math domain was created using Coco- 
MAE, a retriever architecture and pretraining scheme. The pretraining 
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task is Masked Auto-Encoding (MAE), which is similar to masked token 
pre-training but attempts to decode whole input passages with masked 
tokens using a decoder. For the final ranking, search results from each 
component are merged using a convex linear interpolation. This system 
currently archives the highest P @10 for ARQMath’s answer retrieval ′ 

task. 
In an alternative approach, MathBERT (Peng et al., 2021b) creates 

a unified formula+text representation using linearized OPT tokens 
and LAT X formula representations. BERT is pre-trained using Masked E 
Language Modeling, Context Correspondence Prediction (similar to 
next sentence prediction), and Masked Substructure Prediction (for 
masked formula tokens). Using an improved tokenization approach for 
math formulas, this model archives better effectiveness compared to 
BERT in tasks such as formula topic generation (predicting the topic 
(tag) associated with a mathematical formula, using a TopicMath-100K 
dataset created from arXiv papers), and formula ‘headline’ generation 
creating a concise description of a formula using the formulas and 
descriptions in a MSE question (using EXEQ-300K, Yuan et al., 2020). 

Researchers then used MathBERT’s language model for retrieval 
and other downstream task such as automatic short-answer grading 
(Zhang et al., 2022) using an integer scale from 0 to 4. The MathBERT 
model is fine-tuned for this task, with pairs of questions and student 
responses. Additional information including the grade scale and example 
graded answers are also used for in-context meta-learning. 

5.5 Using LLMs for Math-aware Search 

The use of LLMs to generate question answers and re-rank have been 
explored using ARQMath’s answer retrieval task. Satpute et al. (2024) 
considered both general LLMs like GPT-4 and math LLMs like ToRA 
to generate answers for ARQMath topics. These answers were then used 
as queries to search for relevant answers. This can help by transforming 
the query into a format more similar to sources in the collection, as 
the query and collection are expressed as answers. For each question, 
an embedding (using BERT_cocomae) of the generated answer was used 
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to search dense embeddings for ARQMath answers. Cosine similarity 
was used to find the most similar answer in the collection for generated 
answers. This approach currently obtains state-of-the-art full-ranking 
results for the ARQMath answer retrieval task, with nDCG′ of 0.486 
(vs. 0.464 of BERT_cocomae). 

In another study, the applications of general LLMs, (LLaMA-2 and 
Orca-2) were studied for three tasks in math information retrieval: 
relevance assessment, data augmentation, and point-wise re-ranking 
(Mansouri and Maarefdoust, 2024). This study was done using ARQ- 
Math. For each task, an appropriate system message is used; for example, 
to assess the relevance of a question answer, the system prompt was 
created based on the ARQMath assessment protocol: 

You are a math professor who will assess the relevance of 
an answer to a given math question. 

The results of this study revealed that while general LLMs are not yet 
suited for relevance assessment or re-ranking, data augmentation from 
the Orca-2 LLM system may be useful for expanding the ARQMath 
training set for use in fine-tuning neural math answer retrieval systems. 
The data augmentation process is performed by generating additional 
relevant answers for training topics using LLMs. We further discuss the 
use of LLMs for data augmentation in the next section. 
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Math Question Answering 

Solving math problems by computer has been a goal for artificial 
intelligence research for a long time, beginning with work by Bobrow, 
Feigenbaum, Feldman, and Charniak in the 1960’s (Zhang et al., 2020a). 
More recently, an exciting challenge is the AI Mathematical Olympiad 
(AIMO)1, which is awarding a financial prize for the first publicly 
available AI model capable of winning a gold medal at the International 
Mathematical Olympiad (IMO). 

In this section we focus on the rapidly developing area of math 
question answering. Work in this area recently spiked with the advent 
of transformers and Large Language Models (LLMs) trained on large 
volumes of text. These models may be further trained on mathematical 
text specifically (e.g., with formulas in LAT X), and can convert ques- E 
tions in mathematical prose to formulas, program code, and answers 
with accompanying explanations. Further, they can be used to generate 
additional training data by reformulating questions and generating ques- 
tion variations, which may then be used to retrain and improve a model. 
However, there are currently limitations in effectiveness arising from 
the types of math representations used, and challenges with producing 
sound mathematical reasoning. 

1https://aimoprize.com/ 
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As in the previous two sections, we will begin with an overview of 
existing test collections for math question answering, followed by an 
overview of systems that have tackled the challenges in these benchmarks. 
A summary of the evaluation metrics used, and comparisons with 
formula and math-aware search may be found in Section 3. 

6.1 Test Collections for Math QA 

A summary of available test collections is shown in Table 6.1. Math 
question answering test collections require target answers to be generated 
or extracted for questions, in order to compute accuracy, the percentage 
of questions that match the target value for a question. These target 
values are often a numeric quantity, multiple choice alternative, or a list 
of values. Some collections also require open responses (i.e., free text), 
in which case text similarity measures are used for evaluation. Most 
test collections are either focused on or include math word problems, 
where questions are written primarily with words rather than numbers 
or equations (see Example 3.2). 

Earlier test collections such as Dolphin18K (Huang et al., 2016) 
focus on arithmetic and algebraic problems, with solutions provided 
only in the form of equations or final answers. MathQA (Amini et al., 
2019) contains 37k English multiple-choice math word problems built on 
AQuA-RAT (Ling et al., 2017), with efforts aimed at addressing issues 
in AQua-RAT including incorrect solutions and problems that required 
brute-force enumeration. Despite the corrections to the AQuA-RAT 
dataset, around 30% of MathQA solutions had inconsistencies. 

ASDiv (Academia Sinica Diverse MWP Dataset) (Miao et al., 2020) 
contains 2.3K math word problems, with each question labeled with a 
problem type (e.g., Basic arithmetic operations, Aggregative operations) 
and grade level to show the difficulty level of the problems. This dataset 
provided different diversity metrics which helped the development of 
future datasets. This includes GSM8K (Cobbe et al., 2021), which 
contains 8.5K school math problems created by human problem writers, 
with 1K problems as the test set. These problems need 2 to 8 steps to get 
to the solution, using primary calculations with basic math operations 
to find the answer. This dataset contains questions that need basic 
knowledge, such as the number of days in a week. 



  
  

6.1. Test Collections for Math QA 127 

Table 6.1: Math Question Answering (QA) Test Collections. QA systems communi- 
cate one answer which may be a formula, computer program, value (e.g., numbers, 
lists), multiple choice alternative, and/or written responses. Many questions come 
from standardized tests and math competitions. 

Test Collection 

Math Problems 

Questions Answers Metrics 

Dolphin18K (2016) 
AQuA-RAT (2017) 

Arithm./algebra Number set 
Rationale 

Accuracy◦ 

Accuracy, 
Perplexity, 
Expert ration. 
+ BLEU 

MC△ WP† 

+ chosen answer 

SemEval 

MathQA 

(2019) 

(2019) 

SAT questions 

MC WP 

Numeric or Accuracy 
chosen answer 
Rationale Accuracy 
+ chosen answer 
Equation and value 
Step-by-step soln 
+ final answer 
Step-by-step soln 
+ final answer 
Number, entity, etc. 

ASDiv 
MATH 

(2020) 
(2021) 

WP Accuracy 
Accuracy AMC, AIME 

GSM8k 

DROP 

(2021) 

(2019) 

WP Accuracy 

Paragraph questions Accuracy, 
token F1,EM 
token F1 LILA (2022) 

(2024) 
WP Numbers or formulas 

Integers in [0,999] AIMO Int’l. Math. Olympiad 
(IMO) questions 

Accuracy 

Math Problems with Graphical/Visual Content 

GeoQA 

UniGeo 

(2021) 

(2022) 

MC geometry problems 
w. diagram 

Chosen answer 

Chosen answer 

Accuracy 

MC w. diagram Accuracy, 
Accuracy@10 
Accuracy 

(GeoQA extension) 
Figure QA, WP, geometry 
problems, textbook ques- 
tions, VQA 

MathVista (2023) Chosen answer or 
numeric 

Math-Vision (2024) Math reasoning with vi- 
sual elements 

Step-by-step soln 
+ final answer 

Accuracy 

Accuracy TabMWP (2023) MC WP w. tabular data Number or text 

Open Response 

ARQMath-3 (2022) ARQMath-3 MSE Qs Written response 
(formulas + text) 

Relevant MSE 
answers, 

+ token F1, 
+ BERTScore 
Expert resp. 
+ sBLEU, 

MathDial (2023) LLM-simulated student 
Q. or comment 

Responses to Q. 
and comments 

(GSM8k questions) + BERTScore 

†Word Problems; ◦Accuracy = test@1 = % correct ≈ Exact Match (EM) 
△Multiple Choice 

SemEval 2019 Task 10 (Hopkins et al., 2019) provides question 
sets from MathSAT (Scholastic Achievement Test) practice exams in 
three categories: Closed Algebra, Open Algebra, and Geometry. Most 
questions are multiple choice, with some numeric answers. This test 
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collection contains 3860 questions, of which 1092 are used as the test 
set. The MATH dataset (Hendrycks et al., 2021) also contains multiple 
choice questions, developed from American high school math competi- 
tions including AMC 10/122, and AIME3. This dataset provides 12,500 
problems (7,500 training and 5,000 test). Problems are assigned diffi- 
culty levels from 1 to 5, and categorized into seven areas (Pre-algebra, 
Algebra, Number Theory, Counting and Probability, Geometry, Inter- 
mediate Algebra, and Precalculus). Answers in this dataset include 
step-by-step solutions in LAT X with final answers annotated explicitly, E 
making it suitable for training models that provide explanations for 
their answers. 

Other test collections aim to test mathematical reasoning by systems. 
The DROP (Discrete Reasoning Over the content of Paragraphs) test 
collection (Dua et al., 2019) is a reading comprehension task where a 
paragraph is provided along with questions about the passage. DROP 
has often been used to evaluate the reasoning capabilities of large 
language models such as Gemini and PaLM. 

After DROP, LILA (Mishra et al., 2022) was developed to unify 
various mathematical reasoning benchmarks. LILA augments 20 ex- 
isting datasets with solution programs added to answers, along with 
instructions for producing answers in natural language. Answers are 
represented as Python strings that print a number, expression, list, or 
other data structure. For each task, instruction annotations are pro- 
vided with a clear definition of the task, a prompt providing a short 
instruction, and examples to help learning by demonstration. System 
effectiveness is measured using the token F1-score between the model 
output and the target answer. 

Questions with graphics. Plots, diagrams, and geometric con- 
cepts are commonly used in math. While text-based problems have 
been investigated extensively, visual math question-answering has been 
explored far less. In recent years there have been attempts to auto- 
matically answer questions that include graphics such as tables and 
diagrams. One of the earliest such MathQA tasks focused on retrieving 

2https://maa.org/amc-10-12-information-and-registration/ 
3https://artofproblemsolving.com/wiki/index.php/American_Invitational_M 

athematics_Examination 
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formulas from Wikidata in response to questions in natural language 
(Schubotz et al., 2018). An example test collection is TabMWP (Lu 
et al., 2023), which contains 38K open-domain grade-level problems 
that require mathematical reasoning on both textual and tabular data. 
To solve these problems, systems need to consult data in given table 
cells. 

GeoQA (Chen et al., 2021a) is a geometric question-answering 
dataset. Each question provides a textual description of the problem 
and its related diagram, and systems choose from answers given as 
multiple choice alternatives. UniGeo (Chen et al., 2022a), expanded 
this dataset, by including 4,998 calculation problems (from GeoQA) 
and adding 9,543 proof problems. 

MathVista (Lu et al., 2024) provides 6,141 examples of mathematical 
and visual tasks and studies several large language models, including 
multimodal models.4 These questions focus on five tasks: figure ques- 
tion answering, geometry problems, math word problems, textbook 
questions, and visual question answering through multiple-choice or 
free-form questions. Math-Vision (Wang et al., 2024) is another recent 
test collection for studying large multimodal models for math questions 
with visual content, providing 3,040 diverse problems. 

Open response questions and dialogues. ARQMath-3 (Man- 
souri et al., 2022a) had a pilot open domain question-answering task, 
which used the same topics as the math-aware search task. Evaluation 
measures were computed from lexical overlap of tokens, where answers 
are treated as a bag of tokens, using the maximum F score between 1 

system answers and each relevant answers from the answer retrieval 
task. Using a similar approach BERTScore (Zhang et al., 2020b) is also 
used to measure token overlap. 

There has also been early work on creating test collections for con- 
versational math dialogue systems.5 For example, MathDial (Macina 
et al., 2023) provides math tutoring dialogues produced by connecting 
an expert annotator, who role-plays a teacher, with an LLM that simu- 
lates the student working through problems, including reasoning errors. 

4https://mathvista.github.io/. 
5The use of clarifying questions in Math Stack Exchange has been studied using 

comments on math questions (Mansouri and Jahedibashiz, 2023). 
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The dataset has 3,000 tutoring conversations grounded in math word 
problems from GSM8k. The dataset aims to capture nuances of student- 
teacher interactions, with a focus on multistep math problem-solving 
scenarios. The main task in MathDial is Tutor Response Generation, 
aiming at modeling the teacher in a dialogue by generating follow-up 
turns to guide the student to solve problems. An earlier example of 
a related system is MathBot (Grossman et al., 2019), a text-based 
tutor capable of explaining math concepts providing practice questions 
and offering feedback to students. Tasks such as generating clarifying 
questions, and detecting ambiguous questions can be studied using these 
test collections and systems. 

6.2 Solving Math Word Problems 

In this section we focus on systems that solve math word problems, 
which have been the most commonly studied math question type. 

Symbolic and logical rule-based approaches. Traditional ap- 
proaches to solving math-word problems are rule-based. The word 
problem is first converted to a symbolic representation (e.g., first-order 
logic) which is solved using an inference algorithm. The STUDENT 
system (Bobrow, 1964) solved algebraic problems in Lisp using string 
transformations to generate symbolic problem instances. 

This basic approach remains effective to this day. For example, the 
AiFu model (Liu et al., 2019) converts word problems into a logical 
representation using rule-based templates. This representation is based 
on assertional logic where mathematical objects are formalized as con- 
stants, variables, concepts, functions, or relations. For example, “the 
integer x equals to 3”, is transformed into 

Integer(x), Equal(x,3). 

This representation is then translated via rules to a math representation 
for the the Satisfiability Modulo Theories (SMT) solver Z36 to produce 
a solution. The rule-based translation uses two templates for unification: 
one for known concepts and operators, and the other for new entities. 

6https://github.com/Z3Prover/z3. 
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This model had the highest accuracy among participating teams in the 
SemEval 2019 task. 

Generating and computing solutions from operator trees (OPT) is 
also a common approach for solving math word problems, as illustrated 
in Example 6.1. These trees represent the solution quantity, and a 
variable to which this solution is assigned for the math-word problem: 

There are 3 boys and 5 girls in a group. Each person wants 
to buy 9 pencils. How many pencils do they need to buy 
altogether? 

As shown in Example 6.1, the question is transformed into an OPT 
with constants defined in the question at leaves in the tree. Answers 
are produced by applying operations bottom-up (i.e., evaluating the 
expression). In one approach the generated OPTs use four basic binary 
operations, with quantities at the leaves (Roy and Roth, 2015). The 
ALGES system (Koncel-Kedziorski et al., 2015) uses a similar approach, 
where the OPT includes a variable for the answer χ in the tree attached 
to an equivalence operator (referred to as an equation tree). 

Example 6.1: OPT for (3 + 5) × 9 generated from a word problem, and 
variation with answer variable χ (equation tree). 

= ✕ 
훘 ✕ 

+ 9 
+ 9 

3 5 
3 5 

(a) Operator Tree (b) Equation Tree 

For questions involving properties of elements in sets, it is important 
to correctly identify variable quantifiers to distinguish universal and 
existential quantification (e.g., ∀ x, ∃ x). Roy and Roth train a binary 
SVM classifier to select quantifiers as needed, and inserts them at leaves 
of the tree. The lowest common ancestor (LCA) node between pairs 
of quantifiers are used to capture constraints. The ALGES system 
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instead generates all possible equation trees without dropping irrelevant 
quantifiers, and then uses Integer Linear Programming to score the 
likelihood of each tree using local and global discriminative models. 

Early machine learning approaches. Several statistical machine- 
learning approaches have been investigated for math-word problems. 
Like rule-based approaches, they first produce a word problem rep- 
resentation, from which the answer is then generated algorithmically. 
The ARIS system (Hosseini et al., 2014) was developed for arithmetic 
problems using addition and subtraction. Steps toward the solution are 
represented as a state sequence, with one state per sentence. States 
contain subjects and objects from the question, each of which have 
associated entity triples. Entity triples have quantities (i.e., constants 
or variables), types, and attributes. 

Example 6.2: ARIS sentence state generation (Hosseini et al., 2014). 
Each state has one or two containers in black boxes. 

Sarah had 5 black pens and 3 blue pens. She gave some of her black pens to Jack. Jack has 8 
black pens. Sarah has 3 black pens left. How many black pens did Jack have? 

S1 S2 S3 S4 
Sarah Sarah Sarah Sarah 

N: 5 
E: pen 

N: 5 
E: pen 

N: 5-L 
E: pen 

N: 5 
E: pen 

N: 5-L 
E: pen 

N: 5 
E: pen 

N: 3 
E: pen 

N: 5 
E: pen 

1 1 

A: Black A: Blue A: Black A: Blue A: Black A: Blue A: Black A: Blue 

S0 

Jack N: J +L 
E: pen 
A: Black 

Jack N: 8 
E: pen 
A: Black 

Jack N: 8 
E: pen 
A: Black 

0 1 

Sarah had 5 black pens 
and 3 blue pens. 

She gave some of her 
black pens to Jack. 

Sarah has 3 black pens 
left. 

Jack has 8 black pens. 

As an example, consider this math word problem, with two subjects 
possessing quantity containers (Sarah and Jack): 

Sarah had 5 black pens and 3 blue pens. She gave some of 
her black pens to Jack. Jack has 8 black pens. Sarah has 3 
black pens left. How many black pens did Jack have? 

The ARIS state representation for each sentence is shown in Example 
6.2, which is produced using the Stanford NLP library. J shown for the 0 

second sentence represents the question quantity, the number of black 
pens Jack had initially. Determining this value depends also on variable 
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L1, the number of pens that Sarah gave to Jack. After the sentence 
state representations are generated, constraints in the question are used 
to compute the question answer. Here we solve for J by noting that 0 

Jill’s final ‘Black’ pen entity count is L = 5 − 3, and Jack’s ‘Black’ pen 1 

entity is J = 8 − L , giving 6 black pens that Jack originally had. 0 1 

State transitions are identified by verbs classified by an SVM classi- 
fier using WordNet-based and other features. Verbs are categorized into 
three groups: (1) observation, (2) positive (increase), and (3) negative 
(decrease). For sentences with two containers (i.e., subjects/objects with 
entities), four other categories are considered: (4) positive transfer (from 
second to first container), (5) negative transfer (from first to second 
container), (6) construct (increase in both containers), and (7) destroy 
(decrease in both containers). 

Recently deep learning techniques are among the strongest ap- 
proaches for math-word problems. The earliest attempt, Deep Neural 
Solver (DNS) (Wang et al., 2017b) used a seq2seq model to translate 
problem statements into equations (i.e., infix OPT representations) by 
embedding question text in a vector and then generating a formula 
expression starting from the question vector. The generated expres- 
sion is evaluated to produce an answer. Numbers in the question are 
mapped to enumerated variable tokens and stored in a dictionary (e.g., 
{(n , 3), (n , 5), (n , 9)}). Numbers are replaced by their enumeration 1 2 3 

variable in the question text before being passed to a sequence-to- 
sequence (seq2seq) model that generates an equation over those vari- 
ables. The variables of the equation are then replaced by their values 
from the dictionary, and the expression value is computed. Using the 
‘pencils’ example above used to illustrate rule-based approaches, the 
architecture of the model is shown in Example 6.3. 

After DNS was introduced there were several attempts to improve 
generated OPTs through better structural constraints. The multi- 
encoders and decoders model (Shen and Jin, 2020) uses both seq2seq 
and graph-based encoder/decoders. Two graph encoders are defined 
using GraphSage (Hamilton et al., 2017). The first is a dependency parse 
tree capturing relationships between words in the sentence. Initial token 
embeddings used for the tree come from the sequence-based encoder. A 
second graph-encoder captures numerical comparisons: nodes represent 
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Example 6.3: Seq2seq OPT generation for word problems 
(Wang et al., 2017b). 

x = ( n1 + n2 ) ✕ n3 

Encoder Decoder Equation: x=(3+5)✕9 → Solution: 72 

There are n boys and n girls in a group. 1 2 
Each person wants to buy n pencils. 3 
How many pencils do they need to buy altogether? 

Number Mapping 
n 
n 

= 3 
= 5 

1 

2 
There are 3 boys and 5 girls in a group. 
Each person wants to buy 9 pencils. 
How many pencils do they need to buy altogether? 

n3 = 9 

numbers from the question with relations > or ≤ defining constraints 
that were ignored by DNS when mapping values to tokens. Sequence 
and tree-based decoders are used. The decoders produce operation and 
value sequences that correspond to OPT traversals that can be used to 
compute the final answer using a simple stack-based algorithm. 

For the equation (n + n ) × n , the sequence decoder generates 1 2 3 

an OPT preorder traversal of the expression in Example 6.1, with 

arguments before operations (n n + n ×). The tree decoder instead 1 2 3 

generates an OPT postorder traversal with operations before arguments 

(× + n n n ). The operation sequence used is selected by maximum 1 2 3 

decoder likelihood. This model achieves higher accuracy than DNS on 
the Math23K dataset (5-fold cross-validation of 76.9% vs. 58.1%). 

Transformers. Solving math word problems automatically has 
gained increasing attention since the advent of transformers in 2017 
(Vaswani et al., 2017). Transformers integrate surrounding context in 
token sequences by consulting all other tokens embeddings in the input 
over a series of stages. This produces contextually-enriched embedding 
vectors that dramatically improved their usefulness in prediction and 
generation tasks. 

Thinking back to information tasks in Section 1, with a transformer 
the input tokens act as an initial information source, from which we 
produce a new information source containing contextualized token 
vectors. The contextualized vectors are shaped by token co-occurrence 
statistics seen in a large collection of sources used for training. In terms 
of information tasks performed by the transformer: 
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Retrieve 

Consult: all current token vectors are examined and weighted 
using a self-attention mechanism used in generating new 
vectors. 

Query: input tokens are annotated with control tokens (e.g., 
[CLS], [SEP], [MASK]) to (1) drive parameter learning, 
and (2) allow users to ‘program’ outputs in query prompts. 

Analyze 

Annotate (Designers/Users): input annotated with addi- 
tional tokens, e.g., [CLS] for the first ‘classification’ token, 
[SEP] for ending sentences/sections, and signaling answer 
start (e.g., [A.]). Positional encoding vectors mark input 
position (e.g., integer enumeration) and/or token relation- 
ships. These annotations are more detailed and expressive 
than for earlier models. 

Index: network weights represent language statistics in a collec- 
tion, and can be used to produce dense vector indexes. 

Synthesize 

Apply: token embeddings are generated in steps, applying net- 
work weights and attention to update token vectors. This 
uses ‘depth’ to improve generalization (a known property of 
deep nets). Training tasks apply network weights to make de- 
cisions (e.g., guess masked tokens) and then update weights 
using backpropagation. 

Communicate: contextualized token vectors are communicated 
in a tensor, providing a new information source. Learned net- 
work weights specifying the embedding function represented 
in the network is another communicated information source. 

As described in Section 2, ‘pre-training’ transformers on large text 
corpora is the norm, followed by ‘fine-tuning’ to produce outputs for 
specific tasks. ‘Pre-training’ (i.e., initial language model learning) gen- 
erally involves imitative games that require predictions after token 
sequence manipulations such as token masking and re-ordering, while 
fine-tuning requires replacing the output layers of the network for the 
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new imitative game(s) of the specific task the network will be used for 
(e.g., classification or generation tasks). 

As for retrieval, we again find that token representations used for 
math with transformers are important. Simple tasks such as generat- 
ing answers to questions adding and subtracting two numbers were 
explored early on (e.g., ‘what is 52 plus 148?’), using a T5 seq2seq 
model (Nogueira et al., 2021). This was motivated by earlier work where 
for tasks such as reporting the maximum value of a list of numbers, 
a BERT model obtained an accuracy of 52% (Wallace et al., 2019). 
This poor performance was caused partly the default tokenization by 
WordPiece, which prevented correctly encoding numbers. 

The first applications of BERT model to math word problems 
was performed using the AQuaA-RAT collection (Ling et al., 2017). 
The focus of this work is fine-tuning, including a proposed Neighbor 
Reasoning Order Prediction (NROP) coherence loss (Piękos et al., 2021). 
This considers whether steps in the rationale for an answer are in their 
original order, or have been swapped. Fine-tuning with this task and 
loss function improved accuracy by roughly 10%. 

Subsequent work focused on improving mathematical reasoning 
output for transformers. MWP-BERT (Liang et al., 2022) used BERT 
and RoBERTa along with three families of fine-tuning tasks/objectives. 

Self-supervised (questions): (1) masked language modeling, (2) 
number counting (i.e., quantities in a word-problem), and (3) 
number type grounding (e.g., integer, real). 

Weakly-supervised (questions with answers): (1) answer value 
type prediction (i.e., discrete or continuous), (2) context-answer 
type comparison (i.e., whether question quantities have the same 
type as the answer), and (3) number magnitude comparison (i.e., 
predict the relative answer size vs. question quantities). 

Fully-supervised: (1) operation prediction, and (2) tree distance 
prediction. Operation prediction infers the operator between two 
quantity nodes in the solution OPT from five types: {+, -, ×, 
/, ^}. Tree distance prediction estimates differences in depth for 
numbers in the solution tree. 
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These different training objective families in isolation produce similar 
accuracy on Math23K dataset, with the fully-supervised objectives 
providing the highest accuracy. MWP-BERT is fine-tuned on MathQA. 
For Math23K it achieves 82.4% accuracy vs. 58.1% for the DNS model (5- 
fold cross-validation). Similarly, for the Math23K test set MWP-BERT 
achieves 96.2% accuracy vs. 53.6% for the DNS model. 

6.3 LLMs and Mathematical Reasoning 

The next generation of math-word problem solving models use Large 
Language Models (LLMs) which are (roughly) very large transformer 
models trained on very large amounts of data, and embedded within a 
text generation system (e.g., a recurrent neural network). The capability 
of large language models to solve advanced math questions is closely 
studied when a new LLM is developed, and math-word problems are 
commonly used for this purpose. General LLMs are not trained specif- 
ically for math questions; open-source models such as Mistral (Jiang 
et al., 2023) and LLaMA (family) have been used to fine-tune math- 
specific language models, which helps improve the responsiveness of 
models to math-focused system prompts. 

From prompts the model can be given context and instructed on 
producing specific outputs, providing a way to indirectly ‘program’ 
outputs as described for transformers in the previous section.7 

Improving LLM math question answers. A common, non-automated 
way to improve answers without retraining is prompt engineering, where 
an LLM is prompted multiple times, and then a preferred answer is 
selected. Aside from this, there are four common methods for improving 
answers to math questions given to LLMs vs. directly providing a word 
problem in a prompt: 

Instruction tuning: 
a labeled dataset of (prompt, response) pairs is used for additional 
training of the model, i.e., fine-tuning. Often done with state-of- 

7For users, prompt=query: these are requests for generated information sources. 
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the-art language models such as GPT-4 to generate high-quality 
training data. 

Chain-of-Thought (CoT) prompting (Wei et al., 2022): 
the prompts include example questions and answers that include 
a step-by-step reasoning process. The goal is to exploit the LLM 
tendencies to mimic patterns in the prompt, in anticipation of 
a similar reasoning step pattern appearing in the answer, and 
help with producing correct answers. COT is distinct from few- 
shot prompting (see Example 6.4), where only questions and final 
answers are provided within examples included in the prompt. 
CoT can also be used with zero-shot or few-shot prompting, by 
simply adding "Let’s think step-by-step" at the beginning 
of the prompt. 

Program-of-Thought (PoT) (Chen et al., 2022b): 
similar to CoT. Instead of natural language, computer programs 
represent the solution process formally. PoT frees LLMs from 
having to generate equations in natural language, and to instead 
provide explicit computational steps. In a zero-shot setting (i.e., 
giving no example question and answer in the prompt), PoT has 
produced a 12% improvement over CoT for math word problems. 

Program-Aided Language models (PAL) (Gao et al., 2023): 
interleaves natural language (as in CoT) and programming lan- 
guage statements (per PoT) in answers. The final solution is a 
program that is evaluated by an interpreter. 

Example 6.4: Standard prompting (left) vs. Chain-of-Thought (right). 
Input is in grey boxes. Adapted from Wei et al. (2022). 

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls 
does he have now? 
A: Roger started with 5 balls. 2 cans of 3 tennis balls each 
is 6 tennis balls. 5 + 6 = 11. The answer is 11 
Q: The cafeteria had 23 apples. If they used 20 to make 
lunch and bought 6 more, how many apples do they have? 

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls 
does he have now? 
A: The answer is 11. 
Q: The cafeteria had 23 apples. If they used 20 to make 
lunch and bought 6 more, how many apples do they have? 

A: The cafeteria had 23 apples originally. They used 20 to 
make lunch. So they had 23 - 20 = 3. They bought 6 more 
apples, so they have 3 + 6 = 9. The answer is 9. 

A: The answer is 27. 
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Math-specific LLMs. Most research on math-specific LLMs focuses 
upon input token representations and prompts, and expanding datasets 
for fine-tuning general models. One of the earliest math-specific LLMs 
is Minerva (Lewkowycz et al., 2022). This LLM is based on the PaLM 
(Pathways Language Model) model, and is fine-tuned on 118GB of sci- 
entific and mathematical text. Minerva can correctly generate LAT X for- E 
mulas, which is challenging for general LLMs. With proper tokenization, 
formulas such as E = mc2 are processed as $E=mc^2$, and not the 
single token Emc2. 

To improve answers, Minerva uses CoT prompting with several 
step-by-step solutions to questions before posing the question to be 
answered. It also generates multiple solutions, and then uses majority 
voting to select the most likely final answer. From manually analyzed 
samples, the most frequent issues in responses include incorrect reason- 
ing, incorrect calculation, and question misunderstanding. For example, 
for the question: 

√ √ √ If 400 = 81 + n, then what is the value of n? 

Minerva infers that 400 = 81 + n, and then correctly provides 319 as 
the final answer, but for the incorrectly inferred formula. 

LLEMMA (Azerbayev et al., 2024) is another model using Chain- 
of-Thought. The model is built atop LLaMA-Code, and fine-tuned 
on another dataset Proof-Pile-2 containing 55 billion tokens from 
mathematical and scientific documents. The documents are taken from 
three large collections: arXiv, open-web-math, and algebraic-stack. After 
fine-tuning, LLEMA is more effective at answering questions from 
GSM8K and MATH than Minerva. 

MAmmoTH (Yue et al., 2023) uses hybrid CoT and PoT to build a 
new dataset. This model is a fine-tuned version of LLaMA-2 and Code 
LLaMA, using a new dataset MathInstruct for instruction-tuning. 
MathInstruct is compiled from 13 math rationale datasets (7 existing), 
using both chain-of-thought (CoT) and program-of-thought (PoT) ra- 
tionales. To create this dataset, GPT-4 is used to generate programs, 
and the values generated by programs are verified with ground truth. 
The dataset contains 260K (instruction, response) pairs with 72% using 
COT, and 28% using PoT. Example 6.5 shows CoT and PoT pairs. The 



  
  

140 Math Question Answering 

authors report that PoT generally provides better results than CoT. 
Particularly for open-form questions, algorithmic reasoning was found 
to be more effective for complex math problems. 

Example 6.5: Sample instructions and responses from the MathInstruct 
dataset. Grey boxes show PoT and CoT instructions, and 
white boxes show responses. 

PoT 
n0 = 12.0 

If circles x and y have the same area and circle x has a 
circumference of 12 π, half of the radius of circle y is : ? 
Let's write a Python program to solve it. 

t0 = n0 / 2.0 
answer = t0 / 2.0 
print(answer) 

CoT 
There are 3 boxes of cereal. One box holds 14 ounces of 
cereal. Another box holds half the amount of the first box 
and 5 ounces less than the third box. How much cereal is 
there in all 3 cereal boxes? 

First = 14 oz Second = (1/2) * 14 = 7 oz 
Third = 7 + 5 = 12 oz 14 + 7 + 12 = 33 
oz There are 33 ounces of cereal in 
those 3 boxes. The answer is 33 

ToRA (Tool-integrated Reasoning Agents) (Gou et al., 2024) intro- 
duces a new reasoning representation interleaving natural language and 
the use of external libraries. Given a question, ToRA first generates 
reasoning in natural language, which continues until a program library 
is better suited (e.g., for equation solving). ToRA then generates a 
program from the natural language reasoning, and the output is further 
processed for adjustments, sub-task solving, and answer finalization. 
This process is continued until the final answer is represented using 
the LAT X “\boxed{}” command, as illustrated in Example 6.6.8 To E 
fine-tune LLaMA-2, the TORA-CORPUS was produced using GPT-4, 
synthesizing reasoning trajectories for the GSM8k and MATH training 
sets. 

Improving LLMs through fine-tuning on augmented data. A common 
technique for expanding and/or improving existing datasets involves 
transforming existing question/answer pairs to produce new ones (i.e., 
data augmentation). 

For example, MetaMathQA (Yu et al., 2024) augments two earlier 
datasets, GSM8K and MATH. Three techniques are used for data aug- 

8Note the similarity to the types of answers seen in CQA forums like Math Stack 
Exchange, where code is part of a larger answer narrative. 
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Example 6.6: ToRA reasoning interleaving natural language and 
program-based tool use. Adapted from Gou et al. (2024). 

Problem 
Suppose that the sum of the squares of two complex numbers 푥 and 푦 is 7 and the 
sum of their cubes is 10. List all possible values for 푥 + 푦, separated by commas. 

Reasoning 

Let’s use `Sympy` to calculate and print all possible values for 푥 + 푦, 

Program 
from sympy import symbols, Eq, solve, simplify 

def possible_values(): 
x, y = symbols('x y’) 
eq1 = Eq(x**2 + y**2, 7) 
eq2 = Eq(x**3 + y**3, 10) 
solutions = solve((eq1,eq2), (x, y)) 
sums = [simplify(sol[0] + sol[1]) for sol in solutions] 
return sums 

print(possible_values()) 

Output 
>>> [-5, -5, 1, 1, 4, 4] 

Reasoning 
Removing duplicates, the possible values for 푥 + 푦 are \boxed{-5, 1, 4}. 

mentation. First, additional reasoning chains are generated for answers. 
This is done using few-shot CoT promoting, where questions are ap- 
pended to QA pairs that include associated reasoning for answers. This 
few-shot prompt is then fed to an LLM to produce an additional answer 
with justification. The final answer is compared against the ground- 
truth, and incorrect answers are filtered out. The second augmentation 
rephrases questions. Examples of rephrased questions are used in a 
few-shot query along with the prompt: You are an AI assistant to help 
me rephrase questions. Fol low the given examples. Answers generated 
for rephrased questions had an accuracy of 76.30%, and 80.74% for the 
original questions. 

The third augmentation uses backward reasoning in the MetaMath 
LLM to generate additional questions. Numeric values in questions are 
masked with an ‘X’, and the LLM is then asked to predict the value 
given the answer. The backward reasoning starts from the answer, and 
then generates reasoning steps to infer the masked numeric value in the 
question. The final augmented data set is used to fine-tune LLaMA-2. 
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While most LLMs achieve their highest effectiveness with a large 
number of parameters, Orca-Math (Mitra et al., 2024) instead fine- 
tunes smaller language models. Similar to MetaMath, a new dataset 
is introduced and then fine-tuning is done over three iterations. The 
Orca-Math-200K dataset is constructed from previous datasets such 
MathQA, and GSM8K with a total of 36,217 problems. This dataset 
was augmented by modifying the original word problems. GPT-4-Turbo 
is used with few-shot examples to generate new math word problems, 
and then prompted to convert the question into a statement using the 
answer to the question. Then, from the statement, it creates a new 
word problem. Solutions for the new problems are also generated by 
GPT4-Turbo. A total of 120,445 new problems were generated. 

Another augmentation increases the difficulty level of existing ques- 
tions, using two agents called the Suggester and Editor. The Suggester 
proposes increasing difficulty using techniques such as adding more 
variables or increasing certain values. The Editor modifies the original 
question based on the suggester’s recommendation. This is done in 
two rounds, each time increasing the difficulty further. New problems 
that GPT4-Turbo answers in more than 1800 characters were dropped. 
37,157 new problems were collected from this step. 

After the data augmentation, Orca-Math’s Mistral-7B LLM is fine- 
tuned in three steps. First, instruction-fine-tuning is applied using 
pairs of questions and answers. In the second step, a teacher-student 
learning model is used. For each question four answers are generated (as 
‘student’ answers) by a supervised fine-tuned model. Student answers are 
compared to answers from GPT-4 Turbo (the teacher) using exact-match 
prompting. This is used to create positive and negative examples based 
on agreement with the ‘teacher’ answer for further fine-tuning. In the 
third step, training samples are generated using two approaches: Direct 
Preference Optimization (DPO) (Rafailov et al., 2023) and Kahneman- 
Tversky Optimization (KTO) (Ethayarajh et al., 2024). Both approaches 
are used for fine-tuning LLMs to align with preferences. With the fine- 
tuned model, Orca-Math archives an accuracy of 86.81%, which is higher 
than much larger models such as MAmmoTH and MetaMath. 
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LLM limitations. We will use a question from ARQMath-2 to illus- 
trate some limitations of current LLM models. Prompting Llama-3- 
8B-Instruct with: “You are a math professor who will answer math 
questions, providing step-by-step solutions.” and the question “can prove 

P 

( 1) 
x it converges but I don’t know at what value it converges. 

leads to the answer shown in Example 6.7. 
x− ”, ∞ x=1 2 

Example 6.7: Llama-3-8B-Instruct generated answer for a question from 
the ARQMath-2 Answer Retrieval task (see main text). 

This answer is related to the question, but there is an error in 
the fourth expression, where rx should be xrx. Moreover, for a “math 
professor”, splitting of the series as: 

∞ ( 1) ∞ ∞ 1 
2x X X X 

x − 
x 
2x 

= 
− 

. 
2 x 

x=1 x=1 x=1 

is not obvious, and needs verification/reasoning about convergence for 
each of those series. So, if we say it is a “step-by-step” solution, then 
the professor has ignored this crucial step. 

The system prompt can guide the responses for LLMs. For the same 
ARQMath question, we change LLaMA-3 prompt to “You are a math 
professor who will answer math questions, providing a hint toward the 
solutions, not the whole solution.” The response is shown in Example 6.8. 
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Example 6.8: A different Llama-3-8B-Instruct answer when asked to 
provided a hint, but not the whole solution. 

Here’s a hint to help you get started: 

You can try to recognize this series as a variant of 
a more well-known series. In particular, consider 

P 

the geometric series ∞ r , where |r| < 1. Can you 
x 

x=1 
see how the given series can be rewritten in a similar form? 

Also, think about the fact that the series is a telescoping 
series, meaning that many of the terms cancel out when 
you sum them up. Can you identify which terms cancel 
out and how this might help you find the sum? 

Take it from here and see if you can prove that the series 
converges and find its value! 

The first part of the hint is a good start for the student: it narrows 
down the scope where the student can focus or get some ideas. However, 
the second part of the hint is completely wrong; this is not a telescoping 
series. A telescoping series is one where each term of the series can be 
written as a difference of two consecutive terms of a sequence. In the 
sense, 

∞ 

X 
(an+1 − a ) = (a − a ) − (a − a ) + · · · . n 2 1 3 2 

n=1 

So, the terms start canceling off and the sum is easy to find. But the 
series given in the query cannot be written in this form. So, this second 
part of the hint does not help, and is very misleading. 

Currently, Chain-of-thought and Program-of-thought are commonly 
used to produce more reliable answers to math questions by LLMs. It is 
likely that more effective techniques will be used in the future. Current 
models need to individually create a dataset for fine-tuning their base 
LLM model (e.g., LLaMA-2), often created using a state-of-the-art 
LLM (e.g., GPT-4*). However, recently several researchers have warned 
against this approach, suggesting that model effectiveness may decrease 
when AI-generated data is used for training (Shumailov et al., 2024a; 
Shumailov et al., 2024b). 
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Final Thoughts and Research Opportunities 

In this section we draw our discussion of mathematical information 
retrieval to a close, and identify some places where insights might be 
found in the future. For this purpose, we return to three key concerns 
that we have repeatedly returned to throughout the monograph: 

1. the people that IR systems serve and interact with, 
2. the information tasks that IR systems perform on behalf of people, 
3. how systems and associated processes are evaluated. 

Before we close, we also consider some limitations of MathIR systems 
from the perspective of individuals. 

7.1 What is Next for MathIR? 

To try and characterize the space of opportunities for future work 
in MathIR, we present two views summarizing topics discussed in 
the monograph where we could devote effort to strengthen existing 
approaches, and uncover new ones. 

The first view is shown in Table 7.1, which presents the informa- 
tion needs for the people that play a role in the creation, use, and 
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Table 7.1: Information Needs for Mathematical Information Retrieval. 

Group 

Users 

Information Needs 

Query language operations and syntax 
Query/results interface usage 
How to organize and refind sources 
How to create, organize, and search annotations 
Data and tools for applying information in sources 
Tools for communicating information from sources 
Pragmatics: Stopping criteria for ‘satisficing’ 

Assessors Annotation interface operations and usage 
Relevance criteria and intended application 
Navigate, link, and search sources & annotations 
Pragmatics: ‘reliable’ annotation strategies 

Designers & 
Researchers 

Useful and novel: 
Data representations for formulas + text 
Retrieval interfaces 
Query/question mechanisms 
Annotation tools/protocols 
Machine learning models 
Retrieval models 
Data augmentation techniques 
Evaluation metrics, pooling, and protocols 
Conceptual frameworks / topic maps 

Test collections: creation, use, differences 
Implementation: planning and execution 
Pragmatics: ‘good’ end points for research/dev 

projects 

evaluation of MathIR systems. These are the users, assessors, and de- 
signers/researchers for these systems, which we introduced in Section 
1. Improving available information of the types listed, and/or making 
these information types more readily available or easy to use present 
research opportunities. Additional items that we note here that were 
not mentioned earlier include pragmatics. A critical requirement for 
productive knowledge work of the types shown in this table is knowing 
when to stop, and possibly reflect and report at that point. Improving 
our shared knowledge of actionable models and heuristics would be 
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beneficial for people involved, and can help inform the use cases from 
which IR models and tools are designed and evaluated. 

The second view shown in Table 7.2 is for the space of research 
opportunities addresses researchers and designers specifically. The rows 
and columns are organized by information task, and whether the oppor- 
tunities are related to human interaction, system modules that perform 
information tasks, or evaluation of interaction and modules. We have 
indicated which sections present related material in the column headers. 
Please note that this is a first attempt at categorization along these 
dimensions. There are opportunities that we have undoubtably missed 
here. 

Table 7.2: Future Directions for Mathematical Information Retrieval Research 

Information Human Interact. System Modules Evaluation 
Task (Section 1) (Sections 2, 4-6) (Section 3) 

Retrieve 

R1. Query Search interfaces Autocomplete 
Query suggestion 
Query perf. 

Log/User studies 
Multi-modal input 
LLM prompts/RAG 

Module effectiveness 
Benefits of formulas? 

prediction 
R2. Consult Formula/text navig. 

Math/text links 
Math entity linking 
Text / formula 
tokenization 

Log/User studies 
Math EL effects? 
Visual. effects? Linked math/text 

Analyze 

A1. Annotate User entity cards 
(e.g., formulas) 

Text + math 
represent. 

Log/User studies 
Retrieval metrics 
User bandwidth? 
Storage requs.? 
Log/user studies 
Metrics: size, speed, 
effectiveness 

Passages in sources 
Source links/groups 
Org. cards, notes 
Org. passages, notes 
Org. searches 

Formula represent. 

A2. Index Sparse models 
Dense models 
Sparse + Dense 
(e.g., per SPLADE) Org. sources (‘jar’) 

Synthesize 

S1. Apply Reusable formulas Embedding models 
(Pre)training tasks 
Learning-to-Rank 
Model reduction 
(e.g., for LLMs) 
Compression: Index, 
source, notes, etc. 
Data augmentation 
Math-focused SERP 
Background- 

Log/User studies 
Model effectiveness 
& efficiency 

(e.g., LAT X chips) E 
Tool integration 
(e.g., CAS) 
Export sources & 
notes 

S2. Communicate Math/text author. 
tools 

Log/User studies 
Test collections 
Research papers 
Shared task papers 
Surveys, task & 
concept models 

Summarization (e.g., 
LLM) targeted answers 
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Currently opportunities in machine learning (e.g., improved/com- 
pressed LLM models and prompting), improved formula tokenization 
and attention mechanisms for transformers, and finding new approaches 
to distilling contextual information into dense embedding vectors and 
other representations are important and widely recognized; these each 
realize improved applications of available statistical information. Some 
other important opportunities include improved query interfaces, anno- 
tation tools, and techniques for communication of search/answer results 
(e.g., sensitive to the searcher background). Mechanisms that improve a 
user’s ability to organize, link, and quickly refind sources and previous 
results seem ripe for renewed exploration, provided that we are mindful 
of actual user needs, and not overwhelming the user. Integration of 
retrieval systems with mathematical tools such as Computer Algebra 
Systems (CAS) and theorem provers is another promising direction for 
interaction, and possibly also annotating queries and collections. 

Another key area is the development of new representations for text 
and formulas, including formulas in isolation, but particularly represen- 
tations for text, formulas, and possibly other graphics to better capture 
context for use in improved sparse and dense indexing.1 Improved in- 
dexing and retrieval models remain an important opportunity as well, 
being fundamental to IR in general. 

7.2 Limitations: What MathIR Cannot Provide 

In our experiences working on MathIR, a frequently expressed concern 
or hope is that strong systems will remove the need for individuals 
to understand the math that they use. Instructors reasonably worry 
that some math problem sets can be completed by issuing prompts to 
LLMs or questions to search engines, with students receiving complete 
or near-complete answers. On the other side, math anxiety is common, 
and information from sources that help reduce mental effort and our 
risk of failure in addressing hard questions are appreciated, regard- 
less of our math comfort level. So while copying retrieved answers is 

1OPT and SLT variants, along with MathAMR and PHOC are described in 
Section 2, but many variations and other representations are unexplored. 
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clearly a problem, could technology instead accelerate our learning and 
understanding of new mathematical concepts? 

For example, reliable MathIR systems could quickly retrieve or gen- 
erate examples of questions and answers for similar problems without 
giving away answers. This is not cheating, and seems like an opportunity 
to save a lot of time. Unfortunately, after this retrieval step, we arrive at 
a fundamental limitation of technology well-known to math instructors.2 
Technology allows us to store, illustrate, organize, and retrieve informa- 
tion faster than in previous decades (National Council of Teachers of 
Mathematics, 2011). This can save significant amounts of human effort 
in terms of querying for and consulting sources, but related benefits for 
human learning have been modest (Cheung and Slavin, 2013). However 
sophisticated our technologies become, they reside outside of a person’s 
mind, and there is evidence that deep understanding comes from effort 
exerted from inside a person’s mind. 

In one psychological study, students who constructed a formula 
themselves for the area of geometric shapes organized in a lattice 
were more likely to correctly adapt the formula for new shapes than 
students who were given the correct formula for the first case (Hallinen 
et al., 2021). Interestingly, the authors refer to constructing the correct 
formula as searching for the formula; the student must mentally create 
and compare alternative formulas as they work on the problem. Their 
study supports the idea that engaged exploration and comparison are 
needed for deep understanding. Naturally, such engaged thinking takes 
time. 

To correctly use a source such as a search result hit or question 
answer, one must understand it first. Assessing the validity and appli- 
cability of an answer requires understanding of terminology, notation, 
and associated concepts. We see ample evidence for this on math CQA 
sites, where large numbers of posts and comments seek only clarification 
of questions and their context, with many asking for clarification of 
language and notation choices. Skimming a source online that we don’t 
understand provides patterns that might suggest information we could 

2These comments apply equally to technological resources for education in general, 
and more broadly, knowledge work. 
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use, and readily supports copying its contents. Using the same source 
to address a problem posed using different notation and terminology 
generally requires a deeper understanding of the material. 

And so, students completing (non-trivial) problem sets using MathIR 
tools will still need to spend time and effort to evaluate returned answers, 
and to work through material on their own. For new and challenging 
topics, this process of working through the material will remain slow 
in comparison to issuing a query or question to a retrieval system. 
We do not anticipate that future MathIR systems will remove this 
requirement.3 

As a more compact summary, here are some limitations for mathe- 
matical information retrieval systems: 

1. Relevance is strongly influenced by searcher expertise and presen- 
tation in sources. 

2. Retrieval provides sources, not the understanding of them. 
3. Deep human understanding of information, e.g., for application 

in new contexts or problems, requires study, exploration, and 
experimentation – in other words, time. 

That we feel this needs saying at all may surprise some readers, and 
perhaps some IR researchers more than anyone. Many other specialized 
search domains have similar challenges (e.g., law, medicine, chemistry). 
But our experience has been that mathematics, being both a powerful 
tool, and in many cultures a source of both pride and shame, sometimes 
leads to expressed hopes and concerns at odds with these limitations. 

7.3 Some Parting Thoughts 

The time at which this work is being written is an exciting time for 
mathematical information retrieval. One has a sense that we may be in 
for a very surprising leap forward soon, much as we saw for the game 
of Go, when AlphaGo applied monte carlo tree search, deep learning 
techniques, and reinforcement learning to play the game competitively 

3Related to this, we believe that supporting, advancing, and sharing human 
understanding is fundamental for societally beneficial academic instruction and 
research of all kinds. 
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at the international level. Prior to this, many believed that competitive 
systems operating in such a vast search space would not be seen for a 
long time. AlphaGo was trained through simulating a very large number 
of games; the model parameters were learned via a somewhat brute 
force process of trial and error, in order to estimate reliable probabilities 
of success along different series of moves through empirical observation. 
Back to our information task model, finding efficient and effective ways 
to retrieve, analyze, and synthesize information about the game space 
and individual move configurations proved transformative. 

With the advent of LLMs and other recent advances in machine 
learning, we might soon stumble upon effective algorithms that combine 
representations, statistics, and constraints in a way that allows complex 
mathematical information to be found relatively easily, and interactively 
using conversational search models. Related methods may automatically 
answer questions ably and in an audience-appropriate manner, and per- 
haps even produce proof strategies or complete proofs for mathematical 
conjectures of real sophistication. Such advances would finally realize 
some of the earliest goals of Artificial Intelligence research, and would 
have a large number of potential applications. 

Even if such technologies do not come to pass in the near term, 
there is another important perspective for the future of MathIR. Even 
with incremental advances, there is an opportunity to create systems 
that help people by better aligning with their mathematical expertise 
and communication styles, and that make working with mathematical 
information just a bit more efficient, and just a bit more comfortable. 
We find this prospect equally exciting, and a challenging goal from the 
human, systems, and evaluation perspectives. 
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Online Resources 

Links for some of the resources mentioned in this monograph may be 
found below in Table A.1. 

Table A.1: Resources for Math Search and Question Answering 

Name Type Link Year 

Tools 
LaTeXML 
SnuggleTeX 
LeanDojo 
Test Collections 
NTCIR 

LATEX-MathML Convertor 
LATEX-MathML Convertor 
Theorem provers 

https://github.com/brucemiller/LaTeXML 
https://github.com/davemckain/snuggletex 
https://github.com/lean-dojo/LeanDojo 

2004 
2008 
2023 

Search Test Collection 
Search Test Collection 
MWP Dataset 

https://ntcir-math.nii.ac.jp/data/ 2013-16 
2020-22 

2017 
ARQMath 
AQUA-RAT 
MathQA 

https://www.cs.rit.edu/~dprl/ARQMath/ 
https://github.com/google-deepmind/AQuA 
https://math-qa.github.io/ MWP Dataset 2019 

ASDiv MWP Dataset https://github.com/chao-chun/nlu-asdiv-dataset. 
https://huggingface.co/datasets/openai/gsm8k 
https://github.com/hendrycks/math 
https://github.com/chen-judge/GeoQA 
https://github.com/chen-judge/UniGeo 
https://mathvista.github.io/ 

2020 
GSM8K MWP Dataset 2021 
MATH MWP Dataset 2021 
GeoQA Geometry QA 

Geometry QA 
2021 

UniGeo 2022 
MathVista 
MATH-Vision 
Systems 
MIAS 

Visual Math Problem 
Visual Math Problem 

2024 
https://github.com/mathllm/MATH-V 2024 

Formula Search https://github.com/MIR-MU/MIaS 2011 
2017 
2019 
2019 
2020 
2021 
2016 
2018 
2019 
2021 
2021 
2023 
2024 
2022 
2023 
2024 
2024 
2024 

Tangent-S 
Tangent-V 
Tangent-CFT 
NTFEM 
MathEmb 
WikiMirs 
Tangent-L 
Approach0 
MathDowsers 

Formula Search https://github.com/MattLangsenkamp/tangent-s 
https://www.cs.rit.edu/~dprl/files/TangentV-source.zip 
https://github.com/BehroozMansouri/TangentCFT 
https://github.com/NTFEM/Formulae-Embedding 
https://github.com/Franknewchen/MathEmb 
https://github.com/huxuan/WikiMirs 

Formula Search 
Formula Search 
Formula Search 
Formula Search 
Math-Aware Search 
Math-Aware Search 
Math-Aware Search 
Math-Aware Search 

https://github.com/fras2560/Tangent-L 
https://github.com/approach0/search-engine 
https://github.com/kiking0501/MathDowsers-ARQMath 
https://github.com/AnReu/ALBERT-for-Math-AR 
https://github.com/approach0/pya0 

ALBERT-for-Math-AR Math-Aware Search 
MABOWDOR 
CrossMath 
LILA 

Math-Aware Search 
Multilingual Math-Aware S. https://github.com/jgore077/CrossMath 
QA Dataset/LLM 
Math-LLM 

https://lila.apps.allenai.org/ 
MAmmoTH 
LLEMMA 
ToRA 

https://github.com/TIGER-AI-Lab/MAmmoTH 
https://github.com/EleutherAI/math-lm 
https://github.com/microsoft/ToRA 
https://github.com/meta-math/MetaMath 

Math-LLM 
Math-LLM 

MetaMath Math-LLM 
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Search and QA for Theorem Proving 

In Sections 5 and 6 we discussed math-aware search and math question- 
answering. A topic closely related to these is theorem proving. Auto- 
mated theorem proving aims to explore the application of computers in 
proving mathematical theorems. This is actually one of the earliest top- 
ics of interest in computer science. In the early 1960s, scientists started 
exploring the use of machines for theorem proving for the quantification 
theory (Davis and Putnam, 1960; Davis et al., 1962) using deduction 
rules to prove assertions. 

Informal theorem proving refers to the way that humans approach 
proving theorems using reasoning through notation and natural lan- 
guage, likely with some missing details (e.g., assumed definitions) and 
skipped computational steps, for example. In contrast, formal theorem 
proving represents theorems in a machine-readable format, making veri- 
fication by logical rules possible, at the cost of more information being 
explicitly stated (e.g., all variable types, definitions for all operators, 
etc.). 

Converting informal to formal proof steps is referred to as Auto- 
formalization. The Mizar1 language is commonly used by mathemati- 

1https://mizar.uwb.edu.pl/. 
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cians as a formal language for writing definitions and proofs. Using 
Mizar, Wang et al. (2018) explored converting (translation) of infor- 
mal LAT X-written text into formal Mizar language. This work explored E 
different seq2seq architectures, with LSTM and attention providing the 
highest BLEU score for this translation. 

Researchers have also explored other formalization languages, in- 
cluding applying large language models to generate statements in Codex 
(Chen et al., 2021b) has been studied recently (Wu et al., 2022). This 
translates statements in natural text into formalized theorems for the 
interactive proof assistant Isabelle (Wenzel et al., 2008). As an example, 
the system translated “Prove that there is no function f from the set of 
non-negative integers into itself such that f (f (n)) = n + 1987 for every 
n” perfectly to Codex as: 

theorem 
fixes f :: "nat \<Rightarrow> nat" 
assumes "\<forall> n. f (f n) = n + 1987" 
shows False 

Another task for theorem proving is retrieving useful lemmas that 
will help with proving steps, known as premise selection. This is a form of 
search problem, where relevance is defined in terms of suitability for prov- 
ing a specific conjecture. The problem is defined as (Alama et al., 2014): 

Given an Automated Theorem Provers and a large number 
of premises, find premises that are useful to the prover for 
constructing a proof for a new conjecture. 

DeepMath (Irving et al., 2016) is one of the earliest works to apply 
deep learning for this task. Conjecture and axiom sequences are em- 
bedded separately, concatenated, and then passed to a fully connected 
neural network for predicting the usefulness of the axiom. Embeddings 
are at character level for formulas, and word-level for statements defin- 
ing symbols. The convolutional network model FormulaNet (Wang et al., 
2017a) used a similar idea and applied graph neural networks. Using for- 
mulas in higher-order logic (Church, 1940), each formula is first parsed 
into an OPT: internal nodes represent a quantifier or a constant or 
variable function, and leaf nodes represent variable or constant values. 



  
  

159 

Edges connect a quantifier to all instances of its quantified variables. 
After creating the tree, a merging step is applied to merge leaf nodes 
representing the same constant/variable. Finally, a unification technique 
is used to replace variable names with ‘VAR’ and function names with 
‘VARFUNC’. After building the graph, convolution or message passing 
is applied to get node embeddings. These embeddings are used with 
max-pooling to form an embedding for the graph. 

As theorems are built upon existing mathematical knowledge, a 
graph representation of mathematical concept statements such as lemma, 
and definitions is a common approach for this task. One way of building 
this graph is to use statements as nodes and ordered edges from node 
s1 to s2 if there is statement 1 is a premise of statement 2 (Ferreira and 
Freitas, 2020a). With this definition of a graph, the problem can be 
viewed as link prediction, for which a Deep Graph Convolutional Neural 
Network (DGCNN) architecture was applied (Zhang et al., 2018). The 
textual content embedding of each node in this work is encoded using 
Doc2Vec (Le and Mikolov, 2014) model with mathematical concepts 
being encoded as linearized trees, with every sub-expression represented 
as a token. 

For example, the formula (x + y) × c is represented as a sequence of 
tokens for subexpressions {‘x’, ‘y’, ‘(x + y)’, ‘(x + y) × c’} (similar to 
what is used to generate subexpression tokens for the WikiMirs search 
model discussed earlier). The authors later introduced STAtement Rep- 
resentation (STAR) cross-modal representation (Ferreira and Freitas, 
2021), treating mathematical formulas as natural language. Each state- 
ment is viewed as a combination of words and formulas. However, for 
embedding, they proposed two separate self-attention layers, one for 
formulas and one for words. The output of the self-attention layers is 
then concatenated and passed to a Bi-LSTM to get the final representa- 
tion of the statement. To find the relatedness score between conjecture 
and premises, a Siamese neural network was applied. 

Generative and large language models have recently been applied 
for premise selection. LeanDojo (Yang et al., 2023) is an open-source 
toolkit based on the Lean2 programming language, that introduces 

2https://lean-lang.org/ 
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ReProver (Retrieval-Augmented Prover). ReProver is a language model- 
based prover, augmented with retrieval for selecting premises. Given 
the initial state of proof, it retrieves a set of useful premises (set at 
100) using a Dense Passage Retriever. These premises are concatenated 
to the initial state and passed to a fine-tuned ByT5 (Xue et al., 2022) 
model to generate steps toward the proof. 

As the application of LLMs for theorem proving is gaining attention, 
new datasets are being introduced for theorem proving. NATURAL- 
PROOFS (Welleck et al., 2021) for example, is a multi-domain corpus 
of mathematical statements and their proofs, written in natural mathe- 
matical language. The main tasks in this dataset are: 1) mathematical 
reference retrieval: given a theorem, retrieve a set of references that 
occur in the theorem proof, and 2) mathematical theorem generation: 
generate the sequence of references that occur in a given theorem’s 
proof. Table B.1 summarizes some of the existing resources for this task. 

Table B.1: Resources for Math Search and Question Answering 

Name Type Link Year 

NaturalProof Proof Dataset https://github.com/wellecks/naturalproofs 2021 
2017 FormulaNet 

STAR 
Theorem Proving https://github.com/princeton-vl/FormulaNet 
Theorem Proving https://github.com/ai-systems/crossmodal_embedding 2021 
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