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The origins and composition of seismic low-velocity heterogeneities atop the core-mantle boundary (CMB) 
remain poorly understood. It is also debated whether they are static features or whether they can be displaced 
and modified by mantle convection, although recent seismological and geodynamic evidence suggests the 
latter. In this work, we perform the first simultaneous analysis of SPdKS waves to characterize low-velocity 
heterogeneity and seismic anisotropy, which is evidence for deformation, at the base of the mantle. We find 
seismic velocity heterogeneity and seismic anisotropy that are co-located with, or adjacent to, each other. Our 
study region, the lowermost mantle beneath North America, has been shaped by long-term subduction. Through 
geodynamic modeling simulations, we show that the sinking of subducted slabs to the lowermost mantle can 
trigger formation of hot thermal anomalies near subducted slabs, where chemical heterogeneities can accumulate. 
The thermochemical anomalies can cause reduction of seismic velocity while the slab-induced flow can cause 
seismic anisotropy, potentially explaining our seismic observations.

1. Introduction

The presence of material with extremely low seismic velocities at the 
base of the mantle was first suggested by Garnero et al. (1993). In the 
following years, they were named ultralow velocity zones (ULVZs; e.g., 
Garnero et al., 1998), a name that is still commonly used (e.g., Cottaar 
and Romanowicz, 2012; Yu and Garnero, 2018; Thorne et al., 2020). 
However, it is unclear whether the structures referred to as ULVZs are, 
in fact, all similar in their composition and origin (e.g., Thorne et al., 
2021). Moreover, instead of being distinct features, ULVZs may actually 
be regions of high topography at the top of a thin layer of low veloc-
ity and high electrical conductivity at the base of the mantle, which is 
otherwise challenging to detect seismically (e.g., Buffett et al., 2002; 
Russell et al., 2022, 2023; Ferrick and Korenaga, 2023). We still do 
not understand precisely the origin and composition of ULVZs, although 
various possibilities have been suggested (e.g., Labrosse et al., 2008; Ot-
suka and Karato, 2012; Lesher et al., 2020; Dobrosavljevic et al., 2019, 
2023; Hansen et al., 2023). In particular, more research is needed to 
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conclusively determine whether they are partially molten or solid (e.g., 
Williams and Garnero, 1996; Lay et al., 2004; Lai et al., 2022).

Crucial for discussions about the origin, composition and general 
properties of ULVZs is a better understanding of whether they are static 
features or whether they are influenced by mantle convection. Geody-
namic modeling suggests that ULVZs may be transported by mantle flow 
(e.g., McNamara et al., 2010; Li et al., 2017). Additionally, seismological 
evidence for co-located ULVZ structure and mantle deformation (as evi-
denced by seismic anisotropy) has been detected (Wolf and Long, 2023; 
Wolf et al., 2024a). In one case, the deformation was attributed to a sub-
ducted slab remnant at the base of the mantle beneath the Himalayas 
(Wolf et al., 2024a), consistent with the idea that ULVZs originate from 
heterogeneous accumulations of previously subducted materials (e.g., 
Hansen et al., 2023). Therefore, deep mantle heterogeneities may con-
stantly be displaced by mantle flow; this hypothesis, however, requires 
further observational testing.

Deformation of mantle materials can lead to crystallographic-
preferred orientation (CPO) of individual crystals in an aggregate (e.g., 
Karato et al., 2008), causing seismic anisotropy, which refers to the 
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Fig. 1. Source-receiver configuration used in this study. Sources are represented 
as yellow stars, stations as dark gray circles, and great-circle raypaths as light 
gray lines. Inset: SKS, SKKS, SPdKS and SKPdS raypaths between source (star) 
and receiver (circle), shown in a cross-section for a source-receiver distance of 
120◦ .

dependence of propagation velocities on the polarization of the seis-
mic wave (e.g. Nowacki et al., 2011; Romanowicz and Wenk, 2017). 
Seismic anisotropy manifests in a phenomenon in which seismic shear 
waves split into a slow and a fast component, called shear-wave splitting 
(e.g., Silver and Chan, 1991; Long and Silver, 2009). In seismological 
studies of both velocity heterogeneities and seismic anisotropy, ideally 
the same seismic waves can be used to find evidence for both. For this 
reason, previous studies have focused on Sdiff waves, which sometimes 
show postcursors that are indicative of ULVZs (e.g., Cottaar and Ro-
manowicz, 2012; Li et al., 2022) but can also be used to measure deep 
mantle anisotropy under certain conditions (e.g., Cottaar and Romanow-
icz, 2013; Wolf and Long, 2022; Wolf et al., 2023b).

Another seismic phase that is often used to investigate deep mantle 
heterogeneity is SPdKS (Fig. 1, inset; e.g., Garnero et al., 1993, Ronde-
nay and Fischer, 2003; Thorne et al., 2020, 2021; Festin et al., 2024). 
Strictly speaking, SPdKS energy is composed of both SPdKS, which has 
a diffracted path on the source side, SKPdS, whose diffracted path is on 
the receiver side, and a combination of both that can be referred to as 
SPdKPdS (Fig. 1, inset; Thorne et al., 2019). For simplicity, in this work 
we follow the traditional naming convention and refer to this combined 
phase as SPdKS, although this is slightly imprecise. Anomalous SPdKS 
waveforms are often indicative of ULVZ structure in the deepest mantle 
(e.g., Thorne et al., 2021); however, other types of low-velocity het-
erogeneity just above the CMB can have similar effects (Garnero and 
Jeanloz, 2000, Buffett et al., 2002). Therefore, we refer to structure that 
leads to anomalous SPdKS waveforms using the more general term of 
lowermost mantle heterogeneity.

SPdKS is sensitive to heterogeneity on the source as well as the re-
ceiver side (Fig. 1), which often makes it challenging to pinpoint where 
exactly mantle heterogeneity is sampled (e.g., Thorne et al., 2020). 
Thus, it may sometimes be more straightforward to work with other seis-
mic phases, such as Sdiff; however, worldwide wave sampling strongly 
depends on the seismic phase used, and Sdiff sampling is not good ev-
erywhere. Besides providing evidence for deep mantle heterogeneity, 
SPdKS waveforms also contain information about seismic anisotropy, 
analogous to the commonly used phases SKS and SKKS (Fig. 1, inset). 

One reason why SPdKS has never been used for the purpose of inferring 
lowermost mantle anisotropy is likely that its amplitudes are often low 
at the distances at which SPdKS is clearly separated from SKS.

For the deep mantle beneath North America and the northeastern 
Pacific Ocean, SPdKS sampling is excellent (Thorne et al., 2021), while 
Sdiff sampling is poor (Wolf et al., 2023c). Moreover, the deep mantle 
beneath North America hosts multiple ULVZs (e.g., Rondenay and Fis-
cher, 2003; Thorne et al., 2019, 2020, 2021), while deformation in this 
region is dominated by slab remnants, which can lead to strong seismic 
anisotropy (e.g., Long, 2009; Nowacki et al., 2010; Asplet et al., 2020, 
2023; Wolf and Long, 2022; Wolf et al., 2023b). It thus represents an 
ideal locale to investigate spatial relationships between anisotropy due 
to slab-driven flow and deep mantle heterogeneity.

In this study, we perform the first joint analysis of SPdKS, SKS and 
SKKS waves for both deep mantle heterogeneity and anisotropy. Our 
approach enables us to expand ray coverage, and to determine the lo-
cation of seismic anisotropy more precisely than previous anisotropy 
studies that only used SKS and SKKS. We show evidence for two dis-
tinct regions of heterogeneity in the deepest mantle, one of which has 
not been clearly characterized before. These two features, probably UL-
VZs, are co-located with – or at least in close vicinity to – strong seismic 
anisotropy. From the results of geodynamic modeling experiments, we 
suggest that the co-existence of ULVZs and anisotropy in this region can 
be related to slab-driven flow and formation of thermochemical hetero-
geneities in the lowermost mantle.

2. Methods

2.1. Measurements of SKS-SKKS-SPdKS differential splitting

A shear wave that travels through an anisotropic medium splits into 
a fast and a slow component (e.g., Silver and Chan, 1991). The time lag 
between these two waves is referred to as �훿�푡, whereas the polarization 
direction of the fast traveling component is called �휙. Sometimes it can be 
useful to define a third quantity, the splitting intensity (Chevrot, 2000), 
�푆�퐼 , which can be expressed as:

�푆�퐼 = −2�푇 (�푡)�푅
′(�푡)

|�푅′(�푡)|2 ≈ �훿�푡 sin(2(�푏−�휙)) , (1)

where �푅′(�푡) is the radial component time derivative, �푇 (�푡) the transverse 
component and �푏 denotes the backazimuth. Therefore, �푆�퐼 (measured 
on an individual seismogram) is large if the transverse component re-
sembles the time derivative of the radial component (which is true for 
splitting; e.g., Chevrot, 2000) and has a high amplitude.

SplitRacer (Reiss and Rümpker, 2017) incorporates the transverse 
energy minimization technique (Silver and Chan, 1991) to determine 
splitting parameters (�휙, �훿�푡) using the corrected uncertainty calculation 
from Walsh et al. (2013), and also measures �푆�퐼 . When we use Spli-
tRacer to measure SKS and SKKS splitting, we first bandpass-filter our 
data between 6 and 25 s, only retain data with signal-to-noise ratios 
(SNRs) > 2, and use 30 random time windows for the splitting analysis. 
SNRs are calculated comparing the sum of absolute amplitude values for 
a pre-phase time window with the seismic phase of interest. This pro-
cedure is conducted on the effective horizontal component, defined as √
(�푁�표�푟�푡ℎ �푎�푚�푝�푙�푖�푡�푢�푑�푒)2 + (�퐸�푎�푠�푡 �푎�푚�푝�푙�푖�푡�푢�푑�푒)2. For SPdKS, we use the same 

filter, select those data for which SKS SNRs are > 2, and manually pick 
the time window that is used to measure splitting. We only measure 
SPdKS splitting if both the transverse and radial component arrivals are 
visually distinguishable from the noise, as noise has been shown influ-
ence the reliability of �푆�퐼 measurements (e.g., Hein et al., 2021; Wolf 
et al., 2023a). This implies that, for example, if the SNR of SKS is 2, we 
only measure SPdKS splitting if its amplitude is close in size to SKS. This, 
in turn, may result in a disproportional number of SPdKS splitting mea-
surements for phases that are influenced by CMB heterogeneity, because 
such phases often have larger amplitudes (e.g., Thorne et al., 2020). 
However, this has no influence on whether the wave is split or not, and 
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Fig. 2. Example SKS, SPdKS and SKKS splitting measurements for an event that occurred on July 23, 2010 and was recorded at station X33A in the mid southwest 
United States. (a) Top: 100 s seismogram snippet around the SKS and SPdKS waveforms showing the calculated noise level (gray). Bottom: Radial (R) and transverse 
(T) velocity seismograms for each phase. Vertical lines indicate the identified time windows for the different phases. (b) Particle motions before (upper row) and 
after (bottom row) correction for best fitting splitting parameters (for each phase). (c) Energy maps of best fitting splitting parameters (�휙, �훿�푡) for each phase, with 
black color indicating the 95% confidence region. Splitting intensities are shown in the upper right corners of each individual plot. The SPdKS phase is clearly split, 
with similar splitting parameters as SKS, whereas SKKS exhibits different behavior, with nearly null splitting.

thus does not influence our interpretations. Due to possible phase inter-
ference of SKS, a strategy of multiple random time window selections, 
which is often used in shear wave splitting studies, is not practical for 
SPdKS.

The measurement of differential SKS-SKKS splitting is often inter-
preted as evidence for lowermost mantle anisotropy (e.g., Niu and Perez, 
2004; Long, 2009; Deng et al., 2017; Reiss et al., 2019; Grund and Ritter, 
2019). The reason is that SKS and SKKS raypaths in the upper mantle 
are almost identical, while they have a much larger spatial separation 
in the lowermost mantle (Fig. 1, inset). Because the bulk of the lower 
mantle is almost isotropic (e.g., Meade et al., 2005; French and Ro-
manowicz, 2014), substantial differences in shear-wave splitting due to 
seismic anisotropy must therefore be accumulated on the deep mantle 
portions of the raypaths. Global wavefield simulations have confirmed 
the reliability of this approach if �푆�퐼 differences > 0.4 are interpreted 
as being indicative of an anisotropy contribution from the deep man-
tle (Tesoniero et al., 2020; Wolf et al., 2022). In this work, we expand 
this technique to SPdKS phases, whose S raypath through the receiver-
side lower mantle is similar to SKS, and substantially differs from SKKS 
(Fig. 1, inset). We therefore expect that SKS-SPdKS �푆�퐼 differences will 
be relatively low, while they will be larger for SKKS-SPdKS in places in 
which lowermost mantle anisotropy is present.

For the measurement of SKS-SKKS differential splitting, seismograms 
recorded at epicentral distances between 108◦ and 122◦ are often used 
(e.g., Wolf et al., 2024b), although there is technically no upper dis-
tance limit as long as splitting measurements from both SKS and SKKS 
are robust. In this work, we face the challenge that SKS and SPdKS 
amplitudes generally die off quickly at large distances (> 115◦), while 
SKS and SPdKS only have clearly distinguishable arrivals for distances 
> 120◦. This influences our event selection: We only select events that 

have sufficiently large SKS and SPdKS amplitudes (compared to the 
noise level) at distances > 120◦ and, thus, enable shear-wave splitting 
measurements for both phases. If this condition is met, the SKKS signal 
clarity is also usually sufficient. Overall, we find 10 events (Supplemen-
tary Table S1), recorded at stations in the contiguous United States, that 
generally fit these criteria (Fig. 1). We measure SKS-SKKS differential 
splitting at epicentral distances between 108◦ and 135◦ and differential 
SKS/SKKS-SPdKS splitting between 120◦ and 135◦. An example for the 
measurement of SKS, SKKS, and SPdKS splitting on the same seismogram 
is shown in Fig. 2. In this example, SKS-SPdKS splitting is nondiscrepant 
(�훿�푆�퐼 < 0.4), while both SKKS-SPdKS and SKS-SKKS differential splitting 
are discrepant (�훿�푆�퐼 > 0.4).

2.2. Heterogeneity detection using SPdKS

The explanation that was first invoked for anomalous SPdKS wave-
forms was the presence of ULVZ structure (Garnero et al., 1993). How-
ever, besides distinct low-velocity patches, a gradational boundary be-
tween core and mantle (Garnero and Jeanloz, 2000) can also potentially 
explain anomalous SPdKS observations. Despite these different possible 
explanations, heterogeneity locations suggested using SPdKS agree very 
well with ULVZ locations inferred using different seismic phases such 
as ScP, Sdiff and PcP (e.g., Yu and Garnero, 2018; Thorne et al., 2021). 
Therefore, it is likely that the deep mantle heterogeneity that we inves-
tigate is identical to what is commonly referred to as ULVZ structure, 
although we cannot be fully certain.

Thorne et al. (2020) conducted detailed global wavefield simulations 
to investigate the conditions under which SPdKS waves are indicative 
of anomalous deep mantle structure. Following this previous work, we 
define SPdKS waveforms as anomalous if 1) they show two distinct 
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Fig. 3. Real (black) and synthetic (red) radial velocity seismogram stacks for 1◦
distance bins for two example events that show anomalous SPdKS arrivals. (a) 
The blue line indicates the approximate SKS arrival time. Yellow shading indi-
cates distance range associated with pulse splitting for the real data caused by 
anomalous SPdKS waves, which is not observed for the synthetics. Inset: Same 
representation for a longer time interval. No SKiKS arrival is apparent (that 
could be an alternative cause for the observed waveform anomalies). Seismo-
grams are from an event that occurred on September 5, 2011, with waveforms 
recorded at azimuths 27 to 30◦. (b) Same as panel (a) for an event that occurred 
on July 5, 2010, recorded at azimuths 25 to 30◦.

SKS/SPdKS arrivals where synthetic seismograms calculated for PREM 
only predict one (Fig. 3), and 2) the amplitude of the second arrival is 
comparable to, or larger than, the first. We additionally define SPdKS 
as anomalous if we can detect a distinct SPdKS pulse that is clearly de-
layed compared to what is expected from the synthetics, although none 
of the seismic waves for which this last definition was used plays a role 
in our interpretation (for reasons laid out in Section 3.2). We conduct 
this analysis using seismograms that are stacked in 1◦ distance bins, and 
only characterize SPdKS as anomalous (or not) if noise levels allow the 
clear detection of SPdKS signals (Fig. 3). We place particular emphasis 
on avoiding the misinterpretation of SKiKS waves as SPdKS at distances 
around 120◦ (Fig. 3a). Synthetic wavefield simulations (down to 3 s) 
are conducted with AxiSEM3D (Leng et al., 2016, 2019) using PREM 
(Dziewonski and Anderson, 1981) as a background model, including at-
tenuation and ellipticity.

3. Results

3.1. Lowermost mantle anisotropy

Fig. 4 shows spatially binned splitting intensity results (for results 
without binning, see Supplementary Figure S1). We find strong SKS-
SKKS differential splitting for raypaths that sample the deep mantle 
beneath the northeastern Pacific Ocean, while splitting is mostly nondis-
crepant beneath the parts of the United States and Canada that are 
within our study region (Fig. 4a). Exceptions, in which differential split-
ting is strong, include the westernmost part of Canada and parts of the 
southwestern United States (Fig. 4a). These results generally agree with 
previous work that investigated SKS-SKKS differential splitting for some 
parts of the region under study (e.g., Long, 2009; Asplet et al., 2020; 
Wolf et al., 2024c). SKS-SPdKS differential splitting is largely nondis-
crepant (Fig. 4b). The bins to the east that show moderate discrepancies 
are only influenced by a few measurements (Supplementary Figure S1) 
and are therefore less trustworthy than most other bins. The finding 
of weak SKS-SPdKS differential splitting is what we expect. The rea-

son is that SKS and SPdKS raypaths are almost identical throughout the 
whole mantle (Fig. 1), and should therefore sample very similar seismic 
anisotropy. The pattern of SKKS-SPdKS splitting discrepancies, on the 
other hand, is very similar to SKS-SKKS differential splitting, although 
fewer regions are sampled. Our general finding of small �푆�퐼 discrep-
ancies between SKS-SPdKS and larger discrepancies between SKS-SKKS 
and SKKS-SPdKS agrees with our expectation based on their deep man-
tle raypaths.

3.2. Potential heterogeneity locations

We detect anomalous SPdKS waveforms (Section 2.2) at multiple 
backazimuthal swaths. Fig. 5a shows Pdiff raypaths of SPdKS on source 
and receiver side, with path color indicating whether SPdKS phases are 
anomalous or not. The background colors in Fig. 5a show the likelihood 
of heterogeneity determined by Thorne et al. (2021), who argued that 
the most parsimonious heterogeneity distribution inferred from SPdKS 
would be the most likely. This argument takes into consideration the 
source-receiver side ambiguity of possible heterogeneity locations in-
ferred from SPdKS. It is furthermore based on the observation that in 
case of source-side heterogeneity, SPdKS waveforms are anomalous for 
a much larger backazimuthal swath than for heterogeneity located on 
the receiver side. While this is not necessarily true in every single case, 
Thorne et al. (2021) successfully reproduced known ULVZ locations that 
had been found using independent approaches, indicating the general 
validity of this assumption. However, it is worth pointing out that the 
probabilities obtained by Thorne et al. (2021) appear to be underes-
timated, as ULVZs have indeed been observed in most regions with 
probabilities ∼25 % using independent methods.

Following the arguments from Thorne et al. (2021), we do not inter-
pret anomalous SPdKS waveforms as indicative of receiver-side hetero-
geneity if the same anomalous waveform features occur across a more 
than 10◦ wide backazimuthal swath. The Pdiff portions of the SPdKS 
raypaths with these characteristics are shown in orange in Fig. 5a. We 
cannot confidently infer whether these waveform anomalies are due to 
source-side heterogeneity as opposed to receiver-side heterogeneity – we 
simply do not form an opinion. Interestingly, however, the source-side 
Pdiff raypath legs for which SPdKS waveform anomalies can be identi-
fied for a large backazimuthal swath do consistently sample regions on 
the source side for which large heterogeneity probabilities were inferred 
by Thorne et al. (2021).

The two types of anomalous waveform features shown in Fig. 3 only 
occur in a relatively tight backazimuthal range (≤ 5◦) and are there-
fore strong candidates as features caused by heterogeneity along the 
Pdiff raypath leg of SPdKS on the receiver side. The feature shown in 
Fig. 3a is clearly visible for one other event with a similar epicenter, 
while the other feature (Fig. 3b) can be observed for three other events 
that occurred at a similar location. Fig. 5b shows all the receiver-side 
Pdiff raypath segments for these two anomalous backazimuthal swaths. 
Paths A and B correspond to the waveform features shown in Fig. 3a 
and b. The source-side Pdiff raypaths corresponding to Path A cross a re-
gion with a heterogeneity likelihood of ∼15 % in the study of Thorne 
et al. (2021), while the source-side heterogeneity likelihood is larger 
(∼20 − 25 %) for raypaths at slightly smaller and larger backazimuths, 
which do not show anomalies. Following this line of reasoning, if the 
observed waveform features were caused by source-side structure, we 
would expect them to occur across a larger backazimuthal swath. On 
the receiver side, Path A goes across a region with heterogeneity prob-
abilities of over 20 %. This feature was shown in Thorne et al. (2020, 
2021), but not conclusively found to be a deep mantle heterogeneity 
location. Taking all aforementioned evidence into account, we suggest 
that our anomalous SPdKS waveforms on Path A are indeed caused by 
this (previously uncharacterized) heterogeneity on the receiver side. Im-
portantly, Path A does not cross the ULVZ structure found by Revenaugh 
and Meyer (1997) in the northeastern Pacific.
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Fig. 4. Average splitting intensity discrepancies (see legend) for 1.5◦ × 1.5◦ sized bins for (a) SKS-SKKS, (b) SKS-SPdKS and (c) SKKS-SPdKS differential splitting.

The source-side Pdiff raypath segments corresponding to Path B sam-
ple a region with a heterogeneity probability > 50 %, while the prob-
ability is similarly high on the receiver side. If the potential ULVZ on 
the source side was responsible for the anomalous waveform features, 
we would expect the waveform anomalies to occur in a larger backaz-
imuthal range, given the size of the source-side high-probability region. 
In contrast, Path B samples the exact region of high heterogeneity prob-
abilities on the receiver side. Close to this region, ULVZ structure was 
also suggested by Rondenay and Fischer (2003) based on observations of 
SPdKS phases. We therefore find it more likely that the Path B waveform 
features are due to receiver-side rather than source-side heterogeneity. 
However, we make this statement with a lower level of certainty than for 
the heterogeneity located along Path A. In any case, since the indepen-
dent results of Rondenay and Fischer (2003) and Thorne et al. (2021)
indicate ULVZ structure in this region, it is not crucial for our interpre-
tation to have identified this structure ourselves based on SPdKS waves.

In this study, we do not focus on the precise properties of the de-
tected wavespeed anomalies. However, it has been shown in previous 
work that waveform and travel time anomalies such as those observed 
in this study cannot be explained by moderate velocity reductions of a 
few per cent (e.g., Garnero and Helmberger, 1998). Typically, strong 
(> 10 %) P wave reductions, and even more extreme reductions in shear 
velocities (∼20 % to 50 %) are invoked (Thorne et al., 2020; Festin et al., 
2024). Therefore, strong heterogeneity is required to explain our seismic 
observations, as further discussed in Section 4.

4. Geodynamic interpretation

We have identified regions with strong deep mantle anisotropy 
(Fig. 4) and likely low-velocity heterogeneity (Fig. 5) just above the 
CMB. The heterogeneity locations coincide with, or are adjacent to, lo-
cations of strong deep mantle anisotropy (Fig. 6a). Additionally, we find 
strong seismic anisotropy close to the location beneath northern Mex-
ico and the southern United States at which Thorne et al. (2021) show a 
high probability of heterogeneity (Fig. 5). This location, while not well-
sampled by SPdKS in this study, was also found to host ULVZ structure 

by Thorne et al. (2019) (Fig. 5b) and Havens and Revenaugh (2001). 
All these potential heterogeneity locations are characterized by above-
average background seismic velocities (Fig. 6b), some of which were 
identified by van der Meer et al. (2018) as ancient subducted anoma-
lies, specifically the Beaufort and Wichita slabs (Fig. 6b). The origin of 
another high-velocity anomaly beneath the northeastern Pacific Ocean 
is unclear, although its shape can potentially be explained by subducted 
slabs piling up at the CMB (Fig. 6c). This possibility is also supported by 
global seismic tomography models, which consistently show substan-
tially higher than average seismic velocities at the base of the mantle 
beneath the northeastern Pacific Ocean and the northwestern United 
States (e.g., Simmons et al., 2010; Ritsema et al., 2011; French and Ro-
manowicz, 2014).

To better understand the co-existence of ULVZs and seismic aniso-
tropy beneath subduction region, we perform 3D thermochemical cal-
culations to study the dynamics of subducted slabs and their influence 
on mantle flow and thermal and chemical structure in the lowermost 
mantle. Our model has a similar setup as that in Li (2023) and is built 
from the case 1 of Li (2023). The model uses a 3D spherical geometry 
that covers the whole mantle depth and has a lateral dimension of 120◦
(longitudinal) × 60◦ (latitudinal) (Fig. 7a). The surface is divided into 
an overriding plate and a subducting plate, and asymmetric subduction 
is achieved by imposing a constant westward velocity of 3 cm/yr of the 
subducting plate at the surface (Li, 2023). A 10-km-thick oceanic crust is 
employed at the top of the subducting plate. The oceanic crust is 2% in-
trinsically denser than background mantle, which falls within the range 
of density difference between basalt and pyrolite as constrained in min-
eral physics experiments (e.g., Ringwood, 1990; Hirose et al., 2005). The 
oceanic crust sinks to the deep mantle with the subducting plate. The 
viscosity is both temperature and pressure dependent and is expressed 
as �휂 = �휂�푟�푒�푥�푝[�퐴(0.6 − �푇 )], where �퐴 is activation energy that controls 
temperature-dependence of viscosity, �푇 is non-dimensional tempera-
ture, and �휂�푟 is a prefactor that controls depth-dependence of viscosity. 
In this model, �퐴 = 6.91 in hot regions with �푇 ≥ 0.6 and �퐴 = 11.51 in cold 
regions with �푇 < 0.6. The �휂�푟 is 1.0 and 30.0 in the upper mantle and 
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Fig. 5. Heterogeneity results obtained using SPdKS phases. (a) Sources are rep-
resented as yellow stars, stations as dark gray circles, and possible raypaths of 
SPdKS along the CMB on source and receiver side as gray (not anomalous), 
orange (anomalous for backazimuthal swath ≥ 10◦) and pink (anomalous for 
backazimuthal swath ≤ 5◦) lines (see legend). Background colors represent het-
erogeneity (likely ULVZ) probabilities calculated by Thorne et al. (2021) (see 
legend). (b) Similar plotting conventions as for panel (a) for a zoomed-in ge-
ographical region and showing a more limited set of data. Paths along which 
SPdKS waves are likely influenced by receiver-side heterogeneity (see text) are 
shown in pink and labeled Path A and Path B. ULVZ locations suggested by Ron-
denay and Fischer (2003) and Thorne et al. (2021) are outlined in violet and 
red respectively.

lower mantle, respectively, leading to a 30 times viscosity jump from 
upper mantle to lower mantle. Due to the temperature dependence of 
viscosity, the cold subducted slab is more viscous than the surrounding 
mantle. More details of model setup are presented in Li (2023). Differ-
ent from models in Li (2023), a layer of another chemical component 
is imposed in the lowermost 5 km of the mantle, representing products 
of core-mantle reaction (e.g., Loper and Lay, 1995; Otsuka and Karato, 
2012; Lai et al., 2022) and is assigned the same intrinsic density as the 
oceanic crust.

We find that as the subducting slab reaches the base of the man-
tle, its motion changes from being mainly vertical to mainly horizontal 
(Fig. 7a), which can lead to slab deformation. The transition to hori-
zontal flow in the lowermost mantle observed in the geodynamic model 
is supported by seismic anisotropy studies, which show that our study 
region is broadly dominated by higher shear velocities for horizontally 
than vertically traveling shear waves (e.g., Panning and Romanowicz, 
2006; French and Romanowicz, 2014). If seismic anisotropy is due to 
shape-preferred orientation, this observation implies horizontal rather 
than vertical flow (e.g., Kendall and Silver, 1998; Yamazaki and Karato, 
2007). For the case of seismic anisotropy due to the alignment of indi-
vidual crystals in an aggregate (crystallographic-preferred orientation), 

multiple studies have shown that a horizontal flow geometry plausibly 
explains measured shear-wave splitting parameters in this region (e.g., 
Wolf and Long, 2022; Asplet et al., 2023). These previous studies that 
suggested flow directions for parts our study region did not (only) rely 
on differential *KS splitting measurements, which made it possible to 
infer flow. The differential SKS-SKKS and SPdKS-SKKS splitting mea-
surements made in this study are an excellent seismic anisotropy detec-
tor. However, they are unsuitable to infer deep mantle flow directions, 
because it is generally unclear which phase(s) are influenced by lower-
most mantle anisotropy, and to what degree (e.g., Wolf et al., 2024b). 
It is thus not possible to estimate splitting parameters due to lowermost 
mantle anisotropy for individual raypaths using this approach. There-
fore, for our interpretation, we focus on a qualitative comparison of 
seismic anisotropy and geodynamic modeling results.

We also find that the subducted slab is sometimes folded in the low-
ermost mantle (Supplementary Movie S1) in our models, which may 
result in additional slab deformation. Note that folding behavior of sub-
ducted slabs in the lowermost mantle has been inferred using seismic 
observations as well (e.g., Hutko et al., 2006). Previous numerical mod-
eling experiments that combine mantle convection and mineral physics 
elasticity have shown that CPO can develop due to slab deformation, 
causing strong seismic anisotropy in the D′′ layer (McNamara et al., 
2002, 2003). Therefore, the strong seismic anisotropy in our study re-
gion can be explained by flow and deformation caused by subducted 
slabs. Our model also shows that the arrival of the subducted slab to the 
lowermost mantle and its changes of morphology by folding are often 
accompanied by the formation of hot thermal anomalies near the slab 
(Fig. 7a; Supplementary Movie S1). The radial flow velocity increases 
in the hot anomalies, which may cause additional deformation and thus 
increase the magnitude of anisotropy.

Models with different viscosity structures than that shown in Fig. 7
are presented in Li (2023). We find that once the slab arrives at the 
lowermost mantle, the change of flow direction from being mostly ver-
tical to mostly lateral is independent of modeling parameters, which is 
not surprising because the CMB is a physical barrier that stops vertical 
advection between core and mantle. However, the folding behavior of 
subducted slabs strongly depends on slab viscosity. As slab viscosity in 
the lowermost mantle is reduced, for example, by either reducing the 
degree of temperature-dependence of viscosity and/or by reducing the 
viscosity of postperovskite (Ppv), slabs fold less frequently (Li, 2023). 
Despite that, hot upwelling plumes still form in regions adjacent to sub-
ducted slabs in the lowermost mantle (Li, 2023). The formation of hot 
thermal anomalies in subduction regions of the lowermost mantle may 
be triggered due to the arrival of cold subducted slabs or the result of 
small-scale convection (Li, 2020).

The most widespread mineral in the lowermost mantle is bridgman-
ite and its high-pressure polymorph Ppv (e.g., Trønnes, 2010). Due 
to the above average shear velocities in most of our study region, 
implying lower than average temperatures and a relatively shallow 
bridgmanite-postperovskite transition (e.g., Murakami et al., 2004), Ppv 
may dominate. This has also been suggested based on modeling of seis-
mic anisotropy measurements conducted in previous studies (e.g., Wolf 
and Long, 2022; Asplet et al., 2023). Therefore, at least in parts of our 
study region, the measured deep mantle anisotropy may be due to CPO 
of Ppv. Additionally, it has also been argued that thin lenses of Ppv 
may exist near the CMB in some regions (e.g., Hernlund et al., 2005), 
which could cause seismic anisotropy due to SPO. While our observa-
tions of seismic anisotropy cannot distinguish between these scenarios, 
they would not generally lead to wavespeed heterogeneities sufficient 
to cause SPdKS waveform anomalies (e.g., Thorne et al., 2020).

As subducted slabs reach the lowermost mantle, they are warmed up 
and become less viscous, which facilitates the segregation of subducted 
oceanic crust from the relatively cold slab. The segregation of subducted 
oceanic crust is greatly controlled by (and increases with) its thickness
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Fig. 6. Summary of seismological results. (a) Combined SKS-SKKS and SKKS-SPdKS differential splitting measurements using the same plotting conventions as in 
Fig. 4a. Candidate heterogeneity locations are shown in pink and violet shading (see legend). (b) Velocity perturbations for the S40RTS (Ritsema et al., 2011) 
tomography model and candidate heterogeneity locations (see legend). Previously identified slab remnants (van der Meer et al., 2018) are labeled. An unidentified 
high-velocity patch is marked by the red question mark. The inset shows velocity perturbations for the same region using the SGLOBE-rani (Chang et al., 2015) 
tomography model for comparison. (c) S40RTS cross-section examining the unidentified high-velocity patch (red question mark) for the start-end points shown at 
bottom right. Connected high-velocity structure is shown that could potentially be a subducted slab remnant. Inset shows cross-section location.

Fig. 7. (a) Snapshot of temperature field in the geodynamic model, showing the subducted slab (blue) and hot thermal anomalies (red). The arrows show mantle 
flow velocity at 50 km above the CMB. (b) Snapshot of compositional field in the geodynamic model, showing accumulations of oceanic crust (green) and products of 
core-mantle reaction (cyan) on the CMB. The red contours are at temperatures of 125K higher than horizontal average, showing locations of hot thermal anomalies 
at this depth. In both panels, the gray color shows the CMB, and the white lines show the boundaries of the model domain.

and intrinsic density anomaly. Crustal segregation is also observed in 
our model in this study (Fig. 7b). We find that the crustal accumulations 
often occur in the hot thermal anomalies (Fig. 7b). Due to its relatively 
low melting temperature (e.g., Andrault et al., 2014), the oceanic crust 
in the hot thermal anomalies could be partially molten, causing ULVZs. 
Additionally, water and other incompatible elements may be present 
at the CMB (e.g., Ko et al., 2022), possibly transported downwards in 
slabs (e.g., Walter, 2021), causing reduced melting temperatures of deep 
mantle materials. Therefore, the co-existence of seismic anisotropy and 
ULVZs in our study region can be both related to the subduction of 
slab to the lowermost mantle. Alternatively, or in addition to, subducted 
oceanic crust, products of core-mantle reaction also preferentially accu-

mulate in the hot thermal anomalies in the lowermost mantle (Fig. 7b). 
These products may contribute to ULVZ formation as well, although 
their volume remains uncertain due to poorly constrained rates of core-
mantle reactions in the real Earth. Therefore, it is plausible that either 
the observed strong seismic wavespeed heterogeneity is caused by ac-
cumulations of subducted material, or that the downwelling material 
leads to the accumulation of pre-existing CMB material in seismically 
visible patches. Given the necessity for large velocity reductions to ex-
plain our seismic observations, it appears unlikely that our observations 
can be explained solely by hot thermal anomalies without chemical het-
erogeneity.
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5. Summary

In this work, we have conducted the first (to our knowledge) simul-
taneous analysis of SPdKS waves for both deep mantle anisotropy and 
low velocity heterogeneity. We have found evidence for likely ULVZ 
structure in the lowermost mantle beneath North America and the north-
eastern Pacific Ocean. Multiple ULVZ locations beneath North America 
are co-located with, or adjacent to, strong seismic anisotropy, likely 
caused by slab-driven flow. Through geodynamic modeling simulations, 
we find that the sinking of subducted slabs into the lowermost mantle 
can trigger the development of hot thermal anomalies adjacent to these 
slabs. These hot anomalies serve as sites where chemical heterogeneities 
such as subducted oceanic crust and products of core-mantle reaction 
can accumulate. Consequently, these thermochemical anomalies induce 
strong reductions in seismic velocity, while the flow induced by the de-
scending slabs leads to seismic anisotropy, providing an explanation for 
our seismic observations.

Code availability

The synthetic seismograms for this study were computed using 
AxiSEM3D (Leng et al., 2016, 2019), which is publicly available at 
https://github .com /AxiSEMunity and described in detail in Fernando 
et al. (2024).
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