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Abstract

New psychoactive substances (NPS) targeting cannabinoid receptor 1 pose a significant threat
to society as recreational abusive drugs that have pronounced physiological side effects.
These greater adverse effects compared to classical cannabinoids have been linked to the
higher downstream β-arrestin signaling. Thus, understanding the mechanism of differential
signaling will reveal important structure-activity relationship essential for identifying and
potentially regulating NPS molecules. In this study, we simulate the slow (un)binding process
of NPS MDMB-Fubinaca and classical cannabinoid HU-210 from CB1 using multi-ensemble
simulation to decipher the effects of ligand binding dynamics on downstream signaling. The
transition-based reweighing method is used for the estimation of transition rates and
underlying thermodynamics of (un)binding processes of ligands with nanomolar affinities.
Our analyses reveal major interaction differences with transmembrane TM7 between NPS
and classical cannabinoids. A variational autoencoder-based approach, neural relational
inference (NRI), is applied to assess the allosteric effects on intracellular regions attributable
to variations in binding pocket interactions. NRI analysis indicate a heightened level of
allosteric control of NPxxY motif for NPS-bound receptors, which contributes to the higher
probability of formation of a crucial triad interaction (Y7.53-Y5.58-T3.46) necessary for stronger
β-arrestin signaling. Hence, in this work, MD simulation, data-driven statistical methods, and
deep learning point out the structural basis for the heightened physiological side effects
associated with NPS, contributing to efforts aimed at mitigating their public health impact.
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A combination of molecular dynamics simulation and state-of-the-art statistical post-
processing techniques provided valuable insight into GPCR-ligand dynamics. This
manuscript provides solid evidence for differences in the binding/unbinding of
classical cannabinoid drugs from new psychoactive substances. The results could aid
in mitigating the public health threat these drugs pose.

https://doi.org/10.7554/eLife.98798.1.sa2

Introduction

Cannabinoid receptor 1 (CB1), which is majorly expressed in the central nervous system (CNS)
belongs to the class A G-protein coupled receptor (GPCR) family proteins.1     –4      GPCRs are
expressed in the cellular membrane and help transduce chemical signals from the extra-cellular to
the intracellular direction with the help of the downstream signaling proteins (G-proteins and β-
arrestin).5     –7      In addition, GPCRs are the largest family of drug targets due to their substantial
involvement in human pathophysiology and druggability.8     ,9      Significant research efforts have
been invested in the discovery of drugs targeting CB1, which helps to maintain homeostasis in
neuron signaling and physiological process.10     ,11     

Initial drug discovery efforts, especially the design of synthetic agonists, were based on modifying
the scaffolds of phytocannabinoids (e.g., Δ9-Tetrahydrocannabinol, cannabinol) and
endocannabinoids (e.g., Anandamide, 2-arachidonoylglycerol) (Figure 1     ).12     –14      The synthetic
molecules, which maintain the aromatic, pyran, and cyclohexenyl ring of the most common
psychoactive phytocannabinoid Δ9-THC, are known as classical cannabinoids (Figure S1).15     –17     

However, the pharmacological potential of these molecules was diminished due to their
psychological and physiological side effects (“tetrad” side effect).18     –20      One such example of a
synthetic cannabinoid is 1,1-Dimethylheptyl-11-hydroxy-tetrahydrocannabinol (commonly known
as HU-210), which is a Schedule I controlled substance in the United States.21     ,22     

Apart from the canonical structures of synthetic cannabinoids, molecules with diverse scaffolds
were also synthesized through structure-activity studies23     –25     . However, these molecules also
lacked any pharmacological importance due to psychological side effects.26     ,27      Due to the
diverse structures and psychological effects, these molecules became unregulated substitutes for
traditional illicit substances. 28      These synthetic cannabinoids belong to a class of molecules
known as new psychoactive substances(NPS) as these molecules are not scheduled under the
Single Convention on Narcotic Drugs (1961) or the Convention on Psychotropic Substances (1971).
28     ,29      Synthetic cannabinoids make up the largest category of NPS molecules.30     ,31      NPS
creates a significant challenge for drug enforcement agencies, as they appeal to drug users seeking
“legal highs” to avoid the legal consequences of using traditional drugs and to be undetectable in
drug screenings.27     

The molecular structures of NPS synthetic cannabinoids consist of four pharmacophore
components: linked, linker, core, and tail groups.27     ,32      The core usually consists of aromatic
scaffolds (e.g., indole, indazole, Carbazole, Benzimidazole) (Figure S2).24      The tail and linker
groups are connected to the core. In the tail group, long alkyl chain-like scaffolds are ubiquitous in
most NPSs; however, molecules with bulkier cyclic chains (e.g., AB-CHMINACA) are also
present.32      Frequently encountered scaffolds in linker groups are methanone, ethanone,
carboxamide, and carboxylate ester groups.33      The linker acts as a bridge between the core and
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Figure 1.

Classification of cannabinoid agonists: (A) Molecules derived from cannabis plants (phytocannabinoids) (B) endogenous
agonists (Endocannabinoids) (C) synthetically designed molecules (Synthetic cannabinoids). Synthetic cannabinoids can be
further classified based on scaffolds (phytocannabinoid analogues and endocannabinoid analogues or new psychoactive
substances). Common pharmacophore groups of the ligands are shown in different colors. For phytocannabinoids and
phytocannabinoid synthetic analogues, tricyclic benzopyran group and alkyl chains are colored in red and blue, respectively.
Polar head group, propyl linker, polyene linker, and tail group of endocannabinoid and endocannabinoid analogues are
colored with green, yellow, red, and orange, respectively. Linked, linker, core, and tail group of new psychoactive substances
are colored with green, yellow, red, and orange, respectively.
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the linked group. In the initial NPS synthetic cannabinoids, the linked group included
polyaromatic rings; however, non-cyclic linked groups have also been identified in NPS
recently.24     ,32      Structural diversity in every component, while maintaining high binding affinity
and potency for CB1 make these molecules easier for drug manufacturers and harder to ban by
drug enforcement agencies.34     ,34     –37     

The use of NPS synthetic cannabinoids has been found to cause more physiological side effects
than traditional cannabinergic “tetrad” side effects. 38      These side effects include tachy-cardia,
drowsiness, dizziness, hypertension, seizures, convulsions, nausea, high blood pressure, and chest
pain.38     ,39      For instance, Gatch and Forster have shown that the high concentrations of AMB-
FUBINACA, the molecule which caused “zoombie outbreak” in New York, induced
tremors.40     ,41      A recent biochemical study has linked these discriminatory effects with the
differential signaling of β-arrestin.39      According to Finlay et al., NPS shows higher β-arrestin
signaling compared to the classical cannabinoids, which has also been confirmed by other β-
arrestin signaling studies.39     ,42      However, mechanistic understanding of these differential
downstream signaling effects between NPS and classical cannabinoids is still missing.

Mutagenesis studies have shown that the conserved NPxxY motif of CB1 have a larger role in
downstream β-arrestin signaling than G-protein signaling.43     ,44      Recently published MDMB-
FUBINACA bound CB1-β-arrestin-1 complex structure also points out the importance of the unique
triad interaction (Y3977.53-Y2945.58-T2103.46) involving NPxxY motif in β-arrestin-1 signaling.44     

However, structural comparison of the classical cannabinoid (AM841) and NPS (MDMB-
FUBINACA) bound active CB1-Gi complex shows a conformationally similar NPxxY motif (Figure
2     ). 45     ,46      In light of these experimental observations, it can be inferred that higher β-arrestin
signaling stems from higher dynamic propensity of triad interaction formation for NPS-bound CB1.
We hypothesized that distinct orthosteric pocket interactions for NPS and Classical Cannabinoids
causes differential allosteric modulation of intracellular dynamics that facilitate triad interaction.

To study these distinct dynamic effects, we compared the (un)binding of the classical cannabinoid
(HU-210) and NPS (MDMB-FUBINACA) from the receptor binding site. These molecules have
nanomolar affinities. Obtaining the initial pathway of ligand unbinding from unbiased sampling
will be computationally expensive. Therefore, a well-tempered metadynamics approach was used
to sample the unbinding event, where a time-dependent biased potential is deposited for the faster
sampling of the metastable minima along the pathway. 47      However, a detailed characterization
of the unbinding processes is only possible through the thermodynamics and kinetics estimation
of intermediate states. Thus, a transition operator-based approach is needed, which helps to
estimate the transition timescale between the states and the stationary density of each state.
Estimation from these approaches usually depends on the equilibrium between the local states,
which can only be maintained by reversible sampling. For high-affinity ligands like MDMB-
FUBINACA and HU-210, reversible sampling is expensive as ligands move from high energy
unbound states to lower energy bound states irreversibly. Hence, we implemented a transition
operator approach named the transition-based reweighting analysis (TRAM) method, which can
tackle this lack of local equilibrium between states by combining unbiased and biased
approaches.48      TRAM has been used different simulation studies for estimating thermodynamics
and kinetics of high energy processes. Characterization of the dimerization kinetics and sodium
ion translocation of µ-opioid receptors have been studied using TRAM.49     ,50      Furthermore,
TRAM have been utilized for thermodynamics and kinetics estimations of ligand (un)binding for
kinase and Serine protease.48     ,51      To implement TRAM for our study, extensive sampling of the
(un)binding process of both ligands was performed using a combination of umbrella sampling and
unbiased simulations from the pathway obtained using metadynamics (see Methods section). 52     

We showed that TRAM can produce consistent kinetic estimation with less unbiased simulation
data compared to traditional methods like the Markov state model.53     

https://doi.org/10.7554/eLife.98798.1
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Figure 2.

NPS bound CB1 (PDB ID: 6N4B, 45      color: Blue) structure is superposed with the classical cannabinoid bound CB1 (PDB ID:
6KPG,46      color: Purple). Both structures are in Gi bound active state. Proteins are shown in transparent cartoon
representation. Structural comparison of conversed activation metrices (Toggle switch, DRY motif, and NPxxY motif) and
ligand poses are shown as separate boxes. Quantitative values of the activation metrics for both active structures are
compared as scatter points on 1-D line with the CB1 inactive structure (PDB ID: 5TGZ,1      color: orange). These quantitative
measurements were discussed in Dutta and Shukla 4     
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Based on estimates of thermodynamics and kinetics, it was observed that both NPS and classical
cannabinoids have similar unbinding pathways. However, their unbinding mechanisms differ due
to the aromatic tail of the MDMB-FUBINACA compared to the alkyl side chain of HU-210.
Furthermore, dynamic interaction calculations reveal a major difference with TM7 between NPS
and classical cannabinoid. Specifically, the hydroxyl group in the benzopyran moiety of HU-210
forms much stronger polar interactions with S3837.39 compared to the carbonyl oxygen of the
linker group in MDMB-FUBINACA. MD simulations of other classical cannabinoids and NPS
molecules bound CB1 also support these significant interaction differences. The ligand binding
effect in intracellular signaling was estimated by measuring the probability of triad formation in
the intracellular region. NPS bound CB1 shows higher probability of forming triad interaction
compared to the classical cannbinoids, which supports the experimental observations of high β-
arrestin signaling of NPS bound receptors. To validate that the triad formation is indeed caused by
the binding pocket interaction differences between the two ligands, allosteric strength binding
pocket residues and NPxxY motif was estimated with the deep learning technique, Neural
relational inference (NRI).54      NRI network revealed that binding pocket residues of NPS bound
ensemble have higher allosteric weights for the NPxxY motif compared to classical cannabinoids.
These analyses validate our hypothesis that the differential dynamic allosteric control of the
NPxxY motif might lead to the β-arrestin signaling for different ligands. This study provides a
foundation for additional computational and experimental research to enhance our
understanding of the connection between ligand scaffolds and downstream signaling. This
knowledge will assist drug enforcement agencies in proactively banning these molecules and
inform policies that can protect individuals from the effects of abuse.

Results and Discussion

Metadynamics simulations capture the unbinding
paths of NPS and classical cannabinoids
The representative classical cannabinoid and NPS selected for this study are HU-210 and MDMB-
FUBINACA.22      Compared to Δ9-THC, HU-210 has an extra hydroxyl group in the C-11 position and
a 1’,1’-Dimethylheptyl group instead of a pentyl side chain (Figure 1C      and S1). MDMB-
FUBINACA is a derivative of AB-FUBINACA, which was originally developed by Pfizer (Figure
1C     ).45      These ligands binds to CB1 receptor with nanomolar affinities (MDMB-FUBINACA Ki :
1.14 nM;55      HU-210 Ki : 0.61 nM14     ,56     ).

Metadynamics simulation is a biased sampling method and has been widely used in protein-ligand
binding and unbinding studies, as preexisting knowledge of the pathway is not necessary for
performing these simulations.57     –60      In metadynamics, a time-dependent biased potential is
deposited into the sampling process for the ligand to get out of stable minima at a faster pace.61     

In this work, two replicates of well-tempered metadynamics were performed to capture the
unbinding pathway of HU-210 and MDMB-Fubinaca. The commonly used collective variables were
selected for metadynamics simulations: (1) z component distance between the center of mass of
ligand and residue in the ligand binding pocket (W3566.48), and (2) Contact number with the ligand
heavy atom and α carbon of all binding pocket residues (Equation 4     ).

The z-component distance was plotted against the RMSD of the ligands from the bound pose,
which indicates that ligands follow a similar pathway for each replica (Figures S3A and S3C). It is
also observed that the dissociation happens via the opening formed by TM2, TM3, ECL2, and N-
terminus for both ligands (Figures 3A, 3B, 3C     , and 3D     ). These observations indicate that the
pathway may be the minimum free energy pathway for the ligand unbinding in CB1. Previous
metadynamics binding simulation of another cannabinoid ligand also points to a similar
pathway.60      Reweighted probability density obtained from metadynamics calculation shows one
highly dense region in the pocket, depicting the stability of the bound pose of the ligands (Figures
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S3C and S3D). However, time dependent external force applied during the metadynamics makes
the sampling in the orthogonal direction of the CVs less extensive. Thus, the biased simulation
might not sample some protein-ligand interactions that helps to characterize intermediate states.
To properly sample intermediate transition states during the underlying unbinding process,
extensive unbiased simulations were performed from the initial pathway obtained from the
limited sampling of the well-tempered metadynamics (discussed below).

Comparison of thermodynamics and kinetics
estimates from Markov state Model and
Transition-based reweighting analysis method
MSM and TRAM are both postprocessing techniques for estimating the kinetics and
thermodynamics of underlying physical processes observed in MD simulation. MSM is applied to
reversible equilibrium simulations, whereas TRAM estimations can be obtained from multi-
ensemble simulations (combination of biased and unbiased simulations). The MSM depends on the
local equilibrium between the Markovian states, which is also known as detailed balance
(Equation 5     ). However, reversible local sampling becomes challenging with short parallel
trajectories when the free energy difference between two local Markovian states is high. In those
cases, reversibility is still assumed by forcing the detailed balance when estimating the transition
probability matrix.53      This leads to the incorrect estimation of the unbinding kinetics due to
limited sampling from the stable bound state to the high energy unbound states.48      Refining the
state discretization (i.e., increasing the number of states) may resolve the issue. However, refined
state discretization sometimes decreases the statistically significant transition count between all
states, decreasing the model certainty. TRAM was shown to solve this problem by combining
biased and unbiased simulations (see Methods section). Biased simulations (e.g., replica exchange,
umbrella sampling) help to enhance the local sampling, either by increasing the temperature for
faster sampling or by fixing collective variables with biased potential to have better sampling in
orthogonal directions. It has been shown that compared to MSM, kinetics predicted using TRAM
from the combination of biased and unbiased simulations are more aligned with the experiment
results.48     

As unbinding of ligands with high binding affinity (nanomolar) are being studied here,
asymmetric transitions might be observed along the pathway. Therefore, we compared the use of
MSM and TRAM in estimating the kinetics and thermodynamics of the (un)binding process. For
TRAM, unbiased simulation and umbrella sampling were run from the clusters in conformational
ensemble obtained from metadynamics (refer to the Methods section for more details). For MSM
estimation, only unbiased simulations starting from the metadynamics pathway were considered.

For thermodynamics comparison, standard free energy was estimated for the ligands considering
volume correction.62      TRAM and MSM predictions of standard binding free energy are within 0.6
kcal/mol of each other for each ligand (Figure 4A     ). Although the absolute binding free energy
differs from the experimentally predicted value by approximately 3 kcal/mol, the relative
estimated free energy (ΔΔG) values are also within 0.6 kcal/mol of the experimentally determined
values. Therefore, it indicates that with sufficient sampling, both MSM and TRAM converge to the
same predictions of relative free energy.

We also compared the kinetics obtained from the MSM and TRAM. Kinetic measurements were
performed with transition path theory (TPT), which uses transition probability matrix from MSM
or Tram to estimate mean free passage time between different states (see Methods section).
Estimated binding times using TRAM and MSM match perfectly for both ligands. The estimated
dissociation times are within one order of magnitude with each other. These observations agree
with the previously reported computational research, where experimentally comparable
estimation of koff rates were shown to be more challenging compared to kon.63     

https://doi.org/10.7554/eLife.98798.1
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Figure 3.

Unbinding pathway of MDMB-FUBINACA (A) and HU-210 (C) obtained from the well-tempered metadynamics. Ligand along
the pathway is shown with different color in stick representation. The superposition of representative frames of simulation
replicas from the unbinding ensembles are shown, where the MDMB-FUBINACA (B) and HU-210 (D) are dissociating from the
receptor. Both transmembrane (left panel) and extracellular (right panel) views are displayed here. Proteins and ligands are
represented as cartoon and sticks, respectively.
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Figure 4.

(A) The bar plot represents standard binding free energy for HU-210, MDMB-FUBINACA, and difference of standard binding
free energy between the ligands. MSM and TRAM estimations are shown as blue and orange bars, respectively.
Experimentally predicted values are shown as dotted line. (B, C) Binding (B) and dissociation (C) time for HU-210 and MDMB-
FUBINACA are shown as box plots. (D) Difference in dissociation time of the two ligands is plotted as box plot against fraction
of unbiased trajectories used for the estimation. This timescales were obtained from the mean free passage time calculation
using TPT with transition probabilities estimated from MSM (color: blue) and TRAM (color: orange). Errors were calculated
using boot-strapping method with 3 bootstrapped samples.
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Further analyses were performed to compare these methods in the low unbiased data regime. The
difference between the dissociation time of ligands was measured with different amounts of
unbiased data. It is observed that even with only 25% of original, unbiased data, TRAM can predict
the kinetics within an order magnitude of the kinetics estimated with full dataset (Figure 4D     ).
On the other hand, error in MSM predicted kinetics more rapidly compared to TRAM with lesser
amount of unbiased data. A similar trend can be observed for ΔΔG prediction (Figure S4).
Therefore, TRAM provides better predictions of thermodynamics and kinetics when less amount
of unbiased data.

Unbinding mechanism for new psychoactive substance
Although the binding position of the ligand and the overall binding pathway are similar for both
the ligands, extensive biased and unbiased simulation analyzed by TRAM shows a significant
difference in the unbinding mechanism of the ligands. To capture the unbinding pathway for
MDMB-FUBINACA, we projected the TRAM weighted free energy landscape of the distance
between the linked part of the ligand (Leucinate group) and TM5 with respect to the distance
between the ligand tail group and TM7 (Figure 5A     ). The free energy landscape was divided into
the non-overlapping intermediate macrostates to obtain better description of the unbinding
process. In each macrostate, the contact frequency of ligand with binding pocket residues were
calculated along with corresponding contact energies. A metastable minima is observed for
macrostate representing the bound pose of the ligand depicting the stability of the ligand (Figure
5A     ). In the bound pose, the major interactions form between the aromatic (F1702.57, W2795.43,
F268ECL2) and hydrophobic (L1933.29) residues of the binding pocket (Figures 6A, 6B     , and S5B).

The free energy landscape shows two probable mechanisms for MDMB-FUBINACA unbinding
from the bound pose. The two pathways are differentiated by whether the linked or tail part of
MDMB-FUBINACA dissociates first. One of the pathways, aromatic tail part of MDMB-FUBINACA
moves away from TM5 and form interaction with aromatic residues in TM2 (F1702.57 and F1742.61)
(Figures 5A     , 6A, 6B     , and S5C). This leads to the formation of intermediate metastable states,
which we characterize as macrostate Intermediate state 1 (I1). This metastable minimum observed
from I1 macrostate might be unique to the FUBINACA family of NPS synthetic cannabinoids as this
family has the aromatic ring in tail group, unlike the long alkyl chain in other common synthetic
cannabinoids. Along with the aromatic residues of TM2, major interaction with F268ECL2 is
maintained in macrostate I1 (Figures 6A      and 6B     ). K-L divergence analysis between bound
and I1 macrostates show that only minor changes in the binding pocket residues, especially in
TM2 are needed to accommodate MDMB-FUBINACA in this conformational state (Figure 6C     ).
The interconversion timescale (MFPT) between the macrostates were obtained from the transition
path theory. MFPT calculations show that both the timescales are similar with slightly higher
timescales for the bound pose compared to I1 transition (20.6 ± 2.3µs) (Figure 6B     ). In this
pathway, ligand moves from I1 metastable state to space between N-terminus, TM2, TM3, and
ECL2 before dissociating from the receptor (Figure 6B     ). This region between the unbinding
ensemble have been characterized as macrostate I3 (Figure 5A     ). Contact analysis show
significant drop in ligand residue contacts with only aromatic residues in TM2, TM3 and ECL2
forming dominant interactions (Figures 6A      and S5D). K-L divergence shows that ligand
positioning in this particular regions causes relatively higher divergence on TM2 compared to I1
(Figure 6C     ). Kinetically, the transition from I1 to I3 (33.7 ± 3.1µs) is much slower compared to
reverse transition (0.8 ± 0.0µs), validating the higher stability of the I1 compared to I3 macrostate
(Figure 6B     ). According to the TPT analysis, breaking the aromatic interactions for complete
dissociation of MDMB-FUBINACA requires ∼ 371.9 ± 40.2µs, making it the slowest step in this
pathway (Figure 6B     ).

In the other possible unbinding pathway, orientation of MDMB-FUBINACA in the pocket doesnot
change compared to the bound pose. The linked part of the ligand moves to space between N-
terminus, TM2, TM3, and ECL2 (Figure 6B     ). We label this macrostate as I2. In this state, we
observe stable polar interaction with K3767.32 and hydrophobic interactions with aromatic and

https://doi.org/10.7554/eLife.98798.1
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Figure 5.

TRAM weighted Two dimensional projection of unbinding free energy landscape for MDMB-FUBINACA (A) and HU-210 (B).
For MDMB-FUBINACA, distance between TM5 (W2795.43-Cα) and tail part of the ligand is plotted against the distance between
TM7 (S3837.39-Cα) and ligand linked part. For HU-210, distance between the TM5 (W2795.43-Cα) and tail is plotted against the
TM7 (S3837.39-Cα) and cyclohexenyl ring of the ligand. Measured distances are shown as red dotted lines in the inset figures.
Macrostate positions are shown on the landscapes.
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Figure 6.

(A) The contact probabilities with binding pocket residues of MDMB-FUBINACA are shown as a heatmap for different
macrostates, where ligand maintains contact with the receptor. Residues in different structural elements (loops and helices)
are distinguished by distinct color bars. (B) Representative structures are shown where ligand (color: orange) and four
residues (color: green) with highest interaction energies are shown as sticks. Proteins are shown as purple cartoon.
Timescales between interstate transitions are shown as arrows. Arrow thickness is inversely proportional to the order of
magnitude of the timescale. (C) K-L divergence between protein conformations of different states are shown with color (blue
to red) and thickness (lower to higher) gradient. Thickness gradient are shown as rolling average to highlight a region of high
K-L divergence. Errors in MFPT calculations were estimated based on 3 bootstrapped TRAM calculation with randomly
selected 95% of unbiased trajectories.
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other hydrophobic residues (F1772.64, F268ECL2, P269ECL2) (Figures 6A      and S5A). However, free
energy of this macrostate is higher than the bound pose, depicting higher entropic cost associated
with this state. This can be shown by the higher intrastate RMSD of I3 compared to the bound pose
(Figure S6). Transition timescale from the bound pose to the I2 (136.7 ± 13.9µs) is one order of
magnitude higher compared to the reverse transition (9.8 ± 13.9µs) (Figure 6B     ). K-L divergence
analysis also shows higher divergence in the extracellular region of TM2 and N-terminus
compared to bound pose (Figure 6C     ). Dissociation of MDMB-FUBINACA from I2 to the bulk is
faster compared to dissociation from I3 (246.6 ± 26.0µs) (Figure 6B     ). However, the overall
kinetic barrier for dissociation from the binding pose for the both unbinding mechanisms are
relatively similar.

Unbinding mechanism for classical cannabinoid
For capturing the classical cannabinoid (un)binding mechanism, distances from the two terminal
scaffolds (cyclohexenyl and alkyl chain) to TM5 and TM7 were measured similar to the NPS
(Figure 5B     ). The free energy landscape of the unbinding of the HU-210 shows the differences in
the mechanism from MDMB-FUBINACA. Similar to MDMB-FUBINACA, the HU-210 unbinding land-
scapes were also divided into non-overlapping macrostates. Macrostate representing HU-210
bound pose shows a metastable energy minimum. Comparing the bound macrostate interactions
of MDMB-FUBINACA, classical cannabinoid HU-210 shows higher interactions with TM7 residues
(S3837.39, F3797.35) (Figures 6A     , 7A     , S5B and S7B). Previous experimentally determined
structures of classical cannabinoid bound CB1 have pointed out these conserved polar interactions
of the hydroxyl group at C-1 position with S3837.39.46     ,64      Although MDMB-FUBINACA also
maintain this polar interaction with carboxylic oxygen, the interaction energy for the HU-210 is
much higher, depicting the importance of this conserved residue in stabilizing classical
cannabinoids (Figure 6B     ). Mutagenesis studies also support this difference in interaction with
S3837.39 between the classical cannabinoids with hydroxyl group (HU-210) and CB1 ligands, which
have carboxylic oxygen in the equivalent position (WIN-55,212-2).65     ,66      Alanine mutation of
S3837.39 have shown to decrease the lig- and affinity and downstream efficacy of classical
cannabinoids by orders of magnitude, while having minimal effect on WIN-55,212-2, which have
carboxylic oxygen in the linked part as MDMB-FUBINACA.65     ,66      Other major interactions
(F1702.57 and F268ECL2) in the bound pose are common between the two ligands (Figures 6B     
and 7B     ).

A relatively weaker metastable state is observed when the ligand moves relatively deeper (closer
to TM5) inside the binding pocket. The flexible alkyl chain of HU-210 allows the ligand to have this
deeper position (Figures 7A      and 7B     ). Protein-ligand interaction analysis in the macrostate
representing this region (I1) show that hydroxyl group at C-11 forms a major polar interaction
with H1782.65 (Figure S7A). The bound and I1 macrostates are kinetically close, as indicated by the
rapid interconversion between these states (Figure 7B     ). K-L divergence between the two states
show the highest divergence in extracellular TM2 and TM7, where major interaction switch have
happened (Figure 7C     ).

Contrasting to MDMB-FUBINACA, only one pathway was discovered with classical cannabinoid
cyclic scaffold departing from the receptor first. Major interactions that break when the ligand
moves out of the binding pose to macrostate I2 is the polar interaction with S3837.39 and
hydrophobic interaction with aromatic F1702.57 (Figures 7A, 7B     , and S7C). Breaking of these
bonds leads to larger kinetic barrier of approximately 39.5 ± 1.4µs (Figure 7B     ). In this
macrostate, the HU-210 forms major interactions with aromatic residues F268ECL2 and F1772.64

and polar interactions with S1732.60 and D1762.63 (Figure 7B     ). From this pose, HU-210 either
dissociates from the receptor or obtain another relatively weak stabilized state (I3) in the receptor.
In I3, the alkyl chain of the ligand is flipped in the pocket and stabilized by aromatic residues in
TM2, TM3 and ECL2 (Figure 7B     ). This transition from I2 to I3 (528.1 ± 32.8µs) kinetically much
slower compared to the reverse transition (6.9 ± 0.0µs) (Figure 7B     ). From both I2 and I3
macrostates, the ligand can dissociate from the pocket and mean free passage time for these
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Figure 7.

(A) The contact probabilities with binding pocket residues of HU-210 are shown as a heatmap for different macrostates,
where ligand maintains contact with the receptor. Residues in different structural elements (loops and helices) are
distinguished by distinct color bars. (B) Representative structures are shown where ligand (color: orange) and four residues
(color: green) with highest interaction energies are shown as sticks. Proteins are shown as purple cartoon. Timescales
between interstate transitions are shown as arrows. Arrow thickness is inversely proportional to the order of magnitude of
the timescale. (C) K-L divergence between protein conformations of different states are shown with color (blue to red) and
thickness (lower to higher) gradient. Thickness gradient are shown as rolling average to highlight a region of high K-L
divergence. Errors in MFPT calculations were estimated based on 3 bootstrapped TRAM calculation with randomly selected
95% of unbiased trajectories.
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transitions appear to be in the milisecond timescale, which is one order magnitude higher
compared to the MDMB-FUBINACA unbinding (Figure 6B     ). This phenomena supports the
relatively high affinity of the classic cannabinoid HU-210 compared to the NPS MDMB-FUBINACA.

Allosterically controlled distinct downstream signaling between
new psychoactive substances and classical cannabinoids
As discussed in the previous section, major interaction differences between are observed in TM7.
The universality of this observation is measured by performing unbiased MD simulation (1 µs
each) of other NPS (AMB-FUBINACA, 5F-AMP, CUMYL-FUBINACA) and classical cannabinoids
(AMG-41, JWH-133, O-1317) bound CB1 (Figure S8A). Average distance of carbonyl oxygen of NPS
molecules’ linker group from S3837.39 is compared to equivalent distance of hydroxyl group of
classical cannbinoids’ benzopyran ring. Larger mean distance in case of all NPS-bound CB1
supports the universality of the weaker interaction between TM7 and NPS molecules (Figure S8B).
This variation in binding pocket pocket interactions might lead to differential allosteric control of
the intracellular dynamics that facilitate triad interaction (Y3977.53-Y2945.58-T2103.46) important
for β-arrestin binding.

We adopted a data-driven deep learning network known as Neural relational inference (NRI) to
validate our hypothesis of allosteric control. NRI network has an architecture of variational
autoencoder. The encoder part of the network predicts the interactions between the residues from
the trajectory dynamics, and the decoder predicts the trajectories from the interaction. With this
network, we try to produce alpha carbon coordinates at t + τ from the coordinates at time t. In the
process of regenerating the future coordinates, the latent space of the network learns the dynamic
interactions between different residues in the protein. These interactions are calculated from the
estimated posterior probability q(zij|x). In this work, we trained the network with the NPS, and
classical cannabinoid-bound unbiased trajectories (Method Section). Here, we compared the
allosteric interaction weights between the binding pocket and the NPxxY motif which involves in
triad interaction formation. Results show that each binding pocket residue in NPS bound ensemble
shows higher allosteric weights with the NPxxY motif, indicating larger dynamic interactions
between the NPxxY motif and binding pocket residues(Figure S9).

The probability of triad formation was estimated to observe the effect of the difference in
allosteric control. TRAM weighted probability calculation showed that NPS-bound CB1 have the
higher probability of triad formation (Figure 8A     ). Comparison of the pairwise interaction of the
triad residues shows that interaction between Y3977.53-T2103.46 is relatively more stable in case of
NPS-bound CB1, while other two interactions have similar behavior for both systems (Figures
S10A, S10B, and S10C). Therefore, higher interaction between Y3977.53 and T2103.46 in NPS-bound
receptor causes the triad interaction to be more probable.

Furthermore, we also compared TM6 movement for both ligand bound ensemble which is another
activation metric involved in both G-protein and β-arrestin binding. Comparison of TM6 distance
from the DRY motif of TM3 shows similar distribution for HU-210 and MDMB-FUBINACA (Figure
8B     ). Therefore, difference in NPxxY dynamics due to the differential allosteric control validates
the dynamic effect of the NPS ligand on the NPxxY motif.

Conclusions

Synthetic cannabinoids were designed as a potential therapeutics to target cannabinoid receptors.
However, major side effects of these ligands diminish their therapeutic potential. Although both
classical cannabinoids and NPS synthetic cannabinoids have been abused as recreational drugs,
later poses larger threats for the society due the chemical diversity of the NPS structures makes
them harder to control from being abused. Furthermore, physiological studies have shown NPS
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Figure 8.

(A) TRAM weighted probabilities of triad interaction (Y3977.53-Y2945.58-T2103.46) formation are plotted for HU-210 (color:
purple) and MDMB-FUBINACA (color: blue) unbinding ensemble. If side-chain oxygen atoms of all three residues are within 5
Å of each other, triad interaction is considered to be formed. (B) TRAM weighted probability densities of TM3 (R2143.50) and
TM6 (K3436.35) distance distribution are plotted for HU-210 (color: purple) and MDMB-FUBINACA (color: blue) unbinding
ensemble. Error in the probability densities is estimated using bootstrapping approach, where TRAM was built for 3
bootstrapped samples with 95% of total data.
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targeting cannabinoid receptors lead to the dangerous physiological effects compared to “tetrad”
side effects associated with classical cannabinoids. Previous studies have relate these side effects
with the higher downstream β-arrestin signaling of NPS. Mutagenesis studies have shown NPxxY
motif have larger role to play in β-arrestin signaling. In this work, we proposed that NPS and
classical cannabinoid have distinct allosteric control on NPxxY motif when bound to orthosteric
pocket of CB1. In this hypothesis driven study, we compared ligand-protein interactions of NPS
MDMB-FUBINACA and classical cannabinoid HU-210 for CB1 by studying their unbinding
mechanism and downstream signaling.

As both ligands are stable binders with nanomolar affinity, well-tempered metadynamics
simulations were performed to obtain the initial unbinding pathway. These simulations were able
to find similar pathway via the opening formed by TM2, TM3, N-terminus, and ECL2 which
matches with previous metadynamics binding simulations for cannabinoid receptors. For the
proper characterization of intermediate states, the unbinding processes were further extensively
sampled using unbiased simulation and umbrella sampling.

Effectiveness of the post processing techniques TRAM and MSM were compared in predicting the
ligands with binding affinity and kinetics. MSM predicts the kinetics and thermo-dynamics from
the eigendecomposition of the transition probability matrix. MSM assumes that the local
equilibrium is maintained between the Markovian states. However, with limited sampling, this
creterion may not valid between local high and low energy states. TRAM tries to solve this issue by
combining biased and unbiased simulation, where biased simulations enhances the local sampling
to maintain the equilibrium. We observed that with sufficient data both methods performed in
similar way in estimating the standard binding free energy. The relative free energy estimated by
both methods match with the experimental result within 0.6 kcal/mol. With lesser amount of
unbiased data, TRAM predictions of kinetics and thermodynamics remain more consistent than
the MSM as the biased simulations help to maintain local equilibrium.

TRAM estimated thermodynamics helped to decipher the differences between the un-binding of
NPS MDMB-FUBINACA and classical cannabinoid HU-210. First, for MDMB-FUBINACA, a larger
conformational change is observed within the pocket. A metastable intermediate state is observed
when the aromatic tail of FUBINACA flip inside the pocket and reorient itself close to the aromatic
residues of TM2. It was observed that both linked part and tail part of the ligands can lead the
dissociation of the ligand from the receptor. Second, for HU-210, conserved cyclic group leads the
dissociation from the receptor. It supports previous simulation where the alkyl side chain of the
ligand binds to the receptor first.17      Third, aromatic residues in the pocket (F268ECL2, F1702.57)
form major interactions with both classical cannabinoid and NPS molecules. Major differences in
protein-ligand interactions were observed in TM7. Stronger interactions were observed for the
classical cannabinoid with TM7, especially polar interaction with S3837.39 and hydrophobic
interaction with F3797.35 compared to NPS molecules.

Finally, we showed that the variation in binding pocket interaction leads to the distinct dynamic
allosteric communications in the intracellular region. Allosteric communication strength was
measured by the variational autoencoder (NRI). NRI network learns the dynamic interactions
between residues in the latent space by learning to reconstruct the dynamics. Dynamic allostery
measured by the posterior probability of VAE shows higher allosteric weights from the binding
pocket residues to the NPxxY motif region for NPS molecules. Higher allosteric control for NPS-
bound CB1 increases the probability of triad interaction formation, resulting higher β-arrestin
signaling for NPS. Therefore, these data driven computational study helps us to distinguish
between the receptor-protein interaction, unbinding mechanism and downstream signaling NPS
compared to other classical cannabinoids.
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Methods

System Preparation
For NPS unbinding simulation, G-protein bound active structure (PDB: 6N4B45     ) was selected as
the initial structure. G-protein subunits and Non-Protein residues other than orthosteric ligand
MDMB-Fubinaca were removed from the PDB structure file. Missing residues in ICL3 (21 residues,
314-334) and ECL2 (6 residues, 258-263) were modeled sequentially using Remodel protocol of
Rosetta loop modeling.67     ,68      In each step, the remodeled structure with least energy was
further refined using kinematic closure protocol. 69     

Starting 108 residues from CB1 N-terminus were also missing from the cryo-EM structure.
However, it is not feasible to model the entire N-terminus because of two following reasons.67     

First, a proper template is not available for modeling N-terminus regions as most of the class A
GPCRs do not contain large N-terminus.70      Second, it is challenging to model these large numbers
of residues accurately with template-free ab initio modeling because of the combinatorial
expansions of conformational space. Therefore, the closest 20 residues (89-108) were modeled as
membrane proximal regions of the N-terminus were shown to be important for CB1 signaling by
allosterically modulating ligand affinity. 71      Furthermore, Δ89CB1 (CB1 with first 88 residues
truncated in N-terminus) have similar ligand binding affinity compared to CB1 with full
sequence.72      Modeling of this membrane proximal region was also performed Remodel protocol
of Rosetta loop modeling. A distance constraint is added during this modeling step between
C98N−term and C107N−term to create the disulfide bond between the residues.71     ,73     

The “Ligand Reader & Modeler” module of CHARMM-GUI was used for ligand (e.g., MDMB-
Fubinaca) parameterization using CHARMM General Force Field (CGenFF).74      The ligand bound
receptor was embedded in the bilayer membrane and salt solution (extracellular and intracellular
region) using CHARMM-GUI.75      As CB1 is majorly expressed in central nervous system, an
average brain membrane composition of asymmetric complex membrane was selected. The
membrane composition was obtained from Ingólfsson et al. and proportionally downsized
according to our system (Table S1).76      150 mM NaCl salt solution with TIP3P water model was
used in the extracellular and intracellular regions.77      CHARMM36m forcefield was used to
parameterize the protein, lipid, water, and ions.78     

For building the classical cannabinoid system, the modeled PDB structure was used. In this case,
the orthosteric NPS ligand was removed, and a classical cannabinoid HU-210 was docked into the
orthosteric pocket using Autodock Vina. 79      The docked bound pose was selected based on best
overalled structure of HU-210 to the experimentally determined crystal structure of another
bound classical cannabinoid (Ligand: AM841, PDB:6KPG46     ) (Figure S11). The classical
cannabinoid-bound system was built with identical complex membrane composition, salt
concentration, and forcefield with NPS bound system.

Other classical cannabinoids (AMG-41, JWH-133, and O-1317) and NPS (AMB-FUBINACA, CUMYL-
FUBINACA, 5F-AMP) bound systems were also set up. These ligands are docked into the orthosteric
pocket. Best docking poses were selected based on optimizing the distance between the hydroxyl
group of classical cannabinoid (linker oxygen for NPS) to S3837.39 and the furtherest tail atom
distance to W2795.43. These systems also have identical complex membrane composition, salt
concentration, and forcefield with previously described systems.
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System minimization and Equilibration
All ligand-bound systems are minimized and equilibrated before the production run. Ten
thousand minimization steps were performed with the conjugate gradient method. Six sequential
equilibration steps were carried out to stabilize the systems at 300 K temperature and 1 atm
pressure for the production simulations. The systems were heated to 300 K in the NVT ensemble in
the initial two stages. Each of these steps was performed for 250 ps. Langevin dynamics was used
to control the temperature with additional damping and random force. The damping coefficient
for the damping force was set as 1/picosecond. The Langevin dynamics was turned off for the
hydrogen atoms. All the bonded hydrogen atoms were constrained with the SHAKE algorithm with
default parameters of NAMD.80      The integration time step for these two NVT ensemble
equilibration was one femtosecond (fs). Harmonic constraints were used for fixing the
temperature coupling of the protein residues with constraint scaling term set to 10 in the first NVT
ensemble equilibration, followed by 5. Temperature coupling of lipid molecules was also
restrained with harmonic force with a force constant equal to 5. CHARMM-GUI Selected Dihedral
and Improper bonds were also restrained with an extra bonded term with a force constant of 500
in the first NVT ensemble equilibration, followed by 200. The non-bonded cutoff distance for the
van der Waals interactions was set to be 12 Å with a switch distance of 10 Å, at which a switching
function is turned on to truncate van der Waals interactions at the cutoff distance. Non-bonded
interactions for three consecutively bonded atoms were excluded. The particle mesh Ewald
method was implemented for electrostatics calculation with grid size 1 Å.81     

The next four equilibrations were performed in the NPT ensemble, where pressure was fixed to 1
atm with Langevin piston pressure control. The barostat oscillation period was set to 100 fs with a
damping time 50 fs. These four NPT ensemble equilibrations were performed for 250, 500, 500,
and 500 ps, respectively. The integration timestep for these equilibration steps was increased to
two fs. The constraint for temperature coupling on the protein residues was decreased gradually
with the constraint scaling term for the four NPT ensemble simulations set to 2.5, 1.0, 0.5, and 0.1,
respectively. Similarly, the restraints on temperature coupling on the lipid molecules were also
decreased gradually with force constant for the four NPT ensemble simulations set to 2, 1, 0.2, and
0.0, respectively. Furthermore, the restraints on the CHARMM-GUI Selected dihedral and improper
bonds were decreased gradually with force constant for the four steps set to 100, 100, 50, and 0.0,
respectively.

Well-tempered metadynamics
Well-tempered metadynamics was implemented for finding unbinding pathways.47     ,82     

Simulations were performed with the Collective variables module (Colvars) of
NAMDv2.14.83     ,84      In metadynamics, a history-dependent biasing potential (Vmeta(S, t)) is added
to the Hamiltonian of the MD simulation, which discourages the system from revisiting
configurations that have already been sampled.61     ,85      The Vmeta(S, t) is a sum of Gaussians
deposited along the system trajectory in the CVs space (S = (S1(r), S2(r)..Sd(r)) as shown in Equation
1     , where W, σ, τ are Gaussian height, width, and deposition time step, respectively. With a
sufficiently long simulation, the bias potential estimates the underlying free energy along the
CVs.61     ,82      The Well-tempered metadynamics was introduced to increase the convergence of
bias potential by decreasing the Gaussian height with time (Equation 2     ).61      In the Equation
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2     , ω is the bias deposition rate and ωτ is equivalent to constant gaussian height for well-
tempered metadynamics. The free energy is estimated from the bias potential using Equation 3     ,
where the ΔT is an user defined parameter.

In this work, we selected two collective variables (CVs) for NPS (MDMB-FUBINACA) and classical
cannabinoid (HU-210) unbinding according to Mahinthichaichan et al..59      The first collective
variable is the z-direction distance from the converged toggle switch to the center of mass of all
heavy carbon atoms of ligands. The second collective variable is the coordination number (CN) as
defined in Equation 4      where dij represents the distance from ith atom of the ligand and the
alpha carbon of jth residue in the binding pocket. Selected binding pocket residues for CN
calculation are shown in the Supplementary table. The ΔT, gaussian height (ωτ), deposition time
step (τ) are selected as 4200K, 0.4 kcal/mol and 100 ps, respectively. The gaussian width for the two
CVs are set to be 0.5 and 0.1, respectively.

Umbrella Sampling and Unbiased Sampling
Umbrella sampling was performed along ligand distance from TM5 to capture the unbinding
process (Figures S12A and S12B). 52      The unbinding pathway obtained from the metadynamics
was clustered into 300 bins by dividing the selected distances from 5 to 35 Å. The center of each
bin was used as the center of each window for umbrella sampling. Five independent structures
were selected from each cluster to simulate five independent umbrella runs in each umbrella
window. If a cluster does not contain any structure, starting structures for that window were
selected from the closest clusters. A constant harmonic biased potential of 10 kcal/mol is used for
each window. openMM v7.8 MD engine was used to run the umbrella sampling runs.86      The
temperature and pressure of the systems are controlled at 300K and 1 atm by the Langevin
thermostats and Monte Carlo barostats. The integration timestep was chosen to be two fs.
Movements of the containing Hydrogen atom were constainted using HBonds commands with
SHAKE (or SETTLE for water) algorithm. The cutoff distance for Non-bonded interaction other
than electrostatic interaction was set to 12 Å, with a switching potential at 10 Å to make the
potential to zero smoothly at the cutoff. The particle weld method was used to calculate the long-
range electrostatic. Each simulation was run for 20 ns.

Identical starting structures and simulation conditions (Thermostat, barostat, cutoff, electrostatic
calculation method, integration timestep, and constraints on Hydrogen bond) were selected for
unbiased simulations. openMMv7.8 simulation software was used to run simulations. Each
trajectory was run for 100 ns. All the simulations were performed on the distributive computing
facility folding@home. 87     
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Markov State Model
Markov state model (MSM) is used to estimate the thermodynamics and kinetics from the
unbiased simulation.53     ,88      The prevalence of MSM as a post-processing technique for MD
simulations was due to its reliance on only local equilibration of MD trajectories to predict the
global equilibrium properties.89     ,90      Hence, MSM can combine information from distinct short
trajectories, which can only attain the local equilibrium.91     –93      This attribute of MSM helps to
utilize the power of parallel supercomputers to run parallel short simulations to sample a process
with a high energy barrier.

In MSM, the conformational ensemble is discretized into states, assuming that the interstate
transition will be Markovian. According to the Markovian property, interstate transitions will only
depend on the current state, not on the past state. In order to uphold the principle of Markovian
transition, the structures of the discretized states must be conformationally and kinetically
similar, allowing for rapid interconversion compared to interstate transitions.88      These faster
intrastate conversions ensure that Markovian states lose their memory of the previous interstate
transition after a lag time (τ).

Another necessary criterion for MSM is the reversibility in the interstate transition, which is also
known as the detailed balance.94      The detailed balance assures the local equilibrium between the
state population, as shown in Equation 5     , where µi is the stationary density of ith Markovian
states and Pij represents the probability of transition between ith to jth at lag time. These
transition probabilities form a transition matrix with N × N dimension where N is the total
number of states. From the eigendecomposition of this transition matrix, biomolecular processes
are discretized into orthogonal processes (orthogonal eigenvectors). The timescale of these
processes is calculated based on eigenvalues. The highest eigenvalue is one; the corresponding left
eigenvector of the transition matrix determines the stationary density. Eigenvectors with
eigenvalues close to one denote the slow processes.

We can estimate the thermodynamics and kinetics of processes from the transition matrix, whose
elements are transition probabilities. These probabilities are usually calculated from the transition
counts (Cij) using the maximum likelihood approach, where the likelihood function (Equation 6     )
is maximized with two constraints: detailed balance and normalization constraints (Σj pij = 1). The
constrained optimization problem is usually solved iteratively, as shown in Prinz et al..53     

The following steps are taken for the practical implementation of the MSM from the MD
data.4     ,17     ,95     –97     

1. Each frame obtained from the MD simulation was featurized using features important for
capturing the conformational ensemble. In this case, the unbinding process for each ligand
was featurized using distances that characterize the ligand distances to the binding pocket
and binding pocket conformational change. Specifically, all heavy atom distances from
each the Cα carbon atom of all binding pocket residues were calculated (Figure S13).
Additionally, all possible combinations of Cα carbon atom distances between all the
binding pocket residues were included to capture the binding pocket motion. Feature
calculations were performed with the python library MDTraj v1.9.8.98      The total number
features selected for MSM building of MDMB-FUBINACA and HU-210 are 297 and 288,
respectively.
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2. Dimensionality reduction was performed using time-independent component analysis
(TICA).99     ,100      We found the orthogonal projections (time-independent components)
with TICA, which are linear combinations of the slowest features. In tIC space, two spatially
close points are kinetically close. The lagtime selected for tiC building was 5ns.

3. Clustering was performed on the tICs using k-means clustering algorithms to discretize the
space into Markovian states.

4. Lag time for the MSM was calculated by estimating the shortest time at which the timescale
of the slowest processes has converged to a particular value (Figures S14A and S14B).

5. To optimize MSM based on the cluster numbers and tIC components on which clustering is
performed, we calculated the VAMP-2 score from the MSM, where VAMP stands for
Variational Approach for Markov Processes (Figure S15). 101      For a reversible MSM, this
score represents the summation of the square of the k slowest eigenvalues, where k is a
hyperparameter. Closer the eigenvalue to 1, the corresponding eigenvector captures a
slower process. Therefore, we optimize the MSM by maximizing the VAMP-2 score.

6. To validate the Markovian property of our optimized models, Chapman–Kolmogorov test
(c-k) test was performed (Figure S16). C-K test states that for a Markov model kth power of
P (τ) needs to be equal transition probability matrix determined at kτ time (P (τ)k ≈ P (kτ)).
We showed that differences between the elements of transition probability matrix at
higher lag times remain relatively small.

Dimensionality reduction, clustering Markov state model building, and VAMP-2 calculations are
performed with the pyEMMA v2.5.6 library. 102      The optimized MSM for MDMB-FUBINACA
unbinding simulations were built with 700 clusters, 7 tiCs and 35 ns of lag time. For HU-210,
optimized MSM were build with 800 clusters, 6 tiCs and 35 ns of lag time.

Transition-based reweighting analysis method
Markov State Models have been extensively used to investigate the protein-ligand binding
process.17     ,62     ,103     –107      However, these studies were mainly performed for ligands with high
off-rates which could be sampled using the unbiased trajectories. For ligand with low off rates, the
use of reversible transition matrix would yield incorrect estimates of unbinding kinetics.
Therefore, we use The Transition-based reweighting analysis (TRAM)48     ,108      method to
accurately estimate the unbinding kinetics of new psychoactive substances. TRAM is a
thermodynamics and kinetics estimator method, which, unlike MSM, can combine unbiased and
biased simulation data to estimate thermodynamics and kinetics. TRAM utilizes the advantages of
the local equilibrium approximation of MSM and the benefits of biased simulations to enforce
local equilibrium in interstate transitions where it is difficult to attain.

As the simulations are obtained from multiple ensembles (biased and unbiased), it is paramount to
classify the MD frames (or the conformations) based on which ensemble it belongs to. Each
ensemble represents simulations that are performed with identical Hamiltonian energy functions.
Therefore, unbiased simulations are considered as one ensemble, whereas, in umbrella sampling,
each biasing window is considered a single ensemble.

Like MSM, in TRAM, the conformational space is also discretized into non-overlapping states. The
interstate transitions should follow the following relationship shown in the Equation 7     , where

 is the local free energy of the ith state and kth ensemble. The term  is proportional to the
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stationary density (µ(x)) of state Si in ensemble k. The µ(x) of each conformation (x) of Si is
weighted with negative exponential of bias energy (bk(x)) on x in ensemble  (Equation

8     ).

To obtain kinetics and thermodynamics information from TRAM, we have to derive interstate
transitions  and the stationary density of the entire ensemble (µ(x)), where both the terms

follow normalization constraint (Equation 9      and 10     ). Therefore, there are m2     K + X
unknown variables. Therefore, to solve these unknown variables, the maximum likelihood
approach has been considered, where the likelihood function is defined as Equation 11     , which is
the combination of the likelihood function of MSM and local equilibrium. This maximum
likelihood problem was subjected to the constraints of Equation 7     , 9      and 10     .

Wu et al. showed that the solution of these maximum-likelihood problem can be turned into
system of non-linear algebraic equations (Equation 12     , 13      and 14     ), where  is count of

the interstate transitions between state Si and Sj in ensemble k. This system of equations are
solved iteratively to estimate  and , which provides the prediction of  and µ(x) (Equation
15      and 16     ).
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We used the python package pyEMMA v2.5.6 for the practical implementation of TRAM.102      For
calculating transition counts in ensemble , the lagtime of 15 ns was chosen. In the

implementation, we need to preprocess each trajectory into three arrays.

1. One of the arrays represents the spatial discretization of each trajectory frame, where each
frame belongs to a particular state. Therefore, each element can take values from 0 to m-1
(m is the cluster number). Before the discretization of the space, time-independent
component analysis was performed on the biased and unbiased data separately. The
number of tIC components for each system was selected based on the number of the tIC
components of optimized MSM. Each frame from the unbiased simulation is represented
by the unbiased tICs, concatenated with its feature projections on the biased tICs. Similarly,
each frame from the biased simulation is represented by its feature projections on the
unbiased tic, concatenated with biased tic projection. Therefore, NPS unbinding
simulations have 14 tICs, whereas classical cannabinoid un-binding simulations have 12
tICs. The number of clusters is also obtained from the optimized MSMs.

2. Another array represents the corresponding ensemble to which each trajectory frame
belongs. There are 300 windows for the umbrella sampling. Therefore, there are 301
ensembles, as the unbiased simulations represent a separate ensemble.

3. Third array represents the corresponding bias potential (bk(x)) a particular frame feels if it
were to be in a particular ensemble. For umbrella sampling, the biased potential is
represented as Equation 17     , where ck is selected to be 10 kcal/mol and yk is the center of
each umbrella window.

Transition Path Theory
Transition path theory (TPT) analysis is applied to calculate the transition pathway and timescale
between different macrostates, representing different configurational spaces in the unbinding
process.109     ,110      In this work, we define macrostates as a collection of Markovian states present
in the area of interest in the unbinding free energy landscape. An essential concept of transition
path theory is the committer probability , which is defined as the probability of any

Markovian state reaching the final metastable state before it returns to the initial state. Therefore,
the Markovian states present in metastable state B has a committer probability of 1. It has been
shown that committer probability follows the following system of linear equation as shown in
Equation 18     , where Pik is the transition probability between state Si and Sj as discussed in the
previous section.

In this work, the quantity of interest from TPT is the timescale (or rate) between the metastable
state transitions as shown in Equation 19     , where πi is the stationary probability of state Si. TPT
calculations were performed by PyEMMA v2.5.6. 102     
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K-L divergence analysis
Kullback–Leibler divergence (K-L divergence) analysis was performed to show the structural
differences in protein conformations in different macrostates4     ,111     . In this study, this
technique was used in this work to calculate the difference in the pairwise inverse distance
distribution in macrostates. Although K-L divergence is an asymmetric measurement, for this
study, we used a symmetric version of the K-L divergence by taking the average of the K-L
divergence between two residues. Per residue contribution of K-L divergence is calculated by
taking the sum of all the pairwise distances containing that residue. This analysis was performed
by in-house Python code.

Trajectory Analysis
Python package GetContacts is used to perform the contact calculation.112      Linear interaction
energy analysis was performed to calculate the interaction energy between ligand and receptor
using AMBERTools CPPTraj v18.01.113     ,114      Trajectory visualization and figure generation are
performed with VMD v1.9.3.115     

Deep Learning Network for Allosteric Prediction
Neural relational inference (NRI) network was implemented to predict allosteric dependence
between the residues in the different parts of the receptors.54     ,116      This network is a Variational
autoencoder (VAE) comprising encoding and decoding parts.117      The encoder (qϕ(z|x)) takes the
input Cα coordinates of protein conformations at time t (xt) and tries to learn the interactions
between two residues (zij) in the protein as a latent space. The decoder (pθ(x|z)) network try to
regenerate the protein conformation at time t + τ (xt+τ). Similar to other VAE, the learning process
maximizes the evidence lower bound (ELBO) as shown in Equation 20     , where pθ(z) represents
the prior distribution for z. Here, the prior distribution is selected as default presented in the
original paper, where it is represented as a categorical distribution with K = 4 (P1 = 0.91, P2 = 0.03,
P3 = 0.03, P4 = 0.03).

As shown in Equation, the ELBO consists of two terms. In the first term, further mathematical
derivations can show that the first term can be represented as the the reconstruction error
(Equation 21     ), where σ2      is variance of the distribution, a user defined parameter.

The second term is also called regularization term which is the the K-L divergence between
estimated posterior (qϕ(z|x)) and prior distribution (pθ(z)) (Equation 22     ). As the prior
distribution is a categorical distribution, the K-L divergence becomes entropy of the posterior
distribution. We obtained the code for the NRI network from the GitHub implementation and kept
most of hyperparameters as default for our training, except for decreasing the hidden layer size to
64.118      From each unbinding simulations, 10 unbiased trajectories were selected where the
ligand remain in the bound pose. Each trajectory has a length of 100 ns. Both cases, the τ was
selected to be 5 ns. The allosteric weights (posterior probability) were obtained from the validation
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data (2 trajectories), where training was performed with remaining 8 trajectories (Figure S18).
This procedure was repeated three times, where training and validation data were selected
randomly.

Standard Binding Free Energy Calculations
To calculate the standard binding free energy from simulation, we adopted a procedure described
in Buch et al..62      In this procedure, a volumetric correction term is added to the PMF to calculate
the final binding free energy (Equation 23     ). The volumetric correction term is used to predict
the free energy at the standard condition (1M) as shown in Equation 24     , where Vo corresponds
to the volume of a molecule should occupy at the standard condition (1661 Å3     ) and Vu is the
volume of the unbounded state in the simulation box. The expression for the PMF contribution of
the free energy is shown is in Equation 25     , where the denominator of the equation can be

represented as .

Therefore, the final derivation of ΔG is shown in Equation 26     

In this work, to estimate the free energy (ΔG) x, y, z component of the ligand center of mass is
calculated compared to the center of mass of the alpha carbons of binding pocket residues. The
three dimensional space was descretized into 25 × 25 × 50 bins and each bin is weighted using
TRAM calculated probability density. Depth of the pmf (ΔW) was calculated by averaging the pmf
of the 100 bins with highest pmf in the bulk. To evaluate the weighted binding volume

, we selected the bins with pmf less than 1 kcal/mol.
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Reviewer #1 (Public Review):

This manuscript presents insights into biased signaling in GPCRs, namely cannabinoid
receptors. Biased signaling is of broad interest in general, and cannabinoid signaling is
particularly relevant for understanding the impact of new drugs that target this receptor.
Mechanistic insight from work like this could enable new approaches to mitigate the public
health impact of new psychoactive drugs. Towards that end, this manuscript seeks to
understand how new psychoactive substances (NPS, e.g. MDMB-FUBINACA) elicit more
signaling through β-arrestin than classical cannabinoids (e.g. HU-210). The authors use an
interesting combination of simulations and machine learning.

The caption for Figure 3 doesn't explain the color scheme, so it's not obvious what the start
and end states of the ligand are.

For the metadynamics simulations were multiple Gaussian heights/widths tried to see what, if
any, impact that has on the unbinding pathway? That would be useful to help ensure all the
relevant pathways were explored.

It would be nice to acknowledge previous applications of metadynamics+MSMs and
(separately) TRAM, such as the Simulation of spontaneous G protein activation... (Sun et al.
eLife 2018) and Estimation of binding rates and affinities... (Ge and Voelz JCP 2022).

What is KL divergence analysis between macrostates? I know KL divergence compares
probability distributions, but it is not clear what distributions are being compared.

I suggest being more careful with the language of universality. It can be "supported" but
"showing" or "proving" its universal would require looking at all possible chemicals in the
class.
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Reviewer #2 (Public Review):

Summary:

The investigation provides computational as well as biochemical insights into the (un)binding
mechanisms of a pair of psychoactive substances into cannabinoid receptors. A combination
of molecular dynamics simulation and a set of state-of-the art statistical post-processing
techniques were employed to exploit GPCR-ligand dynamics.

Strengths:

The strength of the manuscript lies in the usage and comparison of TRAM as well as Markov
state modelling (MSM) for investigating ligand binding kinetics and thermodynamics. Usually,
MSMs have been more commonly used for this purpose. But as the authors have pointed out,
implicit in the usage of MSMs lies the assumption of detailed balance, which would not hold
true for many cases especially those with skewed binding affinities. In this regard, the
author's usage of TRAM which harnesses both biased and unbiased simulations for extracting
the same, provides a more appropriate way out.

Weaknesses:
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(1) While the authors have used TRAM (by citing MSM to be inadequate in these cases), the
thermodynamic comparisons of both techniques provide similar values. In this case, one
would wonder what advantage TRAM would hold in this particular case.

(2) The initiation of unbiased simulations from previously run biased metadynamics
simulations would almost surely introduce hysteresis in the analysis. The authors need to
address these issues.

(3) The choice of ligands in the current work seems very forced and none of the results
compare directly with any experimental data. An ideal case would have been to use the
seminal D.E. Shaw research paper on GPCR/ligand binding as a benchmark and then show
how TRAM, using much lesser biased simulation times, would fare against the experimental
kinetics or even unbiased simulated kinetics of the previous report

(4) The method section of the manuscript seems to suggest all the simulations were started
from a docked structure. This casts doubt on the reliability of the kinetics derived from these
simulations that were spawned from docked structure, instead of any crystallographic pose.
Ideally, the authors should have been more careful in choosing the ligands in this work based
on the availability of the crystallographic structures.

(5) The last part of using a machine learning-based approach to analyse allosteric interaction
seems to be very much forced, as there are numerous distance-based more traditional
precedent analyses that do a fair job of identifying an allosteric job.

(6) While getting busy with the methodological details of TRAM vs MSM, the manuscript fails
to share with sufficient clairty what the distinctive features of two ligand binding
mechanisms are.
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