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Abstract

Packet routing in virtual networks requires virtual-to-physical ad-

dress translation. The address mappings are updated by a single

party, i.e., the network administrator, but they are read by multiple

devices across the network when routing tenant packets. Existing

approaches face an inherent read-write performance tradeo�: they

either store these mappings in dedicated gateways for fast updates

at the cost of slower forwarding or replicate them at end-hosts and

su�er from slow updates.

SwitchV2P aims to escape this tradeo� by leveraging the network

switches to transparently cache the address mappings while learn-

ing them from the tra�c. SwitchV2P brings the mappings closer to

the sender, thus reducing the �rst packet latency and translation

overheads, while simultaneously enabling fast mapping updates,

all without changing existing routing policies and deployed gate-

ways. The topology-aware data-plane caching protocol allows the

switches to transparently adapt to changing network conditions

and varying in-switch memory capacity.

Our evaluation shows the bene�ts of in-network address map-

ping, including an up to 7.8× and 4.3× reduction in FCT and �rst

packet latency respectively, and a substantial reduction in transla-

tion gateway load. Additionally, SwitchV2P achieves up to a 1.9×

reduction in bandwidth overheads and requires order-of-magnitude

fewer gateways for equivalent performance.
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1 Introduction

Network virtualization enables the overlay of customized virtual

topologies atop a single physical network. In a cloud setting, tenants
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Figure 1: The tradeo� of V2P translation mechanisms be-

tween the lookup and update performance. SwitchV2P aims

to escape from this tradeo�.

retain complete control over their virtual networks, enabling them

to con�gure IP assignments and routing policies [5, 17, 32, 41, 54].

Virtual IP assignments are decoupled from the underlying physi-

cal topology [32], so virtual IPs are mere identi�ers lacking network

location information. Thus, routing a packet requires performing

virtual-to-physical translation, i.e., resolving the virtual destination

address into the corresponding physical address. These virtual-to-

physical (V2P) mappings are frequently modi�ed by the virtual

network control plane due to the constant in�ux and departure of

virtual machines and containers [2, 53, 56].

As a result, a V2P translation mechanism must minimize the

lookup time on the critical path of the packet routing, and at the

same time support frequent updates to the V2P mappings at scale.

The challenge lies in harmonizing these goals, as the former leans

towards a fully distributed design that storesmappings at the sender,

while the latter leans towards a centralized gateway design that

enables e�cient updates. Although this is a longstanding issue, a

solution that can satisfy both requirements remains elusive.

Figure 1 delineates these two fundamental approaches in state-

of-the-art solutions. In a fully distributed host-driven design such as

VL2 [18], AccelNet [15, 16], and Achelous [53], the mappings are

installed in the hypervisors or SmartNICs. The resulting routing

performance is high as the lookups are local to senders, but updates

scale poorly due to the control plane overhead of proactively up-

dating the mappings in the hypervisors across the network [53]. In

contrast, in a gateway-driven design, such as Zeta [56], Sail�sh [44],

and Bluebird [6], the mappings are stored in dedicated network

entities, gateways. The updates are e�cient as they are performed

in a few dedicated locations, but the routing performance deterio-

rates because of the increased �rst packet latency, gateway lookup

overheads, and the emergence of in-network hotspots, as we show

in the analysis in §5.1.
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Andromeda [11] explores a hybrid design where the mappings

are initially managed in the gateways, but the most frequent source-

destination pairs (e.g., mappings for elephant �ows), are dynam-

ically installed in the source’s hypervisor at runtime. In fact, An-

dromeda enables the network administrators to select a certain

operating point along the tradeo� between the lookup performance

and update speed, yet it is inherently constrained by that tradeo�,

which we strive to escape in our work.

Conceptually, V2P translation can be viewed as an instance of

the classical problem of state sharing in a distributed system. The

state (V2P mapping of an IP) is written by a single writer (network

administrator), and read by multiple readers (senders to that IP).

The read-write performance tradeo�s are inherent in such systems.

Looking at the problem from this angle reveals a previously

overlooked design opportunity to improve the V2P translation

mechanism by controlling the replication factor of the mappings. As

has been broadly explored in distributed systems, e.g., in distributed

key-value caches [35], there is a tradeo� between the number of

cached replicas and the update overhead. Therefore, such systems

explicitly control the cache replication factor to optimize read-write

performance tradeo�s. In contrast, none of the V2P translation

mechanisms o�er a similar level of control over the V2P caching.

Whereas the gateway-driven designs either do not use V2P caches

or statically restrict the cache to the gateway ToR [44], the host-

driven systems take the replication to an extreme by caching all

the mappings in every reader. Andromeda’s cache is more �exible

but still too coarse-grain: it caches mappings based on their usage

frequency, but conservatively keeps all the rest uncached. We posit

that more �exible caching mechanisms for V2P mappings may

achieve a better balance between the lookup latency and the update

performance.

Following this observation, our idea is to cache the V2P map-

pings in the switches, and thus resolve virtual addresses as the

packets en route. For cache hits, forwarding does not consult the

gateway. Compared to caching at the sender, this approach reduces

the cache replication factor signi�cantly, making it proportional

to the number of switches instead of the number of physical ma-

chines. As a result, it speeds up the updates and enables caching

of less popular mappings. Moreover, the in-switch cache is closer

to the sender than the gateway so the packets that hit the cache

are forwarded faster. Additionally, caching reduces the load on the

gateways, improving their responsiveness and decreasing cost.

We realize this idea in SwitchV2P, an in-network translation and

forwarding mechanism that builds on a novel data-plane protocol

for caching V2P mappings in the network switches. The mappings

are initially stored in the gateways as before, but SwitchV2P’s in-

network cache tier seamlessly learns the mappings from the tra�c,

entirely in the data plane. SwitchV2P does not modify the existing

routing policies, so the packets are forwarded as usual unless the

destination mapping is found in the cache.

Unlike prior works that store the whole V2P database in ToR

switches [6], we choose a caching approach to simplify the deploy-

ment under limited in-switchmemory. Our key premise is that, with

a substantial degree of destination reuse within both a single �ow

and across multiple �ows, even relatively small in-network caches

can improve performance. Furthermore, as the cache is distributed

across all the levels of the network topology, including the core
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Figure 2: Comparison of previous approaches to V2P map-

ping. Di�erent colors represent the locations of themappings

in the respective approach. SwitchV2P caches the mappings

in all the switches in the network topology.

switches, this design enables more e�cient use of in-switch mem-

ory space by sharing a single cache entry in higher-level switches

among �ows originating from di�erent hosts, racks, or pods. In

addition, the opportunistic nature of the caching approach makes

it resilient to switch failures, as they do not a�ect the correctness

of packet forwarding. Last, the cache can be implemented and de-

ployed without changing existing virtual networking systems.

However, designing a distributed, dynamic caching tier in the

data plane, especially under the severe memory capacity constraints

of each switch is a formidable challenge. First, learning the map-

pings from tra�c may not always be productive and waste cache

capacity: network paths where mappings can be learned (e.g., from

the gateway to the destination) may not intersect with the paths

where forwarding logic needs them, (e.g., from the source to the

gateway). Second, di�erent switches might store duplicate redun-

dant entries thus reducing the e�ective cache capacity. So it is

imperative to promote certain mappings to higher-level switches to

eliminate such duplicates in lower-level switches. Third, the coor-

dination between the in-switch caches in the network should have

low overhead. Finally, mapping updates, e.g., due to VM migra-

tion or workload changes, must be implemented e�ciently across

switches while guaranteeing packet forwarding correctness.

We address all these challenges in SwitchV2P, prototype it in

To�no switches [26], and comprehensively evaluate using NS3 [43]

simulations across a range of real-world traces and diverse set-

tings, including di�erent network topologies. Our results show that

SwitchV2P delivers signi�cant performance bene�ts, improving

FCT by up to 7.8× and reducing �rst packet latency by up to 4.3×.

In particular, SwitchV2P delivers a 1.6× improvement in FCT and

a 2.9× reduction in �rst packet latency compared to host-driven

approaches. These improvements are achieved while maintaining

miss rates below 1% with realistic in-switch memory sizes. It also

o�ers added bene�ts such as reduced network load and low migra-

tion costs. Our P4 prototype indicates that SwitchV2P has relatively

modest resource requirements, making it a practical solution for

implementation in commercial o�-the-shelf switches.
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2 Motivation

Existing approaches are faced with an inherent tradeo�—either they

sacri�ce routing performance (by placing mappings in dedicated

gateway servers), or they sacri�ce update performance (by placing

mappings in end hosts). The degree of replication for the mappings

frames existing solutions, as we illustrate in Figure 2.

2.1 Escaping the Tradeo� in SwitchV2P

SwitchV2P, instead, aims to escape from the constraints that are

introduced by this tradeo�. The key idea is that the “replicas” need

not be passive receptacles, but can be entities imbued with intel-

ligence. This allows for a unique point in the design space where

the degree of replication is much smaller than the number of end

hosts, yet both update and lookup performance are much higher

than either end of the spectrum in the tradeo�. SwitchV2P proposes

to co-opt the network switches into mapping replicas. This builds

upon the fact that, from networking hardware design, we know

that constrained programmability can be implemented at line speed

in commercial o�-the-shelf switches.

At �rst glance, SwitchV2P might look like the hybrid design

motivated before, where packets are initially routed to the gateway.

However, as they traverse the network topology en route to the gate-

way, the switches can assist in the translation process by looking up

their local caches at the time of packet forwarding. On a cache hit,

the packets can be promptly directed to their intended destination.

On a cache miss, the gateway takes over the task following the

usual procedure. Thus, the data plane e�ectively learns mappings

from packets, akin to MAC learning in L2 networks. We note that

the switches learn V2P mappings and not 5-tuples, so they do not

need to perform expensive per-�ow state tracking.

The active intelligence in the mapping caches opens up a new

design space with salient properties.

First, this approach is opportunistic, implying that it does not

require expensive switch failure recovery protocols and can be im-

plemented in existing networks without making any changes to

the gateway, end-host networking stack, network con�guration, or

routing, thus simplifying its adoption. Second, it naturally serves

network tra�c en route, ensuring it does not increase routing over-

heads since packets do not take any detours during the lookup

process. Third, the in-network cache is managed in the data plane,

allowing it to promptly adapt to changing tra�c patterns without

relying on costly control loops within a centralized control plane.

Moreover, it operates without the need for coordination among

switches, gateways, or end hosts, facilitating deployment. Last, a

high cache hit rate directly implies that most translations occur

within the network. Consequently, fewer packets undergo the ex-

tended processing at the gateway, resulting in reduced FCT and

�rst packet latency.

With the reduced load on the gateways, it becomes possible

to deploy fewer gateways. This will also reduce network tra�c

because packets follow shorter routes, bypassing gateway pods

altogether and reaching their destinations directly. With the re-

duced mappings stored at the end hosts, the hypervisor state is lean

and lookups are accelerated inside network ASICs. Thus, the in-

network design combines the low routing overhead bene�ts of the

host-driven design, while avoiding its update scalability limitations

by distributing the V2P mappings across switches instead of hosts.1

2.2 Impact on the First-Packet Latency

Modern virtual networks must satisfy a variety of centrally man-

aged network policies, such as Access Control Lists (ACLs). There-

fore, one may argue that the �rst packet in each �ow has to be

forwarded to a gateway or a network controller to apply these poli-

cies, so in-network V2P translation will have no impact end-to-end.

However, it is worth noting that the ACL decisions are made in

the virtual IP address space, as dictated by the tenant organiza-

tion. Policing does not require translating a virtual address into

a physical address and enforcing decisions at that level. In addi-

tion, we believe, that in common cases, network policies do not

change frequently so they can be pre-installed and enforced by the

host. This is the case, for example, for ACL policies in Andromeda

and Achelous [11, 38, 53]. In such cases, V2P translation would

remain the only reason to access the gateway, and optimizing via

in-network cache will have a signi�cant impact on the �rst-packet

latency.

2.3 Expected E�ectiveness of Caching

Naturally, in-network V2P caching would be e�ective only if there

is a temporal locality of access to V2P mappings in the network.

This locality is obviously abundant within a �ow, as the sender

keeps sending packets to the same destination. However, this is not

enough to warrant the use of in-network caching as the mapping

can be naturally cached by the sender, at least while the communi-

cation is active.

It turns out that in data center workloads there is a large degree

of destination reuse across �ows. For example, in the analysis of the

Alibaba Cloud traces, over 95% of the total requests are processed by

just 5% of the microservices [36]. A similar access pattern has been

observed in a typical cloud region by prior work [44]. Thus, the

in-network cache enables mappings to be shared across �ows and

end hosts, an operating point untenable for host-based solutions.

2.4 Cache Design Alternatives

We initially explored the idea of storing V2P mappings in the net-

work switches, utilizing their memory as a distributed hash table,

similar to the prior works on Ethernet scalability [31]. Presently,

the aggregate memory capacity of all the switches in a data center

should be su�cient to accommodate all the mappings (as indicated

by Bluebird [6], which reported 192K mappings per switch). How-

ever, we ultimately dismissed this approach for several reasons.

First, switch failures become critical, requiring inter-switch replica-

tion to prevent the loss of V2P mappings. It also becomes essential

to replicate hot keys to mitigate in-network hotspots and conges-

tion. Furthermore, it becomes increasingly necessary to create tens

of thousands of IP addresses per single server [37], and in-switch

storage may not scale well to meet this demand. Lastly, utilizing all

the data plane memory for storing mappings is an ine�cient use of

space, considering that not all mappings are always active all the

time, often due to skewed tra�c patterns [6, 44].

1The servers-to-switches ratio in a k-ary fat-tree topology [3] is ġ

5
, which translates

to 12.8 for ġ = 64.
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3 Design and Implementation

Objectives. SwitchV2P pursues the following goals:

• Reduced forwarding latency with low update overheads;

• No routing policy changes for backward compatibility;

• Incremental deployability;

• Seamless integration with gateway/hybrid solutions;

• Decentralized dynamic cache management oblivious to switch

memory capacity.

3.1 Basic Principles

In the following, we �rst discuss the algorithm assuming that map-

pings do not change, and then explain how we deal with updates in

§3.3. SwitchV2P comprises a set of in-network caches that operate

within the data plane, e.g., in the switches. We assume that the sys-

tem uses gateway-driven or hybrid designs where the translations

are initially stored in the V2P translation gateways. As in prior

works [56], we assume that the switches know the addresses of

these gateways, e.g., by �xing their addresses to remain constant

even if the gateways change or move.

An unresolved packet for which the destination IP mapping is

unknown is sent to the gateway as before. Lookup and translation

are performed opportunistically in switches along the network

path that a packet takes. If the mapping is not found in any switch

along the path, the process is identical to the gateway design: the

gateway performs the V2P translation and forwards the packet to its

destination. If the packet is resolved by a switch from the local cache,

it is then forwarded to the respective physical destination without

reaching the gateway. The basic idea resembles MAC learning in L2

networks but with one key distinction: in the event of a cache miss,

the packet is forwarded directly to the gateway without �ooding

the network.

There are two basic primitives executed by each switch:

Lookup. For each unresolved packet a switch parses the virtual des-

tination IP from the inner packet header and uses it as a lookup key

for its local cache. A successful lookup operation returns the corre-

sponding physical destination IP. The switch can then overwrite

the destination IP in the outer packet header with the returned ad-

dress. Thus, packets are forwarded directly to their true destinations

without reaching the gateway.

Learning. A switch learns V2P mappings from the passing packets

and inserts them into the cache. It inspects two virtual-physical IP

pairs: source and destination. Learning mappings from the source,

source learning, is always possible because the source physical IP

is known to the sender, whereas learning from the destination,

destination learning, is performed for packets whose destination

has already been translated by a gateway or a previously traversed

switch that cached the mapping. A switch may choose to perform

source learning, destination learning, or both.

We are left with one key design question: what should be the

cache admission policy that determines which entries to install into

the cache?

Local greedy approach. To gain intuition, we start with the “straw-

man” local greedy solution: each switch performs destination learn-

ing and admits all insertions. We then show that this approach

yields unsatisfactory results.
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Figure 3: The sequence for packet forwarding in the local

greedy approach. VM1 sends a packet to VM2. The packet

is sent to the gateway (GW, shown by dashed lines), which

determines VM2’s location. The packet is then forwarded

by the gateway to VM2 (shown by dotted lines). The V2P

mapping is cached on every switch along that path.

Figure 3 shows an example of the system behavior. All caches

start empty. The cache of each switch is shown as tables in Figure 3,

where virtual IP addresses (VIPs) are mapped to the respective

physical IP addresses (PIPs). When VM1 sends a packet to VM2, the

packet is routed to the gateway (step 1 ). Each switch along the path

to the gateway performs a local lookup using the VIP address of

VM2. Since the cache is empty, all these lookups fail, and the packet

eventually reaches the gateway (step 2 ). The gateway resolves the

address and forwards the packet to VM2 (step 3 ). Switches on the

path to VM2, and in particular, the gateway ToR switch, can learn

the V2P mapping of VM2. Therefore, if VM1 sends another packet

to VM2, it will be directed to the cache on the gateway ToR switch

(step 4 ), L4, and will be forwarded directly to VM2 without going

through the gateway again.

Analysis. There are several problems with this approach. First,

VM2 mapping is replicated across the switches on the path from

the gateway to VM2, but none of them except for the gateway

ToR’s cache (L4) is on the path from VM1 to the gateway. As a

result, the cached entry is not used, the precious cache space in the

switches is wasted, and the following packets from VM1 to VM2

will miss again. At the same time, the gateway’s ToR cache is likely

to experience thrashing because all the packets that miss are routed

to the gateway. Last, this design does not di�erentiate between the

ToR switches and the switches higher in the topology, so the entries

that could have been stored only once in the core switch will be

replicated and occupy space across multiple ToR switches. The root

cause of these issues is that the caches are managed via local greedy

decisions, ignoring their location in the network topology. Instead,

we seek a collaborative approach where switches make decisions to

improve the distributed cache e�ciency as a whole.

3.2 Topology-Aware Caching

Cache structure. Each switch is equipped with a direct-mapped

cache [23]. It can be implemented entirely in the data plane, without
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Switch Type
Admission

Policy
Learning from

Special

Functions

Gateway ToR All Destination
Learning packet

generation

Gateway Spine A bit clear Destination

ToR All
Source

Learning packets

Invalidation packet

generation

Spine A bit clear Destination Promotions

Core A bit clear Promotions

Table 1: The features of each switch type in SwitchV2P.

requiring packet mirroring, recirculation, or control plane involve-

ment. Each cache entry includes a key (VIP), a value (PIP), and an

access (A) bit turned on upon a hit. The access bit is turned o�

when a lookup ends up accessing that cache line but it is a miss.

We use a single bit instead of sketches to indicate in-use entries,

thereby making more memory available for additional mapping

entries. All switches share the same cache structure.

Switch categories. We classify the switches into �ve categories

based on their location in the network: gateway ToRs, and gateway

spines; and regular ToRs, spines, and core switches. In the topology

in Figure 3, L4 is the only gateway ToR switch, as it is directly

connected to the gateway. A3 and A4 function as gateway spines

due to their direct attachment to a gateway ToR switch. Lastly, L1,

L2, and L3 are ToRs, while A1 and A2 are spines. C1 and C2 are core

switches.

Each category di�ers in terms of the cache admission policy and

certain additional functions performed by the respective switches.

Together, the switches collaboratively strive to maximize the hit

rate in the entire distributed cache while adhering to the in-switch

memory capacity constraints.

Table 1 summarizes the admission policies and additional func-

tions performed by switches in each category. We now describe

them in detail.

3.2.1 Admission policies.

Gateway ToRs employ only destination learning because the pack-

ets on their path to the gateway have already traversed multiple

switches, and most likely have their source VIP:PIP already cached.

Other ToRs perform source learning because it is likely that the

receiver in the ToR’s rack will send a response, i.e., TCP ACK. They

also learn from special learning packets as discussed below.

Spines perform destination learning. However, as they process

tra�c from the entire pod or network, they conservatively avoid

admitting new entries if it would require evicting an actively used

one. The reason is that a new entry pending insertion is not guar-

anteed to be useful, as it could have been traveling o� the network

path where it is needed, whereas an active entry in the cache is

known to be useful. The status of the existing entry is determined

via the access bit.

Cores do not learn from the regular tra�c packets as this would

result in thrashing. Instead, they learn from entry promotions they

receive from Spines, as discussed below. They cache an entry only

if the entry to be evicted has its access bit cleared.

3.2.2 Special functions.

Learning packets. Gateway ToRs serve as a dissemination point

of the learned mappings. They are exposed to all the packets that

enter and leave the gateways from the whole network. Therefore,

they strive to proactively move mapping closer to the sender. To

this end, when they learn a new V2P mapping, they generate a

packet to forward the mapping to the sender’s ToR switch. To

avoid excessive packet generation, however, learning packets are

generated at a prede�ned probability Č learn. Consequently, the

maximum bandwidth requirement for learning packets is at most

100 × Č learn% of the overall switch bandwidth.

Cache spillover . Switches strive to opportunistically keep map-

pings within the network. They append evicted entries to processed

packets,2 which subsequent switches on the route attempt to in-

sert locally. This helps increase the e�ective cache capacity in the

network.

Promotion of popular entries to cores. Spines may promote fre-

quently used entries to the core switches. Speci�cally, if a packet

destined for the gateway hits the Spine cache and the respective

entry already has its access bit set, the mapping is appended to

the packet and sent to the core switch. This allows sharing entries

amongmultiple sources from di�erent pods, thus eventually freeing

the cache space in the Spine. This applies only to the packets that

leave the pod, as otherwise, the promotion would not be e�ective.

Promotion is not invoked in gateway spines because misses even-

tually all reach the gateway and promoting to a higher layer does

not increase sharing.

3.2.3 Pu�ing it all together.

Figure 4 illustrates the full system behavior in a sequence of sce-

narios below. In the description below, when we say that a switch

learns VMi, it means the VMi’s V2P mapping.

VM1→VM2 (Figure 4a). First, L4, A4, and A2 learn VM2 from the

packets sent from the gateway to VM2. Next, L2 learns VM1 via

source learning on the way from the gateway to VM2. This is useful

if VM2 later replies to VM1. In addition, L1 learns VM1 via source

learning, and VM2 via a learning packet, sent at some point by L4.

Subsequent packets from VM1 to VM2 hit the cache at L1 and are

sent directly to VM2.

VM3→VM4 (Figure 4b). L4 learns VM4, but as a result it evicts

VM2. Since A3 is on the path from the gateway to VM4, L4 spills

VM2 to A3. Additionally, L4 sends a learning packet with VM4 to L2.

As A1 is on the path from VM3 to VM4, it learns VM4 via destination

learning. It further promotes VM4 to C1. L2 and L3 learn VM3.

VM1→VM4 (Figure 4c). The packet hits the cache on A1 and is

forwarded to VM4. VMs placed on other pods can now share that

entry on C1. L3 learns VM1 via source learning.

VM3→VM2 (Figure 4d). These packets hit the cache at A3 on the

path from VM3 to the gateway and are directly forwarded to VM2.

A1 learns VM2 via destination learning.

3.3 Updates

V2P mappings are updated in the gateways, whereas the cached

V2P mappings remain stale. Fortunately, we observe that the in-

network cache does not have to be strongly consistent with the

2Using the option �eld in the tunnel header [19].
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Figure 4: The in-network cache contents in SwitchV2P after a sequence of communications. The sender VM and the uplink

path to the GW are in orange. The path from the GW to the receiver VM is in blue. Dotted lines represent generated learning

packets. The direct path toward the receiver is in purple. The colors of the cached entries represent the path through which the

entries are learned. Gray entries show the entries already in the cache.

“ground truth” at the gateways. Speci�cally, the misrouted packets

can be then rerouted to the correct destination. For example, An-

dromeda [11] installs a follow-me rule before migrating the VM

to the new machine. Thus, control-plane updates in Andromeda

can occur in parallel, as the follow-me rule ensures correct packet

forwarding to the VM’s new destination.

Relaxing the consistency guarantees of the cache enables more

e�cient updates. Thus, we adopt a lazy cache invalidation approach,

where some mappings may remain stale for a short time. The pack-

ets that are routed using these stale mappings are re-forwarded to

their correct location, thereby in the end, the packets are correctly

forwarded in the network.

Our approach combines piggybacking invalidation requests on

misrouted packets and the use of specially crafted invalidation

packets targeted for the caches that are known to contain stale

mappings. We discuss these below.

Misdelivery tags. When a host’s hypervisor receives a packet that

cannot be locally delivered, it forwards such a packet to the gateway.

Note that a misdelivery to the wrong VM is prevented due to the

mismatch in the inner packet header. Such packets are tagged using

a misdelivery tag, which prevents the packet from fetching a stale

cached entry again on its way to the gateway.

In principle, the tag could be added by the host’s hypervisor, but

that would require modifying its code. Instead, we implement such

a tagging in ToRs. For this purpose, ToRs keep a mapping between

the front panel ports and the PIPs of the attached servers.3 The ToR

examines the packet’s physical source IP, recognizing that it did

not originate from one of the directly attached servers.

A switch that received a packet with a misdelivery tag either

invalidates its local cached value for that VIP, or allows the packet

to use the cached value since it has already learned the new PIP of

the destination. Eventually, the packet is forwarded to the correct

destination by the gateway or by a switch with the correct PIP.

Invalidation packets. Although packets eventually reach their

correct destinations, misrouting could persist inde�nitely, increas-

ing the load on hosts. This issue arises because misrouted packets

can invalidate caches only on the route from the old destination to

the gateway, so the respective stale entry in all the other switches

remains cached.

3This mapping is expected to be updated rarely since physical topologies change
infrequently [47].

A strawman approach would be to �ood the entire network

with invalidation packets, which is ine�cient. Instead, we generate

invalidation packets by the ToRs that stage them with a misdelivery

tag. Speci�cally, ToRs send invalidation packets only to the switches

that are known to have stale mappings. To do so, each switch is

assigned a unique identi�er, which it adds to the packet header

upon a hit in its local cache. When a misdelivered tag gets assigned,

the ToR switch uses the switch identi�er to send an invalidation

packet to the speci�c switch.4 This process ensures that all the

caches along the path to the destination are invalidated as well.

However, this reactive approach may still result in a large burst

of invalidation packets. To mitigate this, we introduce a timestamp

vector with an entry for each switch in the network topology.5

Before generating an invalidation packet for a particular switch,

the ToR switch calculates the time di�erence between the current

timestamp and the timestamp in the vector. If the time di�erence

is less than the base RTT in the network, no packet is generated.

Otherwise, the switch overwrites the vector entry with the current

timestamp and generates the packet. The timestamp vector serves

two purposes: it mitigates a burst of invalidation packets sent to the

same switch and also allows the retransmission of an invalidation

packet in case a previously generated packet is dropped in the

network.

3.4 Implementation

We implement SwitchV2P as well as the main previous approaches

to V2P translation on the NS3 simulator [43]. We use the IP-in-IP

protocol [1] to tunnel packets. Our prototype implementation is

available as open-source software in our repository at

https://github.com/acsl-technion/SwitchV2P.

P4 Prototype. We validate the feasibility of SwitchV2P by proto-

typing it in P416 [50] for Intel To�no [26] using Intel P4 Studio [25].

To implement the in-switch cache, we utilize three register arrays:

one for keys, one for values, and one for access bits. Generally, our

implementation does not require packet recirculation, mirroring,

or multicast. We use packet mirroring to generate invalidation and

learning packets.

4Switch IPs can be calculated directly from the switch identi�er if the location of the
switch is encoded within it. Alternatively, the switch identi�er can be its IP, which
can reduce management complexity.
5This approach does not require clock synchronization since the timestamp vector
maintains local timestamps only.
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4 Discussion

Security. SwitchV2P has no impact on network security. Tenants

cannot access unauthorized mappings in the cache because they

cannot spoof physical addresses. A potential concern is whether

in-network caching may enable a VM to bypass ACL rules by hit-

ting the cache. This may not happen, however, since ACLs change

infrequently and are enforced in the end-hosts [11, 38, 53].

Handling dynamic caching in the host. In hybrid systems such

as Andromeda, hot V2P mappings are dynamically installed in

the sender’s host. Clearly, caching these mappings in the network

would be wasteful. This case is automatically handled in our design.

SwitchV2P does not perform lookups for already resolved packets,

so if an entry cached in the host is also cached in a switch, its access

bit will remain unset and it will be eventually evicted.

Heterogeneous memory allocation. We have so far centered on

a solution with caching in all switches in the topology. In some

cases, however, di�erent memory allocations might be bene�cial.

For example, allocating memory only to the ToR switches can be

su�cient for achieving some of the bene�ts. Indeed, in our experi-

ments, we �nd that using a ToR-only cache for Hadoop reduces the

FCT but does not reduce the �rst packet latency. We leave �nding

memory allocation policies across the switches for future work.

Packet reordering and TCP . SwitchV2P may potentially introduce

packet reordering. For example, this may occur if the gateway

processes a burst of packets initially missing the cache, and the V2P

cache is populated as a result. If subsequent packets are sent before

all the packets leave the gateway, these other packets may hit the

cache and arrive earlier. Indeed, in our experiments, we observed

increased packet reordering in con�gurations with smaller cache

sizes, but it is rare with larger caches. Additionally, reordering

may occur due to cache invalidation. However, this is a transient

e�ect that resolves within the time it takes for VM migration: stale

entries can be evicted by background tra�c or by invalidation

packets within Ćsecond (§5.2). In contrast, the median duration of

VM migration is on the order of mseconds [11].

Packet reordering is not unique to our solution, andmay also hap-

pen with other V2P mechanisms, such as when packets are dropped

at the gateway [56]. We found that modern TCP implementations

are more resilient, e.g., Linux TCP allows up to 300 reordered pack-

ets before fast retransmission [49], which was enough to avoid any

observable performance e�ects of reordering in our simulations.

Additionally, Linux [49], Windows [13, 40], and gVisor [20] imple-

ment the TCP RACK-TLP algorithm [8], which is even more robust

to packet reordering and can also work with QUIC [27, 28].

Multitenancy support. When considering a multi-tenant context

featuring multiple Virtual Private Clouds (VPCs) [54], destination

reuse across them is unlikely because VPCs operate in di�erent

address spaces. Therefore, SwitchV2P may serve for maintaining a

per-VPC private cache in a private memory partition in a switch.

As in-switch memory is a scarce resource, an operator may decide

to enable SwitchV2P for a particular VPC based on a policy, e.g.,

when the gateway load exceeds a certain threshold. Partitioning of

the switch memory among the tenants can be achieved via runtime

memory allocation [51, 58]. At the same time, the in-switch cache

must be isolated to avoid performance interference between the

tenants. We leave a systematic solution for the multi-tenant in-

network caching for future work.

Gateway migration. Changing the location of the gateway in the

network would require modifying the roles of the ToR switches. The

switch’s role can be dynamically adjusted through a control-plane

operation. Consequently, during gateway migrations, the former

gateway ToR can transition to a standard ToR behavior, while the

new ToR can take on the role of a gateway ToR. The cache state

does not require migration; instead, it is rebuilt at the destination.

5 Evaluation

We evaluate SwitchV2P via extensive, large-scale NS3 simulations

[43] with real-world network traces. Table 2 summarizes our results.

We use the following baselines:

• NoCache – pure Gateway [11]: packets are forwarded to their

destination via gateways. A gateway resolves the destination

addresses and forwards the packets to the destinations. This

baseline mimics the Hoverboard model in Andromeda [11] but

without host o�oading. However, as we explain below, our traces

o�er no o�oading opportunities because of the 2-tuple �ow

reuse.

• LocalLearning: the simplistic design from §3.1.

• GwCache – Sail�sh [44]: local caches are deployed only on

the gateway ToRs. Other switches are not used for caching. This

mimics Sail�sh [44], as the caches are deployed only at the gate-

ways. However, unlike the controller-managed cache in Sail�sh,

GwCache learns the mappings dynamically in the data plane.

• Bluebird [6]: ToR switches resolve addresses in the data plane

when they are in the cache (route cache in [6]); otherwise, the

control plane (SFE) forwards packets and updates the cache. We

set the data to control plane bandwidth to 20Gbps, the forward-

ing latency of packets by the control plane to 8.5Ćsec, and the

cache insertion latency to 2msec—similar to the parameters in

the original paper [6].

• Controller: To establish a theoretical baseline of the cache per-

formance, and evaluate the option of using a centralized con-

troller for optimal caching, we devise an analytical model for

the distributed cache allocation and placement by a centralized

controller (see Appendix A.1 for details). The optimization prob-

lem at hand is solved via an ILP solver on the controller, given

the network topology and the precise momentary tra�c matrix

in the whole network. The controller periodically fetches the

connection matrix statistics from each switch, solves the ILP, and

installs the mappings in each switch according to the solution.

This con�guration is evaluated only on WebSearch due to its

high simulation cost. This is not a practical solution as it does

not scale, so it serves only as a theoretical baseline.

• OnDemand – host-driven with a �rst lookup in the gate-

way [18]: This resembles the on-demand in VL2 [18], the Hover-

board model [11] with an immediate rule o�oading policy or the

ALMmechanism from Achelous [53]. Cache misses are penalized

with a 40Ćsec latency.

• Direct – pure host-driven [32]: hosts are installed with all

required mappings, mimicking the preprogrammed model [32].

This serves to estimate the best network performance but ignores

the overheads of mapping updates.
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Property Observation

Application performance SwitchV2P reduces FCT and �rst packet latency, even when a cache is small.

Updates SwitchV2P reduces packet latency overheads and the number of misdelivered packets.

Bandwidth overheads SwitchV2P reduces the overall number of processed bytes in the network, thus improving the e�ective network utilization.

Gateway resources SwitchV2P allows reducing the number of gateways by an order of magnitude while maintaining the same application performance.

Sensitivity to topology SwitchV2P maintains its advantages in a scale-up network topology.

Topology-aware caching Caching in core and spine switches is essential to achieve SwitchV2P bene�ts.

Switch resources SwitchV2P is lightweight and implementable with low resource consumption.

Table 2: Summary of experimental results.

Reported metrics. We focus on the cache hit rate, �rst packet la-

tency, and �ow completion times (FCT). The �rst estimates the

cache e�ectiveness in reducing the load on the gateways, while the

second and the third re�ect the application performance. We also

examine the per-pod and intra-pod tra�c distribution to demon-

strate the e�ect of caching on tra�c hotspots near the gateways,

load distribution in the network, bandwidth overheads and packet

path length. Finally, we measure the costs of mapping updates.

SwitchV2P con�guration. We set the frequency of learning packet

generation to 0.5% of all the tra�c passing through the gateway

switch. In addition, all caches are empty at the beginning of each

simulation.

Datasets.We use three real-world traces: Hadoop [46], WebSearch [4],

and Alibaba [36]. Additionally, we use two synthetic UDP traces:

a Microbursts trace (with a 99th percentile burst duration of

158Ćsec) [7, 30, 52, 55], and an 8K Video trace (with 64 senders

at 48Mbps) [56, 57]. We generate packet traces according to Hadoop

and WebSearchwith a network load of 30%with 100Gbps links. This

is similar to the network load used in the HPCC evaluation [34]. We

uniformly draw sources and destinations from a pool of 10240 VMs,

with 80 VMs on each server, exceeding the largest VPC size that was

experimented with in Zeta [56]. For Alibaba, we utilize a pre�x

of the microservice call trace. On average, there are 32 containers

on each server, for a total of 410,865 containers, as speci�ed in the

trace.

Address reuse characteristics. Hadoop mainly consists of short

�ows, and destination reuse between multiple �ows is high. Each

VM serves as a destination in at least one �ow in this trace. 10,233

VMs serve as destinations in at least two �ows with a total of 99,297

�ows. The reuse distance is relatively high, with an average of 2.5

msec. WebSearch is mostly comprised of heavy �ows with minimal

cross-�ow destination sharing, with only 48% of the VMs being a

destination in at least one �ow, and only 1,466 VMs are destinations

in at least two �ows. Alibaba consists of RPC calls, with 24% of the

VMs being a destination in at least one RPC. It has high cross-�ow

destination reuse: over 18K VMs appear as destinations in at least

10 di�erent �ows. Microbursts consists of mice �ows with over

2.6K VMs that appear as destinations in at least 10 di�erent �ows.

Video consists of 64 heavy �ows with no destination reuse. Note

that all the 2-tuple �ows in the Hadoop and WebSearch are shorter

than tens of milliseconds, as none of them repeat more than twice

in the trace. Thus, in the gateway-based design, these �ows cannot

be o�oaded to the host as this number is below the threshold

to o�oad the rule, e.g., in Zeta [56]. Additionally, Alibaba only

includes RPC calls. Therefore, all packets must be resolved by the

gateway. However, to illustrate the upper bound on the Andromeda

FT8-10K FT16-400K

#Pods 8 50

#Racks per pod 4 8

#ToR switches 32 400

#Core switches 16 16

#Gateways 40 250

#VMs 10240 410865

#Physical servers 128 12800

Table 3: The network topologies’ characteristics.

performance we also evaluate the OnDemand policy, where all the

translations are cached at the host after the �rst miss.

Network parameters. We consider two FatTree [3] network topolo-

gies in our evaluation, summarized in Table 3. We use FT16-400K

with the Alibaba trace [36] and place the microservices according

to the information included within. We use FT8-10K with all other

traces. We also experiment with other topology parameters in §5.3.

We use a similar setup to the setup in HPCC [34]. In both topologies,

we set the link propagation delay to 1 Ćsec, resulting in a 12 Ćsec

base round-trip time (RTT). Flows are balanced among multiple

paths using ECMP routing [24]. Each server is equipped with a

single 100Gbps NIC, and the capacity of switch-to-switch links is

400Gbps, leading to a 4:1 oversubscription. We set the switch bu�er

size to 32MB.

We deploy gateways in 50% of the pods and set the gateway

processing time to 40 Ćsec, following Sail�sh [44]. The gateways

are replicated, with load balancing performed by each server on a

per-�ow basis. We deploy an adequate number of gateways to meet

the peak throughput demands of our traces. Given that we generate

traces with a network load of 30%, FT8-10K and FT16-400K have

40 and 250 gateways respectively. Unless otherwise noted, we do

not observe any packet drops during our tests at the gateways. We

further evaluate the sensitivity to the number of gateways in §5.3.

In-switch memory size. The cache size is considered to be the ag-

gregate memory of all the switches used for caching in the network.

Inversely, the cache size per switch is 1

#ĩĭğĪęℎěĩ
of the total cache.

The cache size is reported relative to the total number of addresses

in a given experiment.

5.1 End-to-End Benchmarks

Overview. We vary the cache size (the aggregate memory of all

switches) from 1% to 1500× of the total VIP address space size in

the network, based on the following reasoning: a switch has the

capacity to store 192K entries in its data plane memory [6], which
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translates to 15M entries in total for an 80-switch topology. Consid-

ering that the VIP address space size in Hadoop and WebSearch is

about 10K, this represents a 1500× ratio, which corresponds to the

maximum cache size used in our experiments. However, consider-

ing the potential scaling of the number of isolated virtual networks,

e.g. millions of VPCs in an Alibaba Cloud region [44], we also ex-

amine smaller cache sizes where the amount of memory available

on each switch for each VPC is small.

We present the results for FT8-10K in Figures 5a to 5d, and the

results for FT16-400K in Figure 6. The left graph shows the total

hit rate in each system, i.e., the fraction of all sent packets that do

not reach the gateways. Clearly, this is 0% for NoCache. Bluebird

and Direct are omitted because they do not access the gateways,

whereas OnDemand assumes in�nite cache and thus its cache hit

rate is not representative. The middle and right graphs show the

improvement factor in the FCT and �rst-packet latency normalized

by the results of NoCache (higher is better). SwitchV2P consistently

outperforms all the techniques besides Direct across the majority

of the con�gurations. As expected, Direct shows better latency but

su�ers from high update overheads, as shown in §5.2. Importantly,

SwitchV2P has no negative e�ects on FCT or packet latency since

it does not modify routing paths, so the packet routes are at most

as long as in the NoCache system. Notably, SwitchV2P with a cache

size of one entry per switch in FT8-10K6, decreases the number of

gateway accesses by up to 20%.

Bene�ts of in-network mapping in Hadoop, Microbursts, and

Alibaba. Figure 5a shows that SwitchV2P outperforms GwCache

and LocalLearning for FCT for any cache size. This is because it

retains more critical entries in the cache than GwCache and Lo-

calLearning: unlike them, SwitchV2P evicts entries on one switch

and inserts them into another. Additionally, SwitchV2P exploits the

cross-�ow destination reuse in the trace more e�ciently: it resolves

hits in the network switches, whereas GwCache su�ers from com-

pulsory misses in the gateway caches due to load balancing among

the gateways. Cross-�ow destination reuse also allows SwitchV2P

to outperform the OnDemand baseline for larger caches. Finally,

Bluebird drops packets due to the bandwidth-limited link between

the data and control planes in the switch, so its performance is

inferior to all other techniques. Similar behavior is observed in

Alibaba (Figure 6) and Microbursts (Figure 5b). In Alibaba, this

is primarily due to source learning at the ToRs. This trace comprises

RPCs, allowing VMs to identify their destination at their ToRs when

sending their responses back. Moreover, SwitchV2P leverages the

large cross-�ow destination reuse, signi�cantly reducing FCT and

�rst-packet latency.

Bene�ts ofmovingmappings to tra�c in WebSearch and Video.

Figure 5c shows that SwitchV2P performs better than LocalLearning

because it reduces the network path length by placing mappings

closer to where they are needed. Despite the relatively high cache

hit rate, �rst-packet latency is not signi�cantly improved, as there

is minimal destination reuse in the trace. Learning packets improve

the hit rate in Video (Figure 5d). The main bene�t is a signi�cant

reduction of the gateway load (presented in §5.3). However, in this

trace SwitchV2P has no e�ect on application performance since the

61% of 10K IPs is 100 entries, uniformly distributed across 80 switches – 1 per switch.

lookup overhead is negligible given the �ow size, and there is no

destination reuse in the trace.

FCT vs. cache hit rate. Onemight expect similar FCT in SwitchV2P

and GwCache given the same hit rates, but this is not the case. For

example, in Hadoop SwitchV2P achieves better FCT than GwCache

even with the same cache hit rate. This is because SwitchV2P can

access the cache on the upward path towards the gateway, while

GwCache requires four more hops to reach the cache and exit the

pod from the core switch. The latency increases as the tra�c is

skewed toward the gateways (more details in §5.3).

First-packet latency vs. cross-flow reuse. First-packet latency

reduction shows clearly in the Hadoop, Alibaba, and Microbursts

traces with signi�cant cross-�ow destination sharing. The trends

in these traces are quite similar, though the magnitude of the re-

duction is higher in Hadoop. As expected, the other traces show no

improvements in the �rst-packet latency due to low destination

reuse.

GwCache performs slightly better than SwitchV2P for smaller

cache sizes due to its larger per-switch cache size (recall that in our

experiments the per-switch memory is divided equally between

the switches). Since in GwCache, only four Gateway switches are

used for caching, each switch is con�gured with 20×more memory

than in SwitchV2P which uses 80. As the reuse distance is quite

large (2.5 msec), a larger centralized cache in a switch performs

better than a cache distributed among multiple switches. However,

SwitchV2P outperforms all other baselines for larger cache sizes.

Centralized allocation via ILP . We fully analyze the Controller

baseline in Appendix A.2. We conclude that it is impractical be-

cause even when it is run at a high frequency it still lacks timely

information thus its bene�ts diminish in con�gurations with cache

sizes larger than 50%.

5.2 VM Migration Overheads

We generate a synthetic incast tra�c pattern by simulating 64 UDP

senders, each running on a distinct physical server in the FT8-10K

topology, and sending packets to the same destination VM. Sub-

sequently, we migrate the VM to a di�erent rack, thus changing

the physical address of the destination VM. The entire trace lasts 1

msec, totaling 64K packets. The migration occurs in the middle of

the simulation, at 500Ćsec (simulation time). We compare several

SwitchV2P variants with NoCache and OnDemand, and normal-

ize them by the measurements of NoCache. Under NoCache and

OnDemand, misdelivered packets are sent to the new destination

by the old destination using a “follow-me” rule [11]. In contrast, in

SwitchV2P misdelivered packets are sent from the old destination

to the gateway. In both cases, we set the additional overhead of

processing the packet in the old destination to 10Ćsec. For OnDe-

mand, we assume the controller cannot update the mappings on

the hosts within 500Ćsec, as the rule installment takes in the order

of milliseconds [56] (this assumption also applies to Achelous [53]).

Table 4 summarizes the results. NoCache has the fewest mis-

delivered packets because these are merely the packets that were

bu�ered in the gateway when the migration occurred. In contrast,

in OnDemand, the migration causes many misdelivered packets

and clearly a�ects the packet latency. A fully optimized SwitchV2P

(last row) achieves OnDemand’s packet latency with only 20% more
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(b) Microbursts
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(d) Video

Figure 5: Setup=FT8-10K: hit rate, average FCT, and �rst packet latency improvement (normalized by NoCache).
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Figure 6: Alibaba in FT16-400K: hit rate, average FCT, and �rst packet latency improvement factor (normalized by NoCache).



In-Network Address Caching for Virtual Networks ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

1 2 3 4 5 6 7 8
Pod ID

Direct

NoCache

GwCache

LocalLearning

SwitchV2P

6.65GB 6.2GB 6.28GB 6.63GB 6.28GB 6.31GB 6.4GB 6.21GB

18.4GB 6.44GB 18.6GB 6.9GB 6.53GB 18.9GB 6.72GB 19.2GB

15.7GB 6.46GB 15.7GB 6.91GB 6.54GB 15.9GB 6.73GB 16.1GB

12.9GB 6.29GB 13.1GB 6.75GB 6.39GB 13.2GB 6.54GB 13.4GB

7.45GB 6.23GB 7.14GB 6.64GB 6.31GB 7.21GB 6.43GB 7.13GB

Per-Pod Load

Figure 7: The number of processed bytes in each pod. Gate-

ways are in pods 1,3,6,8.

misdelivered packets than NoCache, and nearly identical total mi-

gration latency as indicated by the last misdelivered packet arrival.

Invalidation packets are essential for SwitchV2P to reduce the

number of misdelivered packets. However, in the naive solution

without the timestamp vector, the leaf switch sends more packets

than if it had sent invalidation packets to every switch in the net-

work (80 in this simulation). By introducing a timestamp vector,

we reduce the number of invalidation packets by over 100×.

5.3 Analysis

We analyze several aspects of SwitchV2P using the Hadoop trace

with a cache size of 50%.

Reduced bandwidth overheads and shorter packet stretch.

SwitchV2P is expected to reduce the tra�c to the gateways,

thereby alleviating network hotspots and reducing network band-

width overheads. To analyze this, we measure the total number of

bytes handled by switches in each pod (presented as a heatmap in

Figure 7). Note that the byte counts are based on the total number

of packets processed by each switch. Therefore, if a packet exits a

pod, it is counted twice: once by the ToR switch and once by the

spine switch.

SwitchV2P signi�cantly reduces the load on the gateway pods

compared to all other baselines. Although GwCache and SwitchV2P

achieve similar cache hit rates, in SwitchV2P packets hit the cache

without entering gateway pods, thus reducing the load. We validate

this result by measuring the total number of bytes that are handled

by the switches in one of the pods that host a gateway (Figure 8

shows the eighth pod). The heatmap clearly shows that SwitchV2P

signi�cantly reduces the processed tra�c in the pod. Compared to

NoCache, and GwCache it reduces the amount of network tra�c

at the gateway switch (switch number 8) by a factor of 6.1× and

3.7× respectively.

SwitchV2P introduces merely 7% more tra�c to the network

compared to the Direct baseline which does not perform map-

ping lookups. Compared to NoCache and GwCache, it reduces the

amount of network tra�c by a factor of 1.9× and 1.7× respectively.

Additionally, SwitchV2P signi�cantly reduces the average packet

stretch, i.e. the number of switches traversed by a packet, dropping

from 9.4, 8.9, and 8.5 for NoCache, LocalLearning, and GwCache

down to 5.1.

1 2 3 4 5 6 7 8
Switch ID

Direct

NoCache

GwCache

LocalLearning

SwitchV2P

0.81GB 0.65GB 0.74GB 0.8GB 0.77GB 0.73GB 0.88GB 0.83GB

2.46GB 2.08GB 2.24GB 2.35GB 0.79GB 0.76GB 0.9GB 7.62GB

2.42GB 2.07GB 2.21GB 2.32GB 0.79GB 0.76GB 0.9GB 4.65GB

2.29GB 1.96GB 2.12GB 2.18GB 0.77GB 0.74GB 0.88GB 2.51GB

0.94GB 0.77GB 0.85GB 0.92GB 0.77GB 0.74GB 0.88GB 1.25GB

Per-Switch Load

Figure 8: The number of processed bytes across switches

in pod 8: spines (switches 1-4), ToRs (switches 5-7), and a

gateway ToR (switch 8).
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Figure 9: Performance with fewer gateways for Hadoop.

Same performance with fewer gateways. Reducing the gateway

load allows for a decrease in the number of gateways in the system,

thereby lowering overall costs. To evaluate this, we measure the

performance while varying the number of gateways from 40 to 4.

Figure 9 shows that even with 10× fewer gateway instances,

SwitchV2P achieves nearly the same FCT and �rst packet latency

(up to a 3% reduction). In contrast, NoCache and LocalLearning are

not as e�ective. As the number of deployed gateways decreases,

their FCT and �rst packet latency increase. With only 4 deployed

gateways we observe packet drops, causing the latency metrics go

o� the scale.

Topology scaling. We modify the topology by adjusting the num-

ber of servers in each rack, resulting in a varying number of pods.

Speci�cally, we increase the number of pods from 8 to 32 by reduc-

ing the number of servers in each rack and decrease the number of

pods to 1 by increasing the number of servers in each rack up to 32.

Figure 10 shows that SwitchV2P scales better with the topology

size compared to LocalLearning. Speci�cally, SwitchV2P achieves

lower FCTs as the topology size increases, whereas LocalLearning

faces challenges in disseminating learned information to the appro-

priate locations for very large topologies. GwCache is stable across

all con�gurations because the gateway count remains consistent

across topology sizes, ensuring a constant per-switch cache size.

Cache hit distribution. We analyze the location of cache hits

within the topology. Table 5 provides a summary of cache hit rates

for the complete trace and the �rst packets, segmented based on

the switch hierarchy in the topology. First packets hit the cache

in the upper layers of the topology, leveraging cross-�ow address

reuse. In the TCP traces, the majority of cache hits occur in ToR

switches, largely due to generated learning packets and source
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Avg Last Misdelivered Total Invalidation

Gateway Packets Packet Latency Packet Arrival [Ćsec] Misdelivered Packets Packets

NoCache 100% 1× 545 1× 0

OnDemand 0% 0.25× 1005 11× 0

SwitchV2P w/o invalidations 8.4% 0.31× 1005 5.9× 0

SwitchV2P w/o timestamp vector 8.7% 0.25× 563 1.2× 3503

SwitchV2P w/ timestamp vector 8.7% 0.25× 563 1.2× 24

Table 4: The e�ect of VM migration on network performance, normalized by NoCache.
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Figure 10: Topology scaling results for the Hadoop trace in a

scaled FT8-10K topology.

Dataset
Total First packet

Core Spine ToR Core Spine ToR

Hadoop 1.7% 6.6% 91.7% 30.1% 29.2% 40.7%

WebSearch 1.5% 4.4% 94.1% 20.7% 33.8% 45.5%

Alibaba 2.4% 2.0% 95.6% 25.4% 15.0% 59.6%

Microbursts 6.8% 16.1% 77.1% 28.9% 30.3% 40.8%

Video 16.3% 12.2% 71.5% 0% 0% 0%

Table 5: The distribution of SwitchV2P cache hits within the

network topology for each dataset at a cache size of 50%.

learning. In contrast, in the UDP traces, such as the Microbursts

trace, about a third of the packets hit the cache at the core and

spine switches due to better cache placement of frequently used

destinations. These results highlight the signi�cance of every switch

in the topology in contributing to the performance advantages

delivered by SwitchV2P.

Switch resource utilization. Table 6 summarizes the average

per-stage resource utilization for the 50% cache size con�guration.

SwitchV2P leaves plenty of resources to implement other function-

ality on the switch. Moreover, Hash Bits and SRAM utilization are

the only components that increase proportionally as the cache size

is expanded. The gateway utilization can be further decreased by

replacing a few if-else clauses with a table with ternary keys.

6 Related Work

V2P translation in virtual networks. Numerous projects aim

to optimize V2P translations in virtual networks [6, 11, 18, 44, 53,

56]. SwitchV2P sets itself apart by proposing a new design point

in the tradeo� between the routing overheads and V2P mapping

update cost. A recent industry protocol from Cisco [9] takes a �rst

step toward this vision and suggests data plane address learning.

However, this protocol requires keeping all the mappings in spine

switches and is speci�cally designed for Clos topologies.

Resource Utilization

Match Crossbar 7.2%

Meter ALU 17.5%

Gateway 25.0%

SRAM 3.9%

TCAM 1.7%

VLIW Instruction 10.0%

Hash Bits 4.7%

Table 6: The average per-stage resource utilization of a cache

size of 50%.

Virtual networks in data centers. Virtual network architecture

and optimization techniques, in both software and specialized hard-

ware, have been extensively studied [10, 14, 16, 21, 32, 33, 42, 45, 48].

SwitchV2P aims to enhance virtual networks as well, utilizing a dis-

tributed in-network mapping cache to improve packet forwarding.

In-network caching. NetCache [29] and DistCache [35] demon-

strate the bene�ts of in-network caching in the context of key-value

stores. DistCache further considers scaling beyond a single rack

and presents a distributed design. However, the design considera-

tions for DistCache are completely di�erent, as it requires routing

changes and, as a key-value store, needs to keep cache coherency.

7 Conclusions

SwitchV2P is a distributed, in-network caching system that enables

switches to cache V2P mappings for virtual networks. State-of-the-

art solutions either use gateway- or host-driven designs and su�er

from an inherent tradeo� between mapping update and lookup

performance. SwitchV2P, in contrast, aims to escape this inherent

tradeo� by a novel design where in-network caches are hosted on

switches and self-govern using a distributed protocol. It requires

no changes to the gateways or servers while delivering signi�cant

performance bene�ts.
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A Appendix

Appendices are supporting material that has not been peer-reviewed.

A.1 Distributed Cache Allocation Model

The utility function is de�ned as per-packet latency, and our objec-

tive is to determine the online optimal solution for the following

problem: given the network topology and present tra�c distribu-

tion, and assuming unchanged routing, what is the ideal cache

allocation that achieves the minimum per-packet latency? This

pertains to the identi�cation of the V2P mappings to be cached and

the corresponding switches on which to execute caching. We take

a similar approach to tra�c engineering [22] and formulate the

problem as an integer linear programming (ILP) optimization.

We start by creating a topologyă = (ĒĤ ∪Ēĩ , ā), whereĒĤ is the

set of routable entities,Ēĩ is the set of switches, and ā is the link set.

We de�ne Ċ = |ĒĤ |, and ď = |Ēĩ |. We then de�ne the tra�c matrix

Đ = (Đğ, Ġ ), whereĐğ, Ġ denotes the number of packets transmitted to

node Ĭ Ġ ∈ ĒĤ by node Ĭğ ∈ ĒĤ .
7 Additionally, we assume that the

cost of gateway processing is ÿ and that each switch can maintain

up toĉ V2P mappings. We de�ne a binary variable ćĠ,ğ for each

VM, Ĭğ ∈ ĒĤ , and each switch, Ĭ Ġ ∈ Ēĩ . This variable indicates

whether the V2P mapping of Ĭğ is stored on Ĭ Ġ .

The latency of each packet,Ĉğ, Ġ , depends onwhether themapping

required is stored on any of the switches along the route to the

gateway. Therefore, we can examine the path from Ĭğ to the gateway,

i.e., the group of switches. If the bit ćĩ,Ġ is activated on any switch

in the path, then the packet latency is the sum of the number of

hops to that switch and the number of hops from that switch to Ĭ Ġ .

Conversely, if ćĩ,Ġ is not set on any switch along the path, then the

packet latency is the sum of the number of hops to the gateway,

plus ÿ , and the number of hops from the gateway to Ĭ Ġ .

We can then de�ne the following optimization problem with

integer variables:

minimize:
∑

ğ, Ġ∈[Ċ ]

Ĉğ, ĠĐğ, Ġ subject to:
∑

ĩ∈[ď ], Ġ∈[Ċ ]

ćĠ,ğ ≤ ĉ,ćğ, Ġ ∈ {0, 1}

Note that we assume that we have advance knowledge of the

path packets will follow to reach the gateway, and that we can

generate a precise tra�c matrix during runtime.

We employed the Z3 solver [12] and applied the formula to

several straightforward topologies and tra�c matrices. The opti-

mal solutions lead us to several observations about the practical

distributed caching algorithm. This algorithm should pursue two

primary objectives: (1) reduce the occurrence of cachemisses, which

will lead to a reduction in packet latency. (2) “move mappings to

the tra�c”, i.e. relocate the mappings closer to the sender’s host

so that packets can utilize the cache during their upward journey

and avoid the additional hops required to reach the gateway pod

altogether.

We also noted the critical importance of placing a mapping in

the switches at the intersection of all network paths utilizing it,

aiming to minimize entry duplication across switches. In scenarios

where every VM sends packets to the same destination, such as in

7This de�nition deviates slightly from the conventional de�nition [39], as we are
concerned with packet-level counts rather than the overall volume of communication.

an incast scenario, the relevant intersection would be the gateway’s

ToR switch.

The solution to the optimization problem may not be practical,

as we show in §5.1; however, it still holds value to us, as the in-

sights gleaned from this approach are instrumental in constructing

SwitchV2P.

A.2 Centralized Allocation via ILP

We consider the centralized approach to cache allocation by solving

the integer program described in Section A.1. We provide the most

favorable environment to the Controller and assume unlimited

resources to build an exact tra�c matrix. The Controller periodi-

cally halts the network tra�c, collects the statistics from switches,

builds the tra�c matrix, solves the ILP, and inserts the forwarding

rules into the switches. We evaluate two Controller invocation fre-

quencies: every 150 Ćsec and 300 Ćsec (in simulation time). These

settings are apparently impractical, so the Controller experiment

primarily serves us as a sanity check.

Figure 5c shows the results. Some points are missing from the

graph as the solver did not �nish within 30 hours. For cache sizes

below 50% of the address space, the Controller outperforms all other

approaches. The Controller has a full picture of the tra�c and thus

performs better entry placement. It also uses switch memory more

e�ciently, i.e., avoids entry duplication across switches, exactly

when it matters the most. However, as the cache size increases,

these bene�ts are outweighed by the lack of timely information, as

the mapping allocation is performed with respect to the outdated

tra�c pattern which rapidly changes. This e�ect becomes more

pronounced when the invocation rate is 300Ćsec.
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