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Abstract

Packet routing in virtual networks requires virtual-to-physical ad-
dress translation. The address mappings are updated by a single
party, i.e., the network administrator, but they are read by multiple
devices across the network when routing tenant packets. Existing
approaches face an inherent read-write performance tradeoff: they
either store these mappings in dedicated gateways for fast updates
at the cost of slower forwarding or replicate them at end-hosts and
suffer from slow updates.

SwitchV2P aims to escape this tradeoff by leveraging the network
switches to transparently cache the address mappings while learn-
ing them from the traffic. SwitchV2P brings the mappings closer to
the sender, thus reducing the first packet latency and translation
overheads, while simultaneously enabling fast mapping updates,
all without changing existing routing policies and deployed gate-
ways. The topology-aware data-plane caching protocol allows the
switches to transparently adapt to changing network conditions
and varying in-switch memory capacity.

Our evaluation shows the benefits of in-network address map-
ping, including an up to 7.8x and 4.3x reduction in FCT and first
packet latency respectively, and a substantial reduction in transla-
tion gateway load. Additionally, SwitchV2P achieves up to a 1.9x
reduction in bandwidth overheads and requires order-of-magnitude
fewer gateways for equivalent performance.
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1 Introduction

Network virtualization enables the overlay of customized virtual
topologies atop a single physical network. In a cloud setting, tenants
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Figure 1: The tradeoff of V2P translation mechanisms be-
tween the lookup and update performance. SwitchV2P aims
to escape from this tradeoff.

retain complete control over their virtual networks, enabling them
to configure IP assignments and routing policies [5, 17, 32, 41, 54].

Virtual IP assignments are decoupled from the underlying physi-
cal topology [32], so virtual IPs are mere identifiers lacking network
location information. Thus, routing a packet requires performing
virtual-to-physical translation, i.e., resolving the virtual destination
address into the corresponding physical address. These virtual-to-
physical (V2P) mappings are frequently modified by the virtual
network control plane due to the constant influx and departure of
virtual machines and containers [2, 53, 56].

As a result, a V2P translation mechanism must minimize the
lookup time on the critical path of the packet routing, and at the
same time support frequent updates to the V2P mappings at scale.
The challenge lies in harmonizing these goals, as the former leans
towards a fully distributed design that stores mappings at the sender,
while the latter leans towards a centralized gateway design that
enables efficient updates. Although this is a longstanding issue, a
solution that can satisfy both requirements remains elusive.

Figure 1 delineates these two fundamental approaches in state-
of-the-art solutions. In a fully distributed host-driven design such as
VL2 [18], AccelNet [15, 16], and Achelous [53], the mappings are
installed in the hypervisors or SmartNICs. The resulting routing
performance is high as the lookups are local to senders, but updates
scale poorly due to the control plane overhead of proactively up-
dating the mappings in the hypervisors across the network [53]. In
contrast, in a gateway-driven design, such as Zeta [56], Sailfish [44],
and Bluebird [6], the mappings are stored in dedicated network
entities, gateways. The updates are efficient as they are performed
in a few dedicated locations, but the routing performance deterio-
rates because of the increased first packet latency, gateway lookup
overheads, and the emergence of in-network hotspots, as we show
in the analysis in §5.1.
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Andromeda [11] explores a hybrid design where the mappings
are initially managed in the gateways, but the most frequent source-
destination pairs (e.g., mappings for elephant flows), are dynam-
ically installed in the source’s hypervisor at runtime. In fact, An-
dromeda enables the network administrators to select a certain
operating point along the tradeoff between the lookup performance
and update speed, yet it is inherently constrained by that tradeoff,
which we strive to escape in our work.

Conceptually, V2P translation can be viewed as an instance of
the classical problem of state sharing in a distributed system. The
state (V2P mapping of an IP) is written by a single writer (network
administrator), and read by multiple readers (senders to that IP).
The read-write performance tradeoffs are inherent in such systems.

Looking at the problem from this angle reveals a previously
overlooked design opportunity to improve the V2P translation
mechanism by controlling the replication factor of the mappings. As
has been broadly explored in distributed systems, e.g., in distributed
key-value caches [35], there is a tradeoff between the number of
cached replicas and the update overhead. Therefore, such systems
explicitly control the cache replication factor to optimize read-write
performance tradeoffs. In contrast, none of the V2P translation
mechanisms offer a similar level of control over the V2P caching.
Whereas the gateway-driven designs either do not use V2P caches
or statically restrict the cache to the gateway ToR [44], the host-
driven systems take the replication to an extreme by caching all
the mappings in every reader. Andromeda’s cache is more flexible
but still too coarse-grain: it caches mappings based on their usage
frequency, but conservatively keeps all the rest uncached. We posit
that more flexible caching mechanisms for V2P mappings may
achieve a better balance between the lookup latency and the update
performance.

Following this observation, our idea is to cache the V2P map-
pings in the switches, and thus resolve virtual addresses as the
packets en route. For cache hits, forwarding does not consult the
gateway. Compared to caching at the sender, this approach reduces
the cache replication factor significantly, making it proportional
to the number of switches instead of the number of physical ma-
chines. As a result, it speeds up the updates and enables caching
of less popular mappings. Moreover, the in-switch cache is closer
to the sender than the gateway so the packets that hit the cache
are forwarded faster. Additionally, caching reduces the load on the
gateways, improving their responsiveness and decreasing cost.

We realize this idea in Switch V2P, an in-network translation and
forwarding mechanism that builds on a novel data-plane protocol
for caching V2P mappings in the network switches. The mappings
are initially stored in the gateways as before, but SwitchV2P’s in-
network cache tier seamlessly learns the mappings from the traffic,
entirely in the data plane. SwitchV2P does not modify the existing
routing policies, so the packets are forwarded as usual unless the
destination mapping is found in the cache.

Unlike prior works that store the whole V2P database in ToR
switches [6], we choose a caching approach to simplify the deploy-
ment under limited in-switch memory. Our key premise is that, with
a substantial degree of destination reuse within both a single flow
and across multiple flows, even relatively small in-network caches
can improve performance. Furthermore, as the cache is distributed
across all the levels of the network topology, including the core
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Figure 2: Comparison of previous approaches to V2P map-
ping. Different colors represent the locations of the mappings
in the respective approach. SwitchV2P caches the mappings
in all the switches in the network topology.

switches, this design enables more efficient use of in-switch mem-
ory space by sharing a single cache entry in higher-level switches
among flows originating from different hosts, racks, or pods. In
addition, the opportunistic nature of the caching approach makes
it resilient to switch failures, as they do not affect the correctness
of packet forwarding. Last, the cache can be implemented and de-
ployed without changing existing virtual networking systems.

However, designing a distributed, dynamic caching tier in the
data plane, especially under the severe memory capacity constraints
of each switch is a formidable challenge. First, learning the map-
pings from traffic may not always be productive and waste cache
capacity: network paths where mappings can be learned (e.g., from
the gateway to the destination) may not intersect with the paths
where forwarding logic needs them, (e.g., from the source to the
gateway). Second, different switches might store duplicate redun-
dant entries thus reducing the effective cache capacity. So it is
imperative to promote certain mappings to higher-level switches to
eliminate such duplicates in lower-level switches. Third, the coor-
dination between the in-switch caches in the network should have
low overhead. Finally, mapping updates, e.g., due to VM migra-
tion or workload changes, must be implemented efficiently across
switches while guaranteeing packet forwarding correctness.

We address all these challenges in SwitchV2P, prototype it in
Tofino switches [26], and comprehensively evaluate using NS3 [43]
simulations across a range of real-world traces and diverse set-
tings, including different network topologies. Our results show that
SwitchV2P delivers significant performance benefits, improving
FCT by up to 7.8% and reducing first packet latency by up to 4.3x.
In particular, SwitchV2P delivers a 1.6X improvement in FCT and
a 2.9 reduction in first packet latency compared to host-driven
approaches. These improvements are achieved while maintaining
miss rates below 1% with realistic in-switch memory sizes. It also
offers added benefits such as reduced network load and low migra-
tion costs. Our P4 prototype indicates that SwitchV2P has relatively
modest resource requirements, making it a practical solution for
implementation in commercial off-the-shelf switches.
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2 Motivation

Existing approaches are faced with an inherent tradeoff—either they
sacrifice routing performance (by placing mappings in dedicated
gateway servers), or they sacrifice update performance (by placing
mappings in end hosts). The degree of replication for the mappings
frames existing solutions, as we illustrate in Figure 2.

2.1 Escaping the Tradeoff in SwitchV2P

SwitchV2P, instead, aims to escape from the constraints that are
introduced by this tradeoff. The key idea is that the “replicas” need
not be passive receptacles, but can be entities imbued with intel-
ligence. This allows for a unique point in the design space where
the degree of replication is much smaller than the number of end
hosts, yet both update and lookup performance are much higher
than either end of the spectrum in the tradeoff. SwitchV2P proposes
to co-opt the network switches into mapping replicas. This builds
upon the fact that, from networking hardware design, we know
that constrained programmability can be implemented at line speed
in commercial off-the-shelf switches.

At first glance, SwitchV2P might look like the hybrid design
motivated before, where packets are initially routed to the gateway.
However, as they traverse the network topology en route to the gate-
way, the switches can assist in the translation process by looking up
their local caches at the time of packet forwarding. On a cache hit,
the packets can be promptly directed to their intended destination.
On a cache miss, the gateway takes over the task following the
usual procedure. Thus, the data plane effectively learns mappings
from packets, akin to MAC learning in L2 networks. We note that
the switches learn V2P mappings and not 5-tuples, so they do not
need to perform expensive per-flow state tracking.

The active intelligence in the mapping caches opens up a new
design space with salient properties.

First, this approach is opportunistic, implying that it does not
require expensive switch failure recovery protocols and can be im-
plemented in existing networks without making any changes to
the gateway, end-host networking stack, network configuration, or
routing, thus simplifying its adoption. Second, it naturally serves
network traffic en route, ensuring it does not increase routing over-
heads since packets do not take any detours during the lookup
process. Third, the in-network cache is managed in the data plane,
allowing it to promptly adapt to changing traffic patterns without
relying on costly control loops within a centralized control plane.
Moreover, it operates without the need for coordination among
switches, gateways, or end hosts, facilitating deployment. Last, a
high cache hit rate directly implies that most translations occur
within the network. Consequently, fewer packets undergo the ex-
tended processing at the gateway, resulting in reduced FCT and
first packet latency.

With the reduced load on the gateways, it becomes possible
to deploy fewer gateways. This will also reduce network traffic
because packets follow shorter routes, bypassing gateway pods
altogether and reaching their destinations directly. With the re-
duced mappings stored at the end hosts, the hypervisor state is lean
and lookups are accelerated inside network ASICs. Thus, the in-
network design combines the low routing overhead benefits of the
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host-driven design, while avoiding its update scalability limitations
by distributing the V2P mappings across switches instead of hosts.!

2.2 Impact on the First-Packet Latency

Modern virtual networks must satisfy a variety of centrally man-
aged network policies, such as Access Control Lists (ACLs). There-
fore, one may argue that the first packet in each flow has to be
forwarded to a gateway or a network controller to apply these poli-
cies, so in-network V2P translation will have no impact end-to-end.
However, it is worth noting that the ACL decisions are made in
the virtual IP address space, as dictated by the tenant organiza-
tion. Policing does not require translating a virtual address into
a physical address and enforcing decisions at that level. In addi-
tion, we believe, that in common cases, network policies do not
change frequently so they can be pre-installed and enforced by the
host. This is the case, for example, for ACL policies in Andromeda
and Achelous [11, 38, 53]. In such cases, V2P translation would
remain the only reason to access the gateway, and optimizing via
in-network cache will have a significant impact on the first-packet
latency.

2.3 Expected Effectiveness of Caching

Naturally, in-network V2P caching would be effective only if there
is a temporal locality of access to V2P mappings in the network.
This locality is obviously abundant within a flow, as the sender
keeps sending packets to the same destination. However, this is not
enough to warrant the use of in-network caching as the mapping
can be naturally cached by the sender, at least while the communi-
cation is active.

It turns out that in data center workloads there is a large degree
of destination reuse across flows. For example, in the analysis of the
Alibaba Cloud traces, over 95% of the total requests are processed by
just 5% of the microservices [36]. A similar access pattern has been
observed in a typical cloud region by prior work [44]. Thus, the
in-network cache enables mappings to be shared across flows and
end hosts, an operating point untenable for host-based solutions.

2.4 Cache Design Alternatives

We initially explored the idea of storing V2P mappings in the net-
work switches, utilizing their memory as a distributed hash table,
similar to the prior works on Ethernet scalability [31]. Presently,
the aggregate memory capacity of all the switches in a data center
should be sufficient to accommodate all the mappings (as indicated
by Bluebird [6], which reported 192K mappings per switch). How-
ever, we ultimately dismissed this approach for several reasons.
First, switch failures become critical, requiring inter-switch replica-
tion to prevent the loss of V2P mappings. It also becomes essential
to replicate hot keys to mitigate in-network hotspots and conges-
tion. Furthermore, it becomes increasingly necessary to create tens
of thousands of IP addresses per single server [37], and in-switch
storage may not scale well to meet this demand. Lastly, utilizing all
the data plane memory for storing mappings is an inefficient use of
space, considering that not all mappings are always active all the
time, often due to skewed traffic patterns [6, 44].

IThe servers-to-switches ratio in a k-ary fat-tree topology [3] is %, which translates
to 12.8 for k = 64.
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3 Design and Implementation

Objectives. SwitchV2P pursues the following goals:

Reduced forwarding latency with low update overheads;

No routing policy changes for backward compatibility;
Incremental deployability;

Seamless integration with gateway/hybrid solutions;
Decentralized dynamic cache management oblivious to switch
memory capacity.

3.1 Basic Principles

In the following, we first discuss the algorithm assuming that map-
pings do not change, and then explain how we deal with updates in
§3.3. SwitchV2P comprises a set of in-network caches that operate
within the data plane, e.g., in the switches. We assume that the sys-
tem uses gateway-driven or hybrid designs where the translations
are initially stored in the V2P translation gateways. As in prior
works [56], we assume that the switches know the addresses of
these gateways, e.g., by fixing their addresses to remain constant
even if the gateways change or move.

An unresolved packet for which the destination IP mapping is
unknown is sent to the gateway as before. Lookup and translation
are performed opportunistically in switches along the network
path that a packet takes. If the mapping is not found in any switch
along the path, the process is identical to the gateway design: the
gateway performs the V2P translation and forwards the packet to its
destination. If the packet is resolved by a switch from the local cache,
it is then forwarded to the respective physical destination without
reaching the gateway. The basic idea resembles MAC learning in L2
networks but with one key distinction: in the event of a cache miss,
the packet is forwarded directly to the gateway without flooding
the network.

There are two basic primitives executed by each switch:

Lookup. For each unresolved packet a switch parses the virtual des-
tination IP from the inner packet header and uses it as a lookup key
for its local cache. A successful lookup operation returns the corre-
sponding physical destination IP. The switch can then overwrite
the destination IP in the outer packet header with the returned ad-
dress. Thus, packets are forwarded directly to their true destinations
without reaching the gateway.
Learning. A switch learns V2P mappings from the passing packets
and inserts them into the cache. It inspects two virtual-physical IP
pairs: source and destination. Learning mappings from the source,
source learning, is always possible because the source physical IP
is known to the sender, whereas learning from the destination,
destination learning, is performed for packets whose destination
has already been translated by a gateway or a previously traversed
switch that cached the mapping. A switch may choose to perform
source learning, destination learning, or both.

We are left with one key design question: what should be the

cache admission policy that determines which entries to install into
the cache?
Local greedy approach. To gain intuition, we start with the “straw-
man” local greedy solution: each switch performs destination learn-
ing and admits all insertions. We then show that this approach
yields unsatisfactory results.
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Figure 3: The sequence for packet forwarding in the local
greedy approach. VM; sends a packet to VM;. The packet
is sent to the gateway (GW, shown by dashed lines), which
determines VMjy’s location. The packet is then forwarded
by the gateway to VM3 (shown by dotted lines). The V2P
mapping is cached on every switch along that path.

Figure 3 shows an example of the system behavior. All caches

start empty. The cache of each switch is shown as tables in Figure 3,
where virtual IP addresses (VIPs) are mapped to the respective
physical IP addresses (PIPs). When VM sends a packet to VM3, the
packet is routed to the gateway (step @). Each switch along the path
to the gateway performs a local lookup using the VIP address of
VMj. Since the cache is empty, all these lookups fail, and the packet
eventually reaches the gateway (step @). The gateway resolves the
address and forwards the packet to VM (step @). Switches on the
path to VMg, and in particular, the gateway ToR switch, can learn
the V2P mapping of VM;. Therefore, if VM; sends another packet
to VM, it will be directed to the cache on the gateway ToR switch
(step @), L4, and will be forwarded directly to VM, without going
through the gateway again.
Analysis. There are several problems with this approach. First,
VM, mapping is replicated across the switches on the path from
the gateway to VM3, but none of them except for the gateway
ToR’s cache (L4) is on the path from VM; to the gateway. As a
result, the cached entry is not used, the precious cache space in the
switches is wasted, and the following packets from VM; to VM
will miss again. At the same time, the gateway’s ToR cache is likely
to experience thrashing because all the packets that miss are routed
to the gateway. Last, this design does not differentiate between the
ToR switches and the switches higher in the topology, so the entries
that could have been stored only once in the core switch will be
replicated and occupy space across multiple ToR switches. The root
cause of these issues is that the caches are managed via local greedy
decisions, ignoring their location in the network topology. Instead,
we seek a collaborative approach where switches make decisions to
improve the distributed cache efficiency as a whole.

3.2 Topology-Aware Caching

Cache structure. Each switch is equipped with a direct-mapped
cache [23]. It can be implemented entirely in the data plane, without
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. Admission . Special
Switch Type Policy Learning from Functions
Gateway ToR Al Destination Learmng packet
generation
Gateway Spine A bit clear ~ Destination
Invalidati k
ToR All Sourc§ nval 1d214t10n packet
Learning packets generation
Spine A bit clear  Destination Promotions
Core A bitclear  Promotions

Table 1: The features of each switch type in SwitchV2P.

requiring packet mirroring, recirculation, or control plane involve-
ment. Each cache entry includes a key (VIP), a value (PIP), and an
access (A) bit turned on upon a hit. The access bit is turned off
when a lookup ends up accessing that cache line but it is a miss.
We use a single bit instead of sketches to indicate in-use entries,
thereby making more memory available for additional mapping
entries. All switches share the same cache structure.

Switch categories. We classify the switches into five categories
based on their location in the network: gateway ToRs, and gateway
spines; and regular ToRs, spines, and core switches. In the topology
in Figure 3, Ly is the only gateway ToR switch, as it is directly
connected to the gateway. A3 and A4 function as gateway spines
due to their direct attachment to a gateway ToR switch. Lastly, Lj,
Ly, and L3 are ToRs, while A; and A; are spines. C; and Cy are core
switches.

Each category differs in terms of the cache admission policy and
certain additional functions performed by the respective switches.
Together, the switches collaboratively strive to maximize the hit
rate in the entire distributed cache while adhering to the in-switch
memory capacity constraints.

Table 1 summarizes the admission policies and additional func-
tions performed by switches in each category. We now describe
them in detail.

3.2.1 Admission policies.

Gateway ToRs employ only destination learning because the pack-
ets on their path to the gateway have already traversed multiple
switches, and most likely have their source VIP:PIP already cached.
Other ToRs perform source learning because it is likely that the
receiver in the ToR’s rack will send a response, i.e., TCP ACK. They
also learn from special learning packets as discussed below.
Spines perform destination learning. However, as they process
traffic from the entire pod or network, they conservatively avoid
admitting new entries if it would require evicting an actively used
one. The reason is that a new entry pending insertion is not guar-
anteed to be useful, as it could have been traveling off the network
path where it is needed, whereas an active entry in the cache is
known to be useful. The status of the existing entry is determined
via the access bit.

Cores do not learn from the regular traffic packets as this would
result in thrashing. Instead, they learn from entry promotions they
receive from Spines, as discussed below. They cache an entry only
if the entry to be evicted has its access bit cleared.
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3.2.2 Special functions.

Learning packets. Gateway ToRs serve as a dissemination point
of the learned mappings. They are exposed to all the packets that
enter and leave the gateways from the whole network. Therefore,
they strive to proactively move mapping closer to the sender. To
this end, when they learn a new V2P mapping, they generate a
packet to forward the mapping to the sender’s ToR switch. To
avoid excessive packet generation, however, learning packets are
generated at a predefined probability Pje,. Consequently, the
maximum bandwidth requirement for learning packets is at most
100 X Pjearn % of the overall switch bandwidth.

Cache spillover. Switches strive to opportunistically keep map-
pings within the network. They append evicted entries to processed
packets,? which subsequent switches on the route attempt to in-
sert locally. This helps increase the effective cache capacity in the
network.

Promotion of popular entries to cores. Spines may promote fre-
quently used entries to the core switches. Specifically, if a packet
destined for the gateway hits the Spine cache and the respective
entry already has its access bit set, the mapping is appended to
the packet and sent to the core switch. This allows sharing entries
among multiple sources from different pods, thus eventually freeing
the cache space in the Spine. This applies only to the packets that
leave the pod, as otherwise, the promotion would not be effective.
Promotion is not invoked in gateway spines because misses even-
tually all reach the gateway and promoting to a higher layer does
not increase sharing.

3.2.3 Putting it all together.

Figure 4 illustrates the full system behavior in a sequence of sce-
narios below. In the description below, when we say that a switch
learns VM;, it means the VM;’s V2P mapping.

VM;— VM (Figure 4a). First, Ly, A4, and Ay learn VM from the
packets sent from the gateway to VM. Next, Ly learns VM; via
source learning on the way from the gateway to VM. This is useful
if VM later replies to VM. In addition, L; learns VM via source
learning, and VM, via a learning packet, sent at some point by Ly.
Subsequent packets from VM; to VM3 hit the cache at L; and are
sent directly to VM.

VM;s— VMy (Figure 4b). Ly learns VM4, but as a result it evicts
VM,. Since A3 is on the path from the gateway to VMy, Ly spills
VM to As. Additionally, L4 sends a learning packet with VMy to L.
As A1 is on the path from VM3 to VMy, it learns VM4 via destination
learning. It further promotes VM4 to C;. Lz and L3 learn VM3.

VM 1— VMy (Figure 4c). The packet hits the cache on A; and is
forwarded to VM. VMs placed on other pods can now share that
entry on Cy. L3 learns VM via source learning.

VMs— VM (Figure 4d). These packets hit the cache at A3 on the
path from VM3 to the gateway and are directly forwarded to VM.
A1 learns VM3 via destination learning.

3.3 Updates

V2P mappings are updated in the gateways, whereas the cached
V2P mappings remain stale. Fortunately, we observe that the in-
network cache does not have to be strongly consistent with the

2Using the option field in the tunnel header [19].
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Figure 4: The in-network cache contents in SwitchV2P after a sequence of communications. The sender VM and the uplink
path to the GW are in orange. The path from the GW to the receiver VM is in blue. Dotted lines represent generated learning
packets. The direct path toward the receiver is in purple. The colors of the cached entries represent the path through which the
entries are learned. Gray entries show the entries already in the cache.

“ground truth” at the gateways. Specifically, the misrouted packets
can be then rerouted to the correct destination. For example, An-
dromeda [11] installs a follow-me rule before migrating the VM
to the new machine. Thus, control-plane updates in Andromeda
can occur in parallel, as the follow-me rule ensures correct packet
forwarding to the VM’s new destination.

Relaxing the consistency guarantees of the cache enables more
efficient updates. Thus, we adopt a lazy cache invalidation approach,
where some mappings may remain stale for a short time. The pack-
ets that are routed using these stale mappings are re-forwarded to
their correct location, thereby in the end, the packets are correctly
forwarded in the network.

Our approach combines piggybacking invalidation requests on

misrouted packets and the use of specially crafted invalidation
packets targeted for the caches that are known to contain stale
mappings. We discuss these below.
Misdelivery tags. When a host’s hypervisor receives a packet that
cannot be locally delivered, it forwards such a packet to the gateway.
Note that a misdelivery to the wrong VM is prevented due to the
mismatch in the inner packet header. Such packets are tagged using
a misdelivery tag, which prevents the packet from fetching a stale
cached entry again on its way to the gateway.

In principle, the tag could be added by the host’s hypervisor, but
that would require modifying its code. Instead, we implement such
a tagging in ToRs. For this purpose, ToRs keep a mapping between
the front panel ports and the PIPs of the attached servers.> The ToR
examines the packet’s physical source IP, recognizing that it did
not originate from one of the directly attached servers.

A switch that received a packet with a misdelivery tag either
invalidates its local cached value for that VIP, or allows the packet
to use the cached value since it has already learned the new PIP of
the destination. Eventually, the packet is forwarded to the correct
destination by the gateway or by a switch with the correct PIP.
Invalidation packets. Although packets eventually reach their
correct destinations, misrouting could persist indefinitely, increas-
ing the load on hosts. This issue arises because misrouted packets
can invalidate caches only on the route from the old destination to
the gateway, so the respective stale entry in all the other switches
remains cached.

3This mapping is expected to be updated rarely since physical topologies change
infrequently [47].

A strawman approach would be to flood the entire network
with invalidation packets, which is inefficient. Instead, we generate
invalidation packets by the ToRs that stage them with a misdelivery
tag. Specifically, ToRs send invalidation packets only to the switches
that are known to have stale mappings. To do so, each switch is
assigned a unique identifier, which it adds to the packet header
upon a hit in its local cache. When a misdelivered tag gets assigned,
the ToR switch uses the switch identifier to send an invalidation
packet to the specific switch.* This process ensures that all the
caches along the path to the destination are invalidated as well.

However, this reactive approach may still result in a large burst
of invalidation packets. To mitigate this, we introduce a timestamp
vector with an entry for each switch in the network topology.’
Before generating an invalidation packet for a particular switch,
the ToR switch calculates the time difference between the current
timestamp and the timestamp in the vector. If the time difference
is less than the base RTT in the network, no packet is generated.
Otherwise, the switch overwrites the vector entry with the current
timestamp and generates the packet. The timestamp vector serves
two purposes: it mitigates a burst of invalidation packets sent to the
same switch and also allows the retransmission of an invalidation
packet in case a previously generated packet is dropped in the
network.

3.4 Implementation

We implement SwitchV2P as well as the main previous approaches
to V2P translation on the NS3 simulator [43]. We use the IP-in-IP
protocol [1] to tunnel packets. Our prototype implementation is
available as open-source software in our repository at
https://github.com/acsl-technion/SwitchV2P.

P4 Prototype. We validate the feasibility of SwitchV2P by proto-
typing it in P41¢ [50] for Intel Tofino [26] using Intel P4 Studio [25].
To implement the in-switch cache, we utilize three register arrays:
one for keys, one for values, and one for access bits. Generally, our
implementation does not require packet recirculation, mirroring,
or multicast. We use packet mirroring to generate invalidation and
learning packets.

4Switch IPs can be calculated directly from the switch identifier if the location of the
switch is encoded within it. Alternatively, the switch identifier can be its IP, which
can reduce management complexity.

5This approach does not require clock synchronization since the timestamp vector
maintains local timestamps only.
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4 Discussion

Security. SwitchV2P has no impact on network security. Tenants
cannot access unauthorized mappings in the cache because they
cannot spoof physical addresses. A potential concern is whether
in-network caching may enable a VM to bypass ACL rules by hit-
ting the cache. This may not happen, however, since ACLs change
infrequently and are enforced in the end-hosts [11, 38, 53].
Handling dynamic caching in the host. In hybrid systems such
as Andromeda, hot V2P mappings are dynamically installed in
the sender’s host. Clearly, caching these mappings in the network
would be wasteful. This case is automatically handled in our design.
SwitchV2P does not perform lookups for already resolved packets,
so if an entry cached in the host is also cached in a switch, its access
bit will remain unset and it will be eventually evicted.
Heterogeneous memory allocation. We have so far centered on
a solution with caching in all switches in the topology. In some
cases, however, different memory allocations might be beneficial.
For example, allocating memory only to the ToR switches can be
sufficient for achieving some of the benefits. Indeed, in our experi-
ments, we find that using a ToR-only cache for Hadoop reduces the
FCT but does not reduce the first packet latency. We leave finding
memory allocation policies across the switches for future work.
Packet reordering and TCP. SwitchV2P may potentially introduce
packet reordering. For example, this may occur if the gateway
processes a burst of packets initially missing the cache, and the V2P
cache is populated as a result. If subsequent packets are sent before
all the packets leave the gateway, these other packets may hit the
cache and arrive earlier. Indeed, in our experiments, we observed
increased packet reordering in configurations with smaller cache
sizes, but it is rare with larger caches. Additionally, reordering
may occur due to cache invalidation. However, this is a transient
effect that resolves within the time it takes for VM migration: stale
entries can be evicted by background traffic or by invalidation
packets within psecond (§5.2). In contrast, the median duration of
VM migration is on the order of mseconds [11].

Packet reordering is not unique to our solution, and may also hap-
pen with other V2P mechanisms, such as when packets are dropped
at the gateway [56]. We found that modern TCP implementations
are more resilient, e.g., Linux TCP allows up to 300 reordered pack-
ets before fast retransmission [49], which was enough to avoid any
observable performance effects of reordering in our simulations.
Additionally, Linux [49], Windows [13, 40], and gVisor [20] imple-
ment the TCP RACK-TLP algorithm [8], which is even more robust
to packet reordering and can also work with QUIC [27, 28].
Multitenancy support. When considering a multi-tenant context
featuring multiple Virtual Private Clouds (VPCs) [54], destination
reuse across them is unlikely because VPCs operate in different
address spaces. Therefore, SwitchV2P may serve for maintaining a
per-VPC private cache in a private memory partition in a switch.
As in-switch memory is a scarce resource, an operator may decide
to enable SwitchV2P for a particular VPC based on a policy, e.g.,
when the gateway load exceeds a certain threshold. Partitioning of
the switch memory among the tenants can be achieved via runtime
memory allocation [51, 58]. At the same time, the in-switch cache
must be isolated to avoid performance interference between the
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tenants. We leave a systematic solution for the multi-tenant in-
network caching for future work.

Gateway migration. Changing the location of the gateway in the
network would require modifying the roles of the ToR switches. The
switch’s role can be dynamically adjusted through a control-plane
operation. Consequently, during gateway migrations, the former
gateway ToR can transition to a standard ToR behavior, while the
new ToR can take on the role of a gateway ToR. The cache state
does not require migration; instead, it is rebuilt at the destination.

5 Evaluation

We evaluate SwitchV2P via extensive, large-scale NS3 simulations
[43] with real-world network traces. Table 2 summarizes our results.
We use the following baselines:
e NoCache - pure Gateway [11]: packets are forwarded to their
destination via gateways. A gateway resolves the destination
addresses and forwards the packets to the destinations. This
baseline mimics the Hoverboard model in Andromeda [11] but
without host offloading. However, as we explain below, our traces
offer no offloading opportunities because of the 2-tuple flow
reuse.

LocalLearning: the simplistic design from §3.1.

GwCache - Sailfish [44]: local caches are deployed only on

the gateway ToRs. Other switches are not used for caching. This

mimics Sailfish [44], as the caches are deployed only at the gate-
ways. However, unlike the controller-managed cache in Sailfish,

GwCache learns the mappings dynamically in the data plane.

e Bluebird [6]: ToR switches resolve addresses in the data plane
when they are in the cache (route cache in [6]); otherwise, the
control plane (SFE) forwards packets and updates the cache. We
set the data to control plane bandwidth to 20Gbps, the forward-
ing latency of packets by the control plane to 8.5usec, and the
cache insertion latency to 2msec—similar to the parameters in
the original paper [6].

e Controller: To establish a theoretical baseline of the cache per-
formance, and evaluate the option of using a centralized con-
troller for optimal caching, we devise an analytical model for
the distributed cache allocation and placement by a centralized
controller (see Appendix A.1 for details). The optimization prob-
lem at hand is solved via an ILP solver on the controller, given
the network topology and the precise momentary traffic matrix
in the whole network. The controller periodically fetches the
connection matrix statistics from each switch, solves the ILP, and
installs the mappings in each switch according to the solution.
This configuration is evaluated only on WebSearch due to its
high simulation cost. This is not a practical solution as it does
not scale, so it serves only as a theoretical baseline.

e OnDemand - host-driven with a first lookup in the gate-
way [18]: This resembles the on-demand in VL2 [18], the Hover-
board model [11] with an immediate rule offloading policy or the
ALM mechanism from Achelous [53]. Cache misses are penalized
with a 40usec latency.

e Direct — pure host-driven [32]: hosts are installed with all
required mappings, mimicking the preprogrammed model [32].
This serves to estimate the best network performance but ignores
the overheads of mapping updates.
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Property Observation

Application performance SwitchV2P reduces FCT and first packet latency, even when a cache is small.

Updates SwitchV2P reduces packet latency overheads and the number of misdelivered packets.

Bandwidth overheads SwitchV2P reduces the overall number of processed bytes in the network, thus improving the effective network utilization.

Gateway resources
Sensitivity to topology
Topology-aware caching
Switch resources

SwitchV2P allows reducing the number of gateways by an order of magnitude while maintaining the same application performance.
SwitchV2P maintains its advantages in a scale-up network topology.

Caching in core and spine switches is essential to achieve SwitchV2P benefits.

SwitchV2P is lightweight and implementable with low resource consumption.

Table 2: Summary of experimental results.

Reported metrics. We focus on the cache hit rate, first packet la-
tency, and flow completion times (FCT). The first estimates the
cache effectiveness in reducing the load on the gateways, while the
second and the third reflect the application performance. We also
examine the per-pod and intra-pod traffic distribution to demon-
strate the effect of caching on traffic hotspots near the gateways,
load distribution in the network, bandwidth overheads and packet
path length. Finally, we measure the costs of mapping updates.
Switch V2P configuration. We set the frequency of learning packet
generation to 0.5% of all the traffic passing through the gateway
switch. In addition, all caches are empty at the beginning of each
simulation.

Datasets. We use three real-world traces: Hadoop [46], WebSearch [4],
and Alibaba [36]. Additionally, we use two synthetic UDP traces:
a Microbursts trace (with a 99th percentile burst duration of
158usec) [7, 30, 52, 55], and an 8K Video trace (with 64 senders
at 48Mbps) [56, 57]. We generate packet traces according to Hadoop
and WebSearch with a network load of 30% with 100Gbps links. This
is similar to the network load used in the HPCC evaluation [34]. We
uniformly draw sources and destinations from a pool of 10240 VMs,
with 80 VMs on each server, exceeding the largest VPC size that was
experimented with in Zeta [56]. For Alibaba, we utilize a prefix
of the microservice call trace. On average, there are 32 containers
on each server, for a total of 410,865 containers, as specified in the
trace.

Address reuse characteristics. Hadoop mainly consists of short
flows, and destination reuse between multiple flows is high. Each
VM serves as a destination in at least one flow in this trace. 10,233
VMs serve as destinations in at least two flows with a total of 99,297
flows. The reuse distance is relatively high, with an average of 2.5
msec. WebSearch is mostly comprised of heavy flows with minimal
cross-flow destination sharing, with only 48% of the VMs being a
destination in at least one flow, and only 1,466 VMs are destinations
in at least two flows. Alibaba consists of RPC calls, with 24% of the
VMs being a destination in at least one RPC. It has high cross-flow
destination reuse: over 18K VMs appear as destinations in at least
10 different flows. Microbursts consists of mice flows with over
2.6K VMs that appear as destinations in at least 10 different flows.
Video consists of 64 heavy flows with no destination reuse. Note
that all the 2-tuple flows in the Hadoop and WebSearch are shorter
than tens of milliseconds, as none of them repeat more than twice
in the trace. Thus, in the gateway-based design, these flows cannot
be offloaded to the host as this number is below the threshold
to offload the rule, e.g., in Zeta [56]. Additionally, Alibaba only
includes RPC calls. Therefore, all packets must be resolved by the
gateway. However, to illustrate the upper bound on the Andromeda

FT8-10K FT16-400K

#Pods 8 50
#Racks per pod 4 8
#ToR switches 32 400
#Core switches 16 16
#Gateways 40 250
#VMs 10240 410865

#Physical servers 128 12800

Table 3: The network topologies’ characteristics.

performance we also evaluate the OnDemand policy, where all the
translations are cached at the host after the first miss.

Network parameters. We consider two FatTree [3] network topolo-
gies in our evaluation, summarized in Table 3. We use FT16-400K
with the Alibaba trace [36] and place the microservices according
to the information included within. We use FT8-10K with all other
traces. We also experiment with other topology parameters in §5.3.
We use a similar setup to the setup in HPCC [34]. In both topologies,
we set the link propagation delay to 1 psec, resulting in a 12 usec
base round-trip time (RTT). Flows are balanced among multiple
paths using ECMP routing [24]. Each server is equipped with a
single 100Gbps NIC, and the capacity of switch-to-switch links is
400Gbps, leading to a 4:1 oversubscription. We set the switch buffer
size to 32MB.

We deploy gateways in 50% of the pods and set the gateway
processing time to 40 usec, following Sailfish [44]. The gateways
are replicated, with load balancing performed by each server on a
per-flow basis. We deploy an adequate number of gateways to meet
the peak throughput demands of our traces. Given that we generate
traces with a network load of 30%, FT8-10K and FT16-400K have
40 and 250 gateways respectively. Unless otherwise noted, we do
not observe any packet drops during our tests at the gateways. We
further evaluate the sensitivity to the number of gateways in §5.3.
In-switch memory size. The cache size is considered to be the ag-
gregate memory of all the switches used for caching in the network.
Inversely, the cache size per switch is m of the total cache.
The cache size is reported relative to the total number of addresses
in a given experiment.

5.1 End-to-End Benchmarks

Overview. We vary the cache size (the aggregate memory of all
switches) from 1% to 1500% of the total VIP address space size in
the network, based on the following reasoning: a switch has the
capacity to store 192K entries in its data plane memory [6], which
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translates to 15M entries in total for an 80-switch topology. Consid-
ering that the VIP address space size in Hadoop and WebSearch is
about 10K, this represents a 1500 ratio, which corresponds to the
maximum cache size used in our experiments. However, consider-
ing the potential scaling of the number of isolated virtual networks,
e.g. millions of VPCs in an Alibaba Cloud region [44], we also ex-
amine smaller cache sizes where the amount of memory available
on each switch for each VPC is small.

We present the results for FT8-10K in Figures 5a to 5d, and the
results for FT16-400K in Figure 6. The left graph shows the total
hit rate in each system, i.e., the fraction of all sent packets that do
not reach the gateways. Clearly, this is 0% for NoCache. Bluebird
and Direct are omitted because they do not access the gateways,
whereas OnDemand assumes infinite cache and thus its cache hit
rate is not representative. The middle and right graphs show the
improvement factor in the FCT and first-packet latency normalized
by the results of NoCache (higher is better). SwitchV2P consistently
outperforms all the techniques besides Direct across the majority
of the configurations. As expected, Direct shows better latency but
suffers from high update overheads, as shown in §5.2. Importantly,
SwitchV2P has no negative effects on FCT or packet latency since
it does not modify routing paths, so the packet routes are at most
as long as in the NoCache system. Notably, SwitchV2P with a cache
size of one entry per switch in FT8-10K%, decreases the number of
gateway accesses by up to 20%.

Benefits of in-network mapping in Hadoop, Microbursts, and
Alibaba. Figure 5a shows that SwitchV2P outperforms GwCache
and LocalLearning for FCT for any cache size. This is because it
retains more critical entries in the cache than GwCache and Lo-
calLearning: unlike them, SwitchV2P evicts entries on one switch
and inserts them into another. Additionally, SwitchV2P exploits the
cross-flow destination reuse in the trace more efficiently: it resolves
hits in the network switches, whereas GwCache suffers from com-
pulsory misses in the gateway caches due to load balancing among
the gateways. Cross-flow destination reuse also allows SwitchV2P
to outperform the OnDemand baseline for larger caches. Finally,
Bluebird drops packets due to the bandwidth-limited link between
the data and control planes in the switch, so its performance is
inferior to all other techniques. Similar behavior is observed in
Alibaba (Figure 6) and Microbursts (Figure 5b). In Alibaba, this
is primarily due to source learning at the ToRs. This trace comprises
RPCs, allowing VMs to identify their destination at their ToRs when
sending their responses back. Moreover, SwitchV2P leverages the
large cross-flow destination reuse, significantly reducing FCT and
first-packet latency.

Benefits of moving mappings to traffic in WebSearch and Video.
Figure 5c¢ shows that SwitchV2P performs better than LocalLearning
because it reduces the network path length by placing mappings
closer to where they are needed. Despite the relatively high cache
hit rate, first-packet latency is not significantly improved, as there
is minimal destination reuse in the trace. Learning packets improve
the hit rate in Video (Figure 5d). The main benefit is a significant
reduction of the gateway load (presented in §5.3). However, in this
trace SwitchV2P has no effect on application performance since the

1% of 10K IPs is 100 entries, uniformly distributed across 80 switches — 1 per switch.
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lookup overhead is negligible given the flow size, and there is no
destination reuse in the trace.

FCT vs. cache hit rate. One might expect similar FCT in SwitchV2P
and GwCache given the same hit rates, but this is not the case. For
example, in Hadoop SwitchV2P achieves better FCT than GwCache
even with the same cache hit rate. This is because SwitchV2P can
access the cache on the upward path towards the gateway, while
GwCache requires four more hops to reach the cache and exit the
pod from the core switch. The latency increases as the traffic is
skewed toward the gateways (more details in §5.3).

First-packet latency vs. cross-flow reuse. First-packet latency
reduction shows clearly in the Hadoop, Alibaba, and Microbursts
traces with significant cross-flow destination sharing. The trends
in these traces are quite similar, though the magnitude of the re-
duction is higher in Hadoop. As expected, the other traces show no
improvements in the first-packet latency due to low destination
reuse.

GwCache performs slightly better than SwitchV2P for smaller
cache sizes due to its larger per-switch cache size (recall that in our
experiments the per-switch memory is divided equally between
the switches). Since in GwCache, only four Gateway switches are
used for caching, each switch is configured with 20X more memory
than in SwitchV2P which uses 80. As the reuse distance is quite
large (2.5 msec), a larger centralized cache in a switch performs
better than a cache distributed among multiple switches. However,
SwitchV2P outperforms all other baselines for larger cache sizes.
Centralized allocation via ILP. We fully analyze the Controller
baseline in Appendix A.2. We conclude that it is impractical be-
cause even when it is run at a high frequency it still lacks timely
information thus its benefits diminish in configurations with cache
sizes larger than 50%.

5.2 VM Migration Overheads

We generate a synthetic incast traffic pattern by simulating 64 UDP
senders, each running on a distinct physical server in the FT8-10K
topology, and sending packets to the same destination VM. Sub-
sequently, we migrate the VM to a different rack, thus changing
the physical address of the destination VM. The entire trace lasts 1
msec, totaling 64K packets. The migration occurs in the middle of
the simulation, at 500psec (simulation time). We compare several
SwitchV2P variants with NoCache and OnDemand, and normal-
ize them by the measurements of NoCache. Under NoCache and
OnDemand, misdelivered packets are sent to the new destination
by the old destination using a “follow-me” rule [11]. In contrast, in
SwitchV2P misdelivered packets are sent from the old destination
to the gateway. In both cases, we set the additional overhead of
processing the packet in the old destination to 10usec. For OnDe-
mand, we assume the controller cannot update the mappings on
the hosts within 500usec, as the rule installment takes in the order
of milliseconds [56] (this assumption also applies to Achelous [53]).

Table 4 summarizes the results. NoCache has the fewest mis-
delivered packets because these are merely the packets that were
buffered in the gateway when the migration occurred. In contrast,
in OnDemand, the migration causes many misdelivered packets
and clearly affects the packet latency. A fully optimized SwitchV2P
(last row) achieves OnDemand’s packet latency with only 20% more
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Figure 6: Alibaba in FT16-400K: hit rate, average FCT, and first packet latency improvement factor (normalized by NoCache).
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Per-Pod Load

Direct 46.65GB| 6.2GB |6.28GB|6.63GB|6.28GB|6.31GB| 6.4GB |6.21GB,

NoCache —18.4GB|6.44GB|18.6GB| 6.9GB |6.53GB|18.9GB|6.72GB|19.2GB|

GwCache —<15.7GB|6.46GB|15.7GB|6.91GB|6.54GB|15.9GB|6.73GB|16.1GB

LocalLearning -12.9GB|6.29GB|13.1GB|6.75GB|6.39GB|13.2GB|6.54GB|13.4GB

SwitchV2P —<7.45GB|6.23GB|7.14GB|6.64GB|6.31GB|7.21GB|6.43GB|7.13GB

T T T T T T T T
1 2 3 4 5 6 7 8

Pod ID
Figure 7: The number of processed bytes in each pod. Gate-
ways are in pods 1,3,6,8.

misdelivered packets than NoCache, and nearly identical total mi-
gration latency as indicated by the last misdelivered packet arrival.

Invalidation packets are essential for SwitchV2P to reduce the
number of misdelivered packets. However, in the naive solution
without the timestamp vector, the leaf switch sends more packets
than if it had sent invalidation packets to every switch in the net-
work (80 in this simulation). By introducing a timestamp vector,
we reduce the number of invalidation packets by over 100x.

5.3 Analysis

We analyze several aspects of SwitchV2P using the Hadoop trace
with a cache size of 50%.
Reduced bandwidth overheads and shorter packet stretch.

SwitchV2P is expected to reduce the traffic to the gateways,
thereby alleviating network hotspots and reducing network band-
width overheads. To analyze this, we measure the total number of
bytes handled by switches in each pod (presented as a heatmap in
Figure 7). Note that the byte counts are based on the total number
of packets processed by each switch. Therefore, if a packet exits a
pod, it is counted twice: once by the ToR switch and once by the
spine switch.

SwitchV2P significantly reduces the load on the gateway pods
compared to all other baselines. Although GwCache and SwitchV2P
achieve similar cache hit rates, in SwitchV2P packets hit the cache
without entering gateway pods, thus reducing the load. We validate
this result by measuring the total number of bytes that are handled
by the switches in one of the pods that host a gateway (Figure 8
shows the eighth pod). The heatmap clearly shows that SwitchV2P
significantly reduces the processed traffic in the pod. Compared to
NoCache, and GwCache it reduces the amount of network traffic
at the gateway switch (switch number 8) by a factor of 6.1x and
3.7X respectively.

SwitchV2P introduces merely 7% more traffic to the network
compared to the Direct baseline which does not perform map-
ping lookups. Compared to NoCache and GwCache, it reduces the
amount of network traffic by a factor of 1.9x and 1.7X respectively.
Additionally, SwitchV2P significantly reduces the average packet
stretch, i.e. the number of switches traversed by a packet, dropping
from 9.4, 8.9, and 8.5 for NoCache, LocalLearning, and GwCache
down to 5.1.
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Per-Switch Load

Direct -40.81GB|0.65GB|0.74GB| 0.8GB |0.77GB|0.73GB|0.88GB|0.83GB

NoCache —2.46GB|2.08GB|2.24GB|2.35GB|0.79GB|0.76GB| 0.9GB |7.62GB

GwCache —{2.42GB|2.07GB|2.21GB|2.32GB|0.79GB|0.76GB| 0.9GB |4.65GB

LocalLearning 42.29GB|1.96GB|2.12GB|2.18GB|0.77GB|0.74GB|0.88GB|2.51GB

SwitchV2P -0.94GB|0.77GB|0.85GB|0.92GB|0.77GB|0.74GB|0.88GB|1.25GB

T T T T T T T T
1 2 3 4 5 6 7 8

Switch ID
Figure 8: The number of processed bytes across switches
in pod 8: spines (switches 1-4), ToRs (switches 5-7), and a
gateway ToR (switch 8).
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Figure 9: Performance with fewer gateways for Hadoop.

Same performance with fewer gateways. Reducing the gateway
load allows for a decrease in the number of gateways in the system,
thereby lowering overall costs. To evaluate this, we measure the
performance while varying the number of gateways from 40 to 4.
Figure 9 shows that even with 10X fewer gateway instances,
SwitchV2P achieves nearly the same FCT and first packet latency
(up to a 3% reduction). In contrast, NoCache and LocalLearning are
not as effective. As the number of deployed gateways decreases,
their FCT and first packet latency increase. With only 4 deployed
gateways we observe packet drops, causing the latency metrics go
off the scale.
Topology scaling. We modify the topology by adjusting the num-
ber of servers in each rack, resulting in a varying number of pods.
Specifically, we increase the number of pods from 8 to 32 by reduc-
ing the number of servers in each rack and decrease the number of
pods to 1 by increasing the number of servers in each rack up to 32.
Figure 10 shows that SwitchV2P scales better with the topology
size compared to LocalLearning. Specifically, SwitchV2P achieves
lower FCTs as the topology size increases, whereas LocalLearning
faces challenges in disseminating learned information to the appro-
priate locations for very large topologies. GwCache is stable across
all configurations because the gateway count remains consistent
across topology sizes, ensuring a constant per-switch cache size.
Cache hit distribution. We analyze the location of cache hits
within the topology. Table 5 provides a summary of cache hit rates
for the complete trace and the first packets, segmented based on
the switch hierarchy in the topology. First packets hit the cache
in the upper layers of the topology, leveraging cross-flow address
reuse. In the TCP traces, the majority of cache hits occur in ToR
switches, largely due to generated learning packets and source
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Avg Last Misdelivered Total Invalidation
Gateway Packets Packet Latency Packet Arrival [usec] Misdelivered Packets Packets
NoCache 100% 1x 545 1% 0
OnDemand 0% 0.25% 1005 11x 0
SwitchV2P w/o invalidations 8.4% 0.31x 1005 5.9% 0
SwitchV2P w/o timestamp vector  8.7% 0.25% 563 1.2x 3503
SwitchV2P w/ timestamp vector ~ 8.7% 0.25% 563 1.2x 24
Table 4: The effect of VM migration on network performance, normalized by NoCache.
B Switchv2pP LocallLearning B GwCache Il NoCache Resource Utilization
5 750 g 75 Match Crossbar  7.2%
3,::_ 500 2 5 Meter ALU 17.5%
E 250 g »s Gateway 25.0%
2 g SRAM 3.9%
- TCAM 1.7%
! 8 16 32 ! 8 16 32 VLIW Instruction 10.0%
Pod Count Pod Count Hash Bits 479

Figure 10: Topology scaling results for the Hadoop trace in a
scaled FT8-10K topology.

Total First packet
Dataset
Core Spine ToR  Core Spine ToR
Hadoop 1.7% 6.6% 91.7% 30.1% 29.2% 40.7%
WebSearch 1.5% 4.4% 94.1% 20.7% 33.8% 45.5%
Alibaba 2.4% 2.0% 95.6% 254% 15.0% 59.6%
Microbursts 6.8% 16.1% 77.1% 28.9% 30.3% 40.8%
Video 16.3% 12.2% 71.5% 0% 0% 0%

Table 5: The distribution of SwitchV2P cache hits within the
network topology for each dataset at a cache size of 50%.

learning. In contrast, in the UDP traces, such as the Microbursts
trace, about a third of the packets hit the cache at the core and
spine switches due to better cache placement of frequently used
destinations. These results highlight the significance of every switch
in the topology in contributing to the performance advantages
delivered by SwitchV2P.

Switch resource utilization. Table 6 summarizes the average
per-stage resource utilization for the 50% cache size configuration.
SwitchV2P leaves plenty of resources to implement other function-
ality on the switch. Moreover, Hash Bits and SRAM utilization are
the only components that increase proportionally as the cache size
is expanded. The gateway utilization can be further decreased by
replacing a few if-else clauses with a table with ternary keys.

6 Related Work

V2P translation in virtual networks. Numerous projects aim
to optimize V2P translations in virtual networks [6, 11, 18, 44, 53,
56]. SwitchV2P sets itself apart by proposing a new design point
in the tradeoff between the routing overheads and V2P mapping
update cost. A recent industry protocol from Cisco [9] takes a first
step toward this vision and suggests data plane address learning.
However, this protocol requires keeping all the mappings in spine
switches and is specifically designed for Clos topologies.

Table 6: The average per-stage resource utilization of a cache
size of 50%.

Virtual networks in data centers. Virtual network architecture
and optimization techniques, in both software and specialized hard-
ware, have been extensively studied [10, 14, 16, 21, 32, 33, 42, 45, 48].
SwitchV2P aims to enhance virtual networks as well, utilizing a dis-
tributed in-network mapping cache to improve packet forwarding.
In-network caching. NetCache [29] and DistCache [35] demon-
strate the benefits of in-network caching in the context of key-value
stores. DistCache further considers scaling beyond a single rack
and presents a distributed design. However, the design considera-
tions for DistCache are completely different, as it requires routing
changes and, as a key-value store, needs to keep cache coherency.

7 Conclusions

SwitchV2P is a distributed, in-network caching system that enables
switches to cache V2P mappings for virtual networks. State-of-the-
art solutions either use gateway- or host-driven designs and suffer
from an inherent tradeoff between mapping update and lookup
performance. SwitchV2P, in contrast, aims to escape this inherent
tradeoff by a novel design where in-network caches are hosted on
switches and self-govern using a distributed protocol. It requires
no changes to the gateways or servers while delivering significant
performance benefits.
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A Appendix

Appendices are supporting material that has not been peer-reviewed.

A.1 Distributed Cache Allocation Model

The utility function is defined as per-packet latency, and our objec-
tive is to determine the online optimal solution for the following
problem: given the network topology and present traffic distribu-
tion, and assuming unchanged routing, what is the ideal cache
allocation that achieves the minimum per-packet latency? This
pertains to the identification of the V2P mappings to be cached and
the corresponding switches on which to execute caching. We take
a similar approach to traffic engineering [22] and formulate the
problem as an integer linear programming (ILP) optimization.

We start by creating a topology G = (V;, U Vs, E), where Vj, is the
set of routable entities, Vs is the set of switches, and E is the link set.
We define N = |V,,|, and S = |V§|. We then define the traffic matrix
T = (Tj,j), where T; j denotes the number of packets transmitted to
node vj € V;, by node v; € V.7 Additionally, we assume that the
cost of gateway processing is C and that each switch can maintain
up to M V2P mappings. We define a binary variable Kj ; for each
VM, v; € V,, and each switch, vj € Vs. This variable indicates
whether the V2P mapping of v; is stored on ;.

The latency of each packet, L; j, depends on whether the mapping
required is stored on any of the switches along the route to the
gateway. Therefore, we can examine the path from v; to the gateway,
i.e., the group of switches. If the bit K ; is activated on any switch
in the path, then the packet latency is the sum of the number of
hops to that switch and the number of hops from that switch to v;.
Conversely, if K ;j is not set on any switch along the path, then the
packet latency is the sum of the number of hops to the gateway,
plus C, and the number of hops from the gateway to v;.

We can then define the following optimization problem with
integer variables:

minimize:ZLi,jTi,j subject to: ZKj’i <M,K;j€{0,1}
i,je[N] se[S].je[N]

Note that we assume that we have advance knowledge of the
path packets will follow to reach the gateway, and that we can
generate a precise traffic matrix during runtime.

We employed the Z3 solver [12] and applied the formula to
several straightforward topologies and traffic matrices. The opti-
mal solutions lead us to several observations about the practical
distributed caching algorithm. This algorithm should pursue two
primary objectives: (1) reduce the occurrence of cache misses, which
will lead to a reduction in packet latency. (2) “move mappings to
the traffic”, i.e. relocate the mappings closer to the sender’s host
so that packets can utilize the cache during their upward journey
and avoid the additional hops required to reach the gateway pod
altogether.

We also noted the critical importance of placing a mapping in
the switches at the intersection of all network paths utilizing it,
aiming to minimize entry duplication across switches. In scenarios
where every VM sends packets to the same destination, such as in

"This definition deviates slightly from the conventional definition [39], as we are
concerned with packet-level counts rather than the overall volume of communication.
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an incast scenario, the relevant intersection would be the gateway’s
ToR switch.

The solution to the optimization problem may not be practical,
as we show in §5.1; however, it still holds value to us, as the in-
sights gleaned from this approach are instrumental in constructing
SwitchV2P.

A.2 Centralized Allocation via ILP

We consider the centralized approach to cache allocation by solving
the integer program described in Section A.1. We provide the most
favorable environment to the Controller and assume unlimited
resources to build an exact traffic matrix. The Controller periodi-
cally halts the network traffic, collects the statistics from switches,
builds the traffic matrix, solves the ILP, and inserts the forwarding
rules into the switches. We evaluate two Controller invocation fre-
quencies: every 150 usec and 300 usec (in simulation time). These
settings are apparently impractical, so the Controller experiment
primarily serves us as a sanity check.

Figure 5c shows the results. Some points are missing from the
graph as the solver did not finish within 30 hours. For cache sizes
below 50% of the address space, the Controller outperforms all other
approaches. The Controller has a full picture of the traffic and thus
performs better entry placement. It also uses switch memory more
efficiently, i.e., avoids entry duplication across switches, exactly
when it matters the most. However, as the cache size increases,
these benefits are outweighed by the lack of timely information, as
the mapping allocation is performed with respect to the outdated
traffic pattern which rapidly changes. This effect becomes more
pronounced when the invocation rate is 300usec.
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