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Abstract

A novel, automated, high throughput screening approach, ClusterFinder, is reported for finding candidate
structures for atomic pair distribution function (PDF) structural refinements. Finding starting models for PDF
refinements is notoriously difficult when the PDF originates from small chemical clusters. The reported
ClusterFinder algorithm is able to screen 10* — 10° candidate structures from structural databases such as the
inorganic crystal structure database (ICSD) in minutes, using the crystal structures as templates in which it

looks for atomic clusters that result in a PDF similar to the target measured PDF. The algorithm returns a rank
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ordered list of clusters for further assessment by the user. The algorithm performed well for simulated and
measured PDFs of metal oxido clusters such as Keggin clusters. The approach is therefore a powerful approach

to finding structural cluster candidates in a modelling campaign for PDFs of nanoparticles and nanoclusters.

Introduction

Throughout the last century, crystallographic methods have played a crucial role in advancing materials science.
Yet, they often struggle when examining nanomaterials with limited long-range order (Billinge & Levin, 2007).
Lately, total scattering with PDF analysis has shown promise for characterizing such nanomaterials (Billinge &
Levin, 2007, Juelsholt et al., 2021, Christiansen et al., 2020), including polyoxometalate (POM) clusters
(Juelsholt et al., 2019, Benseghir et al., 2020), and ionic clusters (Szczerba et al., 2021, Anker et al., 2021, Van
den Eynden et al., 2023). The PDF, derived from the Fourier transform of normalized and corrected X-ray,
neutron, or electron scattering intensities, offers a real-space representation of inter-atomic distances in the
sample (Egami & Billinge, 2012, Christiansen et al., 2020).

Researchers have long pursued the challenge of deriving ab initio structure solutions from PDFs (Juhas et al.,
2006, Juhas et al., 2008, Juhas et al., 2010, Cliffe et al., 2010, Cliffe & Goodwin, 2013, Anker et al., 2020, Kjer
et al., 2023, Klove et al., 2023). However, success remains limited to rather simple chemical systems like the
Ceo buckyball and mono-metallic nanoparticles. In the absence of broadly applicable ab initio structure solution
methods, suitable starting models are necessary to refine the PDFs. Known crystal structures are often used for
crystalline materials. However, this task becomes exceptionally difficult for small clusters and nanoparticles.
Recent methods such as clusterMining (Banerjee et al., 2020) and structureMining have taken the approach of
screening large numbers of structures that are pulled from databases or algorithmically generated. Nonetheless,

they are all restrained to the presence of a suitable database of structures or an algorithmic structure generator.



A hybrid approach, ML-MotEx (Anker et al., 2022), was recently demonstrated that used chemical knowledge
to select candidate crystal structures from a crystallographic database, then explainable ML to find sub-clusters
from the candidate structure that were consistent with the data. The approach worked well, but was slow, taking
several minutes for each starting structure, which limited its application to cases where the candid parent crystal
structures were few and obvious to the user. Here, we propose a novel algorithm, ClusterFinder, that follows the
same approach of sampling sub-clusters from larger structural candidates, but it uses a non-machine learning
direct scoring approach for identifying high performing sub-clusters. This speeds up the selection procedure to
seconds, allowing for an automated search for sub clusters over large numbers of candidate parent structures that

can be selected in an automated way from structural databases.

Method

The basic strategy was described in (Anker et al 2022). We summarize it here. The starting point is an atomic
PDF experiment of a sample that contains small clusters, for example, a soluble reagent or nanoparticles
suspended in a solvent. The resulting PDF has a small number of peaks in it confined to the low-r region,

indicating the presence of unknown atomic clusters of small size (e.g., see Fig. 1).
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Fig. 1 | Simulated PDF from a Ceo buckyball from a single unit cell of a Ceo crystal structure (Chen & Yamanaka,

2002); The simulation parameters mimic typical PDF dataset values and can be seen in section A in the SI.



In principle, the data can be fit using programs such as PDFgui (Farrow et al., 2007), Topas (Coelho, 2018), or
DiffPy-CMI (Juhas et al., 2015) to understand the structure of the clusters, but this process requires a good initial
candidate structure to be given. The main challenge is to find good starting models for the fit. ClusterFinder
addresses this need. It reuses the approach taken by ML-MotEx where a set of chemically reasonable crystal
structures is identified. Large-enough candidate template clusters are then cut out from that crystal structure.
Assuming for now that the cluster present in the experimental data, the target cluster, is contained within the
template, the principal goal is to find the subset of occupied sites in the template that corresponds to the target
cluster. A search over all possible permutations of present vs. absent atoms is impossible because of the
combinatorics with 2N-1 possibilities for a template of N sites. ML-MotEx (Anker et al., 2022) used an
explainable machine learning approach to optimize this problem by learning probabilities that each atom might
be present in the target cluster after iterating over a small subset of all the possible permutations. This placed
atom-sites in a rank ordered list and made it easy for the user to select a cut-off for which sites were occupied
and which not to generate the target cluster configuration. Of course, the target cluster may not be present in the
template and in general there is a further outer-loop that needs to be iterated over of all possible candidate crystal
structures and templates. The ML-MotEx algorithm is too slow to do this over a large number of template
candidates and the success of the approach relies on a strong chemical intuition suggesting a small number of

candidate structures.

At the heart of the algorithm is the calculation to generate an ordered list of sites based on the probability that
they are present in the target cluster. The Liga algorithm (Juhas et al., 2006, Juhas et al., 2008), also scores atoms

in a cluster as part of its backtracking cluster reduction step, where poor performing clusters are reduced in size



by preferentially removing atoms that are contributing more error to the agreement with the data. The ranking

was done using the commonly used PDF weighted profile agreement factor.
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where Gobs and Gealc are the observed and calculated PDF intensities for the set, P, of model refinement

parameters. The sum is over the » points in the PDF.

Taking inspiration from the Liga algorithm (Juhas et al., 2006, Juhas et al., 2008), we attempt an approach of
computing the contribution to the fitting error for each atom site in the cluster. We call this the atom-removal
error, and denote it for the i™ atom by AR',,. It is computed by evaluating Ry, for the full set of atoms, then
recomputing Ry, for the cluster with the i™ atom removed and taking the difference. This allows us to identify
which atoms contribute the most error to the fit allowing us to target them for removal. For each atom, a scale
factor and an isotropic expansion/contraction factor are allowed to refine to give the best agreement before

computing R,,. This procedure is extremely rapid and results in a list of atomic sites ranked by AR,

To visualise the results, we plot the templates with each atom-site colour-coded based on its AR',,,. Atom sites
with negative (good) AR',, are coloured yellow and those with positive (bad) AR, are coloured blue. The
approach is illustrated schematically for a trivial example of a binary molecule in Fig. 2. Note that ClusterFinder
only ranks the atoms in the template and a human input is still needed to determine which atoms to remove when
finding the best cluster candidates. In Fig. 2, it is trivial to remove atom 3 and 4 from the ClusterFinder output
but this task might not always be trivial and may include chemical intuition of the user. However, it is still
extremely valuable because, due to its speed, it can be used to screen large numbers of structures to find the best

cluster candidates, removing the need for chemical intuition in the template structure selection part of the task.



To test the ClusterFinder approach, the results were compared to a known “ground-truth” and to the already
published results of ML-MotEx. We found that ClusterFinder provided comparable results to ML-MotEx in
quality but orders of magnitude quicker.

The speed-up was sufficient to allow us to screen large databases of starting models for the right starting template
in minutes. To demonstrate the power of this, we provide five examples where we screen the entire ICSD
(Zagorac et al., 2019), containing 188,631 structure entries, for a suitable starting model in a timeframe ranging
from 3 to 42 minutes. We expect this to make ClusterFinder highly valuable since if the target cluster exists

anywhere in any known crystal structure it will automatically be found without any user input at this stage.
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Fig. 2 | Illustration of the ClusterFinder process. A starting model is provided as input and the Ry, value is
calculated by structure refinement. Atoms are iteratively removed from the starting model and fitted to the
experimental PDF. The atom-removal error, AR',,, is calculated by taking the difference between the Ry, value

of the full starting model and when the atoms are removed. Atoms are colour-coded based on atom-removal error



— yellow indicates a negative AR',, value (improved fit) while blue signifies a positive AR',;, value (worsened

fit).

Results & Discussion

Applying ClusterFinder to Extract Cluster Motifs from Simulated PDFs

We first demonstrate ClusterFinder’s ability to extract cluster motifs from simulated PDFs. Figure 3 shows three
simulated PDFs, each corresponding to a distinct structure: a decatungstate polyoxometalate cluster from a
Nas(H7W12042)(H20)20 crystal structure (Redrup & Weller, 2009), coloured in blue; a Ceo buckyball from a
single unit cell of the Cego crystal structure (Chen & Yamanaka, 2002), coloured in green; and a paratungstate
polyoxometalate cluster originated from a (Ba(H20)2(H(N(CH3)2)CO)3)2(W10032)(H(N(CH3)2)CO); crystalline
model (Poimanova ef al., 2015), coloured in red. The values of the simulation parameters used to mimic typical
PDF dataset values are listed in Section A in the Supplementary Information (SI). Figure 3B—D show the
structural templates used by ClusterFinder. In these tests, structural templates were manually constructed with
the minimum unit cells needed to include the full cluster. ClusterFinder outputs a list of atomic sites ranked by
the AR',, value and again, we visualise atom sites with negative AR, as yellow and those with positive AR,

as blue. The resulting visualisations are shown in Figure 3B-D.

ClusterFinder correctly extracted all three cluster structures from their starting model in under a minute using a
standard laptop, demonstrating a significant speed advantage over the ML-MotEx algorithm (Anker et al., 2022),
which takes approximately an hour on a standard laptop. Although ClusterFinder accurately extracts the
decatungstate polyoxometalate cluster (blue) and the paratungstate polyoxometalate cluster (red), it does not
completely recover the Cego buckyball (green), incorrectly labelling two atoms. The ML-MotEx algorithm also

exhibited similar limitations in extracting this structure.
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Fig. 3 | Analysis of simulated PDFs of well-known cluster structures. A) Simulated PDFs of (blue) a
decatungstate polyoxometalate cluster from the Nas(H7W12042)(H20)20 crystal structure (Redrup & Weller,
2009); (green) a Ceo buckyball from a single unit cell of a Ceo crystal structure (Chen & Yamanaka, 2002); and
(red) a paratungstate polyoxometalate cluster obtained from the
(Ba(H20)2(H(N(CH3)2)C0O)3)2(W10032)(H(N(CH3)2)CO)2  crystalline model (Poimanova et al, 2015).
Simulation parameters chosen to mimic typical measured PDF datasets and are reproduced in section A in the
SI. B-D) Results of using ClusterFinder on the three simulated PDFs where the atoms with the B) 40, C) 60 and
D) 12 lowest AR',,;, values have been coloured yellow, while the rest are coloured blue. Section C in the SI shows
a similar representation but where the atom-removal values are directly visualised using a continuous colour bar.

Oxygens are coloured red and polyhedra are coloured according to their metal atom center.

Applying ClusterFinder to Extract Cluster Motifs from Experimental PDFs




While ClusterFinder's potential to extract cluster motifs from various crystalline supercell structures has been
demonstrated with simulated PDFs, it is essential that ClusterFinder possesses similar abilities on an
experimental PDF. Here we benchmark the performance of ClusterFinder against that of the previously published
ML-MotEx algorithm by comparing its performance on the same set of experimental PDFs and clusters.

The experimental PDF was obtained from a solution of 0.05 M ammonium metatungstate hydrate,
(NHa4)s[H2W12040]-H20 in water, which dissolves to form monodisperse a-Keggin clusters (Juelsholt et al.,
2019). Experimental details can be found in the ML-MotEx paper (Anker et al., 2022). We employed four

different crystallographic models to extract templates for ClusterFinder/ML-MotEXx, as listed in Table 1.

Starting models Crystal Composition Reference

I [Hpyl4sH2[H2W12040] (py = pyridine) (Niu et al., 2004)
(Joachim et al.,

11 (CH3)4N)4SiW 12040
1981)

111 (((CH3)2NH2)6(Cu(HCON(CH3)2)4)(GeW12040)2)(HCON(CH3)2)2  (Niu et al., 2003)
(Busbongthong &

v ((CH3)2NH2)3(PW12040)

Ozeki, 2009)
Table 1 | Four starting models containing the a-Keggin clusters used with ClusterFinder to extract an a-

Keggin cluster.

Again, only a scale factor and an isotropic expansion/contraction factor were refined during the ClusterFinder
process. Both ClusterFinder and ML-MotEx successfully extracted the a-Keggin clusters with few mislabelled
atoms for all four starting models. Although, ClusterFinder has slightly more mislabelled atoms compared to

ML-MotEx, it is orders of magnitude faster, making it an ideal choice for screening larger databases.
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Fig. 4 | Comparison of the ML-MotEx- and ClusterFinder analysis of an experimental PDF obtained from
Keggin clusters in solution. Results from the ML-MotEx- and ClusterFinder methods on a PDF obtained from
a solution of ammonium metatungstate hydrate, using four different starting models: I) [Hpy]4H2[H2W12040] (py
= pyridine) (Niu et al., 2004), 1) (CH3)aN)4SiW 12040 (Joachim et al., 1981), 1) (((CH3)2NHz)s
(Cu(HCON(CH3)2)4)(GeW12040)2)(HCON(CH3)2)2  (Niu et al., 2003), 1V) ((CH3)2NH2)3(PW12040)
(Busbongthong & Ozeki, 2009). The 24 ([1]+[3]+[4]) and 12 ([2]) atoms with the lowest atom-removal values

have been coloured yellow, while the rest are coloured blue.

Screening the ICSD for a Suitable Starting Model with ClusterFinder

We now use ClusterFinder to scan the ICSD for the best-fitting structure models for the experimental PDF
obtained from a-Keggin clusters in solution. ClusterFinder iteratively uses a supercell containing a single unit

cell of each crystalline structure (188,631 structures) in the ICSD as the starting template. To accelerate the
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ClusterFinder process, only the scale factor was refined, and structures without W, Fe and Mo atoms (158,399
structures), or supercells with over 1000 atoms (0 structures) were excluded. This left 29,070 candidate
structures.

Afterwards, the template structures from crystals in the ICSD were ranked according to their average AR, value
during the ClusterFinder process. The complete computation took ~17.5 min (1,046 seconds) on an AMD Ryzen
Threadripper 3990X with 64-core 2.9/4.3GHz or 10 hrs. (34,882 s) on an Intel(R) Core™ 17-8665U CPU @
1.9/2.11 GHz. Figure 5 demonstrates that all top five crystal structures contained the a-Keggin cluster. This
demonstrates ClusterFinder’s ability to effectively scan large structural databases, such as ICSD, for appropriate

cluster structure. The five a-Keggin cluster structures are extracted from:

Ranked structure Crystal composition Reference

D) ((CH3)4N)6(Cuo.5(H2)0.504W12036)(H20) 10 (Lunk et al., 1993)
1) Css(Cr;0(O0OCH)s(Hz2 0)3)(CoW12040)(H20):2 (Uchida et al., 2006)
11I) (CH3)aN)s(H2W12040)(H20)9 (Asami et al., 1984)
V) Al1304(OH)24(H20)12)(H2W12040)(OH)(H20)23.12 (Son et al., 2003)

V) K2(H20)4Eu (H20)7(Eu(H20);:HAIW11039)(H20)7 (Niu et al., 2013)

Table 1 | Crystal composition of the top five candidate crystal structures ranked by ClusterFinder for the

PDF obtained from a-Keggin clusters in solution.

ClusterFinder ranks supercells containing only essential cluster structures (in which no atoms need removal)
over supercells containing both essential clusters and additional atoms. Consequently, the supercell generation
influences the ranking of crystals in the ICSD. In instances where only essential clusters are present, the colour-
coding still reflects the internal atomic ranking, even if all atoms are good and none requires removal. Figure 5

demonstrates this phenomenon; for instance, supercell (IV) contains only four essential a-Keggin clusters, with
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no atoms needing removal. However, some atoms are coloured blue, as the colour bar merely signifies the
internal atomic ranking. In the case of a supercell containing essential clusters with additional atoms, as seen in

Figure 5, ClusterFinder indicates which atoms require removal.
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Fig. 5 | Illustration of how ClusterFinder is used to screen ICSD for the correct starting model for an
experimental PDF obtained from a-Keggin clusters in solution. For each structure in the ICSD, the
ClusterFinder procedure is performed, and the atoms are colour-coded based on their impact on fit quality using
a continuous colour bar. Afterwards, the ICSD structures are sorted according to their average AR’ value during
the ClusterFinder process. The five candidates with the lowest average R, value are highlighted, along with an

example of an essential a-Keggin structure with additional atoms.

ClusterFinder can also extract a cluster structure from a crystalline metal oxide structure. The e-Keggin cluster
serves as an excellent example of a cluster structure that can be directly cut out from a spinel structure. A PDF
of an Al12040 e-Keggin cluster from the spinel MgAl>,O4 crystal structure (Ji et al., 2020) was calculated with
parameters that mimic typical PDF dataset values, as seen in section A in the SI. Again, ClusterFinder was used
iteratively to scan all ICSD structures. This time, crystals without W, Fe, Mo and Al atoms (143,956 structures)

or supercells with more than 1,000 atoms (704 structures) were excluded. After evaluation, 42,809 structures
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were ranked based on their average AR'y, value during the ClusterFinder process. The entire procedure takes
~42 min (2,495 seconds) on an AMD Ryzen Threadripper 3990X with 64-core 2.9/4.3GHz or ~23 hrs. (82,100

s) on an Intel(R) Core™ 17-8665U CPU @ 1.9/2.11 GHz. Figure 6 shows that the top five structures are all spinel

structures:
Ranked structure Crystal composition ~ Reference
1) ADLNiO4 (Videnskaps-Akademi, 1925)
1) AlMgO4 (Zorina & Kyvitka, 1968)
10)) ZnAl>O4 (Holgersson, 1927)
V) AlZnOy4 (Videnskaps-Akademi, 1925)
V) ZnAlO4 (Strukturuntersuchungen im System Al>203—Cr203, 1964)

Table 2 | Crystal composition of the top five candidate crystal structures ranked by ClusterFinder for the

simulated PDF from the Ali2040 £-Keggin cluster cut out from the spinel MgAl2O4 crystal structure.

ICSD structural database
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of a spinel structure (V) (V) r (A)

Fig. 6 | Illustration of how ClusterFinder is used to screen ICSD for the correct starting model of a
simulated PDF obtained from a e-Keggin cluster cut out of a spinel crystal. For each structure in the ICSD,
the ClusterFinder procedure is performed, and the atoms are colour-coded based on their impact on the fit quality

using a continuous colour bar. Afterwards, the ICSD structures are sorted according to their average AR',,, value
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during the ClusterFinder process. The five candidates with the lowest Ry value are highlighted. More extensive

views of the PDF fits, including the calculated Ry, values, can be seen in section D in the SI.

We now proceed to apply ClusterFinder to a simulated PDF calculated from the e-Keggin cluster cut out from a
e-Keggin crystal instead of a spinel crystal. As a result, the e-Keggin cluster is less ordered. Specifically, we
simulate a PDF of an Al12040 £-Keggin cluster cut out from a (Ali1304(OH)24(H20)12)2(V2W4019)3(OH)2(H20)27
crystal (Son & Kwon, 2004) with parameters mimicking typical values of an experimental PDF dataset, as seen
in section A in the SI. The disorder can both be seen in the structures and their PDFs, where the PDF simulated
from the e-Keggin cluster cut out of the spinel structure exhibits more intense peaks than the PDF simulated
from the e-Keggin cluster cut out of the (Al1304(OH)24(H20)12)2(V2W4019)3(OH)2(H20)27 crystal (Son & Kwon,
2004).

Again, we use ClusterFinder iteratively on all ICSD structures containing W, Fe, Mo and Al atoms and rank the
structure based on their average AR',, value during the ClusterFinder process. Figure 7 shows that the top five

structures are mainly e-Keggin clusters or crystal variants of the spinel structure (structure III and V):

Ranked structure Crystal composition Reference

) (A11304(OH)24(H20)12)(H2W12040)(OH)(H20)23.12 - (Son et al., 2003)

1) (Al1304(OH)24(H20)12)(CoW12040)(OH)(H20)20 ~ (Son et al., 2003)

I11) Ca;MgoFex(Al14031(OH))(ALO)(Al)(AI(OH)) (Rastsvetaeva et al., 2010)
V) ((GeO4)Al12(OH)24(H20)12)(SeO4)4(H20)14 (Lee et al., 2001)

V) (A1203)13(503)6(H20)79 (Nordstrom, 1982)
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Table 3 | Crystal composition of the top five candidate crystal structures calculated by ClusterFinder for
the simulated PDF from the  &-Keggin cluster cut out of the Al2O4

(Al1304(OH)24(H20)12)2(V2W4019)3(OH)2(H20)27 crystal(Son & Kwon, 2004).

ClusterFinder’s sensitivity to minor changes in the PDF suggests that it can potentially be used to estimate
similarities between ionic cluster structures. In conclusion, two distinct variations of e-Keggin can be observed;
The e-Keggin cluster in its crystallised form as e-Keggin crystals, or the e-Keggin cluster extracted from related
metal oxide structures, such as the spinel structure. The main differentiator is the degree of disorder present in
each crystal representation. ClusterFinder can discern between the more ordered spinel-obtained motifs and the
more distorted Keggin crystal structure. It highlights the level of detailed description attained in this modelling
approach. Additionally, the supercell structure (I) and (II) in Figure 7 demonstrate that ClusterFinder can

differentiate between a-Keggin (blue) and e-Keggin clusters (yellow).

ICSD structural database
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Fig. 7 | Illustration of how ClusterFinder is used to screen ICSD for the correct starting model of a
simulated PDF obtained from a e-Keggin cluster cut out of an &-Keggin crystal. For each structure in the
ICSD, the ClusterFinder procedure is performed, and the atoms are colour-coded based on their impact on the

fit quality using a continuous colour bar. Afterwards, the ICSD structures are sorted according to their average
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AR',, value during the ClusterFinder process. The five candidates with the lowest Ryyp value are highlighted.

More extensive views of the PDF fits, including the calculated Ry, values, can be seen in section E in the SI.

In section F and G in the SI, we present two similar examples in which we rank the ICSD structures according
to experimental datasets obtained from ionic [Bi3gQO4s] clusters and ceria (CeO2) nanoparticles. We find that the
highest ranked structures from the [Bi3gOss] cluster example are §-BixOs crystal structures, as previously
observed by Weber et al. (Weber et al., 2017). For the ceria nanoparticles, the highest ranked structures

correspond to the fluorite structure.

Conclusions

We have introduced a new automated structure selection approach called ClusterFinder for extracting cluster
motifs from PDF data and identifying suitable starting models for refining PDFs of nanoclusters. We have
demonstrated the effectiveness of ClusterFinder on simulated and experimental PDFs obtained from POM and
ionic clusters. ClusterFinder is inspired by our previously developed algorithms, LIGA and ML-MotEx, but is
significantly faster, facilitating the screening of large databases in minutes. Our study demonstrates
ClusterFinder's efficacy as a robust tool for extracting appropriate starting models from extensive structural
databases like the ICSD for experimental PDF analysis. By applying ClusterFinder to diverse scenarios, such as
a-Keggin clusters, e-Keggin clusters, ionic [Bi3gOas] clusters, and ceria nanoparticles, we showcase its ability to
effectively rank and select the most relevant structures based on fitting quality.

Our findings reveal ClusterFinder's sensitivity to subtle variations in PDFs, indicating its potential use in
estimating similarities among ionic cluster structures. It can also differentiate between varying degrees of
disorder in crystal structures, as illustrated by the contrast between more ordered spinel-derived motifs and more

distorted Keggin crystal structures.
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