

1 **Revolutionizing Ultra-High-Performance Concrete: Unleashing Metakaolin**
2 **and Diatomaceous Earth as Sustainable Fly Ash Alternatives**

4 Meghana Yeluri^a, Elif G. Ertugral^b, Yashovardhan Sharma^a, Petru S Fodor^c, Chandrasekhar R.
5 Kothapalli^b, Srinivas Allena^a *

6 ^aDepartment of Civil and Environmental Engineering, Cleveland State University, Cleveland, OH
7 44115, United States

8 ^bDepartment of Chemical and Biomedical Engineering, Cleveland State University, Cleveland,
9 OH 44115, United States

10 ^cDepartment of Physics, Cleveland State University, Cleveland, OH 44115, United States

11 *Corresponding author E-mail address: s.allena@csuohio.edu

12 **Abstract**

13 Ultra-high-performance concrete (UHPC) incorporating supplementary cementitious materials
14 (SCMs) presents a novel and promising material with remarkable mechanical and durability
15 properties. However, the utilization of silica fume in such SCMs is hindered by its high cost while
16 that of class F fly ash by its availability. Towards exploring alternative economical and eco-
17 friendly SCMs, as well as reduce the quantity of silica fume and cement in UHPC, this study
18 reports on the benefits of using metakaolin (MK) and diatomaceous earth (DE) as replacements
19 for fly ash in non-proprietary UHPC blends. MK and DE were added to replace fly ash (FA), up
20 to 100% in 25% increments, without changing the silica fume (SF) content. In separate mixtures,
21 MK and DE were added 100% each to replace both FA and SF. The resulting mixtures were
22 extensively characterized for their flow, rheological properties, compressive strength, flexural
23 strength, split tensile strength, and modulus of elasticity, under two curing conditions. Scanning
24 electron microscopy, BET surface area, and particle size analysis were performed to investigate
25 the size and shape, surface area, and morphology of the cementitious powders. Results indicate
26 that the addition of MK and DE resulted in increased apparent viscosity and shear stress with rising
27 shear rate, while yield stress values decreased ($p < 0.05$). The flow curves of all the modified
28 UHPC mixtures fitted well ($R^2 > 0.99$) with the linear Bingham Plastic, modified Bingham Plastic,
29 and Herschel-Bulkley models. UHPC mixtures with 100% replacement of FA with MK and DE
30 achieved compressive strength values of 139 MPa and 128 MPa, respectively. At 28 days, MK,
31 DE, and MK-DE mixtures showed 3.5% – 10% higher compressive strengths than the control
32 mixture ($p < 0.05$). MK-DE mixture showed compressive strength improvements of 9% and 17.5%
33 over the control and DE-modified mixtures, respectively ($p < 0.05$). The greatest modulus of
34 rupture (MOR) value of 10.9 MPa at 28 days was observed in the control mixture, while DE
35 modified UHPC exhibited the lowest MOR values among all the cases. At net deflection of L/150,
36 the MK-DE modified UHPC mixture exhibited the greatest toughness value of 52.5 Joules at 28
37 days, which is 5% greater than that in control UHPC mixture. Both MK and DE modified UHPC
38 mixtures showed toughness values similar to the control UHPC mixtures at 28 days. In conclusion,
39 the MK-DE modified UHPC mixtures that were prepared, without SF and FA, exhibited

40 characteristics comparable to the control mixture, showcasing potential alternatives for non-
41 proprietary UHPC mixtures.

42 **Keywords:** UHPC; Alternative SCMs; Rheology; Mixture development; Experimental
43 optimization, Mechanical properties.

44 1. Introduction

45 Ultra-high-performance concrete (UHPC) is an advanced construction material known for its
46 exceptional mechanical properties, durability, and versatility, making it a key innovation in
47 modern infrastructure development. It exhibits compressive strengths greater than 120 MPa,
48 flexural strengths greater than 15 MPa, and excellent durability characteristics in terms of
49 resistance to chloride penetration, freeze-thaw resistance, and resistance to sulfate attack [1, 2, 3].
50 As the demand for high-performance and sustainable infrastructure continues to rise, UHPC is set
51 to shape modern construction, enabling a safer and more resilient built environment. UHPC is
52 typically comprised of cement, fine sand, silica fume (SF), quartz flour, high-range water reducing
53 admixtures (HRWRA), and steel fibers [4, 5]. It is used in diverse construction projects, including
54 bridge decks, high-rise buildings, precast elements, and seismic-resistant structures. Beyond
55 infrastructure applications, this material can also be used in nuclear applications such as
56 encapsulating solid and liquid radioactive waste and disposal infrastructure [3, 6, 7]. These
57 exceptional characteristics are achieved by enhancing homogeneity, eliminating coarse aggregate,
58 optimizing particle packing density, refining microstructure, and integrating fibers. Its superior
59 material properties have opened new possibilities in structural design, enabling the construction of
60 thinner and more intricate elements with reduced maintenance requirements. However, UHPC
61 faces challenges such as high initial cost and the limited availability of key constituents like steel
62 fibers and SF in the United States. Aggregate costs are often increased due to the processing of
63 high-quality sands, such as clean quartz, to achieve a precise gradation with a narrow particle size
64 distribution [8]. Additionally, the high cement content in UHPC mixtures poses sustainability
65 challenges due to the energy-intensive nature of cement production and its significant CO₂
66 emissions. Non-proprietary UHPC presents opportunities for enhanced sustainability and reduced
67 initial cost by incorporating local aggregates, even those with suboptimal quality and natural
68 particle size distributions. Additionally, non-proprietary UHPC can make use of cost-effective
69 supplementary cementitious materials (SCMs) that are readily available locally, despite being of
70 lower quality compared to the high-grade SCMs like SF used in proprietary UHPC formulations
71 [8].

72 SF is the primary SCM in UHPC, comprising 5% to 25% of the binder volume [9]. SF enhances
73 UHPC's particle packing density, improving workability due to its fine particle size. However,
74 exceeding 10% SF by weight can significantly reduce workability due to its high surface area,
75 leading to water and HRWRA absorption, particle agglomeration, and inhibition of cement
76 reaction [10, 11]. With SiO₂ content above 90%, SF stimulates cement hydration and refines
77 UHPC microstructure, enhancing mechanical strength and durability [12]. Despite its
78 effectiveness, use of SF in UHPC mixtures is expensive compared to other SCMs since it is mostly
79 imported in the United States [13]. The high quantities of cement and expensive SF significantly

80 increases the cost of UHPC and is less desirable from an environmental standpoint. Besides its
81 higher cost, exposure to SF in occupational settings increases the risk of developing pulmonary
82 diseases [14]. Therefore, exploring feasible alternatives to SF is crucial for UHPC production
83 sustainability.

84 Several alternative SCMs commonly used in UHPC, in lieu of SF, include fly ash (FA), ground
85 granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA) [15, 16, 17, 18].
86 Among these, FA has gained significant recognition in the construction industry as a key SCM.
87 Numerous researchers have formulated UHPC mixtures incorporating FA due to its potential to
88 lower the environmental impact when substituted for cement [19, 20]. Despite a slight reduction
89 in mechanical properties [21], FA-based UHPC improves workability [22], and particle packing,
90 potentially enhancing durability [23]. However, the production of class F fly ash has experienced
91 a significant decline recently due to the shift towards renewable energy technologies for electricity
92 generation as well as decommissioning of coal-burning power stations. Consequently, the
93 construction sector is grappling with difficulties in procuring a sufficient supply of FA for concrete
94 manufacturing [24, 25]. Hence, it becomes imperative to identify an alternative SCM to FA to
95 ensure sustainability.

96 One promising alternative is MK, produced by calcining kaolin clay. It is commonly utilized as a
97 SCM in concrete, replacing 8% to 10% of cement, and enhancing concrete durability while
98 reducing cement usage [26, 27]. MK reacts with calcium hydroxide during cement hydration,
99 forming secondary calcium silicate hydrate (C-S-H) gel, enhancing concrete microstructure and
100 durability by reducing porosity and improving permeability and chloride ion diffusion [28, 29].
101 Studies have shown MK can replace up to 20% of cement, improving compressive and split tensile
102 strengths starting at 16% replacement. However, MK and SF addition decrease concrete
103 workability. Yet, at 15% cement replacement, compressive strengths remain comparable to control
104 samples (SF is the only SCM) after 91 days, exhibiting excellent corrosion resistance and reduced
105 shrinkage [19]. Others have investigated various types of concretes and mortars replacing cement
106 and SF with MK [30, 31, 32], but there is a lack of research specifically focused on UHPC
107 incorporating MK to replace FA. This gap in the literature fails to highlight the beneficial impact
108 of MK on the mechanical and durability properties of UHPC, as well as its contribution to the
109 sustainability [33, 34].

110 Similarly, DE which is a natural pozzolan has emerged as a potential alternative SCM, given its
111 high silica content. DE, a sedimentary and biogenic material, forms from the fossilization of algae
112 shells due to silica deposits on diatom skeletons [38]. According to the U.S. Geological Survey,
113 2.3 million metric tons of DE were mined globally in 2021, with vast but currently unquantifiable
114 reserves unexplored, and the United States produces approximately 36% of the world's supply [35,
115 36]. Its high open porosity (50% to 70%), large specific surface area, and high water absorption
116 capacity (up to 1 kg/kg) make it useful in filtration, drilling mud thickening, and chromatography
117 applications [37]. In cementitious materials, DE is often recommended for use in conventional and
118 high performance concretes as a source of internal curing water and SCM [38, 39, 40, 41]. It is
119 also used in fireproof cement, insulation materials, and as an absorbent in explosives due to its
120 resistance to heat and chemicals [42]. The results from studies dealing with the use of DE as an

121 SCM replacing cement up to 10% by mass in UHPC mixtures are promising. Studies by Hasan et
122 al. [38] and Du [41] reported that incorporating DE in UHPC and high performance concrete
123 mixtures affected the flow, improved compressive, split tensile, and flexural strength. However,
124 as current studies on its ability to enhance mechanical and durability performance are limited,
125 further research is needed to elucidate the optimal use of DE as an SCM, particularly in UHPC
126 formulations, to fully assess its potential benefits and drawbacks.

127 Thus, this study explored the potential for replacing FA and SF with cost-effective and
128 environmentally friendly alternatives for UHPC mixtures. MK and DE were chosen as alternative
129 SCMs to replace SF and FA due to their lower cost, reduced health risks, and promising
130 performance in UHPC. SF, while effective, is expensive and poses health hazards due to its fine
131 particulate nature, making MK and DE more sustainable, especially given the declining
132 availability of FA and the need for environmentally friendly and cost-effective SCMs in UHPC
133 formulations. The resulting rheological and mechanical properties of UHPC mixtures were
134 evaluated and reported here. Additionally, the durability properties of UHPC modified with MK,
135 DE, and MK-DE combinations are currently being investigated to assess their resistance to
136 freezing-thawing cycles, chloride ion ingress, and sulfate attack. Preliminary observations suggest
137 that the addition of MK and DE improves the durability of UHPC by enhancing resistance to
138 chloride penetration and improving microstructural refinement.

139 **2. Materials and Methods**

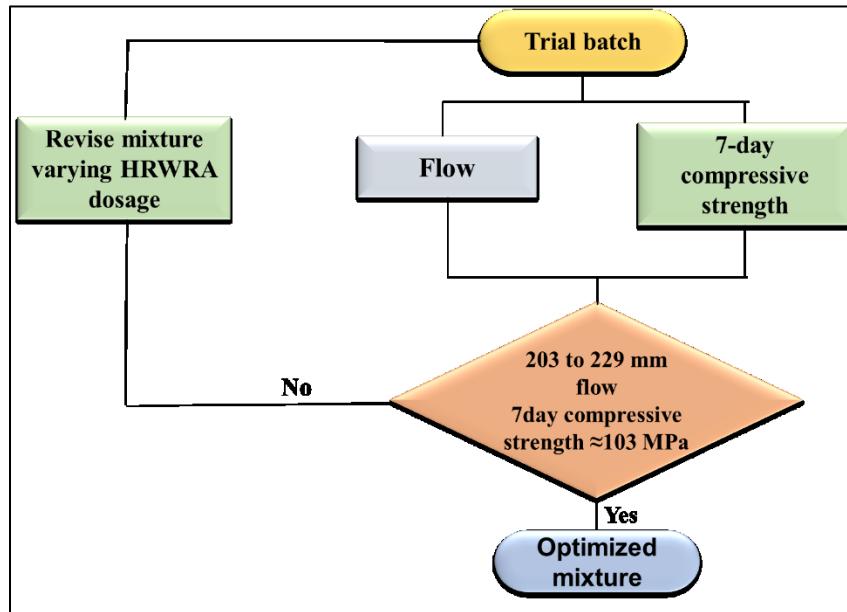
140 **2.1 Materials**

141 Type 1L portland limestone cement (PLC) was utilized here. Class F FA was used as SCM along
142 with SF in the control mixture. MK and DE were considered as alternatives for FA and SF. **Table**
143 **1** presents the physical and chemical properties of these materials. The particle size distributions
144 on the as-received particles of the five precursors – cement, FA, MK, DE, condensed SF, were
145 measured using a particle size analyzer (Anton Paar PSA 1190 model).

146 Local sand conforming to ASTM C33 [43] was used. Its specific gravity and absorption values
147 determined as per ASTM C128 [44] were found to be 2.78% and 2.35%, respectively. Sand was
148 sieved through ASTM No. 4 sieve (maximum particle size of (4.75 mm) and was oven-dried at
149 110 °C to achieve 0% moisture content. To enhance the tensile ductility of the UHPC, straight
150 steel fibers measuring 13 mm in length, with an aspect ratio of 65, were used. To attain the desired
151 workability, a commercially available polycarboxylate-based high-range water-reducing
152 admixture (HRWRA; Master Builders Solutions, Cleveland, OH, USA) was added into the
153 mixtures.

154 **2.2 Development of UHPC mixtures**

155 **2.2.1. UHPC mixtures**


156 Control UHPC mixture was developed using cement, SF, and FA as cementitious materials.
157 Several trial batches were made to optimize the SF/FA ratio that would produce UHPC class
158 material as defined by ASTM C1856 [45]. In these trials, different water-to-cementitious ratios
159 (w/cm) and HRWRA dosages were used for a specific SF/FA ratio.

160 **Table 1.** Chemical composition and physical properties of cementitious materials used in this
 161 study.

		Materials Composition (%)				
		Cement Type IL (PLC)	Class F Fly Ash	SF	MK	DE
Chemical Composition	CaO	63.1	3	0.7785	-	1.24
	SiO ₂	18.9	45.8	83.85	49.35	82.16
	Al ₂ O ₃	4.4	22.8	0.56	45.03	4.85
	Fe ₂ O ₃	2.5	22.6	3.63	0.5	1.66
	MgO	1.6	0.8	4.74	-	0.45
	Na ₂ O	0.34	0.47	-	-	0.54
	K ₂ O	-	1.76	1.12	0.42	0.72
	TiO ₂	-	-	-	2.19	0.24
	MnO	-	-	0.3	-	0.01
	P ₂ O ₅	-	-	-	0.097	0.06
	SrO	-	-	0.02	0.02	0.02
	Br	-	-	0.74	0.7	
	BaO	-	-		-	0.03
	SO ₃	3	0.86	0.06	0.05	-
	Cr ₂ O ₃	-	-	0.05	-	0.01
Physical Properties	Limestone	12.1	-	-	-	-
	CO ₂	5.4	-	-	-	-
	CaCO ₃	91	-	-	-	-
	Loss of Ignition	5.4	1.9	2.96	0.83	7.41
	Specific Gravity	3.15	2.48	2.2	2.5	2.2
	Specific Surface area (m ² /kg)	549.4	575.7	25,000	22,000	908.2
	Mean Particle Size (μm)	14.951	15.786	9.814	10.738	14.488
	Autoclave Expansion (%)	0.022	0.02	-	-	-

162
 163 Preliminary tests such as workability and compressive strength were performed for each trial
 164 mixture and the optimum w/cm and SF/FA ratios, and HRWRA dosage were found to be 0.2, 1,
 165 and 34.65 L/m³, respectively. Based on these results, UHPC mixture with 16% SCM - 8% SF -

166 8% FA by mass of cementitious materials, 0.2 w/cm ratio, 1.52% by total volume of steel fibers,
 167 and 34.65 L/m³ HRWRA was selected as control mixture in this research. **Figure 1** depicts the
 168 mixture development process.

169

170 **Figure 1.** Optimization process of UHPC mixtures used in this study.

171 **Table 2** presents the 10 UHPC mixture proportions developed in this study. Given our primary
 172 objective of substituting FA and SF with alternative SCMs, the control UHPC mixture with FA
 173 and SF are the SCMs were further modified. MK and DE were employed to replace FA
 174 incrementally, up to 100% in 25% increments, without changing the SF content. This process
 175 aimed to identify the optimal level of FA replacement. Subsequently, once the ultimate FA
 176 replacement levels with both MK and DE were established, the SF content was also modified
 177 utilizing MK and DE.

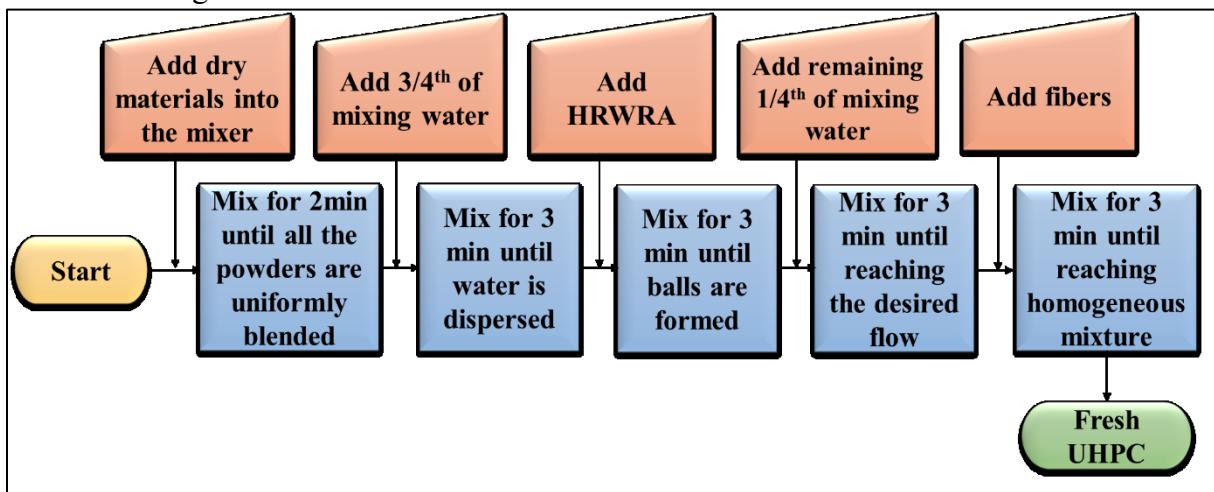
178

179 **Table 2.** Mixture proportions for UHPC mixtures developed in this study. The letters indicate the
 180 SCM type in the mixture, FA for fly ash, SF for silica fume, MK for metakaolin, and DE for
 181 diatomaceous earth.

182

Mixture	PLC	SF	FA	MK	DE	Sand	Steel Fibers	Water	HRWRA	w/cm	Flow	
	kg/m ³	l/m ³		mm								
Control UHPC	SF8-FA8-MK0/DE0	890	89	89	0	0	939.7	118.7	213.6	34.65	0.2	254.0
MK Modified UHPC	SF8-FA6-MK2	890	89	66.7	22.24	0	950.7	118.7	209.0	34.65	0.2	228.6
	SF8-FA4-MK4	890	89	44.5	44.5	0	935.6	118.7	204.7	44.6	0.2	228.6
	SF8-FA2-MK6	890	89	22.24	66.7	0	946.6	118.7	200.2	44.6	0.2	228.6
	SF8-FA0-MK8	890	89	0	89	0	944.5	118.7	195.8	49.5	0.2	228.6
	SF8-FA6-DE2	890	89	66.7	0	22.24	934.5	118.7	209.0	39.6	0.2	215.9
DE Modified UHPC	SF8-FA4-DE4	890	89	44.5	0	44.5	929.2	118.7	204.7	44.6	0.2	215.9
	SF8-FA2-DE6	890	89	22.24	0	66.7	924.1	118.7	200.2	49.5	0.2	215.9
	SF8-FA0-DE8	890	89	0	0	89	867	118.7	195.8	74.3	0.2	215.9
	SF0-FA0-MK8-DE8	890	0	0	89	89	879.7	118.7	195.8	74.3	0.2	215.9

183


184

185 UHPC mixtures belonging to each category were assigned specific designation based on their
186 composition. The number following each letter indicates the percentage of the SCM in the mixture.
187 For instance, the control mixture SF8-FA8-MK/DE0 contained 8% of SF and 8% of FA out of
188 total cementitious materials and in the case of mixture SF8-FA6-MK2, 25% of FA was replaced
189 with MK, resulting in a mixture that contains 6% FA and 2% MK out of total cementitious
190 materials content.

191 To achieve a homogenous UHPC mixture with uniform dispersion of fibers, a step-by-step mixing
192 process was employed (**Figure 2**). A vertical shaft mixer with a 38-rpm paddle speed was used to
193 mix the constituents of UHPC. The procedure commences with a two-minute mixing of the dry
194 components, followed by the gradual addition of two-thirds of the required water, and mixed for
195 an additional three minutes. Subsequently, HRWRA and the remaining portion of water were
196 introduced, and mixed for another three minutes. At the end, steel fibers were added during the
197 mixing process. The total mixing time varied from 15–20 min. The fresh UHPC was then poured
198 into molds and covered with plastic sheets to prevent moisture loss. They were then left at room
199 temperature for 24 h. Following this period, the specimens were removed from the molds and
200 subjected to designated curing conditions as described in section 2.2.3.

201 **2.2.2 Specimen preparation**

202
203 Each batch of UHPC produced was used to cast 50 mm and 100 mm cubes for compression testing,
204 75 mm × 100 mm × 400 mm beams for flexural testing, and 100 mm × 200 mm cylinders for split
205 tensile testing and modulus of elasticity measurements. A high frequency vibration table was used
206 for consolidation. The time of vibration was selected based on the consistency of the individual
207 mixture that ranged between 15 sec to 30 sec.

208
209 **Figure 2.** Mixing sequence for the UHPC constituents used in this study.

210 211 **2.2.3 Curing regimens**

212 Specimens were cured under the two curing regimens (**Table 3**) to investigate the effect of curing
213 temperature on mechanical properties.

Table 3. Curing Regimens used in this study.

Curing condition	Specification
Moist curing (MC)	Air cured in the molds for 24 h. After demolding, the specimens were placed in a moist room with ~100% relative humidity and temperature 23.5 ± 1.5 °C until the day of testing.
Warm bath (WB)	Air cured in the molds for 24 h. After demolding, specimens were cured in a water bath at 90 °C until the time of testing. This curing method simulated the steam curing method employed in precast plants.

216 **2.3 Experimental methods**

217 **2.3.1 Particle size distribution and surface area**

218 Anton-Paar Model PSA 1190 particle size analyzer (using dry jet dispersion and laser diffraction
 219 techniques) was used to determine the particle size distributions. Cement and FA were analyzed
 220 using dry measurement mode. The detection limit of this mode is 0.1 µm. SF, DE, and MK were
 221 analyzed using liquid measurement mode with small volume unit. The detection limit of this mode
 222 is 0.04 µm. Anton Paar Nova 600 BET analyzer was used for surface area measurement of cement,
 223 SF, FA, MK, and DE.

224 **2.3.2 Flow table test**

225 Fresh UHPC was poured into the mold in two layers, with each layer being tamped 20 times.
 226 Following this, the top surface was smoothened. The mold was then lifted and immediately
 227 dropped onto the table 25 times within a 15-second period. Subsequently, the diameter of the fresh
 228 sample was measured in two diametrically opposite directions, and the average flow recorded as
 229 outlined in ASTM C1437 [46].

230 **2.3.3 Compressive strength testing**

231 In this study, four 50 mm cube specimens and two 100 mm cube specimens, cured under MC and
 232 WB regimens, were tested at each age (3, 7, 28, 56, and 91 days), according to ASTM C109 [47]
 233 and average compressive strength reported.

234 **2.3.4 Flexural strength testing**

235 75 mm × 100 mm × 400 mm prismatic specimens were cast from each batch of UHPC and cured
 236 under MC and WB regimens. Flexural strength tests were conducted at ages 7 and 28 days in
 237 accordance with ASTM C1609 [48]. Three prismatic specimens were tested at each age. Strengths
 238 and deflections at first peak load, peak load, residual strengths at net deflections of span/600 and
 239 span/150 (f_{600}^D and f_{150}^D), and toughness values corresponding to net deflections of span/600
 240 (T_{600}^D) and span/150 (T_{150}^D) were determined.

243 **2.3.5 Split tensile strength testing**

244 100 mm × 200 mm cylinder specimens were cast from each batch and moist cured until 28 days
245 and were tested for split tensile strength according to ASTM C496 [49]. Two-cylinder specimens
246 from each batch were tested and average split tensile strength was reported.

247 **2.3.6 Modulus of elasticity testing**

248 100 mm × 200 mm cylinder specimens cured for 28 days in MC regimen were subjected to axial
249 compressive loading to determine the modulus of elasticity and Poisson's ratio according to ASTM
250 C469 [50].

251 **2.3.7 Rheology tests on cement paste**

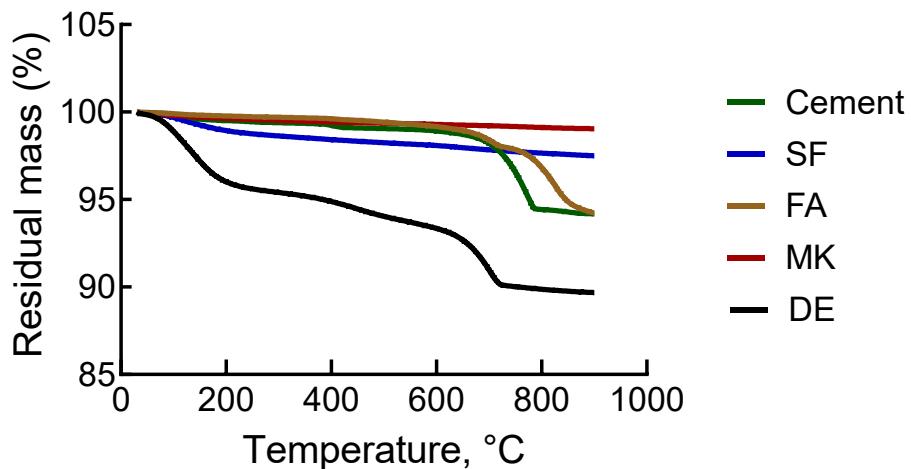
252 Rheology tests on aggregate-free cement pastes were performed to assess viscosity, shear stress,
253 shear thickening, and shear thinning behavior in UHPC mixtures. The pastes were characterized
254 at room temperature using a Physica MCR 301 Rheometer (Anton Paar, Ashland, VA) using a
255 concentric cylindrical geometry (CC27, 26.66 mm diameter) with smooth surfaces. After the
256 cement pastes were loaded in the cup, they were pre-sheared at 10^2 s⁻¹ for one minute, rested for
257 five minutes, followed by a constant shear rate of 1 s⁻¹ for one minute, and then rested again for
258 five minutes. Viscosity (η , Pa.s) measurements were performed by setting the shear rate within 1
259 – 100 s⁻¹ range. Shear stress vs. shear rate curves were evaluated to determine the paste
260 characteristics.

261 **2.3.8 Thermogravimetric analysis**

262 Thermogravimetric analysis (TGA) was conducted using a TGA/DSC 3+ thermogravimetric
263 analyzer (Mettler Toledo) under nitrogen atmosphere. The temperature range for all samples was
264 set from 30 °C to 900 °C at a constant heating rate of 10 °C/min. This analysis was performed to
265 evaluate the thermal stability and mass loss characteristics of the cementitious materials.

266 **2.3.9 Scanning electron microscopy**

267 Scanning electron microscopy (SEM) imaging was systematically carried out on dry cementitious
268 powders. The primary objective was to meticulously explore and analyze the distinct
269 microstructure inherent to each individual material. This detailed examination provided valuable
270 insights into the fine-scale features such as particle shape and morphology of the cementitious
271 powders under consideration. SEM imaging was performed using a field emission scanning
272 electron microscope (FEI, model Inspect F50) equipped with an Everhart-Thornley detector. The
273 dry powder samples were affixed to the aluminum specimen mounts using conductive carbon tape.
274 Prior to imaging, the samples were gold coated using a vacuum-based sputter coater (SPI Sputter
275 Coater from SPI Supplies Inc.) to prevent electrostatic charging of the surface during imaging.


276 **2.4. Statistical analysis**

277 At least n = 3 samples were used per test unless otherwise noted. Results were plotted using
278 GraphPad Prism 10 software. A one-way ANOVA with post hoc Tukey's test was used for
279 comparisons of the results from multiple experiments, with statistical significance set at $p < 0.05$.

281 **3. Results and Discussion**

282 **3.1. Thermogravimetric analysis of cementitious materials**

283 Thermogravimetric analysis was performed on cement, SF, FA, MK, and DE and the result was
284 depicted in **Figure 3**.

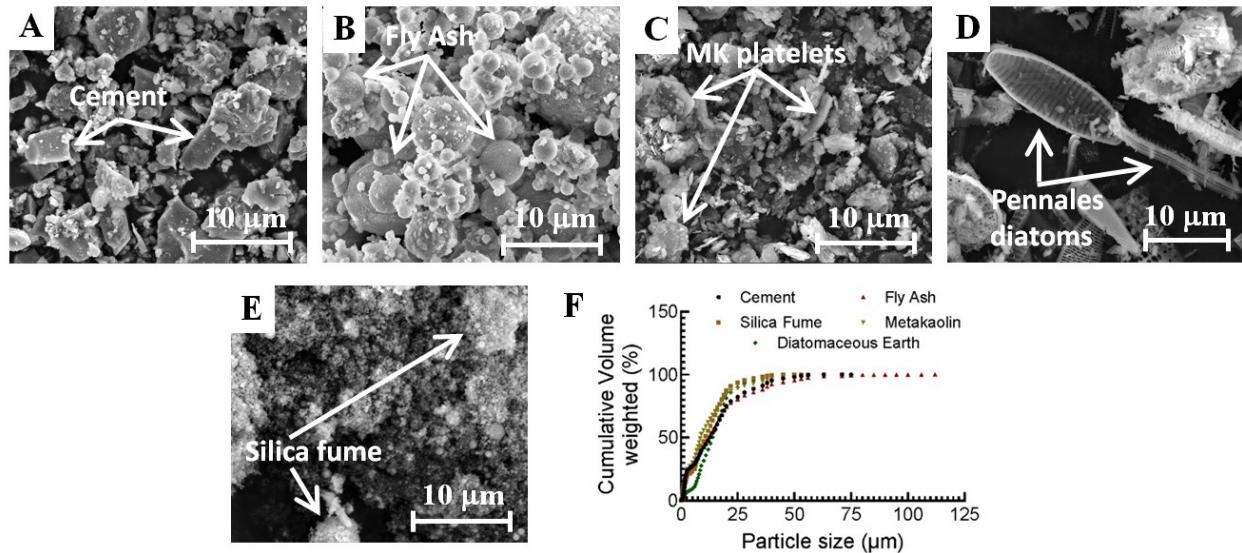
285

286 **Figure 3.** Thermogravimetric analysis of dry cement, SF, FA, MK, and DE

287

288 Cement exhibited a residual mass of 94% at 900 °C, with approximately 6% mass loss primarily
289 occurring in two stages. The initial minor loss below 200 °C can be attributed to the evaporation
290 of free and physically absorbed moisture. The major mass loss between 400 °C and 550 °C
291 corresponds to the decomposition of calcium hydroxide (CH) into calcium oxide (CaO) and water,
292 while further decomposition of calcium carbonate (CaCO₃) to CaO and CO₂ takes place above 600
293 °C. This decomposition profile highlights the stability of cement up to high temperatures, while
294 its thermal transformations are crucial for hydration reactions in UHPC systems. SF demonstrated
295 the highest thermal stability among the analyzed materials, retaining 97.5% residual mass at 900
296 °C. The minimal mass loss reflects its chemically inert nature and lack of decomposition products.
297 The slight mass loss below 200 °C can be linked to surface-adsorbed moisture, while no significant
298 decomposition occurs at higher temperatures. This stability, combined with its fine particle size
299 and high amorphous silica content, makes SF a key pozzolanic material for enhancing the
300 microstructure of UHPC.

301 FA retained 94% residual mass, showing gradual mass loss across the temperature range. The
302 initial loss below 200 °C is due to the evaporation of moisture, while minor losses observed
303 between 300 °C and 500 °C could result from the decomposition of carbonaceous impurities and
304 other volatile components. FA's moderate thermal stability and pozzolanic reactivity arise from
305 its glassy phases, which contribute to strength development in UHPC. Metakaolin exhibited the
306 highest residual mass, retaining 99% at 900 °C. The primary mass loss occurred below 400 °C,
307 can be attributed to the dehydroxylation of kaolinite, where chemically bound water is released as


308 the material transforms into an amorphous aluminosilicate. The absence of significant
309 decomposition at higher temperatures highlights the exceptional thermal stability of MK, while its
310 high reactivity makes it an attractive SCM for UHPC applications. However, while MK can
311 complement FA, its characteristics suggest it is better suited to replace SF rather than FA, as its
312 high reactivity and fine particle size align more closely with SF's role in refining UHPC
313 microstructure.

314 DE showed the lowest residual mass, retaining 89.7% at 900 °C, with significant mass loss
315 occurring between 100 °C and 500 °C. This behavior is attributed to the release of adsorbed water
316 and decomposition of organic impurities. The residual mass beyond 500 °C reflects the thermal
317 stability of its silica framework. Although DE exhibits the highest mass loss, its high silica content
318 and porous structure suggest potential reactivity, especially when processed or modified to
319 enhance its performance.

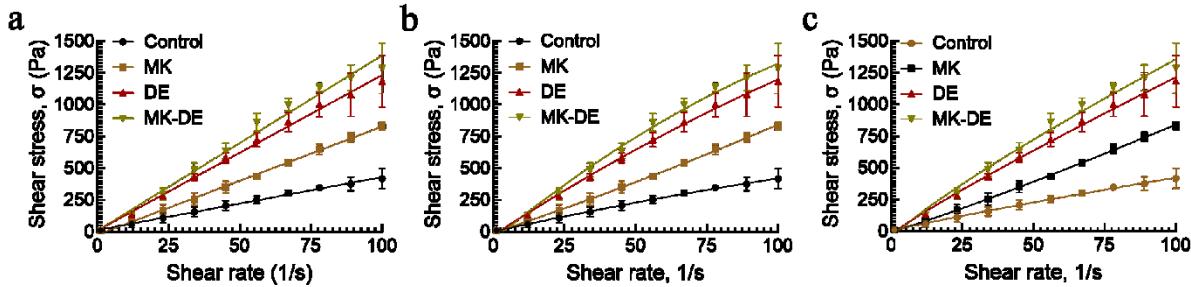
320 The TGA analysis highlights significant differences in thermal stability and decomposition
321 behavior among the materials. SF and MK demonstrated the highest stability, with MK's
322 dehydroxylation indicating superior pozzolanic reactivity. FA showed moderate stability and
323 reactivity, while DE's high mass loss reflects lower stability but suggests potential as a reactive
324 SCM due to its silica content. Based on these observations, MK is an excellent candidate to replace
325 SF in UHPC, while DE could serve as a sustainable alternative to FA when properly engineered
326 to optimize its performance.

327 **3.2. Rheology of pastes containing different cementitious materials**

328 Representative SEM images of the milled dry powder samples and cumulative size distribution
329 analysis of the particles obtained from particle sizing is shown in **Figure 4**. The SEM images allow
330 the visualization with submicrometer precision of the morphology of the SCMs used in this study,
331 giving insights on the particles' shape, surface structure, and geometrical parameters distribution.
332 Based on the distribution analysis the average particle sizes were 14.951 μm , 14.488 μm , 15.786
333 μm , 10.738 μm , and 9.814 μm for PLC, DE, FA, MK, and SF, respectively. Similarly, the specific
334 surface area of the particles were 549.4 m^2/kg , 908.2 m^2/kg , 575.7 m^2/g , 22,000 m^2/kg , and 25,000
335 m^2/kg for PLC, DE, FA, MK, and SF, respectively. All the particles sizes followed normal
336 distribution.

337

338 **Figure 4.** Representative SEM images of raw materials indicating representative particles of (A)
 339 cement, (B) FA, (C) MK, (D) DE, and (E) SF. (F) The cumulative particle size distribution for
 340 each of these types of particles.


341

342 The shear stress vs. shear rate data were obtained from the flow curves obtained on these four
 343 pastes – control, MK, DE, and MK-DE. These samples correspond to compositions described in
 344 Table 2, i.e., SF8-FA8-MK0-DE0, SF8-FA0-MK8-DE0, SF8-FA0-MK0-DE8, and SF0-FA0-
 345 MK8-DE8, respectively. The trends are represented in the shear stress vs. shear strain rate plots
 346 shown in **Figure 5**. The data were fit to the commonly used [51] two-parameter linear Bingham
 347 plastic model given by Eq (1):

348
$$\tau = \tau_0 + \mu_P \dot{\gamma} \quad (1)$$

349 where τ_0 (Pa) is the yield stress that the paste needs to overcome before it flows and μ_P is the
 350 sample apparent viscosity (Pa.s). Expectedly, the model fitted very well to the data, as evident
 351 from the R^2 values (**Table 4**). It could be seen that the sample apparent viscosity increased when
 352 MK or DE was added to the control samples to completely replace FA, or when both MK and DE
 353 were added to completely replace SF and FA. In contrast, the yield stress values decreased with
 354 the addition of MK, DE, or both MK and DE.

355

356

357 **Figure 5.** Shear stress vs. shear rate plots for the four pastes – controls, MK, DE, and MK-DE,
 358 corresponding to SF8-FA8-MK0-DE0, SF8-FA0-MK8-DE0, SF8-FA0-MK0-DE8, and SF0-FA0-
 359 MK8-DE8, respectively, whose compositions were shown in Table 2. The data were fit to three
 360 different models: (a) a linear Bingham Plastic model, (b) a quadratic modified Bingham Plastic
 361 model, and (c) a Herschel-Bulkley model.

362

363 **Table 4.** Parameters from the three models fitted to the shear stress vs. shear rate data from
 364 rheological studies on respective pastes. In all the cases, $R^2 > 0.98$ indicating the strength of the
 365 fit, with all model parameters also being significant ($p < 0.001$).

		Control	MK	DE	MK-DE
Bingham Plastic Model	τ_0 , Pa	15.69	13.54	12.65	10.6
	μ_p , Pa.s	4.161	8.514	12.22	13.78
	R^2	0.99	0.99	0.99	0.98
Modified Bingham Plastic Model	τ_0 , Pa	4.245	-6.175	-24.39	-58.85
	μ_p , Pa.s	4.906	7.449	14.63	18.3
	C	-0.0073	-0.0105	-0.0238	-0.0447
	R^2	0.99	0.99	0.99	0.99
Herschel-Bulkley Model	τ_0 , Pa	1.415	1.223	-26.1	-58.01
	A , Pa.s	6.854	5.221	19.44	27.58
	n	0.8955	1.104	0.9027	0.8551
	R^2	0.99	0.99	0.99	0.98

366

367 Since the viscosity vs. shear strain rate data could exhibit shear-thinning or shear-thickening
 368 behavior for fresh cementitious pastes, the apparent viscosity would not remain constant, which
 369 indicates a non-linear relationship between the shear stress and shear strain rate under steady flow
 370 state. To accurately describe the non-linear rheological behavior of fresh pastes, the shear stress-
 371 shear strain rate curves were fitted to a modified Bingham plastic model based on a 3-parameter
 372 quadratic equation, and the Herschel-Bulkley model containing an exponential term [52, 53, 54,
 373 55, 56, 57, 58], given by equations (2) and (3), respectively:

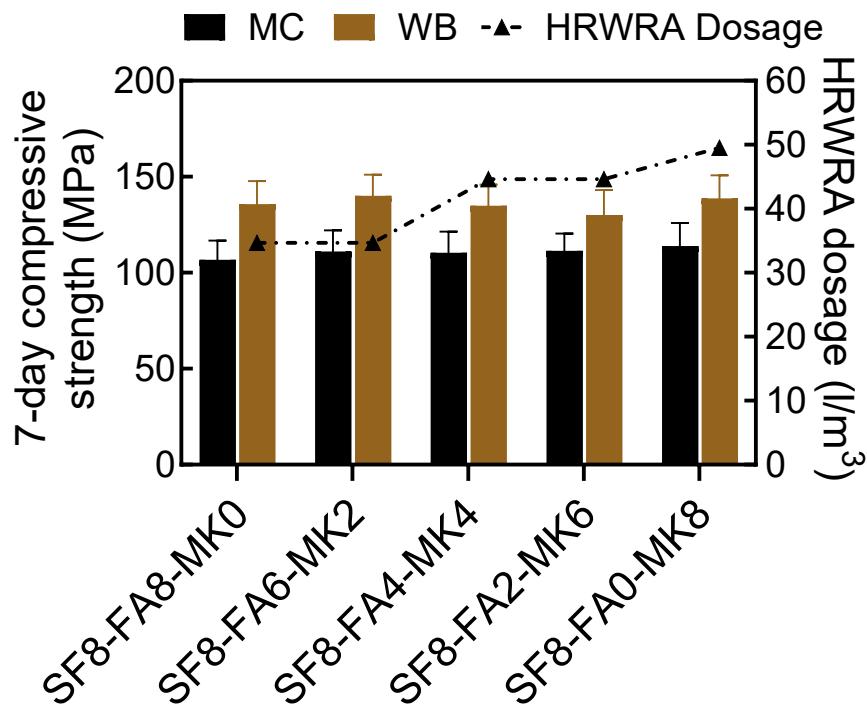
374
$$\tau = \tau_0 + \mu_p \dot{\gamma} + C\dot{\gamma}^2 \quad (2)$$

375 where τ_0 (Pa) is the yield stress that the paste needs to overcome before it flows, μ_P is the sample
376 viscosity (Pa.s) and C (Pa.s²) is the coefficient of a second-order correction term in the shear strain
377 rate. It is worth noting that $C > 0$ indicates shear thickening, $C < 0$ indicates shear thinning, and C
378 = 0 results in linear Bingham plastic model described in Eq (1). The modified model fitted very
379 well to the data, as evident from the R^2 values (**Table 4**). For the cementitious pastes developed
380 here, C was less than zero for all the samples. The sample viscosity steadily increased when MK
381 or DE or both MK and DE were added to the control samples. In contrast, the yield stress values
382 steadily decreased with the addition of MK, DE, or both MK and DE.

383
$$\tau = \tau_0 + A\dot{\gamma}^n \quad (3)$$

384 Where τ_0 (Pa) is the yield stress that the paste needs to overcome before it flows, A is the sample
385 consistency coefficient (Pa.s) and n is the flow behavior index. If $n = 1$, the Herschel-Bulkley
386 model equals to the linear Bingham Plastic model described in Eq (1). The Herschel-Bulkley
387 model also fitted well to the data, as evident from the R^2 values (**Table 4**). For the pastes developed
388 here, n varied between 0.8551 to 1.104, whereas A values steadily increased when DE alone or
389 both MK and DE were added to the control samples. In contrast, the yield stress values steadily
390 decreased with the addition of MK, DE, or both MK and DE.

391 The apparent viscosity was in the order: control < MK < DE < MK + DE, whereas the yield stress
392 was in the order: control > MK > DE > MK + DE. All the samples exhibited shear-thinning
393 behavior with increasing shear rate. In the control sample, the cement pastes at rest require large
394 stress to break the 3D structure formed between FA, SF and other ingredients, and thus exhibited
395 higher yield stress. Once the structure was broken down, the paste flowed easily as indicated by
396 low apparent viscosity and shear thinning behavior. MK addition (to replace FA) likely led to
397 higher water absorption of the layered compounds (alumina and silica) in MK that induces
398 flocculation of the paste [59], thus increasing the apparent viscosity while reducing the yield
399 stress, compared to control pastes. DE is a highly porous fossilized matter containing mostly silica,
400 with high surface to weight ratio and abundant Si-OH groups, and acts mostly as a filler in the
401 cement paste [60, 61]. DE might react with the calcium hydroxide in the mixture to form calcium
402 silicate, which lowers the flowability of the paste upon shear [62]. Due of this, it contributes
403 primarily to increase in apparent viscosity, with little impact on yield stress, unlike MK. Finally,
404 the pastes containing both MK and DE which replaced SF and FA, exhibited the lowest yield stress
405 and highest apparent viscosity most likely due to the nature of these two compounds acting
406 primarily as fillers.


407 **3.3 Optimization of UHPC mixtures**

408 The control mixture described in section 2.2.1 served as the baseline for further optimization. This
409 involved substituting FA with MK and DE, as well as replacing SF with MK in the DE-modified
410 UHPC mixture. Final mixtures were identified based on the flow and seven-day compressive
411 strengths.

412

413 **3.3.1 Metakaolin as SCM to replace fly ash**

414 The process aimed to reduce FA content by replacing it with MK at levels from 0% to 100% in
 415 25% increments. **Figure 6** depicts the impact of MK content on the HRWRA dosage and seven-
 416 day compressive strengths of UHPC mixtures cured under MC and WB regimens. As MK
 417 increased, UHPC flow decreased, requiring increased HRWRA dosage to maintain the target flow
 418 of 203.2 mm to 228.6 mm (**Figure 6**). Various trials were conducted to determine the optimal
 419 HRWRA dosage. Once the HRWRA dosage was determined, 50 mm cube specimens were cast,
 420 cured under both MC and WB regimens, and tested at seven days to assess the compressive
 421 strength of MK-modified UHPC mixtures.

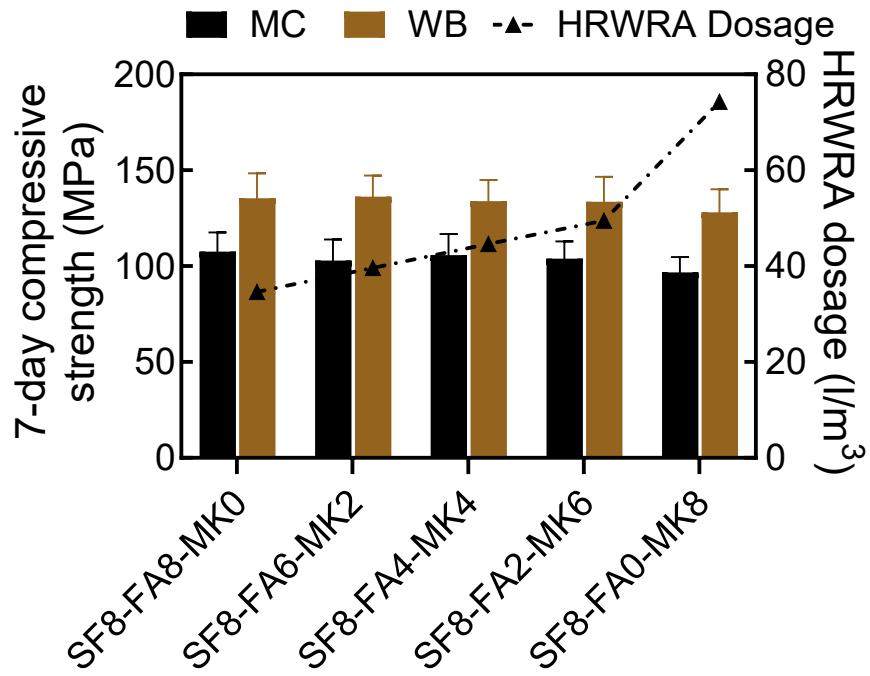
422

423 **Figure 6.** Effect of MK content on HRWRA dosage and seven-day compressive strength of UHPC
 424 mixtures.

425

426 The results clearly indicated an increase in the dosage of HRWRA as MK dosage increased from
 427 0% to 100%, replacing FA (**Figure 6**) to maintain the required flow. This observation aligns with
 428 evidence that incorporating MK reduces concrete workability, likely due to the larger surface area
 429 of MK particles compared to FA particles [59, 60]. SEM imaging (**Figure 4**) on raw MK powder
 430 reveals that particle shape can influence the water demand of a material. Finer and more irregularly
 431 shaped particles, as observed in MK (**Figure 4(c)**), may contribute to a higher water demand
 432 compared to the coarser and more spherical particles typically found in FA (**Figure 4(b)**) [61].

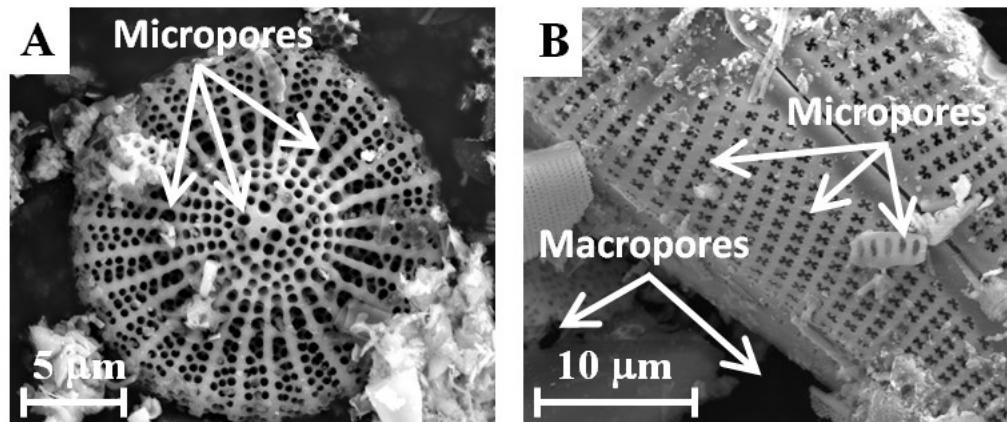
433 Furthermore, **Figure 6** illustrates that the seven-day compressive strengths of all the UHPC
 434 mixtures cured under MC and WB regimens gradually increased up to 6.75% and 2.2%,


435 respectively, with the increase in MK content replacing FA. Specimens produced from the UHPC
436 mixture produced with 100% FA replaced with MK (SF8-FA0-MK8), cured under WB regimen
437 demonstrated a compressive strength of 139 MPa. The increase in compressive strength due to
438 higher MK content is likely because MK's finer particles and more reactive surface area enable
439 better packing, improved compaction, reduced porosity, and the formation of additional
440 cementitious phases, enhancing strength development [62, 63, 64].

441 Based on these preliminary results, mixture SF8-FA0-MK8, which represents a 100% replacement
442 of FA with MK designated as MK modified UHPC, successfully met the required flow and
443 compressive strength properties for UHPC class material. As a result, this mixture has been
444 selected as one of the final mixtures for further testing and development.

445 **3.3.2 Diatomaceous Earth as SCM to replace fly ash**

446 FA was replaced by DE in a similar manner as in the case of MK replacement (section 3.2.1).
447 **Figure 7** illustrates how DE content affects the HRWRA dosage and the seven-day compressive
448 strengths of UHPC mixtures cured under MC and WB conditions. A decrease in the flow was
449 observed as the DE content increased, which resulted in an increase in HRWRA dosage (**Figure**
450 7). The increased water demand with higher DE content is due to DE's water-absorbing
451 characteristics and porous microstructure, as well as the greater quantity of finer DE particles
452 needing more water to become wet compared to FA particles [65, 66]. As shown in the scanning
453 electron microscopy imaging of DE (**Figure 8**), its micro components are characterized by a highly
454 dense porous structure resulting from the shells of fossilized diatoms, with submicrometer open
455 pores ranging from 0.3 to 0.8 μm in diameter.

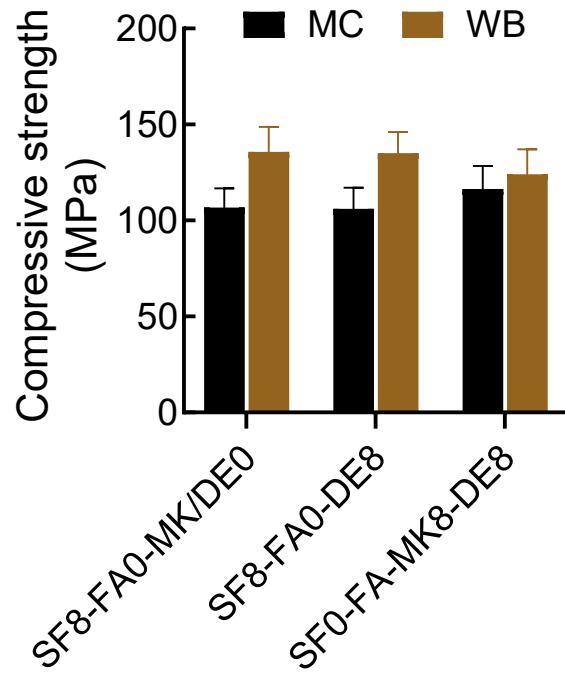

456 It is also evident from **Figure 7** that the UHPC mixture with 25% replacement level of FA with
457 DE (SF8-FA2-DE6) cured under WB regimen exhibited greatest compressive strength among all
458 the replacement levels while the UHPC mixture with 100% replacement of FA with DE (SF8-
459 FA0-DE8) exhibited a compressive strength 128 MPa when cured under WB regimen. Although
460 SF8-FA0-DE8 did not have the highest compressive strength compared to other mixtures in its
461 group, it met the target workability and compressive strength. Consequently, to achieve the
462 primary research goal of complete FA replacement, SF8-FA0-DE8 was selected for further testing
463 and development as the DE-modified UHPC.

464

465 **Figure 7.** Effect of DE content on HRWRA dosage and seven-day compressive strength of trail
 466 UHPC mixtures.

467

468


469 **Figure 8.** Representative SEM images of DE powder containing different diatoms with
 470 microporous structures associated with the intrinsic diatom shell structure and macropores
 471 resulting from the granular nature of the powder.

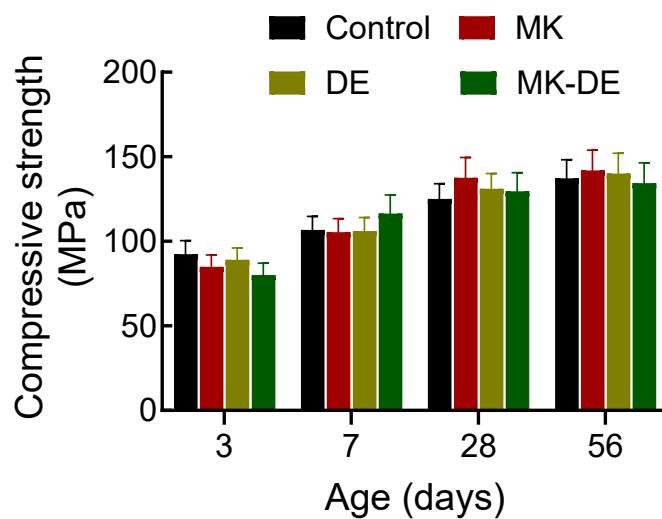
472

473 3.3.3. Metakaolin as SCM to replace silica fume in DE modified UHPC mixture

474 After developing DE modified UHPC by replacing FA with DE, an attempt was made to
 475 completely eliminate SF along with FA, as SF is not only expensive but can also cause health
 476 issues. MK was used to replace SF in the DE modified UHPC to produce a new MK-DE mixture

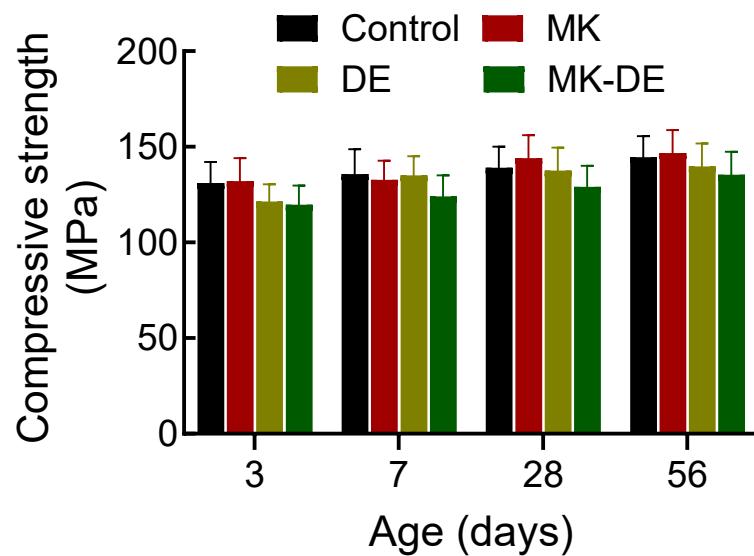
477 formulation (SF0-FA0-MK8-DE8). This formulation exhibited the desired compressive strength
478 and workability. The desired flow of 203 mm to 229 mm was achieved without changing the
479 HRWRA dosage that was used for DE modified UHPC mixture. **Figure 9** compares the
480 compressive strength of MK-DE mixture SF0-FA0-MK8-DE8 with that of the control UHPC
481 mixture (SF8-FA0-MK/DE0) and DE modified UHPC mixture (SF8-FA0-DE8).

482
483 **Figure 9.** Seven-day compressive strengths of control UHPC, DE-modified UHPC, and MK-DE
484 mixtures cured under both MC and WB curing regimens.


485
486 In the MC regimen, the MK-DE mixture exhibited greater compressive strengths than the control
487 mixture and DE modified mixture by 9% and 17.5%, respectively. However, decrease in
488 compressive strength was observed in MK-DE mixture cured under WB curing regimen when
489 compared to control and DE modified mixtures that contain SF by 8.7% and 9.1%, respectively.
490 This decreased compressive strength in MK-DE mixture when cured under WB curing regimen
491 can be traced back to the accelerated strength development of the control UHPC mixture during
492 WB curing. This is facilitated by the highly reactive pozzolanic properties of SF, that are especially
493 effective at elevated temperatures. The increased temperature hastens the hydration process, with
494 SF particles actively engaging in chemical reactions with portlandite and water. This interaction
495 leads to the formation of extra C-S-H gel through secondary reactions, that is instrumental in
496 densifying the cement matrix and, as a result, boosting compressive strength in mixtures containing
497 SF [67, 68, 69, 70]. The absence of SF in MK-DE mixtures could be the reason for lower
498 compressive strength when cured under WB curing regimen.

499 Based on the results from preliminary investigation as discussed above, four final UHPC mixtures
500 were selected for further investigations: Control, MK-modified UHPC, DE-modified UHPC, and
501 MK-DE-modified UHPC. These formulations were used for further testing, including assessments
502 of compressive strengths up to 56 days, flexural performance, modulus of elasticity, and split
503 tensile strength and were discussed in detail below.

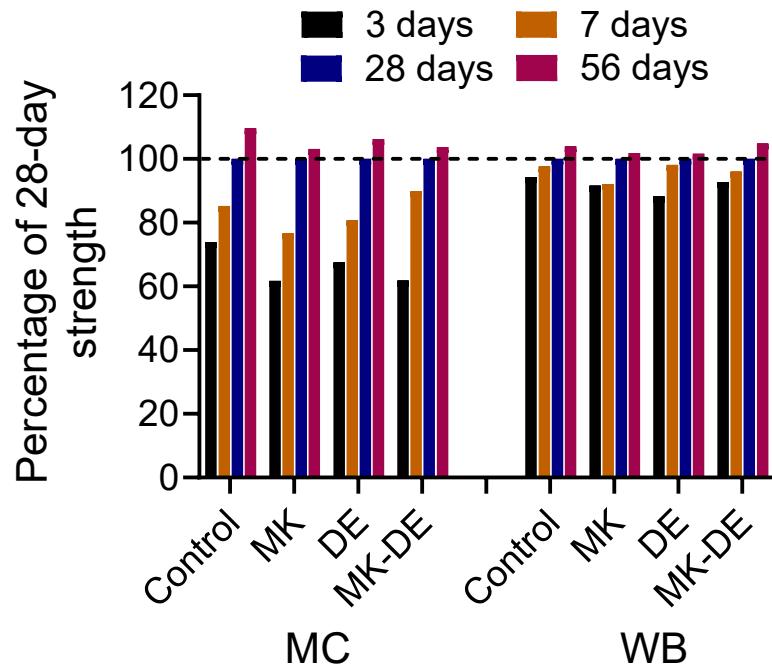
504 **3.4. Compressive strength**


505 **3.4.1. Effect of the type of SCM, cured under both MC and WB curing regimens**

506 Average compressive strengths at 3-, 7-, 28-, and 56- days for six 50 mm cubes from each of the
507 four final mixtures cured under both MC and WB regimens are presented in the **Figures 10 and**
508 **11**, respectively. In MC curing regimen, the greatest compressive strength of 142 MPa was
509 exhibited by MK modified UHPC mixture at 56-days. However, at 28 days, all the three modified
510 UHPC mixtures (MK, DE, and MK-DE) showed greater compressive strengths than the control
511 mixture by 10%, 5%, and 3.5% respectively. Under WB curing regimen, the greatest compressive
512 strength of 146 MPa was observed in MK modified UHPC mixture at 56 days. Also, at 28 days,
513 MK modified UHPC mixture exhibited marginally greater compressive strength (by 3.6%) than
514 the control UHPC mixture, whereas DE and MK-DE modified UHPC mixtures exhibited lower
515 compressive strengths than to the control mixture by 1.14% and 7.19%, respectively. This suggests
516 that FA can be completely replaced by MK, leading to enhanced compressive strengths. This could
517 partially be due to the size of MK particles (usually under 2 microns), which is significantly smaller
518 than cement particles but larger than the particles of SF [71]. The utilization of MK is known to
519 have a substantial impact on the pore structure and calcium hydroxide content of the hardened
520 cement matrix in concrete, owing to its superior purity and pozzolanic reactivity [72, 73]. While
521 DE modified UHPC led to a slight decrease in compressive strength than control UHPC (by 1.14%;
522 $p > 0.05$), it remains a viable replacement for FA. Additionally, the MK-DE modified UHPC,
523 without SF and FA, yielded comparable results to the control UHPC mixture whose results are
524 consistent with [30].

525

526 **Figure 10.** Compressive strength of MK, DE, and MK-DE- modified UHPC mixtures cured under
527 MC curing regimen.



528
529 **Figure 11.** Compressive strength of MK, DE, and MK-DE- modified UHPC mixtures cured under
530 WB curing regimen.

531

532 **3.4.2. Effect of age on compressive strength of UHPC mixtures cured under both MC and** 533 **WB curing regimens**

534 The ratios of compressive strength at 3, 7, and 56 days with respect to 28-day strength are depicted
535 in **Figure 12**. This assumes compressive strength at 28 days is 100% of all the UHPC mixtures
536 cured under both MC and WB curing regimens. The compressive strengths of all the mixtures
537 cured under MC and WB regimens increased with age, but at a reduced rate of increase. The reason
538 was that the reaction rate of cement hydration and the number of hydration products dominated
539 the early strength of concrete mixtures, and were gradually retarded and reduced with increasing
540 time [74].

541

542 **Figure 12.** Relative gain of compressive strength with time in MC curing regimen.

543

544 When compared to all the mixtures cured under the MC regimen, the control mixture exhibited a
 545 remarkable early age compressive strength at three days, achieving 73.9% of its 28-day
 546 compressive strength. This was expected because FA reacts more quickly than MK and DE [8,
 547 75]. It can also be observed from **Figure 12** that FA in the control mixture contributes to later age
 548 strength gain more than any other UHPC mixture that contain alternative SCM in this study. This
 549 is attributed to the fact that, despite the slow pozzolanic reaction, FA can refine the microstructure
 550 over the long term [76]. However, MK, DE, MK-DE modified UHPC mixtures showed significant
 551 early strength development, reaching approximately 62%, 67%, and 62% of their 28-day
 552 compressive strength in three days, respectively. After 28 days, there was a little strength gain (less
 553 than 10%) in all the UHPC mixtures.

554 Under the WB regimen, 90% of the 28-day compressive strength was attained at three days in all
 555 the mixtures except in DE modified UHPC mixture. DE modified UHPC mixture exhibited 88%
 556 of its 28-day strength at three days. The reason for the greater compressive strengths at three days
 557 in these mixtures can be attributed to accelerated hydration reactions and reduction in nanoscale
 558 pores compared to specimens cured at ambient temperatures [77, 78, 79] and therefore, more
 559 hydration products were available to fill up the micropores. Furthermore, it is interesting to note
 560 that the 28-day compressive strength of the specimens produced from control UHPC mixture and
 561 cured under WB regimen is only 11.3% greater when compared to the MC cured specimens at 28
 562 days, while all the other three modified UHPC mixtures had only 5% greater strengths in WB
 563 when compared to MC.

564 A one-way ANOVA test was performed to assess the statistical significance of the difference in
565 compressive strengths between specimens cured in MC and WB at the age of 56 days. However,
566 in terms of the 56-day compressive strengths, no statistically significant difference ($p > 0.05$) was
567 noted in compressive strength between the two curing regimens for all UHPC mixtures, except in
568 the case of the MK-modified UHPC mixture. This indicates that MK alleviated the potential
569 adverse effects of elevated temperatures on the properties of UHPC. The incorporation of MK
570 mitigates any detrimental impacts of heat treatment on the microstructure, eliminating any
571 observable interfacial transition zone (ITZ) between the aggregate and the matrix [80]. Hence,
572 based on the SCMs utilized in this research, it can be concluded that MK assists in mitigating
573 concerns such as thermal cracking, ensuring the long-term integrity of the concrete.

574 The convergence in compressive strengths observed in control, DE- and MK-DE modified UHPCs
575 at later ages between WB and MC regimens highlights a key factor in their similarity. The
576 accelerated hydration facilitated by WB curing at early ages is primarily attributed to elevated
577 temperatures. However, as time progresses, the influence of these heightened temperatures
578 gradually diminishes. By the 56th day, UHPC cured under both WB and MC methods has had
579 ample time to attain comparable strengths, as the temperature-related effects become less
580 pronounced.

581 This finding suggests that, from a sustainability perspective, the water bath curing regimen may
582 not be essential for longer curing ages. The reduced reliance on elevated temperatures in the later
583 stages of curing implies that more environmentally friendly or energy-efficient curing methods
584 could be explored without compromising the ultimate compressive strength of the UHPC. This not
585 only enhances the sustainability profile of the curing process but also opens avenues for the
586 adoption of practices that align with eco-friendly principles in the production of UHPC mixtures.
587 One of the energy-efficient curing methods could be combined curing, i.e., combination of short
588 term (three days) of WB and MC until the day of testing [81, 82]. This would help in accelerating
589 the pozzolanic reaction and enhanced microstructure of UHPC in the initial days as UHPC contains
590 a high concentration of cementitious materials and fine aggregates, which require thorough
591 hydration to achieve the desired mechanical properties.

592


593 **3.4.3. Effect of specimen size on compressive strength of UHPC mixtures cured under both 594 MC and WB curing regimens**

595 As the size of the specimen increases, the compressive strength tends to decrease due to the larger
596 volume being more likely to contain an element of low strength [83]. While there is ample research
597 available on the effects of specimen size on the compressive strength of conventional concrete,
598 limited data exists for UHPC mixtures. Therefore, the effect of specimen size on compressive
599 strength of UHPC was investigated in this study.

600 In this study, compressive strengths of 50 mm and 100 mm cube specimens were compared to
601 study the effect of specimen size on UHPC compressive strength (Figure 13). To enable a
602 straightforward comparison, ratios for the compressive strength ratios of 50 mm and 100 mm cubes

603 from all the UHPC mixtures were computed and presented in **Table 5**. The ratios obtained in this
604 study were in consistent with the literature [84].

605 Statistical analyses have been conducted to assess the impact of specimen size using one-way
606 ANOVA. The results indicate a statistically significant difference ($p < 0.05$) in the compressive
607 strength of UHPC mixtures between 50 mm and 100 mm cube specimens. This difference holds
608 true irrespective of the SCM used, curing regimen, and the testing age.

609
610 **Figure 13.** Compressive strength of 50 mm and 100 mm cube specimens cured under MC and
611 WB regimens for 3, 7, 28 and 56 days.

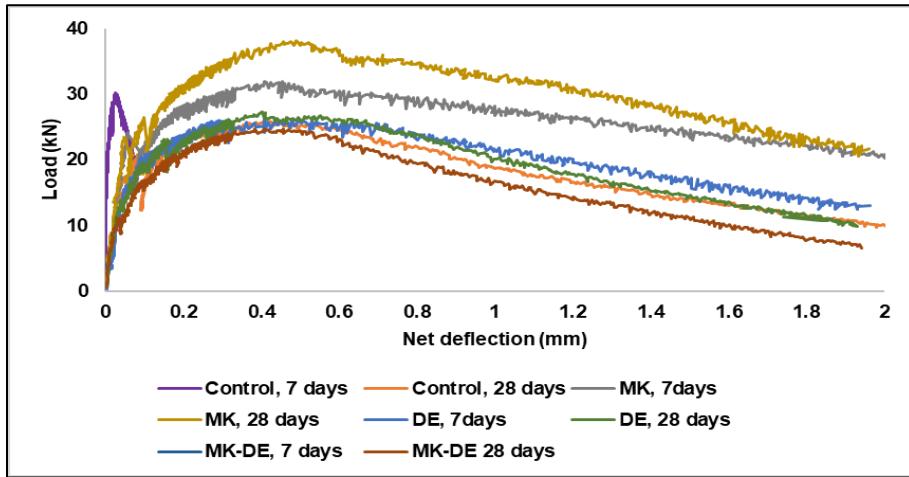
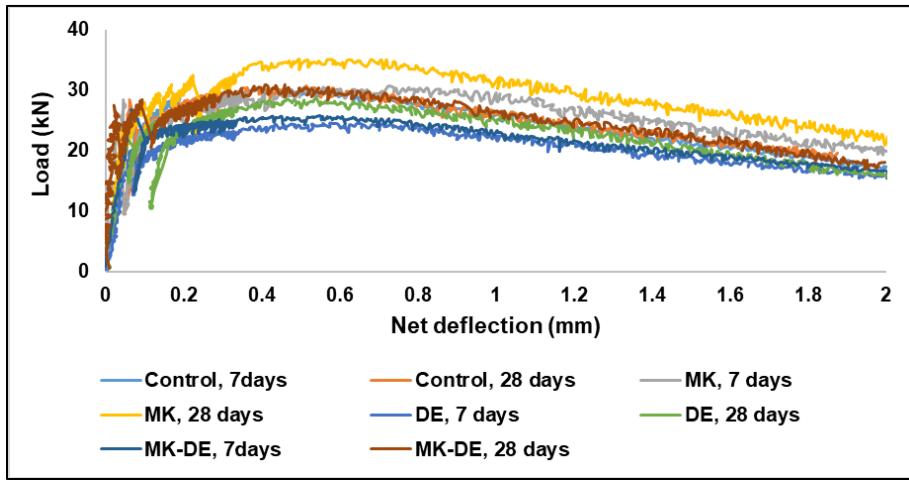
617 **Table 5.** Compressive strength ratios of 50 mm to 100 mm cubes, for different UHPC mixtures
 618 cured under MC and WB regimens, for 3, 7, 28, and 56 days.

Mixture Designation	3 days		7 days		28 days		56 days	
	MC	WB	MC	WB	MC	WB	MC	WB
Control	1.09	1.10	1.08	1.08	1.09	1.09	1.09	1.10
MK	1.09	1.09	1.09	1.09	1.09	1.09	1.12	1.09
DE	1.11	1.21	1.08	1.24	1.10	1.17	1.09	1.12
MK-DE	1.10	1.08	1.09	1.09	1.09	1.08	1.09	1.09

619

620 3.5. Flexural Strength

621 Flexural tests were conducted on 75 mm × 100 mm × 400 mm prismatic UHPC specimens. From
 622 these tests, various response parameters were obtained and analyzed. The load-deflection
 623 relationship emerged as a critical metric, offering comprehensive insights into both pre- and post-
 624 cracking behaviors of UHPC mixtures incorporating alternative SCMs. The average first peak
 625 strength (modulus of rupture- MOR), peak strength, toughness, residual strengths at L/600 (f_{600}^D)
 626 and L/150 (f_{150}^D), and equivalent flexural strength ratios at L/600 ($R_{T,600}^D$) and L/150 ($R_{T,150}^D$) of
 627 all the UHPC mixtures were calculated and presented in **Table 6**.

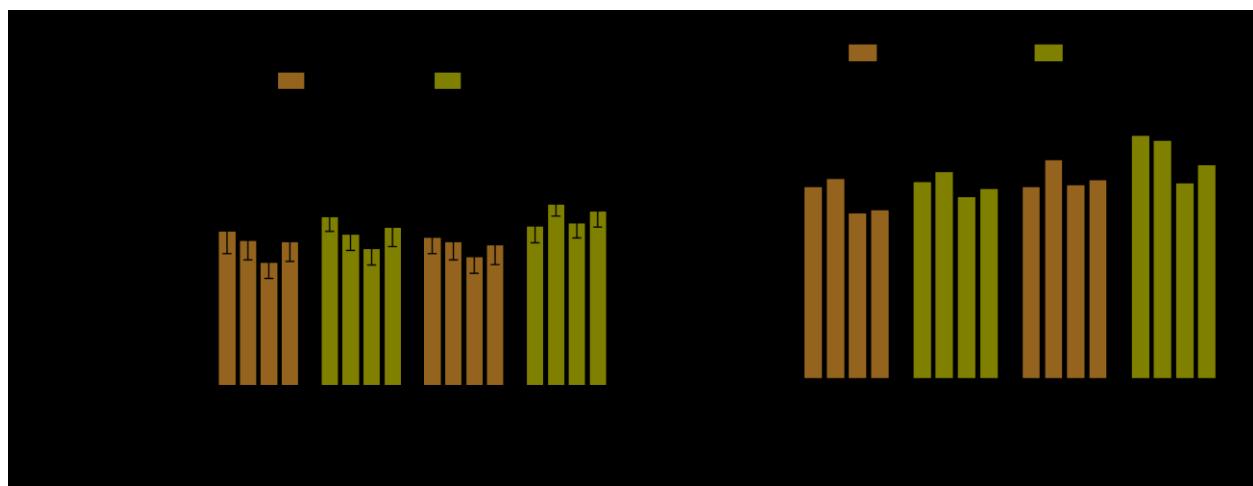


628 **Table 6.** Flexural strength results from 75 mm × 100 mm × 400 mm prismatic UHPC specimens.

Curing Regimen		MC					WB			
Mixture		Control	MK	DE	MK-DE		Control	MK	DE	MK-DE
First peak strength (MPa)	7 day	10.1	9.4	8.4	9.3		9.6	9.3	8.3	9.1
	28 day	10.9	9.8	8.9	10.2		10.2	11.7	10.5	11.3
Peak strength (MPa)	7 day	11.7	12.2	10.1	10.3		11.7	13.3	12	12.1
	28 day	12	12.7	11.1	11.6		14.8	14.5	11.8	13
Toughness at 28 days (Joules)	L/600	13	13.8	13	12.4		11.9	14.42	10.7	11.9
	L/150	49.9	49.3	48.6	52.5		46.3	48.4	39.4	38.4
Residual strength at L/150 (MPa)	7 day	5.9	7.7	4.6	7.2		7.4	7.7	4.1	5
	28 day	7	8.7	6.4	7.9		7.6	8	4.5	5.9
Residual strength at L/600 (MPa)	7 day	10.7	11.4	9	11.2		10.2	12.8	8.5	9.9
	28 day	11.4	11.9	11.2	11.8		11.3	14.1	10.3	10.2
Equivalent flexural strength at L/150 (%)	7 day	72.5	71.2	82.1	84.1		75.6	77.5	69.6	79.5
	28 day	81.2	72.8	79.2	86.3		63.4	80.3	66	77.2
Equivalent flexural strength at L/600 (%)	7 day	82.4	83.5	84.7	90.5		83.2	83.4	78.7	88.7
	28 day	85	84.1	83.8	92.6		67.8	86.8	76	82.5

629

630 **Figure 14** shows the load-deflection curves for all the UHPC mixtures cured under MC and WB
 631 curing regimen tested at seven and 28 days. Each load-deflection curve initiates with a steep linear
 632 segment, signifying prominent initial stiffness. Following this, the curve demonstrates nonlinearity
 633 until encountering the first cracking point, signifying a decline in initial stiffness due to the
 634 formation of internal microcracks. At the first cracking point, the load-deflection curve
 635 experienced a drop in all the mixtures, with a more pronounced decrease evident in specimens

636 cured under MC regimen compared to those cured under WB. All the mixtures exhibited a smooth
 637 tension stiffening region after the initiation of first crack with a deflection capacity beyond L/150.
 638

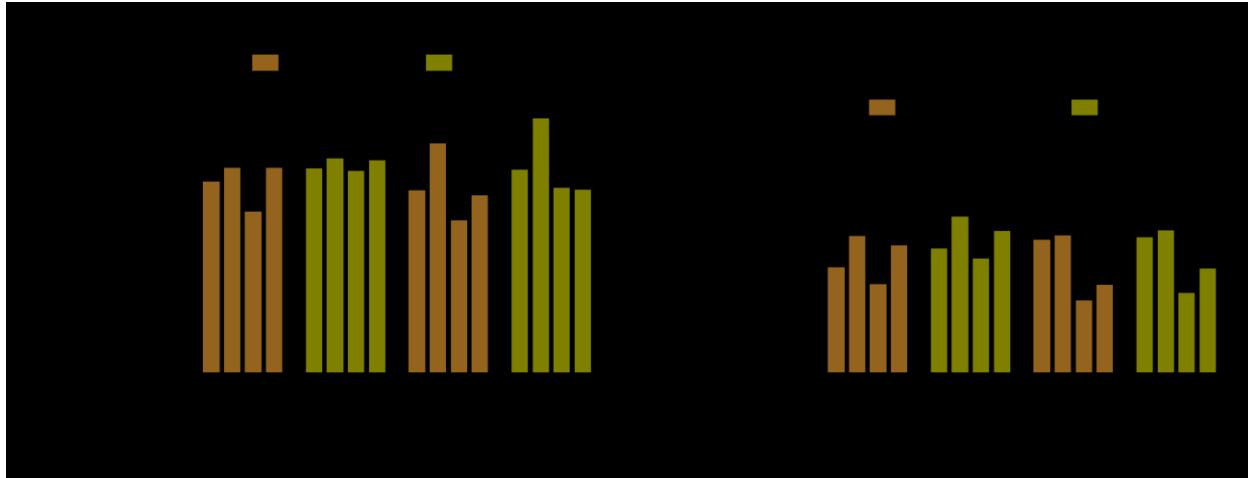


643 **Figure 14.** Load-deflection curves for (a) MC cured specimens at seven and 28 days (b) WB cured
 644 specimens at seven and 28 days.

645

646 **Figure 15** presents the main flexural properties first peak strength (MOR) and peak strength. In
 647 terms of MOR values, the control UHPC mixture performed better than the modified UHPC
 648 mixtures. The greatest MOR values of 10.13 MPa and 10.92 MPa at seven and 28 days,
 649 respectively, were obtained by the control mixture cured under MC regimen. On the other hand,
 650 DE modified UHPC exhibited the lowest MOR values under MC curing regimen. DE modified
 651 UHPC cured under MC regimen resulted in the reduction of MOR by 17.5% and 14.9% at seven
 652 and 28 days, respectively when compared to control UHPC mixture.

653 All the mixtures cured under both MC and WB curing regimens exhibited greater MOR values at
 654 28 days compared to those at seven days (**Figure 15**). The WB curing regimen resulted in a
 655 decrease in the MOR values at seven days compared to 28 days for all mixtures, with values
 656 marginally lower than those cured under the MC regimen. In contrast, at 28 days, when cured
 657 under WB, there was a substantial increase in the MOR values in all the mixtures except the control
 658 mixture. MOR values of MK, DE, and MK-DE modified mixtures were 17.65%, 16.75%, and
 659 9.61% greater when compared to those cured under MC regimen. The initial decrease in MOR
 660 values at 7 days under WB curing compared to MC regimen may be attributed to slower hydration
 661 rates and potential drying of samples, while the subsequent increase in MOR values at 28 days
 662 under WB curing suggests enhanced microstructure strengthening through prolonged hydration
 663 [85, 86]. However, the control mixture exhibited marginally lower MOR value at 28 days in WB
 664 curing compared to MC regimen. This can be attributed to slower pozzolanic reactivity and less
 665 efficient hydration kinetics inherent to FA [87], whereas the greater MOR values exhibited by
 666 UHPC mixtures containing MK or DE in WB curing might be the result of their higher pozzolanic
 667 reactivity and finer particle sizes, which facilitate enhanced flexural strength [30, 65].


668
 669 **Figure 15.** Comparison of seven and 28-day (a) first peak strength (MOR) and (b) peak strengths
 670 of control, MK, DE, and MK-DE modified UHPC mixtures cured under MC and WB regimens.

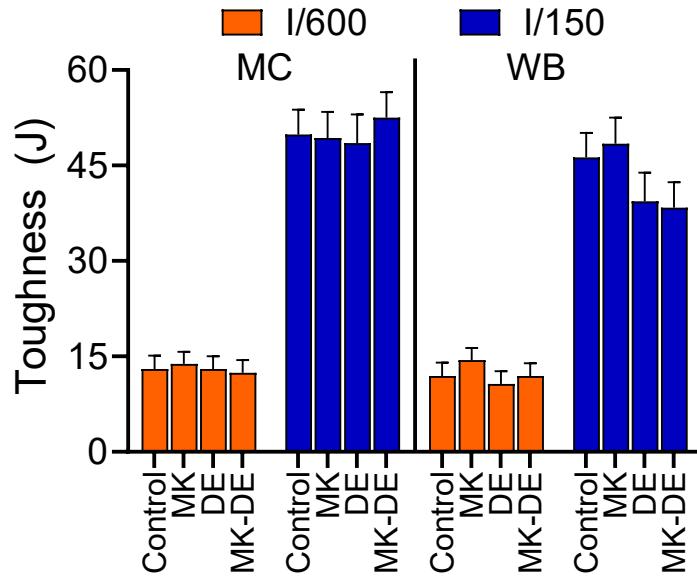
671
 672 This significant improvement in MOR values can be attributed to the enhanced microstructure of
 673 the UHPC mixture resulting from the hydration of both MK and DE at later ages. The peak
 674 strengths at seven and 28 days of all four UHPC mixtures cured under MC and WB regimens were
 675 depicted in **Figure 15 (b)**. All the WB cured UHPC specimens had greater peak strengths than the
 676 MC cured specimens. The greatest peak strength of 14.8 MPa was exhibited by control UHPC
 677 mixture at 28 days when cured under WB curing regimen followed by MK modified UHPC. DE
 678 modified UHPC exhibited the lowest peak strengths when compared to control UHPC mixture by
 679 14.9% and 8% at seven and 28 days respectively under MC curing regimen.

680 The residual strengths at deflections L/600 (f_{600}^D) and L/150, deflections (f_{150}^D) were depicted in
 681 **Figure 16**. Among all the mixtures, MK modified UHPC cured under WB regimen for 28 days

682 exhibited greatest residual strengths of 14 MPa and 8 MPa at L/600 and L/150 deflections,
683 respectively, with DE modified UHPC being the least. As in the case of MOR, there is no
684 improvement in residual strengths of control mixture when cured under WB. Similarly, the WB
685 cured UHPC mixtures containing DE displayed residual strengths lower than those of the MC
686 cured DE modified UHPC at seven and 28 days. This trend suggests that the presence of DE does
687 not contribute positively in terms of residual strengths.

688

689


690 **Figure 16.** Residual flexural strength (a) at L/600 deflection; and (b) at L/150 deflection.

691

692 **3.6. Toughness**

693 To properly understand the energy absorption capacity of UHPC mixtures produced with different
694 SCMs and cured under MC and WB curing regimens, toughness values were calculated for all the
695 developed mixtures at deflections L/600 and L/150 and are presented in **Figure 17**. At L/600
696 deflection, MK modified UHPC showed better performance than the control UHPC mixture by
697 6% and 14.4% in MC and WB curing regimens, respectively, while, MK-DE modified UHPC had
698 the least toughness values at L/600. However, at deflection of L/150, the MK-DE modified UHPC
699 mixture, cured under MC regimen, exhibited the greatest toughness value of 52.5 Joules at 28 days,
700 which is 5% greater than that of the control UHPC mixture. Both MK and DE modified UHPC
701 mixtures showed toughness values similar to the control UHPC mixtures at 28 days cured under
702 MC curing regimen, with decreases of 1.2% and 2.6%, respectively. Whereas, in the WB curing
703 regimen, at 28 days, MK-DE modified UHPC mixtures exhibited the lowest toughness value, with
704 the DE modified UHPC mixture following closely. This suggests that DE has a negative effect on
705 toughness when cured under WB conditions.

706

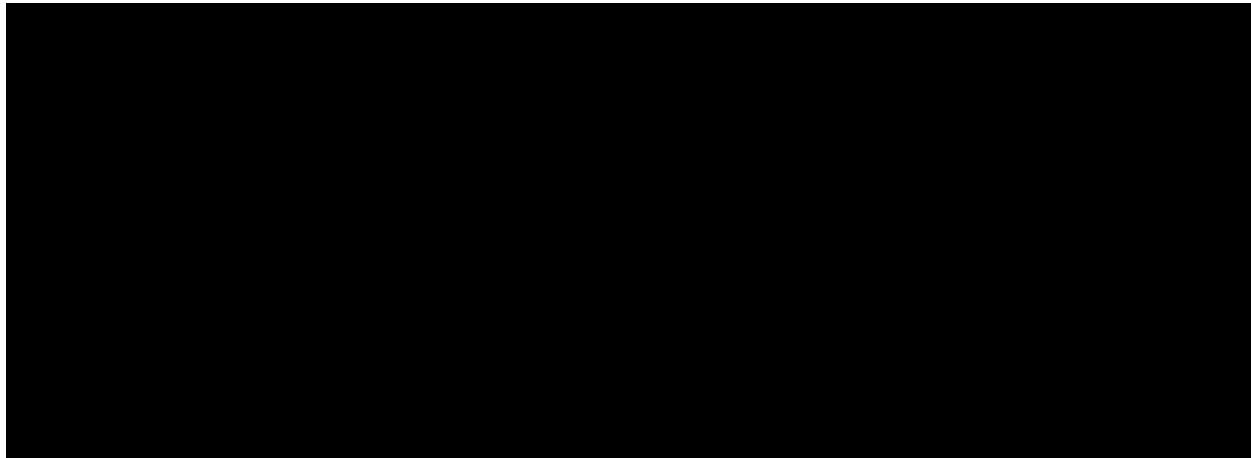
707

708 **Figure 17.** Toughness of UHPC mixtures at 28 days measured at L/600 and L/150 deflections.

709

710 **3.7. Equivalent flexural strength ratios**

711 Equivalent flexural strength ratios ($R_{T,n}^D$) were calculated in accordance with ASTM 1609 [48] to
 712 further characterizing the flexural performance of UHPC mixtures containing alternative SCMs:


$$713 R_{T,n}^D = \frac{nT_n^D}{f_p b d^2} \cdot 100\%$$

714 where, n = deflection ratio corresponding to the toughness measured (e.g., 150 at the deflection of
 715 L/150), T_n^D = toughness measured at deflection of L/n , f_p is the peak strength, and b and d are the
 716 cross-sectional dimensions of the prismatic specimen.

717 The ratio obtained offers a standardized measure of the relative flexural strength retained post-
 718 cracking at a specified deflection level. For instance, for control UHPC mixture, cured for 28 days
 719 under MC curing regimen, the $R_{T,150}^D$ value is 81.2%. This indicates that 81.2% of the peak
 720 strength was still present at the deflection corresponding to L/150 deflection. **Figure 18(a)** and
 721 **Figure 18(b)** depicts the equivalent flexural strength ratios calculated at deflections corresponding
 722 to L/600 and L/150, respectively, for all the mixtures cured under MC and WB regimens. The
 723 $R_{T,600}^D$ and $R_{T,150}^D$ ratios are the highest for MC cured MK-DE modified UHPC mixture at 28 days,
 724 and the lowest for WB cured control UHPC mixture at 28 days. MK-DE modified UHPC mixture
 725 performed better than the control UHPC mixture in both the curing regimens, at both seven and
 726 28 days at both the deflections except in the case of WB cured MK- modified UHPC at 28days.
 727 Moreover, at 28 days, MK modified UHPC cured under WB cuing regimen showed better
 728 performance than any other UHPC mixtures while DE modified UHPC mixture had the least
 729 equivalent flexural strength ratios. This trend persisted even at seven days, where the DE modified

730 UHPC mixture exhibited lower values than any other UHPC mixtures. These results suggest that
731 WB curing has a detrimental effect on the flexural strength of DE modified UHPC.

732

733

734 **Figure 18.** Equivalent flexural strengths (a) at L/600 deflection, and (b) at L/150 deflection.

735

736 **3.8. Splitting tensile strength and modulus of elasticity of UHPC mixtures**

737 100 mm × 200 mm cylindrical specimens for all the four UHPC mixtures, cured under MC curing
738 regimen, were tested at 28 days to evaluate their splitting tensile strength (**Table 7**). The control
739 UHPC mixture exhibited the greatest splitting tensile strength of 9.92 MPa. However, the MK
740 modified UHPC mixture showed a decrease of 8.31% when compared to the control UHPC
741 mixture ($p < 0.05$). Similar finding was reported by Ahmed et.al [60], that the addition of MK
742 reduced the splitting tensile strength of the modified UHPC. This reduction can be attributed to
743 the low w/cm ratio and the low specific surface area of MK, which are known to affect the split
744 tensile strength negatively [88]. Furthermore, the split tensile strength of the DE modified UHPC
745 decreased by 16.5% compared to the control mixture. This reduction in tensile strength is linked
746 to the concrete's lower workability, which can result in a less compact UHPC mixture, ultimately
747 leading to lower tensile strength [38]. In contrast, this decrease was only 8.7% in MK-DE modified
748 UHPC mixture when compared to control mixture.

749 **Table 7** displays the average Poisson ratio and modulus of elasticity values for the UHPC mixtures
750 developed in this study following 28 days of moist curing. Among these, the control UHPC
751 exhibited the greatest modulus of elasticity value of 36,542 MPa with a Poisson's ratio of 0.22.
752 MK-DE mixture exhibited modulus of elasticity and Poisson's values similar to those of control
753 mixture. In contrast, the DE modified UHPC exhibited a relatively lower modulus of elasticity
754 (33,784 MPa), demonstrating a reduction of 8% compared to the control mixture.

755

756 **Table 7.** Effect of split tensile strength, Poisson ratio, and modulus of elasticity of UHPC mixtures.

Mixture	Split tensile strength (MPa)	Poisson's ratio	Modulus of Elasticity (MPa)
Control	9.93	0.22	36,542
MK	9.14	0.21	35,853
DE	8.41	0.20	33,784
MK-DE	9.10	0.21	35,853

763 **3.9. Innovation and limitations**

764 This study presents a significant advancement in the development of sustainable and non-
765 proprietary UHPC by replacing traditional SCMs such as SF and FA with MK and DE. The
766 innovative aspect lies in the successful complete replacement of FA with MK or DE and the
767 combined replacement of both SF and FA using MK and DE. This approach addresses key
768 challenges, including the high cost of SF and the declining availability of FA, while improving the
769 environmental footprint of UHPC. The results demonstrate that MK and DE can maintain
770 comparable mechanical properties to control mixtures, with MK proving particularly effective in
771 enhancing long-term compressive strength under different curing conditions.

772 However, the research also revealed certain limitations. For example, while the MK-DE modified
773 UHPC exhibited promising compressive strength, the DE-modified mixtures experienced
774 reductions in toughness and splitting tensile strength, highlighting that DE may not perform as
775 well as MK in terms of energy absorption and tensile performance. Additionally, the need for
776 increased dosages of HRWRA to maintain flowability in MK and DE-modified mixtures may
777 present practical challenges in large-scale applications. Furthermore, while WB curing accelerated
778 early-age strength development, its long-term benefits diminished over time, raising questions
779 about its necessity for sustainable construction practices. Despite these limitations, the study
780 underscores the potential of MK and DE to serve as cost-effective, eco-friendly SCMs in UHPC
781 formulations, paving the way for further optimization and investigation into their full potential in
782 various construction applications.

783 **4. Conclusions**

784 This study explores the potential of MK and DE as sustainable and cost-effective alternatives to
785 SF and FA in UHPC. The key findings are summarized below:

786 **Objective Achievement:** The complete replacement of FA with MK or DE and the combined
787 replacement of both SF and FA using MK-DE mixtures were successfully achieved, addressing
788 the challenges of high SF costs and declining FA availability.

789 **Material Characterization:** Thermogravimetric analysis indicated that MK, with its high thermal
790 stability and pozzolanic reactivity, is a promising alternative to SF, while DE, with its high silica
791 content, offers potential as a sustainable FA substitute.

792 **Rheological and Mechanical Performance:** Rheological analysis revealed that MK and DE
793 increased the apparent viscosity of UHPC mixtures while reducing yield stress, suggesting altered
794 flow characteristics. Despite this, the modified mixtures maintained compatibility with standard
795 rheological models. MK-DE mixtures exhibited enhanced compressive strength under moist
796 curing conditions, achieving values similar to or exceeding the control mixture at 28 and 56 days.
797 Flexural and tensile properties varied, with MK-modified mixtures generally outperforming DE-
798 modified ones in toughness and modulus of rupture (MOR).

799 **Sustainability Implications:** The use of MK and DE reduced reliance on conventional SCMs,
800 contributing to cost reduction and environmental sustainability. Increased HRWRA dosages were
801 required for these mixtures to maintain workability.

802 **Curing Effects:** While warm bath curing accelerated early-age strength development, its benefits
803 diminished over time. Moist curing provided comparable long-term strength, suggesting potential
804 for more energy-efficient curing methods. Warm bath curing is not required unless early-age
805 strength is a priority.

806 This study introduces a non-proprietary approach to UHPC design using MK and DE, paving the
807 way for more sustainable and economical construction materials. Future studies should explore
808 optimizing these formulations to further enhance mechanical performance and durability.

809 **CRediT authorship contribution statement**

810 **Meghana Yeluri:** Investigation, Data Curation, Validation, Formal Analysis, Visualization,
811 Writing – Original draft. **Elif G. Ertugral:** Investigation, Data curation, Visualization.
812 **Yashovardhan Sharma:** Writing – Review and Editing. **Chandrasekhar R. Kothapalli:**
813 Methodology, Formal Analysis, Visualization, Supervision, Writing – Review and Editing. **Petru**
814 **S. Fodor:** Methodology, Writing – Review and Editing. **Srinivas Allena:** Conceptualization,
815 Methodology, Formal Analysis, Resources, Writing – Review and Editing, Supervision, Project
816 Administration.

817
818 **Declaration of Competing Interest**

819 The authors declare that they have no known competing financial interests or personal
820 relationships that could have appeared to influence the work reported in this paper.

821 **Acknowledgements**

822 The SEM facility used in this work was partially supported by the National Science Foundation
823 (NSF) under Grant No. 1126126. Any opinions, findings, and conclusions or recommendations
824 expressed in this material are those of the authors and do not necessarily reflect the views of the
825 NSF. The authors are thankful to Mr. Miroslav Bogdanovski for the assistance provided with the
826 SEM imaging.

827

- [1] N. Roux, C. Andrade and M. Sanjuan, "Experimental study of durability of reactive powder concretes," *Journal of materials in civil engineering*, vol. 8, no. 1, pp. 1--6, 1996.
- [2] O. Bonneau, M. Lachemi, E. Dallaire, J. Dugat and P. Aitcin, "Mechanical properties and durability of two industrial reactive powder concretes," *Materials Journal*, vol. 94, pp. 286-290, 1997.
- [3] N. Soliman and A. Tagnit-Hamou, "Study of rheological and mechanical performance of ultra-high-performance glass concrete," *Fibre Reinforced Concrete: from Design to Structural Applications*, vol. 17, 2015.
- [4] P. Richard and M. Cheyrezy, "Composition of reactive powder concretes," *Cement and concrete research*, vol. 25, pp. 1501--1511, 1995.
- [5] J. Dugat, N. Roux and G. Bernier, "Mechanical properties of reactive powder concretes," *Materials and structures*, vol. 29, no. 4, pp. 233--240, 1996.
- [6] M. Schmidt and E. Fehling, "Ultra-high-performance concrete: research, development and application in Europe," *ACI Spec. Publ*, vol. 228, no. 1, pp. 51--78, 2005.
- [7] T. Klemens, "Flexible concrete offers new solutions," *Concr. Constr*, vol. 49, p. 72, 2004.
- [8] S. Mousavinezhad, G. Gonzales, W. Toledo, J. Garcia, C. Newtson and S. Allen, "A Comprehensive Study on Non-Proprietary Ultra-High-Performance Concrete Containing Supplementary Cementitious Materials," *Materials*, vol. 16, p. 2622, 2023.
- [9] V. Van and H. Ludwig, "Proportioning optimization of UHPC containing rice husk ash and ground granulated blast-furnace slag," in *Proceedings of the 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, Germany*, 2012, pp. 197--205.
- [10] C. Schröfl, M. Gruber and J. Plank, "Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC)," *Cement and Concrete Research*, vol. 42, no. 11, pp. 1401--1408, 2012.
- [11] W. Liao, X. Sun, A. Kumar, H. Sun and H. Ma, "Hydration of binary portland cement blends containing silica fume: A decoupling method to estimate degrees of hydration and pozzolanic reaction," *Frontiers in Materials*, vol. 6, p. 78, 2019.
- [12] R. Yu, P. Spiesz and H. Brouwers, "Mix design and properties assessment of ultra-high performance fibre reinforced concrete," *Cement and concrete research*, vol. 56, pp. 29--39, 2014.

- [13] C. Taylor, K. Montoya, D. Jauregui, C. Newton and B. Weldon, "Feasibility analysis of using UHPC in prestressed bridge girders," in *Structures Congress* , 2011, pp. 203--214.
- [14] R. Merget, T. Bauer, H. Kupper, S. Philippou, H. Bauer, R. Breitstadt and T. Bruening, "Health hazards due to the inhalation of amorphous silica," *Archives of toxicology*, vol. 75, pp. 625--634, 2002.
- [15] H. Zhang, T. Ji, B. He and L. He, "Performance of ultra-high performance concrete (UHPC) with cement partially replaced by ground granite powder (GGP) under different curing conditions," *Construction and Building Materials*, vol. 213, pp. 469--482, 2019.
- [16] J. Ma and H. Schneider, "Properties of ultra-high-performance concrete," *Leipzig Annual Civil Engineering Report (LACER)*, vol. 7, pp. 25--32, 2002.
- [17] M. Soutsos, S. Millard and K. Karaiskos, "Mix design, mechanical properties, and impact resistance of reactive powder concrete (RPC)," in *International workshop on high performance fibre-reinforced cementitious composites in structural applications*, 2005, pp. 549--560.
- [18] H. Yazici, "The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures," *Building and environment*, vol. 42, no. 5, pp. 2083--2089, 2007.
- [19] Z. Li, "Drying shrinkage prediction of paste containing meta-kaolin and ultrafine fly ash for developing ultra-high performance concrete," *Materials Today Communications*, pp. 74--80, 2016.
- [20] N. Van Tuan, G. Ye, K. Van Breugel, A. Fraaij and D. Dai Bui, "The study of using rice husk ash to produce ultra high performance concrete," *Construction and Building Materials*, vol. 25, pp. 2030--2035, 2011.
- [21] Z. Wu, C. Shi and W. He, "Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes," *Construction and Building Materials*, vol. 136, pp. 307--313, 2017.
- [22] S. Ahmad, I. Hakeem and M. Maslehuddin, "Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand," *The Scientific World Journal*, 2014.
- [23] A. Alsalman, C. Dang and M. Hale, "Development of ultra-high performance concrete with locally available materials," *Construction and Building Materials*, vol. 133, pp. 135--145, 2017.
- [24] "ACAA(America Coal Ash Association," [Online]. Available: <https://acaa-usa.org>. [Accessed 23 9 23].

- [25] I. Diaz-Loya, M. Juenger, S. Seraj and R. Minkara, "Extending supplementary cementitious material resources: Reclaimed and remediated fly ash and natural pozzolans".
- [26] J. Khatib, O. Baalbaki and A. ElKordi, "Metakaolin," in *Waste and supplementary cementitious materials in concrete*, Elsevier, 2018, pp. 493--511.
- [27] S. Elavarasan, A. Priya, N. Ajai, S. Akash, T. Annie and G. Bhuvana, "Experimental study on partial replacement of cement by metakaolin and GGBS," *Materials Today: Proceedings*, vol. 37, pp. 3527--3530, 2021.
- [28] "Calorimetric study of alkaline activation of calcium hydroxide--metakaolin solid mixtures," *Cement and Concrete Research*, vol. 31, no. 1, pp. 25--30, 2001.
- [29] K. Weise, N. Ukrainczyk and E. Koenders, "Pozzolanic Reactions of Metakaolin with Calcium Hydroxide: Review on Hydrate Phase Formations and Effect of Alkali Hydroxides, Carbonates and Sulfates," *Materials & Design*, p. 112062, 2023.
- [30] A. Tafraoui, G. Escadeillas, S. Lebaili and T. Vidal, "Metakaolin in the formulation of UHPC," *Construction and Building Materials*, vol. 23, no. 2, pp. 669--674, 2009.
- [31] E. Kadri, S. Kenai, K. Ezziane, R. Siddique and G. De Schutter, "Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar," *Applied Clay Science*, vol. 53, no. 4, pp. 704--708, 2011.
- [32] A. {Mardani-Aghabaglou, G. Sezer and K. Ramyar, "Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point," *Construction and Building Materials*, vol. 70, pp. 17--25, 2014.
- [33] D. Pillay, O. Olalusi, M. Kiliswa, P. Awoyera, J. Kolawole and A. Babafemi, "Engineering performance of metakaolin based concrete," *Cleaner Engineering and Technology*, vol. 6, p. 100383, 2022.
- [34] S. Tongbo, W. Bin, Z. Lijun and C. Zhifeng, "Calcined Clays for Sustainable Concrete: Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete," in *Springer*, 2015.
- [35] S. Zheng, Z. Sun, Z. Hu and G. Zhang, "The processing and utilization of China diatomite resource and its development trend," *Earth Science Frontiers*, vol. 21, no. 5, pp. 274-280, 2014.
- [36] S. Ash, "Mineral commodity summaries 2019," US Geological Survey, Reston, VA, 2019.
- [37] S. Kou, C. Poon and M. Etxeberria, "Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete," *Cement and Concrete Composites*, vol. 33, no. 2, pp. 286-291, 2011.

- [38] M. Hasan, T. Saidi, A. Mubarak and M. Jamil, "Effect of calcined diatomaceous earth, polypropylene fiber, and glass fiber on the mechanical properties of ultra-high-performance fiber-reinforced concrete," *Journal of the Mechanical Behavior of Materials*, vol. 32, p. 20220275, 2023.
- [39] M. Hasan, A. Riski, T. Saidi, H. Husaini and P. Rahman, "Flexural and splitting tensile strength of high strength concrete with diatomite micro particles as mineral additive," in *In Defect and Diffusion Forum*, Trans Tech Publications Ltd, 2020, pp. 50-55.
- [40] A. Tangit-Hamou, N. Petrov and K. Luke, " Properties of concrete containing diatomaceous earth," *ACI Materials Journal*, vol. 100, no. 1, pp. 73-78, 2003.
- [41] W. Du, "Study on preparation of ultra-high strength and high performance concrete from diatomite and its mechanical properties," in *In IOP Conference Series: Earth and Environmental Science*, IOP Publishing, 2019, p. 012054.
- [42] N. Degirmenci and A. Yilmaz, "Use of diatomite as partial replacement for Portland cement in cement mortars.," *Construction and Building Materials*, vol. 23, no. 1, pp. 284-288, 2009.
- [43] "ASTM C33: Standard specification for concrete aggregates," ASTM International , West Conshohocken, PA, 2018.
- [44] "ASTM C128: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate," ASTM International, West Conshohocken, PA, 2015.
- [45] "ASTM C1856:Standard practice for fabricating and testing specimens of Ultra-high performance concrete," ASTM International, West Conshohocken, PA, 2017.
- [46] "ASTM C1437-20, Standard Test Method for Flow of Hydraulic Cement Mortar, West Conshohocken, PA," *ASTM International*, 2020, DOI: 10.1520/C1437-20.
- [47] "Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)," ASTM International, West Conshohocken, PA, 2020.
- [48] "ASTM C1609: Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading)," ASTM International, West Conshohocken, PA, 2019.
- [49] "Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens," ASTM International, West Conshohocken, PA, 2017.
- [50] "Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression," ASTM International, West Conshohocken, PA, 2017.

- [51] T.-Y. Shin and J. Kim, "First step in modeling the flow table test to characterize the rheology of normally vibrated concrete," *Cement and Concrete Research*, vol. 152, p. 106678, 2022.
- [52] Y. Song, J. Xiang, W. Cui and G. Xiong, "Anhydrous ethanol as a medium used to grind soda-lime glass for cement-based materials preparation: Evaluating its rheological behavior by the Herschel--Bulkley and Modified--Bingham models," *Journal of Building Engineering*, vol. 63, p. 105553, 2023.
- [53] R. Campos and G. Maciel, "Test protocol and rheological model influence on determining the rheological properties of cement pastes," *Journal of Building Engineering*, vol. 44, p. 103206, 2021.
- [54] Y. Xu, Y. Yu, P. Li, M. Liu, L. Zhu, H. Zhang, C. Zhang, G. Hu, M. Hu and J. Guo, "Rheological behavior of oil well cement pastes containing various types of dispersants at different hydration temperatures," *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, vol. 624, p. 126821, 2021.
- [55] Y. Peng, K. Ma, C. Unluer, W. Li, S. Li, J. Shi and G. Long, "Method for calculating dynamic yield stress of fresh cement pastes using a coaxial cylinder system," *Journal of the American Ceramic Society*, vol. 104, no. 11, pp. 5557--5570, 2021.
- [56] A. Habib, I. Aiad, F. El-Hosiny and A. Mohsen, "Studying the impact of admixtures chemical structure on the rheological properties of silica-fume blended cement pastes using various rheological models," *Ain Shams Engineering Journal*, vol. 12, no. 2, pp. 1583--1594, 2021.
- [57] D. Feys, R. Verhoeven and G. De Schutter, "Fresh self compacting concrete, a shear thickening material," *Cement and Concrete Research*, vol. 38, no. 7, pp. 920--929, 2008.
- [58] A. Papo and L. Piani, "Flow behavior of fresh Portland cement pastes," *Particulate science and technology*, vol. 22, no. 2, p. 201--212.
- [59] U. Biswal and P. Dinakar, "Influence of metakaolin and silica fume on the mechanical and durability performance of high-strength concrete made with 100% coarse recycled aggregate," *Journal of Hazardous, Toxic, and Radioactive Waste*, vol. 26, no. 2, p. 04022004, 2022.
- [60] J. Ahmad, A. Majdi, M. Arbili, A. Deifall and M. Naqash, "Mechanical, Durability and Microstructure Analysis Overview of Concrete Made with Metakaolin (MTK)," *Buildings*, vol. 12, p. 1401, 2022.
- [61] T. Singh, R. Siddique and S. Sharma, "Effectiveness of using Metakaolin and fly ash as supplementary cementitious materials in pervious concrete," *European Journal of Environmental and Civil Engineering*, vol. 26, no. 15, pp. 7359--7382, 2022.

- [62] S. Barbhuiya, P. Chow and S. Memon, "Microstructure, hydration and nanomechanical properties of concrete containing metakaolin," *Construction and Building Materials*, vol. 95, pp. 696--702, 2015.
- [63] W. Ding, Y. He, L. Lu, F. Wang and S. Hu, "Mechanical property and microstructure of quaternary phase paste blended with metakaolin," *Cement and Concrete Composites*, vol. 118, p. 103934, 2021.
- [64] W. Long, J. Liu and C. He, "A facile approach to disperse metakaolin for promoting compressive strength of cement composites," *Construction and Building Materials*, vol. 404, p. 133268, 2023.
- [65] M. Hasan, M. Jamil and T. Saidi, "Mechanical properties and durability of ultra-high-performance concrete with calcined diatomaceous earth as cement replacement," *Journal of the Mechanical Behavior of Materials*, vol. 32, p. 20220272, 2023.
- [66] D. Kastis, G. Kakali, S. Tsivilis and M. Stamatakis, "Properties and hydration of blended cements with calcareous diatomite," *Cement and concrete research*, vol. 36, pp. 1821--1826, 2006.
- [67] R. Zhong, K. Wille and R. Viegas, "Material efficiency in the design of UHPC paste from a life cycle point of view," *Construction and Building Materials*, vol. 160, pp. 505--513, 2018.
- [68] S. Abdal, W. Mansour, N. Ibrahim, A. Mohammed, O. Aref, . A. Yasin and h. Mahmoud, "Application of Ultra-High-Performance Concrete in Bridge Engineering: Current Status, Limitations, Challenges, and Future Prospects," *Buildings*, vol. 13, no. 1, p. 185, 2023.
- [69] P. J. Monteiro, S. A. Miller and A. Horvath, "Towards sustainable concrete".
- [70] P. LI, H. Brouwers, W. Chen and Q. Yu, "Optimization and characterization of high-volume limestone powder in sustainable ultra-high performance concrete," *Construction and Building Materials*, vol. 242, p. 118112, 2020.
- [71] J. Ding and Z. Li, "Effects of metakaolin and silica fume on properties of concrete," *Materials Journal*, vol. 99, pp. 393--398, 2002.
- [72] J. Ambroise, S. Martin-Calle and J. Pera, "Pozzolanic behavior of thermally activated kaolin," *Special Publication*, vol. 132, pp. 731--748, 1992.
- [73] J. Kostuch, G. Walters and T. Jones, "High performance concretes incorporating metakaolin: a review," *Concrete*, vol. 2, pp. 1799--811, 2000.
- [74] R. Shao, C. Wu, J. Li, Z. Liu, P. Wu and Y. Yang, "Mechanical behaviour and environmental benefit of eco-friendly steel fibre-reinforced dry UHPC incorporating high-

- volume fly ash and crumb rubber," *Journal of Building Engineering*, vol. 65, p. 105747, 2023.
- [75] P. Rangaraju and Z. Li, "Development of UHPC using ternary blends of ultra-fine class F fly ash, meta-kaolin and portland cement," in *International Interactive Symposium on Ultra-High Performance Concrete*, Iowa State University, 2016.
- [76] Z. Rong, W. Sun, H. Xiao and W. Wang, "Effect of silica fume and fly ash on hydration and microstructure evolution of cement based composites at low water--binder ratios," *Construction and Building Materials*, vol. 51, pp. 446--450, 2014.
- [77] D. Heinz, L. Urbonas and T. Gerlicher, "Effect of heat treatment method on the properties of UHPC," in *3rd Int. Symp. UHPC Nanotechnol. Constr. Mater.*, Kassel Uni, Kassel, Germany, 2012.
- [78] P. Hiremath and S. Yaragal, "Effect of different curing regimes and durations on early strength development of reactive powder concrete," *Construction and Building Materials*, vol. 154, pp. 72--87, 2017.
- [79] A. Emmanuel, S. Krishnan and S. Bishnoi, "Influence of curing temperature on hydration and microstructural development of ordinary Portland cement," *Construction and Building Materials*, vol. 329, p. 127070, 2022.
- [80] P. Shen, L. Lu, W. Chen, F. Wang and S. Hu, "Efficiency of metakaolin in steam cured high strength concrete," *Construction and building materials*, vol. 152, pp. 357--366, 2017.
- [81] H. Hamada, A. Alattar, B. Tayeh, F. Yahaya and I. Almeshal, "Influence of different curing methods on the compressive strength of ultra-high-performance concrete: A comprehensive review," *Case Studies in Construction Materials*, vol. 17, p. 01390, 2022.
- [82] D. Xu, J. Tang, X. Hu, C. Yu, F. Han, S. Sun, W. Deng and J. Liu, "The influence of curing regimes on hydration, microstructure and compressive strength of ultra-high performance concrete: A review," *Journal of Building Engineering*, p. 107401, 2023.
- [83] A. Neville, *Properties of concrete*, Longman London, 1995.
- [84] S. Allena, C. Newtson and M. Tahat, *Mechanical Properties of Ultra-High Strength Concrete with Local Materials*, 2012.
- [85] O. Oguzhan, Y. Erem and S. Ulku, "Effect of curing regimes on the mechanical and fresh properties of steel fiber-reinforced concrete," *Architecture, Civil Engineering, Environment*, vol. 14, pp. 69--81, 2021.

- [86] Z. Mo, X. Gao and A. Su, "Mechanical performances and microstructures of metakaolin contained UHPC matrix under steam curing conditions," *Construction and Building Materials*, vol. 268, p. 121112, 2021.
- [87] J. T.R, "Metakaolin as a pozzolanic addition to concrete," *Structure and performance of cements*, pp. 372--398, 2002.
- [88] J. Salimi, A. Ramezanianpour and M. Moradi, "Studying the effect of low reactivity metakaolin on free and restrained shrinkage of high performance concrete," *Journal of Building Engineering*, vol. 28, p. {101053, 2020.

830

831