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A Secure Vitals Monitoring Point-of-Care Device

Emily Oliver', Rongting Yue?* and Abhishek Dutta?

Abstract— Point-of-care (POC) devices continuously monitor
vital signs and provide health suggestions to users. However, the
devices are not affordable to everyone due to their cost. Here,
we design a POC device that can continuously estimate vital
signs using fewer sensors and lower costs. We do so by mea-
suring photoplethysmogram signals and temperature and then
estimating the heart rate, blood oxygen saturation, respiration
rate, and blood pressure. For keeping the vital data secure,
an auto-encoder and a convolutional neural network were also
used for encryption and abnormality detection, respectively.
Tests on the hardware showed the design accurately obtained
users’ vitals. The proposed design is expected to be generalized
to obtain other vitals and fabricated at a low cost, making it
affordable to all people.

I. INTRODUCTION

Point-of-care (POC) devices continuously help users mon-
itor their vitals and provide them with health recommen-
dations, while the requirement of medical personnel for
professional medical equipment as well as their invasive
techniques hinder people from accessing medical care easily
[1]. The commonly tracked vitals include heart rate (HR),
body temperature, electrocardiogram (ECG) readings, blood
pressure (BP), respiration rate, blood oxygen saturation,
blood glucose, skin perspiration, capnography, and motion
[2]. Wearable POC devices, such as the Apple Watch, can
measure a subset of the vitals and they are smaller, more
comfortable devices that can be used in users’ everyday
life [3]. However, these devices are not affordable to all
people, especially for users in developing countries that lack
healthcare services. Meanwhile, the lower cost usually cor-
responds to fewer sensors or less measured vitals, resulting
in inaccurate or inadequate data on users’ health conditions.

Wearable Internet of Things (IoT) medical devices allow
patients to continuously monitor their health at home, which
would help reduce medical costs [4]. This is done by con-
necting the devices to the cloud, such that the vitals collected
by sensors can be sent to a server for processing. However,
the transmission of big medical data is time-consuming
for cloud-based systems, which makes it not beneficial
for emergency situations. Deep learning (DL) utilizes deep
neural network structure to mine useful and representative
information from big data, such that data volume can be
heavily reduced. In wearable medical devices, DL can be
used to either identify abnormal data or make predictions
about diseases [5]. For example, in a Vital-ECG device,
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features extracted from the ECG and pulse oximetry signals
help classify bradycardia and tachycardia [6]. The security
and privacy of the devices must also be ensured to protect
the medical data from being changed or hacked because
of the IoT and cloud-based platforms. Encryption and fog
computing can be used to help combat issues, specifically
confidentiality and integrity, but these techniques can be
complex and difficult to maintain as they are often used with
big medical data [7]. Deep learning techniques efficiently
extract features from big medical data, which can contribute
to security issues. For example, the low-dimensional features
in Autoencoders can help classify malware and identify
attacks [8].

In this study, a wearable POC device that is affordable,
miniaturized, connected and secure was designed, and its
block diagram is shown in Figure 1. The device measured
temperature and collects the photoplethysmogram (PPG)
signal of the user, and then estimated HR, blood oxygen
saturation, blood pressure, and respiration rate accordingly.
The estimation methods were tested with online datasets and
used on human subjects. An autoencoder for encryption and
a neural network for abnormality detection were used for
security measures. A prototype of this wrist-worn device was
implemented in a preliminary Printed Circuit Board (PCB).
In future work, a disease prediction algorithm and a treatment
control system could be implemented.

II. MATERIALS AND METHODS

The vital measurements include PPG signals and temper-
ature. The blood pressure, respiration rate, HR, and blood
oxygen are estimated based on the measured vitals. An
autoencoder is used to obtain extracted features for security.

A. Data Collection

A PPG sensor made up of a light source and a photodetec-
tor is used to detect users’ HRs. The ratio of light absorbed
to light reflected back to the photodetector creates the PPG
waveform and allows HR to be calculated [9]. Temperature
is measured using an analog temperature sensor with voltage
readings with the sensor resolution of 10 mV/°C and 12-bit
analog-to-digital converter, such that the resolution would be
approximately 0.08°C per bit.

B. Vital Estimation

a) Blood Pressure: Blood pressure (BP) is estimated
using a combination of HR and normalized pulse volume
(mNVP) (i.e., the amplitude of the wave from minimum to
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Fig. 1: A block diagram of the designed wearable POC device. Sensors on the device collect PPG signals and temperatures from users.
The data is used for secure vitals monitoring using an autoencoder and a series of estimators.

maximum divided by the direct current (DC) value of the
signal) and then calculated as [10]:

InBP = (a*InHR)+ (bxInmNVP) + ¢ (1)

where a, b, and c are constants determined using linear
regression. We use the data set [11] that contains a PPG
and blood pressure signal with a sampling rate of 125 Hz.
mN PV is calculated every two seconds to find both the AC
and DC components of the PPG wave [12].

Respiration Rate: The respiration rate is estimated (as
in Equation (2) [13]) from a PPG signal using pulse width
variability (PWV) that helps eliminate the problem of motion

artifacts.
Z 77

where 7 is the time index, f7 is the sampling rate, no, and
ng, are the moments of the ¢-th beginning and end of the
wave, and n 4, is the moment of the ¢-th systolic peaks within
the signal. Two conditions must be met to differentiate a
systolic and diastolic peak in a PPG wave: 1) each maximum
must be followed by a minimum, and 2) a threshold based on
the user’s average heart rate is used to prevent the occurrence
of two peaks, which is updated if the heart rate fluctuates. If
both conditions are met, the peak is considered systolic. If
there is more than one width found within one second, the
pulse width variability values are averaged together.

Heart Rate: HR is calculated every two seconds based
on PPG signals obtained from sensors using a peak detection:
HR = pulse 15 the time between two systolic
peaks [li] Two conditions are set to differentiate a systolic
and diastolic peak in a PPG wave: (1) every maximum needs
to be followed by a minimum and vice versa; (2) there is a
threshold in which two peaks cannot occur, and the threshold
is set by the user’s average HR and it is updated if the
HR fluctuates. Once both conditions are satisfied, a peak
is registered as systolic to calculate HR. The Pulse Transit
Time PPG Dataset (version 1.1.0) with a sampling rate of
125 Hz is used for tests. Two systolic peaks are considered
within a window of two-second (i.e., the sampling rate of
250 Hz). To account for more than two peaks being in the
window, all calculations are averaged over the course of two
seconds.

Blood Oxygen Saturation: A PPG sensor (typically
placed on the finger) measures the amount of light absorbed

Py ( —ng,)0(n —na,) )

from both arterial and venous blood using a probe with light-
emitting diodes and a photodetector. PPG signals help deter-
mine blood oxygen saturation SpQO,, which is approximated
using a linear regression model SpOy = ag+bo* R, where ag
and bg are coefficients, and R is the ratio of the AC over DC'
component for red and infrared light on the sensor, as shown
in Equation (3) [12]. The test dataset is the same as in HR;
however, only the initial and final blood oxygen saturation
values are provided. Therefore, the blood oxygen saturation
is estimated for the first and last two seconds of the dataset,
which are approximately 96.64% and 96.31%, respectively,
and compared to the recorded measurement, which are 95%
and 98%, respectively.

AC'red/DCrcd
AC;,./DC;,

C. Deep Learning for Device Security

R= 3)

The POC device encrypts the data and identifies if the
data has been altered for security issues. An autoencoder is
used to transform the PPG data into an unrecognizable low-
dimensional space using an encoding scheme on the device,
so that attackers wouldn’t get useful information (e.g., time
of the signal) without knowing the decoder, even if they
obtain access to the device or cloud. A decoder located on the
cloud is used to reconstruct the original PPG signal. Leaky
ReLu activation function Ry, (z) = max(0.01z, z) is used to
help combat dying neurons, where z is the latent features.
Dropout regularization is used to help reduce overfitting. The
encoder takes 125 input nodes with 4 fully connected hidden
layers that contain 100, 50, 25, and 5 nodes, respectively.
Five features from the output of the encoder are regarded
as encrypted PPG signals. The decoder is symmetric to the
encoder. The mean squared error MSE = 13" | (V; —Y;)?
is chosen as the cost function, where n is the number of data
points, and Y; is the predicted magnitude of the reconstructed
PPG wave at the :—th sampling point, and Y; is the measured
magnitude of the original wave.

The convolutional neural network is applied to the decoded
PPG waves to detect if the data is altered. A 125-dimensional
decrypted PPG wave is input to a 1D convolutional layer
with 32 kernels and a ReLu activation function. An average
pooling layer is used with a patch size of two. The latent
features are flattened for the following dense layer with 16
nodes with a ReLu activation function R(z) = maz(0, z).
The last layer is a dense layer with a single output node
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and the Sigmoid activation function S(z) = H% In this
case, a value close to 1 indicates a strong probability that
the signal is a PPG wave, while a value close to O strongly
indicates that it is not a PPG signal. To train this classifier, an
equal number of PPG waves and the other waves are used.
Here we use the PPG waves and the physiological signals
of respiration (or impedance respiratory signals) from the
dataset [14]. The binary cross entropy is used as the cost
function as shown in Equation (4).
1
— 2_ i log(p(yi) + (1 =yi)-log(1—p(y:))] (4)
i=1

H, =

where N is the number of waves, and y; is the label of 1
or O that indicates the signal is a PPG wave or not, with the
corresponding probability p(y;).

D. Hardware

The design of the proposed POC device uses the Heltec
WiFi Kit 32 with the microcontroller module ESP32 because
of its low cost, low power consumption, and compatibility
with IoT applications (e.g., WiFi and Bluetooth) and "mi-
cropython" (TensorFlow). The low-power biometric sensor
MAX30102, which has a wavelength of 660nm for the red
light and 880nm for the IR light, is selected for detecting
HR and blood oxygen levels. This sensor is small enough to
be mounted on a wearable device. The temperature sensor
LMTS86LMP is used, whose operating range is from -50 to
150 °C with an average error of 0.4 °C.
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Fig. 2: (a) One side of the printed circuit board; it will rest against
the user’s skin. (b) The other side of the PCB, is mainly made up
of voltage regulators.

These sensors and modules are integrated into a printed
circuit board (PCB), which will then be inserted into a strap
so it can be worn on the wrist. The design is tested on
breadboards for validity. Data and commands are transmitted
between the microcontroller and sensors using I2C' serial
communication. A rechargeable 3.7 V Lithium-Ion Polymer
battery is used in the circuit. Two voltage regulators are
used to generate 1.8 volts and 3.3 volts output, to power the
MAX30102 sensor, the temperature, and the ESP32 chip.

Data are read from Arduino IDE and the built-in screen on
Heltec Wifi Kit 32 during the tests. A separate LCD screen
can be added in the future PCB to visualize the estimated
vitals, and its connector is reserved on the board. A voltage

booster using an MC34063 regulator is used to power the
modules (e.g., the LCD screen) that generally require 5 V to
operate. The designed circuit board is double-sided, with the
MAX30102 sensor and the analog temperature sensor facing
the skin to record accurate readings, as shown in Figure 2
(a). The other side of the PCB, as shown in Figure 2 (b),
contains the necessary components to power the device.

III. RESULTS

Now that a framework has been established for a wearable
POC device. Each of the vital estimation methods was tested
on human subjects with the sensors placed on a breadboard
connected to the Heltec Wifi Kit 32.

A. Vital Estimation Evaluation

a) Heart Rate: HR trials were done on two different
human subjects, three times, for thirty seconds each. Subjects
placed their finger on the MAX30102 sensor for thirty
seconds, where HR was calculated every three seconds.
Immediately after this, the subject took their pulse for thirty
seconds on their wrist, and doubled it to find their HR. The
comparison between the recorded and estimated average HR
is shown in Figure 3 (a), where the estimated values were
extremely close to the actual, with an average percent error
of less than 1%.

b) Blood Oxygen Saturation, Blood Pressure and Res-
piration Rate: Blood oxygen saturation and blood pressure
trials were run with two subjects and taking measurements
three times for thirty seconds each. The reading from the
MAX30102 sensor was calculated every three seconds, and
then averaged for a final reading after thirty seconds. The
estimated values were compared to that measured using the
device "MorePro V19 Health Tracker", which were taken at
the same time as the sensor reading, e.g., after thirty seconds
reported the systolic and diastolic blood pressure. For the
estimated blood oxygen saturation, the average percent errors
were 2.45% and 2.44% for subjects 1 and 2, respectively. For
the blood pressures, data from six trials were used to calibrate
the parameters in Equation (1). The estimated values and the
measured values were almost identical, as shown in Figure
3 (d). The constants [a, b, c] were calculated to be [0.0496,
-0.0091, 4.2661], [0.0491, -0.0079, 4.6388] and [0.0490, -
0.0102, 4.0150] for mean arterial blood pressure, systolic
blood pressure and diastolic blood pressure, respectively. The
average percent errors were less than 3.5% when comparing
the estimated to measured values every two seconds. The
respiration rate was tested on two different subjects using the
MAX30102 sensor. Each subject did this three times while
breathing normally and counting their breaths. The window
lengths of 30, 40, and 60 seconds are tested, with the window
sliding by 1 second and then recalculating the respiration
rate. The 60-second window produced the best results, with
an average percent error of 7.34%, and as seen in Figure 3
(b). The estimated respiration rate was then compared to the
number of counted breaths, as shown in Figure 3 (c).
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B. System Security

The autoencoder was trained on 40 epochs with a batch
size of 100. After 15 epochs, the MSE for this autoencoder
was less than 0.004 for training data and less than 0.003
for validation data. The reconstructed PPG was close to the
original PPG as shown in Figure 3 (e). Evaluation of the
classifier was based on the ratio of the total of true positives
(50.06%) and true negatives (49.78%) over the total number
of predictions. The false positive and false negative were
0.03% and 0.13%, respectively. The classifier for system
security had an accuracy of 99.85%, which demonstrates that
the neural network was correctly identifying if the signal was
a PPG wave or not. Meanwhile, the encoder encrypted the
PPG signal (i.e., the 5 features) to low-dimensional latent
space that is not meaningful or interpretable, which indicates
the success of encryption.

IV. CONCLUSIONS

An affordable wearable POC device that can securely
monitor vitals is developed and validated. The device mea-
sures PPG signals and temperature, and it estimates the other
vitals, including the HR, blood oxygen saturation, blood
pressure, and respiration rate. Low errors of the estimated
vitals compared to measurements validate the accuracy of
the monitoring device designed. Moreover, data is encrypted
using an autoencoder to secure the device.
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