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Abstract

Simulations of galaxy formation are mostly unable to resolve the energy-conserving phase of individual supernova
events, having to resort to subgrid models to distribute the energy and momentum resulting from stellar feedback.
However, the properties of these simulated galaxies, including the morphology, stellar mass formed, and the
burstiness of the star formation history, are highly sensitive to the numerical choices adopted in these subgrid
models. Using the SMUGGLE stellar feedback model, we carry out idealized simulations of an M. ~ 10'° M,
dwarf galaxy, a regime where most simulation codes predict significant burstiness in star formation, resulting in
strong gas flows that lead to the formation of dark matter cores. We find that by varying only the directional
distribution of momentum imparted from supernovae to the surrounding gas, while holding the total momentum
per supernova constant, bursty star formation may be amplified or completely suppressed, and the total stellar mass
formed can vary by as much as a factor of ~3. In particular, when momentum is primarily directed perpendicular to
the gas disk, less bursty and lower overall star formation rates result, yielding less gas turbulence, more disky
morphologies, and a retention of cuspy dark matter density profiles. An improved understanding of the nonlinear
coupling of stellar feedback into inhomogeneous gaseous media is thus needed to make robust predictions for
stellar morphologies and dark matter core formation in dwarfs independent of uncertain numerical choices in the
baryonic treatment.

Unified Astronomy Thesaurus concepts: Galaxy structure (622); Starburst galaxies (1570); Dwarf galaxies (416);
Galaxy evolution (594); Star formation (1569); Galaxy dark matter halos (1880); Computational methods (1965)
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1. Introduction

Galaxy formation at the scale of dwarfs (M, ~ 10°-10° M)
is extremely inefficient, turning only a small fraction of the
available gas into stars (~10%; e.g., C. Conroy & R. H. Wec-
hsler 2009; B. P. Moster et al. 2013; P. Behroozi et al. 2019).
One of the most important processes affecting the formation of
stars in dwarf galaxies are supernovae (SNe), which deposit a
significant amount of energy into the interstellar medium (ISM;
e.g., R. B. Larson 1974; J. F. Navarro & S. D. M. White 1993;
0. Agertz et al. 2013). This energy deposition is instrumental in
regulating the rate of star formation in galaxies of all masses to
the observed levels (e.g., O. Agertz et al. 2010; J. Guedes et al.
2011; P. F. Hopkins et al. 2011; M. Aumer et al. 2013;
A. Gatto et al. 2016). On the scale of dwarfs, SN energy
coupled efficiently to the ISM may also be responsible for
generating fluctuating gravitational potentials that result in the
redistribution of dark matter from the center to the outer
regions of the galaxy and the formation of constant density
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cores (e.g., J. F. Navarro et al. 1996a; A. Pontzen &
F. Governato 2012; A. Di Cintio et al. 2014; A. A. Dutton
et al. 2016; K. El-Badry et al. 2016; J. I. Read et al. 2016;
E. Tollet et al. 2016; J. Freundlich et al. 2020; E. D. Jahn et al.
2023; B. Azartash-Namin et al. 2024).

In practice, an SN event can be modeled as a point injection
of a large amount of thermal energy, which expands as a shock
into its environment. The first stage of this expansion is energy
conserving, as the thermal pressure inside the shock drives the
bubble’s expansion according to the Sedov-Taylor solution
(e.g., G. L. Taylor 1950; L. I. Sedov 1959). Once the shock
slows down and the driving pressure becomes comparable to
the ambient pressure, the bubble enters the snow-plow or
momentum-conserving phase, where the swept up matter
continues to move without being subject to external forces.

However, it is very difficult for simulations to accurately
capture the way in which SN explosions expand into the ISM
(e.g., C. Scannapieco et al. 2012). First, the Sedov-Taylor
solution, and related SN feedback models (e.g., R. A. Cheval-
ier 1974; D. F. Cioffi et al. 1988; B. T. Draine &
D. T. Woods 1991; K. Thornton et al. 1998), invoke a number
of simplifying assumptions—in particular, they are derived
based on a homogeneous local ISM at rest. However, neither of
these assumptions are necessarily true for SNe in galaxies; the
local ISM may be inhomogeneous on a wide range of scales,
including scales comparable to the size of the blast wave itself.
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It will also often not be at rest, and in many cases we should
expect the gas to be moving away from active star-forming
areas, due to previous SN events or the action of stellar winds.
Furthermore, the resolution of simulations is often insufficient
to explicitly capture the relevant physics of the SN blast wave.
The time resolution needed to resolve the radiative cooling of
very hot gas after a point injection of thermal energy is difficult
to reach in galaxy formation simulations, leading to what is
known as the “overcooling problem” (e.g., N. Katz 1992;
M. C. Smith et al. 2018; M. Vogelsberger et al. 2020), in
which, due to purely numerical errors, the thermal energy
injected by SNe dissipates too quickly to expand as a shock
into the ISM. Often, the spatial resolution is also too coarse to
individually resolve the energy-conserving and momentum-
conserving phases of the expanding shock. Typical cooling
radii, or the size of the bubble at the onset of the momentum-
conserving phase, span from ~parsec scale to a few hundred
parsecs, depending on the local conditions of the ISM. This is
often smaller than the spatial resolution of galaxy-scale
numerical simulations, leaving the energy-conserving phase
unresolved.

As such, SN feedback is often implemented as a subgrid
process. Methods include modified thermal injection schemes
(e.g., G. Murante et al. 2010; C. Dalla Vecchia & J. Schaye 2012;
E. Chaikin et al. 2023), directly injecting momentum into the ISM
(e.g., J. F. Navarro & S. D. M. White 1993; J. C. Mihos &
L. Hernquist 1994; M. Vogelsberger et al. 2013; P. F. Hopkins
et al. 2018a), temporarily disabling radiative cooling after SN
events (e.g., G. Stinson et al. 2006; O. Agertz et al. 2010;
R. Teyssier et al. 2013), modeling clusters of multiple SNe
collectively as an expanding superbubble (e.g., B. W. Keller et al.
2014; K. El-Badry et al. 2019), or resorting to smoothly
representing the ISM by means of an effective equation of state
(V. Springel & L. Hernquist 2003). Several current subgrid SN
models based on direct moment injection have begun to explicitly
compensate for resolution limitations by injecting the terminal
momentum of the SN ejecta after the unresolved Sedov—Taylor
phase, accounting in the calculation for various dependencies
including local gas density and metallicity (e.g., C.-G. Kim &
E. C. Ostriker 2015; P. F. Hopkins et al. 2018a; F. Marinacci et al.
2019; J. M. Pittard 2019; P. 1. Karpov et al. 2020). Notably, FIRE-
3 (P. F. Hopkins et al. 2023) adjusts the momentum injected also
for instances when the medium is not at rest, in an attempt for a
more physically motivated model. In general, higher order
considerations and more detailed subgrid treatments may be
advisable (P. F. Hopkins 2024).

Recently, some simulations have reached the ultrahigh
resolution needed to model SNe via direct injection of thermal
energy (e.g., A. Emerick et al. 2019; C.-Y. Hu 2019; N. Lahén
et al. 2020; T. A. Gutcke et al. 2021; Y. Deng et al. 2024), and
can thus explicitly resolve the expansion of SN bubbles into
realistic, inhomogeneous ISM structures. At these resolutions,
the momentum injection into the ISM will naturally arise from
thermal expansion, and will thus not rely on arbitrary numerical
choices. However, these resolutions are not yet achievable in
large-scale simulations. The reality of SN injection in galaxy
formation simulations is, likely, substantially more complex
than assumed in the prescriptions used, mostly due to the
(unresolved) inhomogeneities in the ISM of galaxies.

For example, even a modestly low density of n~ 0.01
particles cm™ corresponds to a cooling radius of about 200 pc,
which is often comparable to the size of superbubbles formed
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by clustered SN feedback (e.g., C. Li et al. 2024). Studies using
small-scale simulations of a more realistic inhomogeneous ISM
(e.g., D. Martizzi et al. 2015) have shown departures in the
evolution of the SN remnants from the traditionally assumed
subgrid models that rest on assumptions of spherically
symmetric expansion into a homogeneous media. The
propagation speed and momentum coupling of the SN energy
vary along low- and high-density channels within the structured
ISM, contributing to the departure from idealized solutions in
homogeneous media. On a macroscopic level, for stratified
media (such as the disk of galaxies) this can result in
preferential coupling of the energy and momentum for different
directions, which might not be properly taken into account
when enforcing symmetric energy—momentum deposition in
subgrid models.

It is necessary to produce accurate subgrid models of SN
feedback since many of the predicted properties of simulated
galaxies may show variations depending on the details of the
baryonic treatment and, in particular, the stellar feedback
implementation (L. V. Sales et al. 2010; C. Scannapieco et al.
2012; E. Chaikin et al. 2022). This is particularly true in the
regime of dwarf galaxies, where the relatively shallower
gravitational potential makes the system more responsive to the
energy and momentum input from feedback. There is
consensus in the field that stellar feedback, and mostly SNe,
are capable of regulating star formation in dwarf galaxies to
observed levels, by disrupting cold, dense gas clumps that
would form far too many stars compared to observations if not
regulated by feedback (e.g., see the comparison of several
codes in L. V. Sales et al. 2022). However, there is less
agreement on the level of “burstiness” that is reasonable to
expect in the regime of dwarfs, and whether theoretical models
compare well with observational constraints (e.g., M. Sparre
etal. 2017; S. G. Patel et al. 2018; N. Emami et al. 2019, 2021).

If star formation is indeed as bursty as predicted by some of
the state-of-the-art numerical simulations, this carries important
consequences for the theoretical predictions of the stellar sizes,
morphologies, and inner dark matter distribution in dwarf
galaxies. If gas contributes sufficiently to the local density in
the inner regions of halos, which may occur in the case of gas-
rich dwarfs, bursty episodes of star formation can generate
substantial gas flows that create fluctuating gravitational
potentials in the inner regions of low mass halos combined
with powerful outflows (e.g., M. C. Smith et al. 2021). These
quick (i.e., on subdynamical timescales) fluctuations in the
gravitational potential of the galaxy result in a net gain of
energy for collisionless components like stars and dark matter,
making them less tightly bound, and thus they tend to migrate
outwards (J. F. Navarro et al. 1996a; A. Pontzen & F. Gover-
nato 2012; A. Benitez-Llambay et al. 2019). Shallower
distributions of stars and dark matter are thus expected in
systems where star formation is bursty and stellar feedback is
efficiently coupled to the surrounding ISM, including a
transformation from cuspy dark matter halos into cored ones.
Through this process, numerical details on the subgrid
modeling of star formation and stellar feedback have a direct
impact on cosmological predictions and our understanding of
cold dark matter (CDM) as a plausible dark matter model.

In this paper, we revisit the assumption of an isotropic
deposition of SN momentum for subgrid models of feedback
using the multiphase SMUGGLE model (e.g., F. Marinacci
et al. 2019) applied in simulations of an isolated dwarf halo. In
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Section 2 we discuss the simulation setup and the methods used
to control both: (i) directional anisotropy and (ii) cell weighting
scheme of the SN feedback model. In Sections 3 and 4 we
present our main results on how varying these two assumptions
may impact the large-scale dwarf properties, including their star
formation histories, morphologies, and inner dark matter
distributions. In Section 5 we summarize our results.

2. Description of the Simulations

We use the moving-mesh hydrodynamics code AREPO
(V. Springel 2010) to run simulations of an isolated
My~ 10" M., M, ~ 10® M., dwarf galaxy where the virial
quantities are defined within a radius that encloses an average
density of 200 times the critical density of the Universe. Our
runs have a reference resolution with ~6000 M. for the
baryonic component (gas and stars) and ~25,000 M, for the
dark matter particles. A gravitational softening length of 32 pc
is used for every particle. Stars form by transforming an
eligible gas cell into a single star, which means that initially
stars have the same mass as the parent gas cell. The mesh
refinement scheme implemented in AREPO ensures that the
mass of any given gas cell is within a factor of 2 from this
reference resolution. Hence, star particles are formed at around
this particle mass; however, due to mass loss in stellar feedback
processes, star particle masses may decrease below this value;
for example, in our default runs we find that the average stellar
particle mass falls to 5000+ 1500 M. by the end of the
simulation (where the uncertainty corresponds to the rms of the
stellar particle mass distribution.) We test convergence of the
results using a x 10 better resolution run in the Appendix.

The initial conditions consist of a gas-rich disk
(Mgas ~ 5 < 10% M) in hydrostatic equilibrium with the dark
matter halo, with an additional population of old disk stars
(M ~7 x 10" M_) and old bulge stars (M ~ 5 x 10° M_). The
initial dark matter halo is a Navarro-Frenk—White (NFW;
J. F. Navarro et al. 1996b) profile with concentration ¢ = 15,
the initial gas and stellar disks are in an exponential profile, and
the initial stellar bulge is an L. Hernquist (1990) profile. This
setup is similar to those presented in P. F. Hopkins et al.
(2011), J. D. Burger et al. (2022a, 2022b), and E. D. Jahn et al.
(2023). The galaxy lies at the center of a 3D box with 200 kpc
on a side. All simulations are run for at least 2 Gyr, with a
snapshot saved every 5 Myr. All galaxy-wide properties
discussed within this work are calculated from all snapshots
over the first 2 Gyr, unless stated otherwise.

We briefly summarize the SMUGGLE stellar feedback
model as per F. Marinacci et al. (2019, hereafter M19). It
includes various processes of star formation, stellar feedback,
and the heating and cooling of gas. Star formation is primarily
modulated by two numerical parameters: the star formation
efficiency esg, which regulates the rate at which a given gas cell
forms stars, and a density threshold py,, which gas cells are
required to exceed in order to form stars. Chief among the
relevant feedback mechanisms, and the one we will focus on in
this paper, is the feedback done by SNe.

The main parameters involved in the star formation and
feedback modeling are summarized in Table 1. Our findings are
robust to a range of numerical choices, which is presented in
the Appendix.
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Table 1
List of the Numerical Parameters and Initial Conditions Used in the
Simulations

Parameter Value
Halo Virial Mass 1% 10" M,
Disk Stellar Mass (Initial) 7 x 10" M,
Bulge Stellar Mass (Initial) 5 % 10° M,
Gas Mass (Initial) 5 x 10 My,
Target Baryonic Mass 6000 M,
Dark Matter Particle Mass 25,000 M,
Softening Radius (All Particles) 32 pc
Star Formation Efficiency 0.01
Star Formation Density Threshold 100 my cm

2.1. Star Formation Prescription

To model star formation, gas cell are converted into star
particles, probabilistically, at a rate consistent with

. M
Msp = esp—2, (D

dyn

where egr is the star formation efficiency, which is a tunable
dimensionless factor which we set to 0.01 (M19; in accordance
with M. R. Krumholz & J. C. Tan 2007), M,y is the mass of
the gas cell, and t4y, is the dynamical timescale of the gas
within the cell, given by

37
tgyn = | ——, 2
M\ 3260 @

where G is the gravitational constant and p. is the density of
the gas cell.

Additionally, gas cells must be sufficiently dense in order to
form stars; this is enforced by allowing only gas cells with a
density peer > pm to become a star particle. In the main body of
this work, we set py, to be 100 particles cm™. The SMUGGLE
model also requires that the gas is locally gravitationally bound
in order to form stars; this is modeled by a virial parameter
criterion for each gas cell, described in M19; only gas cells
satisfying this criterion are eligible to become a star particle.

At the time of formation, star particles keep the mass,
position, and velocity of their progenitor gas cells. Each star
particle represents a stellar population, consistent with a
G. Chabrier (2003) initial mass function, which evolves
coevally according to the model described in M19."°

2.2. Supernova Feedback

SN events occur according to the stellar population evolution
model described in M19, in which Type II or Ia SNe occur in a
star particle according to the ages of OB and white dwarf stars
within a given stellar population. SNe are resolved discretely;
typically, at the resolution of our simulations, no more than one
SN occurs within a star particle at any given time step.

At each SN event, a nominal energy of

E\o = nsnEsi, (3

19 For the mass resolutions within this work, the masses of star particles are
sufficiently high that each particle can be treated as a stellar population that
samples well the initial mass function.
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is released by a star particle into the neighboring gas particles
where ngy is the number of SNe occurring within the numerical
event, and Es;=1.0x 10°" erg. This energy is entirely
converted into a scalar momentum, via

Prot = N 2mior Eror “)

where my, is the total mass of the SN ejecta. This linear
momentum is then partitioned among the nearest N,,, = 32 gas
cells, according to a weight factor w; for each neighboring cell,
indexed by i. Then, the (nominal) linear momentum injected
into each neighbor gas cell is

S Pt Wi

p )
l Z,‘Wi

so that, in principle, the sum of all linear momenta entering the
gas cells is po. However, a number of numerical postproces-
sing procedures are applied before imparting the momentum to
a gas cell. First, due to the unresolved nature of the energy-
conserving phase of the SN blast wave in these simulations, the
linear momentum injected into a gas cell i by a star particle is
boosted'' (in a manner consistent with P. F. Hopkins et al.
2018a) by a factor

g:min(/wﬂ,@), 6)
om; Py

where m; is the mass of the target gas cell, om; = myw;/>_w; is
the mass of the ejecta entering the gas cell, and peey, is the
terminal momentum of the SN shock, which is (in accordance
with D. F. Cioffi et al. 1988, and used by M19), given by

)

Prm = 48 x 105 M, kms~! - E¥/Va=1/7¢(Z),  (7)

where E is the total energy released in units of 10°" erg, 7 is the
local density estimate in units of particles cm ™, and

3/2

—0.14
f(Z) = min (Zi) ,2 , (8)

o]

where Z is the metallicity, which for simplicity is set to the
solar value (Z.). The inclusion of the minimum function in
Equation (6) ensures that even when the SN momentum is
boosted, the total momentum injected does not exceed the
maximum possible momentum injected. The actual linear
momentum injected into a gas cell is then

P = ﬁﬁ, 9)

Furthermore, the nearest N,g, neighboring gas cells are
sometimes too far away from the star particle for momentum
injection to be considered physical. To prevent star particles
from being able to affect faraway gas cells, a “superbubble
limiter radius” of rgg = 1024 pc is imposed on all star particles,
preventing momentum from being injected into gas cells
further than this radius.'?

"' Due to the typical value of p.mm given in Equation (7), this value is in
practice always greater than 1.

2 M19 verify that varying this radius within a large range of values does not
change the results.
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Isotropic
Injection

Figure 1. Picture of the anisotropic SN momentum injection scheme, as
parameterized by the nominal anisotropy factor (. The star particle undergoing
an SN event is shown in red, and the surrounding gas cells are shown as blue
circles. The arrows indicate the magnitude and direction of the momentum
injection. A low ¢ value injects momentum primarily within the disk plane, and
a high (¢ injects momentum primarily out of the disk plane. (=1 implies
isotropic injection. Note that only the direction of injected momenta varies with
(; the magnitude does not.

The default choice for the weight is the solid angle of
opening €2;, defined by

1
Q =2mql — , 10
7r{ [1 + A;/(rlr; — r*|2)]1/2} (10)

where A; is the cell boundary area. Note that this weighting
scheme follows that in other models, such as FIRE (see
Equation (2) in P. F. Hopkins et al. 2018a). However, other
choices for the cell weights are possible, such as the kernel-
weighted cell volume w; = W;V; and the kernel-weighted cell
mass w; = W;m; (where V; is the volume of the target gas cell
and W; = W(|r; — ry|, h) is the standard cubic spline smoothed
particle hydrodynamics kernel value).

The weight factor w; controls the magnitude of momentum
that each gas cell receives. The direction of this momentum
injection can then independently be determined by the nominal
anisotropy factor, (. In particular, we control the vector
momentum injected into each gas cell according to an
anisotropic direction vector k, such that the momentum dp;
delivered to the gas particle is

pik
o, = 2, 11
p; m (11)

where the anisotropic direction vector k is defined by
k=[x — x5 — % (@ — 2], (12)

where (x;, ¥;, z;) is the position of the target gas particle and (x,,
V4, Z%) 18 the position of the star particle doing the feedback.
According to this formula, the relative amount of momentum
being injected in the z-direction is controlled by the factor (.
We show a picture of this injection scheme in Figure 1.

A higher ( means more momentum is being injected in the z-
direction, but the normalization factors ensure that the
magnitude of momentum released into a particular gas cell is
independent of (. (=1 implies isotropic injection; that is, the
momentum injected into the cell will always point radially
away from the source star particle. ¢ can only change the
direction of the injected momentum; for any given cell, the
magnitude of momentum injected into it is not affected by the
choice of (; it is only controlled by the cell weighting scheme
w; and boost factor 3.
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Figure 2. The effective anisotropy (7, as defined in Equation (13)), and its
associated uncertainty, as a function of the nominal anisotropy (¢, as defined in
Equations (11) and (12)). The nominal anisotropy controls the ratio of
momentum injected in the polar (z) direction to the in-plane (x, y) directions, by
every star particle, before postprocessing effects are considered. The effective
anisotropy measures the ratio between the total momenta actually injected in
these directions.

As mentioned before, some postprocessing calculations may
affect the final momentum injected into the cell after the weight
and direction has been defined. This occurs due to variations in
the distribution of gas cells about star particles, which can
affect the boost factor (Equation (6)) and superbubble limiter.
As a result, the nominal anisotropy ¢ may be different from the
effective anisotropy imparted to the individual cells. We
quantify the true anisotropy in momentum injection by an
effective anisotropy factor, v, which we define by the ratio of
the total momentum injected into gas by SNe along the z-axis
(regardless of the positive or negative direction), to the total
momentum injected along the x-axis'>

Op:
v = ZSNeZz pl,z ) (13)
2 sNe2i0Pix stars

In practice, this factor does not need to be equal to the nominal
anisotropy factor (. However, Figure 2 indicates that -y does in
fact scale well with (, so that the degree of anisotropy is still
reliably controlled by (. Furthermore,  carries an associated
uncertainty, which is the standard deviation of the quantity
averaged over all star particles in Equation (13).

Thus, we explore the effect of anisotropy by varying ¢, and
we label our runs by the value of ( we employ for that run.
However, we will measure all properties in terms of the
effective anisotropy, . Changes in the cell weighting scheme
will also be discussed. Table 2 shows a list of all runs covered
in the main body of this paper, the value of ( used, and the
resulting value of ~y for the corresponding simulation.

In theory, differing distributions of gas cells around star
particles throughout the runs can lead to some variation in the
total magnitude of momentum being injected by a typical star
particle between runs. In this case, we would be unable to
conclude that differences in the dwarf properties are purely due
to a change in the directional distribution of momentum.

13 It would also be valid to use the y-axis for this definition, since it is also
within the disk plane; however, we will choose to use the x-axis.
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However, we do find that, for the same choice of cell weighting
scheme, w;, varying the anisotropy factor does not change the
typical momentum released and imparted to surrounding cells
by a star particle'® to any significant degree. However, between
different cell weighting schemes, the total momentum injected
can differ by more than half an order of magnitude. We
examine the effect of the cell weighting scheme in more detail
in Section 4.

2.3. Other Physical Processes Involved in SMUGGLE

In addition to SN feedback, the SMUGGLE model includes
other forms of stellar feedback, including OB and AGB stellar
winds, radiation pressure, and photoionization of nearby gas.
These modes of stellar feedback are energetically subdominant
(M19, Figure 13), but can be important for preprocessing gas
before SNe go off. Photoionization, in particular, is a crucial
process in regulating star formation by disrupting star-forming
gas clumps (e.g., M. C. Smith et al. 2021); it is enabled in our
simulations, though we do not explicitly study its effects in this
work. Also included are radiative heating and cooling
mechanisms of the ISM gas, including cooling of H, He, and
metals down to 10 K, self-shielding from ionizing UV
radiation, cosmic-ray heating, and photoelectric heating. The
parameterization of these additional feedback processes do not
change across different runs, so the only variation between the
runs considered in this work are those of the SN feedback.

3. Anisotropic Momentum Injection

We explore the effects of varying the subgrid SN momentum
injection scheme. In this section, we focus on the effects of
changing the directionality of the momentum injection. As
introduced in Section 2 and Equation (13), the anisotropy in SN
momentum injection is quantified by 7, where v =1 indicates
isotropic injection, and a y of greater (less) than 1 indicates
momentum primarily being injected perpendicular to (within)
the plane of the disk. We will focus on three runs in this
section: zeta0.l (in-disk favored injection), zetal (isotropic
injection, default SMUGGLE choice), and zetal0 (out-of-disk
favored injection). Where possible we will refer to specific runs
by their descriptive indicators (i.e., “isotropic” for “zetal”).
Each galaxy is followed for at least 2 Gyr.

3.1. Star Formation History

Of particular interest is the effect on the star formation
history and its burstiness. A bursty star formation history can
determine the mass, size and morphology of dwarfs, along with
their dark matter distribution (e.g., G. S. Stinson et al. 2007;
A. Pontzen & F. Governato 2012; A. Di Cintio et al. 2014;
A. Gonzdlez-Samaniego et al. 2014; K. El-Badry et al. 2016;
M. Sparre et al. 2017). We plot the star formation histories of
the in-disk favored (zeta0.1), isotropic (zetal), and out-of-disk
favored (zetalO) injection runs in Figure 3.

Qualitatively, in-disk favored (green curve) and isotropic
injection (purple curve) are associated with bursty star
formation histories, as seen by the prevalence of sharp peaks
in their SFR curves; contrarily, out-of-disk favored injection
(orange curve) leads to a smoother star formation history.

14 Since the momentum injected is measured on a per star particle basis, it will
depend on the simulation mass resolution as well. We do not consider this
dependence in this work, since we use the same mass resolution for all
simulations in the main body of this work.
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Table 2
List of the Simulations and the Parameters Used in Each

Simulation Nominal SNe Effective SNe SN Cell Weight logl0 M,
Name Anisotropy ¢ Anisotropy vy Scheme w; Formed (M..)
zeta0.1 (In-disk Favored) 0.1 0.091 £ 0.030 Solid Angle (£2) 7.80
zeta0.3 0.3 0.27 £ 0.08 Solid Angle (£2) 7.71
zetal (Isotropic) 1.0 0.87 +0.20 Solid Angle (£2) 7.71
zeta3 3.0 22+04 Solid Angle (£2) 7.58
zetalO (Out-of-disk Favored) 10.0 5.6+ 1.1 Solid Angle (€2) 7.38
zeta30 30.0 13+3 Solid Angle (£2) 7.32
zetal-VolWgt 1.0 0.90 £0.23 Kernel-weighted Volume 7.81
zetal 0-VolWgt 10.0 54+14 Kernel-weighted Volume 7.62
zetal-MassWgt 1.0 0.95 £0.30 Kernel-weighted Mass 7.36
zetal0-MassWgt 10.0 5619 Kernel-weighted Mass 7.37

Note. Simulations are named by the value of zeta (¢) and the cell weighting scheme used for that run, but we will quantify any physical properties by their dependence
on the effective anisotropy +, and its associated uncertainty. M, formed refers to the total stellar mass formed within the entire simulation volume, by the final

simulation time of 2 Gyr.

We quantify the burstiness of a run by the parameter

g TUSFR)Y, ) .
(SFR)

where B stands for the burstiness, (SFR).  (f) denotes the
rolling average of the SFR over an interval 7,,,, o denotes the
standard deviation of the time series, and (SFR) is the average
SFR of the simulation. The averaging over short timescales (5,
10, and 25 Myr) ensure that rapid random fluctuations in the
SFR, which do not affect large-scale movement of gas due to
feedback, are not counted as additional burstiness.

In Figure 4, we show the dependence of the burstiness on the
anisotropy factor «y for various averaging durations 7,,, =35,
10, and 25 Myr. Using this metric, we find that for any choice
of T,y within this range, isotropic runs with lower « have
bursty star formation histories, and runs with > 1 have
substantially less bursty star formation histories. These findings
are robust to several free parameters of the simulation including
the density threshold for star formation, the star formation
efficiency, and the numerical resolution (see the Appendix for
details).

We also show the dependence of the total stellar mass on -y
in the top panel of Figure 4 and find that a preferentially off-
plane momentum injection (higher ) is associated with a lower
stellar mass. The effect is noticeable, with the final stellar mass
differing by roughly half an order of magnitude between the
highest and lowest anisotropy factors considered. From this, we
conclude that out-of-disk momentum injection is associated
with a less bursty and lower overall rate of star formation.

3.2. Gas Morphology and Bulk Motions

The increased burstiness seen in runs with the isotropic or in-
disk favored momentum injection can be explained by
differences in how bulk gas flows within the gas disk are
induced by the SN momentum injection. We consider the flows
generated parallel to the disk, or in the radial direction, defined
by

MRzifdmv-I?, (15)

where R refers to the unit vector of the 2D cylindrical radial
coordinate, and flows generated perpendicular to the disk, or in

the vertical direction, defined by
Mz:%fdmv-if. (16)

Here v is the velocity of the gas, and the integrals are taken
over thin shells of thickness L =50 pc, centered about the
surface of a cylinder with diameter 2 kpc (radius 1 kpc) and
height 0.5 kpc (0.25 kpc above and below the center),
centered about the center of mass of all star particles. In
Figure 5, we show a diagram of the cylinder of interest (left),
and the mass flux rates of gas across the shell (right). For the
in-disk favored (zeta0.1, top right), isotropic (zetal, middle
right), and out-of-disk favored (zetalO, bottom right) runs,
the radial (parallel to the disk plane) gas mass flux rates are
shown in blue, and the vertical (perpendicular to the disk
plane) gas mass flux rates are shown in green. To study the
way star formation episodes affect these bulk flows, these
mass flux rates are compared to the SFR in the cylinder’s
interior, shown in red.

Since the gaseous disk extends to a diameter of roughly 8
kpc, the cylindrical region in question is deeply embedded
inside the disk. Thus, the rates calculated in Equations (15) and
(16) trace large-scale flows within the disk, rather than
outflows. Typically, the cylinder roughly encloses 50% of the
stellar mass and 5%-20% of the baryonic mass of the galaxy,
with lower baryonic fractions occurring during intense outflow
episodes, where the gas is temporarily expelled from the central
regions.

In the top and middle panels, we find that in the in-disk
favored and isotropic runs, a significant proportion of the
momentum is injected within the plane of the disk, leading to
large amounts of gas being moved in bulk flows parallel to the
disk plane. These bulk gas flows inside the disk can also drive
additional star formation bursts due to gas compression,
leading to additional stars being formed in these runs, and
driving instability within the disk, perpetuating the cycle of
radially outward gas motions and bursty star formation. Note
the clear correlation between the inward gas motions (dips in
the blue and green curves in Figure 5), star formation activity
(peaks in the red curve), and the subsequent outward gas
motion (peaks in the blue curve). The timing of the starbursts is
consistent with those predicted in E. Cenci et al. (2023), who
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Figure 3. Star formation histories of the entire galaxy in the in-disk favored (green, left), isotropic (purple, center), and out-of-disk favored (orange, right) momentum
injection runs. The top row shows the star formation rate (SFR) in linear scale, the middle row shows the SFR in log scale, and the bottom row shows the cumulative
stellar mass formed. The burstiness of the SFR depends substantially on the injection model, with the in-disk favored and isotropic models resulting in more bursty

histories and a greater stellar mass than the out-of-disk favored model.
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Figure 4. Top: total stellar mass formed. Higher-y runs (i.e., runs with more
momentum directed outside the disk), form a lower total stellar mass. The
difference in the stellar mass formed can vary by up to half an order of
magnitude, across all runs considered. Bottom: burstiness parameter B as
defined by Equation (14). Higher-+y runs tend to be less bursty according to this
parameter, over a wide range of SFR averaging timescales. The horizontal error
bars are the uncertainties in -, as discussed in Equation (13) and Table 2.

state that a centrally concentrated gas distribution in a dwarf is
a good indicator that a starburst will occur. Outflow episodes
occur quite rapidly, with the blue and green peaks lasting ~25
Myr (compared to an orbital timescale of ~125 Myr at the
cylinder’s radius).

Conversely, in the out-of-disk favored run (bottom panel),
the momentum is primarily injected outside the disk, so that gas
compression induced by bulk radial flows is less prevalent,
along with a less bursty star formation history. This indicates
that radial, not vertical, gas flows are primarily responsible for
driving additional star formation and turbulence. Interestingly,
even though the SNe do not lead to a bursty SFR or large-scale
gas flows in the out-of-disk favored run, the stellar feedback is
still capable of regulating SFR to similar or lower levels than
the isotropic or in-disk injection runs. Thus, neither bursty star
formation histories, nor large-scale outflows, are required to
suppress star formation (e.g., by clearing out all the gas within
a local region). Instead, it is enough to have a low, steady level
of star formation that prevents the runaway formation of other
star-forming clumps. In our model, photoionization (which is
modeled in the same way regardless of the preferential
direction of the SN feedback) is also partially responsible for
star formation regulation in the scale of dwarfs (e.g., see also
M. C. Smith et al. 2018).

We may also quantify the efficiency of the stars at generating
bulk gas flows via a mass loading factor 7, defined as the ratio
of the total gas mass expelled by SFR-driven flows, to the total
stellar mass formed. For a given run, we calculate

1 . .
n=—— [ diVxou + Mo, a7
M,

where M, is the total stellar mass formed within the cylinder,
and Mg ou and M, o, are the quantities in Equations (15) and
(16) integrated only over outward-moving particles within the
shell. The time integral is done over the total simulation time of
2 Gyr. Calculating this value'® for the three runs pictured in

!5 Note that this value should not be compared to typical measurements of the
mass loading factors in the literature since we calculate 7 for a cylinder deeply
embedded in the gas disk.



THE ASTROPHYSICAL JOURNAL, 975:229 (15pp), 2024 November 10

Zhang et al.

In-Disk Favored

Vertical (z) Flux

o
o

o
w

Out-of-Disk Favored

SFR within Cylinder [Mg yr—1]

-7 1 kpc (radius)
“ \0.25 ko T
(heighbffom >
center) ©
£
Edge of Gaseous Disk (~ 4kpc) %
™
(]
0
1]
=
Within cylinder:
~ 50% of all stellar 6
mass 3

~5-20% ofall
baryonic mass

—— Radial Flux (r=1 kpc)
—— Vertical Flux (z= +0.25 kpc)

—  SFR 1 0.3

2 |
250 500 750 1000 1250 1500 1750 2000
Time [Myr]

Figure 5. Left: diagram (not to scale) of the cylindrical region of interest, around which the mass flux of the gas is calculated. Right: mass flow history across the
boundary of the cylinder of interest, of the in-disk favored (zeta0.1, top panel), isotropic (zetal, middle panel), and out-of-disk favored (zetal0, bottom panel) runs,
and the associated star formation history (red) in the interior of the cylinder. Radial gas flows (Equation (15)) are shown in blue, and vertical flows (Equation (16)) are
shown in green. Notably, in the isotropic run, starburst episodes (red peaks) are preceded by a inward bulk gas motion (blue and green dips) followed by peaks of
outward motion (blue and green peaks) within the disk, consistent with a more turbulent gas disk. In the in-disk favored run, the vertical gas cycles are suppressed, and
in the out-of-disk favored run, the radial gas cycles are suppressed. However, only in the out-of-disk favored run produces bursty star formation and the overall mass
flows are suppressed, indicating that radial gas flows are more effective at driving turbulence.
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Figure 6. Gas column density of the in-disk favored (left), isotropic (center), and out-of-disk favored (right) runs at snapshot time 1.2 Gyr. The box width of each
panel is 10 kpc on a side. Runs with higher injected momentum within the disk exhibit more diffuse structures and larger gas void regions, but slightly less turbulence

in the vertical directions, than runs with more injected momentum out of the disk.

Figure 5 yields 1~ 40 for the in-disk favored run, 1 ~ 60 for
the isotropic run, and 1~ 80 for the out-of-disk favored run.
This indicates that individual stars in the out-of-disk favored
run are more efficient at pushing and driving gas flows than the
in-disk favored and isotropic runs. Conversely, the isotropic or
in-disk injection models result in increased turbulence within
the disk, which is further exacerbated by the momentum

resulting from a larger number of stars formed than in the out-

of-disk model.

The effect of the bulk gas motion cycles is further supported
by the resulting structure of the gas disk, shown in Figure 6.
Significant differences in the structure can be seen as a result of
changing the anisotropy factor. In particular, in-disk (zeta0.1,
left panel) and isotropic (zetal, middle panel) momentum
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Figure 7. Stellar column density of the in-disk favored (left), isotropic (center), and out-of-disk favored (right) runs for snapshot at 1.2 Gyr. The stellar half-mass
radius about the stellar center of mass is shown by the white dashed lines. The box width of each panel is 10 kpc on a side.

injection exhibit a turbulent/disrupted gas morphology,
including large regions or bubbles devoid of gas with radius
close to ~1 kpc in the most extreme cases. This kind of
structure is not present in the case of out-of-disk favored
injection (zetalO, right panel), which shows a smoother and
more regular gas disk without the presence of large gas
bubbles.

3.3. Stellar Morphology and Kinematics

The effect of different schemes for SN feedback injection
extends also to noticeable changes in the stellar morphology of
the simulated dwarf. Previous claims in the literature (e.g.,
G. S. Stinson et al. 2007; K. El-Badry et al. 2016) have
highlighted that bursty star formation histories tend to be
associated with a more diffuse distribution of stars, perhaps
also contributing to the erasing of age and metallicity gradients
in simulated dwarf galaxies (e.g., F. J. Mercado et al. 2021).

To quantify the stellar structure in our simulations, we start
by showing projections of the stellar morphology of the in-disk
favored (left), isotropic (middle), and out-of-disk favored
(right) runs in Figure 7. As a crude measure of how centrally
concentrated the stars are in the dwarf, we calculate the stellar
half-mass radius ¢ as the spherical radius from the stellar
center of mass in which half of the stellar mass of the galaxy is
contained. We show ry,,¢ as a white dotted circle in each of the
panels in Figure 7. ry,¢ does not differ significantly between
runs (we have explicitly checked this as a function of time) and,
in general, the projected stellar structure does not have any
obvious indication or trend with the momentum injection
model.

However, Figure 8 shows that the kinematics and orbital
properties of the stars have an imprint of the chosen feedback
injection scheme. We plot, for each simulated galaxy, its
velocity dispersion in the 2D radial direction (purple) and the z-
direction (green) as a function of its anisotropy factor v, where
the mean value and uncertainty are calculated over all
snapshots in the latter 1.5 Gyr of evolution. Preferential
injection of momentum in the plane of the disk (lower-vy runs)
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Figure 8. Vertical (green) and in-plane (purple) stellar velocity dispersion of
stars as a function of anisotropy. Changing the degree of anisotropy does not
affect the vertical velocity dispersion of the stars, even when we inject more
momentum in that direction. Conversely, the radial velocity dispersion of stars
is inversely correlated with the anisotropy factor, so that higher radial velocity
dispersions are observed when the momentum is injected preferentially within
the disk. This may occur either as stars tend to be born on more radial
trajectories, or as stellar orbits are dynamically heated by radial flows.

results in a noticeably higher stellar radial velocity dispersion,
presumably as a combination of two effects: new stars being
born from gas with already large radial motions, and the input
of dynamical heating to the population of already formed stars
as a result of radial flows and compression waves.
Interestingly, the fact that the stellar velocity dispersion in
the z-direction shows little to no dependence on <y (green
symbols) suggests that stellar kinematics do not always trace
the properties of outflowing gas (although they do trace the
kinematics of star-forming gas). If, contrarily, newly formed
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Figure 9. Dark matter density profiles between 1 and 2 Gyr. The median
density across snapshots at each radius is plotted as a solid line, and the
interquartile range at each snapshot is shaded. Consistent with the under-
standing of core formation, the out-of-disk favored run, which has a nonbursty
star formation history, has a dark matter cusp, and the isotropic and in-disk
favored runs, which have bursty star formation histories, have dark matter
cores. For comparison, the initial cuspy density profile (measured as the median
density from the stellar center of mass over the first 200 Myr, similar across all
runs considered) is shown by the gray dashed line.

stars inherited the properties of the bulk gas flow, then the
degree of SN anisotropy should affect the stellar kinematics, in
the same way that it affects the vertical outflow rates shown in
Figure 5. However, this is not the case, as the stellar o, appears
to be independent of the SN anisotropy; thus, the stellar
motions and the total gas motions are not well coupled to each
other.

3.4. Distribution of Dark Matter

The difference in the amount and morphology of the bulk
gas motions discussed in the previous sections has the potential
to impact not only the baryonic morphology of the dwarf, but
also its dark matter distribution. Bursty star formation histories
that are associated with locally dominant gas expulsion can
lead to the transformation of cuspy dark matter halos into lower
density dark matter cores (e.g., A. Pontzen & F. Govern-
ato 2012; A. Benitez-Llambay et al. 2019). However, models
resulting in a smoother star formation history (even when
considering the exact same baryonic physics) could in principle
preserve the characteristic Lambda cold dark matter (ACDM)
cuspy profiles, changing the theoretical expectations for dwarf
galaxies.

To address this, we compare in Figure 9 the dark matter
density profile of our simulated dwarfs in the in-disk favored
(zeta0.1, green), isotropic (zetal, red) and out-of-disk favored
(zetal0, orange) runs. These profiles have been calculated as
the average dark matter density in the last 1 Gyr to average out
temporal fluctuations. Thick lines indicate the median while the
shaded regions highlight the interquartile range. We find that
lower- runs, which are associated with more bursty SFR and
in-plane gas flows, tend to have dark matter cores compared to
higher-v runs, for which less bursty SFRs were measured (see
Figure 4) and which retain a substantially more cuspy profile.
For reference, the dashed gray line indicates the initial profile,
which corresponds to a cuspy NFW profile with concentration
¢ =15. This correlation between the mode of star formation
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and the inner dark matter distribution is consistent with the
expectation from the literature, as discussed above.

Notably, the distinction in the cuspy versus cored dark
matter prediction holds when considering exactly the same
physics of the ISM. While previous work has already
highlighted that some baryonic treatments would result in
cores while others would produce cusps (see, e.g., S. Bose et al.
2019) over similar mass ranges, the treatment of the baryons
from the models considered was different, opening the
possibility that the core formation was purely the result of
including more detailed or more realistic star formation and
feedback models. This degeneracy is underscored by models
resolving SNe directly but not producing cores (T. A. Gutcke
et al. 2022a). In short, our results confirm that not only the
physics and treatment for the ISM play a role, but even the
detailed numerical choices for, e.g., distributing the momentum
of the stellar feedback may cause profound changes in the
predictions for the density in the inner regions of dwarfs.

This also suggests that implementations of ‘“universal”
corrections for modifying the cuspy NFW profile into a lower
density core that depend solely on the stellar mass M, or
stellar-to-halo mass ratio M, /M.;, (as proposed, e.g., by A. Di
Cintio et al. 2014) might describe the behavior for a given
feedback model or family of baryonic models very well, but are
not necessarily applicable to others. For example, all runs
considered in Figure 9 have a stellar-to-halo mass ratio of
~107%°, a regime where the inner region is predicted to be
cored (with a profile slope of —0.3 to —0.1). This is consistent
with the isotropic and out-of-disk favored runs at radii below
about ~500 pc, but the profile slope of the out-of-disk favored
run at this distance is nearly —1, consistent with a cusp instead.
We hasten to add, however, that this implication regarding
universal modifications to the dark matter profile still needs
further confirmation from runs within the cosmological setup.

4. Robustness of the Results to Changes in the Cell
Weighting Scheme

As stated in Section 2, it is also possible to change the
magnitude of the momentum distributed across gas cells by
changing the weighting function, as described by the weighting
factors w;. The default cell weighting scheme in SMUGGLE is
based on the solid angle subtended by the gas particles from the
target star, in a way that nearby cells or cells with a large area
have larger weights (see Section 2 in F. Marinacci et al. 2019).
This scheme follows other codes that include a similar
weighting, like FIRE-2 (P. F. Hopkins et al. 2018b).

However, other choices of the cell weighting scheme are
possible, including mass-based and volume-based weighting.
In a hydrodynamic solver with roughly equal-mass gas cells,
these physically correspond to favoring injection toward dense
gas regions and toward diffuse gas regions, respectively (see
discussion in P. F. Hopkins et al. 2018b). As the energy-
conserving phases of SNe are not explicitly resolved in
simulations at our resolution, and because the local environ-
ments in which SNe go off are potentially inhomogeneous, it is
not immediately clear what gas the feedback momentum will
most effectively couple to. As such, the choice of cell
weighting scheme should be understood as an assumption
made in the subgrid model. In this section, we explore how
these three choices (solid angle, volume, and mass) of cell
weighting scheme influences the feedback results. The
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Figure 10. Magnitude of momentum injected by SNe per mass of stars formed,
for each run over 2 Gyr. We calculate the total magnitude in two ways: linear
(top panel, Equation (19)), and in quadrature (bottom panel, Equation (20)).
For the same weighting scheme, there is no dependence of the magnitude of
momentum injected on the anisotropy factor . However, between solid-angle
weighting (red), volume weighting (blue), and mass weighting (green), the
magnitude of momentum injected can differ by as much as a factor of ~5.
These behaviors hold using both calculation methods (although the values do
depend on the calculation method).

formulae for these weighting schemes are described in
Section 2 (in particular, see Equation (10) and the subsequent
discussion).

Nominally, the momentum injected by an SN should be the
same across all SN events. However, as discussed in
Section 2.2, a number of numerical postprocessing procedures
must be applied when imparting the momentum to a
neighboring gas cell, to correct for the unresolvedness of the
energy-conserving phase. In particular, the momentum going
into a gas cell is boosted by the factor 5 (as per Equation (6),
following P. F. Hopkins et al. 2018a), and furthermore,
momentum is not added if the gas cell is more than rqg = 1024
pc from the star particle. As such, the true amount of
momentum injected by star particles depends on the config-
uration of individual gas cells at the time of the SN event,
which can vary across different runs.

In fact, we find that, purely due to these numerical
postprocessing effects the momentum typically injected by a
single star particle may significantly differ across runs. In
particular, the momentum injected by SNe, per stellar mass
formed, can vary by almost an order of magnitude when
different cell weighting schemes are considered, independent of
the anisotropy factor v in that run. In Figure 10, we plot for
each simulation, the mean and standard deviation over all star
particles of the quantity

Injected Momentum per My = (h) , (18)
stars

Minie
where p, is the total magnitude of momentum injected by a
given star particle, and M, is its initial mass.
Since the injected momentum is a vector quantity, there is no
canonical way of calculating its total magnitude. Thus, we
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define two possible ways of quantifying p,: using the linear

method
Prot,Lin. = ZZI%I, (19)
d SNe
and the quadrature method
ptot,Quad. = (20)

where 6p, for d = (x, y, z) are the momenta injected during a
given SN event in the x-, y-, and z-directions, respectively. Note
that this calculation reflects the mean and dispersion normal-
ized by stellar mass formed, so the comparison is meaningful
even if the runs formed different amounts of stellar mass by the
end. For our default choice, the opening-angle weight (also
referred to as the “omega” weight, shown as red symbols), we
show that the median input as a function of anisotropy
(effective anisotropy, ) remains quite constant, suggesting that
the typical momentum input for this weighting scheme is
independent of the directionality () chosen. The trend remains
in both, the linear (top panel) or in-quadrature (bottom)
measurement of momentum.

We also compare to a volume-weighting scheme (blue) and
mass-weighting scheme (green) for the isotropic and out-of-
disk momentum injection (y~ 1 and 10, respectively). We
have explicitly checked that the effective anisotropy of
momentum injection is comparable across all weighting
schemes (see Table 2), which then allows for a fair comparison
between the total momentum injection at a given ~y. Figure 10
shows a systematic shift of the momentum effectively imparted
per star depending on the choice of weighting function, with
volume-weighting criteria returning values slightly below but
comparable to the omega-weighting scheme, but mass-
weighted injection results in up to 5 times less momentum
input per star. The effect also seems independent of ~, at least
for the two explored values here. It is worth noting that of all
weighting methods, the opening-angle criteria adopted by
default in SMUGGLE seems to maximize the momentum
injection into the ISM. Also important is the observation that
the choice of cell weighting may be well physically motivated,
but can result in unwanted pathological behaviors. For instance,
mass-weighting schemes in poorly resolved disks may lead to
the creation of artificially large bubbles (P. Torrey et al. 2017),
perhaps making such a choice unpreferred for runs with
intermediate to low resolution.

These differences in momentum input have a noticeable
effect on the star formation histories of our simulated dwarfs.
We show the evolution of the star formation history (top) and
the total stellar mass (bottom) in Figure 11 for these three
weighting schemes, and choosing isotropic momentum injec-
tion (left) and out-of-disk injection (right). The SMUGGLE
default choice, omega weighted and isotropic momentum
injection, leads to the most bursty star formation of all runs (red
curve, top left panel).

All weighting schemes seem to self-regulate star formation,
at least for the 2 Gyr explored here, with the volume- and mass-
weighting models predicting a slight but steady increase of
SFR with time. Differences in weighting and directionality of
momentum injection can cause variations by factors of 2-3 of
the total amount of stars formed, with isotropic injection
resulting in systematically larger stellar masses for all
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Figure 11. SFR histories (top) and stellar mass formed (bottom) for runs with different weighting schemes: solid angle (red), volume (blue), and mass (green). The left
and right panels correspond to isotropic momentum injection (y ~ 1) and out-of-disk favored momentum injection (y > 1), respectively. In general isotropic injection
results on more bursty SFR histories than out-of-disk favored ones. Solid-angle-based criteria assuming isotropic momentum injection maximizes the burstiness of star
formation. The total stellar mass formed can vary by factors of 2—-3 between runs with different numerical choices.

weighting schemes, while at fixed momentum injection
directionality, the mass-weighting scheme results in lower
M,.

Interestingly, neither the total rate of star formation nor the
stellar mass are correlated with the magnitude of momentum
injected shown in Figure 10. For example, the mass-weighted
runs have the least momentum injected per star, but also the
lowest rate of star formation, contrary to expectations.
Furthermore, the volume-weighted runs form more stars than
the omega-weighted runs, but have less momentum injected per
star particle than the omega-weighted runs. This shows that the
effect of momentum injection on the star formation history is
not immediately obvious; that is, it is not true that the input of
more feedback momentum translates into more effective
suppression of star formation (i.e., a lower stellar mass), as
may be naively expected.

5. Conclusions

Undoubtedly, the assumption of isotropy for the momentum
deposition resulting from a single SN event in a homogeneous
and constant density medium is well justified. However, the
ISM of galaxies is far from this idealized constant density
assumption, and stellar clustering may cause the overlap and
fusion of multiple bubbles leading to a complex system where
the assumed isotropy for energy and momentum deposition no
longer holds. The scales over which these mechanisms occur
are currently underresolved in most galaxy-scale simulations.
Here we explored the systematic effects of lifting the
hypothesis of isotropic bubble expansion using idealized
numerical simulations of an isolated dwarf galaxy run with
the SMUGGLE model.

We implemented several different schemes to distribute and
couple the momentum resulting from SN feedback onto
neighboring gas cells. More specifically, we explored
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independently the effects of (i) changing the directionality of
the momentum injection (lifting the isotropic assumption) and
(i) studying the effect of different weighting schemes
(independent of direction). We label our runs according to
the excess of momentum deposited perpendicular to the disk
using the parameter 7. Isotropic momentum injection corre-
sponds to ya 1, while v>1 and y< 1 indicate that the
momentum injection is favored perpendicular (vertical) and
parallel (horizontal) to the plane of the disk, respectively.
We can summarize our most important results as follows.

1. The degree of anisotropy assumed in SN momentum
injection greatly affects the burstiness of the star
formation history. When momentum is primarily directed
perpendicular to the plane of the disk, bursty star
formation is suppressed, and fewer total stars are formed,
compared to runs in which momentum is primarily
injected isotropically or within the plane of the disk.

. Bursty star formation results from runs where momentum
is coupled effectively within the plane of the disk,
generating in-plane bulk gas motions that create more
turbulence in the disk. The gas structure tends to be more
disrupted when momentum is primarily injected within
the disk plane, and less disrupted when momentum is
primarily injected perpendicular to the disk plane.

. The anisotropy of the momentum injection also clearly
affects the resulting stellar morphology of the dwarf. This
can be observed in the 2D radial velocity dispersion of
stellar particles being more than double in cases of in-disk
favored and isotropic injection compared to an out-of-
disk favored momentum injection scheme. Stellar orbits
become clearly less circular for models where momentum
is primarily coupled in the plane of the disk (y<1
models), an effect that we may attribute to a combination
of higher radial velocities in star-forming gas, and
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increased gravitational heating from in-plane gas flows in
these runs compared to higher-y models.

4. Runs with bursty star formation form dark matter cores,
and runs with nonbursty star formation retain their dark
matter cusps. This is consistent with the existing under-
standing of the relationship between significant gas flows
(typically associated to bursty star formation) and dark
matter core formation. However, our results also suggest
that in midresolution simulations that rely on subgrid SN
feedback prescriptions, the formation of dark matter cores
may still depend on the numerical choices. Thus, the core
properties such as radial extension and inner density
profile are not yet firmly established as a fundamental
prediction of the physics included in a given simulation.

5. Different cell weighting schemes in SNe may, due purely
to numerical effects, actually lead to different amounts of
momentum being injected. This qualitatively changes the
star formation history and may vary the total amount of
stellar mass formed by factors of 2-3 within 2 Gyr of
evolution. A weighting scheme based on opening angle,
such as that used in the default version of SMUGGLE,
seems to maximize the momentum input per stellar
particle, being ~5 times larger than, for example, a
scheme based on cell mass alone. As such, the cell
weighting scheme must also be understood as a numerical
choice (although it may still be a physically motivated
choice).

Our results imply that the numerical choices implicit to the
subgrid modeling of SN feedback can play a significant role in
the predicted properties of simulated dwarf galaxies. In
particular, for the SMUGGLE code, we demonstrate that the
level of burstiness in the star formation history is particularly
sensitive to the numerical implementation of the underlying
feedback physics. This has consequences for the predicted
stellar and gas morphology, with more bursty runs leading to
less rotational support of the gas and stars, along with a more
distorted ISM characterized by large bubbles and in-disk gas
flows. While the specific effects of the weighting scheme will
likely vary from model to model (and depend on the details of
the hydrodynamics solver, numerical implementation, etc.), our
study is an important reminder that the results from numerical
simulations should be scrutinized not only in light of the
physics included, but also of the numerical choices made, a
subject that receives considerably less attention in the literature.

We stress that, though the parameters studied in this work
are numerical, this does not mean that the numerical choices
made have no physical correspondence. Indeed, the anisotropy
parameter and the cell weighting scheme may be physically
motivated choices, which depend on the types of gas that SN
explosions are expected to couple to most effectively. In
reality, the true nature of how SN momentum couples to ISM
gas is not yet well understood, and subgrid models must
accurately mimic this coupling in order to produce true
predictions from simulations. Thus, in future work it may be
instructive to compare these simulations with models that
resolve SN explosions explicitly, such as LYRA (T. A. Gutcke
et al. 2021, 2022b) and RIGEL (e.g., Y. Deng et al. 2024). In
such ultrahigh resolution simulations, details of the momentum
distribution, including the degree of anisotropy, are expected to
be produced self-consistently by the resolved thermal expan-
sion. Detailed investigations of the bubble morphology in
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galaxy simulations with resolved SNe might be able to better
inform subgrid models that rely on numerical parameters.
These parameters may depend on more detailed properties of
the ISM such as directional variations in density, in addition to
commonly considered zeroth-order parameters such as the
energy released or average local density.

A possible interpretation of the results presented here is that
the level of burstiness in simulated dwarfs could be over-
represented at least in some galaxy formation models. For
example, the lack of formation of dense and compact dwarf
galaxies in most codes available today supports the scenario
where more violent star formation and feedback cycles are
present in simulated dwarfs compared to the real Universe (see
the discussion in L. V. Sales et al. 2022). Similarly, as reported
by K. El-Badry et al. (2018), simulated dwarfs in FIRE on the
scale of M, ~ 10°-10° M., seem less rotationally supported
than suggested by HI observations, also consistent with the
possibility of too bursty SFRs. In this regard, studies trying to
compare the star formation cycles in observations and
simulations may prove one of the most important ways to
inform dwarf galaxy formation models in simulations (e.g.,
S. G. Patel et al. 2018; N. Emami et al. 2019, 2021; V. Mehta
et al. 2023).

Constraining the star formation cycles is especially important
not only for our understanding of dwarf galaxy morphology,
but also for the underlying link between bursty star formation
histories, gas flows generated, and their impact on the
innermost distribution of dark matter in dwarfs. In our runs
with less bursty SFR, the formation of dark matter cores at the
center of dwarfs was strongly suppressed, meaning that our
theoretical expectations of a cusp or a core at the center of the
dwarfs depends at least on both, the physics included in the
simulation, as well as on the numerical choices made in
coarsely implementing this physics in each code.
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Appendix
Robustness of the Results to Other Numerical Choices

The changes in the dwarf properties that result from
varying the anisotropy of SN momentum injection are robust
to changes in the major simulation parameters, including the
efficiency and density threshold of star formation, and the
mass resolution. To verify this we have run eight additional
simulations of the same dwarf, in which these simulation

Zhang et al.

parameters were varied. These runs are summarized in
Table 3.

In particular, we find that across a wide range of these
parameters, varying the anisotropy factor v produces the same
effect: in-disk favored and isotropic momentum injection
produce a bursty SFR history with periods of major in-plane
gas motion, whereas out-of-disk favored injection produces a
much smoother SFR level with a less turbulent bulk gas flows.
We show this behavior in Figure 12.

HIEff

T T T T T

SFR x 25
In-Disk Outflow Rate
——— OQut-of-Disk Outflow Rate -

LoThr

Mass Rate [Mg/yr]

HIiEff-LoThr

HighRes

I

800 1000 1200
zetal (Isotropic)

600

1400

800 1000 1200 1400
zetalO (Out-of-Disk Favored)

600

Time [Myr]

Figure 12. In-disk, or radial (blue) and out-of-disk, or vertical (green), gas flow rate and associated SFR (red) for all eight robustness test runs, with respect to the same
cylinder described in Figure 5. In all cases, the zetal runs have burstier SFRs and more violent gas flow patterns, whereas the zetal0 runs do not. This is the same
behavior as observed in the main body of the paper, so changing the anisotropy affects the runs in this way regardless of these numerical choices explored here.

Table 3
List of Simulations Used in Our Robustness Analysis, and the Parameters Used in Each

Simulation Name Nominal SN Anisotropy ¢

Max. SFR Efficiency

SFR Threshold Target Gas Mass

(myy cm ™) M)
zetal-HiEff 1.0 0.9 100 6000
zetal O-HiEff 10.0 0.9 100 6000
zetal-LoThr 1.0 0.01 1 6000
zetalO-LoThr 10.0 0.01 1 6000
zetal-HiEff-LoThr 1.0 0.9 1 6000
zetal O-HiEff-LoThr 10.0 0.9 1 6000
zetal-HighRes 1.0 0.01 100 500
zetal O-HighRes 10.0 0.01 100 500
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