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THE REPRESENTATION THEORY OF BRAUER CATEGORIES II:

CURRIED ALGEBRA

STEVEN V SAM AND ANDREW SNOWDEN

Abstract. A representation of gl(V ) = V·V ∗ is a linear map µ : gl(V )·M ³ M satisfying
a certain identity. By currying, giving a linear map µ is equivalent to giving a linear map
a : V · M ³ V ·M , and one can translate the condition for µ to be a representation to
a condition on a. This alternate formulation does not use the dual of V , and makes sense
for any object V in a tensor category C. We call such objects representations of the curried

general linear algebra on V . The currying process can be carried out for many algebras built
out of a vector space and its dual, and we examine several cases in detail. We show that
many well-known combinatorial categories are equivalent to the curried forms of familiar Lie
algebras in the tensor category of linear species; for example, the titular Brauer category
“is” the curried form of the symplectic Lie algebra. This perspective puts these categories
in a new light, has some technical applications, and suggests new directions to explore.
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1. Introduction

1.1. Curried algebra. Let V be a finite-dimensional vector space. The general linear
Lie algebra on V , denoted gl(V ), can be identified with the tensor product V · V 7. A
representation of gl(V ) on a vector space M is a linear map

µ : gl(V ) ³ End(M)

satisfying the equation

(1.1) µ([X, Y ]) = [µ(X), µ(Y )]
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2 STEVEN V SAM AND ANDREW SNOWDEN

for all X, Y * gl(V ). By currying (also known as tensor-hom adjunction), giving the linear
map µ is equivalent to giving a linear map

a : V ·M ³ V ·M.

A natural problem, then, is to determine what condition (1.1) corresponds to in terms of a.
In Proposition 4.2, we find that it amounts to the identity

(1.2) ÇaÇa2 aÇaÇ = aÇ 2 Ça

in End(V · V ·M), where Ç is the map that switches the first two tensor factors and we
have written a for id · a. We thus have two equivalent ways of viewing representations of
gl(V ): as linear maps µ satisfying (1.1), or as a linear map a satisfying (1.2).

The advantage of the second point of view is that it makes sense in contexts where we
may not have duals. Indeed, suppose that V is an object in a tensor category C. We define
the curried general linear Lie algebra on V , denoted gl(V ), in a Tannakian sense: a
gl(V )-module is a map a : V ·M ³ V ·M satisfying (1.2). We emphasize that gl(V ) is
not actually an object of C: only the notion of gl(V )-module is defined. If V is dualizable
then one can form the Lie algebra gl(V ) = V · V 7 in C, and gl(V )-modules are equivalent
to gl(V )-modules. However, one can consider gl(V )-modules even if V is not dualizable.

The above process can be applied to many algebras built out of a vector space and its
dual, and we examine a number of cases in detail. Our primary motivation for developing
this theory lies with its applications to representations of combinatorial categories, which we
now explain.

1.2. Representations of combinatorial categories. Let G a category and let k be a
commutative ring. A G-module is a functor G ³ Modk. Representations of categories,
especially those of a combinatorial flavor, have received extensive attention in the last decade,
and (for certain G’s) form the main subject of this series of papers. We now describe how
curried algebras can be used to better understand these objects.

Let FB be the category of finite sets and bijections. An FB-module, also known as a linear
species, is simply a sequence of symmetric group representations. Given two FB-modules
M and N , we define their tensor product V ·W to be the FB-module given by

(M ·N)(S) =
⊕

S=A2B

M(A)·N(B).

This gives the category of FB-modules a symmetric monoidal structure. The motivating
problem for this paper is the following: given a diagram category G, express G-modules
as FB-modules with extra structure, defined in terms of the tensor product. The curried
perspective will help us understand this extra structure.

Here is the simplest case (which does not require currying). Following Church, Ellenberg,
and Farb [CEF], let FI be the category of finite sets and injections. An FI-module is
a sequence of symmetric group representations (i.e., an FB-module) with some transition
maps. Let V be the standard FB-module: this is k on sets of size 1 and 0 on all other
sets. It turns out that the transition maps in M can be encoded as a map of FB-modules
a : V ·M ³ M . Not every such map a defines an FI-module: the key condition is that a
should give M the structure of a Sym(V)-module. This perspective led to a rich analysis of
the category of FI-modules in [SS1].

We now look at a slightly more complicated case. Consider the category FIo, also intro-
duced by Church, Ellenberg, and Farb. Its objects again are finite sets, but now a morphism
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S ³ T is a pair (S0, i) where S0 is a subset of S and i : S0 ³ T is an injection. An FIo-module
M is an FB-module equipped with transition maps M([n]) ³ M([n + 1]), corresponding
to the standard inclusion [n] ³ [n + 1], and M([n + 1]) ³ M([n]), corresponding to the
standard partial injection [n+1] ³ [n] defined on [n]. These transition maps can be encoded
as maps of FB-modules

a : V ·M ³M, b : M ³ V ·M

Not every pair (a, b) defines an FIo-module structure on M : there are a few conditions that
must be satisfied (see [SS6]). Initially, these conditions do not seem to have much meaning.
This is where the curried perspective comes in: it turns out that the conditions for (a, b) to
define an FIo-module are (nearly) the conditions needed for it to define a representation of
the curried Weyl algebra.

This phenomenon occurs throughout this paper. In particular, we find that representations
of all of the Brauer-like categories of interest in this series of papers can be viewed as
representations of the curried forms of familiar Lie algebras. For example, representations
of the Brauer category itself are equivalent to representations of the curried symplectic Lie
algebra sp in ModFB. See Figure 1 for a summary. The details for the examples not appearing
in the current article can be found in [SS6].

Diagram category Curried algebra

Brauer Symplectic Lie algebra on V ·V7

Signed Brauer Orthogonal Lie algebra on V ·V7

Spin Brauer Orthosymplectic Lie superalgebra on V[1]· k·V7[1]
Signed spin Brauer Orthogonal Lie algebra on V · k·V7

Periplectic Brauer Periplectic Lie superalgebra on V ·V7[1]
Partition Weyl Lie algebra on V ·V7

Degenerate partition Hamiltonian Lie algebra on V ·V7

FIo(·) Heisenberg Lie algebra on V ·V7

FI Symmetric algebra on V

FA Witt Lie algebra on V7

FAop Witt Lie algebra on V

Figure 1. Diagram categories and corresponding curried algebras in ModFB.

1.3. Uses. There are a few reasons that the curried perspective on diagram categories is use-
ful. First, it provides intuition: e.g., knowing that FIo-modules are modules for a Heisenberg
algebra can help one guess how they should behave (though for FIo itself this is not really
necessary, since they are well understood). Second, it suggests new directions: for example,
the curried Hamiltonian Lie algebra led us to a novel variant of the partition category that
we expect to be interesting.

Finally, the curried perspective helps in applying Schur–Weyl duality as in [SS2] (and
this was our main motivation). For us, Schur–Weyl duality is the statement that, in char-
acteristic 0, the category ModFB is equivalent to the category Reppol(GL) of polynomial
representations of the infinite general linear group. This equivalence is a tensor equivalence,
so anything stated using the tensor structure on ModFB will transfer nicely to Reppol(GL).
Using this, we find that the Schur–Weyl dual of a module for the Brauer category belongs
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to parabolic category O for an infinite rank symplectic Lie algebra. Furthermore, due to
the existence of specialization functors from Reppol(GL) to Reppol(GLn) for all finite n, we
immediately get specialization functors from this parabolic category O in the infinite rank
case to the finite rank case. This will be the focus of the next paper in this series.

1.4. Method. Establishing an equivalence between a curried algebra and a diagram cate-
gory is entirely elementary, but it can get somewhat complicated. We have therefore devel-
oped the following method to treat this problem systematically and keep different concerns
isolated:

(a) We first carry out the currying process. We start with a “model algebra” A built out
of a vector space and its dual, and write down exactly what an A-module is without
using duals, by the currying procedure. We extrapolate from this a general definition
of curried A-module in a tensor category.

(b) We then specialize this notion to the tensor category ModFB, and write down exactly
what a curried A-module is in terms of FB-modules equipped with certain operations.

(c) Finally, we match the above description to a diagram category; this typically involves
finding a presentation for the diagram category.

Here is how this process works for relating the symplectic Lie algebra and the Brauer cate-
gory:

(a) Let V be a finite dimensional vector space. Then V ·V 7 carries a canonical symplectic
form. We take sp(V ·V 7) to be our model algebra. We have a natural decomposition

sp(V · V 7) = Div2(V 7)· gl(V )· Div2(V ).

We thus see that giving a sp(V · V 7)-module M amounts to giving linear maps

a : V ·M ³ V ·M, b : Div2(V )·M ³ M, b2 : M ³ Sym2(V )·M.

satisfying certain conditions, which we determine explicitly. Given an object V in a
tensor category, we define a module for the curried symplectic algebra sp(V ·V 7)
to be an object M with maps as above satisfying the conditions we just alluded to.

(b) We now examine the curried symplectic algebra in linear species. Thus suppose that
M is a sp(V ·V7)-module, where V is the standard FB-module. Giving the map
b amounts to giving natural maps ³ : M(S \ {i, j}) ³ M(S), where S is a finite
set and i and j are distinct elements of it; this is what we mean by an operation
on the FB-module M . We can similarly describe a and b2 in terms of operations.
We explicitly write down the conditions on these operations that correspond to the
defining conditions of sp(V ·V7).

(c) Finally, we show that an FB-module with operations as above is the same thing as a
module for the Brauer category. The basic idea is that ³ gives the action of a single
cap, while the operation corresponding to b2 gives the action of a single cup. To prove
this, one must show that the identities from the previous step give all the defining
relations between cups and caps in the Brauer category, which we do.

1.5. Open problems. One broad class of open problem is to examine the currying proce-
dure in other situations. There are other algebras that could be interesting to curry, such
as the exceptional Lie algebras (see [Ju] for some work on g2 and e6), quantum groups, or
truncated Cartan algebras in positive characteristic. Similarly, there are some diagram cat-
egories that would be interesting to see from the curried perspective, such as the simplex
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category, the category OSop from [SS3, §8], or various linear analogues of FI like VI or VIC.
Finally, we have mainly focused on currying in the tensor category ModFB. What about
other categories? (See Remark 4.9 for a comment on ModVB.)

In §8, we define an abstract notion of curried algebra. It would be helpful if this notion
were better developed. In particular, is there a way to obtain the results of this paper with
less casework?

1.6. Relation to other papers in this series. This paper can be read independently of
the other papers in this series. The following paper [SS5] will make essential use of this
paper. Many more examples of curried algebras can be found in [SS6].

There is an extensive literature related to Brauer categories, see [SS4] for a more detailed
discussion.

1.7. Notation and conventions. Throughout, k denotes a fixed commutative ring. Un-
less otherwise stated, a tensor category is a k-linear category with a k-bilinear symmetric
monoidal structure.

1.8. Outline. In §2, we review linear species, and in §3, we review the theory of triangular
categories. In §4, we look at the general linear Lie algebra from the curried perspective; this
is the most important example. In §5, §6, and §7, we look at the symplectic, Witt, and Weyl
Lie algebras from the curried perspective. These examples are important cases, and also
representative of the currying process in general. Finally, in §8, we make a few comments
on abstract curried algebras.

Acknowledgments. Some of the ideas in §6.5 came out of joint discussions with Phil
Tosteson; we thank him for letting us include this material here.

2. Linear species

2.1. FB-modules. Let FB be the category of finite sets and bijections. An FB-module

(also called a linear species) is a functor FB ³ Modk. A morphism (or map) between
FB-modules is a natural transformation of functors. We let ModFB be the category of FB-
modules. It is a Grothendieck abelian category. Note that FB-modules are equivalent to
sequences (Mn)ng0 where Mn is a representation of the symmetric group Sn.

Given two FB-modules M and N , we define their tensor product by

(M ·N)(S) =
⊕

T¦S

M(T )·N(S \ T ).

From the sequence point of view, we have

(M ·N)n =
⊕

i+j=n

IndSn

Si×Sj
(Mi ·Nj).

The above tensor product gives ModFB the structure of a symmetric monoidal category.
We define the standard FB-module, denoted V, to be the FB-module that is k on sets

of cardinality 1, and 0 on all other sets. If S is a finite set of cardinality n then V·n(S) is
the k-vector space with basis given by all total orderings (s1, . . . , sn) of the elements of S,
and V·n(T ) = 0 if |T | 6= n. There is an additional action of Ã * Sn on V·n given by

Ã · (s1, . . . , sn) = (sÃ21(1), . . . , sÃ21(n)).
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The nth symmetric power Symn(V) is the Sn-coinvariants of V·n. From the above
description, we see that this FB-module is 1-dimensional when evaluated on a set S of
cardinality n; we write tS for the distinguished basis vector. The symmetric algebra is

Sym(V) =
⊕

ng0

Symn(V).

It admits both a multiplication map

m : Sym(V)· Sym(V) ³ Sym(V),

and a comultiplication map

∆: Sym(V) ³ Sym(V)· Sym(V).

In terms of bases, these maps are given by

m(tA · tB) = tA*B, ∆(tS) =
∑

S=A¶B

tA · tB,

where the second sum is over all decompositions of S as a union of two disjoint subsets.
We can also consider the nth divided power Divn(V), which is the Sn-invariants of V

·n.
Again, on a finite set S of cardinality n, this space is 1-dimensional, and we let t[S] be a basis
vector. There is an averaging map

avg : Symn(V) ³ Divn(V).

On basis vectors, this takes tS to t[S], and so it is an isomorphism. This isomorphism is
compatible with the multiplication and comultiplications on Div(V) =

⊕

ng0Divn(V). For
this reason, we will not really need divided powers in the context of FB-modules.

Remark 2.1. This contrasts with the standard situation in vector spaces: roughly speaking,
this is due to the fact that we are dealing with sets rather than multisets, so that the action
of Sn on V·n(S) is free. All of the complications and differences arise in the standard
situation due to the existence of monomials with exponents greater than 1. �

2.2. Operations on FB-modules. Let S be a finite set. We write S [n] for the subset of
Sn consisting of tuples with distinct coordinates. We let S [7] =

∐

ng0 S
[n]. Given x * S [n],

we write S \ x in place of S \ {x1, . . . , xn}. We say that two elements x * S [n] and y * S [m]

are disjoint if {x1, . . . , xn} + {y1, . . . , ym} = '.
Let M be an FB-module. An operation on M is a rule × that assigns to every finite set

S and elements x, y * S [7] a linear map

×Sx,y : M(S \ y) ³M(S \ x)

that is natural, in the sense that if i : S ³ T is a bijection then the diagram

M(S \ y)
×S
x,y

//

i

��

M(S \ x)

i

��

N(T \ i(y))
×T
i(x),i(y)

// N(T \ i(x))

commutes. It is useful to picture operations diagrammatically; see Figure 2.
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Figure 2. Diagrammatic view of ×Sx,y where S = {1, . . . , 7}, x = (1, 2, 3),

and y = (4, 5). We picture the operation as the box that takes input on the x
strands and produces output on the y strands.

The definition of operation is quite general; in practice, our operations will be constrained
in various ways. We mention a few of the important constraints here. Fix an operation ×
for what follows.

" We say that × is symmetric if ×Sx,y is invariant under permutations of x and y. In

this case, we can simply regard x and y as subsets A and B of S, and we typically

write ×SA,B instead.

" Similarly, we say that × is skew-symmetric if ×Sx,y transforms under the sign char-

acter when x or y is permuted.

" We say that × is an (m,n)-operation if ×Sx,y = 0 unless x has length m and y has

length n. In this case, we typically regard ×Sx,y as only defined on such tuples.

" We say that × is simple if ×Sx,y = 0 unless x and y are disjoint. Again, in this case

we typically regard ×Sx,y as only being defined on disjoint tuples.

Every operation can be expressed in terms of simple operations. We explain this in the case
where × is symmetric, as this somewhat simplifies the situation. For n * N define a simple

operation ×[n] by ×[n]SA,B = ×
S2[n]
A2[n],B2[n] if A and B are disjoint. The naturality of × implies

that
×SA,B = ×[n]

S\(A+B)
A\B,B\A

where n = #(A + B). Thus × determines, and is determined by, the sequence of simple
operations (×[n])ng0.

Operations are closely related to the tensor product on FB-modules. For example, giving
a symmetric (m,n)-operation × on M is equivalent to giving a map of FB-modules

a : Symn(V)·M ³ Symm(V)·M.

Indeed, given a finite set S, a subset B of S of cardinality n, and an element x *M(S \B),
we can write

a(tB · x) =
∑

A¦S
#A=m

tA · ×SA,B(x)

where ×SA,B(x) belongs to M(S \ A). This defines a map

×SA,B : M(S \B) ³M(S \ A),

and these maps define an (m,n)-operation ×.
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Figure 3. Commuting operations.

Let × and Ë be operations. We say that × and Ë commute if the following condition
holds: given a finite set S and tuples x, y, w, z * S [7] such that x and w are disjoint and y
and z are disjoint, the diagram

M(S \ (y * z))
×
S\z
x,y

//

Ë
S\y
w,z

��

M(S \ (x * z))

Ë
S\x
w,z

��

M(S \ (y * w))
×
S\w
x,y

// M(S \ (x * w))

commutes. See Figure 3 for a diagrammatic interpretation of this condition. Similarly, we
say that × and Ë skew-commute if the two paths above are negatives of each other. We
note that an operation need not commute with itself, and can skew-commute with itself
while still being non-trivial (even in characteristic 0).

3. Triangular categories

Most of the diagram categories considered in this paper are triangular categories, a notion
introduced in [SS4] (and similar to the notion of semi-infinite highest weight category in the
sense of [BS]). We will use this structure to aid us in establishing presentations for these
categories. We recall the definition here and establish a few properties of these categories
that will be useful.

Let G be a k-linear category satisfying the following condition:

(T0) The category G is essentially small, and all Hom spaces are finite dimensional.

We denote the set of isomorphism classes in G by |G|. Recall that a subcategory is wide if
it contains all objects.

Definition 3.1. A triangular structure on G is a pair (U,D) of wide subcategories of G
such that the following axioms hold:

(T1) We have EndU(x) = EndD(x) for all objects x.
(T2) There exists a partial order f on |G| such that:

(a) For all x * |G| there are only finitely many y * |G| with y f x.
(b) The category U is upwards with respect to f, i.e., if there exists a non-zero

morphism x³ y, then x f y.
(c) The category D is downwards with respect to f, i.e., if there exists a non-zero

morphism x³ y, then y f x.
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(T3) For all x, y * G, the natural map
⊕

y*|G|

HomU(y, z)·EndU(y) HomD(x, y) ³ HomG(x, z)

is an isomorphism.

A triangular category is a k-linear category satisfying (T0) equipped with a triangular
structure. �

Remark 3.2. In [SS4], we required the rings EndU(x) to be semisimple; we do not make
that assumption here. �

Fix a triangular category G, and set

M = U +D.

Note that all non-zero morphisms in M are between isomorphic objects; in our applications
M will almost always be the k-linearization of FB. Recall that if C is a k-linear category
then a C-module is a k-linear functor C ³ Modk. We are interested in modules over the
categories G, U, D, and M. Suppose that C is one of these categories. Then C has the same
objects of M and contains M. Thus a C-module can be regarded as an M-module equipped
with extra structure; we refer to this extra structure as a C-structure. By (T3) it follows
that a G-structure on an M-module is determined by its restrictions to D and U. We say
that a D-structure and a U-structure on an M-module are compatible if they come from a
G-structure. We now investigate compatibility in more detail.

Fix anM-moduleM equipped with a D-structure and a U-structure. Let ³ be a morphism
in G. Write

³ =

n
∑

i=1

×i ç Ëi

with ×i in U and Ëi in D, which is possible by (T3). We then define

³7 =
n
∑

i=1

(×i)7(Ëi)7.

This is well-defined by (T3) and the fact that the U- and D-structures agree on M. Suppose
that ³ is a second morphism such that ³ ç ³ is defined. We say that (³, ³) is compatible

if (³ ç ³)7 = ³7³7. We note that (³, ³) is automatically compatible if ³ belongs to U, or if
³ belongs to D. Clearly, the U- and D-structures on M are compatible if and only if (³, ³)
is compatible for all ³, ³ such that ³ ç ³ is defined. In fact, one has the following:

Proposition 3.3. The U- and D-structures on M are compatible if and only if all pairs
(×, Ë) with × in U and Ë in D are compatible.

Proof. Let ³ and ³ be morphisms in G such that ³ ç ³ is defined. Write

³ =
n
∑

i=1

×i ç Ëi, ³ =
m
∑

j=1

×2
j ç Ë

2
j

with ×i and ×
2
j in U and Ëi and Ë

2
j in D. For each (i, j), write

Ë2
j ç ×i =

Ni,j
∑

k=1

×22
i,j,k ç Ë

22
i,j,k
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where, again, the ×22 belong to U and the Ë22 belong to D. Then

³ ç ³ =
n
∑

i=1

m
∑

j=1

Ni,j
∑

k=1

(×2
j ç ×

22
i,j,k) ç (Ë

22
i,j,k ç Ëi).

We thus have

(³ ç ³)7 =
∑

i,j,k

(×2
j)7(×

22
i,j,k)7(Ë

22
i,j,k)7(Ëi)7

=
∑

i,j

(×2
j)7(Ë

2
j)7(×i)7(Ëi)7

= ³7³7,

where in the first step we used the definition of (³ ç ³)7, in the second step we used the
compatibility of (×i, Ë

2
j) for all i and j, and in the third step we used the definitions of ³7

and ³7. Thus (³, ³) is compatible, and the proof is complete. �

We now give a refinement of the above criterion. Let C be a k-linear category. We say a
class of morphisms C in C generates if every morphism in C can be expressed as a k-linear
combination of finite compositions of morphisms in C.

Proposition 3.4. Let U generate U and let D generate D. Suppose that (×, Ë) are compatible
whenever × * U and Ë * D, and Ë ç × is defined. Then the U- and D-structures are
compatible.

Proof. We write s(×) and t(×) for the source and target of a morphism ×. For x * |G|,
consider the following statements:

S(x): Let ³ and ³ be morphisms in G such that ³ ç ³ is defined and t(³) = x. Then (³, ³)
is compatible.

Sfx: Statement S(y) holds for all y f x.
S<x: Statement S(y) holds for all y < x.

Clearly, it suffices to prove S(x) for all x. We prove that S<x implies Sfx for all x. This
implies S(x) for all x by an inductive argument, which is enabled by the condition (T2a).
Thus let x * |G| be given and suppose S<x holds.

First suppose that × is a morphism in U and Ë is a morphism in D such that Ë ç ×
is defined and t(×) f x. We show that (×, Ë) is compatible. If × or Ë belongs to M,
the statement is trivial, so assume this is not the case. We can express × as a linear
combination of compositions of morphisms in U. Since compatibility interacts well with
linear combinations, it suffices to treat the case where × is a composition of morphisms in
U. We can thus write × = ×1×2 where ×1 belongs to U but not to M, and ×2 belongs to U.
Similarly, we can assume Ë = Ë2Ë1 where Ë1 belongs to D but not to M, and Ë2 belongs to
D. Write

Ë1 ç ×1 =

n
∑

i=1

×3
i ç Ë

3
i

with ×3
i in U and Ë3

i in D. Since (×1, Ë1) is compatible by assumption, we have

Ë1
7×

1
7 = (Ë1 ç ×1)7 =

n
∑

i=1

(×3
i )7(Ë

3
i )7.
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We thus have

Ë2
7Ë

1
7×

1
7×

2
7 =

n
∑

i=1

Ë2
7(×

3
i )7(Ë

3
i )7×

2
7 =

n
∑

i=1

Ë2
7(×

3
i )7(Ë

3
i ç ×

2)7

=

n
∑

i=1

Ë2
7(×

3
i ç Ë

3
i ç ×

2)7 =

n
∑

i=1

(Ë2 ç ×3
i ç Ë

3
i ç ×

2)7 = (Ë2 ç Ë1 ç ×1 ç ×2)7

where we have repeatedly used S<x. Note that

t(×2) = s(×1) < t(×1) f x

t(Ë3
i ) f s(Ë3

i ) = t(×2) < x

t(×3
i ) = t(Ë1) < s(Ë1) = t(×1) f x

which justifies applying S<x in each case. We thus see that Ë7×7 = (Ë ç ×)7, and so (×, Ë)
is compatible.

We now treat the general case. Thus let ³ and ³ be morphisms in G such that ³ ç ³ is
defined and t(³) f x. We show that (³, ³) is compatible. Write

³ =

n
∑

i=1

×i ç Ëi, ³ =

m
∑

j=1

×2
j ç Ë

2
j

where ×i and ×
2
j belong to U and the Ëi and Ë

2
j belong to D. We have

³7³7 =
∑

i,j

(×2
j)7(Ë

2
j)7(×i)7(Ëi)7 =

∑

i,j

(×2
j)7(Ë

2
j ç ×i)7(Ëi)7

=
∑

i,j

(×2
j ç Ë

2
j ç ×i ç Ëi)7 = (³ ç ³)7.

In the second step we used the previous paragraph, and in the third step we used the
automatic compatibility for morphisms in U and D. This completes the proof. �

4. The general linear Lie algebra

4.1. Currying. Let V be a finite-dimensional vector space, and consider the Lie algebra
gl(V ). A representation of gl(V ) consists of a vector space M equipped with a linear map

µ : gl(V ) ³ End(M)

such that

(4.1) µ([X, Y ]) = [µ(X), µ(Y )]

holds for all X, Y * gl(V ), where [X, Y ] = XY 2 Y X denotes the commutator. Now, gl(V )
is canonically isomorphic to V · V 7. Thus giving a linear map µ as above is equivalent to
giving a linear map

a : V ·M ³ V ·M,

and the following proposition determines the condition that (4.1) imposes on a. We first
introduce some notation. For a linear map a as above, we define maps

a1, a2, Ç : V · V ·M ³ V · V ·M

as follows. First, Ç switches the first two tensor factors, i.e., Ç(v·w·x) = w· v·x. Next,
a2 is id· a, i.e., a2(v · w · x) = v · a(w · x). Finally, a1 = Ç ç a2 ç Ç . We now have:
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Proposition 4.2. Let µ and a be corresponding linear maps as above. Then µ satisfies (4.1)
if and only if a satisfies the equation

(4.2a) [a1, a2] = Ç(a1 2 a2).

Proof. Assume µ defines a representation of gl(V ). Let {vi}1fifn be a basis for V , let {v7i }
be the dual basis, and write viv

7
j for the element of gl(V ) corresponding to vi· v7j . The map

a is given by

a(vi · x) =
n
∑

j=1

vj · (viv
7
j )x,

where here (viv
7
j )x denotes µ(viv

7
j )(x). We have

a1(a2(vi · vk · x)) =
∑

1fj,3fn

vj · v3 · (viv
7
j )(vkv

7
3 )x.

The formula for a2(a1(vi · vk · x)) is the same, except that the order of viv
7
j and vkv

7
3 on

the right is reversed. We thus find

[a1, a2](vi · vk · x) =
∑

1fj,3fn

vj · v3 · [viv
7
j , vkv

7
3 ]x.

Using the formula
[viv

7
j , vkv

7
3 ] = ·j,k(viv

7
3 )2 ·i,3(vkv

7
j ),

we find

[a1, a2](vi · vk · x) =

(

∑

1f3fn

vk · v3 · (viv
7
3 )x

)

2

(

∑

1fjfn

vj · vi · (vkv
7
j )x

)

.

The first term on the right is (Ça1)(vi · vk · x), while the second is (Ça2)(vi · vk · x). We
thus see that a satisfies (4.2a). The reasoning is reversible, and so if a satisfies (4.2a) then
µ defines a representation of gl(V ). �

Remark 4.3. The identity (4.2a) can be expressed equivalently in the form

ÇaÇa 2 aÇaÇ = aÇ 2 Ça,

where here we have written a in place of a2 = idV · a. �

We now extrapolate a general definition from Proposition 4.2:

Definition 4.4. Let V be an object of a tensor category C. We define the curried general

linear Lie algebra on V , denoted gl(V ), as follows. A representation of gl(V ) consists of
an object M of C together with a morphism a : V ·M ³ V ·M such that the equation
[a1, a2] = Ç(a1 2 a2) holds, using notation as in Proposition 4.2. �

IfM,N are gl(V )-module, then a morphism of gl(V )-modules × : M ³ N is a morphism
in C such that the diagram

V ·M

id·×
��

a
// V ·M

id·×
��

V ·N
a

// V ·N

commutes. We write Rep(gl(V )) for the category of gl(V )-modules. It is easily verified to
be an abelian category.
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4.2. General observations. We now discuss some basic aspects of gl(V )-modules.
Trivial representations. Given any object M of C, we can define a gl(V )-module structure

on M by taking the structure map V ·M ³ V ·M to be the zero map. We refer to this
as the trivial representation of gl(V ) on M . By the trivial representation, we mean the
one on the unit object 1.

The standard representation. Let M = V and take a = Ç . We verify (4.2a). This is an
identity among endomorphisms of V ·3. What is called Ç there is really Ç12, and what is
called a is Ç23. Using the braid relation, we have

Ç12Ç23Ç12Ç23 = Ç23Ç12Ç
2
23 = Ç23Ç12.

Similarly, Ç23Ç12Ç23Ç12 = Ç12Ç23. The identity (4.2a) follows. We call V with this action the
standard representation of gl(V ).

Tensor products. Suppose that M and N are two gl(V )-modules, with action maps a and
b. Regard End(V ·M) and End(V ·N) as subalgebras of End(V ·M ·N) in the obvious
way. We give M ·N the structure of a gl(V )-module by taking the action map to be a+ b.

To see that this satisfies (4.2a), note that a1 and b2 commute in End(V ·2 ·M ·N), since
a1 uses the first and third factors and b2 the second and fourth, and similarly for b1 and a2.
Therefore,

[a1 + b1, a2 + b2] = [a1, a2] + [b1, b2] + [a1, b2] + [b1, a2] = Ç(a1 2 a2) + Ç(b1 2 b2).

The operation · endows Rep(gl(V )) with the structure of a tensor category.
Tensor powers of the standard representation. Let M = V ·n be the nth tensor power of

the standard representation. The action map is the endomorphism
∑n+1

i=2 Ç1,i of V
·(n+1).

Twisting by trace. Let M be a gl(V )-module with structure map a : V ·M ³ V ·M ,
and let · be an element of the coefficient field k. Then the map a + · · idV·M defines a
new gl(V ) representation on M . We denote the resulting gl(V )-module by M(·). We have
M(·) = M · 1(·) and 1(·1) · 1(·2) = 1(·1 + ·2). The representation 1(·) is analogous to
the representation of gln given by X 7³ · tr(X).

Behavior under tensor functors. We have defined gl(V )-modules purely in terms of the
tensor structure on A. It follows that if Φ: A ³ B is a tensor functor (with no exactness
properties assumed) then Φ carries gl(V )-modules to gl(Φ(V ))-modules. This will remain
true for the other curried Lie algebras we define, and will be a useful observation later on.

Some unexpected behavior. There are examples where an “actual” gl(V ) exists in C, but
where representations of gl(V ) and gl(V ) are not the same. For example, let C be the
category of abelian groups, let V = (Z/pZ)n, and let M = Zn. Then M does not admit a
non-trivial representation of gl(V ): since End(M) is torsion-free under addition, there are
no non-zero maps gl(V ) ³ End(M). However, M does admit a non-trivial representation
of gl(V ): one can take the switching of factors map on V ·M >= V · V . The source of
this discrepancy is that V is not a dualizable object in C, and so gl(V ) is not isomorphic to
V · V 7; the curried algebra gl(V ) always behaves as if it were V · V 7.

4.3. In species. Let V be the standard FB-module and letM be an arbitrary FB-module.
Suppose we have a map of FB-modules

a : V ·M ³ V ·M.
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Given a finite set S, an element j * S, and an element x * M(S \ j), we can write

(4.5) a(tj · x) = tj · ËS\j(x) +
∑

i*S\j

ti · ³Si,j(x).

Thus Ë is a (0, 0)-operation on M , i.e., an endomorphism of M as an FB-module, and ³ is
a simple (1, 1)-operation on M .

Proposition 4.6. The map a defines a representation of gl(V) on M if and only if the
following conditions hold:

(a) The operations ³ and Ë commute with themselves and each other.

(b) Given a finite set S and three distinct elements i, j, k * S, we have ³
S\i
j,k ³

S\k
i,j = ³

S\j
i,k .

Proof. Let × be the (non-simple) (1, 1)-operation on M corresponding to a. Thus

a(tj · x) =
∑

i*S

ti · ×Si,j(x).

We have ³ = ×[0] and Ë = ×[1] in the notation of §2.2. Let S be a finite set, let j, k * S be
distinct, and let x *M(S \ {j, k}). A simple computation gives

a1(a2(t
j · tk · x)) =

∑

3*S\j

∑

i*S\3

ti · t3 · ×
S\3
i,j (×

S\j
3,k (x))

a2(a1(t
j · tk · x)) =

∑

i*S\k

∑

3*S\i

ti · t3 · ×
S\i
3,k (×

S\k
i,j (x))

Ça1(t
j · tk · x) =

∑

3*S\k

tk · t3 · ×
S\k
3,j (x)

Ça2(t
j · tk · x) =

∑

i*S\j

ti · tj · ×
S\j
i,k (x)

Now, consider the equation [a1, a2] = Ç(a1 2 a2). Letting i, 3 * S be distinct elements and
examining the coefficients of ti · t3, we obtain the following equations:

×
S\3
i,j ç ×

S\j
3,k = ×

S\i
3,k ç ×

S\k
i,j if i 6= k and 3 6= j,

×
S\i
j,k ç ×

S\k
i,j = ×

S\j
i,k if i 6= k and 3 = j,

×
S\3
k,j ç ×

S\j
3,k = ×

S\k
3,j if i = k and 3 6= j,

×
S\k
j,j = ×

S\j
k,k if i = k and 3 = j.

The first equation above is equivalent to condition (a). The second and third equations
above are equivalent to each other, and to (b). The final equation above is automatic: it
follows from the naturality of ×. This completes the proof. �

For a finite set S and distinct elements i, j * S, let »Si,j : S \ {j} ³ S \ {i} be the bijection
given by

»Si,j(k) =

{

j if k = i

k if k 6= i
.

Let M be an FB-module and let · * k. We define the ·-standard gl(V)-structure on
M to be the representation of gl(V) on M given by Proposition 4.6 with Ë = · · id and
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³Si,j = (»Si,j)7. (One easily verifies the conditions of Proposition 4.6.) Explicitly, for j * S
and x *M(S \ j), we have

a(tj · x) = ·x+
∑

i*S\j

ti · (»Si,j)7(x).

One easily verifies that this construction is functorial: any map of FB-modules induces a
map between the corresponding ·-standard gl(V)-modules.

Remark 4.7. Let M be a gl(V)-module. Given a finite set S and an element i * S, define
Ãi to be the composition

M(S)
³
S2{7}
i,7

// M(S * {7} \ i)
»
S2{7}
7,i

// M(S),

where {7} is a one-point set. One easily verifies that Ã2i = Ãi, and that for i 6= j, the operators
Ãi and Ãj commute. Furthermore, for Ã * Aut(S) we have ÃÃiÃ

21 = ÃÃ(i). Let An be the
monoid freely generated by n commuting idempotents. We thus see that M([n]) carries a
representation of the monoid N × (Sn ë An), where the generator of the N acts by the Ë
operation. In fact, a gl(V)-module M exactly corresponds to a sequence (Mn)ng0 where Mn

is a representation of N × (Sn ë An). From this point of view, a ·-standard gl(V)-module
is one where An acts trivially and the generator of N acts by ·. �

Remark 4.8. Assume that k is a field of characteristic 0. Consider the standard gl(V) action
a on the irreducible Specht module M = M». Since V ·M (recall this is the induction
product) is multiplicity-free by the Pieri rule, a is simply multiplication by a scalar on each
piece Mµ. We claim that this scalar is the content of the box in the Young diagram µ \ »,
where the content is its row index minus its column index, i.e., if i is the unique index such
that µi > »i, the content is µi 2 i.

To prove this, we can first use Schur–Weyl duality to translate this into a statement about
Schur functors S». The advantage is that we can evaluate on vector spaces of different
dimensions to deduce the following:

(1) The value of a on Sµ(k
n) can be computed on a highest weight vector, so it is inde-

pendent of n as long as n g 3(µ). So we may as well assume n = 3(µ).
(2) To compute a on the tensor power (kn)·d, we have

a(ei · (ej1 · · · · · ejd)) =

d
∑

k=1

ejk · (ej1 · · · · · ei · · · · · ejd)

where the sum is over all ways of swapping ei with some ejk . In particular, tensoring
with the determinant character increases the eigenvalues of a by 1, so using this and
(1), we may as well assume that we are adding a box to the first column of ».

(3) As can be seen with the tensor power (kn)·d in (2), applying the transpose duality to
a multiplies its eigenvalues by 21 since this affects Schur–Weyl duality by tensoring
the usual Sd-action on tensor powers with the sign character. So to add a box to the
first column, we just need to understand adding a box to the first row.

(4) Iterating, we reduce to the case that » = ' and µ = (1). In that case, it follows
immediately that a is the 0 map, which is the content of the box that we added. �
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4.4. In OB-modules. Let OB be the category of finite totally ordered sets and order-
preserving bijections, and let ModOB denote the category of OB-modules. Given OB-
modules M and N , their shuffle tensor product is

(M ·shuff N)(S) =
⊕

S=A2B

M(A)·N(B),

where the sum is over all partitions of S into two disjoint sets A and B, and A and B
are given the induced order. The shuffle tensor product gives the category ModOB of OB-
modules the structure of a symmetric monoidal category. (Note: OB-modules are equivalent
to graded vector spaces, but the shuffle tensor product does not correspond with the usual
tensor product of graded vector spaces.)

Let V be the OB-module that is k in degree 1 and 0 in other degrees. We make one
comment on gl(V )-modules. Recall that An is the monoid generated by n commuting idem-
potents e1, . . . , en. The symmetric group Sn acts on An, and so we can form the semi-direct
product Sn ë An. Define Mn to be the submonoid of Sn ë An generated by the elements
siei and eisi = siei+1 for 1 f i f n 2 1, where si is the transposition of Sn that swaps i
and i+1. Then one can show that giving a gl(V )-module is equivalent to giving a sequence
of representations of the monoids N × Mn (compare with Remark 4.7). Details and other
examples in ModOB can be found in [Ju].

4.5. Braidings. Suppose that C is a (not necessarily braided) tensor category and V is a
braided object of C, that is, we are given an isomorphism ³ : V · V ³ V · V such that the
endomorphisms id·³ and ³·id of V ·3 satisfy the braid relation. We can define gl(V ) in this
setting, as follows: a gl(V )-module is an objectM equipped with a map a : V ·M ³ V ·M
satisfying

³21a³a2 a³a³21 = a³ 2 ³a.

Here we have written ³ for ³· id and a for id·a. The inverses are included on some factors
so that M = V with a = ³ defines a gl(V )-module (the standard representation).

Remark 4.9. Let VA be the category of finite dimensional vector spaces over the finite
field F, and let VB be the subcategory where the morphisms are isomorphisms. We assume
char(F) is invertible in k. Given two VB-modules M and N , we define their parabolic

tensor product by

(M ·par N)(X) =
⊕

Y¦X

M(Y )·N(X/Y )

where the sum is over all subspaces Y ¦ X . This tensor product has a natural braiding, first
considered by Joyal–Street [JS]. We expect that VA-modules can be expressed as a curried
structure in the braided category of VB-modules. It would be interesting to understand
gl(V )-modules where V is the standard VB-module (i.e., V (X) = k if X is one-dimensional
and V (X) = 0 otherwise). �

5. The symplectic Lie algebra

5.1. Currying. Let V be a finite-dimensional vector space. The space V · V 7 carries a
natural symplectic form, and so we can consider the corresponding symplectic Lie algebra
sp(V · V 7). This algebra admits a decomposition

sp(V · V 7) = Div2(V 7)· gl(V )· Div2(V ).
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We thus see that giving a linear map

µ : sp(V · V 7)·M ³M

is equivalent to giving linear maps

a : V ·M ³ V ·M, b : Div2(V )·M ³ M, b2 : M ³ Sym2(V )·M.

Proposition 5.1. Let µ and (a, b, b2) as above correspond. Then µ defines a representation
of sp(V · V 7) if and only if (a, b, b2) satisfy the following conditions:

(a) a satisfies (4.2a), that is, it defines a gl(V ) structure on M .

(b) bb2 = bb1 holds as maps Div2 V · Div2 V ·M ³ M and b21b
2 = b22b

2 holds as maps
M ³ Sym2 V · Sym2 V ·M , that is, the multiplication defined by b is commutative
and the co-multiplication defined by b2 is co-commutative.

(c) b and b2 are maps of gl(V )-modules, where Div2(V ) and Sym2(V ) are equipped with
their natural gl(V ) actions.

(d) b2b2 b1b
2
2 = (m· 1)(1· a)(∆· 1) holds as maps Div2 V ·M ³ Sym2 V ·M . Here

∆ is comultiplication and m is multiplication.

Proof. Let M be a sp(V ·V 7)-module. (a) and (b) are translations of the relations satisfied
by the subalgebras spanned by each component gl(V ), Div2(V 7) and Div2(V ) while (c) is a
translation of the relation between gl(V ) and the two components Div2(V ) and Div2(V 7).

For (d), let v1, . . . , vn be a basis for V . Pick x *M and vivj * Div2 V . Then

b2(b(vivj · x)) =
∑

k

v2k · (v7k)
[2](vivj)x+

∑

k<3

vkv3 · (v7kv
7
3 )(vivj)x

and

b1(b
2
2(vivj · x)) =

∑

k

v2k · (vivj)(v
7
k)

[2]x+
∑

k<3

vkv3 · (vivj)(v
7
kv

7
3 )x.

Next
[v7kv

7
3 , vivj ] = ·i,kv

7
3 vj + ·j,kv

7
3 vi + ·i,3v

7
kvj + ·j,3v

7
kvi,

and so
(b2b2 b1b

2
2)(vivj · x) =

∑

k

vivk · (v7kvj)x+
∑

k

vjvk · (v7kvi)x.

This is clearly the same as (m· 1)(1· a)(∆· 1). If 2 is invertible in k, then we are done.
To finish the remaining case, we also need to show that these maps agree on the elements

v
[2]
i · x. The calculation is similar to what we have explained above, with the final result
being

(b2b2 b1b
2
2)(v

[2]
i · x) =

∑

k

vivk · (v7kvi)x = (m· 1)(1· a)(∆· 1)(v
[2]
i · x).

Conversely, if M is equipped with the three maps a, b, b2, then we see that the corresponding
action of sp(V · V 7) on M respects the Lie bracket. �

Definition 5.2. Let V be an object of a tensor category C. We define a module over the
curried symplectic algebra sp(V · V 7) to be an object M of C equipped with maps

a : V ·M ³ V ·M, b : Div2 V ·M ³ M, b2 : M ³ Sym2 V ·M.

satisfying (5.1a)–(5.1d). �



18 STEVEN V SAM AND ANDREW SNOWDEN

5.2. In species. Let M be an FB-module equipped with maps

a : V ·M ³ V ·M, b : Div2(V)·M ³M, b2 : M ³ Sym2(V)·M.

Let ³ and Ë be the simple (1, 1)- and (0, 0)-operations corresponding to a as in (4.5). Let
³ and ³ 2 be the symmetric (0, 2)- and (2, 0)-operations corresponding to b and b2. Thus we
have

b(t{i,j} · x) = ³Si,j(x), b2(y) =
∑

{i,j}¢S

t{i,j} · (³ 2)Si,j(y).

for x *M(S \ {i, j}) and y *M(S).

Proposition 5.3. The triple (a, b, b2) defines a representation of sp(V ·V7) on M if and
only if the following conditions hold (for all finite sets S):

(a) ³, Ë, ³, and ³ 2 pairwise commute (and each commutes with itself).

(b) Given i, j, k * S distinct, we have ³
S\i
j,k ç ³

S\k
i,j = ³

S\j
i,k .

(c) Given i, j, k * S distinct, we have ³Si,j ç ³
S\j
i,k = ³

S\i
j,k , and similarly (³ 2)

S\i
j,k ç ³Si,j =

(³ 2)
S\j
i,k .

(d) Given i, j, k * S distinct, we have (³ 2)Si,j ç ³
S
j,k = ³

S\j
i,k .

(e) Given i, j * S distinct, we have (³ 2)Si,j ç ³
S
i,j = 2ËS\{i,j}.

Proof. Suppose that conditions (5.3a)–(5.3d) above hold. We verify that (a, b, b2) satisfy
conditions (5.1a)–(5.1d). Condition (5.1a) follows from (5.3a), (5.3b), and Proposition 4.6.
Condition (5.1b) follows easily from (5.3a).

We now verify (5.1c). Let

a2 : V · Div2(V) ³ V ·Div2(V)

be the gl(V)-action on Div2(V ). To show that b is gl(V )-equivariant, we must show that the
diagram

V ·Div2(V)·M
1·b

//

a+a2

��

V ·M

a

��

V ·Div2(V)·M
1·b

// V ·M

commutes; recall from §4.2 that a+a2 defines the tensor product representation. Let i, j, k *
S be distinct and let x *M(S \ {i, j, k}). We have

a2(ti · t{j,k}) = tj · t{i,k} + tk · t{i,j},

and so

(a+ a2)(ti · t{j,k} · x) =tj · t{i,k} · x+ tk · t{i,j} · x+

ti · t{j,k} · ËS\{i,j,k}(x) +
∑

3*S\{i,j,k}

t3 · t{j,k} · ³
S\{j,k}
3,i (x),

and so

(1· b)(a + a2)(ti · t{j,k} · x) =tj · ³
S\j
i,k (x) + tk · ³

S\k
i,j (x)

ti · ³
S\i
j,k (Ë

S\{i,j,k}(x)) +
∑

3*S\{i,j,k}

t3 · ³
S\3
j,k (³

S\{j,k}
3,i (x)).
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On the other hand, we have

a(1· b)(ti · t{j,k} · x) = a(ti · ³
S\i
j,k (x))

= ti · ËS\i(³
S\i
j,k (x)) +

∑

3*S\i

t3 · ³S3,i(³
S\i
j,k (x)).

The above two expressions coincide if and only if the following equations hold (for 3 *
S \ {i, j, k}):

³
S\i
j,k (Ë

S\{i,j,k}(x)) = ËS\i(³
S\i
j,k (x)) ³

S\3
j,k (³

S\{j,k}
3,i (x)) = ³S3,i(³

S\i
j,k (x))

³
S\j
i,k (x) = ³Sj,i(³

S\i
j,k (x)) ³

S\k
i,j (x) = ³Sk,i(³

S\i
j,k (x))

The two equalities on the first line follow since ³ commutes with ³ and Ë by (5.3a). The
equalities on the second line are (5.3c). This shows that b is gl(V)-equivariant. The proof
for b2 is similar.

We now verify (5.1d). We have

b2(b(t{i1,i2} · x)) =
∑

{i3,i4}¢S

t{i3,i4} · ³ 2
i3,i4

(³i1,i2(x)),

b1b
2
2(t

{i1,i2} · x) =
∑

{i3,i4}¢S\{i1,i2}

t{i3,i4} · ³i1,i2(³
2
i3,i4

(x)).

Now, for {i3, i4} ¦ S \ {i1, i2}, we have ³i1,i2³
2
i3,i4

= ³ 2
i3,i4

³i1,i2 since ³ and ³ 2 commute. We
thus see that

(b2b2 b1b
2
2)(t

{i1,i2} · x) =
∑

{i3,i4}¦S
{i3,i4}+{i1,i2}6='

t{i3,i4} · ³ 2
i3,i4

(³i1,i2(x)).

On the other hand,

(m· 1)(1· a)(∆· 1)(t{i1,i2} · x)

=2t{i1,i2} · Ë(x) +
∑

j*S\{i1,i2}

(t{j,i2} · ³j,i1(x) + t{j,i1} · ³j,i2(x)).

We claim these last two expressions coincide. The coefficient of t{i1,i2} in the first expression
is ³ 2

i1,i2
(³i1,i2(x)) and in the second expression is 2Ë(x). These are equal by (5.3e). Suppose

now that j 6* {i1, i2}. The t
{i1,j} component in the first expression is ³ 2

i1,j
(³i1,i2(x)) and in the

second expression is ³j,i2(x). These are equal by (5.3d). The other components are similar.
This verifies the conditions (5.1a)–(5.1d). This reasoning is completely reversible, and so

the result follows. �

5.3. The Brauer category. Let G = G(·) be the Brauer category with parameter · * k.
The objects of this category are finite sets. The space HomG(S, T ) of morphisms is the vector
space spanned by Brauer diagrams from S to T ; such a diagram is simply a perfect matching
on the set S 2 T . For the definition of composition (and additional details), see [SS4, §5].
We note that the composition law depends on the parameter ·.

A Brauer diagram S ³ T is called upwards if there are no edges contained in S. The up-
wards Brauer category U is the subcategory ofG containing all objects and where HomU(S, T )
is spanned by upwards diagrams. There is a similarly defined downwards Brauer category
D. The intersection M of U and D is the linearization of FB: that is, HomM(S, T ) is the
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vector space spanned by bijections S ³ T . The pair (U,D) is a triangular structure on G,
see [SS4, Proposition 5.5]. (Note that [SS4] works in characteristic 0, but this statement and
its proof hold in general.)

Suppose that M is a G-module. Restricting to FB ¢ G, we can regard M as an FB-
module. Let S be a finite set and let i, j * S be distinct elements. We have a morphism
·Si,j : S \ {i, j} ³ S in G corresponding to the diagram with an edge between i and j in the
target, and that is the identity elsewhere. This induces a linear map

³Si,j : M(S \ {i, j}) ³ M(S).

One easily sees that ³ is a symmetric (0, 2)-operation on M . Similarly, we have a morphism
(·2)Si,j : S ³ S \ {i, j} in G using the opposite diagram, and this induces a linear map

(³ 2)Si,j : M(S) ³M(S \ {i, j}).

As above, ³ 2 is a symmetric (2, 0)-operation on M . Using the rule for composition in G, one
easily sees that ³ and ³ 2 satisfy the following conditions (in what follows, S is a finite set):

(a) ³ and ³ 2 commute with themselves and with each other.

(b) Let i, j, k * S be distinct. Then (³ 2)Si,j³
S
j,k = »

S\j
i,k .

(c) Let i, j * S be distinct. Then (³ 2)Si,j³
S
i,j = · · id.

Since the · and ·2 morphisms, together with the morphisms in FB, generate G, we see that
that the operations ³ and ³ 2 completely determine the G-structure on M . The following
proposition shows that the above conditions exactly characterize the operations we see in
this manner:

Proposition 5.4. Let M be an FB-module equipped with a symmetric (0, 2)-operation ³
and a symmetric (2, 0)-operation ³ 2 satisfying (a), (b), and (c) above. Then M carries a
unique G-structure inducing ³ and ³ 2.

Proof. We claim that giving a U-structure on M is equivalent to giving a self-commuting
symmetric (0, 2)-operation. First, suppose that M has a U-structure. For any set S and
distinct elements i, j * S, we define ³Si,j to be the action of ·Si,j onM . Then ³ is a symmetric
operation by construction and commutes with itself (if we compose such morphisms, the
result does not depend on the order in which we pair off the elements).

Conversely, suppose that M has a self-commuting symmetric (0, 2)-operation ³. We use
³ to construct a U-structure on M . A U-morphism × : S ³ T can be factored as a bijection
Ã : S ³ ×(S) followed by morphisms of the form ·Ui,j where i, j are distinct. We define
M× : M(S) ³ M(T ) to be the composition MÃ : M(S) ³ M(×(S)) with the corresponding
composition of maps given by ³ coming from the factorization; since ³ is self-commuting the
order of the factorization does not affect the result, and since it is symmetric the order of the
elements i, j at each stage also does not affect the result. Given another U-morphism Ë : T ³
U , the functoriality MË× = MËM× follows from the naturality condition on operations (we
omit the details).

Similarly, giving a D-structure on M is equivalent to giving a self-commuting symmetric
(2, 0)-operation. Thus ³ and ³ 2 define U- and D-structures on M .

Let U be the class of morphisms in U isomorphic to ·Si,j for some S, i, and j, and define
D similarly using ·2. One easily sees that U generates U and D generates D. Thus, by
Proposition 3.4, it suffices to show that (×, Ë) is compatible for × * U and Ë * D with Ë ç×
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defined. Let × = ·Si,j and Ë = (·2)Sk,3. There are three cases to consider depending on the
cardinality n of {i, j} + {k, 3}.

First suppose n = 0. Then

Ë ç × = (·2)Sk,3 ç ·
S
i,j = ·

S\{k,3}
i,j ç (·2)

S\{i,j}
k,3 ,

where the second equality comes from the following composition of Brauer diagrams:

i j

k 3

=

i j

k 3

.

We thus have
(Ë ç ×)7 = ³

S\{k,3}
i,j ç (³ 2)

S\{i,j}
k,3 = (³ 2)Sk,3 ç ³

S
i,j = Ë7 ç ×7,

where the first equality uses the above computation and the second uses condition (a). Thus
(×, Ë) is compatible.

Now suppose n = 1, and, without loss of generality, j = k. Then

Ë ç × = (·2)Sj,3 ç ·
S
i,j = »

S\j
i,3

where the second equality comes from the following composition of Brauer diagrams:

i

3

=

i

3

.

We thus have
(Ë ç ×)7 = »

S\j
i,3 = (³ 2)Sj,3 ç ³

S
i,j = Ë7 ç ×7

by (b), which establishes the compatibility.
Finally, suppose n = 2. Then

Ë ç × = (·2)Si,j ç ·
S
j,i = · · id

using the composition
= ·,

and so
(Ë ç ×)7 = · = (³ 2)Si,j ç ³

S
j,i = Ë7 ç ×7

by (c), which establishes the compatibility. �

5.4. The comparison theorem. Fix · * k. IfM is a representation of sp(V·V7) given by
data (a, b, b2) then a defines a representation of gl(V) on M . We say that M is ·-standard
if the representation of gl(V) is ·-standard (see §4.3). We let Rep·(sp(V · V7)) be the
category of ·-standard representations.

We define a functor
Φ: ModG(2·) ³ Rep·(sp(V ·V7))

as follows. Let M be a representation of G(2·). To define Φ(M), we only need to define
the operations ³, Ë, ³ and ³ 2. First, M is an FB-module by restriction, and we choose ³
and Ë as in §4.3 so that the result is ·-standard. The operations ³ and ³ 2 are defined using
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the morphisms · and ·2 as in §5.3. Then Φ(M) is indeed an object of Rep·(sp(V · V7))
by Proposition 5.3. For a morphism f : M ³ N , we let Φ(f) be the same morphism of the
underlying FB-modules.

The following is the main result of this section:

Theorem 5.5. The functor Φ defines a natural isomorphism of categories

ModG(2·)
>= Rep·(sp(V ·V7)).

Proof. The inverse of Φ is defined by reversing the steps in the definition of Φ. This is
well-defined by Proposition 5.4. �

Remark 5.6. If 2 is a zerodivisor in k, then · cannot generally be recovered from 2·. In
particular, if 2· = 2·2, we see that there is an equivalence of the form

Rep·(sp(V ·V7)) >= Rep·2(sp(V ·V7)). �

6. The Witt algebra

6.1. Currying. Let V be a finite-dimensional vector space with basis {¿i}. The Witt

algebra on V , denote W (V ), is the Lie algebra of k-linear derivations of the polynomial
ring k[¿i]. Thus it is spanned by elements f"i where f is a polynomial in {¿j} and "i is the
partial derivative with respect to ¿i, and the bracket is given by

[f"i, g"j] = f
"g

"¿i
"j 2 g

"f

"¿j
"i.

We have a canonical isomorphism of vector spaces W (V ) =
⊕

ng0 Sym
n(V )· V 7.

Remark 6.1. The algebra of derivations of the ring k[z, z21] of Laurent polynomials is also
sometimes referred to as the Witt algebra. We do not know of a good analogue of this Lie
algebra in the multivariate case. �

A linear map µ : W (V )·M ³ M is the same data as linear maps

a(n) : Symn+1 V ·M ³ V ·M, n g 21.

For notational simplicity, we package these together for all n g 21 into a single map

a : Sym V ·M ³ V ·M.

Fix a map a as above. We define a map

a2 : SymV · SymV ·M ³ V · V ·M

as the composition

Sym V · Sym V ·M
id·∆·id
22222³ Sym V · V · Sym V ·M

Ç·id·id
22222³ V · SymV · Sym V ·M

id·m·id
22222³ V · Sym V ·M

id·a
22³ V · V ·M,

where ∆: SymV ³ V · Sym V is the comultiplication given by f 7³
∑n

i=1 xi ·
"f

"xi
,

m : SymV · SymV ³ SymV is the multiplication map, and Ç is the usual switching
map. We define a22 = Ça2Ç .
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Proposition 6.2. Let µ and a be corresponding linear maps as above. Then µ defines a
representation of W if and only if [a1, a2] = a2 2 a22 holds as maps Sym V · Sym V ·M ³
V · V ·M .

Proof. Pick ¿³, ¿³ * Sym V and x *M . Let ·i be the exponent vector which is 1 in position
i and 0 elsewhere. Then

[a1, a2](¿
³ · ¿³ · x) =

∑

i,j

¿j · ¿i · [¿³"j , ¿
³"i]x,

and

[¿³"j , ¿
³"i] = ³j¿

³+³2·j"i 2 ³i¿
³+³2·i"j .

Next, we compute the effect of a2 via the maps it is a composition of:

¿³ · ¿³ · x 7³
∑

j

³j¿
³ · ¿j · ¿³2·j · x

7³
∑

j

³j¿j · ¿³+³2·j · x

7³
∑

i,j

³j¿j · ¿i · (¿³+³2·j"i)x.

So

a22(¿³ · ¿³ · x) =
∑

i,j

³j¿i · ¿j · (¿³+³2·j"i)x.

Hence we see that [a1, a2] = a2 2 a22. On the other hand, if [a1, a2] = a2 2 a22, then the above
calculations show that

[¿³"j , ¿
³"i]x = (¿³"j)(¿

³"i)x2 (¿³"i)(¿
³"j)x

which shows that µ defines a Lie algebra action on M . �

Definition 6.3. Given an object V of a tensor category C, we define a module over the
curried Witt algebra W (V ) to be an object M together with a map a : SymV ·M ³
V ·M such that [a1, a2] = a2 2 a22 with notation as in Proposition 6.2. �

Remark 6.4. There are several variants of the above definition one can consider. For
instance, one can consider the Lie subalgebra W+(V ) of W (V ) consisting of derivations f"i
where f has no constant term; it has a curried form W+(V ) similar to that for W (V ). One
can also define a curried algebra W (V 7) by considering maps V ·M ³ Div(V )·M . �

Proposition 6.5. Let (M, a) be a representation of W (V ). Then a(0) defines a representa-
tion of gl(V ) on M .

Proof. The restrictions of a2 and a22 to V · V ·M , respectively, are Ça
(0)
1 and Ça

(0)
2 , so the

identity [a
(0)
1 , a

(0)
2 ] = Ç(a

(0)
1 2a

(0)
2 ) follows immediately from the definition of a representation

of W (V ). �
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6.2. In species. Let M be an FB-module equipped with a map

a : Sym(V)·M ³ V ·M.

Let × be the symmetric (1, 7)-operation associated to a; by (1, 7) we mean that ×A,B = 0
unless A has cardinality 1. Explicitly, for a finite set S, a subset B of S, and x *M(S \B),
we have

a(tB · x) =
∑

i*S

ti · ×Si,B(x).

Let ³ = ×[0] and Ë = ×[1] be the simple operations associated to ×. Explicitly, for S, B,
and x as above, we have

a(tB · x) =
∑

i*B

ti · Ë
S\i
B\i(x) +

∑

i*S\B

ti · ³Si,B(x).

In general, ËSB is a map M(S \B) ³ M(S).

Proposition 6.6. With notation as above, a defines a representation of W (V) if and only
if the following conditions hold (S is a finite set and A and B are disjoint subsets of S):

(a) The operations ³ and Ë commute with themselves and each other.

(b) Let j * B and i * S \ (A *B). Then ³
S\i
j,A ç ³

S\A
i,B = ³

S\j
i,A*B\j.

(c) Let j * B. Then ³Sj,A ç Ë
S\A
B = Ë

S\j
A*B\j.

Proof. Let A and B be disjoint subsets of S and let x *M(S \ (A *B)). Then we have

a1a2(t
A · tB · x) =

∑

i*S\A

∑

j*S\i

tj · ti · ×
S\i
j,A(×

S\A
i,B (x))

a2a1(t
A · tB · x) =

∑

j*S\B

∑

i*S\j

tj · ti · ×
S\j
i,B (×

S\B
j,A (x)).

Next, we compute a2 as a composition of maps:

tA · tB · x 7³
∑

j*B

tA · tj · tB\j · x

7³
∑

j*B

tj · tA*B\j · x

7³
∑

j*B

∑

i*S\j

tj · ti · ×
S\j
i,A*B\j(x).

Similarly,

a22(tA · tB · x) =
∑

i*A

∑

j*A\i

tj · ti · ×
S\i
j,A*B\i(x).

Equating coefficients in the equation [a1, a2] = a2 2 a22 we find the following (for distinct
i, j * S):

(i) If i 6* A and j 6* B then ×
S\i
j,A ç ×

S\A
i,B = ×

S\j
i,B ç ×

S\B
j,A .

(ii) If i 6* A and j * B then ×
S\i
j,A ç ×

S\A
i,B = ×

S\j
i,A*B\j .

(iii) If i * A and j 6* B then ×
S\j
i,B ç ×

S\B
j,A = ×

S\i
j,A*B\i.

(iv) If i * A and j * B then ×
S\j
i,A*B\j = ×

S\i
j,A*B\i.
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Statement (i) is equivalent to (a); statement (ii) is equivalent to the conjunction of (b) and
(c); statement (iii) is equivalent to statement (ii); and statement (iv) is automatic. The
result follows. �

6.3. The restricted partition category. Let G = G(·) be the partition category with
parameter ·. The objects of this category are finite sets. The space HomG(S, T ) of morphisms
is the vector space spanned by partition diagrams from S to T ; such a diagram is a set-
partition of S 2 T . For the definition of composition (and additional details), see [SS4, §6].
We note that the composition law depends on the parameter ·.

A partition diagram S ³ T is called upwards if each part contains at least one element
of T and at most one element of S. The upwards partition category U is the subcategory of
G containing all objects and where HomU(S, T ) is spanned by upwards diagrams. There is
a similarly defined downwards partition category D. The intersection M of U and D is the
linearization of FB. The pair (U,D) is a triangular structure on G, see [SS4, Proposition 6.3].
(Once again, note that [SS4] works in characteristic 0, but this statement and its proof hold
in general.)

We say that a partition diagram from S to T is restricted if each part contains at most
one element of S. We define the restricted partition category Gr = Gr(·) to be the
subcategory of G with all objects and where the Hom spaces are spanned by restricted
partition diagrams. One readily verifies that this is indeed a subcategory of G. We let
Ur and Dr be the intersections of U and D with Gr. One easily verifies that (Ur,Dr) is a
triangular structure on Gr.

Suppose that M is a G-module. Restricting to FB ¢ G, we can regard M as an FB-
module. Let S be a finite set, let A be a subset of S, and let i * S \A. We have a morphism
·Si,A : S \A³ S \ i in G corresponding to the diagram in which A * {i} forms a single part,
and the remaining diagram is the identity. This induces a linear map

³Si,A : M(S \ A) ³M(S \ i).

One easily sees that ³ is a simple symmetric (1, 7)-operation on M . Similarly, we have a
morphism ·SA : S \A³ S in G in which A forms a single part and the remaining diagram is
the identity, and this induces a linear map

ËSA : M(S \ A) ³M(S).

Again, one verifies that Ë is a symmetric (0, 7)-operation on M . Using the rule for compo-
sition in G, one sees that Ã and Ë satisfy conditions (a), (b), and (c) from Proposition 6.6,
as well as the following:

(d) Let i, j * S be distinct, and put A = {j}. Then ³Si,A = (»Si,j)7.

(e) We have ËS
'
= ·.

Since the · and · morphisms generate G, we see that that the operations ³ and Ë completely
determine the G-structure onM . The following proposition shows that the above conditions
exactly characterize the operations we see in this manner:

Proposition 6.7. LetM be an FB-module equipped with a simple symmetric (1, 7)-operation
³ and a symmetric (0, 7)-operation Ë satisfying (a), (b), and (c) from Proposition 6.6 and
(d) and (e) above. Then M carries a unique Gr-structure inducing ³ and Ë.

Proof. Suppose M is given with ³ and Ë as in the statement of the proposition. We first
show how to construct a Ur-structure onM . Let × : S ³ T be a Ur-morphism corresponding
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to a partition diagram. Let B1, . . . , Br be the blocks of this diagram such that |Bi + S| = 1
and let B2

1, . . . , B
2
s be the blocks of this diagram such that |B2

i + S| = 0. Let Xi = Bi + T
and xi be the unique element of Bi + S, and let Yi = B2

i (thought of as a subset of T ). Also
set T 2 \ (Y1 * · · · * Ys). We have the factorization

× = ·
(T 2\(Xr*···*X2))2{x1}
x1,X1

· · ··
T 22{xr}
xr ,Xr

·
T\(Ys*···*Y2)
Y1

· · · ·
T\Ys
Ys21

·TYs

We define M× : M(S) ³ M(T ) by replacing each · above by Ë and each · by ³. By
(a), ³ and Ë self-commute so the order of the blocks does not affect the definition of M×.
Furthermore, since ³ and Ë commute with each other, we could have alternatively factored
× as a product of · and · in any order. This fact, together with conditions (b) and (c), say
that for any other restricted upwards partition diagram Ë : T ³ U , we have MËM× =MË×.

We can do the same to give a Dr-structure on M . This is like the above case but we only
use · such that the Xi have size at most 1. Condition (d) tells us that the restriction of
the Dr and Ur structures to FB agree with the usual FB-action, so in particular they agree
with each other.

Let U be the class of morphisms in U isomorphic to ·Si,A for some S, i, and A (with |A| > 1),

or ³SA for some S and A, and define D similarly using ·Si,'. One easily sees that U generates
U and D generates D. Thus, by Proposition 3.4, it suffices to show that (×, Ë) is compatible
for × * U and Ë * D with Ë ç × defined.

Let Ë = ·Sj,'. First suppose × = ·
S2{i}
i,A for i /* S. If j * A, then compatibility follows from

(b), and if j /* A, then compatibility follows from (a) since ³ self-commutes. Now suppose
that × = ·SA. If j * A, then compatibility follows from (c) and if j /* A, then compatibility
follows again from (a) since ³ and Ë commute with each other. �

6.4. The comparison theorem. Recall from Proposition 6.5 that ifM is a W (V)-module
then, restricting the action map to V ¢ Sym(V), we obtain a representation of gl(V) on
M . We say that M is ·-standard if this representation of gl(V) is ·-standard. We write
Rep·(W (V)) for the full subcategory of Rep(W (V)) spanned by the ·-standard representa-
tions. The following is the main result of this section:

Theorem 6.8. We have a natural isomorphism of categories:

ModGr(·)
>= Rep·(W (V)).

Proof. This follows from combining Propositions 6.6 and 6.7. We note that conditions (d)
and (e) in the latter correspond to the ·-standard condition. �

6.5. Application to FA. We now consider Gr = Gr(0) with parameter · = 0. Let FA

be the category of finite sets and all functions. A function f : T ³ S can be viewed as a
restricted partition diagram from S to T : the parts are {x}*f21(x) with x * S. Furthermore,
this identification is compatible with composition. We thus see that the linearized category
k[FAop] is equivalent to the subcategory of Gr spanned by the · morphisms. Since · = 0, the
· morphisms form an ideal of Gr, and we have a k-linear functor Gr ³ k[FAop] that kills the
· morphisms. We therefore see that an FAop-module is the same as a Gr-module in which the
· morphisms act by zero. Let Rep2

0(W (V)) be the full subcategory of Rep(W (V)) spanned
by representations that are 0-standard and in which the Ë operation vanishes. Since the ·
morphisms correspond to the Ë operation, Theorem 6.8 immediately implies the following:
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Proposition 6.9. There is a natural isomorphism of categories

ModFA
op = Rep2

0(W (V)).

Remark 6.10. Let FS be the category of finite sets and surjections. There is an analog
of the above proposition in which FAop is replaced with FSop and W (V) is replaced with
W+(V). This point of view will be pursued further in [SST]. �

7. The Weyl Lie algebra

7.1. Currying. Let (U, Ë) be a finite-dimensional symplectic space. Recall that the Weyl

algebra A = A(U) is the quotient of the tensor algebra T (U) by the 2-sided ideal generated
by the relations xy2yx = Ë(x, y) with x, y * U . We define the Weyl Lie algebra, denoted
a = a(U), to be the Lie algebra of this associative algebra. Thus a = A as a vector space,
and the bracket in a is the commutator bracket in A. Note that a-modules are vastly more
complicated than A-modules; indeed an a-module is the same as a module over the universal
enveloping algebra U(a), which is much larger than A.

Let V be a finite-dimensional vector space, and let a = a(V · V 7), where we regard
U = V · V 7 as a symplectic space in the usual manner. As a vector space, we have
a = Sym(V · V 7). We thus see that, for a vector space M , giving a map

µ : a·M ³M

is equivalent to giving maps

µr,s : Symr(V )· Syms(V 7)·M ³M

for all r, s * N, which, in turn, is equivalent to giving maps

ar,s : Symr(V )·M ³ Divs(V )·M

for all r, s * N. We assume for simplicity, that for f * Symr(V ) and x * M we have
ar,s(f · x) = 0 for all but finitely many s; this will automatically hold in the main case of
interest to us. We can therefore package the ar,s’s into a single map

a : Sym(V )·M ³ Div(V )·M.

Given a map a as above, we define a2 to be the composition in the following diagram (set
S = Sym(V ) and D = Div(V )):

S · S ·M
id·∆·id

//

a2

��

S · S · S ·M
Ç·id·id

// S · S · S ·M
id·m·id

// S · S ·M

id·a
��

D ·D ·M D ·D ·D ·M
m·id·id

oo S ·D ·D ·M
avg·id·id·id

oo S ·D ·M
id·∆·id

oo

Here m and ∆ are multiplication and comultiplication, Ç is the symmetry of the tensor
product, and avg : S ³ D is the averaging map. We define a22 = Ç1,2a

2Ç1,2.

Proposition 7.1. Let µ and a be corresponding linear maps as above. Then µ defines a
representation of a if and only if [a1, a2] = a2 2 a22.

Proof. Let ¿1, . . . , ¿n be a basis for V and let ·1, . . . , ·n be the dual basis for V 7. We iden-
tify Sym(V ) with the polynomial ring k[¿1, . . . , ¿n], and Sym(V 7) with the polynomial ring
k[·1, . . . , ·n]. For an exponent vector ³ * Nn, we let ¿³ be the monomial ¿³1

1 · · · ¿³n
n . We

also define the divided power ¿[³] = ¿α

³!
, where ³! = (³1!) · · · (³n!). We define ·³ and ·[³]



28 STEVEN V SAM AND ANDREW SNOWDEN

similarly. For 1 f i f n, we let ·i * Nn be the exponent vector that is 1 in the ith coordinate
and 0 elsewhere.

The identity map Symr(V 7) ³ Symr(V 7) curries to the map k ³ Divr(V ) · Symr(V 7)
taking 1 to

∑

|Ã|=r ¿
[Ã] · ·Ã. It follows that we have

a(¿³ · x) =
∑

Ã

¿[Ã] · ¿³·Ãx,

where the sum is over all exponent vectors, and ¿³·Ã is regarded as an element of a. As
usual, we thus have

[a1, a2](¿
³ · ¿³ · x) =

∑

Ã,Ç

¿[Ã] · ¿[Ç ] · [¿³·Ã, ¿³·Ç ]x.

Now, in the Weyl algebra A we have

·ri ¿
s
i =

∑

ëi*N

(

r

ëi

)(

s

ëi

)

ëi! · ¿
s2ëi
i ·r2ëii ,

and so

[¿³·Ã, ¿³·Ç ] =
∑

ë*Nn

((

³

ë

)(

Ã

ë

)

2

(

³

ë

)(

Ç

ë

))

ë! · ¿³+³2ë·Ã+Ç2ë,

where
(

³

ë

)

=
∏n

i=1

(

³i

ëi

)

and ë! =
∏n

i=1 ëi!. Thus, we have

[a1, a2](¿
³ · ¿³ · x) =

∑

Ã,Ç,ë

((

³

ë

)(

Ã

ë

)

2

(

³

ë

)(

Ç

ë

))

ë! · ¿[Ã] · ¿[Ç ] · ¿³+³2ë·Ã+Ç2ëx.

We now compute a2(¿³ · ¿³ · x). The map a2 is defined as the composition of seven maps.
The effect of each is worked out in turn in the following derivation

¿³ · ¿³ · x 7³
∑

ë

(

³

ë

)

¿³ · ¿ë · ¿³2ë · x

7³
∑

ë

(

³

ë

)

¿ë · ¿³ · ¿³2ë · x

7³
∑

ë

(

³

ë

)

¿ë · ¿³+³2ë · x

7³
∑

ë,Ã

(

³

ë

)

¿ë · ¿[Ã] · ¿³+³2ë·Ãx

7³
∑

ë,¿,µ

(

³

ë

)

¿ë · ¿[¿] · ¿[µ] · ¿³+³2ë·¿+µx

7³
∑

ë,¿,µ

(

³

ë

)

ë! · ¿[ë] · ¿[¿] · ¿[µ] · ¿³+³2ë·¿+µx

7³
∑

ë,¿,µ

(

³

ë

)(

ë+ ¿

ë

)

ë! · ¿[ë+¿] · ¿[µ] · ¿³+³2ë·¿+µx
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=
∑

ë,Ã,Ç

(

³

ë

)(

Ã

ë

)

ë! · ¿[Ã] · ¿[Ç ] · ¿³+³2ë·Ã+Ç2ëx.

We thus see that a2 gives the first term in [a1, a2]. A similar computation shows that a22 gives
the second, which completes the proof. �

Definition 7.2. Let C be a tensor category and let V be an object of C. We define the
curried Weyl Lie algebra a(V · V 7) as follows. A representation of a(V · V 7) is an
object M of C equipped with maps

an,m : Symn(V )·M ³ Divm(V )·M

for all n,m g 0, such that [a1, a2] = a2 2 a22, where a2 and a22 are defined as in the previous
section. �

Proposition 7.3. Let V be an object of C and let (M,³) be a representation of a(V · V 7).
Let a be the composition

Sym(V )·M
³

// Div(V )·M
Ã·id

// V ·M

where the second map comes from the projection Ã : Div(V ) ³ V . Then a is a representation
of the curried Witt algebra W (V ). In particular, the composition

V ·M // Sym(V )·M
³

// Div(V )·M // V ·M

is a representation of gl(V ).

Proof. First, we have

[a1, a2] = (Ã · Ã · id) ç [³1, ³2].

Second, a2 is equal to the following composition:

Sym V · Sym V ·M
id·∆·id
22222³ Sym V · Sym V · Sym V ·M

Ç·id·id
22222³ Sym V · Sym V · Sym V ·M

id·m·id
22222³ SymV · SymV ·M

id·³
222³ Sym V · Div V ·M

Ã·Ã·id
2222³ V · V ·M.

The first four maps agree with the first four maps of the definition of ³2. It is straightforward
to verify that the map

Ã · Ã · id : Sym V · Div V ·M ³ V · V ·M

agrees with the composition

SymV ·Div V ·M
id·∆·id
22222³ Sym V · Div V ·Div V ·M

avg·id·id·id
22222222³ Div V · Div V ·Div V ·M

id·m·id
22222³ Div V · Div V ·M

Ã·Ã·id
2222³ V · V ·M.
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In particular, we have a1 = (Ã · Ã · id) ç ³1 and by applying Ç , we conclude that a2 =
(Ã · Ã · id) ç ³2. This means [a1, a2] = a2 2 a22 is a result of applying (Ã · Ã · id) to the
identity [³1, ³2] = ³2 2 ³22. �

7.2. In species. Let M be an FB-module and consider a map

a : Sym(V)·M ³ Sym(V)·M.

Let × be the corresponding symmetric operation on M . Thus if S is a finite set, B is a
subset of S, and x is an element of M(S \B), then

a(tB · x) =
∑

A¦S

tA · ×SA,B(x).

We consider the following conditions on ×. Let A, B, C, and D be subsets of a finite set S,
with A + B = ' and C +D = '.

(B1) If A + C = B +D = ' then

×
S\C
D,A ç ×

S\A
C,B = ×

S\D
C,B ç ×

S\B
D,A .

In other words, × commutes with itself.
(B2) If A + C = ' and B +D 6= ' then

×
S\C
D,A ç ×

S\A
C,B =

∑

X¦B+D
X 6='

×
S\X
(D\X)*C,A*(B\X).

We remark that there is also a version of this condition if A+C 6= ' and B+D = ';
however, since the above condition holds for all choices of A,B and C,D and they
play symmetric roles, we omit listing it separately as it is actually redundant.

(B3) If A + C 6= ' and B +D 6= ' then
∑

X¦B+D

×
S\X
(D\X)*C,A*(B\X) =

∑

X¦A+C

×
S\X
(C\X)*D,B*(A\X).

We then have the result:

Proposition 7.4. The map a defines a representation of a(V · V7) if and only if the
operation × satisfies (B1), (B2), and (B3).

Proof. Let A and B be disjoint subsets of S and let x *M(S \ (A *B)). Then

a1(a2(t
A · tB · x)) =

∑

C2D¦S
A+C='

t[D] · t[C] · ×
S\C
D,A(×

S\A
C,B (x)),

a2(a1(t
A · tB · x)) =

∑

C2D¦S
B+D='

t[D] · t[C] · ×
S\D
C,B (×

S\B
D,A(x)),

a2(tA · tB · x) =
∑

C2D¦S

∑

X¦B+D

t[D] · t[C] · ×
S\X
(D\X)*C,A*(B\X)(x),

a22(tA · tB · x) =
∑

C2D¦S

∑

X¦A+C

t[D] · t[C] · ×
S\X
(C\X)*D,B*(A\X)(x).

Equating coefficients, one sees that [a1, a2] = a2 2 a22 if and only if (B1), (B2), and (B3)
hold. �
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Recall that a symmetric operation × corresponds to a sequence (×[n])ng0 of simple sym-

metric operations. The correspondence is given by ×[n]SA,B = ×
S2[n]
A2[n],B2[n]. We now wish

to translate the conditions (B1), (B2), and (B3) to the ×[n]. We begin with the following
observation:

Proposition 7.5. Condition (B3) is equivalent to the following condition:

(B32) We have ×[n] = (21)n+1×[1] for all n g 1.

Proof. Suppose (B3) holds. Let P and Q be disjoint subsets of a set S. Let r g 0 and put

S̃ = S 2 {i1, . . . , ir, j1, j2, k}

where the i’s, j’s, and k are distinct from each other and all elements of S. Put

A = Q * {i1, . . . , ir, k}, B = {j1, j2}, C = P * {k}, D = {i1, . . . , ir, j1, j2}.

We have
∑

X¦B+D

×
S̃\X
(D\X)*C,A*(B\X) = ×[r + 3]SP,Q + 2×[r + 2]SP,Q + ×[r + 1]SP,Q

∑

X¦A+C

×
S̃\X
D*(C\X),(A\X)*B = ×[r + 3]SP,Q + ×[r + 2]SP,Q.

By (B3), the above two expressions are equal. We thus find

×[r + 2] = 2×[r + 1].

As this holds for all r g 0, we find ×[n] = (21)n+1×[1] for n g 1, and so (B32) holds.
Now suppose (B32) holds. This implies

×S2YP2Y,Q2Y = (21)#Y ×SP,Q

provided that P andQ are not disjoint. Let A, B, C, andD be as in (B3). Putm = #(B+D),
and suppose X is a subset of B + D of size k. Then applying the above equation with
Y = (B +D) \X , we find

×
S\X
(D\X)*C,A*(B\X) = (21)m2k×

S\(B*D)
(D\B)*C,A*(B\D) = 0.

Note that A + C 6= ' since we are in the setting of (B3). It follows that

∑

X¦B+D

×
S\X
(D\X)*C,A*(B\X) =

m
∑

k=0

(

m

k

)

(21)m2k×
S\(B*D)
(D\B)*C,A*(B\D) = 0.

Similarly, the other sum in (B3) vanishes, and so (B3) holds. �

The above proposition shows that we just need to understand the operations ×[0] and ×[1].
To this end, we introduce some notation. Let BM denote the set of symmetric operations
× on M satisfying (B1), (B2), and (B3), and let CM denote the set of pairs (³, Ë) of simple
symmetric operations on M satisfying the following conditions (C1) and (C2). In what
follows, A, B, C, and D are subsets of a finite set S.

(C1) The operations ³ and Ë commute with themselves and each other. Precisely, assuming
that A, B, C and D are pairwise disjoint, we have

³
S\C
D,A ç Ë

S\A
C,B = Ë

S\D
C,B ç ³

S\B
D,A ,

and similarly with Ë replaced by ³, or ³ replaced by Ë.
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(C2) Suppose B +D 6= ', but all other pairs disjoint. Put

³1 = ³
S\C
D,A ³2 = ³

S\A
C,B ³3 = ³

S\(B+D)
C*(D\B),A*(B\D)

Ë1 = Ë
S\C
D,A Ë2 = Ë

S\A
C,B Ë3 = Ë

S\(B+D)
C*(D\B),A*(B\D)

and let m = #(B +D). Then

³1³2 = ³3, ³1Ë1 = ³2Ë1 = 0, Ë1Ë2 = (21)m+1Ë3.

We now have the following:

Proposition 7.6. We have a bijection

Θ: BM ³ CM , × 7³ (×[0] + ×[1],2×[1]).

The inverse to Θ can be described as follows: × = Θ21(³, Ë) is the unique symmetric oper-
ation on M satisfying ×[0] = ³ + Ë and ×[n] = (21)nË for n g 1.

We first prove a lemma.

Lemma 7.7. Suppose that × satisfies (B3). Then (B2) is equivalent to the following condi-
tion:

(B22) Let A, B, C, and D be subsets of a finite set S such that B + D 6= ', but all other
pairs are disjoint. Put m = #(B +D). Then we have

×[0]
S\C
D,A ç ×[0]

S\A
C,B = ×[0]

S\(B+D)
(D\B)*C,A*(B\D) + (1 + (21)m)×[1]

S\(B+D)
(D\B)*C,A*(B\D),

×[p]
S\C
D,A ç ×[q]

S\A
C,B = (21)p+q+m×[1]

S\(B+D)
(D\B)*C,A*(B\D),

where in the second equation p and q are non-negative and not both zero.

Proof. Suppose × satisfies (B2). Let A, B, C, and D be as above. Let P and Q be sets
disjoint from each other and from S of cardinalities p and q. Put

S 2 = S * P *Q, A2 = A * P, B2 = B *Q, C 2 = C *Q, D2 = D * P.

Let m = #(B +D). Applying (B2) to the prime sets, we find

×[p]
S\C
D,A ç ×[q]

S\A
C,B =

m
∑

k=1

(

m

k

)

×[p+ q +m2 k]
S\(B+D)
(D\B)*C,A*(B\D).

Now, if p + q > 0 then by (B32) ×[p + q +m 2 k] = (21)p+q+m2k+1×[1], and we obtain the
second equation in (B22). If p+ q = 0 then (B32) only gives this identity for 0 f k < m, and
so the final term in the above sum must be handled differently; this gives the first equation
in (B22). Thus (B22) holds. The same reasoning yields the reverse implication. �

Proof of Proposition 7.6. Let × * BM be given, and put ³ = ×[0] + ×[1] and Ë = 2×[1].
Condition (C1) follows immediately from (B1). We now examine condition (C2); use the
notation from there. Translating (B22) to this notation gives

(³1 + Ë1)(³2 + Ë2) = (³3 + Ë3)2 (1 + (21)m)Ë3,

(³1 + Ë1)Ë2 = (21)m+1Ë3,

Ë1(³2 + Ë2) = (21)m+1Ë3,

Ë1Ë2 = (21)m+1Ë3.
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Here the first equation is the first equation from (B22), while the final three equations come
from taking (p, q) to be (0, 1), (1, 0), and (1, 1) in (B22). One easily sees that the above
equations yield those from (C2). Thus (³, Ë) belongs to CM . The above reasoning is re-
versible. �

7.3. The partition category. Let P = P(·) be the partition category with parameter ·
(see §6.3). Suppose thatM is aP-module. ThenM restricts to an FB-module. Given a finite
set S and disjoint subsets A and B such that at least one is non-empty, let ·SA,B : S\B ³ S\A
be the morphism in P in which A * B forms a single block, and the remaining diagram is
the identity. By convention, ·S

',' = · · idS. Let

³SA,B : M(S \B) ³ M(S \ A)

be the induced map. One easily sees that Ã is a simple symmetric operation on M . Using
the rule for composition in P, we find that the following conditions hold:

(D1) ³ commutes with itself in the sense of (C1).
(D2) We have ³1³2 = ³3 in the notation of (C2).
(D3) ³S

',' = · for all finite sets S.

(D4) For distinct elements i, j * S, we have ³S{i},{j} = (»Si,j)7.

Proposition 7.8. Let M be an FB-module equipped with a simple symmetric operation Ã
satisfying the above conditions. Then M carries a unique P-structure inducing Ã.

Proof. First, we use ³ to construct U and D-structures on M . The operation ³ gives, by
restriction, a simple (1, 7)-operation and a simple (0, 7)-operation. We can use these to
define an action of the upwards restricted partition category Ur on M as in the proof of
Proposition 6.7, and we note that Ur = U. Similarly, we get, by restriction, a simple (7, 1)-
operation and a simple (7, 0)-operation which gives a D-structure on M . (D4) tells us that
the restriction of the D and U structures to FB agree with the usual FB-action, so in
particular they agree with each other.

Let U be the class of morphisms in U isomorphic to ·SA,B for some S, A, and B with

|A| f 1, and define D similarly using ·SA,B with |B| f 1. One easily sees that U generates U
and D generates D. Thus, by Proposition 3.4, it suffices to show that (×, Ë) is compatible
for × * U and Ë * D with Ë ç × defined.

Let A,B,C,D be subsets of S such that |C| f 1 and |A| f 1 and all pairs of subsets are

disjoint, except possibly B and D. We set × = ·
S\A
C,B and Ë = ·

S\C
D,A . If B + D = ', then

compatibility follows from (D1), i.e., the condition that ³ is self-commuting. Otherwise,
suppose that B+D 6= '. Then compatibility follows from (D2) if at least one of C* (D \B)
and A * (B \D) is non-empty. If both are empty, then we also need to use (D3). �

Suppose that C and D are two k-linear categories whose objects are finite sets and which
contain all bijections. We define a new k-linear category C æD whose objects are finite sets
as follows. The Hom spaces are defined by

HomCæD(S, T ) =
⊕

S=S1¶S2
T=T1¶T2

HomC(S1, T1)· HomD(S2, T2).

Suppose that S ³ T and T ³ U are morphisms in C æD corresponding to decompositions
S = S1 ¶ S2 and T = T1 ¶ T2, and T = T 2

1 ¶ T
2
2 and U = U1 ¶ U2. If T1 = T 2

1 and T2 = T 2
2

the composition is defined in the obvious manner, using the composition laws in C and D;
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otherwise, the composition is defined to be 0. We have a functor FB ³ C æ D that is the
identity on objects and takes a bijection × : S ³ T to

∑

S=S1¶S2

(× : S1 ³ ×(S1))· (× : S2 ³ ×(S2)).

In particular, the identity morphism of S in C æ D is
∑

S=A¶B idC,A · idD,B. There is no
natural functor C ³ C æD (the obvious attempt does not preserve identity morphisms), but
there is a natural functor C æ D ³ C which kills all morphisms in D. Similarly, there is a
natural functor C æD ³ D which kills all morphisms in C. We will apply this construction
with C = P(·) and D = P(ë) below.

7.4. The comparison theorem. Let M be an a(V · V7)-module. We say that M is ·-
standard if its restriction to gl(V ) (see Proposition 7.3) is ·-standard. We say that M has
central character Ç * k if the composition

M ³ Sym(V )·M ³ Div(V )·M ³M

is Ç times the identity, where the first map is the natural isomorphism M ³ Sym0(V )·M
followed by the inclusion into Sym(V )·M while the second map is the projection Div(V )·
M ³ Div0(V )·M followed by the natural isomorphism with M .

We let RepÇ· (a(V · V7)) be the full subcategory of a(V · V7) spanned by ·-standard
modules with central character Ç.

Theorem 7.9. We have an equivalence of categories

Rep·2ëë (a(V ·V7)) = Rep(P(·) æP(ë)).

Proof. Let M be a representation of P(·) æ P(ë). Then M restricts to an FB-module via
the functor FB ³ P(·) æP(ë) defined above. Let S be a finite set with disjoint subsets A
and B. If A * B 6= ', we define

³SA,B : M(S \B) ³ M(S \ A)

using the morphism in P(·) æ P(ë) that is the identity on S \ (A * B) and the morphism
A³ B in P(·) given by a single block. We define ³S

',' to be · times the identity on M(S).
Similarly, if A * B 6= ', we define

ËSA,B : M(S \B) ³M(S \ A)

to be (21)|A|+1 times the morphism which is the identity on S \ (A *B) and the morphism
A ³ B in P(ë), and we define ³S

',' to be 2ë times the identity on M(S). It follows
from the above discussion that ³ and Ë satisfy conditions (C1) and (C2) and thus define a
representation of a(V · V 7) on M .

Let × * BM be the operation associated to (³, Ë). Thus ×[0] = ³ + Ë and ×[1] = 2Ë.
We have

×S
',' = ³S

',' + ËS
',' = · 2 ë

and so we see that M has central character · 2 ë. Let i, j * S. For i = j, we have

×Si,i = ×[1]
S\x
',' = ë.

For i 6= j, we have

×Si,j = ³Si,j + ËSi,j = (»Si,j)7,
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where »Si,j : S\j ³ S\i is the natural bijection; the second equality follows from the definition
of the FB-structure on M . We thus see that the gl(V )-module structure on M is given by

ti · x 7³ ëx+
∑

j 6=i

tj · (»Si,j)7(x)

where x *M(S \ i). Hence the action is ë-standard. �

Let Rep·(a(V·V7))2 be the full subcategory of Rep(a(V·V7)) spanned by representations
that have central character ·, are 0-standard, and for which the Ë operations vanish.

Corollary 7.10. We have a natural isomorphism of categories

Rep·(a(V ·V7))2 >= Rep(P(·)).

8. Abstract curried algebras

8.1. The definition. We have defined the notion of representation for several curried al-
gebras. However, we have not given a general definition of curried algebra. We now briefly
(and informally) give such a definition. It would be interesting to explore this idea in more
detail.

Let C be a symmetric monoidal k-linear category. We assume that the monoidal structure
· is k-bilinear. Let M be an object of C. Given two other objects V and W of C, a
(V,W )-operation on M is a map

a : V ·M ³W ·M.

Intuitively, giving a curried algebra should amount to giving some (V,W )-operations (for
various V and W ) satisfying some relations. “Relations” will mean that certain operations
built out of these operations vanish. Given a (V,W )-operation a, there are four ways to
build new operations:

(a) Tensor with an arbitrary object X to obtain an (X · V,X ·W )-operation:

X · V ·M
id·a

// X ·W ·M.

(b) Pre-compose with a morphism f : V 2 ³ V and post-compose with a morphism
g : W ³ W 2 to obtain a (V 2,W 2)-operation:

V 2 ·M
f·id

// V ·M
a

// W ·M
g·id

// W 2 ·M.

(c) Given a (U, V )-operation b, compose to obtain a (U,W )-operation:

U ·M
b

// V ·M
a

// W ·M.

(d) Given a finite collection of (V,W )-operations {ai}, any k-linear combination
∑

i »iai
is also a (V,W )-operation.

This suggests the following definition:

Definition 8.1. A curried algebra A in C consists of the following primary data:

" For each pair of objects (V,W ) in C, a k-vector space A(V,W ). This is called the
space of (V,W )-operations in A. For V = W , there is a distinguished “identity
operation” in A(V, V ).

Additionally, we require the following operations on A:
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(a) For objects V , W , and X , a k-linear map A(V,W ) ³ A(X · V,X ·W ).
(b) For morphisms V 2 ³ V and W ³W 2, a k-linear map A(V,W ) ³ A(V 2,W 2).
(c) For objects U , V , and W , A k-linear map A(U, V )·A(V,W ) ³ A(U,W ).

A number of conditions should hold (that we do not specify). �

Remark 8.2. Let A be a curried algebra in C. One can then define a k-linear category D

with the same objects as C and with HomD(V,W ) = A(V,W ). Composition is given by the
operation in (c). The operations in (a) and (b) define an action of the monoidal category C

on D, i.e., a functor C×D ³ D satisfying certain conditions. In fact, giving A is equivalent
to giving D (together with this action), and so one can view curried algebras as certain kinds
of categories. �

8.2. Constructions. Assuming C satisfies some mild conditions, there are two general con-
structions of curried algebras:

" Given a collection {(Vi,Wi)}i*I of pairs of objects in C, there is a free curried algebra
containing a distinguished (Vi,Wi)-operation for each i * I.

" Given a curried algebra A and a collection of elements {xi * A(Vi,Wi)}i*I , there is a
quotient curried algebra B in which each xi maps to 0 (and which is universal subject
to this).

These two constructions allow one to build curried algebras by generators and relations.
For instance, one can build the curried algebra gl(V ) by taking the free curried algebra on a
single (V, V )-operation a and quotienting by the (V ·V, V ·V )-operation [a1, a2]2Ç(a12a2).

There is one additional important construction of curried algebras. Let M be an object
of C. We define the endomorphism curried algebra of M , denoted EM , by

EM(V,W ) = HomC(V ·M,W ·M).

If A is an arbitrary curried algebra, then a representation of A on M is a homomorphism
of curried algebras A ³ M . The representations of various curried algebras that we have
discussed above all fit into this general framework.

8.3. Diagram categories. We have seen several examples of diagram categories in this
paper, such as the Brauer category and the partition category. We now propose a precise
definition of “diagram category.”

To motivate the definition, suppose that G is one of the familiar k-linear diagram cate-
gories, such as the Brauer category. In particular, the objects of G are finite sets. If T is a
finite set, then there is a functor G ³ G given on objects by S 7³ S2T . On morphisms, this
functor corresponds to adding vertices indexed by T to the source and target, and connect-
ing these vertices by lines. In other words, we see that G admits an action by the monoidal
category FB. We now give our definition:

Definition 8.3. A diagram category is a k-linear category whose objects are finite sets
equipped with a k-linear action by the monoidal category FB that lifts disjoint union. �

Note that a diagram category in the above sense is just a curried algebra in FB, from
the point of view of Remark 8.2 (with the caveat that FB is not a k-linear category). The
point of this paper can now be rephrased as follows: for many diagrams categories G, we
associated a curried algebra A in ModFB such that G-modules and A-modules coincide.
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