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Abstract

Leaf senescence is a complex biological process regulated by development, phytohormones, and various environmental factors. For forage and
turf grasses, controlling leaf senescence can greatly improve forage quality, the amenity of lawn and turf, and the grasses’ stress tolerances. Leaf
senescence involves a multitude of gene regulation and metabolic changes, including the alteration of chlorophyll metabolism. Here, we
summarized the recent progress of studies on leaf senescence in major forage and turf grass species, such as Medicago truncatula, M. sativa,
Lolium perenne, Panicum virgatum, and Agrostis stolonifera, to provide an insight into the development of effective methods for delaying leaf

senescence in grass species.
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A diagram under leaf senescence

For forage and turf grass species, regulation of leaf senes-
cence has a significant impact on both the biomass yield and
quality of forages and the amenity of turfgrasses. Preventing or
delaying precocious leaf senescence is important to improve
forage yield, enhance forage quality, and maintain a long-term
green lawn and turf. Leaves are the primary photosynthetic
organs sustaining the energy supply in plants. Senescence is
the final stage of leaf growth and development. It involves the
degradation of chlorophyll (Chl), carbohydrates, fats, proteins,
and nucleic acids and the remobilization of organic and inor-
ganic nutrients to newly developed tissues and storage organs
within the same plant('l. In agricultural production, precocious
leaf senescence causes a decrease in crop photosynthetic effi-
ciency and yield23!,

Multiple endogenous and external factors influence the
progression of leaf senescence, such as plant and leaf age,
growth and development, plant hormones, light, drought, salt
stress, pathogen infection, and herbivore attacks. When the
environment is unfavorable for plants, nutrients are transferred
from old leaves to new leaves, seeds, and other sink organs
(e.g., stolons/rhizomes/shoot crowns) to sustain their survival.
Therefore, the progression of leaf senescence is rarely at a con-
stant speed but rather a complex and ever-changing process.
The occurrence of various interactions among the developmen-
tal processes of leaf senescence, growth of the whole plant,
plant reproduction, and environmental adaptation under-
scores the importance of leaf senescence in the overall life cycle
of plantstl.

Color changes in leaves are the most remarkable sign of leaf
senescence. With the gradual degradation of Chl and accumu-
lation of carotenoids and anthocyanins, leaf color transitions
from green to yellow or red. In the early stages of leaf
senescence, the chloroplast membrane is damaged; however,
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the chloroplast size remains unchanged, whereas in the later
stages, chloroplasts rapidly decrease in size, and the thylakoid
membranes disintegrate. Through intracellular autophagy, the
damaged chloroplasts collapse and are then transported to
vacuoles for further breakdown by hydrolasest®. As the cells
progress from senescence to death, they still require energy to
sustain their activities. In the early stages of senescence, cellu-
lar energy depends on the mitochondrial supply because of Chl
degradation and reduced photosynthesis. Therefore, mito-
chondria remain intact during the later stages of senescence,
thereby maintaining their ability to provide energy to cells. In
leaves, up to 70% of the total nitrogen content are in chloro-
plasts. During leaf senescence, proteins in chloroplasts degrade
to amino acids that are redistributed to other plant organs to
enhance nitrogen use efficiency®l. The selective catabolism of
amino and fatty acids supplements a-ketoglutarate and gluta-
mate in cells, providing a carbon chain for nitrogen remobiliza-
tion, which facilitates nitrogen transport in aging leaves!l.

From the perspective of molecular genetics, leaf senescence
involves chromatin remodeling, DNA transcription, and post-
transcriptional, translational, and post-translational fine-tuning
mechanisms. For example, the regulation of chromatin encom-
passes nucleosome assembly, disassembly, and rearrangement,
DNA methylation, and post-translational covalent modifica-
tions of histones (including acetylation, ubiquitination, methy-
lation, phosphorylation, and overall acylation), which together
influence the gene expression of specific or groups of senes-
cence-associated genes (SAGs)E-12],

External factors impacting grass leaf
senescence

For grasses used for forage and turf purposes, both external
abiotic (e.g., light, atmosphere, temperature, soil, water, and
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mowing, etc.) and biotic factors (e.g., animal feeding, tramping,
pathogen, and insect attacks) impact the progress of leaf sene-
scence.

Light

For plants, light serves as both an energy source and a crucial
signal for growth and stress responsel’3l, Dense planting or
shading by neighboring plants can alter the intensity and qua-
lity of light, leading to changes in plant growth patterns and
hastening leaf senescencel’. Prolonged exposure to low-light
conditions has a negative impact on turfgrass, inducing leaf
senescence, and ultimately affecting plant growth and overall
turf qualityl>),

Atmospheric pollution and elevated CO, level

Tropospheric ozone, also known as ground-level ozone (O5),
is a significant air pollutant in the lower boundary layers.
Prolonged exposure to high levels of O; imposes detrimental
effects on photosynthesis and carbon allocation, causing pre-
mature leaf senescence and ultimately lower grass yield and
qualityl'671, Despite efforts to control anthropogenic emis-
sions, additional sources and factors can also contribute to
increasing O; levelsl'8l. For example, increased O; exposure
triggers senescence in Briza maxima leaves, resulting in a
higher ratio of senescent to green biomass, increased fiber
content (particularly lignin concentration), and nutritive value
for herbivores!’. Alfalfa (Medicago sativa) varieties with a
slower rate of leaf senescence were found to have greater tole-
rance to 0520,

An increase in atmospheric CO, is the primary cause of
global climate change. Over the past century, the rate of CO,
accumulation has steadily increased because of land cover
changes and fossil fuel combustion2'l, Elevated CO, (eCO,)
could have positive effects on plants, including an increased
CN ratio, production of secondary metabolites, and higher
phytohormone concentrations(?2. eCO, extends the lifespan of
forages during autumn, resulting in an extended growing
season and higher biomass yield2324, However, eCO, also
adversely affects the nutritional quality of crops and seeds[?2.
Similar changes have been observed in grasses, whereby
increased levels of CO, enhance grass productivity at the cost
of decreased nutritional quality of the grasses with higher
lignin but lower protein contents!2>l,

High temperature

Greenhouse gas emissions are increasing the average air
temperature such that the global mean annual temperatures
are predicted to rise 0.3-4.8 °C by the year 2,100 with more
frequent and severe heat waves(?0l. Elevated temperature
benefits the early growth stages of annual crops; however, it
also leads to early leaf senescence before the final harvest. For
example, the increased temperatures enhance leaf photosyn-
thesis and the above-ground biomass of reed canary grass
(Phalaris arundinacea) in the early growing stage but even-
tually result in early senescence and lower biomass at the end
of the growing season?7:28], Furthermore, severe heat stress
cause Chl degradation and severe membrane lipid peroxida-
tion, accelerating leaf senescencel293%,

Soil water content

Limited soil water availability is the main cause of drought
stress on plantsB'l, Grasses grown under drought conditions
show a rapid decline in fresh biomass, leaf water potential, and
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Chl levels, which is normally coupled with early initiation of
senescencel3233], Grasses exhibiting prolonged greenness in
arid and semi-arid habitats often display high resilience to
droughtB341,

Extremely high soil water content often caused by flooding is
associated with low soil oxygen content that imposes disrup-
tive stress on most land plants!®. For lowland-grown grasses,
the recovery ability from submergence is directly associated
with the maintenance of green photosynthetically active
leaves. Water-logging-intolerant grasses, such as Dactylis glom-
erata L. and Bromus catharticus Vahl, exhibit premature leaf
senescence and persistent partial stomatal closure during
recovery, whereas flood-tolerant species Phalaris aquatica L.
maintains leaf greenness and stomatal conductance during
recovery!36l,

Saline-alkali and toxic metal

The worldwide area of saline-alkali land is approximately 0.34
% 109 ha. Soil salinization reduces soil fertility, adversely affects
plant productivity, growth, and development and damages
agricultural productivity and ecosystem diversity!>’), Premature
leaf yellowing is a significant symptom in M. truncatula under
salt or alkali stress[38:39),

High toxic heavy metal content in top soils due to mining,
exhaustion emissions, sewage irrigation, and other activities is
another plant abiotic stress factor“?l, When Miscanthus x gigan-
teus is planted in soil contaminated with Pb, Cu, or Zn, its leaves
show decreases in the photosynthetic rate and total photosyn-
thetic capacity, noticeable precocious leaf senescence, and
reduction in the plant's growth rate and biomass yield“'l,

Fungi and bacteria

Plants, along with their associated microbiomes, operate as
intricate, multispecies organisms. These associations give them
mutual benefits in most cases; however, once pathogenic
microbes are dominant, plants often die fast or senesce
early, For example, the necrotrophic pathogen Phoma
medicaginis var. medicaginis causes alfalfa to develop black
spring stems and leaf spots. The symptoms of this infection
include black spots on the leaves that later turn yellow3, In
some cases, certain symbiotic bacteria like Clavicipitaceae
(specifically, Claviceps purpurea) form mutualistic relationships
with drunken horse grass (Achnatherum inebrians). These
microbes can prolong the life cycle of leaves, enhance the acti-
vity of enzymes, such as superoxide dismutase, peroxidase, and
catalase, and augment proline contents. Additionally, these
bacteria reduce malondialdehyde contents while increasing the
Chl content and photosynthetic rate in leaves*, Additionally,
treating alfalfa with exogenous PopW, a harpin protein derived
from Ralstonia solanacearum, improves its drought tolerance
with altered endogenous hormone levels and expression of
genes related to drought stress and leaf senescencel*l.

Turf and grassland management

Effective management techniques, such as fertilization, irri-
gation, mowing, and grazing management, can significantly
postpone the leaf senescence of forage and turf grasses[#6-501,
For example, removing switchgrass panicles can help the grass
maintain higher Chl content, photosynthetic efficiency, and
activity of key enzymes, such as phosphoenolpyruvate carboxy-
lase and ribulose-1,5-diphosphate carboxylase. This process
also increases the content of important plant hormones, like
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zeatin nucleosides, gibberellins, and indoleacetic acid in flag
leaves, thereby delaying leaf senescencel>'l,

Leaf SAGs in forage grasses

In recent years, a number of leaf SAGs were cloned and func-
tionally characterized in forage and turf grass. Here, we summa-
rize SAGs cloned from two leguminous and three grass species
in the Poaceae family.

Medicago truncatula

Alfalfa is an allogamous, autotetraploid plant with a complex
genetic background. M. truncatula is a diploid, self-fertile plant
closely related to alfalfa and has been used as the leguminous
model plant. According to the comparative transcriptomic
data, a total of 545 SAGs were identified from naturally senes-
cent leavesl52531 and up to 1546 SAGs from salt stress-, alkali
stress-, and dark-induced leaf senescencel3839. During leaf
senescence, Chl degradation is coupled with the remobiliza-
tion of nutrients in leaves. The deletion of the gene STAYGREEN
(SGR, encoding a Chl a catabolic enzyme) in M. truncatula
enables the plant to maintain its green leaves and retain a
significant amount of Chl during senescence. Furthermore, the
induced expression of the MtSGR gene has been observed in
leaf senescence caused by various stresses3839,53,54],

In M. truncatula, mutation of the tyrosyl-DNA phosphodi-
esterase | (MtTdpla) gene leads to early leaf senescence. The
MtTdp1 protein has two isoforms, MtTdp1a (Medtr7g050860)
and MtTdp18 (Medtr8g095490)55.. Transcriptome analysis
reveals that the MtTdp1a downstream genes encompass multi-
ple SAGs, including the MtSGR and SAG101 (an orthologue of
Arabidopsis SENESCENCE-RELATED GENE 1 [SRGT]). Silencing the
MtTdpla gene leads to an upregulation of proteolytic genes
and genes encoding different subtypes of glutathione S-trans-
ferase, as well as the concurrent downregulation of genes
involved in photosynthesis. Furthermore, MtTdp1a plays a role
in maintaining genomic integrity®. In the transcriptome
induced by darkness, the expression of MtTdp1a is inhibited(>3!,
The decreased expression of MtTdpla caused by darkness
weakens the repair function of the genome and promotes the
expression of senescence-related genes and leaf senescence
(Fig. 1).

Alfalfa (Medicago sativa)

Alfalfa is an important leguminous forage crop cultivated
worldwide. The biomass and quality of alfalfa can be affected
by leaf senescence. Yuan et al. conducted a transcriptome anal-
ysis on mature and senescent leaves and identified 1,250 differ-
entially expressed genes, of which 713 were upregulated, and
537 were downregulated®”), Calderini et al. constructed a
vector containing the SAG72 promoter and a cytokinin biosyn-
thetic gene (IPT) that encodes an isopentenyl transferase. This
vector was then used to genetically modify alfalfa and inhibit
leaf senescencel8l. The results revealed that senescence occurs
at a slower rate in alfalfa SAG12-IPT plants, as indicated by
higher Chl levels.

Alfalfa transgenic plants with SGR gene silenced by RNA
interference (RNAI) retained over 50% of their Chl content
during senescence and higher crude protein contentl4.
Another study showed that MsTMT expression is upregulated in
the dark. Overexpression of y-tocopherol methyltransferase
(MsTMT) to increase their a-tocopherol contents also delayed
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Fig. 1 Regulation mechanism of leaf senescence in Medicago
truncatula L.

leaf senescence and increased crude protein content in trans-
genic alfalfal®l,

MicroRNA156 plays a crucial role in enhancing alfalfa tole-
rance to abiotic stress. At least seven MsSPL (SQUAMOSA
promoter binding protein-like) genes are regulated by miR156
through transcript cleavage. For example, the miR156/SPL
module is involved in drought- and flooding-induced leaf
senescence; when miR156 is overexpressed, or its target gene
SPL13 is silenced, the onset of leaf senescence caused by floo-
ding is delayed®?.. Similarly, overexpression of miR156 leads to
increased drought resistance in alfalfa, whereas silencing its
target gene SPL9 delays drought-induced leaf senescencel®l.
Thus, the miR156/SPL module may play multiple regulatory
roles in stress responses, including stress-induced leaf senes-
cence.

Furthermore, MsSAG113, a negative regulator of the abscisic
acid (ABA) signaling, is controlled by various hormones, such as
ABA, salicylic acid, and methyl jasmonate (MeJA). Overexpres-
sion of MsSAG113 can accelerate the senescence of dark-
induced and aged alfalfa leaves, with its downstream genes
mostly related to hormone-regulated genes. Therefore,
MsSAG113 may play a crucial role in leaf senescence and the
hormone regulation network of alfalfa. MsC3H-39 is a CCCH-like
zinc-finger protein that directly recognizes and binds to the
upstream region of MsSAG113, enhancing its expression. Addi-
tionally, the transient expression of MsC3H-39 promotes alfalfa
leaf senescencel®, which implies that MsC3H-39 directly regu-
lates MsSAGT113 expression and contributes to leaf senescence
(Fig. 2).

Perennial ryegrass (Lolium perenne)

Hormones play crucial roles in regulating leaf senescence in
perennial ryegrass. Application of exogenous 6-benzylamino-
purine increases the activity of antioxidant enzymes such as
superoxide dismutase, catalase, ascorbate peroxidase, monode-
hydroascorbate reductase, and glutathione reductase and
inhibits the accumulation of Na* in cells, delaying salt-induced
leaf senescencel®3l. Similarly, exogenous application of mela-
tonin enhances the activity and transcription levels of supero-
xide dismutase and catalase, activating the superoxide dismu-
tase enzymatic antioxidant pathway and reducing the
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Fig.2 Regulation mechanism of leaf senescence in Medicago sativa L.

transcription of genes associated with Chl degradation (LpSGR,
LpNYC1, LpNOL, LpPPH, LpPAO, and LpRCCRT) and senescence
markers (LpSAG12.1, Lph36, and Lpl69). Up- or down-regulation
of Chl catabolic genes, such as LpNYCI1, LpNOL, LpSGR, and
LpPPH, may accelerate or suppress leaf senescencel®4-661, More-
over, melatonin inhibits dark-induced leaf senescence by
downregulating Chl degradationl¢”), Additionally, exogenous
application of melatonin upregulates the expression of genes
involved in cytokinin biosynthesis (LpIPT2 and LpOGT1) and their
signal response transcription factors (type-B ARRs), downregu-
lates the expression of genes involved in ABA biosynthesis
(LpZEP and LpNCEDIT) and signal transduction (LpABI3 and
LpABI5), increases the content of endogenous cytokinins, and
reduces the ABA content to alleviate heat stress-induced leaf
senescencel®8l, The effect of strigolactone on leaf senescence in
grass has received little attention; however, exogenous applica-
tion of a strigolactone analog (GR24) accelerates the down-
regulation of genes related to Chl biosynthesis (LpHEMA,
LpGSA, LpHEMB, and LpCHLH) and promotes the upregulation
of genes associated with senescence (LpSAGI12.1, Lph36, and
Lpl69) and Chl degradation (LpNOL, LpPPH, LpPAO, and
LpRCCR1) to promote dark-induced leaf senescencel®(Fig. 3).

In the Chl catabolic pathway, the LpSGR gene, which is
responsible for magnesium dechelation of Chl a, is highly
expressed in leaves undergoing senescence due to develop-
ment or darkness. This gene plays a crucial role in Chl degrada-
tion, consequently affecting various metabolic processes. In
perennial ryegrass, RNAI targeting LpSGR leads to the inhibi-
tion of Chl degradation, increasing Chl content and enhancing
photochemical efficiency in senescent leaves’%. However, when
subjected to heat stress, the suppression of LpSGR results in the
downregulation of genes encoding photosystem proteins and
ROS-scavenging enzymes and the upregulation of genes en-
coding ROS-generating enzymes, thereby accelerating leaf
senescence in LpSGR-RNAI lines!71].

Similarly, the Chl b reductases, non-yellow coloring 1 (NYC1)-
like (NOL) and NYC1, locate upstream of SGR, whereas pheo-
phytinase (PPH), pheophorbide a oxygenase (PAO), and red
Chl catabolite reductase (RCCR) are enzymes downstream of
SGR in the Chl catabolic pathway. Previous studies have
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demonstrated that LpNYC1 is involved in the ABA and ethy-
lene signaling pathways, which can be directly regulated by
LpABI5, LpABF3, and LpEIN3[72l, Decreased LpNOL expression or
the addition of exogenous Chl promotes Chl accumulation,
exhibits an antioxidant effect during heat stress, and delays leaf
senescencel’3-731, LpPPH overexpression accelerates Chl degra-
dation. Additionally, LpPPH-mediated Chl breakdown may be
positively regulated by ABA and ethylene but negatively regu-
lated by cytokininl’®l. Overexpression of LpNAL leads to a
phenotype characterized by delayed leaf senescence or reten-
tion of green color, whereas knocking down LpNAL using RNAI
accelerates leaf senescence. Furthermore, transcriptome analy-
sis has revealed that LpNAL plays a role in photosynthesis,
antioxidant metabolism, ABA and ethylene synthesis and
signaling, and Chl catabolism (Fig. 4).

Switchgrass (Panicum virgatum)

Switchgrass is a warm-season perennial grass species utilized
as both forage for livestock and biofuel feedstock. Improving
nitrogen (N) remobilization from aboveground to under-
ground organs during annual shoot senescence is an impor-
tant goal for the sustainable production of switchgrass as a
biofuel crop. Transcriptome and proteome analysis has identi-
fied genes that are differentially expressed in various organs
during development, such as those involved in protein degra-
dation, nitrogen remobilization, transcriptional processes, and
photosynthesis-related proteinsl’7l. During senescence, the
increase in total N content in underground organs is consistent
with the decrease in N content in aboveground organs. The
contents of 14-3-3-like proteins and glutathione S-transferase
proteins in late-senescent leaves are significantly higher than
those in early-senescent leaves, indicating that a higher abun-
dance of these proteins might delay leaf senescencel’8l,

An in-depth understanding of mechanisms controlling
mineral uptake, distribution, and remobilization is important
for sustainable mineral production. A previous study identified
genes associated with mineral transporters in switchgrass and
observed relative changes in transporter expression during
different growing seasons. Genes from the same family exhibit
specific expressions at different stages. Moreover, members of
the MRS2/MGT family are responsible for magnesium transport;
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levels of the nitrogen metabolism gene PvGDH in leaves and
the nitrate and ammonium transporter genes PvNRT1, PvNRT2,
and PVAMT2 in roots. In addition to the NAC family, the WRKY
family is also involved in switchgrass leaf senescence. Accor-
ding to an analysis of the WRKY family in switchgrass, the
expression levels of 23 genes are increased when flag leaves
begin to senescel8?],

CCCH-type zinc-finger proteins have been implicated in
multiple biological processes and environmental responses in
plants. In this context, a switchgrass CCCH-type zinc-finger
protein, known as PvSSG, was found to inhibit the binding effi-
ciency of PYNAP1 and PvNAP2 to DNA through protein—protein
interactions. Additionally, PvSSG reduces the activation of
downstream genes related to Chl degradation by PvNAP1 and
PVNAP2 and exhibits inhibitory effects on leaf senescencels3!
(Fig. 5).

Creeping bentgrass (Agrostis stolonifera)

Creeping bentgrass is a cool-season grass species that
actively grows during spring and fall when temperatures range
from 15°C to 24°C and declines during hot summer. The decline
in turf quality during the summer poses a significant problem
for creeping bentgrass in areas with warm climates, particularly
in transition zonesB%. Moreover, heat stress reduces Chl
content, protease activity, amino acid and total protein
content, and antioxidant activity in creeping bentgrass leaves

Zhang et al. Grass Research 2024, 4. e004

while increasing membrane lipid peroxidation308485], | eaf
senescence induced by heat stress is negatively correlated with
ethylene and ABA accumulation but positively correlated with
cytokinin  production®l. The application of exogenous
cytokinins decreases the heat-induced membrane lipid peroxi-
dation and protease activity and maintains higher leaf Chl
content, Fv/Fm, soluble protein content, and antioxidant
enzyme activity. The application of cytokinins also delays leaf
senescence and improves turf quality under heat stress[8487-89,
Several other exogenous reagents have a similar effect on
delaying leaf senescence (Table 1).

Cytokinin can effectively inhibit leaf senescence. To obtain
transgenic plants with stay green phenotype, researchers trans-
ferred the Isopentenyl transferase (IPT) gene, which is responsi-
ble for catalyzing a crucial step in de novo cytokinin biosynthe-
sis, into creeping bentgrass. These transgenic plants can delay
leaf senescence induced by shade, heat, and drought
stressl9091] Under stressful conditions, the production of
cytokinins in transgenic lines increases, which can help main-
tain high Chl contents. This positive effect also extends to
osmotic regulation, antioxidant enzyme activity, protein abun-
dance, metabolic accumulation, and the preservation of high
photosynthesis levels®2-951. Transcriptomic and proteomic
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Table 1. Mechanism of exogenous application of various reagents to inhibit leaf senescence of creeping glumes.

Reagents Treatment Effects Ref.
Aminoethoxyvinylglycine Heat Regulating chlorophyll metabolic activities [88,111]
Protease inhibitors in the cysteine, Suppressing proteolysis [112]
serine, or aspartic classes
Glutamate Suppressing chlorophyll degradation. [113]

Activating amino acid metabolism involved in energy production,
antioxidant defense, and nitrogen balance
p-sitosterol Alleviating the membrane lipid peroxidation and the enzymatic [114]
antioxidant system
Chitosan Up-regulating chlorophyll biosynthesis related genes. [115]
Down-regulating chlorophyll degradation and senescence related genes
Increasing the activity of antioxidant enzymes
Spermine Maintaining higher chlorophyll content, net photosynthetic rate, [116]
photochemical efficiency, and performance index on absorption basis.
Promoting osmotic adjustment ability and antioxidant enzyme activities
to enhance the scavenging capacity of reactive oxygen species.
Upregulating transcriptions of heat shock protein genes helping to
maintain normal synthesis and functions of proteins
Biostimulants (TurfVigor and CPR) Promoting both shoot and root growth [117]
Trinexapac-ethyl Improving the chlorophyll content and photosynthetic rate [117]
y-aminobutyric acid, proline, and Enhancing chlorophyll content and photochemical efficiency. [118]
ammonium nitrate Suppressing chlorophyll-degrading enzyme activities under heat stress
Nitrogen Enhancing protein abundance in photosynthesis and amino acid [89]
metabolism and stress defense systems (heat shock protection and
antioxidants)
Zeatin riboside Reducing heat-induced membrane lipid peroxidation [84,87-89]
Reducing protease activity.
Maintaining higher leaf chlorophyll content, Fv/Fm, soluble protein
content and antioxidant enzyme activity
y-Aminobutyric acid Drought  Promoting energy production and conversion, antioxidant defense, and [119]
DHN3 accumulation
Melatonin Increasing photochemical efficiency, chlorophyll content and relative [120]

water content.

Suppressing leaf electrolyte leakage, lipid peroxidation and hydrogen
peroxide production.

Up-regulating the cytokinin-signaling and synthesis genes.
Down-regulating the chlorophyll-degradation genes and enzyme
activities

analyses have been used to identify genes encoding proteins

synthetase transferase

(glutamate dehydrogenase)

related to energy production, metabolism, stress defense,
signaling, protein synthesis and transport, and membrane
transport, which may play significant roles in the overexpres-
sion of IPT in creeping bentgrass®®,

Nitrogen deficiency inhibits plant growth and induces leaf
senescence by regulating multiple metabolic processes. Speci-
fically, nitrogen deficiency increases the activity of glutamine
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decreases the content of amino acids and soluble proteins in
leavesl®7.98], However, transgenic lines overexpressing IPT can
still inhibit leaf senescence induced by nitrogen or phosphorus
deficiency!®. Therefore, enhancing multiple stress resistance in
grasses through exogenous hormones or regulating hormone-
related genes may be one of the most efficient methods of
delaying senescence.
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Furthermore, the membrane proteins involved in ATP
metabolism, light harvesting, and photosynthetic photochemi-
cal reactions, as well as proteins related to the efficient proce-
ssing of photorespiratory products and reactive oxygen
species, may play important roles in regulating leaf senescence
in creeping bentgrass under heat stress('%%, The main reason
for the heat-induced decrease in leaf Chl contents is the expres-
sion of Chl degradation-related genes and increased chloro-
phyll degradation enzyme activity!'°'l. For example, when SGR
is silenced in creeping bentgrass, transgenic plants display a
green phenotypel'02],

Other species

Research on leaf senescence has also been conducted on
other grass species. Studies have investigated the transcrip-
tome analysis of mature and senescent leaves in red clover
(Trifolium pratense L.) and the heat-induced leaf senescence
transcriptome of tall fescue (Festuca arundinacea) using RNA-
Seql1093.1041 " Similarly, transcriptome analysis of dark-induced
leaf senescence has been reported in Bermudagrass (Cynodon
dactylon L.)['3), Zoysia japonica has been studied to understand
the aging process induced by factors such as age, darkness, and
salt, using RNA sequencingl'®l. Several genes, including
ZjPPHU8], ZiNOL[107.108] - ZjSGRI109] and ZjNYC101101 | have been
successfully cloned in Zoysia japonica and overexpressed in
Arabidopsis to investigate their roles in senescence.

For convenience, Table 2 presents a comprehensive list of
the genes discussed in this paper.

Conclusions and prospects

Premature leaf senescence reduces the amenity of turf and
significantly affects the biomass yield and feedstock quality of
forage grasses. The stay-green genotypes have been success-
fully identified in species like ryegrass and alfalfa and have
been integrated into breeding programs to minimize yield
losses in plants grown under unfavorable environmental
conditions. Compared to model plant species (e.g., Arabidopsis

Table 2. List of the gene involved in leaf senescence in grass.

Gene Species Effect Ref.
Medicago truncatula Promote [54]
Medicago sativa Promote [54]
SGR Lolium perenne Promote (except heat stress) [71]
Agrostis stolonifera Promote [102]
Zoysia japonica Promote [109]
IPT Medicago sativa Delay [58]
Agrostis stolonifera Delay [90,91]
Tdplo. Medicago truncatula Delay [56]
™T Medicago sativa Delay [59]
miR156  Medicago sativa Delay [60]
SPL9 Medicago sativa Promote [61]
SAG113  Medicago sativa Promote [62]
NYC1 Lolium perenne Promote [72]
Zoysia japonica Promote [110]
NOL Lolium perenne Promote [73,74,75]
Zoysia japonica Promote [107,108]
PPH Lolium perenne Promote [76]
Zoysia japonica Promote [106]
NAL Lolium perenne Delay [73]
NAC1 Panicum virgatum Promote [81]
NAC2  Panicum virgatum Promote [81]
SSG Panicum virgatum Delay [83]
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and rice), systematic approaches to unravel the molecular
mechanisms underlying leaf senescence are still to be carried
out in forage grasses, many questions related remain unan-
swered.

Outstanding future questions:

(1) What are the specific mechanisms that regulate leaf
senescence in forage and turf grasses?

(2) What are the most effective methods for delaying leaf
senescence in these grasses?

(3) How can the knowledge gained from research on leaf
senescence be applied to molecular breeding?

With the identification of more key genes regulating leaf
senescence, combined with the CRISPR gene-editing techno-
logy, functional 'stay-green' traits will be achieved in forage or
turf grass breeding programs for higher quality, higher yield,
and improved stress tolerance.
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