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Abstract 
Lipids are essential biomolecules for cell physiology and are commonly used as biomarkers to elucidate biogeochemical processes over a 
large range of environments and timescales.Here,we use high-temporal-resolution lipidomic analysis to characterize the surface ocean 
community in the productive upwelling region overlying the Monterey Bay Canyon. We observed a strong diel signal with a drawdown 
of lipids at night and an increase during the day that seemed to correspond to wholesale removal of lipids from the surface ocean as 
opposed to internal metabolism. Individual lipid species were organized into coregulated groups that were interpreted as representing 
different phytoplankton guilds. Concentrations of long-chained triacylglycerols (TAGs) showed unique patterns over the course of five 
days. TAGs were used to estimate the amount of energy cycled through the surface ocean. These calculations revealed diurnal carbon 
cycling that was on scales comparable to net primary production. The diel pattern dissipated from most lipid modules on Day 3 as tidal 
forcing increased at our site with the advent of the new moon. Pigment analysis indicated that the community shifted from a diatom-
dominated community to a more diverse assemblage, including more haptophytes, chlorophytes, and Synechococcus during the new 
moon. The shift in community appears to promote higher nutritional quality of biomass, with more essential fatty acids in the surface 
ocean during the spring tide. This analysis showcases the utility of lipidomics in characterizing community dynamics and underscores 
the importance of considering both diel and tidal timescales when sampling in productive coastal regions. 

Keywords: lipidomics; diel oscillation; new moon; intact membrane lipids; phytoplankton pigments; microbial ecology; triglycerides; 
ocean biogeochemistry; tidal forcing; ocean carbon cycle 

Introduction 
Continental shelves are highly productive regions that play an 
important role in global biogeochemistry, accounting for ∼50% 
of carbon export to the deep ocean [1] as well as having  large  
ecological impacts, supporting 95% of the world’s fisheries [2]. 
However, these coastal regions are physically dynamic environ-
ments with complex bathymetry, coastal upwelling, and ever-
oscillating tidal cycles. Microbial ecosystems in these nearshore 
zones are constantly adapting to unpredictable niche changes in 
the waters they inhabit [3–5]. 

Through long-standing coastal time series such as the San 
Pedro Ocean Time-series, Monterey Bay Time Series, Monitoring 
Oregon Coastal Harmful Algae, and Ocean Station Papa, we have 
gained decadal and interannual insights into these systems [6– 
9]. Process studies, as well as autonomous deployments [10, 11], 
have begun to tease apart even shorter timescale variability, 
such as the multispecies response of the planktonic community 
to diel forcing, nutrient availability, and top–down control from 
viruses [10, 12]. Diel transcriptomic studies in the field have 
also observed oscillations in gene expression across ecosystems, 
metabolic classes, and taxa [11–14]. As would be expected, gene 

expression by phototrophs is tightly linked to light availability 
over the day. However,many heterotrophic metabolisms and viral 
gene expression also exhibit diel periodicity [10–14]. Phytoplank-
ton verticalmigration bymotile species and diel verticalmigration 
by grazers are well-known phenomena thought to significantly 
impact biogeochemical cycling in the ocean [15–17]. 

Diel meta-omics studies in the oligotrophic open ocean 
at Station ALOHA (A Long-term Oligotrophic Habitat Assess-
ment) reveal the internal metabolism of TAGS, pigments, and 
osmolytes by phytoplankton as the processes that dominate the 
metabolomic signal in such low-nutrient environments [18–20]. 
The oligotrophic meta-omics studies also indicated a temporal 
mismatch between when a gene is expressed and the associated 
response of the metabolite pool [18–21]. This showcases the 
role of the metabolome as a comprehensive understanding of 
chemical transformations, reaction rates, and fluxes, which 
transcriptomics alone cannot capture. However, there is a lack of 
diel metabolomic studies in coastal regions,where processes such 
as tides and hotspots of grazing via zooplankton [22] significantly 
influence diel patterns in the surface community. The wider 
biogeochemical and ecological implications of such coordinated
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metabolic and behavioral responses necessitate a molecular-level 
understanding of these intricate mechanisms. 

Lipids make up the more hydrophobic component of the 
metabolome. Lipids themselves have long been used as biomark-
ers of various biological processes such as photosynthesis [23] 
and stress response [24], as well as serving as important chemo-
taxonomic markers for identifying different microorganisms [25– 
29]. With advancements in mass spectrometric technology, the 
comprehensive analysis of nearly the entire lipidome has become 
possible, allowing for a more holistic understanding of marine 
microbial processes [18, 19, 25, 27, 30–36]. 

Here, we present a diel lipidomic time series collected over 
5 days at the Monterey Accelerated Research System (MARS) 
station in the California coastal ecosystem (CCE). The objectives 
of this study were to explore lipid cycling in the coastal surface 
ocean over the day, the community ecology over several days, 
and the carbon flow through a productive upwelling system. We 
observed strong diel patterns at the beginning of our time series 
that were complicated by increasing tidal influence toward the 
end of our time series, which was concomitant with a shift in the 
phytoplankton community. 

Materials and methods 
Experimental design 
Samples were collected at 12-h intervals at midnight and noon 
(local time) using Niskin bottles attached to a Conductivity-
Temperature-Depth (CTD) rosette with a fluorescence sensor 
to profile oceanographic measurements and the chlorophyll a 
concentration from the surface to 200 m. Only surface (∼0.5 m) 
samples were analyzed in this study. For particulate lipid analysis, 
1 l of seawater was filtered onto a 0.2 μm Durapore filter, which 
was immediately flash-frozen in liquid nitrogen and stored at 
−80◦C. 

Lipid extraction & analysis 
Lipids were extracted using a modified Bligh and Dyer technique 
[31] and EquiSplash LIPIDOMIX® Quantitative Mass Spec Internal 
Standard (Avanti Polar Lipids, Alabaster, AL, USA) was added to 
each extraction as an internal standard. Extracted lipids were 
analyzed using reverse-phase Ultra-high performance liquid 
chromatography- mass spec/mass spec (UPLC-MS/MS) on a 
Vanquish UPLC with an Accucore C8 column (155 mm × 2.1 mm 
× 2.6 μm) in tandem with an Orbitrap ID-X mass spectrometer 
(all from Thermo Scientific, San Jose, CA, USA) [18]. Due to 
known issues with ion suppression, TAGs were analyzed using 
a modified method (SI text), with a lower flow rate, longer 
isocratic hold, and MS3 trigger method [37]. A chemoinformatic 
pipeline (Fig. S1) was used for feature detection that employed 
eXtensible Computational Mass Spectrometry (XCMS). Compute 
And Map Extracted Relevant Analytes (CAMERA) and putative 
lipid annotations were assigned using the Lipid and Oxylipin 
Biomarker Screening Through Adduct Hierarchy Sequences 
(LOBSTAHS) database, which is based on MS1 spectra and adduct 
hierarchy [38]. Peak alignment and quality were verified in 
Metabolomic Analysis andVisualization Engine (MAVEN). Putative 
annotations were verified, and peaks with multiple annotations 
were deconvoluted with the in silico lipid fragmentation database 
in MS-Dial [39]. The peak area of each feature was normalized to 
the recovery of the internal standard, and the procedural blank 
was subtracted from all samples and compounds. Absolute lipid 
quantification was calculated using 5-point standard curves for 
a suite of reference standards (see SI). 

Chemotaxonomic analysis 
To determine the biomass of phytoplankton groups, we employed 
the phytoclass software outlined by Hayward et al. [29]. Analysis 
was run using concentrations of measured pigment lipids 
(peridinin, fucoxanthin, prasinoxanthin, zeaxanthin, lutein, 19′-
hexanoyloxyfucoxanthin, 19′-butanoyloxyfucoxanthin, chloro-
phyll a and b) quantified as ng/l (Fig. S2). Prior to inverting 
phytoplankton pigments into the biomass of phytoplankton 
groups, pigment samples first underwent cluster analysis to 
ensure homogeneity and low variance between pigment samples. 
First, pigments with zero mass were imputed to 0.1% of their 
maximum concentration; pigments were then converted to ratios 
of total chlorophyll a biomass. To ensure normality, pigment 
samples were then transformed using the Box–Cox method [40]. 
Pigment concentrations from each cluster were then processed 
using the phytoclass simulated annealing algorithm. A step of 
0.008 was used over a total of 700 iterations. The following 
phytoplankton classes were selected for our analysis: diatoms, 
haptophytes, green algae, dinoflagellates, pelagophytes, and 
Synechococcus. 

Statistical analysis 
Statistical analysiswas carried out in theweb-basedmetabolomics 
analysis platform MetaboAnalyst (v 5.0; [41, 42]). Peak intensities 
were mean-centered and base10 log-transformed to scale 
compounds of varying absolute intensities. Multivariate analyses 
([Orthogonal] Projections to Latent Structures Discriminant 
Analysis [OPLS-DA, PLS-DA], Principal Component Analysis 
[PCA]) were supported by ancillary Random Forest classification 
methods [43]. Multivariate analyses were subjected to cross-
validation (Figs S3 and S4) to evaluate for data overfitting,which is 
known to accompany such analyses when the number of samples 
is much smaller than the number of variables for each sample. 

The Weighted Gene Correlation Network Analysis (WGCNA) 
R package (v 1.70; [44, 45]) was used to perform hierarchical 
clustering on the relative abundance of the intact polar lipids and 
TAGs within the meta-lipidome, following the adaptations made 
for metabolomics data from Pei et al. [46]. A signed soft thresh-
olding power of 24 was used to obtain a sufficiently high scale-
free topology (R2 ≈0.75) while not compromising all the mean 
connectivity. Compounds that did not cluster into any module 
were assigned to a separate group (grey module) that was not 
counted as an individual module. 

Absolute quantification of the change in 
triacylglycerol-associated carbon over time 
Absolute values of TAG-associated carbon in the surface ocean 
were approximated by converting the peak intensity of each TAG 
compound to moles per liter based on the standard curve (Fig. S5), 
multiplying by the number of carbons in that molecule and then 
converting moles of carbon per liter to grams of carbon per 
liter. Daily nocturnal losses were calculated by subtracting the 
nighttime values from the preceding daytime values, and daily 
productionwas calculated by subtracting the daytime values from 
the preceding nighttime values. 

TAG measurements underwent particularly rigorous quality 
control. In addition to a modified analytical method, TAGs were 
manually verified for signal-to-noise ratio and proper peak inte-
gration via an XCMS–CAMERA–LOBSTAHs pipeline paired with 
MAVEN. Peak areas of poor XCMS peaks were retrieved via MAVEN 
and corrected by multiplying the average observed ratio between 
the MAVEN and XCMS output of verified peaks.
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Results 
Temporal patterns observed in environmental 
parameters 
The waters overlying the continental slope that lies north of Mon-
terey Canyon are highly dynamic, with turbulent coastal mixing 
complicated by the steep bathymetry ofMonterey Bay (Fig. S6) and  
intricate tidal flow patterns. Such temporal and spatial dynamism 
was evident in a range of environmental parameters measured 
over our 5-day sampling period. Samples are hereby denoted as 
day (D) or night (N) accompanied by the number of the sampled 
day. 

For the initial three days of this time series (from N0 to D3), 
oceanographic variables of the surface ocean such as temperature 
and salinity (Fig. 1C and D) were relatively stable over time. How-
ever, during the latter duration of sampling (fromN3 to D5), a body 
of warmer and less saline near-shore seawater was brought out 
to the surface waters of the MARS station. PCA of temporal differ-
ences between successivemeasurements of surface (∼0.5m) tem-
perature, salinity, and oxygen concentrations (Fig. S7A) separated 
the data points into two largely distinct clusters that represented 
the first and second half of the data collection period. 

The sharp increase in the magnitude of the semidiurnal fluctu-
ations in physiochemical parameters (Fig. 1B–F) at MARS after D3  
coincided with the new moon rising on N4 (Fig. 1G) and the result-
ing spring tide.Although tidal intensity does not increase abruptly, 
sudden changes in oceanographic conditions can accompany the 
movement of sharp spatial gradients in the water column, also 
known as fronts. Local satellite data show that a front was formed 
between D2 and D3 and moved out to sea on D4 and D5 (Fig. 1A). 
This front was transported out to our site by the strong westward 
flow of seawater on D4 (Fig. 1B) that accompanied the spring tide. 

Particulate lipidome analysis shows distinct 
temporal trends 
Both multivariate analysis (PCA,OPLS-DA) and machine learning– 
based (Random Forest) statistical analyses on the particulate 
lipidome of the surface ocean (0.5 m) pulled the sampling peri-
ods of N0–D3 (n=18) and N3–D5 (n=12) apart (Fig. 2), agreeing 
with the two distinct clusters identified in the PCA of oceano-
graphic parameters (Fig. S6A). The lipid classes represented in this 
analysis included pigment lipids, neutral storage lipids such as 
TAGs, and intact polar glycerol lipids that constitute the cellular 
membrane, such as phospholipids, glycolipids, and betaine lipids 
(Table 1). These analyses also revealed a strong diel pattern in 
the surface ocean lipid pool early on in our time series, with a 
significant distinction between day and night lipidomes for all 
lipid classes during this early period (Table S1). The diel signal 
was dampened during the latter segment of the time series, as 
shown by the low OPLS-DA T-score for the day–night lipidomes, 
compared to that of the early period. 

Pigment biomarkers point to temporal changes 
in community 
Chemotaxonomic analysis based on the phytoclass algorithm [29] 
with nine types of pigment lipids demonstrated a shift in com-
munity structure with time (Fig. 3C, Table S2). We observed low 
diversity and very high diatom dominance, comprising up to 
91% of the community structure during the beginning of the 
time series. Toward the end of the time series, the phytoplank-
ton community was more diverse with a decline in the relative 
abundance of both diatoms and photosynthetic dinoflagellates, 
whereas the relative abundances of green algae, haptophytes, and 

Synechococcus increased. There was little signal from pelagophytes 
throughout the analysis. 

We used the pheophytin a: chlorophyll a ratio as a proxy 
for general bloom demise, with healthy cells assumed to have 
a standard ratio of 3:1 [19]. This proxy indicated an initial 
community with declining physiological cell state succeeded by 
a healthier community (Fig. 3A and B). Combined, the physic-
ochemical parameters and pigment-based chemotaxonomic 
methods showed the replacement of a declining diatom bloom 
with a healthy and more diverse community. This community 
change was concomitant with the new moon on N3 (Fig. 1G) and  
increased offshore currents (Fig. 1B) with a decrease in the wind-
driven upwelling on D2–D4 (Table S3). 

In addition to their chemotaxonomic and light-harvesting 
properties, pigment lipids also serve as photoprotective com-
pounds. For example, diatoxanthin and zeaxanthin are both the 
de-epoxidized xanthophylls of their respective nonphotochemical 
quenching xanthophyll cycles. When normalized to biomass, 
these pigments increased during the latter part of the time 
series (Fig. S8B), when there was higher optical clarity in the 
surface ocean (Fig. 1E). Biomass-normalized values of the red 
antioxidant carotenoid, astaxanthin, also increased during this 
period. 

Network analysis of glycerol lipids showed 
distinct functional modules 
The 652 lipid compounds annotated as free fatty acids, wax 
esters, stanol and sterol esters, and glycerol lipids, namely, intact 
polar lipids (IPLs) and TAGs, were analyzed using WGCNA, an 
R-based package that uses network analysis to look for similar 
concentration patterns to identify coregulated groups (“modules”) 
of compounds. Among the six total modules classified by WGCNA 
(the clustering diagram is available in the supplementary GitHub 
repository), five modules (M1–4, 6) were made up of an array of 
lipid species including IPLs (Fig. 4), while the other module (M5) 
consisted exclusively of TAGs (Fig. 4; navy circles) The  fact there  
is a TAG-exclusive module underscores the distinct role of TAGs 
as the main energy storage molecules of the surface community, 
which is markedly different from the structural functions of the 
membrane lipids. 

Two types of chloroplast lipids, monogalactosyldiacylglycerol 
(MGDG) and digalactosyldiacylglycerol (DGDG), along with 
one type of betaine lipid, diacylglyceryl trimethylhomoser-
ine/diacylglyceryl hydroxymethyl-trimethyl-β-alanine, which 
are associated with photosynthetic organisms (Table 1), were 
always present in at least four of the IPL-containing modules 
(Fig. 4, S9, and S10; full abbreviations shown in Table 1), while 
two types of phospholipid, PC and PE, were present in all five. 
These modules exhibited a day-high, night-low pattern during 
the beginning of sampling that disappeared during the latter 
portion (Fig. 5B), as was alluded to in the OPLS-DA. Interestingly, 
sulfoquinovosyldiacylglycerol (SQDG) compounds were only 
found in M1,while DGCC was mostly found in M4 (Figs 4 and S10). 
The division between modules was mostly influenced by distinct 
changes in the latter half of the sampling period. We hypothesize 
that these differences arise from the diverse functional guilds of 
species that are represented in each module and will characterize 
these guilds in this section. 

M1 was the largest module, with n=348 lipid species, and 
the most diverse; 25 of all 26 lipid subclasses were represented 
(turquoise; Figs 4 and S9). In addition to the more general 
phytoplankton indicators, this module all 26 annotated SQDGs 
(Figs 4 and S10), which are known to be mainly produced by
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Figure 1. Physical oceanographic parameters during the sampling period. (A) Frontal edge formation from 31 May (D1) to 4 June 2019 (D5) (NOAA 
ERDDAP). (B) Westward seawater velocity (Mooring 1, CeNCOOS). Alternating white–dark bars indicate days. (C–F) PCTD measurements of 
temperature, salinity, transmissibility, and chlorophyll a. Alternating colored bars on the x-axis indicate midnight (0:00), dawn (6:00), noon (12:00), and 
evening (18:00) casts. While CTD measurements were carried out every 6 h, only midnight and noon casts were sampled for the particulate lipidome. 
These casts are marked on the x-axis as N0 for the first night (0:00) cast, D1 for the first day (12:00) cast, and so on. (G) Moon phases marked with 
percentage of illumination. 

photosynthetic surface organisms ( Table 1). This module also 
contained the highest number of TAGs (Fig. 4). Therefore, this 
module is likely to be associated with TAG-heavy photosynthetic 
surface organisms, such as diatoms. This is supported by module– 
trait correlation analysis of phytoclass-based species abundances 
and WGCNA modules (turquoise; Fig. 5C) that showed that M1 
had the highest correlation with diatoms (Pearson correlation 
index=0.66, P= .00007). This module was characterized by an 
acute decrease in concentration during the latter part of the 
sampling period (Fig. 5B). 

M2 (blue) showed temporal trends similar to M4 (brown; Fig. 5) 
but was compositionally distinct (Fig. S9). M2 was dominated by 

phospholipids (52% of all non-TAG M2 lipids) whereas M4 was 
mostly dominated by betaine lipids (44% of all non-TAG M4 lipids) 
DGCC was found almost exclusively within M4 (92.3%; Fig. 4) and  
characterized this module as a haptophyte-related guild (Table 1). 
This guild assignment is supported by the increased contribution 
of this module to the total ion chromatogram during the latter 
sampling period (Fig. 5A), which agrees with the relative rise of 
haptophytes during this period (Fig. 3C). 

M3 (green) is the only IPL module that did not exhibit a sub-
stantial decrease in fold change during the latter sampling period 
(Fig. 5B). It also included the majority (58%) of the stanol esters, 
which are major constituents of dinoflagellates and Pavlova spp.
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Figure 2. Multivariate and machine learning–based analyses of samples (n=30) categorized into early (n=18)/late (n=12) sampling phases. 
(A) OPLS-DA score plot. Shading indicates the 95% confidence interval. (B) Dendrogram using a Pearson correlation matrix and Ward clustering. 
(C) Random Forest classification results and out-of-bag error. Cross-validation results can be found in the Supplemental Material (Figs S3 and S4). 

Table 1. Intact polar lipid classes and their chemotaxonomic properties in the oxic surface ocean. 

Lipid class General characteristics Species Species-specific properties Reference 

Glycolipids Chloroplast lipids; thylakoid 
membranes 
of phytoplankton including 
cyanobacteria 

Monogalactosyldiacylglycerol (MGDG) Thylakoid membranes 
of photosynthetic organisms, 
heterotrophic bacteria 

[27, 47] 

Digalactosyldiacylglycerol (DGDG) Thylakoid membranes 
of photosynthetic organisms 

[27] 

Sulfoquinovosyldiacylglycerol (SQDG) Mainly produced by photosynthetic 
surface organisms as a thylakoid 
membrane lipid 

[27, 48] 

Phospholipids Head group contains 
phosphorus; PC and PE also 
contain nitrogen; PDPT also 
contains sulfur 

Phosphatidylethanolamine (PE) Major component of heterotrophic 
bacteria 

[32, 48–50] 

Phosphatidylcholine (PC) Eukaryotes such as brown algae, 
heterotrophic bacteria. Not found in 
cyanobacteria 

[26, 27, 31, 32, 50] 

Phosphatidylglycerol (PG) Heterotrophic bacteria; also linked to 
cyanobacteria as a minor component 
of the thylakoid membrane 

[27] 

Phosphatidyldimethylpropanethiol (PDPT) Biomarker for Emiliania huxleyi [51] 

Betaine lipids Head group contains 
nitrogen. Specific to 
“photosynthetic eukaryotes” 
in the oxic water column but 
can be produced by bacteria 
under anoxic conditions. 
Produced in the endoplasmic 
reticulum (ER) 

Diacylglyceryl trimethylhomoserine 
(DGTS)/Diacylglyceryl 
hydroxymethyl-trimethyl-β-alanine (DGTA) 

DGTS—green algae and bacteria 
under P-limited conditions 
DGTA—brown algae 

[26, 50, 52] 

Diacylglyceryl carboxyhydroxymethylcholine 
(DGCC) 

Mainly associated with haptophytes 
and dinoflagellates although also 
produced in low concentrations by 
diatoms and chlorophytes 

[26, 50, 53–55] 

Betaine-like lipid (BLL) First isolated in E. huxleyi [51] 

but are not commonly found in other microalgal species [ 56]. M3 
also shows a high correlation to haptophytes, chlorophytes, and 
pelagophytes (Fig. 5C). 

M6 (red) was almost entirely dominated by phospholipids 
(80%), particularly the PEs (Figs 4, S9, and S10). Therefore, this 
guild appears to be associated with heterotrophic bacteria 
(Table 1), as is corroborated by the low correlation to any of the 

photosynthetic species identified by phytoclass (Fig. 5C). M6 was 
also characterized by an acute decrease during D5 (Fig. 5B). 

M5 (yellow) consisted entirely of TAG compounds (Fig. 4) and  
appeared to increase relatively over time (Fig. 5). The mean 
number of total fatty acid chain carbons was the highest in 
M5 with 10 more carbons on average (56 carbons per molecule; 
Fig. S11) compared to the overall average for all TAGs in the

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/5/1/ycaf044/8064737 by U
niversity of C

alifornia Library - Berkeley Library user on 02 M
ay 2025

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf044#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf044#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf044#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf044#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycaf044#supplementary-data


6 | Hwang et al.

Figure 3. Pigment-based analyses over time and depth. (A) Pheophytin a and chlorophyll a at 0.5 m, peak areas log10-transformed (B) pheophytin a: 
chlorophyll a over 0.5–150 m, peak areas log-transformed. (C) Pigment-based phytoclass analysis results; see Table S2 for standard deviation. Asterisk 
(∗) indicates the new moon on N3. 

observed lipidome (47.5 carbons per molecule; M1–2, 4–5), as 
well as being more unsaturated (9.2 double bonds per molecule 
compared to 6.9 overall). 

Discussion 
Physiochemical measurements show two 
temporally distinct water masses 
Overall, this lipidomic dataset was strongly characterized by clear 
diel periodicity during the early period of low coastal forcing, 
which was subsequently disrupted by the movement of a front 
that appeared after the new moon (Figs 1, 2, and 5B). The MARS 
station is very close to the shelf break,where the continental shelf 
drops off into deeper oceanic waters (Fig. S6). When tidal waves 
move across this topology, they shallow rapidly. This abrupt phys-
ical change creates an environment conducive to the formation of 
tidal fronts [4, 57–59]. Such tidal fronts in the southeastern English 
Channel have been shown to separate water masses with distinct 
oceanographic features such as primary production, community 
composition, and nutrient concentration [60]. 

The physiochemical parameters suggest that the strong phys-
ical dynamics that brought coastal freshwater further out to 
sea during the spring tide caused substantial interference with 
the observed diel signal. This contrariety was compounded by 

a temporal mismatch between the frequency of the two peri-
odic phenomena (the 24.83-h lunar day and 24-h solar day). We 
also noted that the discontinuity of the sampled community in 
this station-based sampling scheme may have contributed to 
this disruption. Together, these two factors were the most likely 
reasons for the apparent weakening of the diel signal. In addition, 
the 12-h sampling frequency employed in this study provided a 
broader assessment of daily trends and may not have captured 
the full diurnal range of the lipidome. Future Lagrangian sampling 
schemes in coastal regions that sample based on the 24-h daily 
cycle will simultaneously integrate the cycle of the high–low tide 
and may therefore help pull apart the multitude of dynamics 
influencing coastal systems.Henceforth,we considered these two 
periods as separate regimes being influenced by distinct environ-
mental forcings and discussed them as such. The “early” period 
(N0–D3) can be described as an oceanic regime with a periodicity 
that is mostly governed by the daily solar cycle, while the “late” 
period (N3–D5) is dominated by coastal influence with the tides 
dictating the temporal rhythm. 

Diel pattern in the early-phase lipidome 
The distinct day-high, night-low pattern that was typical of the 
early phase of this lipidome was strongly represented in both 
the thylakoid glycolipids and betaine lipids (Fig. S12). Here, we
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Figure 4. WGCNA of intact polar lipids and TAGs (n =658) including betaine lipids (n =69), thylakoid membrane lipids (n =70), and phospholipids (n 
=108) as well as neutral storage lipids such as triglycerides (n =150) and wax esters (n =29). Detailed breakdown of lipid species can be found in Fig. 
S10. The gray module was not included in our overall analysis, due to its status as the “nonmodule module” where compounds that are not 
significantly correlated with an expression module are placed. (A) Relative module contribution to the total ion chromatogram (TIC), averaged by the 
number of compounds in each module (B) Average 2-fold change over time; the y-axis is the normalized, mean-centered, and log2-transformed peak 
area, shading=1σ across all compounds in module. (C) Pearson correlation between WGCNA modules and phytoplankton subgroups. Only 
correlations with P-values <.05 are marked. Asterisks (∗) above graphs indicate the new moon on N3. 

considered the thylakoid membrane lipids (MGDG, DGDG, SQDG; 
Table 1) as a proxy for prokaryotic and eukaryotic algal biomass 
as a whole. We also considered the betaine lipid DGCC, as it is 
known to have a positive linear relationship with eukaryotic algal 
cell counts and has been used as such in previous lipidomics 
studies [33, 61]. Both biomarkers indicated a wholesale removal 
or transport of photosynthetic organisms at night followed by 
photosynthetic production or transport to the surface during the 
daytime. 

Nocturnal biomass removal processes and 
implications 
Nighttime removal during this early period was consistent with 
nocturnal patterns of grazing or viral lysis, as diel vertical migra-
tion of micro- and meso-zooplankton is well documented in 
Monterey Bay [62], while viral infection in the coastal oceans has 
also been shown to exhibit diel periodicity [12, 63, 64]. To gauge 
the amount of externally consumed carbon moving through the 
surface ocean of this station we calculated the change in carbon 
content associatedwith the carbon-dense and energy-rich storage 

lipids, TAGs (Table 2 and Figure S6). Thus, we were able to assess 
the flow of calorific energy through the ecosystem by means of 
a lipid chemical currency, TAGs, which are known to be the main 
mediums of energy storage, consumption, and generation in the 
cell. 

Assuming TAG loss at night was entirely due to grazing, the 
amount of carbon nocturnally transferred to upper trophic levels 
(calculated as the nighttime carbon concentration subtracted 
from the prior daytime concentration) in the early period (N0– 
D3) was equal to up to 43%–57% of measured surface net primary 
production (Table 2). This range is a result of a methodological 
difference between our lipidomic analysis, which assessed the 
>0.2 μm fraction of particulate matter, and the NPP analysis, 
which filtered the >0.7 μm fraction [65]. In an iteration of the 
Community Earth Systems Model, pico-phytoplankton (0.2–2 μm) 
were found to contribute 58% to NPP [66]. While a DNA study 
across the North Pacific found that the 0.2–0.7 μm fraction of the  
CCEwas dominated by chlorophytes and photosynthetic dinoflag-
ellates [67]; both taxa taken together make up ∼25% of the 
community composition in our study (Fig. 3C), resulting in the
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Figure 5. Lipid compositions of each WGCNA module. Radii of bubbles correspond to the number of lipid compounds within that category. Colors of 
module names on the x-axis correspond to module colors in Fig. 5. Specific lipid classes are presented in detail in Fig. S9. Module compositions of lipid 
classes are presented in Fig. S10. “Unspecified” prefix indicates co-annotation between lipid species within the same subclass. 

Table 2. Measurements of NPP and back-of-the-envelope calculations of biomass based on molar mass and carbon content of 
quantified lipids. 

Units Sampling day 2 Sampling day 3 Sampling day 4 Sampling day 5 

Surface NPP [65] mgC/m3/day 261 171.7 127.8 73.6 
Euphotic zone NPPa (depth) mgC/m2/day 2151.2 (30.1 m) 3425.7 (62.3 m) 1357.8 (45.4 m) 1303.6 (41.7 m) 
TAG loss (σ ) mgC/m3/day 149.6 (36.8) 32.8 (17.8) 11.1 (7.3) −4.2 (3.5) 

Values are for 0.5 m and not integrated over depth unless otherwise stated. aCalculated by integrating measured values of PP over the euphotic zone. 

low-end calculation of 43%. In the oligotrophic open ocean, diel 
TAG cycling was 6.4± 1.7% of total daytime net primary produc-
tion in the summer and was attributed to internal consumption 
based on stable DGCC concentrations [ 18]. However, in our coastal 
ocean ecosystem, wholesale biomass change dominated the diel 
signal in TAGs, as evidenced by a concomitant change in DGCC as 
well as most other lipids in the lipidome (Figs 5 and S12). Thus, we 
chose to ignore internal cycling in our assessment of TAG loss as it 
was likely a minor component in this productive region. NPP val-
ues are presented for contextual purposes only, as under our non-
Lagrangian sampling scheme, nighttime grazers may not have 
been feeding in the same water mass where daytime production 
predominantly occurred. Our calculated grazing percentage was 

higher than the overall global budget, which is estimated at 74% 
of PP consumed via grazing of phytoplankton [68].We also did not 
observe the same day-low, night-high pattern in photosynthetic 
pigments that Becker et al. [19] saw at St. ALOHA, further confirm-
ing different processes govern lipid cycling in the coastal ocean 
(wholesale removal) vs. the oligotrophic open ocean (internal 
cycling). All of our pigments were day high, night low except for 
chlorophyll a, which had an erratic pattern (Figs 3A and S8). 

We used the classical 10% trophic transfer rate [69] to pro-
vide a general understanding of the flow of energy through our 
study area. We acknowledge that transfer efficiency in temperate 
coastal upwelling zones can vary largely between 0.3% and 34.4% 
[70]. We calculated that at the surface, a grazing population of
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15.0 mgC/m3/day could be supported by consumption of the TAG 
pool alone. The average heterotrophic biomass for the surface 
ocean of the nearby M1 station during our sampling period was 
roughly 29–34 mg/m3 [71], agreeing well with the range of this 
calculation. Thus, during the early sampling period, the nighttime 
consumption of TAGs was enough to support the biomass of the 
upper trophic levels. Over time, the magnitude of this nighttime 
consumption appeared to wane, consistent with the masked diel 
signal during the latter part of this time series. This was likely 
due to the temporal mismatch in diel sampling and tidal dynamic 
discussed above. Therefore, we only considered TAG consumption 
in the early phase. 

Nocturnal biomass removal could be partially mediated by 
diurnal oscillations of viral activity, which has been observed for 
lab-grown and in situ infections of cyanobacteria and picoplank-
ton [72–74]. In most cases, transcription of viral genes and viral 
lysis were tightly coupled or synchronizedwith the diel periodicity 
of the host, peaking during the daytime. However, there were 
some notable exceptions where the transcription of the viral 
genome, relative to the host genome, varied based on commu-
nity composition [12]. For example, genomes of viruses infecting 
Ostreococcus showed peak expression at night, both for in situ 
observations of the California Coast Ecosystem [12] and culture 
experiments [72]. The timing between transcription and lysis may 
also differ depending on the species, environmental conditions, 
and time of infection [72, 73]. In addition, viral lysis produces 
various complicated trajectories of carbon cycling that include 
the viral shunt, shuttle, and shield that are still largely unquan-
tified [75]. Due to such uncertainties, we did not attempt to 
draw any conclusions related to viral infection in this paper. 
However, we acknowledge viral infection as a potentially signif-
icant player in diurnal cycles of the coastal surface commu-
nity. Clearly, the fate of this disappearing carbon differs greatly 
depending on which mode of removal dominates the system 
(Fig. 6) and therefore begs further elucidation of these complex 
processes. 

Nighttime transport processes and implications 
We also consider a scenario where biomass is not consumed but 
rather transported to depth at night via phytoplankton vertical 
migration (PVM; Fig. 6). Phytoplankton that undergo PVM move 
upward in the water column during the day to access sunlight for 
photosynthesis and descend during the night to take advantage 
of remineralized nutrients at depth [76]. This migratory behavior 
leads to higher concentrations of phytoplankton-related metabo-
lites during the daytime and a decrease at night, consistent with 
the observed diel trends in our dataset. This movement of phy-
toplankton has previously been observed in Monterey Bay in the 
mixotrophic dinoflagellate Akashiwo sanguinea [77]; however, it is 
also known to occur in the mat-forming diatom Rhizosolenia that 
is found in this coastal system [76, 78]. In this scenario, we would 
observe the result of PVM as a nocturnal decrease in the TAG-
related carbon, ergo a decrease in the calorific value of the surface 
ocean at night. 

In summary, our assessment of carbon flux based exclusively 
on TAG-associated carbon (Table 2) aligned well with the range 
of heterotrophic biomass and parallel NPP measurements, indi-
cating the robustness of our approach as a quantitative mea-
sure of carbon flux. Specifically, our findings demonstrate that, 
during periods of low tidal influence, substantial amounts of 
TAG-associated carbon are cycling through the surface ocean 
daily, on scales that are on par with levels of primary production 
(57%) representing essential fatty acids and high-calorie energy 

available to the rest of the food web. Consequently, the fate of 
this considerable carbon flux will significantly impact the bio-
geochemical processes of the surface ocean and the dynamics of 
carbon reservoirs. Our station-based sampling also showcases the 
importance of constraining the spatial distribution of microbial 
communities over highly variegated coastal seascapes, which is 
a crucial factor influencing the mode and magnitude of biogeo-
chemical elemental cycling and carbon export (i.e. the biological 
carbon pump) [1]. 

Long-chained triacylglycerols accumulated in the 
late-phase lipidome 
Interestingly, the overall relative abundance of long-chained 
TAGs increased during the tide-dominated regime (N3–D5; 
Figs 5A, S9, and S13) compared to the decrease of most other 
compounds, especially those that are associated with phyto-
plankton biomass (Fig. S12). During the late period (N3–D5), 
TAG compounds had a relative increase, from ∼30% of TIC 
to 45%. (Fig. S13). Approximately 35% of this increase was 
contributed from the TAG-exclusive M5 (52.6 μgC/l), which 
was predominantly made up of larger, more unsaturated TAGs 
(Fig. S11). High FA carbon content indicates the presence of 
long-chained polyunsaturated fatty acids (LC-PUFAs) such as 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), 
which are crucial for intracellular signaling and metabolism 
regulation in vertebrates. Very few marine vertebrates produce 
LC-PUFAs themselves and must obtain them from their diet [79]. 
Hence, the accumulation of TAGs containing these essential FAs 
points to a surface ocean that has higher nutritional quality per 
unit biomass during the strong tidal period, the effects of which 
can reverberate up the food chain [80]. 

TAG accumulation is widely recognized as a stress response in 
eukaryotic algae to nutrient-limited and high-light environments, 
acting as a protective mechanism in response to reactive oxidant 
damage of the membrane [52]. Specifically, the production of TAG 
and fatty acids serves as an electron sink. For example, the synthe-
sis of a C18 fatty acid consumes around 24 Nicotinamide Adenine 
Dinucleotide Phosphate Hydrogen (NADPH, critical electron car-
riers involved in cellular metabolism), effectively regulating the 
over-reduced electron transfer chain and helping to alleviate the 
adverse effects of excessive electron accumulation [81]. 

There are various arguments for this being a high-photoenergy 
period, such as the relative increase in photoprotective pigments 
(Fig. S8) and transmissometer data indicating clearer waters 
at this time (Fig. 1E). De-epoxidized xanthophylls such as 
diatoxanthin and zeaxanthin are produced to dissipate excitation 
energy of the photosystem under high-light conditions. As a 
powerful antioxidant, astaxanthin has also been proposed to 
be a cellular photoprotective agent via physical and chemical 
processes and is accumulated in response to reactive oxygen 
species (ROS)-producing stress conditions [82]. In addition, the 
surface ocean during this latter time frame was more nitrogen 
limited (Fig. S14) due to increased stratification of the water 
column (Figs 1C and D and S7B). Therefore, the increase in the 
relative abundance of long-chained TAGs over time suggests 
that the remaining diatoms and dinoflagellates are responding 
to the high-stress conditions of the surface ocean. Alternately, 
haptophytes that increase in relative abundance over time or 
trophic transfer could be the source of the late-period TAG signal 
(Fig. 3B). Phytoclass data indicate that long-chain TAG producers 
like diatoms were on the decline (Fig. 3C), so, alternatively, this 
increase could be caused by trophic accumulation in grazers such 
as heterotrophic flagellates or copepods.
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Figure 6. Depiction of possible nighttime surface ocean biomass removal processes and their carbon cycle trajectories. Aggregate sinking of marine 
snow is not represented. Removal of phytoplankton-associated biomass from the surface ocean at night could be attributed to diel vertical migration 
(DVM) associated with micro- and meso-zooplankton grazing, diel cycles in viral lysis, or phytoplankton vertical migration (PVM). Grazing would 
transfer carbon up the trophic food web to larger nekton and contribute carbon to the gravitational carbon pump via fast-sinking pellets. Viral 
infection would partition carbon into the dissolved organic matter (DOM) pool via the viral shunt, sinking particular organic matter (POM) pool via 
aggregation in the viral shuttle, or the refractory DOC pool via the viral shield/microbial carbon pump. PVM would represent physical transportation of  
carbon out of the surface ocean at night as phytoplankton access nutrients. Created in BioRender and modified from Zhang (2018) [85]. 

Community succession is influenced by physical 
forcing 
Based on our chemotaxonomic analysis of pigments and IPLs, 
we see that the community starts as a diatom-dominated, more 
homogenous community that transforms into a more diverse 
community over time, with an increased presence of haptophytes 
and chlorophytes, as well as an emergence of Synechococcus. allow-
ing more species to co-exist (Fig. 3). This could be the result of 
the removal of the monopolistic diatom community via grazing 

or viral lysis, as suggested in the previous section. Alternatively, 
a similar study conducted in the coastal Iroise Sea (France) sug-
gested that the increase of competitive exclusion under contin-
uous, undisturbed conditions, such as those in the early part 
of our time series, would decrease species diversity, while local 
disturbances such as those created by internal tides can lower 
competition, allowing more species to co-exist [5]. 

Similarly, physical oceanographic features and community 
structure are directly interconnected. Although small-scale
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processes such as regional-scale tidal fronts can be difficult 
to constrain, it has been suggested that tidal fronts could 
act as ecotones between oceanic and coastal phytoplankton 
populations, where tide-induced mixing acts as an important 
driver of ecological competition, community composition, and 
diversity [5]. Lévy et al. also showed that physical forcing of sub-
mesoscale features is associated with phytoplankton diversity 
and ecosystem structure, such as physical processes that trans-
port phytoplankton populations downward out of nutrient-rich 
waters or enhance their light exposure via vertical stratification 
and turbulence of the water column [3]. As such, lipidomic 
patterns that result from differing community responses can 
be correlated reasonably to tidal forcing, such as we have seen in 
this study. 

In conclusion, the application of lipidomics has provided 
us with valuable insights into coastal ecosystem dynamics. 
By focusing on lipid profiles alone, we have gained a deeper 
understanding of the population composition, diversity, and 
the resulting transport of carbon within the ecosystem, which 
appears to be highly influenced by tidal patterns. Most lunar-
oceanic studies have focused on the effects of the full moon, such 
as enhanced visibility and tidal strength promoting predation 
by visual predators and broadcast spawning events by coral and 
other invertebrates [83, 84]. Yet we observed that the increase 
in tidal forcing associated with the new moon was correlated 
to a change in the structure of the phytoplankton community 
and the nutritional quality of the surface ocean at night. These 
observations underscore the importance of both moon phases 
and concurrent tidal influences in the coastal ecosystem. We 
emphasize that the timescales of the spring–neap tide cycle and 
apogee–perigee cycle in the coastal ocean must be considered in 
addition to the underlying hourly diel timescales that dominate 
the relatively less perturbed open ocean [13, 18–21]. 

Our investigation also revealed diel cycling in coastal lipidomes, 
mostly characterized by increased levels of lipids during the day 
and decreased levels at night, implying the removal of lipids from 
the system. The weakening of these diel patterns was attributed 
to tidal effects. Our analysis of daily carbon flux based on TAG-
associated carbon also highlights the robustness of TAG quan-
tification in estimating carbon cycling associated with various 
removal mechanisms and reinforces the utility of lipids as a 
chemical currency for understanding the ocean’s biogeochemical 
processes. Our untargeted lipidomic approach to the analysis of 
a coastal time series has proven instrumental in revealing previ-
ously unobserved associations with the new moon and molecular, 
metabolic, and community-level trends within the coastal 
microbial ecosystem and could be paired with metagenomics or 
transcriptomics sequencing in future studies to provide insights 
into the underlying mechanisms driving these observed patterns. 
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