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ABSTRACT

Odonates (dragonflies and damselflies) have become popular study organisms for

insect-based climate studies, due to the taxon’s strong sensitivity to environmental

conditions, and an enthusiastic following by community scientists due to their charis-

matic appearance and size. Where formal records of this taxon can be limited, public

efforts have provided nearly 1,500,000 open-sourced odonate records through online

databases, making real-time spatio-temporal monitoring more feasible. While these

databases can be extensive, concerns regarding these public endeavors have arisen from

a variety of sources: records may be biased by human factors (ex: density, technological

access) which may cause erroneous interpretations. Indeed, records of odonates in the

east-central US documented in the popular database iNaturalist bear striking patterns

corresponding to political boundaries and other human activities. We conducted a

‘ground-truthing’ study using a structured sampling method to examine these patterns

in an area where community science reports indicated variable abundance, richness,

and diversity which appeared to be linked to observation biases. Our observations were

largely consistent with patterns recorded by community scientists, suggesting these

databases were indeed capturing representative biological trends and raising further

questions about environmental drivers in the observed data gaps.

Subjects Biodiversity, Biogeography, Ecology, Entomology, Zoology

Keywords Community science, Ecological modeling, Geographic bias, Insect biodiversity,
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INTRODUCTION

Community science initiatives have been crucial for understanding changes in biodiversity,

distribution, and phenology, due to their potential to generate large volumes of data and

cover broad geographical areas (Fraisl et al., 2022). The possible benefits of community

science (often referred to as citizen science) have beenwell-documented and could represent

a viable alternative to data acquisition for projects where scarce financial or logistical

resources prevent traditional, multi-visit sampling (Lauret et al., 2021). Community

science data may represent a considerable boon to academic biodiversity science as a

data source for species where formal data collection is rare or incomplete, such as taxa

not considered to have economic importance. For example, odonates (dragonflies and

damselflies) have fostered a large and widespread hobbyist following that has provided
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nearly 1,500,000 open-sourced odonate records worldwide through public databases

like Odonata Central and iNaturalist (https://www.inaturalist.org/)—entries that could

conceivably lay the groundwork for numerous insect ecological studies. The phenology

and spatial distribution of the odonates is tied closely to environmental cues and conditions,

primarily temperature and photoperiod, even leading to them being referred to as ‘living

barometers’ (Hassall, 2015). However, climate-driven disruptions to the delicate ‘when’

and ‘where’ of odonates could have severe implications for these insects (Zarnetske, Skelly

& Urban, 2012). For example, range-shifting (as a species’ population shifts to areas

with more favorable environments) and changes in phenology (the timing of life-history

events) have both been well-documented climate-linked responses in odonates (Hassall &

Thompson, 2008; Hassall & Thompson, 2010; Hickling et al., 2005; May et al., 2017; Winder

& Schindler, 2004). Community science records gathered from platforms like iNaturalist

have already been used, with great success, in the long-term monitoring of Californian

odonates (Rapacciuolo et al., 2017) and to identify breeding occurrences in Oklahoma

odonates (Patten et al., 2019).

However, understanding these fundamental biodiversity trends requires data that is

unbiased in time and space, and community science has not gone uncriticized in these

regards (Catlin-Groves, 2012; Lukyanenko, Parsons & Wiersma, 2016). Most concerningly,

community science initiatives risk reflecting biases and even potentially interests held by

their participants, leading to temporal, spatial and even taxonomic biases. Biases arising

from infrastructure and human population density are of particular note. For example, in

comparison to their observed biological richness, agricultural areas were vastly oversampled

(Geldmann et al., 2016). Similarly, volunteer sampling can often be affected by a ‘cottage

effect’, being more likely to sample easily accessible locations, such as those near roads

or population centers (Millar, Hazell & Melles, 2019). These patterns of interaction can

have profound implications: research involving bird species have suggested that biases

in community science data may produce less accurate models for habitats with distinct

environmental characteristics and low reporting rates (Johnston et al., 2020). In their most

extreme, these low-density areas may form complete data gaps, which interfere with our

understanding of assemblages and species distributions, especially in areas that are highly

vulnerable to diversity loss and highly understudied (Archer et al., 2014).

Indeed, our research group encountered a striking example of what appeared to be a

geographical bias in reporting frequency for community science records when initiating

a study utilizing community science records to examine recent changes in odonate

communities in the east-central United States (Fig. 1). In a prominent show of extreme

sampling, the state of Ohio showed high-density reports across nearly its entire region,

with state borders clearly visible on observation density heat maps. This pattern is driven,

at least in part, by the popular Ohio Odonate Survey, a large-scale community science

initiative that first ran from 1991 to 2001 and then was re-initiated in 2017. In total, this

initiative has reported over 125,000 odonate observations to iNaturalist (iNaturalist, 2021;

The Ohio State University, 2021). In striking contrast, a large area of the central Appalachian

region of the United States to the direct south, centered aroundWest Virginia, is seemingly

extremely underrepresented in reports for, not only odonates, but a variety of taxa in
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this area may arise from inherent challenges facing observation-based community science

initiatives in prominently rural areas. Essentially, we predict that odonate biodiversity

and abundance in central Appalachia are being under-reported by community scientists

compared to areas with higher populations and access to more economic resources.

If this is the case, these data collection artifacts could be shaping currently accepted

species distributions through the strength of observation efforts that characterize them.

Thus, we predict that between-site community trends will differ by human population

density in the unstructured data produced by community scientists but will be more

equally distributed across sites in structured surveys. Therefore, in this study, we set out to

evaluate the reliability of unstructured surveys in documenting odonate diversity relative to

structured expert sampling. As such, this study documents a ‘ground truthing’ effort where

structured sampling was paired with unstructured community science records on a north-

south transect, to examine any discrepancies in abundance, diversity, and community

composition produced by the two data collection methods. Portions of this text were

previously published as part of a preprint (https://doi.org/10.1101/2022.11.29.518107).

MATERIALS & METHODS

Study area

To evaluate patterns observed in community science records for this system, we conducted

a structured survey based on comparing systematic ‘expert’ observations with publicly

reported community science observation data from two major odonate open data sources,

iNaturalist and Odonata Central. A north-south transect starting in the Greak Lakes basin

in the northern potion of the American state of Ohio through the central Appalachians and

centering on the observed data gap, provided the foundation for our structured sampling

dataset and incorporated longitudinal and elevation aspects. The entire site was situated in

the temperate northern deciduous ecozone.

Sampling was completed in five counties along this transect- Cuyahoga County (Ohio),

Guernsey County (Ohio), Wayne County (West Virginia), Knott County (Kentucky), and

Wise County (Virginia)-chosen to be approximately equally spaced, with bodies of water in

naturalized areas that were reasonably accessible from roads or campgrounds (Fig. 1; Table

1). These human-accessible sites were selected as those which would reasonably represent

areas where community scientist reporting would most likely occur for these counties

and had physical attributes associated with ‘good’ habitat for many odonate species (open

bodies of water with vegetated shores).

The transect was sampled once monthly during June, July, and August, representing

the peak odonate flight season for this region during 2019. For each site, data were

collected from three vantage points along the lake shoreline deemed reasonably accessible

to hobbyists by foot. For each vantage point at a site, surveying was conducted for ten

consecutive minutes, once during the peak of the day (11:00–12:00 EST) and again during

the evening of the same day (17:00 –18:00 EST), to increase the likelihood of surveying

both diurnal and crepuscular populations.
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Table 1 Geographic information and iNaturalist reporting statistics for the five sampling locations selected for field-truthing, arranged from

north to south. The iNaturalist Users column refers to the total number of unique users providing data matching our criteria within that county.

County

code

County name Latitude

(◦N)

Avg. elevation

(m)

iNaturalist

users

iNaturalist

observations

County

size (km2)

Population

density (/km2)

A Cuyahoga (OH) 41.4 174 148 1132 3230 392

B Guernsey (OH) 40.1 311 11 68 1370 28

C Wayne (WV) 38.2 296 0 0 1330 29

D Knott (KY) 37.3 382 3 4 910 16

E Wise (VA) 37.0 687 11 60 405 89

Odonate sampling

For each sampling period, the number of odonates visible from the selected vantage point,

facing towards the lake, was counted per species. Identification of individuals was primarily

done in-hand via netting, using the Dragonflies and Damselflies of the East field guide for

reference (Paulson, 2011), while identification of visually distinct species was done through

observation only. Sampling was conducted by a team of two personnel, where one person

made observations at all sites, and the second person served as the recorder, for consistency.

Community science datawas represented by a combinedGlobal Biodiversity Information

Facility dataset, containing reports originating from iNaturalist and Odonata Central, and

omitting museum records (GBIF.org, 2021). The dataset consisted of Odonate abundance

data during the peak adult flight season (June, July, August) for the years 2014–2021 in

the focal region. Data were subsetted to create ‘observation units’ corresponding to our

structured surveys: records were aggregated by county of record and month of capture.

Because variable reporting in some areas created zero-biased data incompatible with

community analysis at a fine temporal scale, we combined data from multiple years to

represent a ‘typical’ community that could be observed in a given place, at a given time of

year.

Quantification and statistical analysis

All statistical analyses and plotting were conducted using R software (R Core Team, 2021),

using the following packages: rgbif (Chamberlain & Boettiger, 2017), plyr (Wickham, 2011),

ggplot2 (Wickham, 2016), vegan (Oksanen et al., 2022), MASS (Venables & Ripley, 2002),

broom (Robinson, Hayes & Couch, 2022), and BiodiversityR (Kindt & Coe, 2005).

Community observation data for the focal counties was obtained from iNaturalist and

Odonata Central viaGBIF alongside the observations collected from the structured samples

detailed above. Subsets of these datasets were created to include species identity, county,

and date for each observation. For convenience and ease of understanding, specific county

names were omitted and replaced with letter coding, labeling the sampled counties as A,

B, C, D, and E, in order from north to south (Fig. 1, Table 1). For each dataset, count

data were aggregated using the plyr package to form counts of each species per county per

source. Before merging, each dataset was amended to include its source, differentiating

between community observations and structured sampling observations.
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To evaluate biodiversity patterns observed by method and sampling location, we

computed total abundance, richness and Shannon diversity for each sample was calculated

using the vegan package from the row sums of the merged dataset, with corresponding plots

generated from the results. Further aggregation of the data allowed for comparisons of

species counts by county per source per month. We aggregated data by month of collection

to help account for varied phenology among the odonate species observed. Generalized

linear models (GLM) for were constructed for abundance and species richness (with a

negative binomial error structure) and diversity (using a Gaussian error structure) with

sampling method, county and month as predictors constructed using the MASS package.

We built models for each response variable with an interaction between sampling methods

and county and one without. Model selection, through comparison of model AIC scores (a

lower AIC score indicating a model has less unexplained variation and thus a better fit), was

then used to evaluate the relationship of abundance, species richness and diversity between

sampling method and location; a model with a better fit when the interaction was included

suggests that there is geographical variation in the in the testedmetric between observational

methods. In contrast, a better-fitting model without an interaction effect would suggest

that the same patterns are held between sites, implying that the sampling method did not

vary in its ability to capture biodiversity patterns over space. This process was then repeated

to evaluate odonate abundance from the same data set, with all associated plots generated

using the ggplot2 package. We constructed individual-based species accumulation curves

using the specaccum function in vegan, set to 100 permutations and Jacknife2 estimates for

each of the sampling methods and fit a nonlinear model (method = ‘‘lomolino’’) to the

curves produced to estimate predicted richness by sampling method.

To examine differences in community composition among sites, sampling periods, and

sampling approaches, non-metric multidimensional scaling (NMDS) using Bray-Curtis

dissimilarity metrics was conducted using the vegan package. Lastly, analyses of similarities

(ANOSIM) and Permutational ANOVA (adonis) was also conducted using the vegan

package to determine if community composition varied between sites and sampling

methodologies.

RESULTS

This study included 1,573 observations, with 381 originating from structured sampling

efforts and 1,192 originating from community science efforts. The blue dasher, Pachydiplax

longipennis, was the most commonly recorded species of the 27 observed during structured

efforts (13.9% of observations), while the ebony jewelwing (Calopteryx maculata) was

the most commonly recorded species of the 82 observed via community science sources

(7.9% of observations). Differences in abundance of records between counties was largely

driven by a very high rate of reports in unstructured surveys in the northernmost county

(Fig. 2). Model selection strongly favored the inclusion of an interaction term (AIC =

262.1 without interaction, = 251.5 with interaction) suggesting that the sampling methods

were non-uniform across counties in their reports of number of odonates observed.

Combined observed odonate species richness was highly variable between sites, ranging

from 11 to 70, with higher reported diversity at the extreme ends of the transect (Fig. 3).
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Figure 2 Boxplot comparing observed total abundance of odonates across five focal counties. Coun-

ties are arranged north (A) to south (E), in the northeastern United States for structured and unstruc-

tured survey methods. Unstructured samples are extracted from records contributed to the Global Biodi-

versity Information Facility database from iNaturalist and Odonata Central community science contribu-

tions and represent all odonates reported to GBIF these sources for 2014–2012 in the months June, July

and August structured surveys were completed by a trained individual conducting timed observations at a

site within that county during three sampling visits (during June, July and August) in the summer of 2019.

Note that there were zero observations in county ‘C’ in the unstructured surveys .

Full-size DOI: 10.7717/peerj.18115/fig-2
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Figure 3 Boxplot comparing observed species richness of odonates across five focal counties in the

northeastern United States for structured and unstructured survey methods.Data were obtained as de-

scribed in Fig. 2.

Full-size DOI: 10.7717/peerj.18115/fig-3

Community sampling efforts reported the highest richness, at 82 species, compared to the

27 species reported through structured sampling. Richness varied dramatically by county

in the unstructured data, but less so in the structured surveys (Fig. 3). As with abundance,

model selection strongly favored the inclusion of an interaction term (AIC= 200.7 without

interaction,= 186.6 with interaction). The two northernmost counties captured the highest

richness of odonates by unstructured sampling, but structured sampling captured a greater

richness of odonates in the three southernmost counties. Species richness accumulated

more quickly and was estimated to be dramatically higher across individuals pooled using

unstructured sampling (Fig. 4). For unstructured sampling, the species accumulation curve

was predicted to reach an asymptote at 226 species, where the structured sampling curve

was predicted to reach an asymptote near 29.6.

Shannon diversity was generally quite variable in the unstructured sampling between

counties and months, while the diversity observed by structured sampling varied less over
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because records were so sparse in several sampled areas, this method could not demonstrate

whether these sparse areas were due to low odonate density or low sampling density.

Despite the potential unreliability of the unstructured samples in providing estimates

of relative population size, we also found that unstructured, community science sampling

uncovered a much greater overall richness in Odonates than the structured sampling

method (Fig. 4). Not only did unstructured sampling simply find more species, resampling

analysis suggests that structured sampling curves saturate at lower numbers of individuals

sampled: essentially,more structured sampling effort using our design is unlikely to uncover

more new species. This pattern may occur due to several factors: structured sampling may

preferentially bais data towards particular species with biologies most likely to be detected

by the methodology. Furthermore, community scientists may be more likely to report

novel observations, made opportunistically, whereas structured sampling would prohibit

the reporting of incidental observations made outside of the experimental protocol.

Even with these differences, both sampling methods reported community composition

similarly (Fig. 6), though structured sampling showed less variability, likely because of

the targeted nature of this sampling in a single focal habitat, rather than representing

an aggregation of records over space and time as the unstructured data, as well as a

more consistent sampling effort. In the unstructured data set, reported species richness

and abundance varied across the transect route, with extreme ends showing higher

measurements than locations intermediate. In general, areas with higher biodiversity

parameter values among the unstructured observations correspond to human population

density, creating an opportunity for more sampling effort (Table 1). However, the notable

low observation rate of odonates, regardless of sampling method, at several sites within the

transect suggest that sampling biases due to effort do not entirely explain these trends. For

instance, while we observed consistently high species richness in county C by structured

sampling, where no odonates were recorded by unstructured samples, we observed the

lowest richness by structured samples and the second-lowest richness by unstructured

samples in county D (Fig. 3).

The observed data gap was most apparent in the unstructured data set, with structured

efforts reporting a more consistent, but lower overall, diversity between sites. In contrast,

unstructured efforts outperformed structured efforts in locations withmore overall reports.

This was particularly true for Ohio sites (A and B) compared to non-Ohio sites, likely as a

result of the efforts of the Ohio Odonate Survey, whose state-wide efforts have contributed

over 150,000 open-sourced records over the last two decades.

Our findings agreedwith numerous studies supporting the viability and general reliability

of community science in conservation, although our findings are consistent with others

that unstructured methods are best used for species detection rather than estimates

of population size (Lauret et al., 2021; McKinley et al., 2017) and Odonata biodiversity

research (Patten et al., 2019; Rapacciuolo et al., 2017). When community science results

follow the same general trends as structured sampling, findings can be reliably incorporated

into occupancy models (Lauret et al., 2021) and support interpretation of findings when

scientist-collected data are sparse (Walker et al., 2016). However, while inconclusive and

of limited spatiotemporal scale, our observations of the data gap region mirror concerns
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about sampling biases and decision-making in community science that have also been

the focus of many other studies (Archer et al., 2014; Bowler et al., 2022; Johnston et al.,

2020; Millar, Hazell & Melles, 2019; Ruete, 2015). Our study held a similar constraint to

many community science programs: sites were selected based on accessibility so that

we were able to get to them in a short sampling period. This site selection created a

bias towards habitats near transportation routes, most likely to be frequented by other

humans. Data from community science programs (and structured surveys alike) are more

likely to be complete in areas where more people are likely to go (Millar, Hazell & Melles,

2019). In one study, areas of public concern were suggested to have been oversampled

by community participants (Jollymore et al., 2017). Similarly, other studies have criticized

lay-user-generated geographical data, questioning their reliability, quality, and overall

value (Flanagin & Metzger, 2008). In one study, areas of public concern were suggested to

have been oversampled by community participants (Jollymore et al., 2017). Similarly, other

studies have criticized lay-user-generated geographical data, questioning their reliability,

quality, and overall value (Flanagin & Metzger, 2008). However, these issues may not

be easily addressed, as an increasing focus on data quality could come at the cost of

widespread accessibility (Parsons, Lukyanenko & Wiersma, 2011). However, when data are

sparse, information about species assemblages and extents are often skewed (Johnston

et al., 2020). A possible antidote to these biases that still capitalize on the energy and

extent of community science surveys is to provide a semi-structured survey method that

utilizes species lists and recording sampling effort, essentially providing a ‘denominator’ to

estimate not just what and how many were observed, but over what spatial and temporal

extents were searched. Using recurring and semi-structured methods as an addendum

to bioblitz-style surveys provided improved estimates of population-sizes for birds and

insects, however these methods were more labor intensive and required additional training

for community science participants (Gigliotti, Franzem & Ferguson, 2023).

While community science records covered several years of flight seasons, field truthing

efforts were only able to cover the peak season of 2019, as travel restrictions arising

from the COVID-19 pandemic prevented repeated structured sampling in the following

years. Once-per-month structured sampling allowed us to cover a much larger distance

but introduced a risk of underreporting highly migratory species, like the green darner

(Anax junius), whose swarms tend to attract large numbers of community science reports

nationwide. While this spatio-temporal snapshot is not broad enough to speak for the

applications of community science as a whole, it has provided an interesting case study for

an understudied region, upon which future studies can be built.

Lastly, we acknowledge that community science data is limited by the common usage

patterns of their platforms. In particular, it is likely that the abundance reported by

unstructured community science platforms like iNaturalist is dramatically skewed from

actual population size, as many community scientists report based on species presence-

absence, instead of reporting the total number of individuals seen. In general, unstructured

biodiversity data can more reliably document presence of a species, and sometimes,

indirectly, absence in well sampled places (Guzman et al., 2021). Estimates of abundance
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from unstructured data are less reliable, but in some cases, relative population size estimates

may be inferred in certain data-rich scenarios (Perry et al., 2022).

CONCLUSIONS

These observed differences in biodiversity patterns serve as an important case study,

highlighting the productivity and broad geographical reach of large, long-term, community

science efforts. While the underlying causes of this data gap region remain a subject for

future studies, the absence of such in the structured sampling alludes to a human-driven

source of bias in community sampling efforts.

Although community science has been shown to be capable of generating large amounts

of observations, the actual efficacy of community science-based reporting for this taxon

appears to rely heavily on external factors pertaining to how people interact with nature.

We expect that population density and accessibility may be a large predictive factor

of community engagement, underscoring a need for further research into engagement

patterns in community science efforts and potential biases that may arise from them.

Ultimately, for studies interested in range and biodiversity, community science data could

represent a thorough, crowd-sourced alternative to traditional data sources, especially in

areas with prolific community initiatives.

Future efforts will be aimed at identifying and analyzing other sources of inaccuracies or

biases within community science efforts. More particularly, future studies will focus on the

effects of coloration and visibility of common odonates on community science reporting

rates, as well as evaluating how community science efforts compare to historical museum

collections for this region.
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