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Abstract: Miscible density-driven convection in porous media has important implications to the
long-term security of geological carbon sequestration. Laboratory investigations of miscible
density-driven convection in heterogeneous porous media have been greatly limited due to the
challenge in constructing well-controlled heterogeneous permeability fields. In this study, three-
dimensional (3D) printing was used to solve the challenge. Particularly, elementary sediment
blocks were 3D printed to construct heterogeneous permeability fields having the desired mean,
standard deviation, and spatial correlation length of permeability. A methanol-ethylene-glycol
(MEG) solution was placed at the top of the permeability field to trigger miscible density-driven
downward convection. Results showed that permeability heterogeneity caused noticeable
uncertainty in the total MEG mass transferred into the permeability field, and the uncertainty
increased with increasing correlation length of the permeability field. In a heterogeneous

permeability field with a larger spatial correlation length, a larger effective vertical permeability
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is in general favorable for solute mass transfer into the underlying porous medium. Conversely, in
a heterogeneous permeability field with a shorter spatial correlation length, a larger effective
vertical permeability does not necessarily lead to a higher mass transfer rate. This is because mass
transfer across the top boundary through miscible density-driven convection depends on the flow
recirculation near the interface. A large effective vertical permeability does not necessarily lead to
fast flow recirculation because the former is measured in the vertical direction whereas the latter
depends more on the internally-connected, high-permeability streaks within the domain. The 3D-
printed elementary sediment blocks can be re-distributed to construct another permeability field
easily, which greatly reduces the experimental time and thus significantly increases the total
number of experiments that can be conducted, thereby approaching the ergodicity requirement

when a large number of random permeability fields is needed.

Keywords: density-driven convection | porous media | permeability heterogeneity | 3D printing |

geological carbon sequestration
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1. Introduction

Porous media are ubiquitous in natural and industrial processes, where complex fluid flow, mass
transfer, and chemical reactions occur (Fredd and Fogler 1998, Gong and Gu 2015, Guo et al. 2020,
Dudukovic et al. 2021, Kou et al. 2021, Qu et al. 2023). Miscible density-driven convection in

porous media is a fundamental phenomenon of mass transfer, which has a wide range of
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applications in solute transport in groundwater aquifers (Simmons et al. 2001), saltwater intrusion
in coastal aquifers (Kopsiaftis et al. 2009), and nuclear waste disposal (Neretnieks and Winberg-
Wang 2019). Particularly, miscible density-driven convection in porous media has received
increasing attention in the context of geological carbon sequestration (GCS), a promising solution
to mitigating global climate change, because solubility trapping is one of the major trapping
mechanisms for injected CO, which can be greatly enhanced by miscible density-driven

convection (Xu et al. 2006, Chen and Zhang 2010, Farajzadeh et al. 2011, Chen et al. 2013).

Deep saline aquifers are considered promising geological formations for long-term CO; storage
because of its vast storage capacity at the global scale. After injection into a deep saline aquifer,
CO; migrates upwards due to buoyancy and accumulates beneath an impermeable cap rock. The
accumulation of CO; under the cap rock poses a leaking risk. Dissolution of CO; into brine
increases the brine density near the cap rock, which results in an unstable density stratification
with the denser COz-rich brine solution sitting over the lighter, unaffected brine in the bottom of
the aquifer. Under certain conditions, the unstable density stratification triggers miscible density-
driven convection, which moves dissolved CO2 away from the cap rock, thereby accelerating
subsequent CO> dissolution across the COz-brine interface and mitigating the leaking risk at the
cap rock (Chen et al. 2013). The enhanced CO; dissolution caused by miscible density-driven
convection is referred to as convective dissolution or convective mixing, which is favorable for

the long-term security of GCS (Yang and Gu 2006, Chen et al. 2013).

Miscible density-driven convection in porous media was first studied by Horton and Rogers (1945)
and Lapwood (1948), which is commonly referred to as the Rayleigh-Darcy convection or Horton-
Rogers-Lapwood convection. Rayleigh-Darcy convection in homogeneous porous media has been

studied extensively (Ennis-King and Paterson 2005, Farajzadeh et al. 2007, Neufeld et al. 2010,

3



65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

Slim and Ramakrishnan 2010, Slim et al. 2013, Emami-Meybodi et al. 2015, Shi et al. 2018,
Mahmoodpour et al. 2019, Tang et al. 2019). The Rayleigh number, Ra, is used to characterize the
gravitational instability of the system. The critical Ra, the minimum Ra for triggering density-
driven convection in a porous medium, can be determined by theoretical analysis (Slim and
Ramakrishnan 2010), direct numerical simulation (Chen et al. 2013), and laboratory
experiments(Guo et al. 2021). Other important system properties are the onset time of density-
driven instability and mass transfer across the top boundary. The former refers to the time needed
to trigger miscible density-driven convection, whereas the latter describes the amount of solute
mass that migrates into the underlying porous media through the density-driven convection. These
two properties are critical to evaluating the fate of injected CO> and total storage capacity in a GCS
project. Numerous simulations and experiments have been developed to determine the onset time
(Riaz et al. 2006, Farajzadeh et al. 2007, Pau et al. 2010, Liyanage et al. 2019) and mass transfer
rate (Neufeld et al. 2010, Slim et al. 2013, Slim 2014, Newell et al. 2018, Mahmoodpour et al.

2019, Erfani et al. 2022).

The permeability distribution in a natural geological formation is in general highly heterogeneous.
Convective dissolution of injected CO> in a heterogeneous formation is different from that in a
homogeneous formation (Wang et al. 2021). Therefore, it is critical to develop fundamental
understanding of the role of permeability heterogeneity on miscible density-driven convection in
porous media. Due to the challenges in constructing well-controlled heterogeneous porous media
in the laboratory, very limited experimental studies have been conducted. In these limited
experimental studies, heterogeneous porous media were commonly layered or block-wise sand
packs (Jose et al. 2004, Agartan et al. 2015, Taheri et al. 2018, Agartan et al. 2020, Bharath and

Flynn 2021, Wang et al. 2021). As a consequence, Rayleigh-Darcy convection in heterogeneous
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porous media were studied primarily by direct numerical simulations (Farajzadeh et al. 2011,
Cheng et al. 2012, Ranganathan et al. 2012, Chen et al. 2013, Kong and Saar 2013, Limare et al.
2019, Nield and Kuznetsov 2019, Gjengedal et al. 2020, Li et al. 2020, Li et al. 2020, Yang et al.

2021).

In this study, we developed a quasi-two-dimensional fluidic device based on the three-dimensional
(3D) printing technology (Gjengedal et al. 2020, Almetwally and Jabbari 2021, Dudukovic et al.
2021) to solve the challenge in constructing well-controlled heterogeneous permeability fields.
Particularly, elementary "digital sediment” blocks were 3D printed to construct a heterogeneous
permeability field which had the desired mean, standard deviation, and spatial correlation length
of permeability. We focused on the role of the spatial correlation length of a heterogeneous
permeability field on miscible density-driven convection and the associated mass transfer into the

porous medium.

2. Materials and Methodology

2.1. Generation of heterogeneous permeability fields

The permeability of geological formations usually follows a log-normal distribution (Chen et al.

2013, Loschko et al. 2018). The log permeability field is defined as

Y = log(k), (1

where k is permeability. The mean and variance of the permeability field can be calculated using

2
HY"‘U—Y 2 o2 2uy+0d ot
U = eV z and gy = (e Y — 1)e Y+ where uy and gy are the mean and standard deviation
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of Y, respectively. In this study, we modeled the Y field using a Gaussian random field with a given
covariance function (Chen et al. 2013, Guo et al. 2022). An exponential function is used as the

covariance function (Rubin 2003), defined as:
c(s) = ofexp [-(s3/1% + s3/13) "], 2)

T, . . .

where s = [sx, sy] is the separation vector between two points, and Ly and L, are the spatial
correlation lengths in the x and y directions, respectively. The log permeability field, Y, is written
as Y=[1.1,.Y,,...Y, ]T, where N is the total block number. The covariance matrix, Cy, is defined as

the expected value matrix of the product of Y and Y?, Cy = E[YYT]. Cy is symmetric and positive
definite and thus can be decomposed as Cy = LLT using the Cholesky method, where L is a lower
triangular matrix and LT is an upper triangular matrix. Assuming that & is a vector of N
uncorrelated normally distributed random numbers with zero mean and unit variance, Y can be

generated as
Y = u, I+ L, 3)

where I is a vector of size N and all entries have a value of one (Chen and Zeng 2015).

2.2. Construction of heterogeneous permeability fields using 3D printing

Fig. 1a illustrates a realization of a heterogeneous permeability field, which was generated using
a Gaussian random field as described in Section 2.1. The threshold method was used to convert

the continuously distributed permeability field into a discrete, binary permeability field to allow
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for convenient construction of such a heterogeneous porous medium using 3D printing. In this

work, a permeability field was discretized into 10 X 10 cells. The cells with permeability higher

than the mean of the permeability field were constructed using 3D-printed porous blocks having
grains with diameter of 3 mm. The other cells, which had permeability lower than the mean of the
permeability field, were constructed using 3D-printed porous blocks having grains with diameter
of 2 mm. The 3D printer deposited photocurable acrylic resin and wax layer by layer, which is
ideal for printing 3D objects with fine features. The resin was transparent and used to fabricate the
spherical particles, whereas the wax was used as the supporting material during the 3D printing
process. In the post-processing stage, the wax was melted and removed from the pore spaces
between spherical particles, which allowed the delicate features and complex internal cavities to

be thoroughly cleaned without damage.

In this study, we used the discrete element method (Fan et al., 2019) to design two types of “digital
sediment” blocks and then used 3D printing to fabricate them, as shown in Fig. 1b. These two
types of sediment blocks were packed with uniform, full spherical particles having diameters of 2
mm and 3 mm, respectively. Both types of sediment blocks were 3D-printed with a spatial

resolution of 13 um and had overall dimensions of 2 cm X 2 cm X2 cm. The one dimensional

(1D) size of the sediment block (2 cm) was carefully selected to ensure that it was larger than the
statistical representative elementary volume (sSREV) (Zhang et al. 2000, Chen et al. 2008, Chen et
al. 2009) size and in the meanwhile adequately small compared to the overall sand box so that a
heterogeneous permeability field can be represented. To determine the SREV size for permeability
in a particular sample, we fixed the subdomain size and moved it throughout the entire sample. At
each subdomain location, we obtained the value of permeability. Therefore, at the end of the

iteration, we obtained a larger number of permeability values, from which we calculated the mean

7
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and standard deviation. We then increased the subdomain diameter and repeated this process. Our
recent study (Fan et al., 2018) showed that the sREV size for these spherical particles used to
construct the 3D-printed sediment blocks was approximately four times of the average sediment
grain diameter, when the sREV size was defined as the subdomain size at which the ratio of
standard deviation of permeability to mean permeability was 10%. Therefore, from the
permeability perspective, a sediment block having a 1D size of 2 cm is larger than the SREV size
for the spherical particles having diameters of 2 mm and 3 mm. In addition, the size of 2 cm is

small compared to the sand box so that 10 X 10 sediment blocks can be placed to represent the

permeability heterogeneity.

Particularly, the gray area in Fig. 1b indicates the high-permeability region, which was constructed
using the 3D-printed sediment blocks having 3 mm grain diameter, whereas the yellow area is the
low-permeability region and was constructed using the sediment blocks having 2 mm grain
diameter. Table 1 summarizes the laboratory-measured properties of these “digital sediment”
blocks. The permeability values of these 3D-printed sediment blocks were measured in the
laboratory. In the experiment, the sediment block was wrapped with a flexible rubber tube, which
sealed the four lateral sides of the block, thereby forcing water to flow in the longitudinal flow
direction . The permeability of the block was then calculated using the pressure difference and

flow rate based on the Darcy’s law.
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Table 1. Properties of 3D-printed “digital sediment” blocks.

Grain diameter, d Permeability, & Porosity, ¢
Block dimensions
(mm) (<1072 m?) (%)
2 2cmX2cmX2cm 95.0 41.9
3 2cmX2cmX2cm 526.4 442

2.3. Experimental setup

Fig. 1c demonstrates the fluidics experiment setup. The sand box was fabricated using transparent
acrylic panels. The refraction index of acrylic panels is 1.49. The porous medium was constructed

by stacking 10 X 10 3D-printed sediment blocks, leading to total dimensions of 20 cm X 20 cm
X 2 cm (i.e., height X width X thickness). The transparent resin used to 3D print the spherical

particles allowed direct observations of density-driven convection within the pore spaces. An
analogous fluid was placed in the top fluid reservoir to trigger miscible density-driven downward
convection that penetrated into the underlying 3D-printed porous medium. An impermeable panel
was placed on the sediment blocks to eliminate the impact of fluid flow when the analogous fluid
was injected into the top fluid reservoir. After the reservoir was filled, the impermeable panel was
removed to trigger downward convection (Guo et al. 2021). In this work, a mixture of 40% mass
fraction of methanol and 60% mass fraction of ethylene glycol formed the methanol ethylene
glycol (MEG) fluid, which was then mixed with water to surrogate a CO;-saturated brine solution.
Fig. 1d illustrates the laboratory-measured MEG-water solution density as a function MEG mass

concentration. The MEG solution density increased approximately linearly with the MEG mass
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concentration and reached the maximum when the MEG mass concentration was 50%. In addition,
at a MEG mass concentration of 50%, the MEG solution density was higher than water by 11
kg/m?, which is approximately equal to the density increase in a COs-saturated brine solution
(Chen et al., 2013). This implies that the maximum increased gravitational acceleration due to the
dissolved MEG, calculated as Apg/p,, is around 0.1 m/s?>, which is the same as that in a CO,-
saturated brine solution. Therefore, similar to a previous study(Guo et al. 2021), we used a MEG-
water solution having a 50% MEG mass concentration in the top fluid reservoir. A blue dye was

mixed in the solution as a tracer.

Ra is defined as Ra = Apgk,H/(popvD), where Ap is the density difference between the initial
MEG-water solution and water (kg/m?); g is gravitational acceleration (m/s?); k,, is the effective
vertical permeability of the entire porous medium (m?), calculated from the overall flow rate and
pressure gradient in the vertical direction obtained using a reservoir simulator; H is the
characteristic length, which is the height of the entire porous medium (m); p, is the density of
water (kg/m?); ¢ is the average medium porosity; v is the kinematic viscosity of water (m?/s); D

is the effective diffusivity of MEG in the porous medium (m?/s).

Two spatial correlation lengths, 2 cm and 4 cm, were used to build the heterogeneous permeability
fields separately. For each correlation length, eight realizations of the random permeability fields
were generated to approach the ergodicity requirement. Therefore, we constructed in total 16
heterogeneous permeability fields and conducted the experiment for 16 times. Each of the
permeability field realization was constructed using 50 sediment blocks having 2-mm particle

diameter and 50 sediment blocks having 3-mm particle diameter, as described in Section 2.2.

10



210  Therefore, all of the 16 permeability field realizations had the same arithmetic average and

211  standard deviation of permeability, which were 310.7x1071? m? and 216.8x107'2 m?, respectively.
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214  Fig. 1. a) A realization of a heterogeneous permeability field, b) a binary approximation of the
215  heterogeneous permeability field constructed using 3D-printed sediment blocks having grain
216  diameters of 2 mm and 3mm, ¢) laboratory experiment setup, and d) laboratory-measured density
217  of MEG-water solution as a function of MEG mass concentration (triangular markers), with the

218  solid line being the polynomial fitting curve.

219

220  2.4. Mass flux across the top boundary
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The MEG mass transfer across the top boundary was calculated using digital image processing
based on mass balance. During miscible density-driven convection, the penetration front
movement was adequately slow. In addition, the local convective flow enhanced the dispersion
coefficient for solute transport. These suggested that MEG was adequately mixed behind the
penetration front, leading to homogeneous solute concentration behind the penetration front
(Salehin et al. 2004, Chen and Zeng 2015). Therefore, the MEG concentration as a function of

time can be calculated as:

Cn(t) = Vi G0/ (V + X(¢:A4;D)), 4)

where V. is the volume of top fluid reservoir, G, ¢ is the initial MEG mass concentration in the top
fluid reservoir, ¢; is the porosity of the local sediment block, A4; is the area of the local sediment
block, and b is the thickness of the porous medium. Particularly, A; presents all porous medium
area behind the penetration front (i.e., the porous medium region that the penetration front has
swept), which were determined by tracking the penetration front boundary using digital imaging
processing(Guo et al. 2021). The total MEG mass within the porous medium at time ¢ can be
calculated as: M(t) = C,,(t) X (¢;A;b). The MEG mass flux (kg/(m?s)), defined as MEG mass
transferred across a unit boundary area per unit time, is calculated as the total MEG mass increment
in the porous medium over two consecutive measurement times normalized by the total top

boundary area and the time increment.

2.5. Numerical simulation

12



241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

In this study, numerical simulation was conducted to compare with the experimental observations.
Particularly, we numerical solved the following governing equations (Ennis-King et al. 2005, Xu
et al. 2006, Rapaka et al. 2008, Chen et al. 2013) (xxx) that describe miscible density-driven

convection in porous media:

puk~lu = —Vp + pge,, (5)
V-u=0, (6)
$Z + U VCy = PDVECyp, (7)
p=po(1+pBCn), (8)

where yu is the dynamic viscosity, Kk is the permeability tensor of the heterogeneous porous media,
p is the fluid pressure, p is the density of the water-MEG solution, e,, is the unit vector in the
vertical direction, u is the Darcy velocity vector in the two-dimensional domain, C,, is the MEG
mass concentration in the solution, p, is the water density, and f is the expansion coefficient
which describes the relationship between dissolved MEG concentration and solution density. In
the simulation, the Boussinesq approximation was adopted to assume that the dissolution of MEG
in water affected only the density of water (Chen et al. 2013). The 16 heterogeneous permeability
fields, as described in Section 2.3, were used in the numerical simulations. The computational
domain was discretized into 200 X 200 cell blocks, the same boundary conditions as in the
experiment were applied, and the implicit finite difference method (Chen 2016) was adopted to

solved the coupled partial differential equations as shown in Equations 5-8.

13
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3. Results and Discussion

3.1. Development of miscible density-driven convection

Fig. 2 illustrates the temporal evolutions of MEG downward penetration. The Ra numbers in the
top and bottom experiments were 1934 and 2260, respectively. The onset of instability occurred
in high-permeability regions (i.e., sediment blocks having 3-mm grain diameter). At the time scale
of 1 min, MEG-rich fingers had developed to a noticeable extent, and after that the fingers
developed preferentially following the high-permeability regions. Previous studies showed that
three mechanisms control convective mixing in a heterogeneous permeability field, which are
dispersion, channeling, and fingering (Farajzadeh et al. 2011, Ranganathan et al. 2012, Chen et al.
2013). Fingering occurs when the permeability’s standard deviation is low. Channeling occurs
when the permeability’s standard deviation is moderate to high, associated with a moderate to
large spatial correlation length. In contrast, dispersion occurs when the permeability’s standard
deviation is moderate to high, associated with a small spatial correlation length. The density-
driven downward convection in this study was controlled primarily by channeling due to the
combination of heterogeneity and spatial correlation length in the permeability fields. Particularly,
at later times (i.e.,5 min and 10 min) MEG-rich fingers developed preferentially following the
high-permeability blocks in both experiments, whereas the low-permeability blocks acted as
barriers which hindered the downward penetration of the MEG-rich fingers. In addition,
preferential transport of MEG-rich solution along the vertical contact edges between sediment
blocks was observed. Although mechanical stress was applied on the sand box panels to compress

the sediment blocks to minimize preferential flows, improved methods for sediment block
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concatenation are needed in future studies to entirely eliminate preferential flows.
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Fig. 2. Development of density-driven convection in heterogeneous permeability fields having the
same mean and standard deviation of permeability. The top and bottom permeability fields had
spatial correlation lengths of 2 cm and 4 cm, respectively. The gray and yellow regions were
constructed using 3D-printed sediment blocks with grain diameters of 3 mm and 2 mm,

respectively.

3.2. Mass flux across the top boundary

Fig. 3 illustrates the development of the penetration fronts, as well as MEG mass flux and total
transferred MEG mass across the top boundary as a function of time. The MEG-rich solution front
preferentially developed along the high-permeability 3D-printed sediment blocks. The
development of miscible density-driven convection can be characterized into the diffusive regime,
velocity-growth regime, flux-growth regime, quasi-steady regime, and shutdown regime
(Mahmoodpour et al. 2019). The mass transfer is dominated primarily by molecular diffusion in

the diffusive and velocity-growth regimes. The mass flux across the top boundary continuously
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decays at early times because the MEG mass transferred into the underlying porous medium
diminishes the concentration gradient across the penetration front. At a later time, the mass flux
contributed by convection starts to dominate over that contributed by molecular diffusion. At this
point, the total mass flux starts to increase, which marks the beginning of the flux-growth regime.
Fig. 3 illustrates that the onset of the flux-growth regime occurred approximately after eight

minutes in both experiments.
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Fig. 3. a) Density-driven penetration fronts at 0.5 min, 2 min, 5 min, and 10 min, and b) mass flux
and total transferred mass of MEG across the top boundary as a function of time in a heterogeneous

permeability field having a spatial correlation length of 2 cm. ¢) Density-driven penetration fronts
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at 0.5 min, 2 min, 5 min, and 10 min, and d) mass flux and total transferred mass of MEG across
the top boundary as a function of time in a heterogeneous permeability field having a spatial
correlation length of 4 cm. The gray and yellow regions were constructed using 3D-printed

sediment blocks with grain diameters of 3 mm and 2 mm, respectively.

3.3. Uncertainty in mass flux

Fig. 3 demonstrates only one realization of the heterogeneous permeability field for each spatial
correlation length. As described previously, in order to approach the ergodicity requirement, eight
realizations of the random permeability field for each correlation length were constructed; we then
conducted the miscible density-driven convection experiment on each of the realization. Fig. 4a
and Fig. 4b illustrate the total MEG mass transfer amounts against time measured in these
experiments, as well as the means and standard deviations. The result showed that the average
MEG mass transfer rate was similar for both spatial correlation lengths. In other words, the average
total transferred MEG mass across the top boundary at the same experimental time was similar in
both scenarios. However, for the correlation length of 4 cm, the collective behavior of the measured
mass-time curves showed a more scattered pattern, leading to a wider envelope. This indicates that
a larger spatial correlation length in a heterogeneous permeability field causes a higher uncertainty
in the mass transfer. Figures 4c and 4d illustrate the corresponding numerical simulations of the
experimental processes demonstrated in Figures 4a and 4b. The simulations showed the same
observation that a larger spatial correlation length caused higher uncertainty in the total transferred
mass, leading to a wider envelope. The comparison also showed that at early times (i.e., , less than

6 min) the average total transferred mass in the experiment was slightly higher than that in the
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simulation, which may be caused by initial disturbance in the experiment that was not accounted
for in the numerical simulation. The difference between experimentally-measured and

numerically-simulated total dissolved MEG mass was measured by the root mean square error

: . 2
RMSE), which is calculated as RMSE = | Y\m||mexperiment _ pysimulation||” /N \where N,
=1 i i

is the total number of experimental data points. The RMSEs were 0.00799 kg and 0.00719 kg for
the heterogeneous permeability fields having a spatial correlation length of 2 ¢cm and 4 cm,

respectively.
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Fig. 4. Total transferred MEG mass as a function of time across the top boundary of a
heterogeneous permeability field having a spatial correlation length of a) 2 cm, and b) 4 cm. Each
black curve is the experimental measurement obtained from a specific realization of heterogeneous
permeability field. The red solid curve and error bar indicate the average and standard deviation,
respectively. Corresponding numerical simulation of the total transferred MEG mass as a function
of time in the heterogeneous permeability fields having a spatial correlation length of ¢) 2 cm, and
d) 4 cm. The blue solid curve and error bar indicate the average and standard deviation of the
simulation results, respectively. For comparison, the average and standard deviation of the

experimental results are also shown in Figures ¢ and d.
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Fig. 5 demonstrates the relation between total transferred MEG mass and the effective vertical

permeability of the heterogeneous permeability field,  , in the 16 permeability field realizations.

First, it was observed that & was always lower than the arithmetic average of the permeability

field (i.e., 310.7x107'2 m?), which was caused by the spatial heterogeneity in the permeability field.

Second, no noticeable correlation between the total transferred MEG mass and k, was observed in

porous media with a spatial correlation length of 2 cm (i.e., Fig. 5a), whereas an overall positive
correlation was observed in porous media with a spatial correlation length of 4 cm (i.e., Fig. 5b).
This was because MEG mass transfer across the top boundary depended on the downward
convective flow near the interface, which caused nearby upward fluid flow because of mass
balance (Chen and Zhang 2010). The downward and upward flows led to flow recirculation near
the top boundary of the porous medium, which regulated mass transfer across the interface. A
large effective vertical permeability does not necessarily lead to fast flow recirculation because the
former is measured in the vertical direction whereas the latter depends more on the internally-
connected, high-permeability streaks. Therefore, the spatial correlation length of the permeability
field plays a critical role on flow recirculation. In the porous medium with a spatial correlation
length of 4 cm, when the effective vertical permeability was high, it was relatively easier to find
spatially-connected high-permeability streaks, which facilitated the development of flow
recirculation near the top boundary; when the effective vertical permeability was low, it was likely
to find spatially-connected low-permeability barriers that hampered the development of flow
recirculation. Conversely, the spatial correlation length of 2 c¢cm led to isolated and spotted
permeability structure, which diminished the relationship between effective vertical permeability
and internal flow recirculation. This finding suggests that in a heterogeneous permeability field

with a shorter spatial correlation length, a larger effective vertical permeability does not
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necessarily lead to a larger amount of solute mass transfer into the underlying porous medium by
means of density-driven convection. In comparison, in a heterogeneous permeability field with a
larger spatial correlation length, a larger effective vertical permeability is in general favorable for

mass transfer into the underlying porous medium.
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Fig. 5. Total transferred MEG mass as a function the effective vertical permeability of a
heterogeneous permeability field having a spatial correlation length of a) 2 cm, and b) 4 cm,

respectively.

4. Conclusion and Implications

We developed a 3D-printing-based fluidic device to study the role of permeability heterogeneity
on miscible density-driven convection in porous media. Experimental results showed that
permeability heterogeneity caused noticeable uncertainty in the total transferred MEG mass, and
the uncertainty increased with increasing spatial correlation length of the permeability field. In a

heterogeneous permeability field with a larger spatial correlation length, a larger effective vertical
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permeability is in general favorable for solute mass transfer into the underlying porous medium.
Conversely, in a heterogeneous permeability field with a shorter spatial correlation length, a larger
effective vertical permeability does not necessarily lead to a larger amount of solute mass transfer.
This is because mass transfer across the top boundary through miscible density-driven convection
depends on the local flow recirculation near the interface. A large effective vertical permeability
does not necessarily lead to fast flow recirculation because the former is measured in the vertical
direction whereas the latter depends more on the internally-connected, high-permeability streaks
within the domain. Therefore, the spatial correlation length of the permeability field plays a critical
role on flow recirculation. These research findings show that permeability heterogeneity not only
refers to the spatial variation of permeability, but should also account for its spatial correlation

length.

The 3D fluidics technology developed in this study makes it possible to construct known and well-
controlled heterogeneous permeability fields in an efficient way, which solves the challenge in
constructing heterogeneous porous media in the laboratory. Particularly, the 3D-printed
elementary sediment blocks can be re-distributed to construct another permeability field easily,
which greatly reduces the experimental time and thus significantly increases the total number of
experiments that can be conducted, thereby approaching the ergodicity requirement when a large
number of random permeability fields is needed. Although this study is focused on density-driven
downward convection, the developed 3D printing technology and the research findings from this
work have important applications to other subsurface flow and transport processes where the

permeability heterogeneity is critical.
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Nomenclature
A; Area of porous medium corresponding to porous block i
b Reservoir thickness

Covariance function

Mass concentration of MEG in water

Initial MEG mass concentration in the top fluid reservoir
Covariance matrix

Effective diffusivity of MEG in the porous medium
Diameter

Unit vector in the vertical direction

Gravitational acceleration

Characteristic length

Identity matrix

Permeability

Permeability tensor

Effective vertical permeability of the entire porous medium
Lower triangular matrix

Spatial correlation length in the x direction

Spatial correlation length in the y direction

MEG mass

Block number

Number of experimental measurements of total dissolved MEG

Fluid pressure

w“cszzggpr'gwww—mmg &@QSQSQQ
o

Separation vector between two points
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Sy Separation distance in the x direction

Sy Separation distance in the y direction
u Velocity vector

t Time

|74 Volume of fluid reservoir

X Direction

B Expansion coefficient

Y Permeability field

y Direction

Uk Mean of k

Uy Mean of ¥

Kinematic viscosity of water

Vector with zero mean and unit variance

p Density of water-MEG solution
Po Density of water
Ap Density difference between the initial MEG-water solution and water
O% Standard deviation of &
oy Standard deviation of ¥
) Porosity of porous media
417
418
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