

1 **Using 3D-printed fluidics to study the role of permeability**
2 **heterogeneity on miscible density-driven convection in porous media**

3 Ruichang Guo¹, Hanxing Sun², Hongsheng Wang³, Yang Liu², Cheng Chen^{1*}

4 ¹ Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology,
5 Hoboken, NJ, USA

6 ² Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA

7 ³ Bureau of Economic Geology, The University of Texas at Austin, Austin, TX, USA

8

9 **Abstract:** Miscible density-driven convection in porous media has important implications to the
10 long-term security of geological carbon sequestration. Laboratory investigations of miscible
11 density-driven convection in heterogeneous porous media have been greatly limited due to the
12 challenge in constructing well-controlled heterogeneous permeability fields. In this study, three-
13 dimensional (3D) printing was used to solve the challenge. Particularly, elementary sediment
14 blocks were 3D printed to construct heterogeneous permeability fields having the desired mean,
15 standard deviation, and spatial correlation length of permeability. A methanol-ethylene-glycol
16 (MEG) solution was placed at the top of the permeability field to trigger miscible density-driven
17 downward convection. Results showed that permeability heterogeneity caused noticeable
18 uncertainty in the total MEG mass transferred into the permeability field, and the uncertainty
19 increased with increasing correlation length of the permeability field. In a heterogeneous
20 permeability field with a larger spatial correlation length, a larger effective vertical permeability

21 is in general favorable for solute mass transfer into the underlying porous medium. Conversely, in
22 a heterogeneous permeability field with a shorter spatial correlation length, a larger effective
23 vertical permeability does not necessarily lead to a higher mass transfer rate. This is because mass
24 transfer across the top boundary through miscible density-driven convection depends on the flow
25 recirculation near the interface. A large effective vertical permeability does not necessarily lead to
26 fast flow recirculation because the former is measured in the vertical direction whereas the latter
27 depends more on the internally-connected, high-permeability streaks within the domain. The 3D-
28 printed elementary sediment blocks can be re-distributed to construct another permeability field
29 easily, which greatly reduces the experimental time and thus significantly increases the total
30 number of experiments that can be conducted, thereby approaching the ergodicity requirement
31 when a large number of random permeability fields is needed.

32

33 **Keywords:** density-driven convection | porous media | permeability heterogeneity | 3D printing |
34 geological carbon sequestration

35 * Corresponding author: Cheng Chen (cchen6@stevens.edu)

36

37 **1. Introduction**

38 Porous media are ubiquitous in natural and industrial processes, where complex fluid flow, mass
39 transfer, and chemical reactions occur (Fredd and Fogler 1998, Gong and Gu 2015, Guo et al. 2020,
40 Dudukovic et al. 2021, Kou et al. 2021, Qu et al. 2023). Miscible density-driven convection in
41 porous media is a fundamental phenomenon of mass transfer, which has a wide range of

42 applications in solute transport in groundwater aquifers (Simmons et al. 2001), saltwater intrusion
43 in coastal aquifers (Kopsiaftis et al. 2009), and nuclear waste disposal (Neretnieks and Winberg-
44 Wang 2019). Particularly, miscible density-driven convection in porous media has received
45 increasing attention in the context of geological carbon sequestration (GCS), a promising solution
46 to mitigating global climate change, because solubility trapping is one of the major trapping
47 mechanisms for injected CO₂, which can be greatly enhanced by miscible density-driven
48 convection (Xu et al. 2006, Chen and Zhang 2010, Farajzadeh et al. 2011, Chen et al. 2013).

49 Deep saline aquifers are considered promising geological formations for long-term CO₂ storage
50 because of its vast storage capacity at the global scale. After injection into a deep saline aquifer,
51 CO₂ migrates upwards due to buoyancy and accumulates beneath an impermeable cap rock. The
52 accumulation of CO₂ under the cap rock poses a leaking risk. Dissolution of CO₂ into brine
53 increases the brine density near the cap rock, which results in an unstable density stratification
54 with the denser CO₂-rich brine solution sitting over the lighter, unaffected brine in the bottom of
55 the aquifer. Under certain conditions, the unstable density stratification triggers miscible density-
56 driven convection, which moves dissolved CO₂ away from the cap rock, thereby accelerating
57 subsequent CO₂ dissolution across the CO₂-brine interface and mitigating the leaking risk at the
58 cap rock (Chen et al. 2013). The enhanced CO₂ dissolution caused by miscible density-driven
59 convection is referred to as convective dissolution or convective mixing, which is favorable for
60 the long-term security of GCS (Yang and Gu 2006, Chen et al. 2013).

61 Miscible density-driven convection in porous media was first studied by Horton and Rogers (1945)
62 and Lapwood (1948), which is commonly referred to as the Rayleigh-Darcy convection or Horton-
63 Rogers-Lapwood convection. Rayleigh-Darcy convection in homogeneous porous media has been
64 studied extensively (Ennis-King and Paterson 2005, Farajzadeh et al. 2007, Neufeld et al. 2010,

65 Slim and Ramakrishnan 2010, Slim et al. 2013, Emami-Meybodi et al. 2015, Shi et al. 2018,
66 Mahmoodpour et al. 2019, Tang et al. 2019). The Rayleigh number, Ra , is used to characterize the
67 gravitational instability of the system. The critical Ra , the minimum Ra for triggering density-
68 driven convection in a porous medium, can be determined by theoretical analysis (Slim and
69 Ramakrishnan 2010), direct numerical simulation (Chen et al. 2013), and laboratory
70 experiments(Guo et al. 2021). Other important system properties are the onset time of density-
71 driven instability and mass transfer across the top boundary. The former refers to the time needed
72 to trigger miscible density-driven convection, whereas the latter describes the amount of solute
73 mass that migrates into the underlying porous media through the density-driven convection. These
74 two properties are critical to evaluating the fate of injected CO_2 and total storage capacity in a GCS
75 project. Numerous simulations and experiments have been developed to determine the onset time
76 (Riaz et al. 2006, Farajzadeh et al. 2007, Pau et al. 2010, Liyanage et al. 2019) and mass transfer
77 rate (Neufeld et al. 2010, Slim et al. 2013, Slim 2014, Newell et al. 2018, Mahmoodpour et al.
78 2019, Erfani et al. 2022).

79 The permeability distribution in a natural geological formation is in general highly heterogeneous.
80 Convective dissolution of injected CO_2 in a heterogeneous formation is different from that in a
81 homogeneous formation (Wang et al. 2021). Therefore, it is critical to develop fundamental
82 understanding of the role of permeability heterogeneity on miscible density-driven convection in
83 porous media. Due to the challenges in constructing well-controlled heterogeneous porous media
84 in the laboratory, very limited experimental studies have been conducted. In these limited
85 experimental studies, heterogeneous porous media were commonly layered or block-wise sand
86 packs (Jose et al. 2004, Agartan et al. 2015, Taheri et al. 2018, Agartan et al. 2020, Bharath and
87 Flynn 2021, Wang et al. 2021). As a consequence, Rayleigh-Darcy convection in heterogeneous

88 porous media were studied primarily by direct numerical simulations (Farajzadeh et al. 2011,
89 Cheng et al. 2012, Ranganathan et al. 2012, Chen et al. 2013, Kong and Saar 2013, Limare et al.
90 2019, Nield and Kuznetsov 2019, Gjengedal et al. 2020, Li et al. 2020, Li et al. 2020, Yang et al.
91 2021).

92 In this study, we developed a quasi-two-dimensional fluidic device based on the three-dimensional
93 (3D) printing technology (Gjengedal et al. 2020, Almetwally and Jabbari 2021, Dudukovic et al.
94 2021) to solve the challenge in constructing well-controlled heterogeneous permeability fields.
95 Particularly, elementary "digital sediment" blocks were 3D printed to construct a heterogeneous
96 permeability field which had the desired mean, standard deviation, and spatial correlation length
97 of permeability. We focused on the role of the spatial correlation length of a heterogeneous
98 permeability field on miscible density-driven convection and the associated mass transfer into the
99 porous medium.

100

101 **2. Materials and Methodology**

102 **2.1. Generation of heterogeneous permeability fields**

103 The permeability of geological formations usually follows a log-normal distribution (Chen et al.
104 2013, Loschko et al. 2018). The log permeability field is defined as

105
$$Y = \log(k), \quad (1)$$

106 where k is permeability. The mean and variance of the permeability field can be calculated using

107
$$\mu_k = e^{\mu_Y + \frac{\sigma_Y^2}{2}}$$
 and $\sigma_k^2 = (e^{\sigma_Y^2} - 1)e^{2\mu_Y + \sigma_Y^2}$, where μ_Y and σ_Y are the mean and standard deviation

108 of Y , respectively. In this study, we modeled the Y field using a Gaussian random field with a given
109 covariance function (Chen et al. 2013, Guo et al. 2022). An exponential function is used as the
110 covariance function (Rubin 2003), defined as:

111

$$c(\mathbf{s}) = \sigma_Y^2 \exp \left[-\left(s_x^2 / L_x^2 + s_y^2 / L_y^2 \right)^{1/2} \right], \quad (2)$$

112 where $\mathbf{s} = [s_x, s_y]^T$ is the separation vector between two points, and L_x and L_y are the spatial
113 correlation lengths in the x and y directions, respectively. The log permeability field, \mathbf{Y} , is written
114 as $\mathbf{Y} = [Y_1, Y_2, Y_3, \dots, Y_N]^T$, where N is the total block number. The covariance matrix, \mathbf{C}_Y , is defined as
115 the expected value matrix of the product of \mathbf{Y} and \mathbf{Y}^T , $\mathbf{C}_Y = E[\mathbf{Y}\mathbf{Y}^T]$. \mathbf{C}_Y is symmetric and positive
116 definite and thus can be decomposed as $\mathbf{C}_Y = \mathbf{L}\mathbf{L}^T$ using the Cholesky method, where \mathbf{L} is a lower
117 triangular matrix and \mathbf{L}^T is an upper triangular matrix. Assuming that ξ is a vector of N
118 uncorrelated normally distributed random numbers with zero mean and unit variance, \mathbf{Y} can be
119 generated as

120

$$\mathbf{Y} = \mu_Y \mathbf{I} + \mathbf{L}\xi, \quad (3)$$

121 where \mathbf{I} is a vector of size N and all entries have a value of one (Chen and Zeng 2015).

122

123 **2.2. Construction of heterogeneous permeability fields using 3D printing**

124 **Fig. 1a** illustrates a realization of a heterogeneous permeability field, which was generated using
125 a Gaussian random field as described in Section 2.1. The threshold method was used to convert
126 the continuously distributed permeability field into a discrete, binary permeability field to allow

127 for convenient construction of such a heterogeneous porous medium using 3D printing. In this
128 work, a permeability field was discretized into 10×10 cells. The cells with permeability higher
129 than the mean of the permeability field were constructed using 3D-printed porous blocks having
130 grains with diameter of 3 mm. The other cells, which had permeability lower than the mean of the
131 permeability field, were constructed using 3D-printed porous blocks having grains with diameter
132 of 2 mm. The 3D printer deposited photocurable acrylic resin and wax layer by layer, which is
133 ideal for printing 3D objects with fine features. The resin was transparent and used to fabricate the
134 spherical particles, whereas the wax was used as the supporting material during the 3D printing
135 process. In the post-processing stage, the wax was melted and removed from the pore spaces
136 between spherical particles, which allowed the delicate features and complex internal cavities to
137 be thoroughly cleaned without damage.

138 In this study, we used the discrete element method (Fan et al., 2019) to design two types of “digital
139 sediment” blocks and then used 3D printing to fabricate them, as shown in Fig. 1b. These two
140 types of sediment blocks were packed with uniform, full spherical particles having diameters of 2
141 mm and 3 mm, respectively. Both types of sediment blocks were 3D-printed with a spatial
142 resolution of $13 \mu\text{m}$ and had overall dimensions of $2 \text{ cm} \times 2 \text{ cm} \times 2 \text{ cm}$. The one dimensional
143 (1D) size of the sediment block (2 cm) was carefully selected to ensure that it was larger than the
144 statistical representative elementary volume (sREV) (Zhang et al. 2000, Chen et al. 2008, Chen et
145 al. 2009) size and in the meanwhile adequately small compared to the overall sand box so that a
146 heterogeneous permeability field can be represented. To determine the sREV size for permeability
147 in a particular sample, we fixed the subdomain size and moved it throughout the entire sample. At
148 each subdomain location, we obtained the value of permeability. Therefore, at the end of the
149 iteration, we obtained a larger number of permeability values, from which we calculated the mean

150 and standard deviation. We then increased the subdomain diameter and repeated this process. Our
151 recent study (Fan et al., 2018) showed that the sREV size for these spherical particles used to
152 construct the 3D-printed sediment blocks was approximately four times of the average sediment
153 grain diameter, when the sREV size was defined as the subdomain size at which the ratio of
154 standard deviation of permeability to mean permeability was 10%. Therefore, from the
155 permeability perspective, a sediment block having a 1D size of 2 cm is larger than the sREV size
156 for the spherical particles having diameters of 2 mm and 3 mm. In addition, the size of 2 cm is
157 small compared to the sand box so that 10×10 sediment blocks can be placed to represent the
158 permeability heterogeneity.

159 Particularly, the gray area in Fig. 1b indicates the high-permeability region, which was constructed
160 using the 3D-printed sediment blocks having 3 mm grain diameter, whereas the yellow area is the
161 low-permeability region and was constructed using the sediment blocks having 2 mm grain
162 diameter. Table 1 summarizes the laboratory-measured properties of these “digital sediment”
163 blocks. The permeability values of these 3D-printed sediment blocks were measured in the
164 laboratory. In the experiment, the sediment block was wrapped with a flexible rubber tube, which
165 sealed the four lateral sides of the block, thereby forcing water to flow in the longitudinal flow
166 direction. The permeability of the block was then calculated using the pressure difference and
167 flow rate based on the Darcy’s law.

168

169

170

171 **Table 1.** Properties of 3D-printed “digital sediment” blocks.

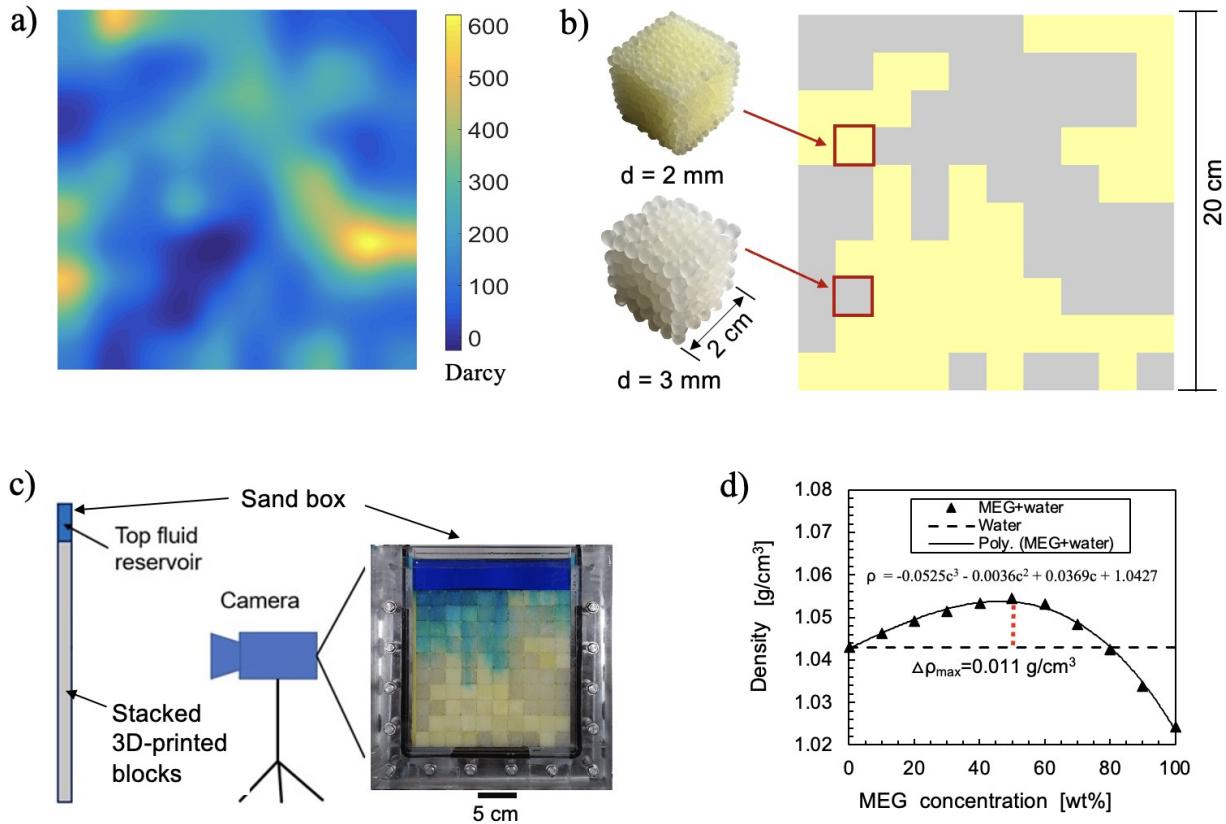
Grain diameter, d (mm)	Block dimensions	Permeability, k ($\times 10^{-12}$ m 2)	Porosity, ϕ (%)
2	2 cm \times 2 cm \times 2 cm	95.0	41.9
3	2 cm \times 2 cm \times 2 cm	526.4	44.2

172

173

174 **2.3. Experimental setup**

175 Fig. 1c demonstrates the fluidics experiment setup. The sand box was fabricated using transparent
 176 acrylic panels. The refraction index of acrylic panels is 1.49. The porous medium was constructed
 177 by stacking 10 \times 10 3D-printed sediment blocks, leading to total dimensions of 20 cm \times 20 cm
 178 \times 2 cm (i.e., height \times width \times thickness). The transparent resin used to 3D print the spherical
 179 particles allowed direct observations of density-driven convection within the pore spaces. An
 180 analogous fluid was placed in the top fluid reservoir to trigger miscible density-driven downward
 181 convection that penetrated into the underlying 3D-printed porous medium. An impermeable panel
 182 was placed on the sediment blocks to eliminate the impact of fluid flow when the analogous fluid
 183 was injected into the top fluid reservoir. After the reservoir was filled, the impermeable panel was
 184 removed to trigger downward convection (Guo et al. 2021). In this work, a mixture of 40% mass
 185 fraction of methanol and 60% mass fraction of ethylene glycol formed the methanol ethylene
 186 glycol (MEG) fluid, which was then mixed with water to surrogate a CO₂-saturated brine solution.
 187 Fig. 1d illustrates the laboratory-measured MEG-water solution density as a function MEG mass
 188 concentration. The MEG solution density increased approximately linearly with the MEG mass


189 concentration and reached the maximum when the MEG mass concentration was 50%. In addition,
190 at a MEG mass concentration of 50%, the MEG solution density was higher than water by 11
191 kg/m³, which is approximately equal to the density increase in a CO₂-saturated brine solution
192 (Chen et al., 2013). This implies that the maximum increased gravitational acceleration due to the
193 dissolved MEG, calculated as $\Delta\rho g / \rho_0$, is around 0.1 m/s², which is the same as that in a CO₂-
194 saturated brine solution. Therefore, similar to a previous study(Guo et al. 2021), we used a MEG-
195 water solution having a 50% MEG mass concentration in the top fluid reservoir. A blue dye was
196 mixed in the solution as a tracer.

197 Ra is defined as $Ra = \Delta\rho g \bar{k}_v H / (\rho_0 \phi \nu D)$, where $\Delta\rho$ is the density difference between the initial
198 MEG-water solution and water (kg/m³); g is gravitational acceleration (m/s²); \bar{k}_v is the effective
199 vertical permeability of the entire porous medium (m²), calculated from the overall flow rate and
200 pressure gradient in the vertical direction obtained using a reservoir simulator; H is the
201 characteristic length, which is the height of the entire porous medium (m); ρ_0 is the density of
202 water (kg/m³); ϕ is the average medium porosity; ν is the kinematic viscosity of water (m²/s); D
203 is the effective diffusivity of MEG in the porous medium (m²/s).

204 Two spatial correlation lengths, 2 cm and 4 cm, were used to build the heterogeneous permeability
205 fields separately. For each correlation length, eight realizations of the random permeability fields
206 were generated to approach the ergodicity requirement. Therefore, we constructed in total 16
207 heterogeneous permeability fields and conducted the experiment for 16 times. Each of the
208 permeability field realization was constructed using 50 sediment blocks having 2-mm particle
209 diameter and 50 sediment blocks having 3-mm particle diameter, as described in Section 2.2.

210 Therefore, all of the 16 permeability field realizations had the same arithmetic average and
 211 standard deviation of permeability, which were $310.7 \times 10^{-12} \text{ m}^2$ and $216.8 \times 10^{-12} \text{ m}^2$, respectively.

212

213

214 **Fig. 1.** a) A realization of a heterogeneous permeability field, b) a binary approximation of the
 215 heterogeneous permeability field constructed using 3D-printed sediment blocks having grain
 216 diameters of 2 mm and 3mm, c) laboratory experiment setup, and d) laboratory-measured density
 217 of MEG-water solution as a function of MEG mass concentration (triangular markers), with the
 218 solid line being the polynomial fitting curve.

219

220 **2.4. Mass flux across the top boundary**

221 The MEG mass transfer across the top boundary was calculated using digital image processing
222 based on mass balance. During miscible density-driven convection, the penetration front
223 movement was adequately slow. In addition, the local convective flow enhanced the dispersion
224 coefficient for solute transport. These suggested that MEG was adequately mixed behind the
225 penetration front, leading to homogeneous solute concentration behind the penetration front
226 (Salehin et al. 2004, Chen and Zeng 2015). Therefore, the MEG concentration as a function of
227 time can be calculated as:

228
$$C_m(t) = V_r C_{m,0} / (V_r + \sum(\phi_i A_i b)), \quad (4)$$

229 where V_r is the volume of top fluid reservoir, $C_{m,0}$ is the initial MEG mass concentration in the top
230 fluid reservoir, ϕ_i is the porosity of the local sediment block, A_i is the area of the local sediment
231 block, and b is the thickness of the porous medium. Particularly, A_i presents all porous medium
232 area behind the penetration front (i.e., the porous medium region that the penetration front has
233 swept), which were determined by tracking the penetration front boundary using digital imaging
234 processing(Guo et al. 2021). The total MEG mass within the porous medium at time t can be
235 calculated as: $M(t) = C_m(t) \sum(\phi_i A_i b)$. The MEG mass flux ($\text{kg}/(\text{m}^2\text{s})$), defined as MEG mass
236 transferred across a unit boundary area per unit time, is calculated as the total MEG mass increment
237 in the porous medium over two consecutive measurement times normalized by the total top
238 boundary area and the time increment.

239

240 **2.5. Numerical simulation**

241 In this study, numerical simulation was conducted to compare with the experimental observations.
 242 Particularly, we numerical solved the following governing equations (Ennis-King et al. 2005, Xu
 243 et al. 2006, Rapaka et al. 2008, Chen et al. 2013) (xxx) that describe miscible density-driven
 244 convection in porous media:

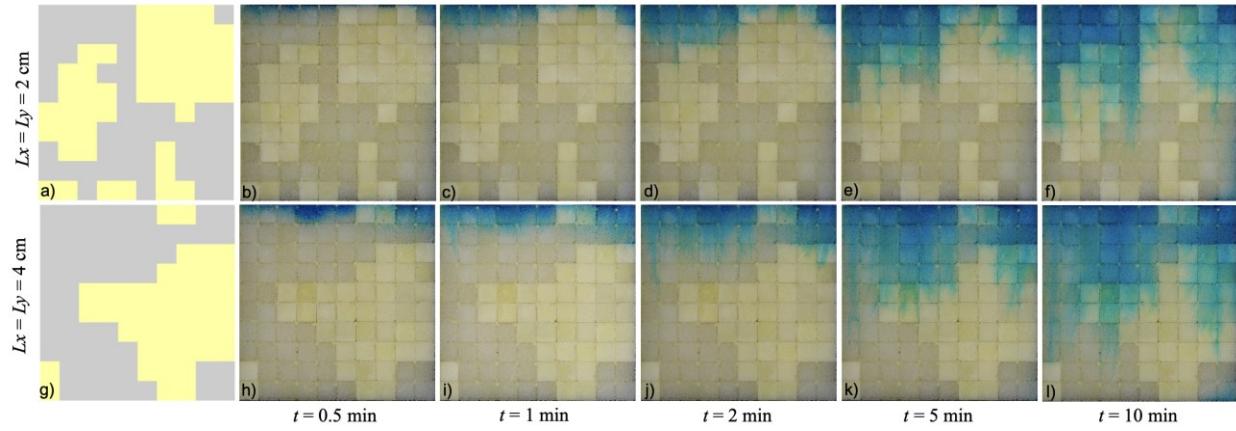
245 $\mu \mathbf{k}^{-1} \mathbf{u} = -\nabla p + \rho g \mathbf{e}_y, \quad (5)$

246 $\nabla \cdot \mathbf{u} = 0, \quad (6)$

247 $\phi \frac{\partial C_m}{\partial t} + \mathbf{u} \cdot \nabla C_m = \phi D \nabla^2 C_m, \quad (7)$

248 $\rho = \rho_0(1 + \beta C_m), \quad (8)$

249 where μ is the dynamic viscosity, \mathbf{k} is the permeability tensor of the heterogeneous porous media,
 250 p is the fluid pressure, ρ is the density of the water-MEG solution, \mathbf{e}_y is the unit vector in the
 251 vertical direction, \mathbf{u} is the Darcy velocity vector in the two-dimensional domain, C_m is the MEG
 252 mass concentration in the solution, ρ_0 is the water density, and β is the expansion coefficient
 253 which describes the relationship between dissolved MEG concentration and solution density. In
 254 the simulation, the Boussinesq approximation was adopted to assume that the dissolution of MEG
 255 in water affected only the density of water (Chen et al. 2013). The 16 heterogeneous permeability
 256 fields, as described in Section 2.3, were used in the numerical simulations. The computational
 257 domain was discretized into 200×200 cell blocks, the same boundary conditions as in the
 258 experiment were applied, and the implicit finite difference method (Chen 2016) was adopted to
 259 solved the coupled partial differential equations as shown in Equations 5-8.


260

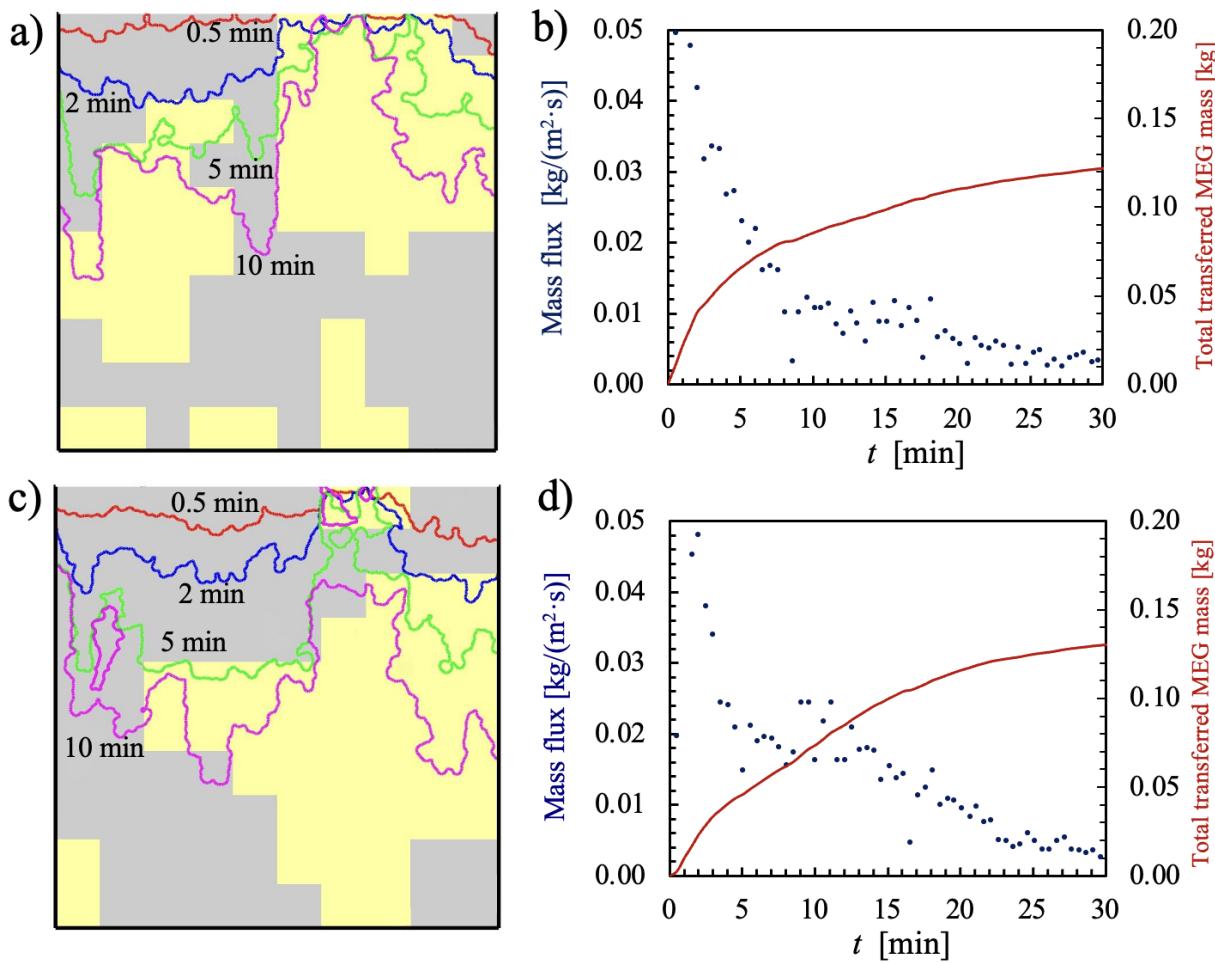
261 **3. Results and Discussion**

262 **3.1. Development of miscible density-driven convection**

263 **Fig. 2** illustrates the temporal evolutions of MEG downward penetration. The Ra numbers in the
264 top and bottom experiments were 1934 and 2260, respectively. The onset of instability occurred
265 in high-permeability regions (i.e., sediment blocks having 3-mm grain diameter). At the time scale
266 of 1 min, MEG-rich fingers had developed to a noticeable extent, and after that the fingers
267 developed preferentially following the high-permeability regions. Previous studies showed that
268 three mechanisms control convective mixing in a heterogeneous permeability field, which are
269 dispersion, channeling, and fingering (Farajzadeh et al. 2011, Ranganathan et al. 2012, Chen et al.
270 2013). Fingering occurs when the permeability's standard deviation is low. Channeling occurs
271 when the permeability's standard deviation is moderate to high, associated with a moderate to
272 large spatial correlation length. In contrast, dispersion occurs when the permeability's standard
273 deviation is moderate to high, associated with a small spatial correlation length. The density-
274 driven downward convection in this study was controlled primarily by channeling due to the
275 combination of heterogeneity and spatial correlation length in the permeability fields. Particularly,
276 at later times (i.e., 5 min and 10 min) MEG-rich fingers developed preferentially following the
277 high-permeability blocks in both experiments, whereas the low-permeability blocks acted as
278 barriers which hindered the downward penetration of the MEG-rich fingers. In addition,
279 preferential transport of MEG-rich solution along the vertical contact edges between sediment
280 blocks was observed. Although mechanical stress was applied on the sand box panels to compress
281 the sediment blocks to minimize preferential flows, improved methods for sediment block

282 concatenation are needed in future studies to entirely eliminate preferential flows.

283


284 **Fig. 2.** Development of density-driven convection in heterogeneous permeability fields having the
285 same mean and standard deviation of permeability. The top and bottom permeability fields had
286 spatial correlation lengths of 2 cm and 4 cm, respectively. The gray and yellow regions were
287 constructed using 3D-printed sediment blocks with grain diameters of 3 mm and 2 mm,
288 respectively.

289

290 **3.2. Mass flux across the top boundary**

291 **Fig. 3** illustrates the development of the penetration fronts, as well as MEG mass flux and total
292 transferred MEG mass across the top boundary as a function of time. The MEG-rich solution front
293 preferentially developed along the high-permeability 3D-printed sediment blocks. The
294 development of miscible density-driven convection can be characterized into the diffusive regime,
295 velocity-growth regime, flux-growth regime, quasi-steady regime, and shutdown regime
296 (Mahmoodpour et al. 2019). The mass transfer is dominated primarily by molecular diffusion in
297 the diffusive and velocity-growth regimes. The mass flux across the top boundary continuously

298 decays at early times because the MEG mass transferred into the underlying porous medium
 299 diminishes the concentration gradient across the penetration front. At a later time, the mass flux
 300 contributed by convection starts to dominate over that contributed by molecular diffusion. At this
 301 point, the total mass flux starts to increase, which marks the beginning of the flux-growth regime.
 302 Fig. 3 illustrates that the onset of the flux-growth regime occurred approximately after eight
 303 minutes in both experiments.

304

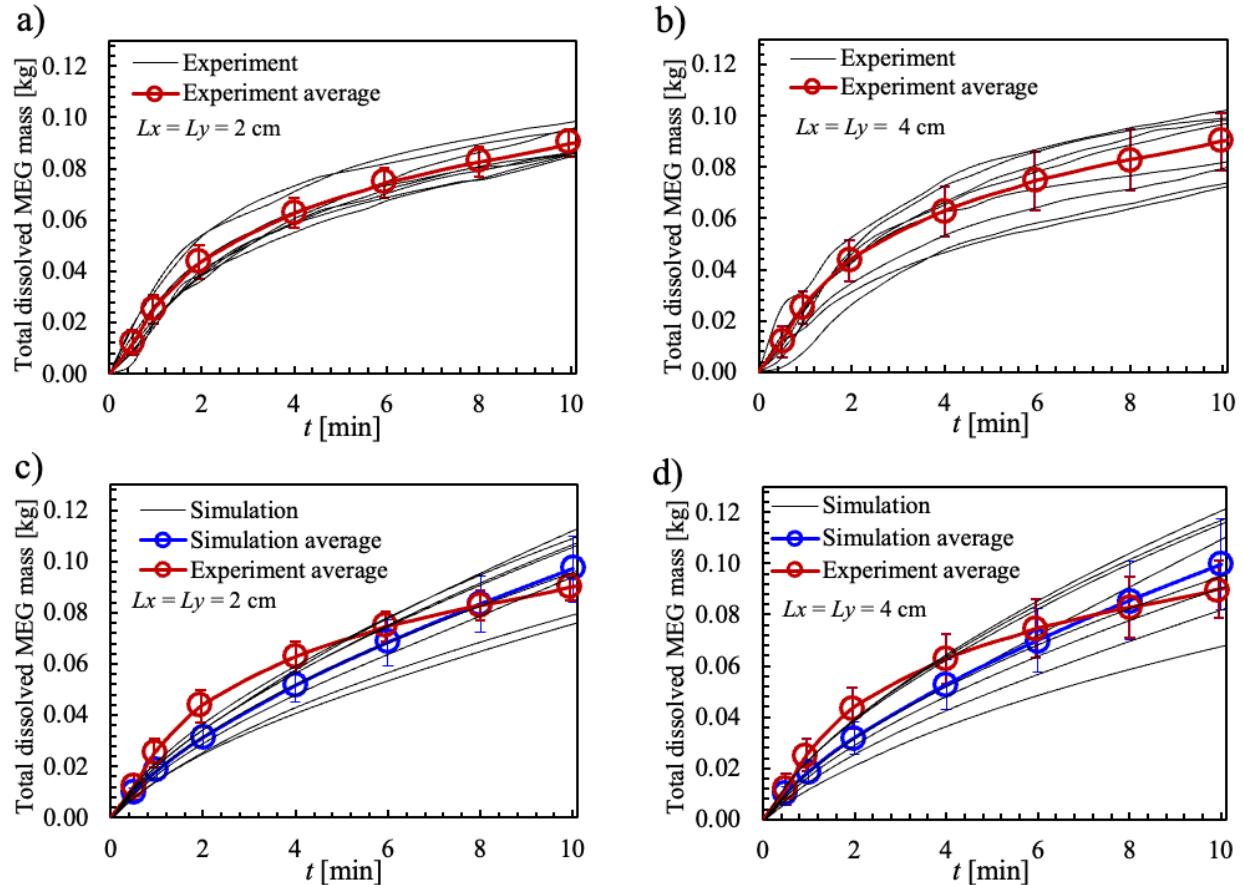
305 **Fig. 3.** a) Density-driven penetration fronts at 0.5 min, 2 min, 5 min, and 10 min, and b) mass flux
 306 and total transferred mass of MEG across the top boundary as a function of time in a heterogeneous
 307 permeability field having a spatial correlation length of 2 cm. c) Density-driven penetration fronts

308 at 0.5 min, 2 min, 5 min, and 10 min, and d) mass flux and total transferred mass of MEG across
309 the top boundary as a function of time in a heterogeneous permeability field having a spatial
310 correlation length of 4 cm. The gray and yellow regions were constructed using 3D-printed
311 sediment blocks with grain diameters of 3 mm and 2 mm, respectively.

312

313 **3.3. Uncertainty in mass flux**

314 Fig. 3 demonstrates only one realization of the heterogeneous permeability field for each spatial
315 correlation length. As described previously, in order to approach the ergodicity requirement, eight
316 realizations of the random permeability field for each correlation length were constructed; we then
317 conducted the miscible density-driven convection experiment on each of the realization. **Fig. 4a**
318 and Fig. 4b illustrate the total MEG mass transfer amounts against time measured in these
319 experiments, as well as the means and standard deviations. The result showed that the average
320 MEG mass transfer rate was similar for both spatial correlation lengths. In other words, the average
321 total transferred MEG mass across the top boundary at the same experimental time was similar in
322 both scenarios. However, for the correlation length of 4 cm, the collective behavior of the measured
323 mass-time curves showed a more scattered pattern, leading to a wider envelope. This indicates that
324 a larger spatial correlation length in a heterogeneous permeability field causes a higher uncertainty
325 in the mass transfer. Figures 4c and 4d illustrate the corresponding numerical simulations of the
326 experimental processes demonstrated in Figures 4a and 4b. The simulations showed the same
327 observation that a larger spatial correlation length caused higher uncertainty in the total transferred
328 mass, leading to a wider envelope. The comparison also showed that at early times (i.e., less than
329 6 min) the average total transferred mass in the experiment was slightly higher than that in the

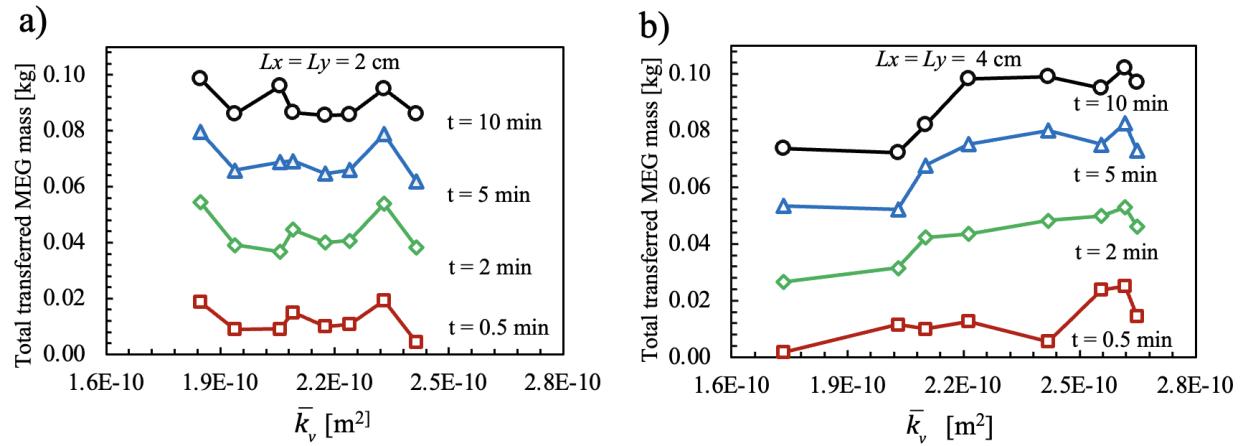

330 simulation, which may be caused by initial disturbance in the experiment that was not accounted
331 for in the numerical simulation. The difference between experimentally-measured and
332 numerically-simulated total dissolved MEG mass was measured by the root mean square error

333 (RMSE), which is calculated as $RMSE = \sqrt{\sum_{i=1}^{N_m} \|M_i^{experiment} - M_i^{simulation}\|^2 / N_m}$, where N_m
334 is the total number of experimental data points. The RMSEs were 0.00799 kg and 0.00719 kg for
335 the heterogeneous permeability fields having a spatial correlation length of 2 cm and 4 cm,
336 respectively.

337

338

339


340

341 **Fig. 4.** Total transferred MEG mass as a function of time across the top boundary of a
 342 heterogeneous permeability field having a spatial correlation length of a) 2 cm, and b) 4 cm. Each
 343 black curve is the experimental measurement obtained from a specific realization of heterogeneous
 344 permeability field. The red solid curve and error bar indicate the average and standard deviation,
 345 respectively. Corresponding numerical simulation of the total transferred MEG mass as a function
 346 of time in the heterogeneous permeability fields having a spatial correlation length of c) 2 cm, and
 347 d) 4 cm. The blue solid curve and error bar indicate the average and standard deviation of the
 348 simulation results, respectively. For comparison, the average and standard deviation of the
 349 experimental results are also shown in Figures c and d.

350

351 **Fig. 5** demonstrates the relation between total transferred MEG mass and the effective vertical
352 permeability of the heterogeneous permeability field, \bar{k}_v , in the 16 permeability field realizations.
353 First, it was observed that \bar{k}_v was always lower than the arithmetic average of the permeability
354 field (i.e., $310.7 \times 10^{-12} \text{ m}^2$), which was caused by the spatial heterogeneity in the permeability field.
355 Second, no noticeable correlation between the total transferred MEG mass and \bar{k}_v was observed in
356 porous media with a spatial correlation length of 2 cm (i.e., Fig. 5a), whereas an overall positive
357 correlation was observed in porous media with a spatial correlation length of 4 cm (i.e., Fig. 5b).
358 This was because MEG mass transfer across the top boundary depended on the downward
359 convective flow near the interface, which caused nearby upward fluid flow because of mass
360 balance (Chen and Zhang 2010). The downward and upward flows led to flow recirculation near
361 the top boundary of the porous medium, which regulated mass transfer across the interface. A
362 large effective vertical permeability does not necessarily lead to fast flow recirculation because the
363 former is measured in the vertical direction whereas the latter depends more on the internally-
364 connected, high-permeability streaks. Therefore, the spatial correlation length of the permeability
365 field plays a critical role on flow recirculation. In the porous medium with a spatial correlation
366 length of 4 cm, when the effective vertical permeability was high, it was relatively easier to find
367 spatially-connected high-permeability streaks, which facilitated the development of flow
368 recirculation near the top boundary; when the effective vertical permeability was low, it was likely
369 to find spatially-connected low-permeability barriers that hampered the development of flow
370 recirculation. Conversely, the spatial correlation length of 2 cm led to isolated and spotted
371 permeability structure, which diminished the relationship between effective vertical permeability
372 and internal flow recirculation. This finding suggests that in a heterogeneous permeability field
373 with a shorter spatial correlation length, a larger effective vertical permeability does not

374 necessarily lead to a larger amount of solute mass transfer into the underlying porous medium by
 375 means of density-driven convection. In comparison, in a heterogeneous permeability field with a
 376 larger spatial correlation length, a larger effective vertical permeability is in general favorable for
 377 mass transfer into the underlying porous medium.

378

379 **Fig. 5.** Total transferred MEG mass as a function the effective vertical permeability of a
 380 heterogeneous permeability field having a spatial correlation length of a) 2 cm, and b) 4 cm,
 381 respectively.

382

383 4. Conclusion and Implications

384 We developed a 3D-printing-based fluidic device to study the role of permeability heterogeneity
 385 on miscible density-driven convection in porous media. Experimental results showed that
 386 permeability heterogeneity caused noticeable uncertainty in the total transferred MEG mass, and
 387 the uncertainty increased with increasing spatial correlation length of the permeability field. In a
 388 heterogeneous permeability field with a larger spatial correlation length, a larger effective vertical

389 permeability is in general favorable for solute mass transfer into the underlying porous medium.
390 Conversely, in a heterogeneous permeability field with a shorter spatial correlation length, a larger
391 effective vertical permeability does not necessarily lead to a larger amount of solute mass transfer.
392 This is because mass transfer across the top boundary through miscible density-driven convection
393 depends on the local flow recirculation near the interface. A large effective vertical permeability
394 does not necessarily lead to fast flow recirculation because the former is measured in the vertical
395 direction whereas the latter depends more on the internally-connected, high-permeability streaks
396 within the domain. Therefore, the spatial correlation length of the permeability field plays a critical
397 role on flow recirculation. These research findings show that permeability heterogeneity not only
398 refers to the spatial variation of permeability, but should also account for its spatial correlation
399 length.

400 The 3D fluidics technology developed in this study makes it possible to construct known and well-
401 controlled heterogeneous permeability fields in an efficient way, which solves the challenge in
402 constructing heterogeneous porous media in the laboratory. Particularly, the 3D-printed
403 elementary sediment blocks can be re-distributed to construct another permeability field easily,
404 which greatly reduces the experimental time and thus significantly increases the total number of
405 experiments that can be conducted, thereby approaching the ergodicity requirement when a large
406 number of random permeability fields is needed. Although this study is focused on density-driven
407 downward convection, the developed 3D printing technology and the research findings from this
408 work have important applications to other subsurface flow and transport processes where the
409 permeability heterogeneity is critical.

410

411 **Acknowledgement**

412 The authors are thankful to the financial support provided by the U.S. National Science
413 Foundation's Division of Earth Sciences under the award number of EAR-2154295. Data is
414 available through: <https://doi.org/10.5281/zenodo.6416110>.

415

416 **Nomenclature**

A_i	Area of porous medium corresponding to porous block i
b	Reservoir thickness
c	Covariance function
C_m	Mass concentration of MEG in water
$C_{m,0}$	Initial MEG mass concentration in the top fluid reservoir
\mathbf{C}_Y	Covariance matrix
D	Effective diffusivity of MEG in the porous medium
d	Diameter
\mathbf{e}_y	Unit vector in the vertical direction
g	Gravitational acceleration
H	Characteristic length
\mathbf{I}	Identity matrix
k	Permeability
\mathbf{k}	Permeability tensor
\bar{k}_v	Effective vertical permeability of the entire porous medium
\mathbf{L}	Lower triangular matrix
L_x	Spatial correlation length in the x direction
L_y	Spatial correlation length in the y direction
M	MEG mass
N	Block number
N_m	Number of experimental measurements of total dissolved MEG
p	Fluid pressure
\mathbf{s}	Separation vector between two points

s_x	Separation distance in the x direction
s_y	Separation distance in the y direction
\mathbf{u}	Velocity vector
t	Time
V_r	Volume of fluid reservoir
x	Direction
β	Expansion coefficient
Y	Permeability field
y	Direction
μ_k	Mean of k
μ_Y	Mean of Y
ν	Kinematic viscosity of water
ξ	Vector with zero mean and unit variance
ρ	Density of water-MEG solution
ρ_0	Density of water
$\Delta\rho$	Density difference between the initial MEG-water solution and water
σ_k	Standard deviation of k
σ_Y	Standard deviation of Y
ϕ	Porosity of porous media

417

418

Reference

Agartan, E., T. H. Illangasekare, J. Vargas-Johnson, A. Cihan and J. Birkholzer (2020). "Experimental investigation of assessment of the contribution of heterogeneous semi-confining shale layers on mixing and trapping of dissolved CO₂ in deep geologic formations." *International Journal of Greenhouse Gas Control* **93**.

Agartan, E., L. Trevisan, A. Cihan, J. Birkholzer, Q. L. Zhou and T. H. Illangasekare (2015). "Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical CO₂." *Water Resources Research* **51**(3): 1635-1648.

Almetwally, A. G. and H. Jabbari (2021). "3D-Printing Replication of Porous Media for Lab-Scale Characterization Research." *Acs Omega* **6**(4): 2655-2664.

Bharath, K. S. and M. R. Flynn (2021). "Buoyant convection in heterogeneous porous media with an inclined permeability jump: an experimental investigation of filling box-type flows." *Journal of Fluid Mechanics* **924**.

Chen, C. (2016). "Multiscale imaging, modeling, and principal component analysis of gas transport in shale reservoirs." *Fuel* **182**: 761-770.

Chen, C., A. I. Packman and J. F. Gaillard (2008). "Pore-scale analysis of permeability reduction resulting from colloid deposition." *Geophysical Research Letters* **35**(7).

Chen, C., A. I. Packman and J. F. Gaillard (2009). "Using X-ray micro-tomography and pore-scale modeling to quantify sediment mixing and fluid flow in a developing streambed." *Geophysical Research Letters* **36**.

Chen, C. and L. Z. Zeng (2015). "Using the level set method to study the effects of heterogeneity and anisotropy on hyporheic exchange." *Water Resources Research* **51**(5): 3617-3634.

Chen, C., L. Z. Zeng and L. S. Shi (2013). "Continuum-scale convective mixing in geological CO₂ sequestration in anisotropic and heterogeneous saline aquifers." *Advances in Water Resources* **53**: 175-187.

Chen, C. and D. X. Zhang (2010). "Pore-scale simulation of density-driven convection in fractured porous media during geological CO₂ sequestration." *Water Resources Research* **46**.

Cheng, P., M. Bestehorn and A. Firoozabadi (2012). "Effect of permeability anisotropy on buoyancy-driven flow for CO₂ sequestration in saline aquifers." *Water Resources Research* **48**.

Dudukovic, N. A., E. J. Fong, H. B. Gameda, J. R. DeOtte, M. R. Ceron, B. D. Moran, J. T. Davis, S. E. Baker and E. B. Duoss (2021). "Cellular fluidics." *Nature* **595**(7865): 58-65.

Emami-Meybodi, H., H. Hassanzadeh, C. P. Green and J. Ennis-King (2015). "Convective dissolution of CO₂ in saline aquifers: Progress in modeling and experiments." *International Journal of Greenhouse Gas Control* **40**: 238-266.

Ennis-King, J. and L. Paterson (2005). "Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations." *Spe Journal* **10**(3): 349-356.

Ennis-King, J., I. Preston and L. Paterson (2005). "Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions." *Physics of Fluids* **17**(8).

Erfani, H., M. Babaei, C. F. Berg and V. Niasar (2022). "Scaling CO₂ convection in confined aquifers: Effects of dispersion, permeability anisotropy and geochemistry." *Advances in Water Resources* **164**.

Farajzadeh, R., P. Ranganathan, P. L. J. Zitha and J. Bruining (2011). "The effect of heterogeneity on the character of density-driven natural convection of CO₂ overlying a brine layer." *Advances in Water Resources* **34**(3): 327-339.

Farajzadeh, R., H. Salimi, P. L. J. Zitha and H. Bruining (2007). "Numerical simulation of density-driven natural convection in porous media with application for CO₂ injection projects." *International Journal of Heat and Mass Transfer* **50**(25-26): 5054-5064.

Fredd, C. N. and H. S. Fogler (1998). "Influence of transport and reaction on wormhole formation in porous media." *Aiche Journal* **44**(9): 1933-1949.

Gjengedal, S., V. Brotan, O. T. Buset, E. Larsen, O. A. Berg, O. Torsaeter, R. K. Ramstad, B. O. Hilmo and B. S. Frengstad (2020). "Fluid flow through 3D-printed particle beds: a new technique for understanding, validating, and improving predictability of permeability from empirical equations." *Transport in Porous Media* **134**(1): 1-40.

Gong, Y. B. and Y. A. Gu (2015). "Experimental Study of Water and CO₂ Flooding in the Tight Main Pay Zone and Vuggy Residual Oil Zone of a Carbonate Reservoir." *Energy & Fuels* **29**(10): 6213-6223.

Guo, R. C., L. Dalton, D. Crandall, J. McClure, H. S. Wang, Z. Li and C. Chen (2022). "Role of heterogeneous surface wettability on dynamic immiscible displacement, capillary pressure, and relative permeability in a CO₂-water-rock system." *Advances in Water Resources* **165**.

Guo, R. C., L. E. Dalton, M. Fan, J. McClure, L. Z. Zeng, D. Crandall and C. Chen (2020). "The role of the spatial heterogeneity and correlation length of surface wettability on two-phase flow in a CO₂-water-rock system." *Advances in Water Resources* **146**.

Guo, R. C., H. X. Sun, Q. Q. Zhao, Z. H. Li, Y. Liu and C. Chen (2021). "A Novel Experimental Study on Density-Driven Instability and Convective Dissolution in Porous Media." *Geophysical Research Letters* **48**(23).

Horton, C. W. and F. T. Rogers (1945). "Convection Currents in a Porous Medium." *Journal of Applied Physics* **16**(6): 367-370.

Jose, S. C., M. A. Rahman and O. A. Cirpka (2004). "Large-scale sandbox experiment on longitudinal effective dispersion in heterogeneous porous media." *Water Resources Research* **40**(12).

Kong, X. Z. and M. O. Saar (2013). "Numerical study of the effects of permeability heterogeneity on density-driven convective mixing during CO₂ dissolution storage." *International Journal of Greenhouse Gas Control* **19**: 160-173.

Kopsiaftis, G., A. Mantoglou and P. Giannoulopoulos (2009). "Variable density coastal aquifer models with application to an aquifer on Thira Island." *Desalination* **237**(1-3): 65-80.

Kou, Z. H., H. Wang, V. Alvarado, J. F. McLaughlin and S. A. Quillinan (2021). "Impact of sub-core scale heterogeneity on CO₂/brine multiphase flow for geological carbon storage in the upper Minnelusa sandstones." *Journal of Hydrology* **599**.

Lapwood, E. R. (1948). "Convection of a Fluid in a Porous Medium." *Proceedings of the Cambridge Philosophical Society* **44**(4): 508-521.

Li, Q., W. H. Cai, B. X. Li and C. Y. Chen (2020). "Numerical Study of Density-Driven Convection in Laminated Heterogeneous Porous Media." *Journal of Mechanics* **36**(5): 665-673.

Li, Q., W. H. Cai, X. J. Tang, Y. C. Chen, B. X. Li and C. Y. Chen (2020). "The impact of heterogeneous anisotropy of porous media on density-driven convection." *International Journal of Numerical Methods for Heat & Fluid Flow* **30**(2): 956-976.

Limare, A., C. Jaupart, E. Kaminski, L. Fourel and C. G. Farnetani (2019). "Convection in an internally heated stratified heterogeneous reservoir." *Journal of Fluid Mechanics* **870**: 67-105.

Liyanage, R., J. J. Cen, S. Krevor, J. P. Crawshaw and R. Pini (2019). "Multidimensional Observations of Dissolution-Driven Convection in Simple Porous Media Using X-ray CT Scanning." *Transport in Porous Media* **126**(2): 355-378.

Loschko, M., T. Wohling, D. L. Rudolph and O. A. Cirpka (2018). "Accounting for the Decreasing Reaction Potential of Heterogeneous Aquifers in a Stochastic Framework of Aquifer-Scale Reactive Transport." *Water Resources Research* **54**(1): 442-463.

Mahmoodpour, S., B. Rostami, M. R. Soltanian and M. A. Amooie (2019). "Convective Dissolution of Carbon Dioxide in Deep Saline Aquifers: Insights from Engineering a High-Pressure Porous Visual Cell." *Physical Review Applied* **12**(3).

Neretnieks, I. and H. Winberg-Wang (2019). "Density-Driven Mass Transfer in Repositories for Nuclear Waste." *Nuclear Technology* **205**(6): 819-829.

Neufeld, J. A., M. A. Hesse, A. Riaz, M. A. Hallworth, H. A. Tchelepi and H. E. Huppert (2010). "Convective dissolution of carbon dioxide in saline aquifers." *Geophysical Research Letters* **37**.

Newell, D. L., J. W. Carey, S. N. Backhaus and P. Lichtner (2018). "Experimental study of gravitational mixing of supercritical CO₂." *International Journal of Greenhouse Gas Control* **71**: 62-73.

Nield, D. A. and A. V. Kuznetsov (2019). "The Onset of Convection in an Anisotropic Heterogeneous Porous Medium: A New Hydrodynamic Boundary Condition." *Transport in Porous Media* **127**(3): 549-558.

Pau, G. S. H., J. B. Bell, K. Pruess, A. S. Almgren, M. J. Lijewski and K. N. Zhang (2010). "High-resolution simulation and characterization of density-driven flow in CO₂ storage in saline aquifers." *Advances in Water Resources* **33**(4): 443-455.

Qu, H., Y. S. Hu, R. C. Guo, C. C. Lin, J. N. Xu, H. Jun and X. J. Chen (2023). "Experimental study on pore structure alteration of deep shale under liquid nitrogen freezing based on nuclear magnetic resonance." *International Journal of Hydrogen Energy* **48**(1): 51-66.

Ranganathan, P., R. Farajzadeh, H. Bruining and P. L. J. Zitha (2012). "Numerical Simulation of Natural Convection in Heterogeneous Porous media for CO₂ Geological Storage." *Transport in Porous Media* **95**(1): 25-54.

Rapaka, S., S. Y. Chen, R. J. Pawar, P. H. Stauffer and D. X. Zhang (2008). "Non-modal growth of perturbations in density-driven convection in porous media." *Journal of Fluid Mechanics* **609**: 285-303.

Riaz, A., M. Hesse, H. A. Tchelepi and F. M. Orr (2006). "Onset of convection in a gravitationally unstable diffusive boundary layer in porous media." *Journal of Fluid Mechanics* **548**: 87-111.

Rubin, Y. (2003). "Applied Stochastic Hydrogeology." *Oxford Univ. Press, N. Y.*

Salehin, M., A. I. Packman and M. Paradis (2004). "Hyporheic exchange with heterogeneous streambeds: Laboratory experiments and modeling." *Water Resources Research* **40**(11).

Shi, Z., B. Wen, M. A. Hesse, T. T. Tsotsis and K. Jessen (2018). "Measurement and modeling of CO₂ mass transfer in brine at reservoir conditions." *Advances in Water Resources* **113**: 100-111.

Simmons, C. T., T. R. Fenstemaker and J. M. Sharp (2001). "Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges." *Journal of Contaminant Hydrology* **52**(1-4): 245-275.

Slim, A. C. (2014). "Solutal-convection regimes in a two-dimensional porous medium." *Journal of Fluid Mechanics* **741**: 461-491.

Slim, A. C., M. M. Bandi, J. C. Miller and L. Mahadevan (2013). "Dissolution-driven convection in a Hele-Shaw cell." *Physics of Fluids* **25**(2).

Slim, A. C. and T. S. Ramakrishnan (2010). "Onset and cessation of time-dependent, dissolution-driven convection in porous media." *Physics of Fluids* **22**(12).

Taheri, A., O. Torsaeter, E. Lindeberg, N. J. Hadia and D. Wessel-Berg (2018). "Qualitative and quantitative experimental study of convective mixing process during storage of CO₂ in heterogeneous saline aquifers." *International Journal of Greenhouse Gas Control* **71**: 212-226.

Tang, Y. Q., Z. H. Li, R. Wang, M. L. Cui, X. Wang, Z. M. Lun and Y. Lu (2019). "Experimental Study on the Density-Driven Carbon Dioxide Convective Diffusion in Formation Water at Reservoir Conditions." *Acs Omega* **4**(6): 11082-11092.

Wang, S. J., Z. C. Cheng, Y. Zhang, L. L. Jiang, Y. Liu and Y. C. Song (2021). "Unstable Density-Driven Convection of CO₂ in Homogeneous and Heterogeneous Porous Media With Implications for Deep Saline Aquifers." *Water Resources Research* **57**(3).

Xu, X. F., S. Y. Chen and D. X. Zhang (2006). "Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers." *Advances in Water Resources* **29**(3): 397-407.

Yang, C. D. and Y. G. Gu (2006). "Accelerated mass transfer of CO₂ in reservoir brine due to density-driven natural convection at high pressures and elevated temperatures." *Industrial & Engineering Chemistry Research* **45**(8): 2430-2436.

Yang, X. J., Q. Shao, H. Hoteit, J. Carrera, A. Younes and M. Fahs (2021). "Three-dimensional natural convection, entropy generation and mixing in heterogeneous porous medium." *Advances in Water Resources* **155**.

Zhang, D. X., R. Y. Zhang, S. Y. Chen and V. E. Soll (2000). "Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV." *Geophysical Research Letters* **27**(8): 1195-1198.