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ABSTRACT

Differentially rotating stars and planets transport angular momentum internally due to turbulence at
rates that have long been a challenge to predict reliably. We develop a self-consistent saturation theory,
using a statistical closure approximation, for hydrodynamic turbulence driven by the axisymmetric
Goldreich—Schubert—Fricke (GSF) instability at the stellar equator with radial differential rotation.
This instability arises when fast thermal diffusion eliminates the stabilizing effects of buoyancy forces
in a system where a stabilizing entropy gradient dominates over the destabilizing angular momentum
gradient. Our turbulence closure invokes a dominant three-wave coupling between pairs of linearly
unstable eigenmodes and a near-zero frequency, viscously damped eigenmode that features latitudinal
jets. We derive turbulent transport rates of momentum and heat, and provide them in analytic forms.
Such formulae, free of tunable model parameters, are tested against direct numerical simulations; the
comparison shows good agreement. They improve upon prior quasi-linear or “parasitic saturation”
models containing a free parameter. Given model correspondences, we also extend this theory to heat
and compositional transport for axisymmetric thermohaline instability-driven turbulence in certain
regimes.

Keywords: Astrophysical fluid dynamics (101) — Solar differential rotation (1996) — Stellar rotation

(1629) — Stellar interiors (1606) — Hydrodynamics (1963) — Extrasolar gaseous giant

planets (509)

1. INTRODUCTION

Instability-driven turbulence is thought to play a ma-
jor role in the transport of angular momentum (AM),
heat and composition in stellar and planetary interiors
(see, e.g., Garaud 2018; Aerts et al. 2019; Spruit 2002;
Fuller et al. 2019), as well as in astrophysical disks (e.g.,
Balbus & Hawley 1998; Lesur et al. 2023). Unfortu-
nately, rates of turbulent transport are very challenging
to predict theoretically, and the lack of reliable theories
has hampered our understanding of the evolution of stel-
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lar and planetary internal rotations and structures. For
example, the AM redistribution in red giant stars is cur-
rently poorly understood, and their core-envelope dif-
ferential rotations inferred from asteroseismology have
not been adequately explained (e.g., Beck et al. 2012;
Eggenberger et al. 2012; Aerts et al. 2019). The nearly
solid-body rotation observed in the solar radiative in-
terior also lacks a robust explanation (e.g., Garaud &
Garaud 2008; Wood & McIntyre 2011).

Differential rotation is known to drive a variety of
hydrodynamic (and hydromagnetic) instabilities. In
this paper, we focus on modeling hydrodynamic insta-
bilities of differential rotation in stellar and planetary
radiative zones, and in particular on the Goldreich—
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Figure 1. (Left) A schematic diagram of a differentially rotating star with a radial shear, gravity, and stable stratification.
Such a system subject to the GSF instability is studied using a local Cartesian model. (Right) Snapshots of velocity components
Ug(, 2), Uy(z, 2), and U.(x, z) from the axisymmetric GSF instability-driven turbulence; z,y, and z represent the local radial,
azimuthal, and latitudinal directions. Though finger-like horizontal structures (as shown by, e.g., @) grow the fastest in the
linear phase (t=100), strong latitudinal jets u. are generated nonlinearly (t=6000). The color bar for t=100 is shared by Uz, Uy,
and 3u.; the color bar for t=6000 is shared by 3us, 3ty, and w.. The turbulent transport of angular momentum, e.g., (Uzty),
is predicted in this paper using a jet-coupled turbulence closure.

Schubert-Fricke (GSF) instability!(Goldreich & Schu-
bert 1967; Fricke 1968). This is a double-diffusive cen-
trifugal instability in which rapid thermal diffusion (rel-
ative to viscous momentum diffusion) enables instability
by tempering the otherwise stabilising effects of buoy-
ancy forces. Prior work has studied the linear and non-
linear properties of the instability, and the turbulence
it drives (Knobloch & Spruit 1982; Knobloch 1982; Ko-
rycansky 1991; Rashid et al. 2008; Barker et al. 2019,
2020; Dymott et al. 2023), but a reliable theory for the
resulting turbulent transport is lacking. This means that
the effects of the GSF instability on stellar rotational
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LTt has also been referred to as the “Vertical Shear Instability”
(VSI) in accretion disks (e.g., Urpin & Brandenburg 1998; Nelson™”
et al. 2013; Barker & Latter 2015; Latter & Papaloizou 2018) andss
as “inertial instability” enabled by thermal diffusion in stellar,
interiors (Park et al. 2020, 2021).

85

and chemical evolution have not been modeled in a self-
consistent manner. Instead, one typically invokes unex-
plained “additional viscosities” or models that contain
free parameters. Such tunable parameters are intended
to describe the effects of turbulence on AM transport
for which adequate knowledge is lacking.

A fully analytic model containing no free parameters
is derived here for the GSF instability-driven turbulence
in 2.5 dimensions (2.5-D), i.e., with all three components
of velocity but varying spatially only in two dimensions.
The predictions of our analytical model are in broad
agreement with detailed numerical simulations of tur-
bulence, driven by the axisymmetric (2.5-D) GSF in-
stability at the equator of a star with radial differential
rotation. Such model of the instability is, for certain
diffusivity ratios and in 2.5-D, formally and nonlinearly
equivalent to the thermohaline, or salt-finger, instability
that transports heat and chemical elements (Knobloch
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1982; Barker et al. 2019); thus, the turbulent transport

arising from axisymmetric fingering convection is also :s-

described by our theory.

The structure of this paper is as follows. In § 2, we

present our model and methods of analysis. Nonlinear

mode coupling and saturation diagnostics of the insta- :
bility appear in § 3. Informed by such diagnostics, we .,

present analytical formulae, without any free parame-
ters, to model the turbulence and its transport proper-
ties in § 4. We discuss the astrophysical implications

and conclude in § 5. Details of the closure model are i«

provided in the Appendices.

2. THE GSF INSTABILITY AND
INERTIAL-GRAVITY WAVES

To study a basic mechanism of angular momentum

transport in a differentially rotating star, we consider '
a local region inside the star near its equator, where '
the rotation can be split into a uniform or mean part— '#*

N=0Qe,, aligning with the local latitudinal axis z—and a '

non-uniform part due to the radial differential rotation.

The latter is represented by a background linear shear '
flow Uy (z)= — Szé, where z is the radial coordinate, y '
is the azimuthal coordinate, and & = —dQgpen(z)/dInz '

is the local radial-shear rate, with Qgpen () representing

the “Shellular” rotation of the simplified star. A uniform '°°
gravity field with g = —geé, is directed radially inward '

(Fig. 1). A background radial temperature gradient VT

then stratifies the fluid density radially, with a thermal '**

expansion coefficient a. In such a background state,

any perturbations in velocity w and scaled temperature '°

O=agT evolve (Barker et al. 2019) as

Du+u-VUy+2Q x u = —Vp + 0é, + vV3u, (la)
DO +u - VO, = KV, (1b)
V-u=0, (1c)
D=0+ (u+Uyp) -V, (1d)

where the variables p,v, and k are the fluid pressure
(per unit density), the kinematic viscosity, and the ther-
mal diffusivity, respectively. We also define the Prandtl
number Pr=v/k. Because the GSF instability oper-

ates at length scales much smaller than a pressure scale 1«
height in stars, the local approximation is valid; in such

a case, when the turbulence drives subsonic flows, the
Boussinesq approximation is also appropriate (Spiegel &
Veronis 1960). Assuming a uniform temperature gradi-

ent, a fluid element perturbed radially oscillates with a 17
constant Brunt-Viisild (buoyancy) frequency A, where 17

N2éx ZV@() :agVTo .

Henceforth, we non-dimensionalize all variables using 7+
the characteristic rotation time scale Q~! and length .-

scale d, with d=(vx/N?)/4, which is typically simi-
lar to the wavelengths of fastest-growing modes. Thus,
N=MN/Q is the dimensionless buoyancy frequency and
S=8/9 the dimensionless shear rate (Rossby number).
The GSF instability occurs in low-Pr fluids whenever
r € [0,1], where r = Pr(1 + N?k;?)/(Pr — 1), with
Kep=1/2(2 — S) representing the dimensionless epicyclic
frequency (Barker et al. 2019).

2.1. FEigenmode analysis

A linear analysis of Egs. (1la)—(1b) for axisymmet-
ric (uniform-in-y) perturbations yields a simple ma-
trix equation, which upon Fourier-transforming be-
comes LX=vX, where X:[ﬂmﬂy,ﬁz,é]T, with T as
the transpose operation, is the state vector of spa-
tially Fourier-transformed components at wavevector
k=(ks,k,); the matrix L is a linear operator, whose
eigenvalues are the complex-valued growth rates v. The
size of L demands four linearly independent eigen-
Because of the additional constraint V-u=0,
the system has only three degrees of freedom at any
given wavenumber—two components of velocity, and 0.
Hence, one eigenvector among the four eigenvectors does
not satisfy V-u=0 and is rejected. We confirm that
this eigenvector is not excited within our incompress-
ible Boussinesq simulations. One among the remaining
three eigenvectors at a given wavevector becomes GSF-
unstable [Re (y) > 0, where Re denotes the real part|,
whenever r € [0,1). The remaining two eigenvectors are
always stable, and their eigenvalues are complex conju-
gates of each other whenever they satisfy Im (y) # 0,
where Im denotes the imaginary part; Im(y) corre-
sponds to the frequency of inertial-gravity, or gravito-
inertial, waves (IGWs), modified by the shear flow and
damped by viscous and thermal diffusion.

The GSF instability grows dominantly via axisymmet-
ric (0, = 0) perturbations, therefore we focus upon the
(z, z)-variations of the 3-component velocity and tem-
perature fields. The dispersion relation then is a simple
cubic polynomial in v (Goldreich & Schubert 1967) as

vectors.

Kephs | N2K2
’\/3"/»: + :2 Vi + 12 v, =0, (2)

where v, = v + vk? and 7, = v + kk?. Equation (2)
shows that, on the (kg, k,)-plane, the growth rate ex-
hibits strong anisotropy: fluctuations with k,=0 (“ele-
vator modes”) grow the fastest, whereas those with k,=0
are linearly stable. This observation is critical for the
nonlinear saturation of the GSF instability because the
anisotropy of the linear physics, in particular the k,=0
fluctuation, can impose its anisotropy on the nonlinear
energy transfer, which is otherwise isotropic; such con-
sequential effects have been found in various systems
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such as 3-D Kelvin-Helmholtz instability (Tripathi et al. -z
2023b), rotating (Waleffe 1993; Smith & Waleffe 1999) .-
and stably stratified turbulence (Riley & Lelong 2000), -
turbulence with an external magnetic field in astrophysi- -
cal (Ng & Bhattacharjee 1996; Du et al. 2023) and fusion s

plasmas (Biskamp & Zeiler 1995; Terry 2004).

Using the complete basis provided by the eigenvec- -7
tors of the linear operator L, we can decompose ar- -ss

bitrary incompressible fluctuation X, with k,#0 as

Xob= Z?Zl ﬂij, where $; is the amplitude of the 5 -,
eigenvector Xj; we reserve j=1 for the GSF-unstable 2+
modes, and j=2, 3 for the IGWs that are always linearly ==

stable in this study. More compactly, X,,,=FE3, where =/
B is a (column-)vector of mode amplitudes and E is 2
an eigenvector matrix, whose j*' column is X j- Thus, =+

B:Eilxarb~

For the k,=0 modes, E turns out to be an identity
matrix, meaning that the three components of veloc-

ity, and the temperature, individually form eigenvec-

tors. In what follows, we therefore decompose an ar- .
bitrary fluctuation with k,=0 into Xal;b = X[1,0,0,0]+ ..,
Y[0,1,0,0] + £[0,0,1,0] + ©[0, 0,0, 1], where the ampli- ..,
tudes of the eigenvectors are denoted by X,),Z, and ..,
©. We reserve the B-notation above for the amplitudes ..,

of eigenvectors with k,#0.

2.2. Initial value problem

We perform an ensemble of direct numerical sim- “°7
ulations of Egs. (la) and (1b), by seeding a low- ¢
amplitude solenoidal random noise to u, in a box of size *°¢
(Ly, L,)=(100,100). To obtain numerically converged *

results, a spatial resolution of up to 5122 grid points is
used in the pseudo-spectral solver SNOOPY (Lesur &
Longaretti 2005; Barker et al. 2019).

To determine the contribution of each eigen-
mode in, for example, the turbulent momentum
transport, we decompose the turbulent stress as:
(Upliy)=> "k 5. D omn 2Re [Bmtia,m B0 ], where (-) is
an (x, z)-averaging operation; m and n are summed
from 1 to 3, corresponding to three excited eigenmodes

at every wavenumber k; the amplitude 3, and the z- **
th 262

component of the velocity g ., correspond to the m

eigenvector at k; and likewise for 3, and 4 ,; the op- **
eration * denotes complex conjugation. Using such a “%
decomposition, we obtain the contribution of an unsta-
ble mode at k to the momentum transport rate, which =¢¢
is 2|61 |*Re [dig,10% 1]. This decomposition is performed =07

y,1
for every wavenumber, hence allowing us to trace evolu-

tion of transport contributions due to individual unsta-
ble modes [see Fig. 2(a)].

The summed contributions of all eigenvectors from all -7
wavenumbers reproduce, to machine precision, the to- -7

tal transport rates found in the simulation before per-
forming mode decomposition, as we show in Fig. 2(b).
The contributions of the unstable modes are also com-
pared across different wavenumber sums. Almost iden-
tical results are found for heat transport (not shown).
The unstable modes from the linearly fastest-growing
wavenumber branch k,=0 transport significantly less
momentum than the other wavenumbers with k,7#0.
This is our first surprising result, and it challenges pre-
dictions of turbulent transport that rely on an unsta-
ble mode at the fastest-growing wavenumber alone (e.g.,
Radko & Smith 2012; Brown et al. 2013; Barker et al.
2019). This finding also instructs us to investigate non-
linear couplings between eigenmodes to understand the
instability-saturation mechanism.

3. NONLINEAR SATURATION BY COUPLING TO
LATITUDINAL FLOW

3.1. Mode-amplitude evolution

To analyze nonlinear mode couplings, Egs. (1a)—(1b)
are first spatially Fourier-transformed: 0X = LX +
Zk,’k,, N(X’,X”), where X, X’, and X" are state
vectors at k,k’, and k”, respectively, satisfying k =
k' +k”. Then, following Sec. 2.1 we substitute X=ES3,
and likewise for X’ and X”. We multiply the obtained
equation with E~' and take the j*" row of the resulting
equation. This process yields an evolution equation for
the j*" eigenmode at k. Such an evolution equation for
mode amplitude §; for k,#0 is different from that of the
mode amplitude F € {X,Y, Z,0} for k,=0, although
both are coupled and nonlinear:

QB =B+ Y. Coer)p. Bl

k' ,m,n
+ Y e el Fe (sa)
k', Fn:k! =0
Fe{x,y,2,0}
OF =—pF+ Y. CWRg e (3)
k' m,n:k,=0

where «; is the complex-valued growth rate for the 4th
eigenmode with k,7£0; the real-valued damping rate vp
is v when F is replaced with X in Eq. (3b); likewise
for the replacement of F' with ), Z, and ©; we note that
Yx = vy = vz = vk?, and v¢ = kk?. The nonlinear-
coupling coefficient, for example, Cj(.f,;s/) measures the
overlap of eigenmodes m with k', n with k", and j with
k. Such a mode coupling coefficient is found by ap-
plying E~1 to the (column) vector of N (X! , X!), a
process that incorporates all the nonlinearities of the
system, thus making C](fn”:) ideal for a comprehensive
instability-saturation analysis.
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Figure 2. (a) Comparison of momentum transport (Reynolds Stress=2|51|°Re [ti,1; 1]) driven by an unstable mode at the
linearly fastest-growing wavenumber k = (0,0.63), and by an unstable mode at k = (0.31, —0.13), the wavenumber that has the
largest contribution to the momentum transport in the nonlinear phase. (b) Eigenmode decomposition of net Reynolds stress
(Uxuy) in nonlinear simulation of the GSF instability-driven turbulence, showing that the transport due to mode-undecomposed
fluctuations (red curve) and mode-decomposed all eigenmodes (black curve) agree to machine precision. Transport is almost
entirely (88%) due to the unstable modes (green curve); the sum of fastest-growing unstable modes at k=0, however, contributes
negligibly (3%) to the transport (blue curve). Simulation parameters used are S=2.1, N?>=10 and Pr=0.01.

On the right-hand side of Eq. (3a), the second term is -

the nonlinear coupling between eigenmodes with k.0
and k70 (hence the two 8s), and the third term, with
an I and a f, is the nonlinear coupling between eigen-
modes with k=0 and k70 (see the last paragraph of
Sec. 2.1). Equations (3a) and (3b) have the same num-

ber of degrees of freedom as the original nonlinear equa- =
tions in physical space, Eqgs. (la)—(1b). These systems =

are completely equivalent, but one represents dynamics
in physical space and another in eigenmode space.

3.2. Mode-energy evolution

The energy evolution equation for each eigenmode can

now be derived by multiplying Eq. (3a) by 8 and adding -
the complex conjugate of the resulting equation to arrive

at
at|5j|2 =Q; + Tjan,

where Q;=2Re~;|53;|? is the linear energy transfer rate
to k from the mean gradients, and T,aa is the total
nonlinear energy transfer to the j** eigenmode from all
possible nonlinear interactions; Eq. (A10). We now show
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the spectrum of time-averaged @)1, along with that of the s,
growth rate and time-averaged viscous dissipation rate s:s

€, in Fig. 3.

From Tjaa in Eq. (4), we separate out the nonlinear -~

transfer 71z in a triad that involves a latitudinal flow

Z at k,,=0 and two GSF-unstable modes (j=1) at k,#0:

Tizi= Y 2Re{ [O{’;’f ) 4 olkk )} z’ﬂ;’ﬂf}.

k/:k.=0

()

We now compare 17 z1 with Tiaa in Fig. 4, for a GSF-
unstable mode with a wavenumber that contributes the
largest to the momentum transport. Repeating this
transfer analysis at different wavenumbers produces sim-
ilar results. The two transfers are nearly identical, which
confirms the conjecture (Barker et al. 2019) that, in the
fully nonlinear phase, the GSF instability saturates via
the formation of strong latitudinal jets or flows. Such
flows are z-directed, although with no z-variation, and
primarily have a wavenumber k,=27/L,; see Fig. 1,
right-column snapshot at t=6000. These flows general-
ize to meridional circulation in stars, and resemble zonal
jets in planetary atmospheres and fusion systems (Terry
2019). Flows with k,=0 are, however, linearly stable to
the GSF instability, and, thus, must necessarily be ex-
cited nonlinearly by the interactions between the GSF-
unstable modes. This energy received is then viscously
damped at k.=0 and at low k., as seen in Fig. 3. To
sum up, the mean shear flow, destabilized by the ther-
mal diffusion, lends energy to the fluctuations via the
GSF-unstable modes, which saturate by exciting k,=0
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Figure 3. Spectra of linear and nonlinear-saturation properties of the GSF instability. On the negative-k; domain, the colored
square boxes (yellow-green-purple) display time-averaged energy extraction rates (Q1): by unstable modes from the mean
gradients in a nonlinear simulation. On the positive-k; domain, colored square boxes (black-red-yellow) show the time-averaged
viscous dissipation rates, which are pronounced at low k.. Over the entire (ks, k.)-plane, the non-square filled and line contours
show the growth rates v of unstable modes, with white dashed contour lines on the negative-k, domain and with bluish filled
contours on the positive-k; domain. The fastest-growing mode resides at around k = (0,0.63). The simulation parameters are

5=2.1, N>=10 and Pr=0.01.

latitudinal flows to a significant level. Such flows then -
viscously dissipate the turbulent energy. This is the sat- s
uration mechanism of the axisymmetric GSF instability -

found here.

4. ANGULAR MOMENTUM TRANSPORT MODEL

The findings shown so far are sufficient to build a sta-

tistical closure model, with no free parameters, and thus _

with predictive power.
Equation (3a) has a quadratic nonlinearity, hence evo-

lutionary equations for mode energy contain triplet in- ™
To determine the evolving ™

teractions [e.g., Eq. (5)].

triplet interaction terms, one can derive an equation

with quadruplet interactions [Eq. (A13)], and so on. To
truncate this never-ending hierarchy (the so-called “tur-

bulence closure problem”), we invoke a standard turbu- s

lence closure, the Eddy-Damped Quasi-Normal Marko- ss:
vian (EDQNM) approximation (see, e.g., Orszag 1970; ss-
Terry et al. 2018; Hegna et al. 2018; Terry et al. 2021; sss

Pueschel et al. 2021; Li et al. 2021, 2023), that truncates

the hierarchy at fourth-order cumulants of the fluctua-
tions, thereby assuming that the statistics for the mode
amplitudes are close to Gaussian. The resulting equa-
tion, however, is still nonlinear and daunting. But when
a latitudinal flow Z, with k,=0, dominates the nonlinear
coupling, the complexity of the equation is significantly
reduced (Terry et al. 2018).

4.1. An outline of the Closure Model

We illustrate here the key steps involved to explain
most simply our closure model (by omitting details and
treating all variables as real). First, we observe that
Eq. (3a) has the structure:

OB =.B+.B8+.BX+. .BY+..BZ+..50, (6)

where the mode amplitudes are explicitly shown, and
the dots (...) represent terms such as the linear growth
rate and the nonlinear coupling coefficients. One can
then obtain evolution equation for second-order correla-
tor as 0:(88) = ...08+...86Z 3, where the other nonlinear
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Figure 4. Time evolution of the total nonlinear energy transfer Thiaa to an unstable eigenmode at a wavenumber where the
spectrum of (lgt,) peaks. Tizi is the energy transfer to the same unstable mode via interactions between the z-component
of velocity (Z) with wavenumbers k.=0, and the other unstable modes. Comparison of two transfer functions reveals that the
dominant triad involves a latitudinal flow and two unstable modes. The simulation parameters are S=2.1, N?>=10 and Pr=0.01.

279 _ 2
terms, e.g., 888 and BSAX, have been dropped because | Z7)2 = —z|Z]
256 the nonlinear energy transfer is almost entirely domi- , y
2 2 (k,k") F(K" k)
257 nated by SZf—the latitudinal-flow coupling (Fig. 4). +1Z2] § :WH Re [ 71130211 Cizi |
= kl

Since SZf also evolves, one can similarly obtain evo-
250 lution equation for third-order correlator as 9;(8Z8) =
s60  PBZB+ ...BBZZ. The closure solution then yields a
. relat?on pzb = .58 .ZZ' Although u§efu1 later, this 25, also appears in the first term of the right-hand side. In
562 relation does not predict the mode amplitude 3, needed s Eq. (7)
s6s  for the turbulent transport prediction. ’
364 To predict the mode amplitude 3, we consider the iz =M+ *7})71, (8)
265 latitudinal-flow evolution equation, ;2 = ...Z + ...503,
2o and derive 8;(22) = ...ZZ + ...6283. Then, BZS can is the three-wave interaction time found from the
2o be replaced with a product of four amplitudes using the 7 EDQNM closure, and Cl(glz) = Cl(fr)z’g) + Cl(rzz)v’: 9 s the
s6s  closure solution in the previous paragraph. Ome thus @55 symmetrized coupling coefficient. In quasi-stationary
w0 obtains O(Z2) = ...ZZ +...83Z Z. In quasi-stationary turbulence, J; ~ 0, and thus the linear and nonlinear

(7
ss2  where, on the right-hand side, the second term contains
255 a product of four amplitudes, but notably with | Z|? that

oo turbulence, 8, ~ 0, and thus BBZZ = ..ZZ. The s»v terms must balance. First, for simplicity, we consider
2 EDQNM closure allows writing a fourth-order correla- o @ latitudinal flow at (ks,0) that is driven by two un-

. tor BBZZ as a sum of products of second-order cor- w2 stable modes at (k3. k2) and (ky—ks, k');itlhen, using
7o relators, such as |S|?|Z]2. Then, cancelling |Z|* from _,, (7), 184> = = (Re[—ﬁlzc(zkllf )ngﬂ ]) . A more
27, both sides of BZZ = ...ZZ, one predicts the saturated

o, general expression for |31|? is found by using a standard
205 Markovian assumption (Terry et al. 2021): |3;/|? is more
506 weakly dependent on wavenumbers than the other fac-
207 tors in Eq. (7) arising from the coupling coefficients and
s0s  T11z. Such a consideration provides an expression for

500 nonlinearly saturated squared-mode-amplitude

275 mode amplitude (or energy): 85 = .... Using this, one
s76  can make predictions for turbulent transport rates as we
277 shall show in the next subsection.

~
|ﬁ/|2 - ’yz % (ﬁ>0105ure7 (9)
78 4.2. Detailed Closure Model
579 To make quantitative predictions for transport, we *° with
w50 take the EDQNM-closed evolution equation for the lat- - 1
551 itudinal flow energy [see Appendix B, Eq. (A20)], (—2) = e (10)
K2 Closwe | 574 1z Re [0 VO]
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where we note that the coupling coefficients scale lin-

sum of three growth rates of eigenmodes in a triad.

The growth rates in 711z should, in principle, also s
have amplitude-dependent eddy-damping rates as they /s
in homogeneous /s2

become non-negligible, for example,
isotropic fluid turbulence; however, when waves or in-
stabilities exist, and when the turbulent transport spec-
trum is dominated by low wavenumbers, as in this study,

T11z is approximated by using the linear growth rates ,ss

447

early with wavenumbers, and 711z is the inverse of the /s

(Terry et al. 2018; Terry et al. 2021). Using such, one s+
identifies that the triplet interaction time 71z is max- /s«

imal when the triad involves a latitudinal flow (Z) and s
two GSF-unstable modes (j=1). Shorter triplet interac- ;s

tion times 715z are expected for triads with, for example,

the latitudinal flow, an unstable mode, and a strongly ,s-

damped IGW (j=2), as such an interaction lowers 712z
via both the frequency and damping rate of the IGW.
The largest interaction time 711z dominates saturation.

The radial turbulent transport of angular momentum ;o6
Zk/// ﬁg/lﬁ/”*l/ﬁ/”|2 Whel“e /B//l 167

is the unstable-mode amplitude at k”’ over which the

is measured by (U, )~

summation is applied. Then, using |3}”|? from the above
paragraph,

. i } : NN
<Uzuy>010surc - (ﬁ Closure 1z Ya 1uy v
k///

The y-component ;"

vector can be replaced with, e.g., its temperature per-
turbation 67’ to predict the turbulent heat flux (1,0).
In our simulations with radial differential rotation, the

latitudinal momentum flux is much lower than the radial , .

flux, and, when time-averaged, it is nearly null.

4.3. Tests of theoretical predictions

A simple quasilinear model of the GSF-instability sat-
uration was recently proposed (Barker et al. 2019, 2020)
by assuming that a secondary “parasitic”
feeds on the primary GSF-unstable mode. Such an as-
sumption, also called “parasitic saturation mechanism”

(Goodman & Xu 1994; Radko & Smith 2012; Brown .,

et al. 2013; Harrington & Garaud 2019; Fraser et al.

2023), is based on a single primary mode at the fastest-

growing wavenumber k", which predicts the transport

rate
1112

~ ~ RN /ApN
<u1uy>QL = k_}//g gll lef (kl”)7 (12)
z
whose form is made manifestly similar to Eq. (11); the .

factor f(k"'), which is evaluated at k"'=(0, k"), is the ..
normalization factor of eigenmodes. Here, v/ = 4" + o
1 on the .

~

vk"?. To find (U,0)qL, one can replace i (1

right-hand side of Eq. (12) with 67".

(11)

instability |

of velocity of the unstable eigen-

Predictions of Egs. (11) and (12) are compared against
transport rates from direct numerical simulations in
Figs. 5. Significant improvement in both the momen-
tum and heat transport predictions is observed with the
statistical closure model. The orders-of-magnitude vari-
ation in transport rates is captured by the closure model.

In Fig. 5, for smaller values of r, though the trans-
port rates of the closure and the quasilinear models are
similar, we emphasize that this similarity is merely ac-
cidental: the physics the two models incorporate is very
different. The assumptions of the closure model are sup-
ported by detailed numerical evidence (Figs. 2 and 3),
including that of the dominant three-wave coupling be-
tween two unstable modes and a latitudinal jet (Fig. 4).
No jet physics is considered in the quasilinear model.
The quasilinear model predicts transport rates based on
with k,=0,
which Fig. 2 shows is inadequate. Hence, predictions of
the quasilinear model that tend to reproduce the data-
validated closure model predictions are at best a fortu-
itous coincidence, occurring in a very limited parameter
regime.

only one fastest growing wavenumber k.,

4.4. Impact of the new model in astrophysics

Since stellar interiors typically have extreme param-
eters such as Pr < 1079, current and anticipated near-
future computational resources are insufficient to per-
mit direct numerical simulations of realistic turbulence
in them. In the face of such a challenge, progress can
be made by developing analytical theories, informed and
tested by numerical simulations at more accessible pa-
rameters. Thus, we now employ our analytical theory to
extrapolate and make predictions for realistic astrophys-
ical parameters. To achieve this, we derive fully analytic
expressions for all elements of the closure model, assum-
ing that the coupling of two GSF-unstable modes with
the latitudinal jet remains dominant; see Appendices A
and B.

We then compare predictions of the closure model
with those of the quasilinear (QL) model, over a wide
range of parameters Pr ~ 1077-1 and r ~ 107°-1 in
Fig. 6. Noting that N?=2(S — 2) [1+r(Pr~' —1)],
these scans span N2 < 19 x 10° (in terms of Q?);
this ratio is typically around 1 million for the Sun
(Christensen-Dalsgaard et al. 1996). In Fig. 6, with
S=3 (in terms of ), the Richardson number is as large
as ~ 2 x 105, More extreme parameters can be easily
and quickly scanned with the analytic formula we have
derived.

Now we predict transport efficiency of the GSF
instability in stars. The Reynolds stress is of or-
der (U,ty,)H ', where H=Uy(0,Uy)” is the scale
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Figure 5. Tests of predictions of our closure model (red diamond) and a quasilinear-type, parasitic-saturation model (blue
inverted triangle) against direct numerical simulations (DNS, black/gray circle). Variations of momentum transport rates are
shown in (a); the filled markers correspond to the cases where the shear parameter S is varied (N?=10); the unfilled markers
correspond to the cases where the squared Brunt-Véiséld frequency N2 is varied (S=2.1). Both S- and N?2-scan results collapse
onto a single master curve, when (i, ,) is scaled by a factor shown on the y-axis that transforms the governing equations of
the GSF instability studied here to depend on only two dimensionless parameters (r, Pr). The GSF instability operates when
r € [0,1) and Pr<1 (Pr=0.01 is chosen). The shown y-axis is precisely an expression for the chemical transport rate for the
thermohaline instability [see Eq. (15a)]. Heat transport rates, shown in (b), display nearly identical trends; [see Eq. (15b) for
the scaling factor]. The closure prediction agrees with full DNS better than the quasilinear prediction over the scanned range

of parameters.

height of the mean flow Uy= — Sz.

2019).

Though Pr ~ 1079, the typical values of r in the -
solar tachocline and red giant stars are r ~ 1073-1 -
Then, using Fig. 6 where
(Tpy) dimensionless 1s on average 0.5, we predict Ty ~ sz
2S(x/d)?. This turbulent transport time scale is suffi- -5
ciently short to be astrophysically important, depend- -
ing on the relative length scale z/d of the mean flow -
and shear strength S. For example, it can be as short -
as O(10) Myr using values of S and z/d for the solar -

(varying with radius).

tachocline.

The turbulent transport rate depends sensitively also
on the shear parameter S (and latitude and orienta-
tion of the shear, i.e., radial or mixed radial-horizontal

The time scale 5.
for modifying the flow is Tun ~ UoH/(Uply) ~ -
Sz2Q1d ™2 /(Uyliy ) dimensionless (see also Barker et al. -

shear), and orders of magnitude faster turbulent trans-
port is possible. We highlight that, because the turbu-
lent time scale for the GSF instability can be shorter
than O(10) Myr, incorporation of our transport model
for the GSF turbulence in stellar evolution codes is war-
ranted (particularly if extended to non-equatorial and
3-D GSF instabilities). Using such, the long-term im-
pact on the evolution of the rotation profile may be as-
sessed, informing us of the effects of the GSF instabil-
ity in rapidly rotating young stars. In this regard, the
transport model built here for the 2.5D equatorial GSF
instability (and the thermohaline instability) is signifi-
cant, as a reliable and reduced numerical treatment of
the GSF instability-driven turbulence is now available.

4.5. Relation to the thermohaline instability
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Figure 6. Predictions of (a) closure model and (b) quasilinear (QL) model for turbulent momentum transport. The QL model,
largely independent of Pr, fails to reproduce the behavior of the closure model. For Pr closer to 1, the closure model predicts that
the transport rate increases with decreasing r—until an asymptotically large transport is attained. For Pr < r, the transport
first increases and then decreases with r, in contrast to the QL prediction. The white dashed-dotted line, with a unit slope,

separates distinct regimes of Pr < r and Pr > r found in (a).

We emphasize that the equations describing 2.5-D
thermohaline and GSF instabilites at the equator are
identical, when the compositional diffusivity is equal to
the kinematic viscosity—a case often realized in stars.
We first write Eqs. (7)—(9) of Brown et al. (2013), where
they measure distance in units of the characteristic
length scales d of the fingers, time in units of the char-
acteristic diffusion time scale 7=d?/k, and scaled tem-
perature T in units of N2d [we label their x-coordinate
with our z-coordinate and vice-versal

Pr'DuB = —0,p® + (TP — u®) + V2B,  (13a)
Pr'Du? = —0,p® + V*uB, (13b)
DT® = —uB + V?T5, (13c)

B
DuP = — = + Prv2uP, (13d)

Ry

where the state vector [uB,uB T8, uB, pP] represents
Brown-normalized x- and z-velocities, scaled temper-
ature, chemical concentration, and fluid pressure, re-
spectively. The so-called density ratio Ry= — N2/ mzp
may be recast as Ry=1 + 7(Pr~! — 1). The solutions of

545
546
547
548

549

550
551
552

558

Egs. (13a)—(13d) critically depend only on two parame-
ters: Pr and . Equations (13a)—(13d) for the thermoha-
line instability with the state vector [u2, u2, T8, 1B] are
identical to Egs. (1a) and (1b) for the GSF instability
with the state vector [uz,u.,0,u,], when we note

B Uy

u, = %, (14a)
uB = C;‘/—ZT, (14b)

b= Ni%l, (14c)
B = —2;?;/1. (14d)

Hence, the transport rates with two kinds of non-
dimensionalizations—one using 7 and d as the charac-
teristic time scale and length scale, and another using 2
and d as the relevant scales—are related in the manner

_<ﬂmBﬁB> — <ﬂxﬂy> X 2QPY1/2(N2)73/2d72’
@BTPY = (w,0) x PrY/2(N?)=3/2472,

(15a)
(15b)
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where the variables with the superscripted ‘B’ are func-
tions of two essential parameters — r and Pr only,
whereas the variables without the superscript are func-
tions defined by the parameters Pr, S, and N2.

The expressions given in Egs. (15a) and (15b) are
plotted in Fig. 5. Thus our Fig. 5 also represents a
comparison of chemical and heat transport between di-
rect numerical simulations and analytical models for the
thermohaline instability-driven turbulence.

The reduction of the governing equations of the GSF
instability to two parameters (r, Pr) is realized only in
2.5-D equatorial case, which is where the analogy of the
GSF instability with the thermohaline instability be-
comes exact.

5. DISCUSSION AND CONCLUSIONS

Turbulent transport in stellar interiors is a phe-
nomenon too complex to represent directly in stellar evo-
lution models. It is often parametrized using low-order
models, such as mixing-length theories, or models that
predict transport rates based on the fastest-growing un-
stable mode (e.g., Denissenkov 2010; Brown et al. 2013;
Barker et al. 2019). The reliability of such models can
be compromised by several factors: first, the instabil-
ity dispersion relation is often anisotropic, a property
that affects the nonlinear energy transfer, thereby driv-
ing low-frequency fluctuations (Fig. 3). Second, non-
linear mode coupling can strongly excite more weakly
growing unstable modes over a wide range of wavenum-
bers, presenting difficulties to single-mode theory-based
predictions. To circumvent such challenges, we build
a nonlinear mode-coupling theory, informed by detailed
analyses of direct numerical simulations, to arrive at a
reliable and analytic transport model, that is free of tun-
able parameters. We achieve this here for axisymmetric
low-Pr turbulence driven by centrifugally unstable dif-
ferential rotation (the GSF instability) at the equator in
a stellar radiative zone.

Although 2.5-D turbulence driven by the GSF insta-
bility can differ from fully 3-D cases (Barker et al. 2019),
strong secondary flows or jets have been found in 3-D
global systems, also. For example, recent simulations of
fully 3-D spherical-shell non-rotating fingering convec-
tion have exhibited strong, large-scale jets (Tassin et al.
2023). Such coherent jets are ubiquitious in various set-
tings such as in geo- and astrophysical observations, nu-
merical simulations of 3-D shear-flow instability-driven
turbulence (Tripathi et al. 2023b), and in laboratory
fusion plasmas (Terry 2019). The examples show the
large-scale flows can emerge even in global geometry.
Hence, the success of our theory offers a future possibil-
ity to extend the statistical closure framework, presented

605

606

607

608

609

610

here, to the more realistic 3-D simulations of the GSF
instability, ideally in a sphere, at a general latitude and
for a range of Pr (Barker et al. 2020; Dymott et al. 2023;
Garaud & Brummell 2015). It is also possible that our
closure-model framework can be adapted to magnetized
turbulence driven by unstable differential rotation.
Since our formulae are fully analytic, they are quick
to implement in stellar evolution codes such as MESA
(Paxton et al. 2011, 2019) to reliably predict axisym-
metric GSF instability-driven turbulent transport rates
that vary with Pr and r at different spatial grid points
in an evolving star. It is straightforward to compute
the values of r and Pr at a given spatial grid point in
a modeled star, and simply look up transport rates us-
ing our Fig. 6(a) to prescribe the rates of transport of
angular momentum and heat; to access the look up ta-
ble of transport, see Data Availability. Since we have
also provided formulae and frameworks for the turbu-
lent transport of the axisymmetric GSF-analogous ther-
mohaline instability, there now exists a reliable chemical
transport model, which employs DNS-confirmed key el-
ements of nonlinear saturation of the instability in stars.
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652 The GitHub ? and Zenodo DOI: 10.5281/zen-
655 0do.10808281 repositories host the data presented in
05, Fig. 6(a), and a python script where the closure model
655 is implemented. Other data used in this article will be
ss6  shared on reasonable request to the corresponding au-
657 thors.

2 https://github.com/BindeshTripathi/GSF _transport
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APPENDIX A: NONLINEAR MODE-COUPLING COEFFICIENTS OF THE GSF INSTABILITY
The j*" eigenvector of the linear operator L of the GSF instability satisfies

ke . - N? | . 20— S .
— Ua.js 0; = ——— a5 Uy = ————Ua,;, (A1)

Uz,j = .
Vr.j Vv,j

using which the matrix FE of eigenvectors can be created and inverted as mentioned in the penultimate paragraph of
Sec. 2.1. To expedite analytic calculations, one may solve for the adjoint solutions Y ; of L, which are the eigenvectors
of LT. Such adjoint solutions Y'; form a biorthogonal basis with the eigenvectors X ; of L (Fraser et al. 2021; Tripathi
et al. 2022a, 2023a,b). That is, (Y,,, X ;) = Y%*Xj & 0;m, where Tx is the transpose-conjugation operation; see
Appendix A of Tripathi et al. (2022b) for a general mathematical proof. It is known that both L and L' have the
same eigenvalues. The expedient adjoint technique is equivalent to inverting the matrix E of size 4 x 4, and they
deliver completely identical results, which we have verified. The j*" adjoint solution satisfies
- k2 20k2

Uz,; = 0; 0; = m%,j% Uy,j = mumg (A2)

Using such, we write the nonlinear mode-coupling coefficient between the two eigenmodes m at wavenumber k' and n
at k", impacting the eigenmode j at k, as
kk) _ (Y,(k), N(X,,, X7))

( _
G = 0 ), X (k) (A3)

where N (X, X" is the nonlinearity vector; for example, its §-component is —u/, - V6.

Following this procedure, we have distilled the analytic coupling coefficients for the GSF instability, and provide
below their final expressions:

gk _ i (k7 — k)
Z11 - kéf/f,, 3

where f is the eigenmode normalization factor. With inverse dimensions of 1, j, a suitable mode normalization can be
f'=k'/y" or f'=k"d/(v'~!T) or their variants, with 7=d?/k as the characteristic diffusion time scale. Equation (A4)
is simple as it represents the coupling between two unstable modes that drive the latitudinal flow Z. The second
coupling coefficient required in the closure model is

k2 2ky ki 1 1 17
Nzk/z/z ]- - k172 + RO’Y,’,’Y{,’ - ’YL’YL’ f

k2 1 1
|t + =) I

(A4)

55121,1@ = ik} [

(A5)

We note that the coupling coefficients depend only on wavenumbers and the input parameters such as N2, Pr, Ry= —
N?/kZ, and the growth rates; the growth rates in turn depend only on wavenumbers and the input parameters [Eq. (2)].
Asymptotic approximation to the growth rate in the limit of, e.g., small Pr is possible (Brown et al. 2013).

APPENDIX B: NONLINEAR MODE-COUPLING COEFFICIENTS OF THE THERMOHALINE INSTABILITY

Here we provide analytic expressions needed for the closure model applicable to the thermohaline instability.
We find the j*" eigenvector of the linear operator L found from Eqgs. (13a)-(13d) for the thermohaline instability
satisfies

k . 1 1
-B ~B B -B ~B ~B
Uy = _kfuw’j; lj = _Tjux’j; fy = ; (A6)

The j*" adjoint solution for the thermohaline instability is

. k2P k2P
iz =0; 17 = 5 rﬁfj; iy = - 3 rﬂfc;j'
k VYeg k Yv,j ’

(A7)

z,J

The coupling coefficients for the thermohaline instability are identically the same as those for the GSF instability;
Equations (A4) and (A5) require only a minute modification: N? appearing twice in Eq. (A5) should be replaced with



14 TRIPATHI, BARKER, FRASER, TERRY, & ZWEIBEL

sss  Pr. We, conclude that our closure model and predictions are directly applicable to the thermohaline instability, as

ss7  well. This is significant because the turbulent transport efficiencies of these two instabilites in stars are not known,

sss  but are generally thought to be important. With the closure model at hand, we can now make predictions reliably for
both instabilities.

APPENDIX C: DETAILS OF CLOSURE MODEL CALCULATIONS

692 To make the statistical closure model more accessible to a wide range of readers, we provide below detailed, step-
s0s  by-step derivations.

C1. AMPLITUDE EVOLUTION EQUATION
The mode-amplitude 3; evolution equation, given in Eq. (3a), for a wavenumber k = (k,, k,7#0), with j = 1,2, or 3,
sos 18
OB =B + Z CJ(:;Z )3 B + Z { {C’j(’;: ) 4 C’;ﬁ)’f )} V'3
k' ,m,n k’',n

i [O(k,k’) JrC(_k,k”)} Z’B”

jZn jnZ
+ [cler) + o] @’5;;}, (A8)

so7  whereas, at k = (k,, k,=0), one finds that the fluctuation amplitude evolves according to Eq. (3b), which is expanded
sos  below

oY =-pY+ S Mg el (A92)
k', m,n:k,=0
_ (k,k") pr pir
8tZ = —’YZZ + Z CZmn Bmﬁna (A9b>
k' mmn:k,=0
920=-0+ > CEKIg g (A9c)
k' mn:k,=0

500 where vy = vz = vk? and o = kk? are the damping rates.

C2. EIGENMODE-ENERGY EVOLUTION

To derive an evolution equation for energy in the j** eigenmode at k = (k, k.#0), we multiply Eq. (A8) with B3
70> and add a complex conjugate of the resulting equation to arrive at

OulB;1* = 2Re; |82 + 3 2Re [k (81, 880)]

’
k' m,n

k=0

+ 3 2Re { C 878 + 28y 87 + Cle (087 8)]
kl

+kﬁwwywwcﬁ?@zwmcﬁ@@@mﬂ@%}.<mm

703 Similar equations can be derived for fluctuation energy at GSF-stable wavenumbers k = (k, k.=0) using Eqgs. (A9a)—

(A9c):
OV = —2Reqy |V + 7 2Re [C50) (8,807 | . (Alla)
k’,m =
01|22 = —2Reqz|22 + Y 2Re [CEE)BL80.20)] | . (Al1b)
k’,m =
9,|0> = —2Re~0/6” + 3 2Re [cgj;{;’m;nﬂ;;@*)} L (Allc)

k’,m
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Since numerical simulations inform us that the triplets with a latitudinal flow at (k,,0), i.e., Z, dominates the
w0s  nonlinear energy transfer, we may drop nonlinear terms on the right-hand side of Eq. (A10) that do not involve Z. In
707 the resulting equation, because ) and © do not appear, Egs. (Alla) and (Allc) can also be removed, which allows
7s  us to write the following set of equations:

ki =k

z

841812 = 2Re ;18,12 + ZQRe{ [Cﬁf’&z’ﬁ;ﬁ;)} ]k L [ Ck) g 2" g >} } (A12a)
k/ z z

HIZI = ~2Reqz|Z12 + Y 2Re [CL(8,60.2")]

Zmm
k’',\m

: A12b
- (A12D)

C3. TRIPLET CORRELATION EVOLUTION

To obtain evolution equations for the terms on the right-hand side of Egs. (A12a) and (A12b), we multiply Eq. (3a)
with two amplitudes. For example, to determine the evolution of (Z'S7 A7), first, we multiply Eq. (A8) for 3; with
Z’ "5 second, we multiply another equation, similar to Eq. (A8), but for 8] with 2’8%; and, finally, we multiply

(A9b)7 for 2, with 8737, and add them all together. Using this, we provide below an example evolution equation
for triplet correlations:

[0 — (5 + + )] (2818 ks=o ={ > [cf;;z BB (K~ K")8757)]

k' m

(k—K' k" .
F [ 0 K K25 o
k///

k k’ K" *
_|_ C )<Z/N/8] k _ k/ _ kl”)zlﬂj”kg’:o

(
(

+ C k k’ k/// <@”//B] k k/ k/”)zlﬂjﬂk’z”:()
+ C k k' k < ///y(k K — k/”)zlﬁ;ﬂkg’:kz
+ C k k', < /// (k: k/ kl”)zlﬁjﬂk’z":kz

Cife’“ . Nﬁé”@(k—k’ — k)2 ) .

Z {Cj(l;jk )* Hl*ﬂ; (k . k///)Zlﬁ;-l> ‘k’z”:O

Yy M2 B s — K") 2B =0
o ’“' ”*<®"’*6 (k= k") Z'8]) o
DBV (k= K)EB) k.
’“’“' (B 2 (ke — K2 iy

+C(k: Kk )*<ﬁ;//*® (k k’”)Z’B”) |k’z”:kz} }

k=0 (A13)

Since the numerical simulations show dominant coupling between the latitudinal flow Z and two unstable modes in
a bath of turbulent interactions, the interactions involving unstable modes only can be excluded. This immediately
implies that the first term on the right-hand side of Eq. (A13) can be dropped in the face of remaining dominant
terms. Among the remaining terms, the fourth-order correlations that have different components of velocity, e.g., the
terms where ) and Z appear together on the right-hand side of Eq. (A13), do not form terms that appear in the
definition of energy. Guided by numerical simulations where nonlinear coupling to ) and © are unimportant, only the
energy(-like) terms with Z will be kept henceforth. The resulting equation then reads
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[&t - (_'7/2 +fy;/ —|—’y;>] <Z/6.;/6;>|k'z:0 :{ Z [CJ(Z;k k )<Z/H6j(k _k k/”)Z/B;>|k'z”:0
kL’

+ C k k' k" )<ﬂm2(k _k_ k///)zlﬂ;ﬂk;”:kz
+ k W (2B (ke — k)2 B k=

—I—C](-?’ka)* <B§‘N* z* (k _ k”’)Z’@’) |k’z”:kz} }

k=0 (A14)

The same procedure is then repeated to find evolution equations for the other two triplet correlations that appear
in Egs. (Al12a) and (A12b).

C4: QUADRUPLET CORRELATIONS AND STATISTICAL CLOSURE APPROXIMATION

Equation (A14) can be solved using the technique of Green’s function inversion and Markovianization, a standard
step in EDQNM closure [although, here, we do not modify the growth rate +’s with the amplitude-dependent nonlinear
frequency, an approximation justifiable for the low-wavenumber regime; for more details, see Terry et al. (2018)]. Such
a solution yields

* k" —k' k" k
@ ema == { (o o 4 ) 2P (G570 00) s

+ (CE o) Ib’;’lz]} : (A15)

k=0

Similarly, the other two triplet correlations that appear in Egs. (A12a) and (A12b) can also be solved to obtain
« w1 K~k Kk
(BiZ" B} ks =r. = — { (=5 +) 12 [ (057 + Y ) P

kk * kk *

KL=k,
and

552 =~ { G5 o5 o) 2P [ (G50 + ™)

k”, k: _
+ (c§.zj 8 ol k) ) |5;2]} . (A17)
k.=0
C5: A SET OF EDQNM-CLOSED ENERGY EVOLUTION EQUATIONS

Solutions of the triplet correlations from Eqs. (A15)—(A17) are now substituted into Eqs. (A12a) and (A12b), which
results in the following set of closed equations:

(kk) 72
Z |Z| (k' -k S(k,k’)*
Ou|Bs[* =2Re |5 = > 2Re (W;;yﬂ_){@@ 1B + Oz |ﬁ;’|2}]
k' J J k=0
kK’
—) _2Re (Z)'Z'{ 182 + O3} (A18)
k, (o — 2 +7) o2 S |
2 Ezk"k,) k' k K" ke
HZI* = —2Reyzl 2P — |21 YD 2Re | ——ai—< (G PR+ T PR | (A19)
roj=1 (/YJ—'—’Y] ’yz) k.=0
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where gl(f;’g) = CZ(Z’:LI) + Cl(f;f ~9 is the symmetrized coupling coefficient.

Equation (A19) can be simplified by considering that it is the pairs of unstable modes (5 = 1) that excite the
latitudinal flow Z:

_é(k’k/)é(k”xk)
B2 /2 = 2l 2P+ |21 Y |81 Re | — 2zl ] , (A20)
™ Mt -z
where the term inside the wavenumber-summation in Eq. (A19) has been symmetrized.
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