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ABSTRACT14

Differentially rotating stars and planets transport angular momentum internally due to turbulence at15

rates that have long been a challenge to predict reliably. We develop a self-consistent saturation theory,16

using a statistical closure approximation, for hydrodynamic turbulence driven by the axisymmetric17

Goldreich–Schubert–Fricke (GSF) instability at the stellar equator with radial differential rotation.18

This instability arises when fast thermal diffusion eliminates the stabilizing effects of buoyancy forces19

in a system where a stabilizing entropy gradient dominates over the destabilizing angular momentum20

gradient. Our turbulence closure invokes a dominant three-wave coupling between pairs of linearly21

unstable eigenmodes and a near-zero frequency, viscously damped eigenmode that features latitudinal22

jets. We derive turbulent transport rates of momentum and heat, and provide them in analytic forms.23

Such formulae, free of tunable model parameters, are tested against direct numerical simulations; the24

comparison shows good agreement. They improve upon prior quasi-linear or “parasitic saturation”25

models containing a free parameter. Given model correspondences, we also extend this theory to heat26

and compositional transport for axisymmetric thermohaline instability-driven turbulence in certain27

regimes.28

Keywords: Astrophysical fluid dynamics (101) — Solar differential rotation (1996) — Stellar rotation29

(1629) — Stellar interiors (1606) — Hydrodynamics (1963) — Extrasolar gaseous giant30

planets (509)31

1. INTRODUCTION32

Instability-driven turbulence is thought to play a ma-33

jor role in the transport of angular momentum (AM),34

heat and composition in stellar and planetary interiors35

(see, e.g., Garaud 2018; Aerts et al. 2019; Spruit 2002;36

Fuller et al. 2019), as well as in astrophysical disks (e.g.,37

Balbus & Hawley 1998; Lesur et al. 2023). Unfortu-38

nately, rates of turbulent transport are very challenging39

to predict theoretically, and the lack of reliable theories40

has hampered our understanding of the evolution of stel-41
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lar and planetary internal rotations and structures. For42

example, the AM redistribution in red giant stars is cur-43

rently poorly understood, and their core-envelope dif-44

ferential rotations inferred from asteroseismology have45

not been adequately explained (e.g., Beck et al. 2012;46

Eggenberger et al. 2012; Aerts et al. 2019). The nearly47

solid-body rotation observed in the solar radiative in-48

terior also lacks a robust explanation (e.g., Garaud &49

Garaud 2008; Wood & McIntyre 2011).50

Differential rotation is known to drive a variety of51

hydrodynamic (and hydromagnetic) instabilities. In52

this paper, we focus on modeling hydrodynamic insta-53

bilities of differential rotation in stellar and planetary54

radiative zones, and in particular on the Goldreich–55
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Figure 1. (Left) A schematic diagram of a differentially rotating star with a radial shear, gravity, and stable stratification.
Such a system subject to the GSF instability is studied using a local Cartesian model. (Right) Snapshots of velocity components
ũx(x, z), ũy(x, z), and ũz(x, z) from the axisymmetric GSF instability-driven turbulence; x, y, and z represent the local radial,
azimuthal, and latitudinal directions. Though finger-like horizontal structures (as shown by, e.g., ũx) grow the fastest in the
linear phase (t=100), strong latitudinal jets ũz are generated nonlinearly (t=6000). The color bar for t=100 is shared by ũx, ũy,
and 3ũz; the color bar for t=6000 is shared by 3ũx, 3ũy, and ũz. The turbulent transport of angular momentum, e.g., ⟨ũxũy⟩,
is predicted in this paper using a jet-coupled turbulence closure.

Schubert–Fricke (GSF) instability1(Goldreich & Schu-56

bert 1967; Fricke 1968). This is a double-diffusive cen-57

trifugal instability in which rapid thermal diffusion (rel-58

ative to viscous momentum diffusion) enables instability59

by tempering the otherwise stabilising effects of buoy-60

ancy forces. Prior work has studied the linear and non-61

linear properties of the instability, and the turbulence62

it drives (Knobloch & Spruit 1982; Knobloch 1982; Ko-63

rycansky 1991; Rashid et al. 2008; Barker et al. 2019,64

2020; Dymott et al. 2023), but a reliable theory for the65

resulting turbulent transport is lacking. This means that66

the effects of the GSF instability on stellar rotational67

1 It has also been referred to as the “Vertical Shear Instability”
(VSI) in accretion disks (e.g., Urpin & Brandenburg 1998; Nelson
et al. 2013; Barker & Latter 2015; Latter & Papaloizou 2018) and
as “inertial instability” enabled by thermal diffusion in stellar
interiors (Park et al. 2020, 2021).

and chemical evolution have not been modeled in a self-68

consistent manner. Instead, one typically invokes unex-69

plained “additional viscosities” or models that contain70

free parameters. Such tunable parameters are intended71

to describe the effects of turbulence on AM transport72

for which adequate knowledge is lacking.73

A fully analytic model containing no free parameters74

is derived here for the GSF instability-driven turbulence75

in 2.5 dimensions (2.5-D), i.e., with all three components76

of velocity but varying spatially only in two dimensions.77

The predictions of our analytical model are in broad78

agreement with detailed numerical simulations of tur-79

bulence, driven by the axisymmetric (2.5-D) GSF in-80

stability at the equator of a star with radial differential81

rotation. Such model of the instability is, for certain82

diffusivity ratios and in 2.5-D, formally and nonlinearly83

equivalent to the thermohaline, or salt-finger, instability84

that transports heat and chemical elements (Knobloch85
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1982; Barker et al. 2019); thus, the turbulent transport86

arising from axisymmetric fingering convection is also87

described by our theory.88

The structure of this paper is as follows. In § 2, we89

present our model and methods of analysis. Nonlinear90

mode coupling and saturation diagnostics of the insta-91

bility appear in § 3. Informed by such diagnostics, we92

present analytical formulae, without any free parame-93

ters, to model the turbulence and its transport proper-94

ties in § 4. We discuss the astrophysical implications95

and conclude in § 5. Details of the closure model are96

provided in the Appendices.97

2. THE GSF INSTABILITY AND98

INERTIAL-GRAVITY WAVES99

To study a basic mechanism of angular momentum100

transport in a differentially rotating star, we consider101

a local region inside the star near its equator, where102

the rotation can be split into a uniform or mean part—103

Ω=Ωêz, aligning with the local latitudinal axis z—and a104

non-uniform part due to the radial differential rotation.105

The latter is represented by a background linear shear106

flow U0(x)=−Sxêy where x is the radial coordinate, y107

is the azimuthal coordinate, and S = −dΩShell(x)/d lnx108

is the local radial-shear rate, with ΩShell(x) representing109

the “Shellular” rotation of the simplified star. A uniform110

gravity field with g = −gêx is directed radially inward111

(Fig. 1). A background radial temperature gradient ∇T0112

then stratifies the fluid density radially, with a thermal113

expansion coefficient α. In such a background state,114

any perturbations in velocity u and scaled temperature115

θ=αgT evolve (Barker et al. 2019) as116

Du+ u · ∇U0 + 2Ω× u = −∇p+ θêx + ν∇2u, (1a)
Dθ + u · ∇Θ0 = κ∇2θ, (1b)
∇ · u = 0, (1c)
D ≡ ∂t + (u+U0) · ∇, (1d)

where the variables p, ν, and κ are the fluid pressure117

(per unit density), the kinematic viscosity, and the ther-118

mal diffusivity, respectively. We also define the Prandtl119

number Pr=ν/κ. Because the GSF instability oper-120

ates at length scales much smaller than a pressure scale121

height in stars, the local approximation is valid; in such122

a case, when the turbulence drives subsonic flows, the123

Boussinesq approximation is also appropriate (Spiegel &124

Veronis 1960). Assuming a uniform temperature gradi-125

ent, a fluid element perturbed radially oscillates with a126

constant Brunt-Väisälä (buoyancy) frequency N , where127

N 2êx=∇Θ0=αg∇T0.128

Henceforth, we non-dimensionalize all variables using129

the characteristic rotation time scale Ω−1 and length130

scale d, with d=(νκ/N 2)1/4, which is typically simi-131

lar to the wavelengths of fastest-growing modes. Thus,132

N=N/Ω is the dimensionless buoyancy frequency and133

S=S/Ω the dimensionless shear rate (Rossby number).134

The GSF instability occurs in low-Pr fluids whenever135

r ∈ [0, 1], where r = Pr(1 + N2κ−2
ep )/(Pr − 1), with136

κep=
√
2(2− S) representing the dimensionless epicyclic137

frequency (Barker et al. 2019).138

2.1. Eigenmode analysis139

A linear analysis of Eqs. (1a)–(1b) for axisymmet-140

ric (uniform-in-y) perturbations yields a simple ma-141

trix equation, which upon Fourier-transforming be-142

comes LX̂=γX̂, where X̂=[ûx, ûy, ûz, θ̂]
T, with T as143

the transpose operation, is the state vector of spa-144

tially Fourier-transformed components at wavevector145

k=(kx, kz); the matrix L is a linear operator, whose146

eigenvalues are the complex-valued growth rates γ. The147

size of L demands four linearly independent eigen-148

vectors. Because of the additional constraint ∇·u=0,149

the system has only three degrees of freedom at any150

given wavenumber—two components of velocity, and θ̂.151

Hence, one eigenvector among the four eigenvectors does152

not satisfy ∇·u=0 and is rejected. We confirm that153

this eigenvector is not excited within our incompress-154

ible Boussinesq simulations. One among the remaining155

three eigenvectors at a given wavevector becomes GSF-156

unstable [Re (γ) > 0, where Re denotes the real part],157

whenever r ∈ [0, 1). The remaining two eigenvectors are158

always stable, and their eigenvalues are complex conju-159

gates of each other whenever they satisfy Im (γ) ̸= 0,160

where Im denotes the imaginary part; Im (γ) corre-161

sponds to the frequency of inertial-gravity, or gravito-162

inertial, waves (IGWs), modified by the shear flow and163

damped by viscous and thermal diffusion.164

The GSF instability grows dominantly via axisymmet-165

ric (∂y ≡ 0) perturbations, therefore we focus upon the166

(x, z)-variations of the 3-component velocity and tem-167

perature fields. The dispersion relation then is a simple168

cubic polynomial in γ (Goldreich & Schubert 1967) as169

γ2
νγκ +

κ2
epk

2
z

k2
γκ +

N2k2z
k2

γν = 0, (2)

where γν = γ + νk2 and γκ = γ + κk2. Equation (2)170

shows that, on the (kx, kz)-plane, the growth rate ex-171

hibits strong anisotropy: fluctuations with kx=0 (“ele-172

vator modes”) grow the fastest, whereas those with kz=0173

are linearly stable. This observation is critical for the174

nonlinear saturation of the GSF instability because the175

anisotropy of the linear physics, in particular the kz=0176

fluctuation, can impose its anisotropy on the nonlinear177

energy transfer, which is otherwise isotropic; such con-178

sequential effects have been found in various systems179
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such as 3-D Kelvin-Helmholtz instability (Tripathi et al.180

2023b), rotating (Waleffe 1993; Smith & Waleffe 1999)181

and stably stratified turbulence (Riley & Lelong 2000),182

turbulence with an external magnetic field in astrophysi-183

cal (Ng & Bhattacharjee 1996; Du et al. 2023) and fusion184

plasmas (Biskamp & Zeiler 1995; Terry 2004).185

Using the complete basis provided by the eigenvec-186

tors of the linear operator L, we can decompose ar-187

bitrary incompressible fluctuation X̂arb with kz ̸=0 as188

X̂arb=
∑3

j=1 βjX̂j , where βj is the amplitude of the jth189

eigenvector X̂j ; we reserve j=1 for the GSF-unstable190

modes, and j=2, 3 for the IGWs that are always linearly191

stable in this study. More compactly, X̂arb=Eβ, where192

β is a (column-)vector of mode amplitudes and E is193

an eigenvector matrix, whose jth column is X̂j . Thus,194

β=E−1X̂arb.195

For the kz=0 modes, E turns out to be an identity196

matrix, meaning that the three components of veloc-197

ity, and the temperature, individually form eigenvec-198

tors. In what follows, we therefore decompose an ar-199

bitrary fluctuation with kz=0 into X̂T
arb = X [1, 0, 0, 0]+200

Y[0, 1, 0, 0] +Z[0, 0, 1, 0] +Θ[0, 0, 0, 1], where the ampli-201

tudes of the eigenvectors are denoted by X ,Y,Z, and202

Θ. We reserve the β-notation above for the amplitudes203

of eigenvectors with kz ̸=0.204

2.2. Initial value problem205

We perform an ensemble of direct numerical sim-206

ulations of Eqs. (1a) and (1b), by seeding a low-207

amplitude solenoidal random noise to u, in a box of size208

(Lx, Lz)=(100, 100). To obtain numerically converged209

results, a spatial resolution of up to 5122 grid points is210

used in the pseudo-spectral solver SNOOPY (Lesur &211

Longaretti 2005; Barker et al. 2019).212

To determine the contribution of each eigen-213

mode in, for example, the turbulent momentum214

transport, we decompose the turbulent stress as:215

⟨ũxũy⟩=
∑

kx,kz

∑
m,n 2Re

[
βmûx,mβ∗

nû
∗
y,n

]
, where ⟨·⟩ is216

an (x, z)-averaging operation; m and n are summed217

from 1 to 3, corresponding to three excited eigenmodes218

at every wavenumber k; the amplitude βm and the x-219

component of the velocity ûx,m correspond to the mth
220

eigenvector at k; and likewise for βn and ûy,n; the op-221

eration ∗ denotes complex conjugation. Using such a222

decomposition, we obtain the contribution of an unsta-223

ble mode at k to the momentum transport rate, which224

is 2|β1|2Re
[
ûx,1û

∗
y,1

]
. This decomposition is performed225

for every wavenumber, hence allowing us to trace evolu-226

tion of transport contributions due to individual unsta-227

ble modes [see Fig. 2(a)].228

The summed contributions of all eigenvectors from all229

wavenumbers reproduce, to machine precision, the to-230

tal transport rates found in the simulation before per-231

forming mode decomposition, as we show in Fig. 2(b).232

The contributions of the unstable modes are also com-233

pared across different wavenumber sums. Almost iden-234

tical results are found for heat transport (not shown).235

The unstable modes from the linearly fastest-growing236

wavenumber branch kx=0 transport significantly less237

momentum than the other wavenumbers with kx ̸=0.238

This is our first surprising result, and it challenges pre-239

dictions of turbulent transport that rely on an unsta-240

ble mode at the fastest-growing wavenumber alone (e.g.,241

Radko & Smith 2012; Brown et al. 2013; Barker et al.242

2019). This finding also instructs us to investigate non-243

linear couplings between eigenmodes to understand the244

instability-saturation mechanism.245

3. NONLINEAR SATURATION BY COUPLING TO246

LATITUDINAL FLOW247

3.1. Mode-amplitude evolution248

To analyze nonlinear mode couplings, Eqs. (1a)–(1b)249

are first spatially Fourier-transformed: ∂tX̂ = LX̂ +250 ∑
k′,k′′ N(X̂ ′, X̂ ′′), where X̂, X̂ ′, and X̂ ′′ are state251

vectors at k,k′, and k′′, respectively, satisfying k =252

k′+k′′. Then, following Sec. 2.1 we substitute X̂=Eβ,253

and likewise for X̂ ′ and X̂ ′′. We multiply the obtained254

equation with E−1 and take the jth row of the resulting255

equation. This process yields an evolution equation for256

the jth eigenmode at k. Such an evolution equation for257

mode amplitude βj for kz ̸=0 is different from that of the258

mode amplitude F ∈ {X ,Y,Z,Θ} for kz=0, although259

both are coupled and nonlinear:260

∂tβj = γjβj +
∑

k′,m,n

C
(k,k′)
jmn β′

mβ′′
n

+
∑

k′,F,n:k′
z=0

F∈{X ,Y,Z,Θ}

[
C

(k,k′)
jFn + C

(k,k′′)
jnF

]
F ′β′′

n, (3a)

∂tF = −γFF +
∑

k′,m,n:kz=0

C
(k,k′)
Fmn β′

mβ′′
n, (3b)

where γj is the complex-valued growth rate for the jth261

eigenmode with kz ̸=0; the real-valued damping rate γF262

is γX when F is replaced with X in Eq. (3b); likewise263

for the replacement of F with Y,Z, and Θ; we note that264

γX = γY = γZ = νk2x, and γΘ = κk2x. The nonlinear-265

coupling coefficient, for example, C
(k,k′)
jmn measures the266

overlap of eigenmodes m with k′, n with k′′, and j with267

k. Such a mode coupling coefficient is found by ap-268

plying E−1 to the (column) vector of N(X̂ ′
m, X̂ ′′

n), a269

process that incorporates all the nonlinearities of the270

system, thus making C
(k,k′)
jmn ideal for a comprehensive271

instability-saturation analysis.272
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Figure 2. (a) Comparison of momentum transport (Reynolds Stress=2|β1|2Re
[
ûx,1û

∗
y,1

]
) driven by an unstable mode at the

linearly fastest-growing wavenumber k = (0, 0.63), and by an unstable mode at k = (0.31,−0.13), the wavenumber that has the
largest contribution to the momentum transport in the nonlinear phase. (b) Eigenmode decomposition of net Reynolds stress
⟨ũxũy⟩ in nonlinear simulation of the GSF instability-driven turbulence, showing that the transport due to mode-undecomposed
fluctuations (red curve) and mode-decomposed all eigenmodes (black curve) agree to machine precision. Transport is almost
entirely (88%) due to the unstable modes (green curve); the sum of fastest-growing unstable modes at kx=0, however, contributes
negligibly (3%) to the transport (blue curve). Simulation parameters used are S=2.1, N2=10 and Pr=0.01.

On the right-hand side of Eq. (3a), the second term is273

the nonlinear coupling between eigenmodes with k′z ̸=0274

and k′′z ̸=0 (hence the two βs), and the third term, with275

an F and a β, is the nonlinear coupling between eigen-276

modes with k′z=0 and k′′z ̸=0 (see the last paragraph of277

Sec. 2.1). Equations (3a) and (3b) have the same num-278

ber of degrees of freedom as the original nonlinear equa-279

tions in physical space, Eqs. (1a)–(1b). These systems280

are completely equivalent, but one represents dynamics281

in physical space and another in eigenmode space.282

3.2. Mode-energy evolution283

The energy evolution equation for each eigenmode can284

now be derived by multiplying Eq. (3a) by β∗
j and adding285

the complex conjugate of the resulting equation to arrive286

at287

∂t|βj |2 = Qj + TjAA, (4)

where Qj=2Re γj |βj |2 is the linear energy transfer rate288

to k from the mean gradients, and TjAA is the total289

nonlinear energy transfer to the jth eigenmode from all290

possible nonlinear interactions; Eq. (A10). We now show291

the spectrum of time-averaged Q1, along with that of the292

growth rate and time-averaged viscous dissipation rate293

ϵν in Fig. 3.294

From TjAA in Eq. (4), we separate out the nonlinear295

transfer T1Z1 in a triad that involves a latitudinal flow296

Z at k′z=0 and two GSF-unstable modes (j=1) at k′z ̸=0:297

T1Z1 =
∑

k′:k′
z=0

2Re

{[
C

(k,k′)
1Z1 + C

(k,k′′)
11Z

]
Z ′β′′

1β
∗
1

}
.

(5)
We now compare T1Z1 with T1AA in Fig. 4, for a GSF-298

unstable mode with a wavenumber that contributes the299

largest to the momentum transport. Repeating this300

transfer analysis at different wavenumbers produces sim-301

ilar results. The two transfers are nearly identical, which302

confirms the conjecture (Barker et al. 2019) that, in the303

fully nonlinear phase, the GSF instability saturates via304

the formation of strong latitudinal jets or flows. Such305

flows are z-directed, although with no z-variation, and306

primarily have a wavenumber kx=2π/Lx; see Fig. 1,307

right-column snapshot at t=6000. These flows general-308

ize to meridional circulation in stars, and resemble zonal309

jets in planetary atmospheres and fusion systems (Terry310

2019). Flows with kz=0 are, however, linearly stable to311

the GSF instability, and, thus, must necessarily be ex-312

cited nonlinearly by the interactions between the GSF-313

unstable modes. This energy received is then viscously314

damped at kz=0 and at low kz, as seen in Fig. 3. To315

sum up, the mean shear flow, destabilized by the ther-316

mal diffusion, lends energy to the fluctuations via the317

GSF-unstable modes, which saturate by exciting kz=0318
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Figure 3. Spectra of linear and nonlinear-saturation properties of the GSF instability. On the negative-kx domain, the colored
square boxes (yellow-green-purple) display time-averaged energy extraction rates ⟨Q1⟩t by unstable modes from the mean
gradients in a nonlinear simulation. On the positive-kx domain, colored square boxes (black-red-yellow) show the time-averaged
viscous dissipation rates, which are pronounced at low kz. Over the entire (kx, kz)-plane, the non-square filled and line contours
show the growth rates γ of unstable modes, with white dashed contour lines on the negative-kx domain and with bluish filled
contours on the positive-kx domain. The fastest-growing mode resides at around k = (0, 0.63). The simulation parameters are
S=2.1, N2=10 and Pr=0.01.

latitudinal flows to a significant level. Such flows then319

viscously dissipate the turbulent energy. This is the sat-320

uration mechanism of the axisymmetric GSF instability321

found here.322

4. ANGULAR MOMENTUM TRANSPORT MODEL323

The findings shown so far are sufficient to build a sta-324

tistical closure model, with no free parameters, and thus325

with predictive power.326

Equation (3a) has a quadratic nonlinearity, hence evo-327

lutionary equations for mode energy contain triplet in-328

teractions [e.g., Eq. (5)]. To determine the evolving329

triplet interaction terms, one can derive an equation330

with quadruplet interactions [Eq. (A13)], and so on. To331

truncate this never-ending hierarchy (the so-called “tur-332

bulence closure problem”), we invoke a standard turbu-333

lence closure, the Eddy-Damped Quasi-Normal Marko-334

vian (EDQNM) approximation (see, e.g., Orszag 1970;335

Terry et al. 2018; Hegna et al. 2018; Terry et al. 2021;336

Pueschel et al. 2021; Li et al. 2021, 2023), that truncates337

the hierarchy at fourth-order cumulants of the fluctua-338

tions, thereby assuming that the statistics for the mode339

amplitudes are close to Gaussian. The resulting equa-340

tion, however, is still nonlinear and daunting. But when341

a latitudinal flow Z, with kz=0, dominates the nonlinear342

coupling, the complexity of the equation is significantly343

reduced (Terry et al. 2018).344

4.1. An outline of the Closure Model345

We illustrate here the key steps involved to explain346

most simply our closure model (by omitting details and347

treating all variables as real). First, we observe that348

Eq. (3a) has the structure:349

∂tβ = ...β + ...ββ + ...βX + ...βY + ...βZ + ...βΘ , (6)

where the mode amplitudes are explicitly shown, and350

the dots (...) represent terms such as the linear growth351

rate and the nonlinear coupling coefficients. One can352

then obtain evolution equation for second-order correla-353

tor as ∂t(ββ) = ...ββ+...βZβ, where the other nonlinear354
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Figure 4. Time evolution of the total nonlinear energy transfer T1AA to an unstable eigenmode at a wavenumber where the
spectrum of ⟨ũxũy⟩ peaks. T1Z1 is the energy transfer to the same unstable mode via interactions between the z-component
of velocity (Z) with wavenumbers kz=0, and the other unstable modes. Comparison of two transfer functions reveals that the
dominant triad involves a latitudinal flow and two unstable modes. The simulation parameters are S=2.1, N2=10 and Pr=0.01.

terms, e.g., βββ and ββX , have been dropped because355

the nonlinear energy transfer is almost entirely domi-356

nated by βZβ—the latitudinal-flow coupling (Fig. 4).357

Since βZβ also evolves, one can similarly obtain evo-358

lution equation for third-order correlator as ∂t(βZβ) =359

...βZβ + ...ββZZ. The closure solution then yields a360

relation βZβ = ...ββZZ. Although useful later, this361

relation does not predict the mode amplitude β, needed362

for the turbulent transport prediction.363

To predict the mode amplitude β, we consider the364

latitudinal-flow evolution equation, ∂tZ = ...Z + ...ββ,365

and derive ∂t(ZZ) = ...ZZ + ...βZβ. Then, βZβ can366

be replaced with a product of four amplitudes using the367

closure solution in the previous paragraph. One thus368

obtains ∂t(ZZ) = ...ZZ + ...ββZZ. In quasi-stationary369

turbulence, ∂t ∼ 0, and thus ββZZ = ...ZZ. The370

EDQNM closure allows writing a fourth-order correla-371

tor ββZZ as a sum of products of second-order cor-372

relators, such as |β|2|Z|2. Then, cancelling |Z|2 from373

both sides of ββZZ = ...ZZ, one predicts the saturated374

mode amplitude (or energy): ββ = ... . Using this, one375

can make predictions for turbulent transport rates as we376

shall show in the next subsection.377

4.2. Detailed Closure Model378

To make quantitative predictions for transport, we379

take the EDQNM-closed evolution equation for the lat-380

itudinal flow energy [see Appendix B, Eq. (A20)],381

∂t|Z|2/2 =− γZ |Z|2

+ |Z|2
∑
k′

|β′
1|2 Re

[
−τ11ZC⃗

⃗

(k,k′)
Z11 C⃗

⃗

(k′′,k)
1Z1

]
,

(7)
where, on the right-hand side, the second term contains382

a product of four amplitudes, but notably with |Z|2 that383

also appears in the first term of the right-hand side. In384

Eq. (7),385

τ11Z = (γ′
1 + γ′′

1 − γ∗
Z)

−1, (8)

is the three-wave interaction time found from the386

EDQNM closure, and C⃗

⃗

(p,q)
lmn = C

(p,q)
lmn + C

(p,p−q)
lnm is the387

symmetrized coupling coefficient. In quasi-stationary388

turbulence, ∂t ∼ 0, and thus the linear and nonlinear389

terms must balance. First, for simplicity, we consider390

a latitudinal flow at (kx, 0) that is driven by two un-391

stable modes at (k′x, k
′
z) and (kx−k′x,−k′z); then, using392

(7), |β′
1|2 = γZ

(
Re [−τ11ZC⃗

⃗

(k,k′)
Z11 C⃗

⃗

(k′′,k)
1Z1 ]

)−1

. A more393

general expression for |β′
1|2 is found by using a standard394

Markovian assumption (Terry et al. 2021): |β′
1|2 is more395

weakly dependent on wavenumbers than the other fac-396

tors in Eq. (7) arising from the coupling coefficients and397

τ11Z . Such a consideration provides an expression for398

nonlinearly saturated squared-mode-amplitude399

|β′|2 = γZ ×
( γ

k2

)
Closure

, (9)

with400 ( γ

k2

)
Closure

=
1

|∑k′ τ11Z Re [−C⃗

⃗

(k,k′)
Z11 C⃗

⃗

(k′′,k)
1Z1 ]|

, (10)
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where we note that the coupling coefficients scale lin-401

early with wavenumbers, and τ11Z is the inverse of the402

sum of three growth rates of eigenmodes in a triad.403

The growth rates in τ11Z should, in principle, also404

have amplitude-dependent eddy-damping rates as they405

become non-negligible, for example, in homogeneous406

isotropic fluid turbulence; however, when waves or in-407

stabilities exist, and when the turbulent transport spec-408

trum is dominated by low wavenumbers, as in this study,409

τ11Z is approximated by using the linear growth rates410

(Terry et al. 2018; Terry et al. 2021). Using such, one411

identifies that the triplet interaction time τ11Z is max-412

imal when the triad involves a latitudinal flow (Z) and413

two GSF-unstable modes (j=1). Shorter triplet interac-414

tion times τ12Z are expected for triads with, for example,415

the latitudinal flow, an unstable mode, and a strongly416

damped IGW (j=2), as such an interaction lowers τ12Z417

via both the frequency and damping rate of the IGW.418

The largest interaction time τ11Z dominates saturation.419

The radial turbulent transport of angular momentum420

is measured by ⟨ũxũy⟩≈
∑

k′′′ û′′′
x,1û

′′′∗
y,1 |β′′′

1 |2, where β′′′
1421

is the unstable-mode amplitude at k′′′ over which the422

summation is applied. Then, using |β′′′
1 |2 from the above423

paragraph,424

⟨ũxũy⟩Closure =
( γ

k2

)
Closure

× γZ
∑
k′′′

û′′′
x,1û

′′′∗
y,1 . (11)

The y-component û′′′
y,1 of velocity of the unstable eigen-425

vector can be replaced with, e.g., its temperature per-426

turbation θ̂′′′1 to predict the turbulent heat flux ⟨ũxθ̃⟩.427

In our simulations with radial differential rotation, the428

latitudinal momentum flux is much lower than the radial429

flux, and, when time-averaged, it is nearly null.430

4.3. Tests of theoretical predictions431

A simple quasilinear model of the GSF-instability sat-432

uration was recently proposed (Barker et al. 2019, 2020)433

by assuming that a secondary “parasitic” instability434

feeds on the primary GSF-unstable mode. Such an as-435

sumption, also called “parasitic saturation mechanism”436

(Goodman & Xu 1994; Radko & Smith 2012; Brown437

et al. 2013; Harrington & Garaud 2019; Fraser et al.438

2023), is based on a single primary mode at the fastest-439

growing wavenumber k′′′, which predicts the transport440

rate441

⟨ũxũy⟩QL =
γ′′′2
1

k′′′2z

û′′′
x,1û

′′′∗
y,1f

2(k′′′), (12)

whose form is made manifestly similar to Eq. (11); the442

factor f(k′′′), which is evaluated at k′′′=(0, k′′′z ), is the443

normalization factor of eigenmodes. Here, γ′′′
ν = γ′′′

1 +444

νk′′′2. To find ⟨ũxθ̃⟩QL, one can replace û′′′
y,1 on the445

right-hand side of Eq. (12) with θ′′′1 .446

Predictions of Eqs. (11) and (12) are compared against447

transport rates from direct numerical simulations in448

Figs. 5. Significant improvement in both the momen-449

tum and heat transport predictions is observed with the450

statistical closure model. The orders-of-magnitude vari-451

ation in transport rates is captured by the closure model.452

In Fig. 5, for smaller values of r, though the trans-453

port rates of the closure and the quasilinear models are454

similar, we emphasize that this similarity is merely ac-455

cidental: the physics the two models incorporate is very456

different. The assumptions of the closure model are sup-457

ported by detailed numerical evidence (Figs. 2 and 3),458

including that of the dominant three-wave coupling be-459

tween two unstable modes and a latitudinal jet (Fig. 4).460

No jet physics is considered in the quasilinear model.461

The quasilinear model predicts transport rates based on462

only one fastest growing wavenumber kz, with kx=0,463

which Fig. 2 shows is inadequate. Hence, predictions of464

the quasilinear model that tend to reproduce the data-465

validated closure model predictions are at best a fortu-466

itous coincidence, occurring in a very limited parameter467

regime.468

4.4. Impact of the new model in astrophysics469

Since stellar interiors typically have extreme param-470

eters such as Pr ≲ 10−6, current and anticipated near-471

future computational resources are insufficient to per-472

mit direct numerical simulations of realistic turbulence473

in them. In the face of such a challenge, progress can474

be made by developing analytical theories, informed and475

tested by numerical simulations at more accessible pa-476

rameters. Thus, we now employ our analytical theory to477

extrapolate and make predictions for realistic astrophys-478

ical parameters. To achieve this, we derive fully analytic479

expressions for all elements of the closure model, assum-480

ing that the coupling of two GSF-unstable modes with481

the latitudinal jet remains dominant; see Appendices A482

and B.483

We then compare predictions of the closure model484

with those of the quasilinear (QL) model, over a wide485

range of parameters Pr ≈ 10−7–1 and r ≈ 10−5–1 in486

Fig. 6. Noting that N2=2(S − 2)
[
1 + r(Pr−1 − 1)

]
,487

these scans span N2 ≲ 19 × 106 (in terms of Ω2);488

this ratio is typically around 1 million for the Sun489

(Christensen-Dalsgaard et al. 1996). In Fig. 6, with490

S=3 (in terms of Ω), the Richardson number is as large491

as ≈ 2 × 106. More extreme parameters can be easily492

and quickly scanned with the analytic formula we have493

derived.494

Now we predict transport efficiency of the GSF495

instability in stars. The Reynolds stress is of or-496

der ⟨ũxũy⟩H−1, where H≡U0(∂xU0)
−1 is the scale497
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Figure 5. Tests of predictions of our closure model (red diamond) and a quasilinear-type, parasitic-saturation model (blue
inverted triangle) against direct numerical simulations (DNS, black/gray circle). Variations of momentum transport rates are
shown in (a); the filled markers correspond to the cases where the shear parameter S is varied (N2=10); the unfilled markers
correspond to the cases where the squared Brunt-Väisälä frequency N2 is varied (S=2.1). Both S- and N2-scan results collapse
onto a single master curve, when ⟨ũxũy⟩ is scaled by a factor shown on the y-axis that transforms the governing equations of
the GSF instability studied here to depend on only two dimensionless parameters (r,Pr). The GSF instability operates when
r ∈ [0, 1) and Pr<1 (Pr=0.01 is chosen). The shown y-axis is precisely an expression for the chemical transport rate for the
thermohaline instability [see Eq. (15a)]. Heat transport rates, shown in (b), display nearly identical trends; [see Eq. (15b) for
the scaling factor]. The closure prediction agrees with full DNS better than the quasilinear prediction over the scanned range
of parameters.

height of the mean flow U0= − Sx. The time scale498

for modifying the flow is τturb ∼ U0H/⟨ũxũy⟩ ∼499

Sx2Ω−1d−2/⟨ũxũy⟩dimensionless (see also Barker et al.500

2019).501

Though Pr ∼ 10−6, the typical values of r in the502

solar tachocline and red giant stars are r ∼ 10−3–1503

(varying with radius). Then, using Fig. 6 where504

⟨ũxũy⟩dimensionless is on average 0.5, we predict τturbΩ ∼505

2S(x/d)2. This turbulent transport time scale is suffi-506

ciently short to be astrophysically important, depend-507

ing on the relative length scale x/d of the mean flow508

and shear strength S. For example, it can be as short509

as O(10) Myr using values of S and x/d for the solar510

tachocline.511

The turbulent transport rate depends sensitively also512

on the shear parameter S (and latitude and orienta-513

tion of the shear, i.e., radial or mixed radial-horizontal514

shear), and orders of magnitude faster turbulent trans-515

port is possible. We highlight that, because the turbu-516

lent time scale for the GSF instability can be shorter517

than O(10) Myr, incorporation of our transport model518

for the GSF turbulence in stellar evolution codes is war-519

ranted (particularly if extended to non-equatorial and520

3-D GSF instabilities). Using such, the long-term im-521

pact on the evolution of the rotation profile may be as-522

sessed, informing us of the effects of the GSF instabil-523

ity in rapidly rotating young stars. In this regard, the524

transport model built here for the 2.5D equatorial GSF525

instability (and the thermohaline instability) is signifi-526

cant, as a reliable and reduced numerical treatment of527

the GSF instability-driven turbulence is now available.528

4.5. Relation to the thermohaline instability529
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Figure 6. Predictions of (a) closure model and (b) quasilinear (QL) model for turbulent momentum transport. The QL model,
largely independent of Pr, fails to reproduce the behavior of the closure model. For Pr closer to 1, the closure model predicts that
the transport rate increases with decreasing r—until an asymptotically large transport is attained. For Pr ≪ r, the transport
first increases and then decreases with r, in contrast to the QL prediction. The white dashed-dotted line, with a unit slope,
separates distinct regimes of Pr < r and Pr > r found in (a).

We emphasize that the equations describing 2.5-D530

thermohaline and GSF instabilites at the equator are531

identical, when the compositional diffusivity is equal to532

the kinematic viscosity—a case often realized in stars.533

We first write Eqs. (7)–(9) of Brown et al. (2013), where534

they measure distance in units of the characteristic535

length scales d of the fingers, time in units of the char-536

acteristic diffusion time scale τ=d2/κ, and scaled tem-537

perature T in units of N2d [we label their x-coordinate538

with our z-coordinate and vice-versa]539

Pr−1DuB
x = −∂xp

B + (TB − µB) +∇2uB
x , (13a)

Pr−1DuB
z = −∂zp

B +∇2uB
z , (13b)

DTB = −uB
x +∇2TB, (13c)

DµB = −uB
x

R0
+ Pr∇2µB, (13d)

where the state vector [uB
x , u

B
z , T

B, µB, pB] represents540

Brown-normalized x- and z-velocities, scaled temper-541

ature, chemical concentration, and fluid pressure, re-542

spectively. The so-called density ratio R0= − N2/κ2
ep543

may be recast as R0=1 + r(Pr−1 − 1). The solutions of544

Eqs. (13a)–(13d) critically depend only on two parame-545

ters: Pr and r. Equations (13a)–(13d) for the thermoha-546

line instability with the state vector [uB
x , u

B
z , T

B, µB] are547

identical to Eqs. (1a) and (1b) for the GSF instability548

with the state vector [ux, uz, θ, uy], when we note549

uB
x =

ux

d/τ
, (14a)

uB
z =

uz

d/τ
, (14b)

TB =
θ

N2d
, (14c)

µB = −2τΩ

Pr

uy

d/τ
. (14d)

Hence, the transport rates with two kinds of non-550

dimensionalizations—one using τ and d as the charac-551

teristic time scale and length scale, and another using Ω552

and d as the relevant scales—are related in the manner553

−⟨ũB
x µ̃

B⟩ = ⟨ũxũy⟩ × 2ΩPr1/2(N2)−3/2d−2, (15a)

⟨ũB
x T̃

B⟩ = ⟨ũxθ̃⟩ × Pr1/2(N2)−3/2d−2, (15b)
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where the variables with the superscripted ‘B’ are func-554

tions of two essential parameters — r and Pr only,555

whereas the variables without the superscript are func-556

tions defined by the parameters Pr, S, and N2.557

The expressions given in Eqs. (15a) and (15b) are558

plotted in Fig. 5. Thus our Fig. 5 also represents a559

comparison of chemical and heat transport between di-560

rect numerical simulations and analytical models for the561

thermohaline instability-driven turbulence.562

The reduction of the governing equations of the GSF563

instability to two parameters (r,Pr) is realized only in564

2.5-D equatorial case, which is where the analogy of the565

GSF instability with the thermohaline instability be-566

comes exact.567

5. DISCUSSION AND CONCLUSIONS568

Turbulent transport in stellar interiors is a phe-569

nomenon too complex to represent directly in stellar evo-570

lution models. It is often parametrized using low-order571

models, such as mixing-length theories, or models that572

predict transport rates based on the fastest-growing un-573

stable mode (e.g., Denissenkov 2010; Brown et al. 2013;574

Barker et al. 2019). The reliability of such models can575

be compromised by several factors: first, the instabil-576

ity dispersion relation is often anisotropic, a property577

that affects the nonlinear energy transfer, thereby driv-578

ing low-frequency fluctuations (Fig. 3). Second, non-579

linear mode coupling can strongly excite more weakly580

growing unstable modes over a wide range of wavenum-581

bers, presenting difficulties to single-mode theory-based582

predictions. To circumvent such challenges, we build583

a nonlinear mode-coupling theory, informed by detailed584

analyses of direct numerical simulations, to arrive at a585

reliable and analytic transport model, that is free of tun-586

able parameters. We achieve this here for axisymmetric587

low-Pr turbulence driven by centrifugally unstable dif-588

ferential rotation (the GSF instability) at the equator in589

a stellar radiative zone.590

Although 2.5-D turbulence driven by the GSF insta-591

bility can differ from fully 3-D cases (Barker et al. 2019),592

strong secondary flows or jets have been found in 3-D593

global systems, also. For example, recent simulations of594

fully 3-D spherical-shell non-rotating fingering convec-595

tion have exhibited strong, large-scale jets (Tassin et al.596

2023). Such coherent jets are ubiquitious in various set-597

tings such as in geo- and astrophysical observations, nu-598

merical simulations of 3-D shear-flow instability-driven599

turbulence (Tripathi et al. 2023b), and in laboratory600

fusion plasmas (Terry 2019). The examples show the601

large-scale flows can emerge even in global geometry.602

Hence, the success of our theory offers a future possibil-603

ity to extend the statistical closure framework, presented604

here, to the more realistic 3-D simulations of the GSF605

instability, ideally in a sphere, at a general latitude and606

for a range of Pr (Barker et al. 2020; Dymott et al. 2023;607

Garaud & Brummell 2015). It is also possible that our608

closure-model framework can be adapted to magnetized609

turbulence driven by unstable differential rotation.610

Since our formulae are fully analytic, they are quick611

to implement in stellar evolution codes such as MESA612

(Paxton et al. 2011, 2019) to reliably predict axisym-613

metric GSF instability-driven turbulent transport rates614

that vary with Pr and r at different spatial grid points615

in an evolving star. It is straightforward to compute616

the values of r and Pr at a given spatial grid point in617

a modeled star, and simply look up transport rates us-618

ing our Fig. 6(a) to prescribe the rates of transport of619

angular momentum and heat; to access the look up ta-620

ble of transport, see Data Availability. Since we have621

also provided formulae and frameworks for the turbu-622

lent transport of the axisymmetric GSF-analogous ther-623

mohaline instability, there now exists a reliable chemical624

transport model, which employs DNS-confirmed key el-625

ements of nonlinear saturation of the instability in stars.626
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APPENDIX A: NONLINEAR MODE-COUPLING COEFFICIENTS OF THE GSF INSTABILITY658

The jth eigenvector of the linear operator L of the GSF instability satisfies659

ûz,j = −kx
kz

ûx,j ; θ̂j = − N2

γκ,j
ûx,j ; ûy,j = −2Ω− S

γν,j
ûx,j , (A1)

using which the matrix E of eigenvectors can be created and inverted as mentioned in the penultimate paragraph of660

Sec. 2.1. To expedite analytic calculations, one may solve for the adjoint solutions Y j of L, which are the eigenvectors661

of L†. Such adjoint solutions Y j form a biorthogonal basis with the eigenvectors Xj of L (Fraser et al. 2021; Tripathi662

et al. 2022a, 2023a,b). That is, ⟨Y m,Xj⟩ = Y T∗
m Xj ∝ δj,m, where T∗ is the transpose-conjugation operation; see663

Appendix A of Tripathi et al. (2022b) for a general mathematical proof. It is known that both L and L† have the664

same eigenvalues. The expedient adjoint technique is equivalent to inverting the matrix E of size 4 × 4, and they665

deliver completely identical results, which we have verified. The jth adjoint solution satisfies666

ûz,j = 0; θ̂j =
k2z

k2γκ,j
ûx,j ; ûy,j =

2Ωk2z
k2γν,j

ûx,j . (A2)

Using such, we write the nonlinear mode-coupling coefficient between the two eigenmodes m at wavenumber k′ and n667

at k′′, impacting the eigenmode j at k, as668

C
(k,k′

)
jmn =

⟨Y j(k),N(X ′
m,X ′′

n)⟩
⟨Y j(k),Xj(k)

, (A3)

where N(X ′
m,X ′′

n) is the nonlinearity vector; for example, its θ-component is −u′
m · ∇θ′′n.669

Following this procedure, we have distilled the analytic coupling coefficients for the GSF instability, and provide670

below their final expressions:671

C⃗

⃗

(k,k′
)

Z11 =
i
(
k′2x − k′′2x

)
k′zf

′f ′′ , (A4)

where f is the eigenmode normalization factor. With inverse dimensions of ûx,j , a suitable mode normalization can be672

f ′=k′/γ′ or f ′=k′2d/(γ′γ′
ντ) or their variants, with τ=d2/κ as the characteristic diffusion time scale. Equation (A4)673

is simple as it represents the coupling between two unstable modes that drive the latitudinal flow Z. The second674

coupling coefficient required in the closure model is675

C⃗

⃗

(k′′
,k)

1Z1 = ik′z

[
k′′2

N2k′′2
z

(
1− 2kxk

′′
x

k′′2

)
+ 1

R0γ′
νγ

′′
ν
− 1

γ′
κγ

′′
κ

]
f ′′[

k′′2

N2k′′2
z

+ 1
R0γ′′2

ν
− 1

γ′′2
κ

]
f ′

. (A5)

We note that the coupling coefficients depend only on wavenumbers and the input parameters such as N2, Pr, R0=−676

N2/κ2
ep and the growth rates; the growth rates in turn depend only on wavenumbers and the input parameters [Eq. (2)].677

Asymptotic approximation to the growth rate in the limit of, e.g., small Pr is possible (Brown et al. 2013).678

APPENDIX B: NONLINEAR MODE-COUPLING COEFFICIENTS OF THE THERMOHALINE INSTABILITY679

Here we provide analytic expressions needed for the closure model applicable to the thermohaline instability.680

We find the jth eigenvector of the linear operator L found from Eqs. (13a)–(13d) for the thermohaline instability681

satisfies682

ûB
z,j = −kx

kz
ûB
x,j ; T̂B

j = − 1

γκ,j
ûB
x,j ; µ̂B

j = − 1

R0γν,j
ûB
x,j . (A6)

The jth adjoint solution for the thermohaline instability is683

ûB
z,j = 0; T̂B

j =
k2zPr

k2γκ,j
ûB
x,j ; µ̂B

j = − k2zPr

k2γν,j
ûB
x,j . (A7)

The coupling coefficients for the thermohaline instability are identically the same as those for the GSF instability;684

Equations (A4) and (A5) require only a minute modification: N2 appearing twice in Eq. (A5) should be replaced with685
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Pr. We, conclude that our closure model and predictions are directly applicable to the thermohaline instability, as686

well. This is significant because the turbulent transport efficiencies of these two instabilites in stars are not known,687

but are generally thought to be important. With the closure model at hand, we can now make predictions reliably for688

both instabilities.689

690

APPENDIX C: DETAILS OF CLOSURE MODEL CALCULATIONS691

To make the statistical closure model more accessible to a wide range of readers, we provide below detailed, step-692

by-step derivations.693

C1. AMPLITUDE EVOLUTION EQUATION694

The mode-amplitude βj evolution equation, given in Eq. (3a), for a wavenumber k = (kx, kz ̸=0), with j = 1, 2, or 3,695

is696

∂tβj = γjβj +
∑

k′,m,n

C
(k,k′)
jmn β′

mβ′′
n +

∑
k′,n

{[
C

(k,k′)
jYn + C

(k,k′′)
jnY

]
Y ′β′′

n

+
[
C

(k,k′)
jZn + C

(k,k′′)
jnZ

]
Z ′β′′

n

+
[
C

(k,k′)
jΘn + C

(k,k′′)
jnΘ

]
Θ′β′′

n

}
, (A8)

whereas, at k = (kx, kz=0), one finds that the fluctuation amplitude evolves according to Eq. (3b), which is expanded697

below698

∂tY = −γYY +
∑

k′,m,n:kz=0

C
(k,k′)
Ymn β′

mβ′′
n, (A9a)

∂tZ = −γZZ +
∑

k′,m,n:kz=0

C
(k,k′)
Zmn β′

mβ′′
n, (A9b)

∂tΘ = −γΘΘ+
∑

k′,m,n:kz=0

C
(k,k′)
Θmn β′

mβ′′
n, (A9c)

where γY = γZ = νk2 and γΘ = κk2 are the damping rates.699

C2. EIGENMODE-ENERGY EVOLUTION700

To derive an evolution equation for energy in the jth eigenmode at k = (kx, kz ̸=0), we multiply Eq. (A8) with β∗
j701

and add a complex conjugate of the resulting equation to arrive at702

∂t|βj |2 = 2Re γj |βj |2 +
∑

k′,m,n

2Re
[
C

(k,k′)
jmn ⟨β′

mβ′′
nβ

∗
j ⟩
]

+
∑
k′

2Re

{[
C

(k,k′)
jYj ⟨Y ′β′′

j β
∗
j ⟩+ C

(k,k′)
jZj ⟨Z ′β′′

j β
∗
j ⟩+ C

(k,k′)
jΘj ⟨Θ′β′′

j β
∗
j ⟩
] ∣∣∣

k′
z=0

+
[
C

(k,k′)
jjY ⟨β′

jY ′′β∗
j ⟩+ C

(k,k′)
jjZ ⟨β′

jZ ′′β∗
j ⟩+ C

(k,k′)
jjΘ ⟨β′

jΘ
′′β∗

j ⟩
] ∣∣∣

k′
z=kz

}
. (A10)

Similar equations can be derived for fluctuation energy at GSF-stable wavenumbers k = (kx, kz=0) using Eqs. (A9a)–703

(A9c):704

∂t|Y|2 = −2Re γY |Y|2 +
∑
k′,m

2Re
[
C

(k,k′)
Ymm ⟨β′

mβ′′
mY∗⟩

] ∣∣∣
kz=0

, (A11a)

∂t|Z|2 = −2Re γZ |Z|2 +
∑
k′,m

2Re
[
C

(k,k′)
Zmm ⟨β′

mβ′′
mZ∗⟩

] ∣∣∣
kz=0

, (A11b)

∂t|Θ|2 = −2Re γΘ|Θ|2 +
∑
k′,m

2Re
[
C

(k,k′)
Θmm ⟨β′

mβ′′
mΘ∗⟩

] ∣∣∣
kz=0

. (A11c)
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Since numerical simulations inform us that the triplets with a latitudinal flow at (kx, 0), i.e., Z, dominates the705

nonlinear energy transfer, we may drop nonlinear terms on the right-hand side of Eq. (A10) that do not involve Z. In706

the resulting equation, because Y and Θ do not appear, Eqs. (A11a) and (A11c) can also be removed, which allows707

us to write the following set of equations:708

∂t|βj |2 = 2Re γj |βj |2 +
∑
k′

2Re

{[
C

(k,k′)
jZj ⟨Z ′β′′

j β
∗
j ⟩
] ∣∣∣

k′
z=0

+
[
C

(k,k′)
jjZ ⟨β′

jZ ′′β∗
j ⟩
] ∣∣∣

k′
z=kz

}
, (A12a)

∂t|Z|2 = −2Re γZ |Z|2 +
∑
k′,m

2Re
[
C

(k,k′)
Zmm ⟨β′

mβ′′
mZ∗⟩

] ∣∣∣
kz=0

. (A12b)

C3. TRIPLET CORRELATION EVOLUTION709

To obtain evolution equations for the terms on the right-hand side of Eqs. (A12a) and (A12b), we multiply Eq. (3a)710

with two amplitudes. For example, to determine the evolution of ⟨Z ′β′′
j β

∗
j ⟩, first, we multiply Eq. (A8) for βj with711

Z ′β′′
j ; second, we multiply another equation, similar to Eq. (A8), but for β′′

j with Z ′β∗
j ; and, finally, we multiply712

Eq. (A9b), for Z ′, with β′′
j β

∗
j , and add them all together. Using this, we provide below an example evolution equation713

for triplet correlations:714

[
∂t −

(
−γ′

Z + γ′′
j + γ∗

j

)]
⟨Z ′β′′

j β
∗
j ⟩|k′

z=0 =

{ ∑
k′′′,m

[
C

(k′,k′′′)
Zmm ⟨β′′′

mβm(k′ − k′′′)β′′
j β

∗
j ⟩
]

+
∑
k′′′
x

[
C

(k−k′,k′′′)
jYj ⟨Y ′′′βj(k − k′ − k′′′)Z ′β∗

j ⟩|k′′′
z =0

+ C
(k−k′,k′′′)
jZj ⟨Z ′′′βj(k − k′ − k′′′)Z ′β∗

j ⟩|k′′′
z =0

+ C
(k−k′,k′′′)
jΘj ⟨Θ′′′βj(k − k′ − k′′′)Z ′β∗

j ⟩|k′′′
z =0

+ C
(k−k′,k′′′)
jjY ⟨β′′′

j Y(k − k′ − k′′′)Z ′β∗
j ⟩|k′′′

z =kz

+ C
(k−k′,k′′′)
jjZ ⟨β′′′

j Z(k − k′ − k′′′)Z ′β∗
j ⟩|k′′′

z =kz

+C
(k−k′,k′′′)
jjΘ ⟨β′′′

j Θ(k − k′ − k′′′)Z ′β∗
j ⟩|k′′′

z =kz

]
+

∑
k′′′
x

[
C

(k,k′′′)∗
jYj ⟨Y ′′′∗β∗

j (k − k′′′)Z ′β′′
j ⟩|k′′′

z =0

+ C
(k,k′′′)∗
jZj ⟨Z ′′′∗β∗

j (k − k′′′)Z ′β′′
j ⟩|k′′′

z =0

+ C
(k,k′′′)∗
jΘj ⟨Θ′′′∗β∗

j (k − k′′′)Z ′β′′
j ⟩|k′′′

z =0

+ C
(k,k′′′)∗
jjY ⟨β′′′∗

j Y∗(k − k′′′)Z ′β′′
j ⟩|k′′′

z =kz

+ C
(k,k′′′)∗
jjZ ⟨β′′′∗

j Z∗(k − k′′′)Z ′β′′
j ⟩|k′′′

z =kz

+C
(k,k′′′)∗
jjΘ ⟨β′′′∗

j Θ∗(k − k′′′)Z ′β′′
j ⟩|k′′′

z =kz

]}∣∣∣∣∣
k′
z=0

.

(A13)

Since the numerical simulations show dominant coupling between the latitudinal flow Z and two unstable modes in715

a bath of turbulent interactions, the interactions involving unstable modes only can be excluded. This immediately716

implies that the first term on the right-hand side of Eq. (A13) can be dropped in the face of remaining dominant717

terms. Among the remaining terms, the fourth-order correlations that have different components of velocity, e.g., the718

terms where Y and Z appear together on the right-hand side of Eq. (A13), do not form terms that appear in the719

definition of energy. Guided by numerical simulations where nonlinear coupling to Y and Θ are unimportant, only the720

energy(-like) terms with Z will be kept henceforth. The resulting equation then reads721
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[
∂t −

(
−γ′

Z + γ′′
j + γ∗

j

)]
⟨Z ′β′′

j β
∗
j ⟩|k′

z=0 =

{∑
k′′′
x

[
C

(k−k′,k′′′)
jZj ⟨Z ′′′βj(k − k′ − k′′′)Z ′β∗

j ⟩|k′′′
z =0

+ C
(k−k′,k′′′)
jjZ ⟨β′′′

j Z(k − k′ − k′′′)Z ′β∗
j ⟩|k′′′

z =kz

+ C
(k,k′′′)∗
jZj ⟨Z ′′′∗β∗

j (k − k′′′)Z ′β′′
j ⟩|k′′′

z =0

+C
(k,k′′′)∗
jjZ ⟨β′′′∗

j Z∗(k − k′′′)Z ′β′′
j ⟩|k′′′

z =kz

]}∣∣∣∣∣
k′
z=0

.

(A14)

The same procedure is then repeated to find evolution equations for the other two triplet correlations that appear722

in Eqs. (A12a) and (A12b).723

C4: QUADRUPLET CORRELATIONS AND STATISTICAL CLOSURE APPROXIMATION724

Equation (A14) can be solved using the technique of Green’s function inversion and Markovianization, a standard725

step in EDQNM closure [although, here, we do not modify the growth rate γ’s with the amplitude-dependent nonlinear726

frequency, an approximation justifiable for the low-wavenumber regime; for more details, see Terry et al. (2018)]. Such727

a solution yields728

⟨Z ′β′′
j β

∗
j ⟩|k′

z=0 = −
{(

−γ′
Z + γ′′

j + γ∗
j

)−1 |Z ′|2
[ (

C
(k′′,−k′)
jZj + C

(k′′,k)
jjZ

)
|βj |2

+
(
C

(k,k′)∗
jZj + C

(k,k′′)∗
jjZ

)
|β′′

j |2
]}

k′
z=0

. (A15)

Similarly, the other two triplet correlations that appear in Eqs. (A12a) and (A12b) can also be solved to obtain729

⟨β′
jZ ′′β∗

j ⟩|k′
z=kz

= −
{(

γ′
j − γ′′

Z + γ∗
j

)−1 |Z ′′|2
[ (

C
(k′,−k′′)
jZj + C

(k′,k)
jjZ

)
|βj |2

+
(
C

(k,k′′)∗
jZj + C

(k,k′)∗
jjZ

)
|β′

j |2
]}

k′
z=kz

, (A16)

and730

⟨β′
jβ

′′
j Z∗⟩|kz=0 = −

{(
γ′
j + γ′′

j − γ∗
Z
)−1 |Z|2

[ (
C

(k′,k)
jZj + C

(k′,−k′′)
jjZ

)
|β′′

j |2

+
(
C

(k′′,k)
jZj + C

(k′′,−k′)
jjZ

)
|β′

j |2
]}

kz=0

. (A17)

C5: A SET OF EDQNM-CLOSED ENERGY EVOLUTION EQUATIONS731

Solutions of the triplet correlations from Eqs. (A15)–(A17) are now substituted into Eqs. (A12a) and (A12b), which732

results in the following set of closed equations:733

∂t|βj |2 =2Re γj |βj |2 −
∑
k′

2Re

[
C

(k,k′)
jZj |Z ′|2(

−γ′
Z + γ′′

j + γ∗
j

) {C⃗⃗

(k′′,−k′)
jZj |βj |2 + C⃗

⃗

(k,k′)∗
jZj |β′′

j |2
}]∣∣∣∣∣

k′
z=0

−
∑
k′

2Re

[
C

(k,k′)
jjZ |Z ′′|2(

γ′
j − γ′′

Z + γ∗
j

) {C⃗⃗

(k′,−k′′)
jZj |βj |2 + C⃗

⃗

(k,k′′)∗
jZj |β′

j |2
}]∣∣∣∣∣

k′
z=kz

, (A18)

∂t|Z|2 = −2Re γZ |Z|2 − |Z|2
∑
k′

3∑
j=1

2Re

 C
(k,k′)
Zjj(

γ′
j + γ′′

j − γ∗
Z
) {C⃗⃗

(k′,k)
jZj |β′′

j |2 + C⃗

⃗

(k′′,k)
jZj |β′

j |2
} ∣∣∣∣∣

kz=0

, (A19)
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where C⃗

⃗

(p,q)
lmn = C

(p,q)
lmn + C

(p,p−q)
lnm is the symmetrized coupling coefficient.734

Equation (A19) can be simplified by considering that it is the pairs of unstable modes (j = 1) that excite the735

latitudinal flow Z:736

∂t|Z|2/2 = −γZ |Z|2 + |Z|2
∑
k′

|β′
1|2 Re

[
−C⃗

⃗

(k,k′)
Z11 C⃗

⃗

(k′′,k)
1Z1

γ′
1 + γ′′

1 − γ∗
Z

]
, (A20)

where the term inside the wavenumber-summation in Eq. (A19) has been symmetrized.737
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