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Learning-based solutions have enabled incredible capabilities for autonomous systems.

Autonomous vehicles, both aerial and ground, rely on Deep Neural Networks (DNN) for various

integral tasks, including perception. The efficacy of supervised learning solutions, such as the

DNN used for perception tasks, hinges on the quality of the training data. Discrepancies between

training data and operating conditions result in faults that can lead to catastrophic incidents.

However, collecting and labeling vast amounts of context-sensitive data, with broad coverage of

possible variations in the operating environment, is prohibitively difficult. To overcome this

limitation, synthetic data generation techniques for DNN training emerged, allowing for the

easy exploration of diverse scenarios. While significant synthetic data generation solutions exist

for ground vehicles, for aerial vehicles such support is still lacking.

This work presents a data augmentation framework for aerial vehicle’s perception training,

leveraging photorealistic simulation seamlessly integrated with high-fidelity vehicle dynamics,

control, and planning algorithms. Safe landing in urban environments is a crucial challenge

in the development of autonomous air taxis, and therefore, landing maneuver is chosen as

the focus of this work. With repeated simulations of landing maneuvers in scenarios with

varying vehicle states, weather conditions and time of day, we assess the landing performance of

the VTOL (Vertical Take off and Landing) type UAV and gather valuable data. The landing

performance is used as the objective function to optimize the DNN through retraining. Given

the high computational cost of DNN retraining, we incorporated Bayesian Optimization in

our framework that systematically explores the data augmentation parameter space to retrain

the best-performing models. The framework allowed us to identify high-performing data

augmentation parameters that are consistently effective across different landing scenarios.

Utilizing the capabilities of this data augmentation framework, we obtained a robust perception

model. The model consistently improved the perception-based landing success rate by at least

20% under different lighting and weather conditions.
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I. Introduction
Perception solutions for autonomous vehicles are mostly based on Deep Neural Networks (DNN). Numerous studies

have demonstrated their superior performance compared to traditional computer vision methods [1]. Specific frameworks

like You Only Look Once (YOLO) [2–5] showcase the power of DNNs in real-time object detection tasks. However, the

success of DNN depends heavily on the quality and relevance of the training data. DNNs trained exclusively on general

datasets often show limited performance when applied to specific applications [6]. This performance gap is rooted in

the differences between the training data and the deployment environment [7]. Optimizing performance in complex

environments requires fine-tuning the model’s hyperparameters by retraining it within the deployment environment.

Optimizing a DNN model for deployment in complex real-world environments comes with two significant challenges.

First, such retraining requires large amounts of data collected in varying scenarios. For aerial vehicle perception, this

would involve the use of expensive aerial vehicles over long periods of time to cover a comprehensive range of relevant

scenarios. This limitation can be alleviated by using photorealistic simulators to freely explore various scenarios and

collect task-specific data [7–9]. Second, retraining DNN models is computationally expensive, requiring substantial

resources and time to refine them for real-world applications [10]. This high computational demand often becomes a

bottleneck in the optimization process, necessitating improvements in the efficiency of the retraining process itself.

Bayesian optimization has become a prominent method for this purpose, as it systematically searches the decision variable

space, balancing exploration and exploitation to identify optimal decision variables without knowing the objective

function explicitly [11]. This approach is particularly effective for deep neural network (DNN)-based perception systems,

where robust performance depends on selecting hyperparameters that generalize well across diverse scenarios [12]. By

leveraging feedback from the simulation outcomes, such as landing success rates, Bayesian optimization iteratively

refines the model, ensuring it adapts effectively to varying vehicle and environmental states.

In this work, we address both challenges mentioned above in the context of perception systems for autonomous aerial

vehicles, such as air taxis. Specifically, we focus on optimizing a DNN-based perception model for an automated landing

system on a Vertical Take-Off and Landing (VTOL) aerial vehicle. The autonomous landing system employs a DNN

object detector to identify the landing spot within a camera image frame. We propose an automated decision-making

framework designed to enhance the utility of data samples collected for retraining, thereby improving the performance

of the landing pad detector. This framework consists of two iterative phases. The first phase evaluates the overall

performance of the vision-guided landing system and the uncertainties of the computer vision model given the operation

scenarios in photorealistic simulation. In the second phase, the vehicle states and corresponding measure of cumulative

landing success rate for the system are used in a Bayesian optimization loop to generate the next set of hyperparameter

for retraining the model. Finally, the updated model is evaluated in the first phase. These phases close the loop in the

data exploration process, as shown in Figure 1. To the best of our knowledge, this is the first use of such a framework for

vision-based landing maneuvers in VTOL. Our key contribution can be summarized as follows:

• We develop a Bayesian retraining framework∗ for the YOLO perception model [3] for vision-based autonomous

landing within a photorealistic simulation environment based on the CARLA simulator [13], incorporating

high-fidelity aerial vehicle dynamics from the GUAM vehicle simulation [14].

II. Literature Review
Autonomous landing systems in VTOL vehicles depend on reliable landing pad detection. However, this detection is

challenged by a wide range of variable environmental factors, such as weather conditions and lighting. Real-world

datasets, particularly those for aerial vehicles, are unable to capture the full combinatorial complexity of all the factors

that can impact the performance of landing pad detection. Synthetic data generation and data augmentation techniques

have emerged as essential tools in the development of machine learning models to address this limitation of real-world

datasets. The simulation-based methods enable the creation of diverse and customizable datasets, leading to improved

resilience of models trained using these datasets. This section provides a review of related works on the components

integrated into our proposed framework, including data augmentation, Bayesian optimization, and the use of DNNs in

control applications.

• Synthetic Data and Data Augmentation: Synthetic data generation and data augmentation have become

indispensable tools in enhancing the robustness of perception models for VTOLs. Docca and Torculas [7] highlight

that synthetic data generated through simulation environments enables the creation of diverse image scenarios

without the need for extensive manual data collection. These datasets enable model training on a wide variety

of visual conditions. This helps the model generalize effectively in dynamic real-world environments. Unity’s

∗https://github.com/arasul42/LCASL-TTU-vtol-bayes-sim
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Fig. 1 Data Exploration Framework

simulated environments [9] contribute further by replicating complex landing scenarios and lighting conditions

that are essential for robust VTOL perception. However, despite its flexibility, Unity’s simulated environments are

not suitable for replicating the full complexity of real-world VTOL dynamics, as Unity is primarily designed for

VR and game applications. Accurately modeling sensor noise, unpredictable environmental changes, and VTOL

hardware limitations are the key difficulties that are crucial during operations like autonomous landings. While

Unity excels in visual fidelity, the gap between simulated physics and real-world interactions necessitates further

validation through real-world data or hybrid approaches combining simulations with digital twins [8].

• Weather Augmentation: Building on the strengths of synthetic data, weather augmentation adds a targeted

approach to improving model robustness under adverse conditions. By generating realistic weather variations,

such as rain, fog, and snow, during training, models become more robust and adaptable. Gupta et al. [6] highlight

the importance of generating realistic weather variations, such as rain and fog, during training to enhance

model robustness. By introducing weather-based transformations into datasets, models can generalize better to

challenging real-world scenarios. Furthermore, techniques like adversarial augmentation add further complexity,

which simulate edge cases that are difficult to replicate in physical experiments [15].

• Digital Twins and Virtual Reality Environments: While synthetic data focuses on creating individual variations,

digital twins and Virtual Reality (VR) environments provide dynamic simulations of operational scenarios. Digital

twins go beyond static synthetic data by simulating operational scenarios dynamically and integrating real-time

environmental factors like wind and temperature [8]. Ensuring the fidelity of these twins, however, remains a

challenge, especially for VTOLs operating in rapidly changing conditions. While synthetic data generates isolated

variations, digital twins provide a comprehensive simulation of the VTOL’s operational environment, incorporating

variables such as lighting, weather, and terrain [8]. By leveraging these technologies, VTOL perception systems

gain robustness, improving model reliability in dynamic environments. However, the fidelity of VR simulations

can sometimes differ from real-world conditions, underscoring the need for iterative improvement [16].

• Efficient Data Selection Techniques: As the complexity of VTOL perception tasks grows, data selection becomes

crucial in optimizing model training. Selecting the most informative data points ensures that the model focuses on

samples that are difficult to learn, reducing both training time and computational load. Reducing the computational

load of large-scale VTOL perception systems is essential. Techniques like coreset selection [17] and prioritized

training [6] construct efficient datasets that balance size and representativeness. Mindermann et al. [18] introduce
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a technique for prioritizing learnable and informative points, emphasizing that concentrating on challenging data

can, in fact, enhance model accuracy. Similarly, Paul et al. [17] highlight data pruning techniques, which refine

the training set by eliminating redundant examples, helping the model converge faster. Advanced data selection

methods, such as those discussed by Guo et al. [19] and Sorscher et al. [20], use coreset selection to construct

compact, representative datasets. These methods are especially valuable in VTOL perception, where reducing

dataset size without compromising performance is crucial for model improvement. By prioritizing efficient data

selection, VTOL models can maintain high performance while minimizing computational resource requirements.

• Bayesian Inference and Optimization: In complex VTOL perception systems, Bayesian inference offers a

structured approach to quantify and incorporate uncertainty into model predictions, ultimately enhancing model

robustness and adaptability. This approach is particularly beneficial in dynamic scenarios like VTOL landing, where

conditions continuously evolve. Deng et al. [21] propose Bayesian data selection methods that leverage uncertainty

estimates to refine training datasets, focusing on data points that improve model learning efficiency. Additionally,

Shahriari et al. [22] provide a comprehensive review of Bayesian optimization techniques, underscoring its

potential to iteratively adjust model parameters for better performance. For the VTOL landing tasks addressed

in this work, we utilized Bayesian optimization [23] to fine-tune critical perception parameters, such as scale

and brightness, achieving substantial improvements in detection accuracy across a wide range of environmental

conditions.

• Simulation Environments and Object Detection: Advanced simulation environments like CARLA and object

detection models like YOLO provide the infrastructure for rigorous testing of VTOL systems. CARLA offers

detailed urban and rural scenarios with adjustable parameters such as lighting, weather, and environmental objects,

enabling VTOLs to be tested in diverse landing contexts [13]. YOLO, known for its speed and accuracy in object

detection, is particularly suited for real-time applications. Redmon and Farhadi’s YOLO9000 model [3] and

subsequent iterations have become widely used for VTOL applications, offering efficient and reliable detection

capabilities in CARLA’s complex simulated environments. By integrating YOLO models in CARLA, VTOL

systems can gain real-world insights and refine detection accuracy under various conditions. This combination of

CARLA’s simulation environment and YOLO’s detection capabilities represents a powerful toolkit for advancing

safe VTOL landing technology.

• Uncertainty Quantification and Adaptive Control: Uncertainty quantification (UQ) enhances VTOL decision

making by identifying high-confidence predictions, ensuring safety in dynamic conditions. UQ is critical in VTOL

perception and control since it allows the system to estimate the reliability of its predictions in dynamic, often

unpredictable environments. UQ helps identify high-confidence detections and ensures the VTOL only proceeds

with safe, verified actions. Fernández Castaño et al. [24] demonstrate a UQ-based switching control approach

that enables VTOLs to adapt their behavior based on environmental conditions, enhancing tracking accuracy.

Adaptive control, together with UQ, offers a proactive response to uncertainty by adjusting control parameters in

real time. For instance, Cao and Hovakimyan’s L1 adaptive control architecture [25] emphasizes rapid adaptation,

ensuring stability and performance despite unpredicted changes. By combining UQ with adaptive control, VTOLs

become better equipped for precise, reliable landing operations, even under uncertain conditions.

• Neural Network-Based Control Methods: Recent advancements in neural network-based control methods have

shown promise in optimizing complex dynamical systems without the need for extensive retraining. Hose et al.[26]

introduce a method for fine-tuning Approximate Model-Predictive Control (AMPC) using Bayesian Optimization

(BO) to adapt neural network controllers efficiently. The proposed technique addresses a key challenge in AMPC:

the need for retraining when system parameters change. By leveraging BO, the method allows for data-driven

adaptation of AMPC, reducing manual tuning efforts and computational costs. The authors validated their approach

on challenging control tasks, such as the cart-pole system and a balancing unicycle robot, demonstrating improved

stability and reduced oscillations with minimal hardware experimentation. In a related approach, Ostafew et

al.[27] applied a learning-based nonlinear Model-Predictive Control (MPC) to enhance vision-based path tracking

for mobile robots in challenging outdoor environments. The study highlights the importance of integrating

vision-based perception with advanced control strategies to handle unpredictable conditions. This technique

utilized data-driven learning to adjust the controller in real-time based on visual feedback, significantly improving

path-tracking performance. The insights from Ostafew et al.’s work are directly applicable to VTOL landing

perception, where the integration of vision-based inputs and adaptive control methods is crucial for accurately

detecting and landing on helipads in dynamic and uncertain environments.

The literature highlights the importance of a comprehensive approach that combines synthetic data generation,

weather augmentation, advanced data selection techniques, simulation environments, and uncertainty-aware modeling
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to enhance VTOL perception systems. In particular, weather augmentation bridges the gap between idealized training

conditions and real-world variability, ensuring VTOLs can operate reliably in diverse and dynamic environments. By

integrating these advancements, future VTOL systems will achieve increased robustness and operational safety, enabling

dependable autonomous landings even in challenging conditions.

III. Proposed Framework
Developing perception systems for autonomous VTOLs demands a structured approach to address challenges

such as data variability, hyperparameter optimization, and performance evaluation across diverse conditions. Our

proposed framework addresses these challenges by integrating data augmentation, high-fidelity simulation environments,

uncertainty quantification, and Bayesian optimization to enhance the performance of vision-based VTOL landing

systems. This approach aims to iteratively adapt the model to new environments and enhance the landing success

rate through systematic evaluation and retraining. The proposed framework, illustrated in Figure 1, comprises five

main components: Dataset Processing and Initial Model Training, which involves preparing the dataset and training

an initial YOLO model with reproducible results for helipad detection; Uncertainty Estimation, where prediction

uncertainties are quantified to identify areas for model improvement and guide hyperparameter tuning; Simulation

Testing, which evaluates the trained model in a high-fidelity, photorealistic simulation environment that incorporates

vehicle dynamics; Retraining Loop with Bayesian Optimization, which iteratively refines the model by optimizing

hyperparameters based on simulation feedback; and finally, Validation Under Adverse Conditions, where the model’s

robustness is tested under diverse weather and lighting scenarios to ensure reliable performance. The components are

described below:

A. Dataset Processing and Initial Model Training

The importance of working with a high-quality dataset in training a model cannot be overstated, as the dataset

fundamentally determines the model’s learning and performance [7, 21]. Therefore, the first component of our framework

focuses on data preprocessing and augmentation to train reproducible image detection YOLO models, specifically

YOLOv8 [28]. As dataset, we use Google Earth images of helipads [29]. YOLO’s fast inference time and efficiency

make it well-suited for detecting objects in challenging real-time environments on mobile platforms [3]. YOLO models,

such as YOLOv5 and YOLOv8, employ random data augmentations during training to enhance model robustness and

generalization. These augmentations include techniques like random resizing, flipping, cropping, color and brightness

adjustments. By default, the randomness inherent in these augmentations leads to non-reproducible results across

different training runs [30].

Reproducibility in empirical AI research is the ability of an independent research team to produce the same results

using the same AI method based on the documentation made by the original research team [31]. Highly reproducible

training ensures the same results are obtained over repeated iterations with the same environment, code and data [32].

To achieve reproducibility, we turn off the random augmentation of YOLO training, which gives us deterministic control

over the image augmentation during the training cycle. This approach also allows us to isolate the effects of specific

hyperparameters and observe the model’s behavior on unseen data. However, this method of hyperparameter tuning

has the inherent risk of overfitting the model that performs well only on that specific scenario, reducing its ability to

generalize to unseen data. Our framework reduces the risk of overfitting by validating model performance under diverse

lighting and weather conditions.

The training dataset [29] contains coordinates of helipads of different types, including their Google Earth URL,

image size details, and ground truth bounding box annotations. The final dataset consists of approximately 4,000

images in JPEG format, each with a resolution of 640×640 pixels. The dataset labels are provided as the minimum and

maximum coordinates of the bounding box (ground truth), which are not directly compatible with the open-source

YOLO implementation used in this work [33]. YOLO requires annotations in a specific text file format, where bounding

box coordinates are normalized relative to the image dimensions [3]. We transformed the label annotations to a

YOLO-compatible format to prepare the dataset. Each annotation is stored in a plain text file corresponding to the

image file, with rows representing individual objects and specifying their respective classes. Each annotation follows

the format: <class_id> <x_center> <y_center> <width> <height> where each value is normalized as per

the YOLO format. Here, <class_id> represents the object class, which is helipad in our case, <x_center> and

<y_center> are the normalized coordinates of the bounding box centre relative to the image width and height and

<width> and <height> are the normalized dimensions of the bounding box. After preprocessing, each image was

paired with its corresponding annotation file in a directory, preparing the dataset for YOLO object detection training.
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(a) Helipad Dataset (b) YOLO Training Result

Fig. 2 Initial Model Training

From the dataset, 80% of the images were randomly selected for training, while the remaining 20% were reserved

for validation. Figure 2a shows sample training images annotated with the helipad class bounding boxes, demonstrating

the diversity and distribution of the dataset. The YOLO model outputs bounding box coordinates with confidence

scores, indicating the likelihood of correct helipad detection. The model’s performance was evaluated using standard

object detection metrics, including mean Average Precision (mAP) at IoU (Intersection over Union) thresholds of 50%

(mAP50) and a range from 50% to 95% (mAP50-95), as shown in Figure 2b. These metrics provide a comprehensive

assessment of the model’s detection accuracy. IoU measures the overlap between the predicted bounding box and the

ground truth bounding box, serving as a criterion for correct detection [34]. Specifically, IoU is defined as the ratio

of the intersection area to the union area of the two bounding boxes, with higher values indicating better alignment

between the prediction and the ground truth [34]. Precision at a single IoU threshold (50%) is measured by mAP50,

indicating how well the model detects objects at a basic level of overlap and mAP50-95 averages precision over multiple

IoU thresholds [34]. This metric mAP50-95 provides a more rigorous evaluation of the model’s performance, especially

for scenarios requiring fine-grained object detection [34]. The curves in the top two charts illustrate that as training

progresses over epochs, both mAP50 and mAP50-95 steadily increase, indicating improvements in the model’s ability

to detect helipads accurately. The precision and recall metrics, shown in the bottom two charts, provide further insight

into the model’s performance. Precision evaluates the proportion of correctly detected helipads out of all detections

made, reflecting the model’s ability to avoid false positives [34]. Recall measures the proportion of correctly detected

helipads out of all actual helipads, indicating how well the model avoids false negatives [34]. These trends highlight the

model’s increasing generalization capability and robustness when applied to the validation set.

B. Uncertainty Estimation

The initial model training process was repeated five times using dataset Subsampling, similar to the approach used

in random forests [35]. Subsampling is a method where subsets of data are drawn randomly, without replacement, from

the original dataset. This method allows the creation of multiple training datasets smaller than the original, effectively

simulating the variability of data distributions. It is beneficial while working with small datasets, as it provides a way to

estimate the model’s robustness and reduces over-fitting by introducing diversity into training subsets. First, we separate

the validation dataset (20% of the total dataset). Second, we randomly distribute the remaining 80% of the dataset to

create five subsets of training data. For each YOLO model training, 4 out of 5 subsets are combined and used as the

training dataset, as shown in Figure 3a. However, the validation set is kept the same to ensure consistency in evaluation.

For each training step, the YOLO model was trained to detect helipads, producing five bounding boxes corresponding

to the class helipad. The standard deviation of the five predicted bounding box coordinates provides a measure of

uncertainty, as illustrated in Figure 3b. This uncertainty represents the epistemic uncertainty [36] of the system, which
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is observed to be significant under lighting and weather conditions different from those in the training dataset.
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(a) Dataset Bootstrapping to Train Models (b) Disagreement among models

Fig. 3 Uncertainty Estimation in The System

C. Simulation Testing

The trained YOLO model is integrated into the high-fidelity photorealistic simulation environment CARLA, to evaluate

its performance in controlled yet dynamic conditions. CARLA, built using the Unreal Engine, provides a photorealistic

simulation of urban and rural environments, making it an ideal platform for testing autonomous systems [13, 37].

CARLA also lets us define many environmental conditions, which in turn lets us generate realistic-looking challenging

conditions [13]. This flexibility facilitates a safe and repeatable testing environment without the risks associated with

real-world VTOL operations, especially during the early stages of development [13]. The simulation specifically assessed

the model’s ability to detect helipads. The photorealistic rendering closely mimicked real-world challenges, providing a

comprehensive testbed to evaluate the YOLO model’s robustness. The next step involves simulating vehicle dynamics.

Generic Urban Air Mobility (GUAM), developed by NASA, is a simulator designed for common rigid body 6-DOF

(Degree of Freedom) frames of reference. It includes a wide range of aerospace signals and quantities of interest. The

simulator’s modular architecture readily supports the integration and replacement of aircraft models, sensors, actuator

models, and control algorithms [14]. GUAM simulation is migrated from MATLAB Simulink to a Python environment

using Google’s JAX framework in [38]. JAX leverages GPU parallel computing and provides automatic differentiation,

similar to PyTorch [39], enabling faster simulation speeds of up to 200 Hz. To integrate CARLA with JAX-GUAM

and the YOLO detection model, we utilized ROS [40] as middleware. Once the systems are connected, the next step

involves implementing a control algorithm. In CARLA, we mounted a downward-facing camera at the bottom of the

aerial vehicle. The images captured by this camera serve as input for our landing system.

The bottom camera of the vehicle captures image frames that are streamed into the YOLO model to generate

bounding boxes for the detected helipad. The position and size of the detected bounding box are compared to the

camera’s center bounding box (the target area), generating an error vector, as shown in Figure 4a. The camera center

bounding box is represented by the blue box in the figure. To handle multi-object detection, we implemented the SORT

(Simple Online and Real-time Tracking) method [41], as illustrated in Figure 4b. SORT is a multiple-object tracking

algorithm specifically designed for video sequences. It ensures consistent tracking of the correct helipad bounding box

in dynamic environments, even when the target is partially occluded or temporarily lost. With accurate object detection

and SORT, the VTOL can continuously produce the necessary error signal for the control algorithm.

We define the landing control error as follows: e = bę −bĥ where bę is the camera center bounding box and bĥ is the

detected bounding box. Both the x and y components of the error can be found from the bounding box center deviation

in the respective axis. For the z component of the error, we take the size difference of the object compared to the target

area (Camera Center). This error is high when VTOL is at a high altitude and low at the landing position. This method

works if the landing pad size is less than the camera center bounding box at the landing position, which is 50 ft2 in our
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�����_�

Target AreaObjectArea
����_�= Target Area − Object Area

(a) Error generation for the controller (b) SORT implementation

Fig. 4 Object Detection, Tracking and Landing Controller

case. This error is processed by a PID controller [42] to compute the corrective velocity vector, vcorr = [ĬĮ , Ĭį , Ĭİ]
¦:

Ĭğ = ćĦěğ + ćğ

+
ěğ ĚĪ + ćĚ

Ěěğ

ĚĪ
, ğ ∈ {Į, į, İ},

where Ĭğ is the corrective velocity along axis ğ, ěğ is the error along axis ğ, and ćĦ, ćğ , ćĚ are the proportional,

integral, and derivative gains for the respective axis [43]. The calculated velocity commands are constrained to prevent

unmanageable overshoot and then fed into JAX-GUAM, which updates the vehicle’s state, guiding it closer to the ideal

landing position based on the corrective velocity vector Ĭğ .

The landing performance evaluation consists of ten trials with random initial positions. A landing is considered

successful if the vehicle is within 4 meters of the ideal center on the horizontal plane and within 1 meter on the İ-axis.

The success rate is calculated based on the number of successful landings out of 10 attempts. For example, if six trials

are successful, the success rate is 60%.

D. Bayesian Optimization for Iterative Retraining of Perception DNN

The Bayesian optimization in this work aims to improve the landing success rate by iteratively retraining the

object detection DNN (YOLO). In each iteration, the retraining hyperparameters are treated as decision variables in the

optimization process. Unlike typical optimization problems that assume a known objective function or gradient, Bayesian

optimization handles an unknown objective function, mapping hyperparameters to the landing controller’s performance.

In the Bayesian optimization, we estimate the unknown objective function, which evaluates the landing success rate, as

a posterior distribution based on data samples of the hyperparameters and their corresponding objective function values

(i.e., landing success rates). The hyperparameters considered include the scale factor and brightness value used in data

augmentation during training data processing for each retraining iteration. As described in Algorithm 1, we use the

acquisition function to identify the most promising data point to explore. The acquisition function balances the trade-offs

between exploration and exploitation. This approach is particularly useful for optimizing black-box objective functions,

making it highly effective for identifying the optimal combination of hyperparameters and augmentation strategies for an

unknown objective function Ĝ (x) [22]. In our case, x represents the hyperparameters and the augmentation parameters,

such as scale and brightness.

The optimization aims to find the performance maximizer as follows:

x∗ = arg max
x∈X

Ĝ (x),

where X is the space of possible hyperparameters and augmentation combinations and Ĝ (x) is the landing success rate

obtained from the photorealistic simulation environment.

We use the Gaussian Process (GP) to determine the posterior distribution given the data points obtained in data

exploration. To use GP to model the unknown function Ĝ (x), we assume Ĝ (x) ∼ GP(ģ(x), ġ (x, x′)). Here ģ(x) is the

mean function which is defined as ģ(Į) = E[ Ĝ (x)]. E[ Ĝ (x)] is the mean value that the function Ĝ (x) is assumed to

take, given the prior distribution or as inferred from the data. If no prior information is available, the mean function
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ģ(x) is often set to zero for simplicity. And, ġ (x, x′) is the covariance function (kernel), which defines the relationship

between different combinations of hyperparameters [22].

After we set the upper and lower bounds for scaling and brightness hyperparameters. The next sample point is

chosen based on an acquisition function ė(x), which balances exploration (sampling uncertain regions) and exploitation

(sampling regions likely to yield high rewards):

xĤ+1 = arg max
x∈X

ė(x;DĤ)

where DĤ = {(xğ , Ĝ (xğ))}
Ĥ

ğ=1
is the set of previous observations [23]. One of the most widely used and simplest

acquisition functions is the mean function plus the upper confidence bound (UCB). Where,

đÿþ(x) = Ć(x) + Ą · Ă(x)

where Ć(x) is the posterior predictive mean, Ă(x) is the posterior predictive standard deviation, and Ą controls the

exploration/exploitation trade-off. In our case, we used Ą = 2.567, which encourages exploration by optimistically

selecting new data points with high uncertainty, while also prioritizing areas with a high probability of finding the

optimal solution. However, the value of Ą can be adjusted to make the algorithm more exploratory or exploitative,

depending on the desired balance.

After evaluating Ĝ (xĤ+1), the GP is updated to incorporate the new observation [44] into the data set:

DĤ+1 = DĤ ∪ {(xĤ+1, Ĝ (xĤ+1))}.

Note that the GP is a non-parametric model; therefore, updating the dataset corresponds to updating the GP itself. The

process is repeated until a stopping condition is met as:

Stop if: max ė(x;DĤ) < Ċ,

where Ċ is a predefined threshold [23].

The Gaussian Process (GP) and acquisition function in Algorithm 1 were implemented using the Python package for

Bayesian Optimization [45].

Algorithm 1 Bayesian Optimization for Scale and Brightness

1: Given: Parameter space X = {(ď, þ) : ď, þ ∈ [0, 1]2}

2: Given: Success rate function Ĝ (ď, þ) = EvaluateModel(TrainModel(ď, þ))

3: Given: Surrogate function Ĝ̂ (ď, þ) modeled as GP(ģ(Į), ġ (Į, Į′))

4: Given: Acquisition function Ă(ď, þ) (e.g., Upper Confidence Bound)

5: Given: Initial samples X0 ← RandomSample(X, ć)

6: Given: Initial evaluations Y0 ← { Ĝ (ď, þ) : (ď, þ) ∈ X0}

7: Initialize dataset D0 ← {(X0,Y0)}

8: for Ĥ = 1, ..., Ċ do

9: Update surrogate function Ĝ̂ (ď, þ) using DĤ

10: (ďnext, þnext) ← arg maxĂ(ď, þ|DĤ)

11: Train model ĉ ← TrainModel(ďnext, þnext)

12: Evaluate success rate įnext ← EvaluateModel(ĉ)

13: Update DĤ+1 ← DĤ ∪ {(ďnext, þnext, įnext)}

14: if maxĂ(Į;DĤ) < Ċ then

15: break (Stopping condition met: no promising regions remain to explore)

16: end if

17: if įnext g Success Threshold then

18: return Optimal parameters (ďnext, þnext), Success rate įnext

19: end if

20: end for

21: Output: Best parameters (ď∗, þ∗) = arg maxY, Best success rate į∗ = maxY
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E. Validation Under Weather and Lighting Conditions

After optimization, we evaluate the best object detection model under varying lighting conditions (e.g., night) and

weather conditions (e.g., heavy rain). We measure the landing success rate from 10 random initial vehicle positions that

range from 0-40 m offset on the horizontal plane and 0-120 m in the vertical direction. For evaluating the confidence

score of object detection we consider the score from the extreme offset position (40 m, 40 m and 120m in x, y and z

direction respectively). We imposed the same criteria for successful landing described in the simulation testing section.

The landing success rate is then incorporated into Algorithm 1 to identify the best-performing model for these specific

environmental states. These optimizations generate hyperparameter spaces mapped to the landing success rate for

each environmental condition. We obtained models that consistently perform with more than 70% landing success

rates for each condition. In addition to the best-performing model for each environmental condition, we identify a

high-performing parameter space shared across different landing scenarios. This common parameter space enables the

training of a robust model that demonstrates improved performance across all evaluated lighting and weather conditions.

The final evaluation shows a 70% landing success rate in clear day and night conditions and a 50% landing success rate

at night with rain conditions. An illustrative video of the final landing evaluation is available here.†

IV. Experiments and Result

A. Photorealistic simulator

The photorealistic simulator in Figure 5a is developed using the existing autonomous car simulation application,

CARLA [13]. Using the Unreal Engine [37], 3D rendering of an urban air mobility (UAM) vehicle is added, as shown

in Figure 5a. The simulator integrates vehicle dynamics, controller, planning, and perception. The data-exploration

decision-making is implemented through Simulation Control, as shown in Figure 5b. The simulation control chooses

different weather conditions and lighting conditions, as shown in Figure 6.

(a) Photorealistic scene (b) Modular structure of the simulator

Fig. 5 Integration of perception, planning, and control with the simulator

B. Result

The proposed framework was evaluated using key performance metrics, including mean average precision (mAP),

confidence scores, and landing success rates, to assess its effectiveness in detecting helipads and guiding safe VTOL

landings. The initial YOLOv8 model was trained using randomly selected augmentations (scale and brightness).

During the evaluation, the model achieved an mAP (50-95) of 43%, which is close to the benchmark mAP (50-95) for

YOLOv8 [33], typically reported as 44.9% for large-scale datasets, such as the COCO dataset [34]. The pre-trained

model was integrated into CARLA to assess the landing success rate from 10 randomly generated initial positions, as

shown in Figure 7a. The initial model achieved a success rate of 50%, as illustrated in Figure 7b, under clear, bright

weather conditions in CARLA. This is a baseline evaluation of the model’s performance. The Bayesian optimization

algorithm 1 uses the evaluation outcome, which consists of a pair of data augmentation hyperparameters (scale and

†https://www.youtube.com/watch?v=WAGicg_xGj8
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(a) Clear Day

(b) Night

(c) Night and Rain

Fig. 6 Simulation for different landing scenarios.

brightness) and the corresponding success rate. The optimization process begins by collecting the evaluation outcomes,

forming a closed loop of evaluation and optimization steps in each iteration. After conducting 30 iterations, the landing

success rate improved from the baseline of 50% to 70%, as shown in Figure 8. This experimental result demonstrates

that the proposed Bayesian data augmentation approach can improve the landing success rate by identifying more

suitable data augmentation hyperparameters.

To better understand the selection of the hyperparameters in the Bayesian optimization, we plotted a contour plot

showing the estimated landing success rate for each pair of scale and brightness (estimated by the GP in Bayesian

optimization), as shown in Figure 9. In Figure 9, we present the contours for different weather conditions: (a) clear day;

(b) clear night; (c) night and rain. As shown in Figure 9a, there are several pairs of scale and brightness augmentations

that achieve the same landing success rate. Next, we selected one of these pairs and tested it under different lighting

conditions (clear night). However, we achieved a zero landing success rate under this condition with the hyperparameters

that worked well in the other conditions. This example demonstrates that Bayesian optimization, when performed under

favorable conditions, may carry the risk of failure, in contrast to optimization conducted under more challenging or

adverse conditions. Next, we applied Bayesian optimization under two adverse conditions. First, we ran Algorithm 1

under clear night conditions, achieving a landing success rate of 70% and identifying the corresponding best-performing

parameters, as shown in Figure 9b. Then, we ran the algorithm under rain and night conditions to obtain the relevant set

of hyperparameters, as shown in Figure 9c. As shown in Figure 9, the hyperparameters scale=0.77 and brightness=0.66

are jointly shared across all three environmental states as high-performing parameters. As a result, the model achieves a
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Fig. 7 Landing Performance without Optimization
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(b) Final Landing Position

Fig. 8 Landing Performance after Optimization (20% Improvement in Landing Success Rate)

70% landing success rate in both day and night conditions, and a 50% success rate in night with rain conditions. This
suggests the potential of using adverse conditions to improve the robustness of the perception model. Furthermore,
during the final validation of the perception model, we have observed the confidence scores for bounding boxes also
showed enhanced reliability, even under varying lighting and weather conditions. The confidence score improved from
30% to 50% in clear day and from 0% to 50% in clear night landing scenario while evaluated from extreme offset
position. These results emphasize the effectiveness of the proposed framework in improving VTOL-specific perception
and control tasks.

V. Conclusion and Future Work
This work introduces a novel framework for enhancing VTOL perception systems that focuses on vision-guided

landing performance. By integrating reproducible training of DNN model, uncertainty estimation, simulation testing and
Bayesian optimization, the framework addresses challenges related to dataset variability, environmental unpredictability
and model refinement. The Bayesian data augmentation framework improved the landing success rate from the baseline
of 50% to 70%, demonstrating its ability to adapt and enhance model performance under dynamic conditions. This
framework highlights how domain-specific optimizations can bridge the gap between general-purpose object detection
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Fig. 9 Best Performing Parameters for Landing

and specialized VTOL tasks, outperforming typical YOLO object detection benchmark models.
Future work will focus on expanding the dataset, testing under additional environmental conditions, and transitioning

to real-world VTOL operations. By addressing these aspects, the framework has the potential to significantly advance
the development of reliable, autonomous VTOL systems capable of safe and efficient landings in complex environments.
Building on these promising simulation results, our next step is to test the model in real-flight scenarios using the
platform currently under development, as shown in Figure 10.
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Fig. 10 Prototype Design for Real Flight Experiment
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