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Learning-based solutions have enabled incredible capabilities for autonomous systems.
Autonomous vehicles, both aerial and ground, rely on Deep Neural Networks (DNN) for various
integral tasks, including perception. The efficacy of supervised learning solutions, such as the
DNN used for perception tasks, hinges on the quality of the training data. Discrepancies between
training data and operating conditions result in faults that can lead to catastrophic incidents.
However, collecting and labeling vast amounts of context-sensitive data, with broad coverage of
possible variations in the operating environment, is prohibitively difficult. To overcome this
limitation, synthetic data generation techniques for DNN training emerged, allowing for the
easy exploration of diverse scenarios. While significant synthetic data generation solutions exist
for ground vehicles, for aerial vehicles such support is still lacking.

This work presents a data augmentation framework for aerial vehicle’s perception training,
leveraging photorealistic simulation seamlessly integrated with high-fidelity vehicle dynamics,
control, and planning algorithms. Safe landing in urban environments is a crucial challenge
in the development of autonomous air taxis, and therefore, landing maneuver is chosen as
the focus of this work. With repeated simulations of landing maneuvers in scenarios with
varying vehicle states, weather conditions and time of day, we assess the landing performance of
the VTOL (Vertical Take off and Landing) type UAV and gather valuable data. The landing
performance is used as the objective function to optimize the DNN through retraining. Given
the high computational cost of DNN retraining, we incorporated Bayesian Optimization in
our framework that systematically explores the data augmentation parameter space to retrain
the best-performing models. The framework allowed us to identify high-performing data
augmentation parameters that are consistently effective across different landing scenarios.
Utilizing the capabilities of this data augmentation framework, we obtained a robust perception
model. The model consistently improved the perception-based landing success rate by at least
20% under different lighting and weather conditions.
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I. Introduction

Perception solutions for autonomous vehicles are mostly based on Deep Neural Networks (DNN). Numerous studies
have demonstrated their superior performance compared to traditional computer vision methods [1]. Specific frameworks
like You Only Look Once (YOLO) [2—-5] showcase the power of DNN’s in real-time object detection tasks. However, the
success of DNN depends heavily on the quality and relevance of the training data. DNN's trained exclusively on general
datasets often show limited performance when applied to specific applications [6]. This performance gap is rooted in
the differences between the training data and the deployment environment [7]. Optimizing performance in complex
environments requires fine-tuning the model’s hyperparameters by retraining it within the deployment environment.

Optimizing a DNN model for deployment in complex real-world environments comes with two significant challenges.
First, such retraining requires large amounts of data collected in varying scenarios. For aerial vehicle perception, this
would involve the use of expensive aerial vehicles over long periods of time to cover a comprehensive range of relevant
scenarios. This limitation can be alleviated by using photorealistic simulators to freely explore various scenarios and
collect task-specific data [7-9]. Second, retraining DNN models is computationally expensive, requiring substantial
resources and time to refine them for real-world applications [10]. This high computational demand often becomes a
bottleneck in the optimization process, necessitating improvements in the efficiency of the retraining process itself.
Bayesian optimization has become a prominent method for this purpose, as it systematically searches the decision variable
space, balancing exploration and exploitation to identify optimal decision variables without knowing the objective
function explicitly [1 1]. This approach is particularly effective for deep neural network (DNN)-based perception systems,
where robust performance depends on selecting hyperparameters that generalize well across diverse scenarios [12]. By
leveraging feedback from the simulation outcomes, such as landing success rates, Bayesian optimization iteratively
refines the model, ensuring it adapts effectively to varying vehicle and environmental states.

In this work, we address both challenges mentioned above in the context of perception systems for autonomous aerial
vehicles, such as air taxis. Specifically, we focus on optimizing a DNN-based perception model for an automated landing
system on a Vertical Take-Off and Landing (VTOL) aerial vehicle. The autonomous landing system employs a DNN
object detector to identify the landing spot within a camera image frame. We propose an automated decision-making
framework designed to enhance the utility of data samples collected for retraining, thereby improving the performance
of the landing pad detector. This framework consists of two iterative phases. The first phase evaluates the overall
performance of the vision-guided landing system and the uncertainties of the computer vision model given the operation
scenarios in photorealistic simulation. In the second phase, the vehicle states and corresponding measure of cumulative
landing success rate for the system are used in a Bayesian optimization loop to generate the next set of hyperparameter
for retraining the model. Finally, the updated model is evaluated in the first phase. These phases close the loop in the
data exploration process, as shown in Figure 1. To the best of our knowledge, this is the first use of such a framework for
vision-based landing maneuvers in VTOL. Our key contribution can be summarized as follows:

» We develop a Bayesian retraining framework™ for the YOLO perception model [3] for vision-based autonomous

landing within a photorealistic simulation environment based on the CARLA simulator [13], incorporating
high-fidelity aerial vehicle dynamics from the GUAM vehicle simulation [14].

II. Literature Review

Autonomous landing systems in VTOL vehicles depend on reliable landing pad detection. However, this detection is
challenged by a wide range of variable environmental factors, such as weather conditions and lighting. Real-world
datasets, particularly those for aerial vehicles, are unable to capture the full combinatorial complexity of all the factors
that can impact the performance of landing pad detection. Synthetic data generation and data augmentation techniques
have emerged as essential tools in the development of machine learning models to address this limitation of real-world
datasets. The simulation-based methods enable the creation of diverse and customizable datasets, leading to improved
resilience of models trained using these datasets. This section provides a review of related works on the components
integrated into our proposed framework, including data augmentation, Bayesian optimization, and the use of DNNs in
control applications.

e Synthetic Data and Data Augmentation: Synthetic data generation and data augmentation have become
indispensable tools in enhancing the robustness of perception models for VTOLs. Docca and Torculas [7] highlight
that synthetic data generated through simulation environments enables the creation of diverse image scenarios
without the need for extensive manual data collection. These datasets enable model training on a wide variety
of visual conditions. This helps the model generalize effectively in dynamic real-world environments. Unity’s

*https://github.com/arasul42/LCASL-TTU-vtol-bayes-sim
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Fig.1 Data Exploration Framework

simulated environments [9] contribute further by replicating complex landing scenarios and lighting conditions
that are essential for robust VTOL perception. However, despite its flexibility, Unity’s simulated environments are
not suitable for replicating the full complexity of real-world VTOL dynamics, as Unity is primarily designed for
VR and game applications. Accurately modeling sensor noise, unpredictable environmental changes, and VTOL
hardware limitations are the key difficulties that are crucial during operations like autonomous landings. While
Unity excels in visual fidelity, the gap between simulated physics and real-world interactions necessitates further
validation through real-world data or hybrid approaches combining simulations with digital twins [&].

» Weather Augmentation: Building on the strengths of synthetic data, weather augmentation adds a targeted
approach to improving model robustness under adverse conditions. By generating realistic weather variations,
such as rain, fog, and snow, during training, models become more robust and adaptable. Gupta et al. [6] highlight
the importance of generating realistic weather variations, such as rain and fog, during training to enhance
model robustness. By introducing weather-based transformations into datasets, models can generalize better to
challenging real-world scenarios. Furthermore, techniques like adversarial augmentation add further complexity,
which simulate edge cases that are difficult to replicate in physical experiments [15].

* Digital Twins and Virtual Reality Environments: While synthetic data focuses on creating individual variations,
digital twins and Virtual Reality (VR) environments provide dynamic simulations of operational scenarios. Digital
twins go beyond static synthetic data by simulating operational scenarios dynamically and integrating real-time
environmental factors like wind and temperature [8]. Ensuring the fidelity of these twins, however, remains a
challenge, especially for VTOLs operating in rapidly changing conditions. While synthetic data generates isolated
variations, digital twins provide a comprehensive simulation of the VTOL’s operational environment, incorporating
variables such as lighting, weather, and terrain [8]. By leveraging these technologies, VTOL perception systems
gain robustness, improving model reliability in dynamic environments. However, the fidelity of VR simulations
can sometimes differ from real-world conditions, underscoring the need for iterative improvement [16].

* Efficient Data Selection Techniques: As the complexity of VTOL perception tasks grows, data selection becomes
crucial in optimizing model training. Selecting the most informative data points ensures that the model focuses on
samples that are difficult to learn, reducing both training time and computational load. Reducing the computational
load of large-scale VTOL perception systems is essential. Techniques like coreset selection [17] and prioritized
training [6] construct efficient datasets that balance size and representativeness. Mindermann et al. [18] introduce
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a technique for prioritizing learnable and informative points, emphasizing that concentrating on challenging data
can, in fact, enhance model accuracy. Similarly, Paul et al. [1 7] highlight data pruning techniques, which refine
the training set by eliminating redundant examples, helping the model converge faster. Advanced data selection
methods, such as those discussed by Guo et al. [19] and Sorscher et al. [20], use coreset selection to construct
compact, representative datasets. These methods are especially valuable in VTOL perception, where reducing
dataset size without compromising performance is crucial for model improvement. By prioritizing efficient data
selection, VTOL models can maintain high performance while minimizing computational resource requirements.
Bayesian Inference and Optimization: In complex VTOL perception systems, Bayesian inference offers a
structured approach to quantify and incorporate uncertainty into model predictions, ultimately enhancing model
robustness and adaptability. This approach is particularly beneficial in dynamic scenarios like VTOL landing, where
conditions continuously evolve. Deng et al. [2 1] propose Bayesian data selection methods that leverage uncertainty
estimates to refine training datasets, focusing on data points that improve model learning efficiency. Additionally,
Shahriari et al. [22] provide a comprehensive review of Bayesian optimization techniques, underscoring its
potential to iteratively adjust model parameters for better performance. For the VTOL landing tasks addressed
in this work, we utilized Bayesian optimization [23] to fine-tune critical perception parameters, such as scale
and brightness, achieving substantial improvements in detection accuracy across a wide range of environmental
conditions.

 Simulation Environments and Object Detection: Advanced simulation environments like CARLA and object
detection models like YOLO provide the infrastructure for rigorous testing of VTOL systems. CARLA offers
detailed urban and rural scenarios with adjustable parameters such as lighting, weather, and environmental objects,
enabling VTOLs to be tested in diverse landing contexts [13]. YOLO, known for its speed and accuracy in object
detection, is particularly suited for real-time applications. Redmon and Farhadi’s YOLO9000 model [3] and
subsequent iterations have become widely used for VTOL applications, offering efficient and reliable detection
capabilities in CARLA’s complex simulated environments. By integrating YOLO models in CARLA, VTOL
systems can gain real-world insights and refine detection accuracy under various conditions. This combination of
CARLA’s simulation environment and YOLO’s detection capabilities represents a powerful toolkit for advancing
safe VTOL landing technology.

* Uncertainty Quantification and Adaptive Control: Uncertainty quantification (UQ) enhances VTOL decision
making by identifying high-confidence predictions, ensuring safety in dynamic conditions. UQ is critical in VTOL
perception and control since it allows the system to estimate the reliability of its predictions in dynamic, often
unpredictable environments. UQ helps identify high-confidence detections and ensures the VTOL only proceeds
with safe, verified actions. Fernandez Castafio et al. [24] demonstrate a UQ-based switching control approach
that enables VTOLs to adapt their behavior based on environmental conditions, enhancing tracking accuracy.
Adaptive control, together with UQ, offers a proactive response to uncertainty by adjusting control parameters in
real time. For instance, Cao and Hovakimyan’s £ adaptive control architecture [25] emphasizes rapid adaptation,
ensuring stability and performance despite unpredicted changes. By combining UQ with adaptive control, VTOLs
become better equipped for precise, reliable landing operations, even under uncertain conditions.

* Neural Network-Based Control Methods: Recent advancements in neural network-based control methods have
shown promise in optimizing complex dynamical systems without the need for extensive retraining. Hose et al.[26]
introduce a method for fine-tuning Approximate Model-Predictive Control (AMPC) using Bayesian Optimization
(BO) to adapt neural network controllers efficiently. The proposed technique addresses a key challenge in AMPC:
the need for retraining when system parameters change. By leveraging BO, the method allows for data-driven
adaptation of AMPC, reducing manual tuning efforts and computational costs. The authors validated their approach
on challenging control tasks, such as the cart-pole system and a balancing unicycle robot, demonstrating improved
stability and reduced oscillations with minimal hardware experimentation. In a related approach, Ostafew et
al.[27] applied a learning-based nonlinear Model-Predictive Control (MPC) to enhance vision-based path tracking
for mobile robots in challenging outdoor environments. The study highlights the importance of integrating
vision-based perception with advanced control strategies to handle unpredictable conditions. This technique
utilized data-driven learning to adjust the controller in real-time based on visual feedback, significantly improving
path-tracking performance. The insights from Ostafew et al.’s work are directly applicable to VTOL landing
perception, where the integration of vision-based inputs and adaptive control methods is crucial for accurately
detecting and landing on helipads in dynamic and uncertain environments.

The literature highlights the importance of a comprehensive approach that combines synthetic data generation,

weather augmentation, advanced data selection techniques, simulation environments, and uncertainty-aware modeling
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to enhance VTOL perception systems. In particular, weather augmentation bridges the gap between idealized training
conditions and real-world variability, ensuring VTOLs can operate reliably in diverse and dynamic environments. By
integrating these advancements, future VTOL systems will achieve increased robustness and operational safety, enabling
dependable autonomous landings even in challenging conditions.

II1. Proposed Framework

Developing perception systems for autonomous VTOLs demands a structured approach to address challenges
such as data variability, hyperparameter optimization, and performance evaluation across diverse conditions. Our
proposed framework addresses these challenges by integrating data augmentation, high-fidelity simulation environments,
uncertainty quantification, and Bayesian optimization to enhance the performance of vision-based VTOL landing
systems. This approach aims to iteratively adapt the model to new environments and enhance the landing success
rate through systematic evaluation and retraining. The proposed framework, illustrated in Figure 1, comprises five
main components: Dataset Processing and Initial Model Training, which involves preparing the dataset and training
an initial YOLO model with reproducible results for helipad detection; Uncertainty Estimation, where prediction
uncertainties are quantified to identify areas for model improvement and guide hyperparameter tuning; Simulation
Testing, which evaluates the trained model in a high-fidelity, photorealistic simulation environment that incorporates
vehicle dynamics; Retraining Loop with Bayesian Optimization, which iteratively refines the model by optimizing
hyperparameters based on simulation feedback; and finally, Validation Under Adverse Conditions, where the model’s
robustness is tested under diverse weather and lighting scenarios to ensure reliable performance. The components are
described below:

A. Dataset Processing and Initial Model Training

The importance of working with a high-quality dataset in training a model cannot be overstated, as the dataset
fundamentally determines the model’s learning and performance [7, 2 1]. Therefore, the first component of our framework
focuses on data preprocessing and augmentation to train reproducible image detection YOLO models, specifically
YOLOvS [28]. As dataset, we use Google Earth images of helipads [29]. YOLO’s fast inference time and efficiency
make it well-suited for detecting objects in challenging real-time environments on mobile platforms [3]. YOLO models,
such as YOLOv5 and YOLOvS, employ random data augmentations during training to enhance model robustness and
generalization. These augmentations include techniques like random resizing, flipping, cropping, color and brightness
adjustments. By default, the randomness inherent in these augmentations leads to non-reproducible results across
different training runs [30].

Reproducibility in empirical Al research is the ability of an independent research team to produce the same results
using the same Al method based on the documentation made by the original research team [31]. Highly reproducible
training ensures the same results are obtained over repeated iterations with the same environment, code and data [32].
To achieve reproducibility, we turn off the random augmentation of YOLO training, which gives us deterministic control
over the image augmentation during the training cycle. This approach also allows us to isolate the effects of specific
hyperparameters and observe the model’s behavior on unseen data. However, this method of hyperparameter tuning
has the inherent risk of overfitting the model that performs well only on that specific scenario, reducing its ability to
generalize to unseen data. Our framework reduces the risk of overfitting by validating model performance under diverse
lighting and weather conditions.

The training dataset [29] contains coordinates of helipads of different types, including their Google Earth URL,
image size details, and ground truth bounding box annotations. The final dataset consists of approximately 4,000
images in JPEG format, each with a resolution of 640x640 pixels. The dataset labels are provided as the minimum and
maximum coordinates of the bounding box (ground truth), which are not directly compatible with the open-source
YOLO implementation used in this work [33]. YOLO requires annotations in a specific text file format, where bounding
box coordinates are normalized relative to the image dimensions [3]. We transformed the label annotations to a
YOLO-compatible format to prepare the dataset. Each annotation is stored in a plain text file corresponding to the
image file, with rows representing individual objects and specifying their respective classes. Each annotation follows
the format: <class_id> <x_center> <y_center> <width> <height> where each value is normalized as per
the YOLO format. Here, <class_id> represents the object class, which is helipad in our case, <x_center> and
<y_center> are the normalized coordinates of the bounding box centre relative to the image width and height and
<width> and <height> are the normalized dimensions of the bounding box. After preprocessing, each image was
paired with its corresponding annotation file in a directory, preparing the dataset for YOLO object detection training.
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Fig. 2 Initial Model Training

From the dataset, 80% of the images were randomly selected for training, while the remaining 20% were reserved
for validation. Figure 2a shows sample training images annotated with the helipad class bounding boxes, demonstrating
the diversity and distribution of the dataset. The YOLO model outputs bounding box coordinates with confidence
scores, indicating the likelihood of correct helipad detection. The model’s performance was evaluated using standard
object detection metrics, including mean Average Precision (mAP) at IoU (Intersection over Union) thresholds of 50%
(mAP50) and a range from 50% to 95% (mAP50-95), as shown in Figure 2b. These metrics provide a comprehensive
assessment of the model’s detection accuracy. IoU measures the overlap between the predicted bounding box and the
ground truth bounding box, serving as a criterion for correct detection [34]. Specifically, IoU is defined as the ratio
of the intersection area to the union area of the two bounding boxes, with higher values indicating better alignment
between the prediction and the ground truth [34]. Precision at a single IoU threshold (50%) is measured by mAPS50,
indicating how well the model detects objects at a basic level of overlap and mAP50-95 averages precision over multiple
IoU thresholds [34]. This metric mAP50-95 provides a more rigorous evaluation of the model’s performance, especially
for scenarios requiring fine-grained object detection [34]. The curves in the top two charts illustrate that as training
progresses over epochs, both mAP50 and mAP50-95 steadily increase, indicating improvements in the model’s ability
to detect helipads accurately. The precision and recall metrics, shown in the bottom two charts, provide further insight
into the model’s performance. Precision evaluates the proportion of correctly detected helipads out of all detections
made, reflecting the model’s ability to avoid false positives [34]. Recall measures the proportion of correctly detected
helipads out of all actual helipads, indicating how well the model avoids false negatives [34]. These trends highlight the
model’s increasing generalization capability and robustness when applied to the validation set.

B. Uncertainty Estimation

The initial model training process was repeated five times using dataset Subsampling, similar to the approach used
in random forests [35]. Subsampling is a method where subsets of data are drawn randomly, without replacement, from
the original dataset. This method allows the creation of multiple training datasets smaller than the original, effectively
simulating the variability of data distributions. It is beneficial while working with small datasets, as it provides a way to
estimate the model’s robustness and reduces over-fitting by introducing diversity into training subsets. First, we separate
the validation dataset (20% of the total dataset). Second, we randomly distribute the remaining 80% of the dataset to
create five subsets of training data. For each YOLO model training, 4 out of 5 subsets are combined and used as the
training dataset, as shown in Figure 3a. However, the validation set is kept the same to ensure consistency in evaluation.
For each training step, the YOLO model was trained to detect helipads, producing five bounding boxes corresponding
to the class helipad. The standard deviation of the five predicted bounding box coordinates provides a measure of
uncertainty, as illustrated in Figure 3b. This uncertainty represents the epistemic uncertainty [36] of the system, which
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is observed to be significant under lighting and weather conditions different from those in the training dataset.
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Fig. 3 Uncertainty Estimation in The System

C. Simulation Testing

The trained YOLO model is integrated into the high-fidelity photorealistic simulation environment CARLA, to evaluate
its performance in controlled yet dynamic conditions. CARLA, built using the Unreal Engine, provides a photorealistic
simulation of urban and rural environments, making it an ideal platform for testing autonomous systems [13, 37].
CARLA also lets us define many environmental conditions, which in turn lets us generate realistic-looking challenging
conditions [13]. This flexibility facilitates a safe and repeatable testing environment without the risks associated with
real-world VTOL operations, especially during the early stages of development [13]. The simulation specifically assessed
the model’s ability to detect helipads. The photorealistic rendering closely mimicked real-world challenges, providing a
comprehensive testbed to evaluate the YOLO model’s robustness. The next step involves simulating vehicle dynamics.

Generic Urban Air Mobility (GUAM), developed by NASA, is a simulator designed for common rigid body 6-DOF
(Degree of Freedom) frames of reference. It includes a wide range of aerospace signals and quantities of interest. The
simulator’s modular architecture readily supports the integration and replacement of aircraft models, sensors, actuator
models, and control algorithms [14]. GUAM simulation is migrated from MATLAB Simulink to a Python environment
using Google’s JAX framework in [38]. JAX leverages GPU parallel computing and provides automatic differentiation,
similar to PyTorch [39], enabling faster simulation speeds of up to 200 Hz. To integrate CARLA with JAX-GUAM
and the YOLO detection model, we utilized ROS [40] as middleware. Once the systems are connected, the next step
involves implementing a control algorithm. In CARLA, we mounted a downward-facing camera at the bottom of the
aerial vehicle. The images captured by this camera serve as input for our landing system.

The bottom camera of the vehicle captures image frames that are streamed into the YOLO model to generate
bounding boxes for the detected helipad. The position and size of the detected bounding box are compared to the
camera’s center bounding box (the target area), generating an error vector, as shown in Figure 4a. The camera center
bounding box is represented by the blue box in the figure. To handle multi-object detection, we implemented the SORT
(Simple Online and Real-time Tracking) method [41], as illustrated in Figure 4b. SORT is a multiple-object tracking
algorithm specifically designed for video sequences. It ensures consistent tracking of the correct helipad bounding box
in dynamic environments, even when the target is partially occluded or temporarily lost. With accurate object detection
and SORT, the VTOL can continuously produce the necessary error signal for the control algorithm.

We define the landing control error as follows: e = b, —b,, where b, is the camera center bounding box and b,, is the
detected bounding box. Both the x and y components of the error can be found from the bounding box center deviation
in the respective axis. For the z component of the error, we take the size difference of the object compared to the target
area (Camera Center). This error is high when VTOL is at a high altitude and low at the landing position. This method
works if the landing pad size is less than the camera center bounding box at the landing position, which is 50 ft> in our
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case. This error is processed by a PID controller [42] to compute the corrective velocity vector, Veorr = [V, Vy, v 7

vi=Kpe; +K; / e; dr + Kd%, i€{x,y,z},
where v; is the corrective velocity along axis i, e; is the error along axis i, and K, K;, K4 are the proportional,
integral, and derivative gains for the respective axis [43]. The calculated velocity commands are constrained to prevent
unmanageable overshoot and then fed into JAX-GUAM, which updates the vehicle’s state, guiding it closer to the ideal
landing position based on the corrective velocity vector v;.

The landing performance evaluation consists of ten trials with random initial positions. A landing is considered
successful if the vehicle is within 4 meters of the ideal center on the horizontal plane and within 1 meter on the z-axis.
The success rate is calculated based on the number of successful landings out of 10 attempts. For example, if six trials
are successful, the success rate is 60%.

D. Bayesian Optimization for Iterative Retraining of Perception DNN

The Bayesian optimization in this work aims to improve the landing success rate by iteratively retraining the
object detection DNN (YOLO). In each iteration, the retraining hyperparameters are treated as decision variables in the
optimization process. Unlike typical optimization problems that assume a known objective function or gradient, Bayesian
optimization handles an unknown objective function, mapping hyperparameters to the landing controller’s performance.
In the Bayesian optimization, we estimate the unknown objective function, which evaluates the landing success rate, as
a posterior distribution based on data samples of the hyperparameters and their corresponding objective function values
(i.e., landing success rates). The hyperparameters considered include the scale factor and brightness value used in data
augmentation during training data processing for each retraining iteration. As described in Algorithm 1, we use the
acquisition function to identify the most promising data point to explore. The acquisition function balances the trade-offs
between exploration and exploitation. This approach is particularly useful for optimizing black-box objective functions,
making it highly effective for identifying the optimal combination of hyperparameters and augmentation strategies for an
unknown objective function f(x) [22]. In our case, X represents the hyperparameters and the augmentation parameters,
such as scale and brightness.

The optimization aims to find the performance maximizer as follows:

x" = argmax f(x),
xeX

where X is the space of possible hyperparameters and augmentation combinations and f(x) is the landing success rate
obtained from the photorealistic simulation environment.

We use the Gaussian Process (GP) to determine the posterior distribution given the data points obtained in data
exploration. To use GP to model the unknown function f(x), we assume f(x) ~ GP (m(x), k(x,x’)). Here m(x) is the
mean function which is defined as m(x) = E[ f(x)]. E[f(x)] is the mean value that the function f(x) is assumed to
take, given the prior distribution or as inferred from the data. If no prior information is available, the mean function
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m(x) is often set to zero for simplicity. And, k(x, x’) is the covariance function (kernel), which defines the relationship
between different combinations of hyperparameters [22].

After we set the upper and lower bounds for scaling and brightness hyperparameters. The next sample point is
chosen based on an acquisition function a(x), which balances exploration (sampling uncertain regions) and exploitation
(sampling regions likely to yield high rewards):

Xp+1 = arg max (Z(X; Z)n)
xeX

where D, = {(x;, f(x;))}"_, is the set of previous observations [23]. One of the most widely used and simplest
acquisition functions is the mean function plus the upper confidence bound (UCB). Where,

UCB(x) = pu(x) + « - o(x)

where u(x) is the posterior predictive mean, o (x) is the posterior predictive standard deviation, and « controls the
exploration/exploitation trade-off. In our case, we used « = 2.567, which encourages exploration by optimistically
selecting new data points with high uncertainty, while also prioritizing areas with a high probability of finding the
optimal solution. However, the value of x can be adjusted to make the algorithm more exploratory or exploitative,
depending on the desired balance.

After evaluating f(X,+1), the GP is updated to incorporate the new observation [44] into the data set:

Dy =Dp U {(Xn+l’ f(Xn+l))}'

Note that the GP is a non-parametric model; therefore, updating the dataset corresponds to updating the GP itself. The
process is repeated until a stopping condition is met as:

Stop if: maxa(x; D) < e,

where € is a predefined threshold [23].
The Gaussian Process (GP) and acquisition function in Algorithm | were implemented using the Python package for
Bayesian Optimization [45].

Algorithm 1 Bayesian Optimization for Scale and Brightness

Given: Parameter space X = {(S,B) : S, B € [0, 1]?}
Given: Success rate function f(S, B) = EvaluateModel(TrainModel(S, B))
Given: Surrogate function £ (S, B) modeled as GP (m(x), k(x,x’))
Given: Acquisition function a(S, B) (e.g., Upper Confidence Bound)
Given: Initial samples Xy «— RandomSample(X, K)
Given: Initial evaluations Yy < {f(S,B) : (S,B) € Xp}
Initialize dataset Dy «— {(Xo, Yo)}
forn=1,...,Ndo
Update surrogate function f(S, B) using D,
(Snextv Bnext) < arg max a’(S’ B|Z)n)
Train model M « TrainModel(Spext, Brext)
12:  Evaluate success rate ypex; «— EvaluateModel(M)
13: Update D41 «— D, U {(Snexts Brext> Ynext) }
14:  if max a(x; D,) < € then

R A A R ol e

_..—
= @

15: break (Stopping condition met: no promising regions remain to explore)
16:  end if

17:  if ynext = Success Threshold then

18: return Optimal parameters (Spext, Bnext), SUCCESS Tate Ypext

19:  end if

20: end for

21: Output: Best parameters (S*, B*) = argmax Y, Best success rate y* = max Y
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E. Validation Under Weather and Lighting Conditions

After optimization, we evaluate the best object detection model under varying lighting conditions (e.g., night) and
weather conditions (e.g., heavy rain). We measure the landing success rate from 10 random initial vehicle positions that
range from 0-40 m offset on the horizontal plane and 0-120 m in the vertical direction. For evaluating the confidence
score of object detection we consider the score from the extreme offset position (40 m, 40 m and 120m in x, y and z
direction respectively). We imposed the same criteria for successful landing described in the simulation testing section.
The landing success rate is then incorporated into Algorithm 1 to identify the best-performing model for these specific
environmental states. These optimizations generate hyperparameter spaces mapped to the landing success rate for
each environmental condition. We obtained models that consistently perform with more than 70% landing success
rates for each condition. In addition to the best-performing model for each environmental condition, we identify a
high-performing parameter space shared across different landing scenarios. This common parameter space enables the
training of a robust model that demonstrates improved performance across all evaluated lighting and weather conditions.
The final evaluation shows a 70% landing success rate in clear day and night conditions and a 50% landing success rate
at night with rain conditions. An illustrative video of the final landing evaluation is available here."

IV. Experiments and Result

A. Photorealistic simulator

The photorealistic simulator in Figure 5a is developed using the existing autonomous car simulation application,
CARLA [13]. Using the Unreal Engine [37], 3D rendering of an urban air mobility (UAM) vehicle is added, as shown
in Figure 5a. The simulator integrates vehicle dynamics, controller, planning, and perception. The data-exploration
decision-making is implemented through Simulation Control, as shown in Figure 5b. The simulation control chooses
different weather conditions and lighting conditions, as shown in Figure 6.

Simulation Control,
Scenarios, Data Collection
i Vehicle i
Environment P Vehicle model +
X ose
Simulator Control
(CARLA) (GUAM)
Sensor Data
Vehicle State
Scene Trajectory
Perception | Information Blanni
Prediction anning
(a) Photorealistic scene (b) Modular structure of the simulator

Fig. 5 Integration of perception, planning, and control with the simulator

B. Result

The proposed framework was evaluated using key performance metrics, including mean average precision (mAP),
confidence scores, and landing success rates, to assess its effectiveness in detecting helipads and guiding safe VTOL
landings. The initial YOLOv8 model was trained using randomly selected augmentations (scale and brightness).
During the evaluation, the model achieved an mAP (50-95) of 43%, which is close to the benchmark mAP (50-95) for
YOLOvS [33], typically reported as 44.9% for large-scale datasets, such as the COCO dataset [34]. The pre-trained
model was integrated into CARLA to assess the landing success rate from 10 randomly generated initial positions, as
shown in Figure 7a. The initial model achieved a success rate of 50%, as illustrated in Figure 7b, under clear, bright
weather conditions in CARLA. This is a baseline evaluation of the model’s performance. The Bayesian optimization
algorithm 1 uses the evaluation outcome, which consists of a pair of data augmentation hyperparameters (scale and

Thttps ://www.youtube.com/watch?v=WAGicg_xGj8
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Helipod .57

helipad ©.34

(c) Night and Rain

Fig. 6 Simulation for different landing scenarios.

brightness) and the corresponding success rate. The optimization process begins by collecting the evaluation outcomes,
forming a closed loop of evaluation and optimization steps in each iteration. After conducting 30 iterations, the landing
success rate improved from the baseline of 50% to 70%, as shown in Figure 8. This experimental result demonstrates
that the proposed Bayesian data augmentation approach can improve the landing success rate by identifying more
suitable data augmentation hyperparameters.

To better understand the selection of the hyperparameters in the Bayesian optimization, we plotted a contour plot
showing the estimated landing success rate for each pair of scale and brightness (estimated by the GP in Bayesian
optimization), as shown in Figure 9. In Figure 9, we present the contours for different weather conditions: (a) clear day;
(b) clear night; (c) night and rain. As shown in Figure 9a, there are several pairs of scale and brightness augmentations
that achieve the same landing success rate. Next, we selected one of these pairs and tested it under different lighting
conditions (clear night). However, we achieved a zero landing success rate under this condition with the hyperparameters
that worked well in the other conditions. This example demonstrates that Bayesian optimization, when performed under
favorable conditions, may carry the risk of failure, in contrast to optimization conducted under more challenging or
adverse conditions. Next, we applied Bayesian optimization under two adverse conditions. First, we ran Algorithm 1
under clear night conditions, achieving a landing success rate of 70% and identifying the corresponding best-performing
parameters, as shown in Figure 9b. Then, we ran the algorithm under rain and night conditions to obtain the relevant set
of hyperparameters, as shown in Figure 9c. As shown in Figure 9, the hyperparameters scale=0.77 and brightness=0.66
are jointly shared across all three environmental states as high-performing parameters. As a result, the model achieves a

11
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Fig. 7 Landing Performance without Optimization
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Fig. 8 Landing Performance after Optimization (20% Improvement in Landing Success Rate)

70% landing success rate in both day and night conditions, and a 50% success rate in night with rain conditions. This
suggests the potential of using adverse conditions to improve the robustness of the perception model. Furthermore,
during the final validation of the perception model, we have observed the confidence scores for bounding boxes also
showed enhanced reliability, even under varying lighting and weather conditions. The confidence score improved from
30% to 50% in clear day and from 0% to 50% in clear night landing scenario while evaluated from extreme offset
position. These results emphasize the effectiveness of the proposed framework in improving VTOL-specific perception
and control tasks.

V. Conclusion and Future Work
This work introduces a novel framework for enhancing VTOL perception systems that focuses on vision-guided
landing performance. By integrating reproducible training of DNN model, uncertainty estimation, simulation testing and
Bayesian optimization, the framework addresses challenges related to dataset variability, environmental unpredictability
and model refinement. The Bayesian data augmentation framework improved the landing success rate from the baseline
of 50% to 70%, demonstrating its ability to adapt and enhance model performance under dynamic conditions. This
framework highlights how domain-specific optimizations can bridge the gap between general-purpose object detection
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Fig. 9 Best Performing Parameters for Landing

and specialized VTOL tasks, outperforming typical YOLO object detection benchmark models.

Future work will focus on expanding the dataset, testing under additional environmental conditions, and transitioning
to real-world VTOL operations. By addressing these aspects, the framework has the potential to significantly advance
the development of reliable, autonomous VTOL systems capable of safe and efficient landings in complex environments.
Building on these promising simulation results, our next step is to test the model in real-flight scenarios using the
platform currently under development, as shown in Figure 10.
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Fig. 10 Prototype Design for Real Flight Experiment
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