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The nitrate radical NO3 plays an important role in atmospheric chemistry, yet many aspects of its

coupled and anharmonic vibronic structure remain elusive. Here, using an accurate, coupled full-

dimensional diabatic potential that includes five electronic states, we revisit the vibronic spectrum

associated with the electronic X̃2A′
2

state. Using recently developed tensor network state methods, we

are able to compute more than 2500 vibronic states, thereby increasing the number of computed full-

dimensional states by a factor of 50, compared to previous work. While we obtain good agreement

with experiment for most of the assigned vibronic levels, for several others, we observe striking

disagreement. Further, for the antisymmetric bending motion we find remarkably large symmetry-

induced level splittings that are larger than the zero-order reference. We discuss non-negligible

nonadiabatic effects and show that the Born-Oppenheimer approximation leads to significant errors

in the spectrum.

1 Introduction

NO3 is one of the first scientifically characterized radicals and
has a century-old scientific history rich of drama.1–18 NO3 is im-
portant in atmospheric nighttime chemistry,19–21 and, under pol-
luted conditions in smoggy urban environments, also in atmo-
spheric daytime chemistry.20–22 Like many other small molecules
and radicals,23–31 NO3 has both an intriguing electronic and vi-
bronic structure. Throughout the decades, many scientists hence
investigated various aspects of NO3; see Refs. [1–22,31–78] for a
selected list of examples. Despite the impressive amount of both
experimental and computational research on NO3, many aspects
of NO3 remain elusive. Here specifically, we focus on the mys-
teries of the vibronic eigenspectrum of levels associated with the
X̃2A′

2
electronic ground state.

The vibrations of NO3 are strongly anharmonic and many of
the vibrational motions are coupled. Further, the X̃2A′

2
state is

coupled to the degenerate Ã2E ′′, and B̃2E ′ excited states through
pseudo Jahn-Teller and dynamical pseudo Jahn-Teller effects.
These excited states themselves are subject to a strong Jahn-Teller
e×E effect. Thus, a complete description of all aspects of NO3
requires the inclusion of these four Ã and B̃ states in the com-
putation of accurate vibronic eigenstates even for the X̃ ground
state.

Several theorists computed the vibrational and/or vibronic
eigenspectrum using different potential energy surfaces (PESs).
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Using a qualitative vibronic coupling model,79 and neglecting
the umbrella motion, Stanton computed vibronic eigenstates and
hinted at a possible reassignment of one of the fundamentals.49

Later, he improved this model to perform more accurate sim-
ulations in reduced dimensionality that led to mounting evi-
dence for a required reassignment of the fundamental.13,17 The
improved model also helped to analyze the photodetachment
spectrum of NO –

3 .73 In addition, using a quartic force field,
Stanton computed the vibrational spectrum within the Born-
Oppenheimer approximation, including the infrared (IR) intensi-
ties.53 Homayoon and Bowman, using a PES from Morokuma et
al.,56 performed Born-Oppenheimer full-dimensional vibrational
eigenstate computations using a semi-empirical coordinate scal-
ing and could confirm the reassignment.62 Viel and Eisfeld, us-
ing a full-dimensional vibronic coupling model with higher-order
couplings terms, obtained vibronic levels and IR spectra that,
despite a more flexible PES model compared to the previously
mentioned PESs, led to no improved agreement with experiment,
compared to the previous computations. However, they could
confirm some previous results and revealed several non-adiabatic
effects.69 Later, Viel and Eisfeld, joined by Williams, presented a
completely new PES still based on the vibronic coupling model
but now with coordinate-depending parameters fitted using arti-
ficial neural networks.70 Initial Born-Oppenheimer computations
for selected vibrational states showed much improved agreement
with experiment, compared to the PES previously developed by
the two groups.80 Subsequently, Viel et al. used the new PES to
simulate the photodetachment spectra of NO –

3 that, among oth-
ers, led to the understanding of a hitherto unexplored hot band
in the experimental spectrum.18,75

Despite the aforementioned body of work on the vibra-
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tional/vibronic spectrum, many simulations were limited by, e.g.,
the use of semi-empirical parameters, PESs that are not flexible
enough, computations done in reduced dimensionality, or the ne-
glect of non-Born-Oppenheimer effects. In addition, so far the
largest number of full-dimensional vibronic states computed was
52,69 and most of the research focused on the eigenstates below
2000cm

−1. Undeniably, this low-energy region is the most im-
portant one in the IR spectrum. However, more experimental vi-
bronic states have been assigned with energies around 3000cm

−1

that so far lack an accurate simulated counterpart.* In addi-
tion, high-energy vibronic states reveal more details about non-
adiabatic coupling as these, in terms of energy, are closer to the
next electronic state. Many mysteries about the vibronic spec-
trum hence remain and hint at possible misassigned experimental
states.17 Driven by these motivations, here we report the accu-
rate computation of more than 2500 eigenstates. This increases
the number of rigorously computed vibronic states for this system
by a factor of 50. Moreover, we assign all states up to 3000cm

−1,
thereby increasing the number of assigned full-dimensional states
by a factor of ∼ 5.

This work is possible by two recent methodological advance-
ments. The first advancement is the development of the afore-
mentioned PES based on a vibronic coupling model and an intri-
cate artificial neural network.70,75,80 The second advancement is
the very efficient and accurate computation of vibrational states
using the density matrix renormalization group (DMRG) and tree
tensor network states (TTNS).81,82 This approach recently en-
abled the computation of the vibrational eigenspectrum of the 15-
dimensional fluxional Zundel ion.83 Other groups demonstrated
a similar efficiency of related tensor network methods targeting
vibrational spectra; see Refs. [84–88] for some selected recent
examples. Here, we extend our TTNS approach to the computa-
tion of vibronic spectra and present an accurate way for refitting
the diabatic potential matrix into a tensor network form. We fur-
ther test this approach using a complementary method based on
pruning.89–91

Our outline is as follows: Section 2 introduces more details
about the used coordinate system and the employed simula-
tion methods. Section 3 specifies details about the simulation
parameters and Section 4 introduces our methods for assign-
ing the vibronic eigenstates. The results are presented and dis-
cussed in Section 5. Section 5.1 discusses the overall eigenspec-
trum, Section 5.2 focuses on the assigned eigenstates, Section 5.3
deals with the infrared spectrum, and Section 5.4 discusses non-
adiabatic effects. We conclude in Section 6.

2 Simulation methods

We use the curvilinear coordinates that are adapted to the C3v

symmetry of NO3 and based on Radau and hyperspherical coor-
dinates as defined in Refs. [51,92], and we use a total angular
momentum quantum number of J = 0. See also Refs. [93,94]

* Stanton’s initial study assigned states up to 2500cm
−1 and some higher-lying

states, 49 but these levels are only qualitatively correct and do not include the um-
brella motion.

for a similar type of coordinate system. The corresponding ki-
netic energy operator contains terms that are not of the form of
sum of products of one-dimensional operators. To use a sum-
of-product operator, in Refs. [51,92], second- and fourth-order
Taylor expansions of the problematic terms near C3v-symmetric
configurations were provided. The fourth-order expansion was
tested on the NO3 radical in Ref. [64]. There, vibronic energy
levels supported by the E ′′ state computed with an alternative
coordinate system and its exact associated kinetic operator were
found in very good agreement with the ones computed with the
curvilinear coordinates and the approximated kinetic energy op-
erator. This demonstrates that the fourth-order approximation is
excellent, even for geometries away from the C3v reference that
are imposed by the triple-well structure of the lower E ′′ adiabatic
surface. Accordingly, we use the fourth-order approximation in
the following. The quasi-exact kinetic energy operator then can
be described as sum over 58 product terms.

The diabatic PESs are described by the functional form intro-
duced in Refs. [70,75,80]. The coupled PESs represent the five
lowest electronic energies of NO3, namely the X̃2A′

2
, Ã2E ′′, and

B̃2E ′ electronic states.75 The E states are doubly degenerate. The
PES is based on accurate reference data at the multi-reference
configuration interaction level using an adapted basis set of triple-
ζ quality; see Ref. [70] and references therein for further infor-
mation. The diabatic potential energy matrix is of the form of

V̂ =















V̂11 V̂12 V̂13 V̂14 V̂15

V̂21 V̂22 V̂23 V̂24 V̂25

V̂31 V̂32 V̂33 V̂34 V̂35

V̂41 V̂42 V̂43 V̂44 V̂45

V̂51 V̂52 V̂53 V̂54 V̂55















, (1)

where each operator V̂i j is represented as function over all six
coordinates. The full-dimensional 5× 5 matrix in Eq. (1) results
from an elaborated combination of diabatization by ansatz and
artificial neural network fitting.70,80 The coordinates used for
the diabatic PES are not the aforementioned curvilinear coordi-
nates but symmetry-adapted coordinates as described in the ap-
pendix of Ref. [75]. The part of the model containing the artifi-
cial neural network depends on nine invariants that are explicitly
given in that appendix, also. The symmetry-adapted coordinates
are mandatory to encode the symmetry of the diabatic elements,
while the nine invariants (i.e., totally symmetric coordinate poly-
nomials) correspond to all unique possible combinations up to
third order. They enable the flexibility of the neural network out-
puts and hence are responsible for the accuracy of the fit.

Recently, this PES has been used to model the photodetach-
ment spectra of NO –

3 both in the lower energy region75 and in
the energy range of the second excited state.18 The agreement
with the experimental photodetachment spectra underlined the
accuracy and the physical soundness of this PES. The minimum
of the ground-state adiabatic PES corresponds to a D3h symmetry,
whereas the first and second excited states are strongly influenced
by the Jahn-Teller e×E effect. The PES model also contains the
pseudo Jahn-Teller and dynamical pseudo Jahn-Teller couplings
between the X̃2A′

2
and the two Ã2E ′′, and B̃2E ′ excited states.
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The adiabatic representation of the PES can be described by an
anharmonic “bowl” for the electronic ground state, followed by
two pairs of PESs containing conical intersections surrounded by
three separate wells.

To compute the eigenstates, we use the TTNS approach devel-
oped in Ref. [81]. TTNSs are the wavefunction ansatz of both
the multilayer multiconfiguration time-dependent Hartree (ML-
MCTDH) method95–98 and of extended versions of the density
matrix renormalization group (DMRG).99–101 They allow for a
very economic description of high-dimensional eigenstates.82,102

Here, the eigenstates will be computed using the DMRG sweep
algorithm.103,104 We have previously demonstrated the accuracy
and efficiency of our TTNS-based DMRG approach by computing
about 1000 eigenstates of the 15-dimensional fluxional Zundel
ion to accuracies that are below the error of the PES fit.83 The
ML-MCTDH and DMRG methods work most optimal if the Hamil-
tonian has a form that is compatible with TTNSs. Many (but
not all105) ML-MCTDH method users typically re-fit the potential
as sum-of-product form.106,107 Here, we found such forms to be
less accurate (see Section 5.1) and instead decompose the ana-
lytical form of the PES using matrix product operators (MPOs),
which are straightforward extensions of matrix product states
(MPSs), a subset of TTNSs, to operators and which straightfor-
wardly can be obtained numerically using singular value decom-
position.82,85,100,108,109 Such a fit can be viewed as alternative to
the “multilayer potfit” approach.110

To provide an alternative means of testing the accuracy of the
TTNS method and the MPO decomposition, we use the previously
developed dynamically pruned (DP) discrete variable represen-
tation (DVR) approach (DP-DVR).89,111 This is based on using
only those configurations of the state in coordinate space that
are larger than a certain wave amplitude threshold. Phase-space
localized bases are more sparse than coordinate-space localized
bases,111–115 but we showed that due to the diagonality of the
potential operator in DVR representation, using DVRs is more
efficient despite the need for storing more important configura-
tions.89,111 Previously, one of us demonstrated the efficiency of
the DP-DVR method for vibrational resonance decay dynamics,91

strong-field electron dynamics,116,117 and non-adiabatic and pho-
todissociation dynamics in combination with the MCTDH method
(DP-MCTDH).90

3 Setup of the computations

The states were represented using sinc DVRs111,118,119 in each of
the curvilinear coordinates.† The basis-set parameters are given
in Tab. 1. These parameters were determined by comparing sepa-
rate eigenstate computations for different coordinate ranges and
basis sizes and by observing the reduced densities in position and
momentum space. The parameters are similar to those from pre-
vious studies.18,69 The TTNS and the MPO decompositions de-
pend on one convergence parameter that specifies the size of the
tensors, the so-called bond dimension D (also known as rank,
renormalized basis size, or number of single-particle functions in

† We use an atomic mass of 15.9949138012Da for 16O and 14.0030732884Da for 14N.

Table 1 Used basis-set parameters. The coordinate range is displayed in

either bohr or radians, depending on the type of coordinate.

symbol coordinate range basis size

ρ [638,770] 56

ϑ [0.845,1.065] 42

ϕ [0.665,0.905] 48

θ [1.451,1.691] 46

φ [0.817,1.227] 40

χ [2.734,3.548] 26

ML-MCTDH82). The diabatic potential matrix elements in Eq. (1)
were represented as MPO with two different maximal bond di-
mensions for two individual simulations analyzed in Section 5.
For the analysis of the first 180 states with excitation energies up
to Ẽ = 3000cm

−1 we used an MPO with D = 1,800, whereas for
the analysis of all ∼ 2500 eigenstates (including the first 180), we
used an MPO with D = 600. The D = 600 MPO led to an accurate
description of most but not all subtleties of the vibronic states that
are reported below.

We represented the eigenstates as MPS, a subset of TTNSs, us-
ing the following order of coordinates: electronic, ρ, ϑ , φ , θ ,
ϕ, χ. In some test computations, we found this ordering to be
optimal with respect to the bond dimension. Due to the low di-
mensionality of the system, a tree structure is not required and
hence we simply use a linear structure, as given by an MPS. The
MPS was used together with a maximal bond dimension of 30.
Renormalized basis states with singular values below 10

−8 were
not included, which means that the actual bond dimension for
each tensor can be smaller than 30.81,120 For the DMRG sweeps
a relative convergence tolerance of 10

−6 was used. We tested the
convergence of these parameters through separate computations
with tighter parameters. By shifting121,122 previously computed
states up in energy, the eigenstates were computed one by one as
described in Ref. [81].

The accuracy of the MPO fit of the diabatic potentials was
checked by computing the direct-product-DVR amplitudes of
some TTNSs and pruning them using the DP-DVR procedure de-
scribed in Ref. [89] and a wave amplitude threshold of 5 · 10

−7.
The smaller the threshold, the more accurate the representation
of the DP-DVR eigenstates. The used threshold led to energy er-
rors that are on the order of ∼ 2cm

−1, which is small enough for
this accuracy check. The energies of the DP-DVR states were com-
puted using the original and thus non-MPO-approximated poten-
tial surfaces and an algorithm for efficiently computing matrix-
vector products described in Ref. [89]. The IR stick spectra were
generated using the adiabatic dipole moment surface (DMS) from
Ref. [69], which was converted to the diabatic representation to
compute dipole matrix elements. The adiabatic-to-diabatic trans-
formation was obtained from the eigenvectors of Eq. (1). The
phases of the eigenvectors were adjusted to avoid discontinuities
between different configurations in coordinate space.

4 Setup of the assignment

We assigned the vibronic states not using curvilinear but normal
modes. They are displayed in Fig. 1. Q1 corresponds to the to-
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tally symmetric stretch motion, Q2 to the umbrella motion, the
degenerate Q3a and Q3b to the antisymmetric stretch motions,
and Q4a and Q4b to the antisymmetric bending motions. The
symmetry irreps in D3h are a

′

1
, a

′′

2
, e

′
, e

′
, respectively. Note that

these symmetry-adapted normal modes differ from textbook nor-
mal modes for AB3-type molecules.123 The convention we used
to define the normal modes were such that the Q3a and Q4a

modes are mirror-symmetric along the xz-plane, hence leading
to C2v-symmetric geometries, while the Q3b and Q4b lead to Cs-
symmetric geometries.

We assigned the states mostly based on wavefunction cuts,
overlaps to vibrational self-consistent field (VSCF) states, ener-
gies, and symmetry considerations. We optimized the VSCF124

states using normal modes, keeping the degenerate Q3a/Q3b and
the Q4a/Q4b mode pairs correlated. We individually optimized
excited VSCF states.

Plotting the two-dimensional wavefunction cuts requires de-
ciding which coordinates are kept frozen. Following Ref. [83],
we determined the values of the frozen coordinates for the two-
dimensional wavefunction cuts from the maxima of the diagonal
of the one-dimensional reduced density matrices (reduced densi-
ties). In cases of several maxima of the densities, we generated
all possible combinations. We chose the cuts presented here to be
most representative.

To generate the wavefunction cuts and the density matrices,
we transformed the wavefunction from the TTNS represented on
the direct-product grid in curvilinear coordinates to a state rep-
resented in normal coordinates on a small direct-product grid.
Specifically, we converted the normal-mode grid-points to curvi-
linear coordinates and then computed the amplitudes of the states
on these points by interpolating the DVR functions and contract-
ing the TTNS. Finally, we converted the diabatic state represented
on the small direct-product grid to the adiabatic representation
in order to plot the vibrational wavefunction on the adiabatic
ground state only.

We obtained the symmetries for the diabatic ground state only
using the C2v point group and the symmetry relationships for the
curvilinear coordinates described in Ref. [69]. Given the e′ sym-
metry of the two Q3 and Q4 modes, we used symmetry considera-
tions to derive the number of energies and their associated irreps
for each specific quanta in Q3 and Q4. Tab. 2 lists the irreps in
the C2v and D3h point groups and their relationships to the used
normal modes. Note that throughout we use the symmetries for
the vibrational state on the diabatic state. Other authors list the
vibronic symmetries that combines the vibrational symmetry and
that of the electronic state. The relationship between vibrational
and vibronic irreps is shown in the last two columns of Tab. 2.

5 Results and discussion

5.1 Overview

Overall, we computed approximately 2500 eigenstates up to an
excitation energy of Ẽ = 6000cm

−1, and some more states up
to Ẽ ≈ 6365cm

−1. In the following, all energies/wavenumbers
stated are relative to the vibronic ground state energy of
2396cm

−1. Fig. 2 gives an overview of the computed energy lev-

Table 2 Relation between (“vibrational”) irreps in C2v and D3h within the

orientational convention of this work similar to Ref. [69]. The normal

modes are listed in the line corresponding to their irrep in C2v. The last

two columns provide the relations of the irreps when the symmetry of

the lowest diabatic state (A′
2
) is taken into account (“vibronic” irreps).

ΓC2v
ΓD3h

normal mode ΓC2v·A′
2

ΓD3h·A′
2

a1 a′
1

or e′ Q1, Q3a, Q4a b1 a′
2

or e′

b1 a′
2

or e′ Q3b, Q4b a1 a′
1

or e′

a2 a′′
1

or e′′ b2 a′′
2

or e′′

b2 a′′
2

or e′′ Q2 a2 a′′
1

or e′′

els up to 6000cm
−1. Note that the electronic Ã2E ′′ state appears

at Ẽ ≈ 7065cm
−1, so our high-energy vibronic states have ener-

gies just 700cm
−1 below the next electronic state. At these high

energies, there is a large density of states and an apparent quasi-
continuum.79 For comparison, there are 400 vibronic states up
to 3761cm

−1, 1000 states up to 4787cm
−1, but already approxi-

mately 2500 states up to 6000cm
−1. The approximate density of

states as a function of excitation energy is shown in Fig. 3 and
displays a steep increase of the number of states from ∼ 0.5 states
per cm

−1 at 3000cm
−1 to almost 4 states per cm

−1 at 6000cm
−1.

Note that our algorithm does not necessarily return eigenstates
ordered by energy. While we did additional computations to
retrieve all states (by designing highly excited VSCF-optimized
initial guesses for the TTNS optimization), there might be some
states above ∼ 5800cm

−1 that we missed and that would lead to a
slight change in the density of states at these high energies. Since
most of the following analysis is for the states below 3000cm

−1,
the missing states at these high energies are irrelevant.

The bond dimensions used for re-fitting the PES as MPOs
(D = 600 and D = 1,800) are extremely large for 6-dimensional
PESs. Using weights in the least-square MPO fit can reduce the
required basis size/bond dimension in related fitting methods.106

Here, weights did not reduce the required bond dimension. This
might be explained by the importance of large-energy regions on
one electronic state due to the large diabatic couplings as well
as the fact that low-energy regions can have large couplings. We
also tried other fitting methods such as “potfit” or canonical de-
compositions, which recently have been generalized to diabatic
PESs,125 but found that MPOs provide the most straightforward
and accurate refits. The D = 600 MPO representation of the low-
est diabatic PES has a root-mean-square deviation to the fitted
PES (RMSD) of 21cm

−1 whereas the couplings and excited states
have a maximal RMSD of 62cm

−1. The RMSD for the D = 1,800

MPO are 16cm
−1 for the ground state and up to 25cm

−1 for the
excited states and couplings. Note that these RMSDs reflect the
mean accuracy of the PES along the complete configuration space
covered. Typically, the eigenstate observables are much more ac-
curate than the RMSD of the PES.83 However, degeneracies of
high-energy states are better described by MPOs with larger bond
dimension.

To estimate the error of the MPO approximation of the poten-
tial energy operator, we have checked the energy error of the first
500 and the last 160 states using the DP-DVR method by con-
verting our TTNS state to a DP-DVR state and computing the DP-
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Fig. 1 Normal modes used for the assignment. For each modes the gray arrows or circles with ± signs display the displacement vectors. The circles

with ± signs display motions out of plane. The displacement vectors (not the circles) are drawn to scale of the actually used modes, hence the small

extent of some of the vectors.

DVR energy using the exact PES without MPO fit; see Section 3
for more details. The DP-DVR energies differ mostly by up to
2cm

−1 to the TTNS-MPO energy, with maximal errors reaching
∼ 3.0cm

−1 for the lowest 500 states and ∼ 3.6cm
−1 for the high-

est 160 states. This shows that the error only modestly increases
with excitation energy. Note that the approximate DP-DVR ener-
gies are converged to - 2cm

−1, indicating that the actual error
of our TTNS-MPO energies often are much smaller than 2cm

−1.
This accuracy is more than sufficient and much higher than the
accuracy of the underlying artificial-neural-network-based PES.

5.2 Assignment

The assignment in terms of vibrational zero-order states of the
first 180 vibronic states up to Ẽ ≈ 3000cm

−1 is shown in Tab. 3,
and their energies are compared with experiment and three other
calculations from literature by Viel and Eisfeld,69 Stanton,17 and
by Homayoon and Bowman62 (note that the latter is based on an
empirical coordinate scaling). In addition, Tab. 3 contains sym-
metry labels for each vibronic level. In particular, therein we pro-
vide a “grouped assignment” using Roman numerals to pinpoint
the number of energies and the explicit list of irreps for each com-
bination of quanta in Q3 and Q4. For example, two quanta in Q4

(abbreviated as 4
2) leads to two irreps a′

1
and e′, and hence two

levels for the group we denote as “III : k/2(a′
1
+ e′),” with k = 1,2

numbering the two levels in the group. The first level (k = 1) in
that group corresponds to state number 3 in Tab. 3, which is of
a1 symmetry, while the states 4/5 correspond to the second level
(k = 2) in group III with e′ symmetry. For each row in the table,
the irrep of the particular state considered in the row is under-
lined. The groups are also used for combination terms to denote
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2
symmetry of the Q2 mode, the irreps change if the group is

combined with an odd excitation in Q2.
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Table 3 Assignment of the first 180 vibronic states up to ∼ 3000cm
−1. For each level, we present the vibrational irrep of the C2v point group, the quanta vi for mode i, a grouped assignment

(see below), and the wavenumbers computed in this work, absolute difference to experimental wavenumber ∆, experimental wavenumbers (as assigned) and computed wavenumbers from the

literature. The zero-point vibrational energy corresponds to 2396.32cm
−1. Note that the vibrational irrep corresponds to the vibrational symmetry of the vibronic wavefunction component onto

the lowest diabatic state of A′
2

symmetry; see Tab. 2 for conversions to other point groups or vibronic irreps. If explicit assignments can be made for the degenerate antisymmetric stretching and

bending coordinates (v3/v4), then we will show it using Dirac notation. Otherwise, we only show the main vibrational quantum number. The grouped assignment provides an alternative labeling

(Qn corresponds to n quanta in mode Q) and a grouping of the excitations in v3 and v4 together with the vibrational irreps of that group using the D3h point group; see text for details. The groups

are numbered using Roman numerals. Unclear assignments are marked by parenthesizing the grouped assignment. Some levels were too difficult to assign, which is marked by an asterisk. The

experimental wavenumbers are shown with up to 6 digits precision. If the uncertainty was provided in the literature but actually is smaller than the precision reported here, then the uncertainty

is set to 0. “S” in the experimental references refers to summation of low-energy levels as calculated in Ref. [65]. Note that the two exp. levels marked in parentheses from Ref. [126] are based

on matrix isolation. Note further that some experimental values, in particular some with large deviation to our levels, were not directly observed but deduced from perturbation analysis; see the

text for a discussion. Some computed levels in Ref. [69] were not assigned. These are marked with a “?”. States that may appear higher in energy are marked as “missing”. The computations

reported in Ref. [17] did not include the umbrella Q2 mode, thus the “n/a” label for those states. Some levels using a different potential energy surface and a small basis that includes the Q2 mode

were reported by the same author in Ref. [53]. If available, these levels are added in parentheses after the “n/a” label. Note that the levels reported in Ref. [62] are based on a semi-empirical

coordinate scaling and thus are not from ab initio computations.

Ẽ/cm
−1

State ΓC2v
v1 v2 v3 v4 grouped assignment this work ∆ Exp. Ref. Ref. [69] Ref. [17] Ref. [62]

0 a1 I: 1/1 (a′
1
) 0

1/2 a1/b1 |01〉/|10〉 4
1 II: 1/1 (e′) 359.33 6 365.49(0) [58] 361.1 369 369

3 a1 |02〉+ |20〉 4
2 III: 1/2 (a′

1
+ e′) 736.09 16 752.40(0) [58,65] 711 741 746

4/5 a1/b1 |11〉/|02〉− |20〉 4
2 III: 2/2 (a′

1
+ e′) 770.68 1 771.79(1) [58,65] 742.2 777 756

6 b2 1 2
1

792.73 30 762.34(0) [58,65] 748.5 n/a (808) 764
7/8 a1/b1 |01〉/|10〉 3

1 IV: 1/1 (e′) 1029.01 25 1054.14(0) [74] 1021.8 1069 1099
9 a1 1 1

1
1064.45 13 1051.26 [76] 1038.6 1061 1067

10/11 a2/b2 1 |01〉/|10〉 2
1 ·41

2
1·II: 1/1 (e′′) 1146.88 22 1125.10(0) [65] 1109.6 n/a 1138

12/13 a1/b1 3 4
3 V: 1/3 (a′

1
+a′

2
+ e′) 1158.68 15 1173.61(0) [67] 1082.5 1152 1143

14 b1 |21〉+ |03〉 4
3 V: 2/3 (a′

1
+a′

2
+ e′) 1185.08 31 1216.2 [76] 1134.6 1214 1150

15 a1 3 4
3 V: 3/3 (a′

1
+a′

2
+ e′) 1224.77 169 1055.34 [76] 1139.7 1191 1160

16 b1 1 1 3
1
4

1 VI: 1/3 (a′
1
+a′

2
+ e′) 1329.90 161 1491(3) [59,65] 1302.4 1365 1430

17/18 a1/b1 1 |01〉/|10〉 1
1 ·41

1
1·II: 1/1 (e′) 1418.46 5 1413.57(0) [67] 1388.1 1424 1434

19/20 a1/b1 1 1 3
1
4

1 VI: 2/3 (a′
1
+a′

2
+ e′) 1476.71 16 1492.39(0) [59,65] 1438.6 1494 1493

21 a1 1 1 3
1
4

1 VI: 3/3 (a′
1
+a′

2
+ e′) 1490.45 9 1499.75(0) [59,65] 1425.0 1522 1501

22 b2 1 |02〉+ |20〉 2
1 ·42

2
1·III: 1/2 (a′′

2
+ e′′) 1516.41 7 1509.72(2) [59,65] 1459.2 n/a (1598) 1519

23 a1 2 2
2

1542.69 21 1522(2) [59,65] 1496.2 n/a 1533
24/25 a2/b2 1 |11〉/|02〉− |20〉 2

1 ·42
2

1·III: 2/2 (a′′
2
+ e′′) 1559.70 22 1537.54(2) [59,65] 1490.2 n/a 1529

26 a1 4 4
4 VII: 1/3 (a′

1
+ e′+ e′) 1587.41 22 1609(10) [65] 1446.9 1569 1553

27/28 a1/b1 |04〉/|31〉 4
4 VII: 2/3 (a′

1
+ e′+ e′) 1597.92 31 1567 [73] 1469.1 1579 1552

29/30 a1/b1 4 4
4 VII: 3/3 (a′

1
+ e′+ e′) 1661.64 1542.0 1642 1568

31/32 a1/b1 |01〉/|10〉 |11〉/|20〉 3
1
4

2 VIII: 1/4 (a′
1
+a′

2
+ e′+ e′) 1763.73 186 1949.83(1) [65] 1678.2 1769 1804

33 a1 1 |20〉+ |02〉 1
1 ·42

1
1·III: 1/2 (a′

1
+ e′) 1796.97 2 1798.5 [76] 1736.4 1792 1805

34/35 a2/b2 1 |01〉/|10〉 2
1 ·31

2
1·IV: 1/1 (e′′) 1823.72 9 1815 S 1763.1 n/a 1858

36/37 a1/b1 1 |11〉 1
1 ·42

1
1·III: 2/2 (a′

1
+ e′) 1844.97 11 1834.3 [76] 1772.6 1845 1832

38 b2 1 1 1
1
2

1
1855.21 45 1810 S 1783.5 n/a (1898) 1830

39/40 a1/b1 2 |01〉/|10〉 2
2 ·41

2
2·II: 1/1 (e′) 1891.93 7 1885 S 1857.3 n/a missing

41 b1 1 |12〉 3
1
4

2 VIII: 2/4 (a′
1
+a′

2
+ e′+ e′) 1897.39 17 1914.18(0) [65] 1803.9 1889 1890

42 a1 1 2 3
1
4

2 VIII: 3/4 (a′
1
+a′

2
+ e′+ e′) 1906.74 14 1920.76(0) [65] 1861.3? 1923 1897

43/44 a1/b1 1 2 3
1
4

2 VIII: 4/4 (a′
1
+a′

2
+ e′+ e′) 1915.40 11 1926.15(0) [65] 1810.7 1931 1900

45/46 a2/b2 1 3 2
1 ·43

2
1·V: 1/3 (a′′

1
+a′′

2
+ e′′) 1939.03 10 1929.37(0) [65] 1830.1 n/a

47 a2 1 |21〉+ |03〉 2
1 ·43

2
1·V: 2/3 (a′′

1
+a′′

2
+ e′′) 1972.90 35 1937.68(8) [65] missing n/a

48 a1 |20〉+ |02〉 3
2 X: 1/2 (a′

1
+ e′) 1995.12 14 2009.12(0) [77] 1881.7? missing

1
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Ẽ/cm
−1

State ΓC2v
v1 v2 v3 v4 grouped assignment this work ∆ Exp. Ref. Ref. [69] Ref. [17] Ref. [62]

49/50 a1/b1 1 1 1
1 ·31

1
1·IV: 1/1 (e′) 2009.15 15 2024.32(0) [68] 1831.2? missing

51 b2 1 3 2
1 ·43

2
1·V: 3/3 (a′′

1
+a′′

2
+ e′′) 2020.94 51 1970(10) [65] 1882.0? n/a

52/53 a1/b1 |05〉/|50〉 4
5 IX: 1/3 (a′

1
+ e′+ e′) 2031.72 5 2026.3 [76] missing 1989

54 b1 6 4
6 XI: 1/5 (a′

1
+a′

1
+a′

2
+ e′+ e′) 2041.77 1860.4?

55 a1 5 4
5 IX: 2/3 (a′

1
+ e′+ e′) 2095.81 86 2010.0 [76] 1914.2?

56/57 a1/b1 5 4
5 IX: 3/3 (a′

1
+ e′+ e′) 2115.12 missing

58 a2 1 1 1 2
1 ·31

4
1

2
1·VI: 1/3 (a′′

1
+a′′

2
+ e′′) 2123.01 1887.0? n/a (2248)

59 a1 2 1
2

2138.35 21 2117.8 [76]
60/61 a1/b1 2 3

2 X: 2/2 (a′
1
+ e′) 2139.84 15 2155.19(0) [68]

62 b1 1 3 3
1
4

3 XII: 1/5 (a′
1
+a′

2
+ e′+ e′+ e′) 2186.13

63/64 a1/b1 1 3 1
1 ·43

1
1·V: 1/3 (a′

1
+a′

2
+ e′) 2201.43 4 2205.69(0) [68]

65/66 a2/b2 1 1 |01〉/|10〉 1
1
2

1 ·41
1

1
2

1·II: 1/1 (e′′) 2205.46 34 2171.1 [77]
67/68 a1/b1 1 3 3

1
4

3 XII: 2/5 (a′
1
+a′

2
+ e′+ e′+ e′) 2245.81

69 a1 2 |02〉+ |20〉 2
2 ·42

2
2·III: 1/2 (a′

1
+ e′) 2263.33 17 2245.87(0) [68]

70/71 a2/b2 1 1 |11〉/|02〉− |20〉 2
1 ·31

4
1

2
1·VI: 2/3 (a′′

1
+a′′

2
+ e′′) 2263.52

72 b1 1 |21〉+ |03〉 1
1 ·43

1
1·V: 2/3 (a′

1
+a′

2
+ e′) 2269.55

73 b2 1 1 1 2
1 ·31

4
1

2
1·VI: 3/3 (a′′

1
+a′′

2
+ e′′) 2282.60

74 a1 1 3 1
1 ·43

1
1·V: 3/3 (a′

1
+a′

2
+ e′) 2292.61 135 2157.8 [76]

75/76 a1/b1 2 |11〉/|02〉− |20〉 2
2 ·42

2
2·III: 2/2 (a′

1
+ e′) 2297.43 54 2351.4 [76]

77 b2 3 2
3

2315.93 66 2249.9 [77]
78/79 a1/b1 1 3 3

1
4

3 XII: 3/5 (a′
1
+a′

2
+ e′+ e′+ e′) 2330.42

80 b1 1 1 1 1
1 ·31

4
1

1
1·VI: 1/3 (a′

1
+a′

2
+ e′) 2343.23

81 a1 1 3 3
1
4

3 XII: 4/5 (a′
1
+a′

2
+ e′+ e′+ e′) 2349.16 9 2358 [40]

82 b2 1 4 2
1 ·44

2
1·VII: 1/3 (a′′

2
+ e′′+ e′′) 2370.62

83/84 a1/b1 1 3 3
1
4

3 XII: 5/5 (a′
1
+a′

2
+ e′+ e′+ e′) 2376.78 0 2376.52(0) [68]

85/86 a2/b2 1 4 2
1 ·44

2
1·VII: 2/3 (a′′

2
+ e′′+ e′′) 2379.11 19 2360.0 [77]

87/88 a1/b1 2 1 3
2
4

1 XIV: 1/4 (e′+a′
2
+a′

1
+ e′) 2399.18

89/90 a2/b2 1 4 2
1 ·44

2
1·VII: 3/3 (a′′

2
+ e′′+ e′′) 2459.11

91 a1 6 4
6 XI: 2/5 (a′

1
+a′

1
+a′

2
+ e′+ e′) 2481.49

92/93 a1/b1 6 4
6 XI: 3/5 (a′

1
+a′

1
+a′

2
+ e′+ e′) 2485.13

94/95 a1/b1 2 |01〉/|10〉 1
2 ·41

1
2·II: 1/1 (e′) 2496.08

96 a1 2 1 (3
2
4

1 XIV: 2/4 (e′+a′
2
+a′

1
+ e′) ) 2501.21

97/98 a1/b1 1 1 1 1
1 ·31

4
1

1
1·VI: 2/3 (a′

1
+a′

2
+ e′) 2513.31 5 2518.71(0) [68]

99 a1 1 1 1 1
1 ·31

4
1

1
1·VI: 3/3 (a′

1
+a′

2
+ e′) 2542.83 32 2511 [40]

100/101 a2/b2 1 1 |02〉/|20〉 2
1 ·31

4
2

2
1·VIII: 1/4 (a′′

1
+a′′

2
+ e′′+ e′′) 2553.91

102/103 a1/b1 6 4
6 XI: 4/5 (a′

1
+a′

1
+a′

2
+ e′+ e′) 2559.20

104/105 a1/b1 2 |01〉/|10〉 2
2 ·31

2
2·IV: 1/1 (e′) 2569.23

106 b1 7 4
7 XVII: 1/5 (a′

1
+a′

2
+ e′+ e′+ e′) 2570.17

107 b2 1 1 |02〉+ |20〉 1
1
2

1 ·42
1

1
2

1·III: 1/2 (a′′
2
+ e′′) 2576.54 69 2508.0 [77]

108/109 a1/b1 2 1 3
2
4

1 XIV: 3/4 (e′+a′
2
+a′

1
+ e′) 2577.33 8 2585.11(0) [68]

110 a1 6 4
6 XI: 5/5 (a′

1
+a′

1
+a′

2
+ e′+ e′) 2590.42

111 a1 1 2 1
1
2

2
2592.77 56 2537.0 [76]

112 b1 2 |11〉 (3
2
4

1 XIV: 4/4 (e′+a′
2
+a′

1
+ e′) ) 2615.17

113/114 a1/b1 1 4 3
1
4

4 XVI: 1/7 (a′
1
+a′

1
+a′

2
+a′

2
+ e′+ e′+ e′) 2622.58

115/116 a2/b2 1 1 |11〉/|02〉− |20〉 1
1
2

1 ·42
1

1
2

1·III: 2/2 (a′′
2
+ e′′) 2633.03

117 a1 1 4 1
1 ·44

1
1·VII: 1/3 (a′

1
+ e′+ e′) 2639.21 126 2513.7 [76]

118/119 a2/b2 3 |01〉/|10〉 2
3 ·41

2
3·II: 1/1 (e′′) 2661.50

120 a2 1 1 |21〉 2
1 ·31

4
2

2
1·VIII: 2/4 (a′′

1
+a′′

2
+ e′′+ e′′) 2677.76

8
|

1
–
1
8



Ẽ/cm
−1

State ΓC2v
v1 v2 v3 v4 grouped assignment this work ∆ Exp. Ref. Ref. [69] Ref. [17] Ref. [62]

121/122 a1/b1 2 3 2
2 ·43

2
2·V: 1/3 (a′

1
+a′

2
+ e′) 2683.08

123/124 a1/b1 1 4 3
1
4

4 XVI: 2/7 (a′
1
+a′

1
+a′

2
+a′

2
+ e′+ e′+ e′) 2686.85

125 b1 1 4 3
1
4

4 XVI: 3/7 (a′
1
+a′

1
+a′

2
+a′

2
+ e′+ e′+ e′) 2693.42

126 b2 1 1 3 2
1 ·31

4
2

2
1·VIII: 3/4 (a′′

1
+a′′

2
+ e′′+ e′′) 2694.96

127/128 a2/b2 1 1 2 2
1 ·31

4
2

2
1·VIII: 4/4 (a′′

1
+a′′

2
+ e′′+ e′′) 2705.88

129 b1 2 |21〉+ |03〉 2
2 ·43

2
2·V: 2/3 (a′

1
+a′

2
+ e′) 2713.70

130 a1 1 4 3
1
4

4 XVI: 4/7 (a′
1
+a′

1
+a′

2
+a′

2
+ e′+ e′+ e′) 2717.39

131/132 a1/b1 1 4 1
1 ·44

1
1·VII: 2/3 (a′

1
+ e′+ e′) 2729.40

133 a1 2 3 2
2 ·43

2
2·V: 3/3 (a′

1
+a′

2
+ e′) 2753.55 (133) (2621) [126]

134/135 a1/b1 1 4 3
1
4

4 XVI: 5/7 (a′
1
+a′

1
+a′

2
+a′

2
+ e′+ e′+ e′) 2761.88

136 b1 1 4 3
1
4

4 XVI: 6/7 (a′
1
+a′

1
+a′

2
+a′

2
+ e′+ e′+ e′) 2782.03

137 b2 1 2 2
1 ·32

2
1·X: 1/2 (a′′

2
+ e′′) 2786.72

138 b1 1 * ∗ 2787.76

139 a1 1 * ∗ 2787.96

140/141 a2/b2 1 1 1 1
1
2

1 ·31
1

1
2

1·IV: 1/1 (e′′) 2805.05

142 a1 2 2 (3
2
4

2 XVIII: 1/6 (a′
1
+a′

1
+a′

2
+ e′+ e′+ e′) ) 2811.34

143/144 a2/b2 1 5 2
1 ·45

2
1·IX: 1/3 (a′′

2
+ e′′+ e′′) 2814.45

145 a2 1 6 2
1 ·46

2
1·XI: 1/5 (a′′

1
+a′′

2
+a′′

2
+ e′′+ e′′) 2822.52

146/147 a1/b1 2 2 (3
2
4

2 XVIII: 2/6 (a′
1
+a′

1
+a′

2
+ e′+ e′+ e′) ) 2826.90

148 a1 1 4 3
1
4

4 XVI: 3/7 (a′
1
+a′

1
+a′

2
+a′

2
+ e′+ e′+ e′) 2852.13

149 b1 2 1 1 2
2 ·31

4
1

2
2·VI: 1/3 (a′

1
+a′

2
+ e′) 2865.51

150/151 a1/b1 2 2 (3
2
4

2 XVIII: 3/6 (a′
1
+a′

1
+a′

2
+ e′+ e′+ e′) ) 2874.44 (18) (2892) [126]

152 a1 1 2 2 (1
1 ·31

4
2

1
1·VIII: 1/4 (a′

1
+a′

2
+ e′+ e′) ) 2880.45

153/154 a1/b1 3 3
3 XIII: 1/3 (e′+a′

2
+a′

1
) 2883.33

155 b2 1 5 2
1 ·45

2
1·IX: 2/3 (a′′

2
+ e′′+ e′′) 2886.64

156 a1 2 2 2 (3
2
4

2 XVIII: 4/6 (a′
1
+a′

1
+a′

2
+ e′+ e′+ e′) ) 2892.68

157 b1 3 1 (3
3
4

1 XV: 1/6 (e′+ e′+ e′+a′
2
+a′

1
+ e′) ) 2894.44

158/159 a2/b2 1 5 2
1 ·45

2
1·IX: 3/3 (a′′

2
+ e′′+ e′′) 2915.59

160/161 a1/b1 2 |11〉/|02〉− |20〉 1
2 ·42

1
2·III: 1/2 (a′

1
+ e′) 2916.70

162 b2 2 1 1
2
2 2925.70

163/164 a2/b2 1 2 2
1 ·32

2
1·X: 2/2 (a′′

2
+ e′′) 2931.09

165/166 a1/b1 1 2 |01〉/|10〉 1
1
2

2 ·41
1

1
2

2·II: 1/1 (e′) 2939.55

167/168 a1/b1 7 4
7 XVII: 2/5 (a′

1
+a′

2
+ e′+ e′+ e′) 2940.87

169 b1 8 4
8 XIX: 1/6 (a′

1
+a′

1
+a′

2
+ e′+ e′+ e′) 2945.96

170 b1 2 2 (3
2
4

2 XVIII: 5/6 (a′
1
+a′

1
+a′

2
+ e′+ e′+ e′) ) 2956.48

171/172 a1/b1 1 1 2 1
1 ·31

4
2

1
1·VIII: 2/4 (a′

1
+a′

2
+ e′+ e′) 2966.44 64 2901.95(0) [68]

173 a2 1 1 3 2
1 ·31

4
3

2
1·XII: 1/5 (a′′

1
+a′′

2
+ e′′+ e′′+ e′′) 2975.60

174/175 a2 1 1 3 1
1
2

1 ·43
1

1
2

1·V: 1/3 (a′′
1
+a′′

2
+ e′′) 2988.55

176/177 a1/b1 1 1 * ∗ 2999.39

178 a1 1 1 * ∗ 3003.62

179/180 a1/b1 2 1 2 2
2 ·31

4
1

2
2·VI: 1/3 (a′

1
+a′

2
+ e′) 3005.36
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Compared to the previously computed levels, our energies dif-
fer greatly from that of Ref. [69] with a discrepancy of up to
126cm

−1 for state 26 (4
4). This discrepancy can be understood

in terms of a less accurate vibronic potential energy surface used
in Ref. [69], compared to the one used here.75 A slightly im-
proved agreement can be found between our fully ab initio levels
and the semi-empirical ones from Ref. [62], where the maximal
discrepancy is 100cm

−1 for state 16 (3
1
4

1). The computed lev-
els from Ref. [17], which uses the Hamiltonian from Ref. [13],
have served as reference in a multitude of experimental studies,
see, e.g., Refs. [58,60,63,73,127]. Our levels are in good agree-
ment with those from Ref. [17]. Compared to our energies, the
largest deviation is 43cm

−1 for states 52/53 (4
5). The good agree-

ment is remarkable, given the many challenges that are associated
with computing the electronic structure, non-adiabatic couplings,
and fitting the non-adiabatic potential energies for this molecule.
Note that the potential fit used in this work has not been designed
to give accurate vibronic states of a particular adiabatic state but
to accurately reproduce the photodetachment spectrum of NO –

3 ,
which requires a balanced description of all five electronic states
involved across a large part of configuration space.18,70,75

While comparing levels computed using different theories is
useful, a comparison to experimental values is even more illu-
minating and, in this case, may also reveal discrepancies in the
experimental assignment. Overall, the agreement of our com-
puted levels with experiment is very good. Computed energies
for states with excitations in Q1 or Q2 are systematically larger
than the experimental references, whereas those for excitations
in Q3 or Q4 are smaller but closer to the experimental references.
Note that two levels have been reported in a Laser Induced Flu-
orescence (LIF) spectroscopy experiment by Kim et al.40 that are
below 3000cm

−1 and not included here, as these levels belong to
excitation groups that are not fully included in our list of assigned
states in Tab. 3. An assignment of an even larger number of com-
puted states would be required for a proper analysis of these two
peaks. Assuming that the experimental assignment is correct (see
below), the largest deviation to experiment is for the 3

1
4

2 states
31/32 with a deviation of ∼ 180cm

−1. The RMSD for all levels is
58cm

−1, which includes uncertain experimental assignments (see
below).

There are five levels with differences of more than 100cm
−1

compared to reported levels from experimental gas phase studies.
All five levels have excitations in Q4. The IR inactive state 15
(4

3) with a′
1

symmetry has only recently been detected through
LIF spectroscopy,76 where an excitation energy corresponding to
1055cm

−1 has been reported. This value is in disagreement with
not only our computed energy of 1225cm

−1, but also with the
three other, independent theoretical predictions. State 16 (3

1
4

1)
is difficult to detect experimentally due to a weak intensity.59 As it
could not be directly detected, the reported65 experimental value
of 1491(3)cm

−1 was determined through perturbation analysis.59

Our computed value is 1330cm
−1, which, as state 15, is close to

previous theoretical predictions.17,69,80 All other levels with 3
1
4

1

excitations are in very good agreement with experiment.
A similar pattern as for 3

1
4

1 exists for 3
1
4

2. All excitations
of type 3

1
4

2 but one are in very good agreement with experi-

ment. With a deviation of 186cm
−1, states 31/32 (3

1
4

2) have the
largest disagreement to experiment but, like 3

1
4

1, the experimen-
tal value of 1950cm

−1 is not directly observed but stems from a
perturbation analysis. The same issue about deviations for these
two excitations with very weak IR intensity has been discussed in
Ref. [17]. Our values are in very good agreement with Ref. [17].
Additional computations on isotopologues, where some transi-
tions have larger IR intensities,65 would help to illuminate more
aspects of this, but this is beyond the scope of this work. The
other two states with energies that have large disagreement with
a LIF experiment76 are state 74 (1

1
4

3) and state 117 (1
1
4

4). To
summarize, three of the five levels with large disagreement to ex-
periment are based on a recent LIF experiment,76 and the other
two levels with large disagreement have a very weak IR inten-
sity and the reported experimental values are based on perturba-
tion analysis rather than direct observation. Other levels of the
same type of excitation patterns with stronger intensity have ex-
cellent agreement with experiment. More experiments and com-
putations using different potentials and targeting also high-lying
eigenstates may help to clarify the disagreement.

As previous computational studies,13,49,62,69 we also confirm
the re-assignment of states 7/8 (3

1) from 1492cm
−1 to the ex-

perimental transition at 1054cm
−1, and states 19/20 (3

1
4

1) to
the transition at 1492cm

−1.13 Likewise, we confirm the recently
reported assignment of state 26 (4

4 with e′ symmetry) to the
transition at 1567cm

−1 measured using photodetachment spec-
troscopy.73 A transition at 1608cm

−1 recently reported for this
state through LIF experiments76 would much better match the
energy of state 26 (4

4 with a′
1

symmetry, calculated as 1587cm
−1),

which is in agreement with the results and discussion in Ref. [17].
In the experimental IR spectrum, there are hot bands arising

from the low-energy state 1 (4
1) that recently have been ana-

lyzed in detail.55,59,65 In particular, there are possible transitions
to two states of a′ symmetry with a 3

1
4

2 excitation, but only one
of them led to an observed hot band due to low intensity. As-
suming validity of our dipole surface (see Section 5.3), we can
confirm this: The computed hot band IR intensity of state 41 is a
factor of 6 lower than that of state 42.

The large spread of the 3
1
4

1 and 3
1
4

2 sublevels has been re-
marked in Ref. [17], and we can confirm this spread. However,
as discussed above, more experiments would help to confirm or
to disprove this spread of sublevels. Also, we notice in our re-
sults a large level splitting of many other excitation groups such
as 3

1
4

3 and 3
2
4

1. For these levels, an experimental verification is
missing, save for states 83/84 and 108/109, whose energies are
in excellent agreement with experiment.

In addition to the splitting of some combination bands, we ob-
serve a surprisingly large splitting of the levels with large excita-
tions in Q4: The first of the five 4

6 levels is of a′
2

symmetry with
an energy of 2042cm

−1. Remarkably, this level is sandwiched en-
ergetically by the 4

5 states! The next state belonging to the 4
6 has

an energy that is 439cm
−1 higher (state 91 with a′

1
symmetry).

This is a reoccurring pattern also for the 4
7 and 4

8 levels (com-
pare states 106, 110, 167/168 and 169), and for combination
bands (e.g. states 143/144 and 145). Thus, for high excitations
in Q4, the energy splitting imposed by symmetry or vibrational
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angular momentum is larger than the zero-order reference.
Next to these large splittings, we also observe possible reso-

nances and a strong mixing of the 3
2
4

2 and the 1
1
3

1
4

2 levels
(groups XVIII and 1

1· VIII in Tab. 3). The harmonic energies
of these two excitations are energetically close (2776cm

−1 and
2811cm

−1), confirming the possibility for the occurrence of res-
onances. The grouped assignment in Tab. 3 only displays the
largest zero-order component and, due to the mixing, is paren-
thesized. Due to a similar type of mixing, some states belonging
to group XIV are parenthesized. Note that for these cases the
grouped assignment may be different from the quanta in the indi-
vidual modes given in Tab. 3. The grouped assignment does take
additional symmetry and energy considerations into account.

The discussion about the large energy splittings and possible
resonances indicate the difficulty of assigning states with many
excitations in Q3 and/or Q4. In general, the assignment based
on VSCF states is straightforward for excitations in Q1, Q2 (see
below for a discussion), and for some lower excitations in Q4. In
contrast, for many excitations in Q3 and Q4, the assignment is
not always clear and could only be done using a combination of
observation of energies, symmetries, VSCF overlaps, and wave-
function cuts. The assignment was more difficult for high-energy
states containing multiple vibrational quanta in each mode. Dif-
ficult assignments for such states is typical for strongly coupled,
anharmonic systems.28,53,91 The zero-order picture drawn from
the assignment thus must be taken with some caution. For ex-
ample, for many states the wavefunction cuts display more subtle
excitation patterns. Often, lobes of small magnitude are visible in
the cuts even for states formally marked as having no excitations
in that mode. This is particularly the case for high-energy states
and cuts along Q3 and Q4, but also happens for Q1 and partially
Q2 for states with energies larger than 2000cm

−1. Note that the
wavefunction cuts expose these subtle excitation patterns but not
the reduced densities, which reflect the average excitation.

To shine more light on the intriguing nature of the vibronic
dynamics of NO3, we now discuss the wavefunctions of some ex-
emplary states. A strong coupling of the antisymmetric stretching
and bending coordinates Q3 and Q4 already is visible even for
state 5, which is assigned as 4

2 (|11〉 in the two Q4 coordinates)
but displays a weak excitation pattern along the Q3 modes. This
is depicted in Fig. 4. Note further the strong anharmonicity in all
four modes. In general, we observe that the higher the excitation
in Q4, the more coupling to the Q3 modes there is. This is not sur-
prising as the two degenerate modes are not pure stretching and
bending modes (compare with Fig. 1), as has been observed pre-
viously.49,69 An alternative to the normal coordinates of the NO

3

radical is to use the normal coordinates of NO
−

3
as reference,41

but Duchinsky rotations lead to a similarly large coupling in these
coordinates.49 Exploring other coordinates for the assignment is
beyond the scope of this work.

Another large effect of correlation is shown in Fig. 5 for the IR
active state 21. While the state formally is assigned as 3

1
4

1 exci-
tation, some cuts in the Q4 modes do not display any excitation
patterns but rather an extended positive wavefunction lobe, see
Fig. 5 (b). The excitation in Q4 only is revealed by inspecting plots
along the Q3 and Q4 modes. Singular value decomposition along

the Q3 modes and the Q4 modes reveals three important states,
the largest (!) component being an approximate ground state of
type |vQ3a

vQ3b
〉× |vQ4a

vQ4b
〉 = |00〉× |00〉, and the other two large

components being of type |01〉×|01〉, and |10〉×|10〉, respectively.
Indeed, a |vQ3a

vQ4a
〉= |11〉 type of excitation is visible in Fig. 5(c).

This is a clear vibrational correlation effect and does not occur
in VSCF computations. Only if all four modes Q3a,Q3b,Q4a and
Q4b are correlated do we see the same excitation pattern. Note
that this type of pattern, in particular the extended lobe in Q4 in
Fig. 5(b), is reoccurring. Specifically, it is visible in states 43/44,
73, 81, 99, 108/109, 127/128, 130, and 171/172.

In contrast to states with excitations in Q3 or Q4, states with
excitations only in Q1 or Q2 are close to harmonic and easy to
assign. For example, Fig. 6 displays a cut for the 1

2
2

5 state. De-
spite the large excitations both in Q1 and Q2, this state displays a
clear excitation pattern. Note, the strong displacement along Q1,
however.

States we found with excitations in Q1 and Q2 are tabulated in
Tab. 4, and their energies are compared to harmonic estimates.
States having only excitations in Q1 mostly follow the harmonic
approximation. There is a small negative anharmonicity due to vi-
bronic interactions in Q3/Q4, but the difference to the harmonic
estimate for 1

5 only is −24cm
−1. There is a more pronounced

positive anharmonicity for states with excitations in Q2, with the
maximum deviation to the harmonic estimate being 179cm

−1 for
2

7. Due to coupling, combination bands have slightly larger devi-
ations. The highest-energy state we found is 1

3
2

4 with an energy
deviating only 153cm

−1 from the harmonic estimate.
While correlation between Q1 and Q2 is weak, there is a pro-

nounced correlation between Q1 and Q3, as shown in Fig. 7. The
potential along Q3 mostly is triangular in high-energy regions and
distortions due to the multiwell structure of the wavefunction in
Q3 are visible for any node with excitations in Q1. A distinct multi-
well character is first exposed for 1

2 (state 59) shown in Fig. 7(c).
The higher the excitation in Q1, the more pronounced the multi-
well structure in Q3. This includes excitation patterns in Q3 that
are noticeable in the cuts. An example of this is visible in Fig. 7(f)
for 1

5. Due to the strong Q3 −Q4 modal coupling, for these states
excitation patterns are visible even in Q4. Despite these distor-
tions in Q3 and sometimes even Q4, the excitation patterns in Q1

remain close to harmonic with some more pronounced irregular-
ities only visible for 1

5.

5.3 Infrared spectrum

Fig. 8 displays the IR stick spectrum up to Ẽ = 3000cm
−1 (the re-

gion in where all of our states have been assigned) and compares
it to experiment68 and a previously reported Born-Oppenheimer
computation.53 As already shown in Section 5.2, except for a few
outliers the line positions from our computations are in very good
agreement with experiment. The IR intensities, however, differ
vastly.‡ For example, our spectrum contains a large intensity for

‡ Note that there are two 3
2
4

1 states with e′ symmetry, 87/88 in 108/109 in Tab. 3.
Only one of them has a strong IR intensity. Our IR spectrum predicts a large in-
tensity for state 87/88 (vibrational angular momentum in Q3 of l3 = ±1) whereas
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Oppenheimer effects are, Fig. 9 (a) displays the diabatic popu-
lations as function of energy. Importantly, the diabatic ground
state only has a population of 0.95 even for the vibrational ground
state. This comes from the diabatic model and the fact that the
diabatic couplings (the off-diagonal part in Eq. (1)) are non-zero,
save for configurations at the D3h geometry. All vibronic wave-
functions spread out of D3h geometries. Starting with a popula-
tion of 0.95 for the ground state, for excited states the population
quickly decreases further to ∼ 0.9 around 1000cm

−1. Populations
of ∼ 0.85 are reached around 4000cm

−1. These populations are
lower than those from Viel and Eisfeld,69 who report populations
of 0.96 around 1000cm

−1, indicating stronger non-adiabatic ef-
fects described by our PES in comparison to the one used by Viel
and Eisfeld known to have flaws. With the ground state popula-
tion slowly decreasing, the populations of the two E ′ states are
slowly increased whereas the populations of the E ′′ states remain
negligible. Since only distortions along the umbrella Q2 motion
lead to couplings to the E ′′ state, the negligible populations of
these states is expected.

How much does the decrease in ground state population af-
fect other observables? To estimate this, we conducted an inde-
pendent computation on the adiabatic ground state surface only
(i.e., a Born-Oppenheimer computation). The energetic errors re-
sulting from the omission of non-Born-Oppenheimer effects are
displayed in Fig. 9 (b). The errors can be large and reach almost
400cm

−1 in the computed region. This corresponds to a relative
deviation of up to 7%, which is in close agreement with the popu-
lations shown in Fig. 9 (a). Interestingly, the Born-Oppenheimer
error first is negative at energies below ∼ 4000cm

−1 but at higher
excitation turns positive for most states. For energies below
400cm

−1 the largest error is ∼ −14cm
−1. As mentioned in Sec-

tion 5.3, the IR spectrum computed from the Born-Oppenheimer
vibrational states displays much fewer non-negligible peaks com-
pared to the IR spectrum computed using non-BO states shown in
Fig. 8, highlighting further the importance of the inclusion of the
excited electronic states.

6 Conclusions

The NO3 radical features an intriguing vibronic structure where to
date many aspects of it, including the infrared spectrum, remain
elusive. Here, using a recently developed, accurate PES that cap-
tures all five important electronic states, curvilinear coordinates
and the tree tensor network state (TTNS) approach, we analyzed
the vibronic structure of NO3. Specifically, we increased the num-
ber of previously computed vibronic states by a factor of ∼ 50 to
more than 2500. We are not aware of a larger number of vibronic
states being computed for a six-dimensional, highly anharmonic
and non-adiabatic molecule. This shows the effectiveness of our
recently developed TTNS approach. Furthermore, we increased
the number of previously assigned states by a factor of ∼ 5 from
∼35 to 180. All states up to 3000cm

−1 are now assigned. Even
though the used PES was not specifically designed for accurate
vibronic eigenstate computations for the electronic ground state,
overall we achieved very good agreement with experiment. In
agreement with previous computations, our analysis hinted at the
possibility of required reassignments of experimental levels.

Our analysis of the vibronic states revealed a strong correlation
not only between the antisymmetric stretch and bending modes,
Q3 and Q4, but also between the symmetric and antisymmetric
stretch modes, Q1 and Q3. In addition, we found a large spread
of sublevels with excitations in the antisymmetric bending mode
Q4, thus showing that the energy splitting imposed by symme-
try can even be larger than the zero-order reference. The higher
the energy, the more difficult the assignment and hence the less
useful the zero-order harmonic picture. We found evidence for
resonances and significant mixing of zero-order states for ener-
gies above 2800cm

−1. Thus, an energy region up to ∼ 3000cm
−1

seems to be most suitable for an assignment, albeit we found
straightforwardly assignable combination states in less-coupled
modes even at an energy of 6213cm

−1, which is just 850cm
−1

below the electronic Ã2E ′′ state. Nonadiabatic effects are sur-
prisingly strong and the B̃2E ′ states contribute between 5 and
10% to the vibronic eigenstates below 3000cm

−1. The contribu-
tion approaches 20% for energies around 6000cm

−1. These non-
negligible contributions lead to nontrivial effects on the vibronic
energies and vast changes in the IR spectrum. We hope that this
work will stimulate more computational and experimental studies
on this intriguing free radical.
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