

1 **Challenges and opportunities for porous media research to address PFAS groundwater**
2 **contamination**

3 Bo Guo^{1,*} and Mark L. Brusseau^{1,2}

4 ¹Department of Hydrology and Atmospheric Sciences, University of Arizona, USA

5 ²Department of Environmental Science, University of Arizona, USA

6

7 Corresponding author: Bo Guo (boguo@arizona.edu)

8

9 **Abstract**

10 Per- and polyfluoroalkyl substances (PFAS) have become one of the most important
11 contaminants due to their ubiquitous presence in the environment and potentially profound
12 impacts on human health and the environment even at parts per trillion (ppt) concentration levels.
13 A growing number of field investigations have revealed that soils serve as PFAS reservoirs at
14 many contaminated sites after accumulating significant amounts of PFAS mass over many
15 decades. Because PFAS accumulated in soils may migrate downward to contaminate
16 groundwater resources, understanding the fate and transport of PFAS in soil is of paramount
17 importance for characterizing, managing, and mitigating long-term groundwater contamination
18 risks.

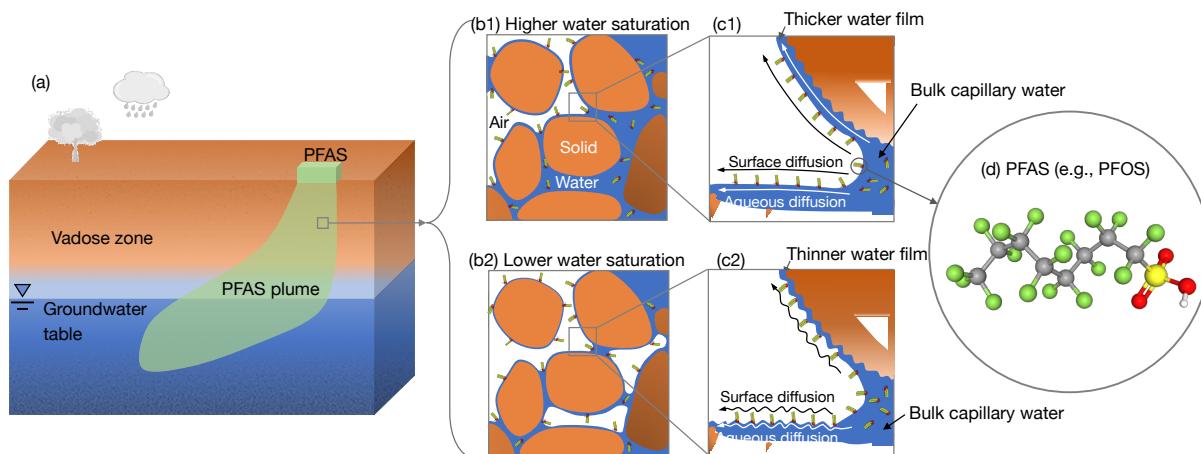
19 Many PFAS are surfactants that adsorb at air–water and solid–water interfaces, which leads
20 to complex transport behaviors of PFAS in soils. Concomitantly, PFAS present in porewater can
21 modify surface tension and other interfacial properties, which in turn may impact variably
22 saturated flow and PFAS transport. Furthermore, some PFAS are volatile (i.e., can migrate in the
23 gas phase) and/or can transform under environmental conditions into persistent PFAS. These
24 nonlinear and coupled processes are further complicated by complexities of the soil environment
25 such as thin water films, spatial heterogeneity, and complex geochemical conditions.

26 In this commentary, we present an overview of the current challenges in understanding the
27 fate and transport of PFAS in the environment. Building upon that, we identify a few potential
28 areas where porous media research may play an important role in addressing the problem of
29 PFAS contamination in groundwater.

30 **Keywords:** Porous media, PFAS, fluid–fluid interfaces, fate and transport, soil, groundwater,
31 adsorption

32

33 **1. The PFAS contamination problem**


34 PFAS is an acronym that stands for per- and polyfluoroalkyl substances, which are a family of
35 thousands of synthetic chemicals widely used since the 1950s¹. Large-scale manufacturing and
36 applications (such as non-stick and stain-resistant coating, waterproofing treatment, and
37 firefighting foams)¹ have led to their ubiquitous presence in the environment, contaminating
38 surface water, soils, sediments, and groundwater. A growing body of field data demonstrates that
39 vadose zones (below land surface and above groundwater table) at PFAS-contaminated sites
40 have become significant PFAS reservoirs after accumulating mass over decades², posing a long-
41 term threat to groundwater resources underneath.

42 The problem of PFAS contamination is distinctive compared to most of the previous
43 contaminants due to a combination of the following aspects. *First*, PFAS have been widely used
44 for many industrial applications and consumer products over many decades. Long-term releases
45 from various pathways and sources at different concentration levels (e.g., local concentrated
46 sources of aqueous film forming (AFFF)-impacted sites vs. wider and much-less concentrated
47 sources of agricultural lands receiving PFAS-containing biosolids) have resulted in their
48 widespread presence in the environment. For example, at least 6,189 sites are known to be
49 contaminated by PFAS in the United States³ and 45% of the United States drinking water was
50 estimated to contain PFAS⁴. Similarly, 22,934 contaminated sites have been reported across 32
51 European countries with several countries (Belgium, Netherlands, Italy, Denmark, Germany,
52 United Kingdom, and France) having more than 1,000 sites^{5,6}. Note that these numbers may only
53 reflect a fraction of the problem due to incomplete sampling and investigation. *Second*,
54 unprecedentedly restrictive concentration levels have been established or are being discussed
55 by regulatory agencies internationally. These concentration levels are several orders of magnitude
56 lower than regulatory levels established for most prior contaminants⁷. For example, the maximum
57 contaminant levels for PFOS and PFOA have been set to 4 parts per trillion (ppt) in the United
58 States⁸. Even more restrictive regulations are used in some European countries such as
59 Denmark⁹ (i.e., 2 ppt for the sum of four PFAS). *Third*, PFAS consist of thousands of species with
60 significantly different physicochemical properties (e.g., anionic vs. cationic vs. zwitterionic vs.
61 neutral species, different functional groups, and carbon chain lengths) and transport behaviors.

62 *Fourth*, because vadose zones at many contaminated sites are PFAS reservoirs², understanding
63 and quantifying PFAS fate and transport in the vadose zone are central for characterizing,
64 managing, and mitigating long-term groundwater contamination risks. The above-discussed
65 characteristics lead to significant challenges to address the PFAS contamination problem.

66 Furthermore, most PFAS are surfactants that tend to accumulate at fluid–fluid and solid–fluid
67 interfaces¹⁰. These interfacially-active properties lead to their relatively unique transport behaviors
68 in the environment, particularly in the vadose zone due to abundant air–water and solid–water
69 interfaces in soils. Concomitantly, PFAS accumulating at fluid–fluid and solid–fluid interfaces can
70 also modify the properties of the interfaces¹⁰, including surface tension and wettability. The
71 changes in interfacial properties may in turn impact variably saturated water flow and the transport
72 of PFAS in the vadose zone^{11,12}. Any effective characterization and remediation of contaminated
73 vadose zones will require conceptualizations that incorporate these critical interfacial processes.
74 In this commentary, we focus on discussing these complexities of PFAS fate and transport in the
75 vadose zone and identify the challenges and opportunities where porous media research may be
76 relevant.

77 **2. Complexity of the PFAS problem from a fate and transport perspective.**

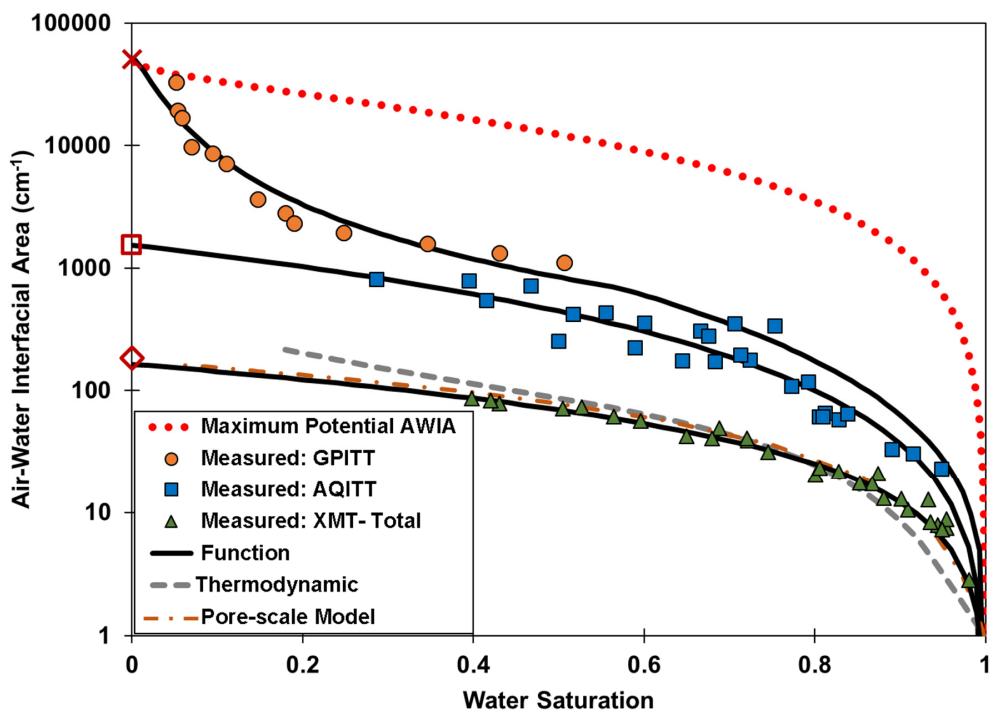


Figure 1. Interfacial retention processes for PFAS in the vadose zone. (a) Schematic for PFAS contamination in the vadose zone and groundwater, (b) adsorption of PFAS at air–water interfaces arising from bulk capillary water and thin water films in soils under different wetting conditions, (c) mass transfer of PFAS between bulk capillary water and thin water films, and (d) an example PFAS molecule (e.g., PFOS), where the colors denote different atoms: gray–carbon, green–fluorine, red–oxygen, yellow–sulfur, and white–hydrogen. In panel (d), the molecule consists of a hydrophobic and oleophobic tail (the fluorocarbon chain on the left) and a hydrophilic head (the sulfonic acid functional group on the right). Figure originally reported in Chen & Guo (2023)⁶⁵ and used here with permission of the authors and Wiley.

78 Air–water interfaces in the vadose zone may arise from the bulk water (e.g., pendular rings)
79 between soil grains (i.e., bulk capillary air–water interfaces) and the thin water films on grain
80 surfaces (Fig. 1). Under most field-relevant conditions, the latter accounts for >90% of air–water
81 interfaces^{13–18}. Air–water interfacial adsorption has been demonstrated to be a major mechanism
82 controlling the fate and transport of PFAS in the vadose zone by laboratory column transport
83 experiments^{19–24}, field observations^{25,26}, and mathematical modeling^{11,12,27–32}. These studies
84 highlight the importance of understanding and quantifying partitioning of PFAS at air–water
85 interfaces in soils and how it controls PFAS transport in the vadose zone.

86 Fluid–fluid interfaces have been long recognized as an important factor controlling flow,
87 transport, and reactions in porous media³³. The processes at fluid–fluid interfaces include
88 adsorption and desorption of interfacially-active solutes^{34–38}, attachment and detachment of
89 colloids^{39–42}, and mass transfer between fluid phases^{43,44}. One of the earlier drivers to quantify
90 air–water interfacial area was to test a functional relationship among capillary pressure, saturation,
91 and fluid–fluid interfacial area in a porous medium derived from thermodynamic principles^{45–47}. A
92 corollary of this functional relationship suggests that accounting for air–water interfacial area may
93 eliminate hysteretic behaviors observed in capillary pressure and saturation relationships during
94 cyclic drainage and imbibition processes^{45–48}. Driven by this fundamental investigation and other
95 more applied problems (e.g., dissolution of non-aqueous phase liquids [NAPL] in groundwater),
96 multiple experimental methods have been developed to measure fluid–fluid interfacial areas in
97 porous media since the late 1990s. One group of methods uses pore-scale imaging to explicitly
98 count interfacial areas, such as X-ray computed tomography (XMT)^{49–55}. Another group uses
99 interfacially-active tracers to indirectly measure and compute fluid–fluid interfaces, either by
100 retardation in the breakthrough curves during transport experiments or the mass of a tracer at
101 fluid–fluid interfaces^{34,35,37,56–59}. These interfacially-active tracers can be in the gas or liquid phase.
102 Usually, the gas-phase tracer is an alkane (i.e., not charged) and the liquid-phase tracer an
103 anionic hydrocarbon surfactant (i.e., negatively charged). Additionally, air–water interfacial area
104 can also be estimated from measured soil water characteristic curves using a thermodynamic
105 approach based on energy balance^{60,61}.

106 XMT (and other imaging-based methods) can separate thin-film fluid–fluid interfaces from bulk
 107 capillary interfaces. For a water saturation smaller than 0.5, the former measured by XMT is
 108 generally much greater than the latter in natural porous media^{54,55}. The actual thin-film fluid–fluid
 109 interfacial area is usually even much greater because XMT underestimates the thin-film fluid–fluid
 110 interfacial area for sand and soil media. The cause is XMT not measuring the additional thin-film
 111 interfacial area due to the microscale grain surface roughness^{13,55}. For example, by combining
 112 XMT and liquid-phase tracer methods, Brusseau et al. (2007)¹³ reported that thin-film fluid–fluid
 113 interfacial areas in a sandy soil accounted for >90% of the total fluid–fluid interfacial area at water
 114 saturations smaller than 0.5. Further, the fluid–fluid interfacial area measured by gas-phase tracer
 115 methods is greater than that by liquid-phase tracers, especially under drier conditions^{13,18,62}. The
 116 significant difference between the fluid–fluid interfacial area measured by liquid- versus gas-
 117 phase tracers remains not fully understood, though it was hypothesized that gas-phase tracers
 118 may access additional air–water interfacial domains^{18,63}. An example of the differences between
 119 the air–water interfacial areas determined by the different methods is presented in Fig. 2⁶³.

Figure 2. Air–water interfacial area as a function of water saturation for a sand determined by different measurement methods and models. “GPITT” denotes gas-phase interfacial tracer test, “AQITT” denotes aqueous interfacial tracer test. “XMT-total” is the total air–water interfacial area (bulk capillary and film-associated air–water interfacial area) measured by XMT. “Function” refers to an empirical fit. “Thermodynamic” denotes the results computed from the thermodynamic approach^{60,61}. “Pore-scale Model” refers to the air–water interfacial area computed by the model from Jiang et al (2020)¹⁷. Figure originally reported in Brusseau (2023)⁶³ and used here with permission of the author and Elsevier.

120 While the prior works quantifying the air–water interfacial area made the distinction between
121 the bulk capillary and thin-water-film air–water interfaces, the two types of air–water interfaces
122 are not differentiated in most transport model conceptualizations for the retention and transport
123 of interfacially-active contaminants. These model concepts often build upon two premises that
124 significantly underrepresent the role of thin water films: 1) adsorption at the bulk capillary and thin-
125 film air–water interfaces can be treated the same; and 2) interfacially-active contaminants in the
126 thin water films and the bulk capillary water are in chemical equilibrium. These assumptions may
127 be challenged in the vadose zone, especially under drier conditions. Recent theoretical analysis⁶⁴
128 illustrated that the adsorption of PFAS at thin-film air–water interfaces can strongly deviate from
129 that at a bulk capillary air–water interface due to complex surface forces from the solid surface
130 (i.e., electrostatic and Van der Waals forces). Additionally, slow mass transfer in thin water films
131 can greatly reduce the accessibility of thin-film air–water interfaces for PFAS, and thereby
132 introduce nonequilibrium conditions between thin water films and bulk capillary water⁶⁵ (Fig. 1).
133 Surface diffusion of the adsorbed PFAS along air–water interfaces, while rarely discussed in the
134 hydrology and PFAS literature, was identified as a primary mechanism for transferring PFAS mass
135 along the thin water films and between the thin water films and bulk water⁶⁵. The potentially slow
136 mass transfer along the thin water films may also provide a plausible explanation for some of the
137 differences observed between the air–water interfacial areas measured by liquid- and gas-tracer
138 methods. Because thin water films account for most air–water interfaces in the vadose zone, not
139 representing the above thin-film-mediated fundamental processes may predict significantly
140 different field-scale migration of PFAS.

141 It is important to point out that the impact of air–water interfaces has been studied previously
142 for the transport of interfacially-active constituents before PFAS, such as the attachment and
143 detachment of colloidal particles at air–water interfaces^{66–69}. The impact of water films on colloidal
144 transport was also examined, but the modeled mechanisms are simple—films trap and immobilize
145 colloids with a diameter greater than their thickness^{41,69}—without representing any of the complex
146 surface forces. Additionally, non-PFAS surfactants in the subsurface were also studied for various
147 applications including enhanced oil recovery^{70,71}, surfactant-enhanced aquifer remediation^{72,73},
148 and the impact of surfactant on unsaturated water flow^{38,74–76}. Somewhat surprisingly, all the
149 earlier surfactant-related work primarily focused on how surfactants affect fluid flow and
150 dissolution with minimal discussion of air–water interfacial adsorption (see more detailed
151 discussion in Guo et al. (2020)¹¹). In contrast, the impact of air–water interfacial adsorption on
152 transport has been a focal point of the recent PFAS work.

153 In addition to the different interfacial area domains and thin water films, PFAS transport in the
154 vadose zone involves several other complexities. *First*, PFAS interfacial partitioning is sensitive
155 to geochemical conditions (e.g., water chemistry and interactions with other interfacially-active
156 constituents). For example, the partitioning of PFAS at air–water interfaces can vary greatly under
157 different ionic strengths and electrolyte compositions^{20,64,77–82}. The presence of co-PFAS and other
158 interfacially-active solutes may also modify the strength of air–water interfacial partitioning^{80,81,83,84}.
159 *Second*, in addition to accumulating at air–water interfaces, it was also hypothesized that PFAS
160 may form supramolecular structures⁸⁵ such as aggregated structures, micelles, and vesicles.
161 While micelles and vesicles are unlikely to be present due to porewater concentrations at PFAS-
162 contaminated sites being much smaller than the critical micelle concentrations^{26,81}, self-
163 assemblies of *different* PFAS molecules may still arise in complex PFAS mixtures. If present, the
164 movement of these supramolecular structures can transport PFAS themselves as well as
165 partitioning mass with the other phases (aqueous phase, air–water interfaces, and solid surfaces).
166 *Third*, strong transient flow dynamics coupled with spatial heterogeneity may introduce transport
167 behaviors unique to PFAS due to partitioning to air–water interfaces and mass redistribution
168 among the different phases. An example is the amplified acceleration of PFAS transport along
169 preferential flow pathways with reduced air–water interfacial retention due to greater water
170 saturation collapsing air-water interfaces^{12,31}.

171 Finally, while most of the current PFAS fate and transport work focuses on anionic PFAS (i.e.,
172 perfluoroalkyl acids, [PFAAs]), other types of PFAS including cationic, zwitterionic, and neutral
173 compounds have been shown to be present at contaminated sites^{86–92}. Unlike the environmentally
174 persistent PFAAs, some of these PFAS can react under environmental conditions—driven by
175 either abiotic or biotic processes—and eventually transform into PFAAs^{93–95}. The fate and
176 transport of these PFAA “precursors” in the vadose zone remain poorly understood. Furthermore,
177 some of the neutral PFAS have relatively high vapor pressure and may partition to the gas phase
178 as PFAS vapor^{96,97}. The migration of vapor-phase PFAS and their partitioning with the other
179 phases represent another set of potentially important processes for PFAS transport in the vadose
180 zone⁹⁶.

181 **3. Challenges and opportunities for porous media research**

182 While great progress has been made over the past few years that advances our understanding
183 of the fate and transport of PFAS in the vadose zone, many important areas are under explored
184 and significant challenges remain. Here we comment on some of the major challenges from the
185 perspectives of both fundamental research and practical applications.

186 • *Quantification of air-water interfacial area.* Various methods including direct imaging-based
187 and indirect tracer-based approaches were developed to measure or estimate air–water
188 interfacial area at varying water saturations as discussed in Section 2. However, there are still
189 internal inconsistencies among these different methods, e.g., different methods may measure
190 different air–water interfacial areas under the same conditions for the same media.
191 Furthermore, the characterization of air–water interfacial area has only been done on a very
192 limited number of soils. Because air–water interfaces play a primary role in controlling the
193 transport of interfacially-active substances such as PFAS, it is important to conduct
194 comprehensive investigations of air–water interfacial area for a variety of soils and under
195 different wetting conditions, as discussed recently⁶³. These detailed characterizations may
196 then allow for the development of process-based models or robust empirical correlations for
197 the air–water interfacial area as functions of other more readily available parameters. These
198 improved quantifications of air–water interfacial area are expected to significantly advance the
199 modeling of PFAS fate and transport in the vadose zone.

200 • *Coupled nonlinear multi-physics processes.* The transport of PFAS is a multi-physics problem
201 that involves various nonlinear processes in the vadose zone. For example, while surfactant-
202 induced flow may not be significant for many lower concentration sites^{11,12}, they could modify
203 the transport behavior of PFAS at some of the highly contaminated AFFF-impacted sites^{11,12,98},
204 especially in the early period of PFAS release from fire training activities. Additionally, PFAS
205 are almost always present at contaminated sites as mixtures of a large variety of individual
206 PFAS and other substances. A few initial experiment studies have examined the impact of
207 PFAS mixtures and hydrocarbon surfactants on the interfacial tension^{77,99–102} and
208 transport^{84,103–106}. The multicomponent Langmuir model was used to describe potential
209 competitive adsorption among different components^{80,84,105–107}, but the multicomponent
210 Langmuir model has been argued to be thermodynamically inconsistent unless all
211 components have equal maximum adsorption capacity^{81,108–111}. A more rigorous
212 thermodynamically consistent model was recently developed for multicomponent adsorption
213 of PFAS⁸¹. However, all the studies to date focus primarily on PFAS mixtures with no opposite
214 charges. The potentially synergistic interactions among PFAS with opposite charges (e.g.,
215 between anionic and cationic PFAS) and how they affect the fate and transport of PFAS in the
216 vadose zone remain minimally explored. The same goes to the transport of PFAS in the vapor
217 phase and the transformation of PFAA precursors. On top of the processes discussed above,
218 PFAS transport in the vadose zone is also driven by transient and nonlinear variably saturated
219 flow, which has been considered as one of the most computationally challenging processes

220 in hydrology^{112,113}. Understanding and quantifying how all these processes and their coupling
221 control PFAS transport in the vadose zone will require comprehensive experimental and field
222 data, as well as development of new mathematical models and numerical methods.

223 • *Physical chemistry of PFAS interfacial partitioning and mass transfer in the thin water films,
224 and how they manifest at greater spatial scales.* While the importance of thin water films has
225 been recognized in porous media literature for fluid displacement, they are often considered
226 insignificant for solute transport because they represent a tiny fraction of the total fluid volume
227 and hence a negligible amount of the solute mass. This conceptualization needs to be revised
228 for PFAS transport because the majority of the PFAS mass may be associated with the thin
229 water films due to the significant amounts of air–water interfaces arising from the thin water
230 films. Whether these thin water films can be accessed by PFAS, and under what conditions
231 they occur, may directly affect PFAS transport in the vadose zone^{31,65}. Furthermore, the
232 physical chemistry of PFAS partitioning at the air–water interface in the vicinity of a complex
233 solid surface may deviate from that at bulk air–water interfaces⁶⁴. These detailed processes
234 occurring in the thin water films are potentially critical but are only begun to be explored.

235 • *Scale translation and the development of practical modelling approaches.* An outstanding
236 challenge prevalent in all subsurface-related problems is the significant disparity between the
237 scales at which dominant physical and chemical processes occur (nanometers to millimeters)
238 and that at which we make observations and engineering decisions (tens of centimeters to
239 meters or larger). This is also the case for PFAS transport in the vadose zone. Ultimately, site
240 characterization and remediation applications need models developed for the field scale that
241 can be practically applied to real-world contaminated sites. These practical models must be
242 computationally efficient and relatively simple to parameterize, which means that they likely
243 cannot account for all the complexities discussed in Section 2. We will need to identify the
244 sub-pore and pore-scale processes with a first-order impact and approximate them at
245 macroscales. Experimental data and more advanced models that represent a greater level of
246 complexities may be used to aid the development of these practical models⁶⁵.

247 We point out that the aspects discussed above are by no means an exhaustive list of important
248 topics for PFAS transport in the vadose zone. Rather, they represent a sample of the topics that
249 we think the porous media community may find interesting. Addressing each of these challenges
250 will likely require an integrated investigation through experiments, field observations, and
251 development of theory and computational models from sub-pore-scale, pore-scale, and
252 macroscales. Just like the prior non-PFAS research efforts that helped to prepare us for tackling

253 the PFAS contamination problem, the fate and transport research of PFAS will likely generate
254 new knowledge and tools that may find use in addressing emerging environmental problems in
255 the future, with the interfacially-active micro- and nano-plastics being a potential example.

256 **4. Conclusion**

257 This commentary provides an overview of the complexities and challenges for understanding and
258 quantifying the fate and transport of PFAS in the environment, with a particular focus on the
259 vadose zone. We have centered on issues unique to PFAS relative to many of the previous
260 contaminants, and how these processes manifest in the complex porous media environment. It
261 has become clear that the PFAS contamination problem is one that can significantly benefit from
262 the expertise of the porous media community both from fundamental and practical perspectives.
263 This commentary is an attempt to highlight some of the opportunities to which the porous media
264 community may make significant contributions.

265 **5. Acknowledgment**

266 This work was in part supported by National Science Foundation CAREER Award (2237015) to
267 B. Guo and by the Environmental Security Technology Certification Program (ESTCP Project
268 ER21-5041) to B. Guo and M. L. Brusseau.

269 **6. References**

270 (1) ITRC. *ITRC PFAS Technical and Regulatory Guidance Document*; 2024.

271 (2) Brusseau, M. L.; Anderson, R. H.; Guo, B. PFAS Concentrations in Soils: Background
272 Levels versus Contaminated Sites. *Science of the Total Environment* **2020**, *740*,
273 140017. <https://doi.org/10.1016/j.scitotenv.2020.140017>.

274 (3) EWG. *PFAS Contamination in the U.S.*; 2024. https://www.ewg.org/interactive-maps/pfas_contamination/ (accessed 2024-08-04).

275 (4) Smalling, K. L.; Romanok, K. M.; Bradley, P. M.; Morriss, M. C.; Gray, J. L.; Kanagy, L.
276 K.; Gordon, S. E.; Williams, B. M.; Breitmeyer, S. E.; Jones, D. K.; DeCicco, L. A.;
277 Eagles-Smith, C. A.; Wagner, T. Per- and Polyfluoroalkyl Substances (PFAS) in United
278 States Tapwater: Comparison of Underserved Private-Well and Public-Supply
279 Exposures and Associated Health Implications. *Environ Int* **2023**, *178*, 108033.
280 <https://doi.org/10.1016/j.envint.2023.108033>.

281 (5) Cordner, A.; Brown, P.; Cousins, I. T.; Scheringer, M.; Martinon, L.; Dagorn, G.; Aubert,
282 R.; Hosea, L.; Salvidge, R.; Felke, C.; Tausche, N.; Drepper, D.; Liva, G.; Tudela, A.;

284 Delgado, A.; Salvatore, D.; Pilz, S.; Horel, S. PFAS Contamination in Europe:
285 Generating Knowledge and Mapping Known and Likely Contamination with “Expert-
286 Reviewed” Journalism. *Environ Sci Technol* **2024**, *58* (15), 6616–6627.
287 <https://doi.org/10.1021/acs.est.3c09746>.

288 (6) The Forever Pollution Project. *The Forever Pollution Project: Journalists tracking PFAS*
289 *across Europe*. <https://foreverpollution.eu/> (accessed 2024-07-08).

290 (7) Newell, C. J.; Adamson, D. T.; Kulkarni, P. R.; Nzeribe, B. N.; Stroo, H. Comparing
291 PFAS to Other Groundwater Contaminants : Implications for Remediation. **2020**, 7–
292 26. <https://doi.org/10.1002/rem.21645>.

293 (8) US EPA. *Final PFAS National Primary Drinking Water Regulation*.
294 <https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas> (accessed 2024-
295 08-04).

296 (9) Danish EPA. *Limit values for PFAS in the environment*. <https://mst.dk/erhverv/sikker->
297 [kemi/kemikalier/graensevaerdier-og-kvalitetskriterier](https://mst.dk/erhverv/sikker-kemi/kemikalier/graensevaerdier-og-kvalitetskriterier) (accessed 2024-08-04).

298 (10) Kiss, E. *Fluorinated Surfactants and Repellents*, Second.; CRC Press, 2001; Vol. 97.

299 (11) Guo, B.; Zeng, J.; Brusseau, M. L. A Mathematical Model for the Release, Transport,
300 and Retention of Per- and Polyfluoroalkyl Substances (PFAS) in the Vadose Zone.
301 *Water Resour Res* **2020**, *56* (2), 1–21. <https://doi.org/10.1029/2019WR026667>.

302 (12) Zeng, J.; Guo, B. Multidimensional Simulation of PFAS Transport and Leaching in the
303 Vadose Zone: Impact of Surfactant-Induced Flow and Subsurface Heterogeneities.
304 *Adv Water Resour* **2021**, *155*, 104015.
305 <https://doi.org/10.1016/j.advwatres.2021.104015>.

306 (13) Brusseau, M. L.; Peng, S.; Schnaar, G.; Murao, A. Measuring Air-Water Interfacial
307 Areas with X-Ray Microtomography and Interfacial Partitioning Tracer Tests. *Environ*
308 *Sci Technol* **2007**, *41* (6), 1956–1961. <https://doi.org/10.1021/es061474m>.

309 (14) Brusseau, M. L.; Peng, S.; Schnaar, G.; Costanza-Robinson, M. S. Relationships
310 among Air-Water Interfacial Area, Capillary Pressure, and Water Saturation for a
311 Sandy Porous Medium. *Water Resour Res* **2006**, *42* (3), 1–5.
312 <https://doi.org/10.1029/2005WR004058>.

313 (15) Kibbey, T. C. G.; Chen, L. A Pore Network Model Study of the Fluid-Fluid Interfacial
314 Areas Measured by Dynamic-Interface Tracer Depletion and Miscible Displacement
315 Water Phase Advective Tracer Methods. *Water Resour Res* **2012**, *48* (10).
316 <https://doi.org/10.1029/2012WR011862>.

317 (16) Or, D.; Tuller, M. Liquid Retention and Interfacial Area in Variably Saturated Porous
318 Media: Upscaling from Single-Pore to Sample-Scale Model. *Water Resour Res* **1999**,
319 35 (12), 3591–3605.

320 (17) Jiang, H.; Guo, B.; Brusseau, M. L. Pore-Scale Modeling of Fluid-Fluid Interfacial Area
321 in Variably Saturated Porous Media Containing Microscale Surface Roughness. *Water*
322 *Resour Res* **2020**, 56 (1), 1–21. <https://doi.org/10.1029/2019WR025876>.

323 (18) Costanza-Robinson, M. S.; Brusseau, M. L. Air-Water Interfacial Areas in Unsaturated
324 Soils: Evaluation of Interfacial Domains. *Water Resour Res* **2002**, 38 (10), 13-1-13-17.
325 <https://doi.org/10.1029/2001wr000738>.

326 (19) Lyu, Y.; Brusseau, M. L.; Chen, W.; Yan, N.; Fu, X.; Lin, X. Adsorption of PFOA at the
327 Air-Water Interface during Transport in Unsaturated Porous Media. *Environ Sci*
328 *Technol* **2018**, 52 (14), 7745–7753. <https://doi.org/10.1021/acs.est.8b02348>.

329 (20) Brusseau, M. L.; Van Glubt, S. The Influence of Molecular Structure on PFAS
330 Adsorption at Air-Water Interfaces in Electrolyte Solutions. *Chemosphere* **2021**, 281
331 (May), 130829. <https://doi.org/10.1016/j.chemosphere.2021.130829>.

332 (21) Brusseau, M. L.; Guo, B.; Huang, D.; Yan, N.; Lyu, Y. Ideal versus Nonideal Transport
333 of PFAS in Unsaturated Porous Media. *Water Res* **2021**, 202, 117405.
334 <https://doi.org/10.1016/j.watres.2021.117405>.

335 (22) Stults, J. F.; Choi, Y. J.; Schaefer, C. E.; Illangasekare, T. H.; Higgins, C. P. Estimation of
336 Transport Parameters of Perfluoroalkyl Acids (PFAAs) in Unsaturated Porous Media:
337 Critical Experimental and Modeling Improvements. *Environ Sci Technol* **2022**, 56
338 (12), 7963–7975. <https://doi.org/10.1021/acs.est.2c00819>.

339 (23) Lyu, X.; Liu, X.; Sun, Y.; Gao, B.; Ji, R.; Wu, J.; Xue, Y. Importance of Surface
340 Roughness on Perfluorooctanoic Acid (PFOA) Transport in Unsaturated Porous
341 Media. *Environmental Pollution* **2020**, 266, 115343.
342 <https://doi.org/10.1016/j.envpol.2020.115343>.

343 (24) Bigler, M.; He, X.; Brusseau, M. L. PFAS Transport under Lower Water-Saturation
344 Conditions Characterized with Instrumented-Column Systems. *Water Res* **2024**,
345 260, 121922. <https://doi.org/10.1016/j.watres.2024.121922>.

346 (25) Schaefer, C. E.; Lavorgna, G. M.; Lippincott, D. R.; Nguyen, D.; Christie, E.; Shea, S.;
347 O'Hare, S.; Lemes, M. C. S.; Higgins, C. P.; Field, J. A Field Study to Assess the Role of
348 Air-Water Interfacial Sorption on PFAS Leaching in an AFFF Source Area. *J Contam*
349 *Hydrol* **2022**, 248 (July 2021), 104001.
350 <https://doi.org/10.1016/j.jconhyd.2022.104001>.

351 (26) Brusseau, M. L.; Guo, B. PFAS Concentrations in Soil versus Soil Porewater: Mass
352 Distributions and the Impact of Adsorption at Air-Water Interfaces. *Chemosphere*
353 **2022**, 302, 134938. <https://doi.org/10.1016/j.chemosphere.2022.134938>.

354 (27) Zeng, J.; Brusseau, M. L.; Guo, B. Model Validation and Analyses of Parameter
355 Sensitivity and Uncertainty for Modeling Long-Term Retention and Leaching of PFAS
356 in the Vadose Zone. *J Hydrol (Amst)* **2021**, 127172.
357 <https://doi.org/10.1016/j.jhydrol.2021.127172>.

358 (28) Gnesda, W. R.; Draxler, E. F.; Tinjum, J.; Zahasky, C. Adsorption of PFAAs in the
359 Vadose Zone and Implications for Long-Term Groundwater Contamination. *Environ
360 Sci Technol* **2022**, 56 (23), 16748–16758. <https://doi.org/10.1021/acs.est.2c03962>.

361 (29) Wallis, I.; Hutson, J.; Davis, G.; Kookana, R.; Rayner, J.; Prommer, H. Model-Based
362 Identification of Vadose Zone Controls on PFAS Mobility under Semi-Arid Climate
363 Conditions. *Water Res* **2022**, 225 (May), 119096.
364 <https://doi.org/10.1016/j.watres.2022.119096>.

365 (30) Silva, J. A. K.; Šimůnek, J.; McCray, J. A Modified HYDRUS Model for Simulating PFAS
366 Transport in the Vadose Zone. *Water (Basel)* **2020**, 12 (10), 2758.
367 <https://doi.org/10.3390/w12102758>.

368 (31) Zeng, J.; Guo, B. Reduced Accessible Air–Water Interfacial Area Accelerates PFAS
369 Leaching in Heterogeneous Vadose Zones. *Geophys Res Lett* **2023**, 50 (8), 1–10.
370 <https://doi.org/10.1029/2022GL102655>.

371 (32) Guo, B.; Zeng, J.; Brusseau, M. L.; Zhang, Y. A Screening Model for Quantifying PFAS
372 Leaching in the Vadose Zone and Mass Discharge to Groundwater. *Adv Water Resour*
373 **2022**, 160 (104102). <https://doi.org/10.1016/j.advwatres.2021.104102>.

374 (33) Bear, J. *Dynamics of Fluids in Porous Media*; Elsevier: New York, 1972.

375 (34) Kim, H.; Rao, P. S. C.; Annable, D. Determination of Effective Air-Water Interfacial
376 Area in Partially Saturated Porous Media Using Surfactant Adsorption. *Water Resour
377 Res* **1997**, 33 (12), 2705–2711.

378 (35) Saripalli, K. P.; Kim, H.; Rao, P. S. C.; Annable, M. D. Measurement of Specific Fluid-
379 Fluid Interfacial Areas of Immiscible Fluids in Porous Media. *Environ Sci Technol*
380 **1997**, 31 (3), 932–936. <https://doi.org/10.1021/es960652g>.

381 (36) Karkare, M. V.; Fort, T. Determination of the Air-Water Interfacial Area in Wet
382 “Unsaturated” Porous Media. *Langmuir* **1996**, 12 (8), 2041–2044.
383 <https://doi.org/10.1021/la950821v>.

384 (37) Faisal Anwar, A. H. M.; Bettahar, M.; Matsubayashi, U. A Method for Determining Air-
385 Water Interfacial Area in Variably Saturated Porous Media. *J Contam Hydrol* **2000**, *43*
386 (2), 129–146. [https://doi.org/10.1016/S0169-7722\(99\)00103-5](https://doi.org/10.1016/S0169-7722(99)00103-5).

387 (38) Smith, J. E.; Gillham, R. W. Effects of Solute Concentration-Dependent Surface
388 Tension on Unsaturated Flow: Laboratory Sand Column Experiments. *Water Resour
389 Res* **1999**, *35* (4), 973–982. <https://doi.org/10.1029/1998WR900106>.

390 (39) Lenhart, J. J.; Saiers, J. E. Adsorption of Natural Organic Matter to Air-Water Interfaces
391 during Transport through Unsaturated Porous Media. *Environ Sci Technol* **2004**, *38*
392 (1), 120–126. <https://doi.org/10.1021/es034409a>.

393 (40) Gao, B.; Saiers, J. E.; Ryan, J. N. Deposition and Mobilization of Clay Colloids in
394 Unsaturated Porous Media. *Water Resour Res* **2004**, *40* (8), 1–8.
395 <https://doi.org/10.1029/2004WR003189>.

396 (41) Wan, J.; Tokunaga, T. K. Film Straining of Colloids in Unsaturated Porous Media:
397 Conceptual Model and Experimental Testing. *Environ Sci Technol* **1997**, *31* (8), 2413–
398 2420. <https://doi.org/10.1021/es970017q>.

399 (42) Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.; Van Den Berg, H. H. J. L. Role of
400 Air-Water Interfaces on Retention of Viruses under Unsaturated Conditions. *Water
401 Resour Res* **2006**, *42* (12), 1–11. <https://doi.org/10.1029/2006WR004904>.

402 (43) Miller, C. T.; Poirier-McNeil, M. M.; Mayer, A. S. Dissolution of Trapped Nonaqueous
403 Phase Liquids: Mass Transfer Characteristics. *Water Resour Res* **1990**, *26* (11), 2783–
404 2796. <https://doi.org/10.1029/WR026i011p02783>.

405 (44) Powers, S. E.; Loureiro, C. O.; Abriola, L. M.; Weber, W. J. Theoretical Study of the
406 Significance of Nonequilibrium Dissolution of Nonaqueous Phase Liquids in
407 Subsurface Systems. *Water Resour Res* **1991**, *27* (4), 463–477.
408 <https://doi.org/10.1029/91WR00074>.

409 (45) Hassanizadeh, S. M.; Gray, W. G. Mechanics and Thermodynamics of Multiphase
410 Flow in Porous Media Including Interphase Boundaries. *Adv Water Resour* **1990**, *13*
411 (4), 169–186. [https://doi.org/10.1016/0309-1708\(90\)90040-B](https://doi.org/10.1016/0309-1708(90)90040-B).

412 (46) Hassanizadeh, S. M.; Gray, W. G. Thermodynamic Basis of Capillary Pressure in
413 Porous Media. *Water Resour Res* **1993**, *29* (10), 3389–3405.
414 <https://doi.org/10.1029/93WR01495>.

415 (47) Hassanzadeh, M. S.; Gray, W. G. Toward an Improved Description of the Physics of
416 Two-Phase Flow. *Adv Water Resour* **1993**, *16* (1), 53–67.
417 [https://doi.org/10.1016/0309-1708\(93\)90029-F](https://doi.org/10.1016/0309-1708(93)90029-F).

418 (48) Reeves, P. C.; Celia, M. a. A Functional-Relationship between Capillary-Pressure,
419 Saturation, and Interfacial Area as Revealed by a Pore-Scale Network Model. *Water*
420 *Resour Res* **1996**, *32* (8), 2345–2358. <https://doi.org/10.1029/96WR01105>.

421 (49) Culligan, K. A.; Wildenschild, D.; Christensen, B. S. B.; Gray, W. G.; Rivers, M. L.;
422 Tompson, A. F. B. Interfacial Area Measurements for Unsaturated Flow through a
423 Porous Medium. *Water Resour Res* **2004**, *40* (12), 1–12.
424 <https://doi.org/10.1029/2004WR003278>.

425 (50) Schnaar, G.; Brusseau, M. L. Pore-Scale Characterization of Organic Immiscible-
426 Liquid Morphology in Natural Porous Media Using Synchrotron x-Ray
427 Microtomography. *Environ Sci Technol* **2005**, *39* (21), 8403–8410.
428 <https://doi.org/10.1021/es0508370>.

429 (51) Wildenschild, D.; Sheppard, A. P. X-Ray Imaging and Analysis Techniques for
430 Quantifying Pore-Scale Structure and Processes in Subsurface Porous Medium
431 Systems. *Adv Water Resour* **2013**, *51*, 217–246.
432 <https://doi.org/10.1016/j.advwatres.2012.07.018>.

433 (52) Wildenschild, D.; Rivers, M. L.; Porter, M. L.; Iltis, G. C.; Armstrong, R. T.; Davit, Y.
434 Using Synchrotron-Based X-Ray Microtomography and Functional Contrast Agents in
435 Environmental Applications. **2015**, 1–22. <https://doi.org/10.2136/sssaspecpub61.c1>.

436 (53) Culligan, K. A.; Wildenschild, D.; Christensen, B. S. B.; Gray, W. G.; Rivers, M. L. Pore-
437 Scale Characteristics of Multiphase Flow in Porous Media: A Comparison of Air-
438 Water and Oil–Water Experiments. *Adv Water Resour* **2006**, *29* (2), 227–238.
439 <https://doi.org/10.1016/j.advwatres.2005.03.021>.

440 (54) Araujo, J. B.; Brusseau, M. L. Assessing XMT-Measurement Variability of Air-Water
441 Interfacial Areas in Natural Porous Media. *Water Resour Res* **2020**, *56* (1), 1–10.
442 <https://doi.org/10.1029/2019WR025470>.

443 (55) Brusseau, M. L.; Araujo, J. B.; Narter, M.; Marble, J. C.; Bigler, M. Microtomographic
444 Measurements of Total Air-Water Interfacial Areas for Soils. *Water Resour Res* **2024**,
445 *60* (5). <https://doi.org/10.1029/2023WR036039>.

446 (56) Schaefer, C. E.; DiCarlo, D. A.; Blunt, M. J. Experimental Measurement of Air-Water
447 Interfacial Area during Gravity Drainage and Secondary Imbibition in Porous Media.
448 *Water Resour Res* **2000**, *36* (4), 885–890. <https://doi.org/10.1029/2000WR900007>.

449 (57) Brusseau, M. L.; Popovičová, J.; Silva, J. A. K. Characterizing Gas–Water Interfacial
450 and Bulk-Water Partitioning for Gas-Phase Transport of Organic Contaminants in
451 Unsaturated Porous Media. *Environ Sci Technol* **1997**, *31* (6), 1645–1649.
452 <https://doi.org/10.1021/es960475j>.

453 (58) Araujo, J. B.; Mainhagu, J.; Brusseau, M. L. Measuring Air-Water Interfacial Area for
454 Soils Using the Mass Balance Surfactant-Tracer Method. *Chemosphere* **2015**, *134*,
455 199–202. <https://doi.org/10.1016/j.chemosphere.2015.04.035>.

456 (59) Chen, L.; Kibbey, T. C. G. Measurement of Air-Water Interfacial Area for Multiple
457 Hysteretic Drainage Curves in an Unsaturated Fine Sand. *Langmuir* **2006**, *22* (16),
458 6874–6880. <https://doi.org/10.1021/la053521e>.

459 (60) Leverett, M. C. Capillary Behavior in Porous Solids. *Transactions of the AIME* **1941**,
460 142 (01), 152–169. <https://doi.org/10.2118/941152-G>.

461 (61) Morrow, N. R. Physics and Thermodynamics of Capillary Action in Porous Media. *Ind
462 Eng Chem* **1970**, *62* (6), 32–56. <https://doi.org/10.1021/ie50726a006>.

463 (62) Peng, S.; Brusseau, M. L. Impact of Soil Texture on Air-Water Interfacial Areas in
464 Unsaturated Sandy Porous Media. *Water Resour Res* **2005**, *41* (3), 5393–5399.
465 <https://doi.org/10.1029/2004WR003233>.

466 (63) Brusseau, M. L. Determining Air-Water Interfacial Areas for the Retention and
467 Transport of PFAS and Other Interfacially Active Solutes in Unsaturated Porous
468 Media. *Science of the Total Environment* **2023**, *884* (December 2022), 163730.
469 <https://doi.org/10.1016/j.scitotenv.2023.163730>.

470 (64) Zhang, W.; Guo, B. Anomalous Adsorption of PFAS at the Thin-Water-Film Air-Water
471 Interface in Water-Unsaturated Porous Media. *Water Resour Res* **2024**, *60* (3).
472 <https://doi.org/10.1029/2023WR035775>.

473 (65) Chen, S.; Guo, B. Pore-Scale Modeling of PFAS Transport in Water-Unsaturated
474 Porous Media: Air–Water Interfacial Adsorption and Mass-Transfer Processes in Thin
475 Water Films. *Water Resour Res* **2023**, *59* (8), 1–23.
476 <https://doi.org/10.1029/2023WR034664>.

477 (66) Lenhart, J. J.; Saiers, J. E. Transport of Silica Colloids through Unsaturated Porous
478 Media: Experimental Results and Model Comparisons. *Environ Sci Technol* **2002**, *36*
479 (4), 769–777. <https://doi.org/10.1021/es0109949>.

480 (67) Saiers, J. E.; Lenhart, J. J. Colloid Mobilization and Transport within Unsaturated
481 Porous Media under Transient-Flow Conditions. *Water Resour Res* **2003**, 39 (1).
482 <https://doi.org/10.1029/2002WR001370>.

483 (68) Šimůnek, J.; He, C.; Pang, L.; Bradford, S. A. Colloid-Facilitated Solute Transport in
484 Varily Saturated Porous Media. *Vadose Zone Journal* **2006**, 5 (3), 1035.
485 <https://doi.org/10.2136/vzj2005.0151>.

486 (69) Bradford, S. A.; Torkzaban, S. Colloid Transport and Retention in Unsaturated Porous
487 Media: A Review of Interface-, Collector-, and Pore-Scale Processes and Models.
488 *Vadose Zone Journal* **2008**, 7 (2), 667–681. <https://doi.org/10.2136/vzj2007.0092>.

489 (70) Pope, G. A.; Nelson, R. C. A Chemical Flooding Compositional Simulator. *Society of*
490 *Petroleum Engineers Journal* **1978**, 18 (05), 339–354. <https://doi.org/10.2118/6725-PA>.

492 (71) Delshad, M., Pope, G.A. and Sepehrnoori, K. UTCHEM Version 9.0 Technical
493 Documentation. Center for Petroleum and Geosystems Engineering, The University
494 of Texas at Austin, Austin, Texas, 78751. 2000.

495 (72) Pennell, K. D.; Abriola, L. M.; Weber, W. J. Surfactant-Enhanced Solubilization of
496 Residual Dodecane in Soil Columns. 1. Experimental Investigation. *Environ Sci*
497 *Technol* **1993**, 27 (12), 2332–2340. <https://doi.org/10.1021/es00048a005>.

498 (73) Delshad, M.; Pope, G. A.; Sepehrnoori, K. A Compositional Simulator for Modeling
499 Surfactant Enhanced Aquifer Remediation, 1 Formulation. *J Contam Hydrol* **1996**, 23
500 (4), 303–327. [https://doi.org/10.1016/0169-7722\(95\)00106-9](https://doi.org/10.1016/0169-7722(95)00106-9).

501 (74) Smith, J. E.; Gillham, R. W. The Effect of Concentration-dependent Surface Tension
502 on the Flow of Water and Transport of Dissolved Organic Compounds: A Pressure
503 Head-based Formulation and Numerical Model. *Water Resour Res* **1994**, 30 (2), 343–
504 354. <https://doi.org/10.1029/93WR02745>.

505 (75) Henry, E. J.; Smith, J. E. Surfactant-Induced Flow Phenomena in the Vadose Zone: A
506 Review of Data and Numerical Modeling. *Vadose Zone Journal* **2003**, 2 (2), 154–167.
507 <https://doi.org/10.2113/2.2.154>.

508 (76) Costanza-Robinson, M. S.; Henry, E. J. Surfactant-Induced Flow Compromises
509 Determination of Air-Water Interfacial Areas by Surfactant Miscible-Displacement.
510 *Chemosphere* **2017**, 171, 275–283.
511 <https://doi.org/10.1016/j.chemosphere.2016.12.072>.

512 (77) Brusseau, M. L.; Van Glubt, S. The Influence of Surfactant and Solution Composition
513 on PFAS Adsorption at Fluid-Fluid Interfaces. *Water Res* **2019**, *161*, 17–26.
514 <https://doi.org/10.1016/j.watres.2019.05.095>.

515 (78) Silva, J. A. K.; Martin, W. A.; Johnson, J. L.; McCray, J. E. Evaluating Air-Water and
516 NAPL-Water Interfacial Adsorption and Retention of Perfluorocarboxylic Acids within
517 the Vadose Zone. *J Contam Hydrol* **2019**, *223* (March), 103472.
518 <https://doi.org/10.1016/j.jconhyd.2019.03.004>.

519 (79) Le, S. T.; Gao, Y.; Kibbey, T. C. G.; Glamore, W. C.; O’Carroll, D. M. A New Framework
520 for Modeling the Effect of Salt on Interfacial Adsorption of PFAS in Environmental
521 Systems. *Science of the Total Environment* **2021**, *796*, 148893.
522 <https://doi.org/10.1016/j.scitotenv.2021.148893>.

523 (80) Gao, Y.; Le, S. T.; Kibbey, T. C. G.; Glamore, W.; O’Carroll, D. M. A Fundamental Model
524 for Calculating Interfacial Adsorption of Complex Ionic and Nonionic PFAS Mixtures
525 in the Presence of Mixed Salts. *Environ Sci Process Impacts* **2023**.
526 <https://doi.org/10.1039/d2em00466f>.

527 (81) Guo, B.; Saleem, H.; Brusseau, M. L. Predicting Interfacial Tension and Adsorption at
528 Fluid–Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants. *Environ
529 Sci Technol* **2023**, *57* (21), 8044–8052. <https://doi.org/10.1021/acs.est.2c08601>.

530 (82) Costanza, J.; Arshadi, M.; Abriola, L. M.; Pennell, K. D. Accumulation of PFOA and
531 PFOS at the Air–Water Interface. *Environ Sci Technol Lett* **2019**, *6* (8), 487–491.
532 <https://doi.org/10.1021/acs.estlett.9b00355>.

533 (83) Silva, J. A. K.; Martin, W. A.; McCray, J. E. Air-Water Interfacial Adsorption Coefficients
534 for PFAS When Present as a Multi-Component Mixture. *J Contam Hydrol* **2021**, *236*
535 (October 2020), 103731. <https://doi.org/10.1016/j.jconhyd.2020.103731>.

536 (84) Huang, D.; Saleem, H.; Guo, B.; Brusseau, M. L. The Impact of Multiple-Component
537 PFAS Solutions on Fluid-Fluid Interfacial Adsorption and Transport of PFOS in
538 Unsaturated Porous Media. *Science of The Total Environment* **2022**, *806*, 150595.
539 <https://doi.org/10.1016/j.scitotenv.2021.150595>.

540 (85) Anderson, R. H.; Field, J. B.; DieffenbachCarle, H.; Elsharnouby, O.; Krebs, R. K.
541 Assessment of PFAS in Collocated Soil and Porewater Samples at an AFFF-Impacted
542 Source Zone: Field-Scale Validation of Suction Lysimeters. *Chemosphere* **2022**, *308*
543 (P1), 136247. <https://doi.org/10.1016/j.chemosphere.2022.136247>.

544 (86) Nickerson, A.; Rodowa, A. E.; Adamson, D. T.; Field, J. A.; Kulkarni, P. R.; Kornuc, J. J.;
545 Higgins, C. P. Spatial Trends of Anionic, Zwitterionic, and Cationic PFASs at an AFFF-

546 Impacted Site. *Environ Sci Technol* **2021**, 55 (1), 313–323.
547 <https://doi.org/10.1021/acs.est.0c04473>.

548 (87) Adamson, D. T.; Nickerson, A.; Kulkarni, P. R.; Higgins, C. P.; Popovic, J.; Field, J.;
549 Rodowa, A.; Newell, C.; Deblanc, P.; Kornuc, J. J. Mass-Based, Field-Scale
550 Demonstration of PFAS Retention within AFFF-Associated Source Areas. *Environ Sci
551 Technol* **2020**, 54 (24), 15768–15777. <https://doi.org/10.1021/acs.est.0c04472>.

552 (88) Ruyle, B. J.; Thackray, C. P.; McCord, J. P.; Strynar, M. J.; Mauge-Lewis, K. A.; Fenton,
553 S. E.; Sunderland, E. M. Reconstructing the Composition of Per- And Polyfluoroalkyl
554 Substances in Contemporary Aqueous Film-Forming Foams. *Environ Sci Technol Lett*
555 **2021**, 8 (1), 59–65. <https://doi.org/10.1021/acs.estlett.0c00798>.

556 (89) Field, J. A.; Seow, J. Properties, Occurrence, and Fate of Fluorotelomer Sulfonates.
557 *Crit Rev Environ Sci Technol* **2017**, 47 (8), 643–691.
558 <https://doi.org/10.1080/10643389.2017.1326276>.

559 (90) Liu, M.; Munoz, G.; Vo Duy, S.; Sauvé, S.; Liu, J. Per- and Polyfluoroalkyl Substances in
560 Contaminated Soil and Groundwater at Airports: A Canadian Case Study. *Environ Sci
561 Technol* **2022**, 56 (2), 885–895. <https://doi.org/10.1021/acs.est.1c04798>.

562 (91) Baduel, C.; Mueller, J. F.; Rotander, A.; Corfield, J.; Gomez-Ramos, M. J. Discovery of
563 Novel Per- and Polyfluoroalkyl Substances (PFASs) at a Fire Fighting Training Ground
564 and Preliminary Investigation of Their Fate and Mobility. *Chemosphere* **2017**, 185,
565 1030–1038. <https://doi.org/10.1016/j.chemosphere.2017.06.096>.

566 (92) Schumacher, B. A.; Zimmerman, J. H.; Williams, A. C.; Lutes, C. C.; Holton, C. W.;
567 Escobar, E.; Hayes, H.; Warrier, R. Distribution of Select Per- and Polyfluoroalkyl
568 Substances at a Chemical Manufacturing Plant. *J Hazard Mater* **2024**, 464, 133025.
569 <https://doi.org/10.1016/j.jhazmat.2023.133025>.

570 (93) Liu, J.; Mejia Avendaño, S. Microbial Degradation of Polyfluoroalkyl Chemicals in the
571 Environment: A Review. *Environ Int* **2013**, 61, 98–114.
572 <https://doi.org/10.1016/j.envint.2013.08.022>.

573 (94) Choi, Y. J.; Helbling, D. E.; Liu, J.; Olivares, C. I.; Higgins, C. P. Microbial
574 Biotransformation of Aqueous Film-Forming Foam Derived Polyfluoroalkyl
575 Substances. *Science of The Total Environment* **2022**, 824, 153711.
576 <https://doi.org/10.1016/j.scitotenv.2022.153711>.

577 (95) Ruyle, B. J.; Thackray, C. P.; Butt, C. M.; Leblanc, D. R.; Tokranov, A. K.; Vecitis, C. D.;
578 Sunderland, E. M. Centurial Persistence of Forever Chemicals at Military Fire Training

579 Sites. *Environ Sci Technol* **2023**, 57(21), 8096–8106.
580 <https://doi.org/10.1021/acs.est.3c00675>.

581 (96) Brusseau, M. L.; Guo, B. Vapor-Phase Transport of Per and Polyfluoroalkyl
582 Substances: Processes, Modeling, and Implications. *Science of the Total
583 Environment* **2024**.

584 (97) Abusallout, I.; Holton, C.; Wang, J.; Hanigan, D. Henry's Law Constants of 15 per- and
585 Polyfluoroalkyl Substances Determined by Static Headspace Analysis. *Journal of
586 Hazardous Materials Letters* **2022**, 3, 100070.
587 <https://doi.org/10.1016/j.hazl.2022.100070>.

588 (98) Vahedian, F.; Silva, J. A. K.; Šimůnek, J.; McCray, J. E. Influence of Tension-Driven
589 Flow on the Transport of AFFF in Unsaturated Media. *ACS ES&T Water* **2024**, 4 (2),
590 564–574. <https://doi.org/10.1021/acsestwater.3c00611>.

591 (99) Silva, J. A. K.; Martin, W. A.; McCray, J. E. Air-Water Interfacial Adsorption Coefficients
592 for PFAS When Present as a Multi-Component Mixture. *J Contam Hydrol* **2020**, No.
593 November 2019, 103731. <https://doi.org/10.1016/j.jconhyd.2020.103731>.

594 (100) Guo-Xi, Z.; Bu-Yao, Z.; Ya-Ping, Z.; Li, S. The Surface Adsorption and Micelle
595 Formation of the Mixed Aqueous Solutions of Fluorocarbon and Hydrocarbon
596 Surfactants: II. Sodium Perfluorooctanoate-Sodium Decylsulfate System. *Acta Chim
597 Sin* **1984**, 2 (2), 111–118. <https://doi.org/10.1002/cjoc.19840020205>.

598 (101) Schaefer, C. E.; Culina, V.; Nguyen, D.; Field, J. A. Uptake of Poly- and Perfluoroalkyl
599 Substances at the Air-Water Interface. *Environ Sci Technol* **2019**, 53, 12442–12448.
600 <https://doi.org/10.1021/acs.est.9b04008>.

601 (102) Vecitis, C. D.; Park, H.; Cheng, J.; Mader, B. T.; Hoffmann, M. R. Enhancement of
602 Perfluorooctanoate and Perfluorooctanesulfonate Activity at Acoustic Cavitation
603 Bubble Interfaces. *Journal of Physical Chemistry C* **2008**, 112 (43), 16850–16857.
604 <https://doi.org/10.1021/jp804050p>.

605 (103) Lyu, X.; Li, Z.; Wang, D.; Zhang, Q.; Gao, B.; Sun, Y.; Wu, J. Transport of
606 Perfluorooctanoic Acid in Unsaturated Porous Media Mediated by SDBS. *J Hydrol
607 (Amst)* **2022**, 607 (January), 127479. <https://doi.org/10.1016/j.jhydrol.2022.127479>.

608 (104) Abraham, J. E. F.; Mumford, K. G.; Patch, D. J.; Weber, K. P. Retention of PFOS and
609 PFOA Mixtures by Trapped Gas Bubbles in Porous Media. **2022**.
610 <https://doi.org/10.1021/acs.est.2c00882>.

611 (105) Liao, S.; Arshadi, M.; Woodcock, M. J.; Saleeba, Z. S. S. L.; Pinchbeck, D.; Liu, C.;
612 Cápiro, N. L.; Abriola, L. M.; Pennell, K. D. Influence of Residual Nonaqueous-Phase
613 Liquids (NAPLs) on the Transport and Retention of Perfluoroalkyl Substances.
614 *Environ Sci Technol* **2022**, 56 (12), 7976–7985.
615 <https://doi.org/10.1021/acs.est.2c00858>.

616 (106) Ji, Y.; Yan, N.; Brusseau, M. L.; Guo, B.; Zheng, X.; Dai, M.; Liu, H.; Li, X. Impact of a
617 Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in
618 Saturated and Unsaturated Porous Media. *Environ Sci Technol* **2021**, 55 (15), 10480–
619 10490. <https://doi.org/10.1021/acs.est.1c01919>.

620 (107) Arshadi, M.; Garza-Rubalcava, U.; Guedes, A.; Cápiro, N. L.; Pennell, K. D.; Christ, J.;
621 Abriola, L. M. Modeling 1-D Aqueous Film Forming Foam Transport through the
622 Vadose Zone under Realistic Site and Release Conditions. *Science of The Total
623 Environment* **2024**, 919, 170566. <https://doi.org/10.1016/j.scitotenv.2024.170566>.

624 (108) Kemball; Rideal; Guggenheim. Thermodynamics of Monolayers. **1948**, No. 948, 399–
625 407.

626 (109) Broughton, D. B. Adsorption Isotherms for Binary Gas Mixtures. *Ind Eng Chem* **1948**,
627 40 (8), 1506–1508. <https://doi.org/10.1021/ie50464a036>.

628 (110) Levanr, M. D.; Vermeulen, T. Binary Langmuir and Freundlich Isotherms for Ideal
629 Adsorbed Solutions. **1981**, 948 (1948), 3247–3250.

630 (111) Frey, D. D.; Rodrigues, A. E. Explicit Calculation of Multicomponent Equilibria for
631 Ideal Adsorbed Solutions. *AIChE Journal* **1994**, 40 (1), 182–186.
632 <https://doi.org/10.1002/aic.690400121>.

633 (112) Celia, M. A.; Bouloutas, E. T.; Zarba, R. L. A General Mass-Conservative Numerical
634 Solution for the Unsaturated Flow Equation. *Water Resour Res* **1990**, 26 (7), 1483–
635 1496. <https://doi.org/10.1029/WR026i007p01483>.

636 (113) Pinder, G.; Celia, M. *Subsurface Hydrology*; John Wiley & Sons, 2006.

637