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Abstract 9 

Per- and polyfluoroalkyl substances (PFAS) have become one of the most important 10 
contaminants due to their ubiquitous presence in the environment and potentially profound 11 
impacts on human health and the environment even at parts per trillion (ppt) concentration levels. 12 
A growing number of field investigations have revealed that soils serve as PFAS reservoirs at 13 
many contaminated sites after accumulating significant amounts of PFAS mass over many 14 
decades. Because PFAS accumulated in soils may migrate downward to contaminate 15 
groundwater resources, understanding the fate and transport of PFAS in soil is of paramount 16 
importance for characterizing, managing, and mitigating long-term groundwater contamination 17 
risks.  18 

Many PFAS are surfactants that adsorb at air–water and solid–water interfaces, which leads 19 
to complex transport behaviors of PFAS in soils. Concomitantly, PFAS present in porewater can 20 
modify surface tension and other interfacial properties, which in turn may impact variably 21 
saturated flow and PFAS transport. Furthermore, some PFAS are volatile (i.e., can migrate in the 22 
gas phase) and/or can transform under environmental conditions into persistent PFAS. These 23 
nonlinear and coupled processes are further complicated by complexities of the soil environment 24 
such as thin water films, spatial heterogeneity, and complex geochemical conditions.  25 

In this commentary, we present an overview of the current challenges in understanding the 26 
fate and transport of PFAS in the environment. Building upon that, we identify a few potential 27 
areas where porous media research may play an important role in addressing the problem of 28 
PFAS contamination in groundwater.  29 
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1. The PFAS contamination problem 33 

PFAS is an acronym that stands for per- and polyfluoroalkyl substances, which are a family of 34 
thousands of synthetic chemicals widely used since the 1950s1. Large-scale manufacturing and 35 
applications (such as non-stick and stain-resistant coating, waterproofing treatment, and 36 
firefighting foams)1 have led to their ubiquitous presence in the environment, contaminating 37 
surface water, soils, sediments, and groundwater. A growing body of field data demonstrates that 38 
vadose zones (below land surface and above groundwater table) at PFAS-contaminated sites 39 
have become significant PFAS reservoirs after accumulating mass over decades 2, posing a long-40 
term threat to groundwater resources underneath.  41 

The problem of PFAS contamination is distinctive compared to most of the previous 42 
contaminants due to a combination of the following aspects. First, PFAS have been widely used 43 
for many industrial applications and consumer products over many decades. Long-term releases 44 
from various pathways and sources at different concentration levels (e.g., local concentrated 45 
sources of aqueous film forming (AFFF)-impacted sites vs. wider and much-less concentrated 46 
sources of agricultural lands receiving PFAS-containing biosolids) have resulted in their 47 
widespread presence in the environment. For example, at least 6,189 sites are known to be 48 
contaminated by PFAS in the United States3 and 45% of the United States drinking water was 49 
estimated to contain PFAS4. Similarly, 22,934 contaminated sites have been reported across 32 50 
European countries with several countries (Belgium, Netherlands, Italy, Denmark, Germany, 51 
United Kingdom, and France) having more than 1,000 sites5,6. Note that these numbers may only 52 
reflect a fraction of the problem due to incomplete sampling and investigation. Second, 53 
unprecedentedly restrictive concentration levels have been established or are being discussed 54 
by regulatory agencies internationally. These concentration levels are several orders of magnitude 55 
lower than regulatory levels established for most prior contaminants7. For example, the maximum 56 
contaminant levels for PFOS and PFOA have been set to 4 parts per trillion (ppt) in the United 57 
States8. Even more restrictive regulations are used in some European countries such as 58 
Denmark9 (i.e., 2 ppt for the sum of four PFAS). Third, PFAS consist of thousands of species with 59 
significantly different physicochemical properties (e.g., anionic vs. cationic vs. zwitterionic vs. 60 
neutral species, different functional groups, and carbon chain lengths) and transport behaviors. 61 
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Fourth, because vadose zones at many contaminated sites are PFAS reservoirs2, understanding 62 
and quantifying PFAS fate and transport in the vadose zone are central for characterizing, 63 
managing, and mitigating long-term groundwater contamination risks. The above-discussed 64 
characteristics lead to significant challenges to address the PFAS contamination problem.  65 

Furthermore, most PFAS are surfactants that tend to accumulate at fluid–fluid and solid–fluid 66 
interfaces10. These interfacially-active properties lead to their relatively unique transport behaviors 67 
in the environment, particularly in the vadose zone due to abundant air–water and solid–water 68 
interfaces in soils. Concomitantly, PFAS accumulating at fluid–fluid and solid–fluid interfaces can 69 
also modify the properties of the interfaces10, including surface tension and wettability. The 70 
changes in interfacial properties may in turn impact variably saturated water flow and the transport 71 
of PFAS in the vadose zone11,12. Any effective characterization and remediation of contaminated 72 
vadose zones will require conceptualizations that incorporate these critical interfacial processes. 73 
In this commentary, we focus on discussing these complexities of PFAS fate and transport in the 74 
vadose zone and identify the challenges and opportunities where porous media research may be 75 
relevant. 76 

2. Complexity of the PFAS problem from a fate and transport perspective.  77 
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Figure 1. Interfacial retention processes for PFAS in the vadose zone. (a) Schematic for PFAS 
contamination in the vadose zone and groundwater, (b) adsorption of PFAS at air–water interfaces 
arising from bulk capillary water and thin water films in soils under different wetting conditions, (c) mass 
transfer of PFAS between bulk capillary water and thin water films, and (d) an example PFAS molecule 
(e.g., PFOS), where the colors denote different atoms: gray–carbon, green–fluorine, red–oxygen, 
yellow–sulfur, and white–hydrogen. In panel (d), the molecule consists of a hydrophobic and oleophobic 
tail (the fluorocarbon chain on the left) and a hydrophilic head (the sulfonic acid functional group on the 
right). Figure originally reported in Chen & Guo (2023)65 and used here with permission of the authors 
and Wiley.  
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Air–water interfaces in the vadose zone may arise from the bulk water (e.g., pendular rings) 78 
between soil grains (i.e., bulk capillary air–water interfaces) and the thin water films on grain 79 
surfaces (Fig. 1). Under most field-relevant conditions, the latter accounts for >90% of air–water 80 
interfaces13–18. Air–water interfacial adsorption has been demonstrated to be a major mechanism 81 
controlling the fate and transport of PFAS in the vadose zone by laboratory column transport 82 
experiments19–24, field observations25,26, and mathematical modeling11,12,27–32. These studies 83 
highlight the importance of understanding and quantifying partitioning of PFAS at air–water 84 
interfaces in soils and how it controls PFAS transport in the vadose zone.  85 

Fluid–fluid interfaces have been long recognized as an important factor controlling flow, 86 
transport, and reactions in porous media33. The processes at fluid–fluid interfaces include 87 
adsorption and desorption of interfacially-active solutes34–38, attachment and detachment of 88 
colloids39–42, and mass transfer between fluid phases43,44. One of the earlier drivers to quantify 89 
air–water interfacial area was to test a functional relationship among capillary pressure, saturation, 90 
and fluid–fluid interfacial area in a porous medium derived from thermodynamic principles45–47. A 91 
corollary of this functional relationship suggests that accounting for air–water interfacial area may 92 
eliminate hysteretic behaviors observed in capillary pressure and saturation relationships during 93 
cyclic drainage and imbibition processes45–48. Driven by this fundamental investigation and other 94 
more applied problems (e.g., dissolution of non-aqueous phase liquids [NAPL] in groundwater), 95 
multiple experimental methods have been developed to measure fluid–fluid interfacial areas in 96 
porous media since the late 1990s. One group of methods uses pore-scale imaging to explicitly 97 
count interfacial areas, such as X-ray computed tomography (XMT)49–55. Another group uses 98 
interfacially-active tracers to indirectly measure and compute fluid–fluid interfaces, either by 99 
retardation in the breakthrough curves during transport experiments or the mass of a tracer at 100 
fluid–fluid interfaces34,35,37,56–59. These interfacially-active tracers can be in the gas or liquid phase. 101 
Usually, the gas-phase tracer is an alkane (i.e., not charged) and the liquid-phase tracer an 102 
anionic hydrocarbon surfactant (i.e., negatively charged). Additionally, air–water interfacial area 103 
can also be estimated from measured soi water characteristic curves using a thermodynamic 104 
approach based on energy balance60,61. 105 
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XMT (and other imaging-based methods) can separate thin-film fluid–fluid interfaces from bulk 106 
capillary interfaces. For a water saturation smaller than 0.5, the former measured by XMT is 107 
generally much greater than the latter in natural porous media54,55. The actual thin-film fluid–fluid 108 
interfacial area is usually even much greater because XMT underestimates the thin-film fluid–fluid 109 
interfacial area for sand and soil media. The cause is XMT not measuring the additional thin-film 110 
interfacial area due to the microscale grain surface roughness13,55. For example, by combining 111 
XMT and liquid-phase tracer methods, Brusseau et al. (2007)13 reported that thin-film fluid–fluid 112 
interfacial areas in a sandy soil accounted for >90% of the total fluid–fluid interfacial area at water 113 
saturations smaller than 0.5. Further, the fluid–fluid interfacial area measured by gas-phase tracer 114 
methods is greater than that by liquid-phase tracers, especially under drier conditions13,18,62. The 115 
significant difference between the fluid–fluid interfacial area measured by liquid- versus gas-116 
phase tracers remains not fully understood, though it was hypothesized that gas-phase tracers 117 
may access additional air–water interfacial domains18,63. An example of the differences between 118 
the air–water interfacial areas determined by the different methods is presented in Fig. 263. 119  

 
Figure 2. Air–water interfacial area as a function of water saturation for a sand determined by 
different measurement methods and models. “GPITT” denotes gas-phase interfacial tracer test, 
“AQITT” denotes aqueous interfacial tracer test. “XMT-total” is the total air–water interfacial area 
(bulk capillary and film-associated air–water interfacial area) measured by XMT. “Function” refers to 
an empirical fit. “Thermodynamic” denotes the results computed from the thermodynamic 
approach60,61. “Pore-scale Model” refers to the air–water interfacial area computed by the model from 
Jiang et al (2020)17.  Figure originally reported in Brusseau (2023)63 and used here with permission 
of the author and Elsevier. 
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While the prior works quantifying the air–water interfacial area made the distinction between 120 
the bulk capillary and thin-water-film air–water interfaces, the two types of air–water interfaces 121 
are not differentiated in most transport model conceptualizations for the retention and transport 122 
of interfacially-active contaminants. These model concepts often build upon two premises that 123 
significantly underrepresent the role of thin water films: 1) adsorption at the bulk capillary and thin-124 
film air–water interfaces can be treated the same; and 2) interfacially-active contaminants in the 125 
thin water films and the bulk capillary water are in chemical equilibrium. These assumptions may 126 
be challenged in the vadose zone, especially under drier conditions. Recent theoretical analysis64 127 
illustrated that the adsorption of PFAS at thin-film air–water interfaces can strongly deviate from 128 
that at a bulk capillary air–water interface due to complex surface forces from the solid surface 129 
(i.e., electrostatic and Van der Waals forces). Additionally, slow mass transfer in thin water films 130 
can greatly reduce the accessibility of thin-film air–water interfaces for PFAS, and thereby 131 
introduce nonequilibrium conditions between thin water films and bulk capillary water65 (Fig. 1). 132 
Surface diffusion of the adsorbed PFAS along air–water interfaces, while rarely discussed in the 133 
hydrology and PFAS literature, was identified as a primary mechanism for transferring PFAS mass 134 
along the thin water films and between the thin water films and bulk water65. The potentially slow 135 
mass transfer along the thin water films may also provide a plausible explanation for some of the 136 
differences observed between the air–water interfacial areas measured by liquid- and gas-tracer 137 
methods. Because thin water films account for most air–water interfaces in the vadose zone, not 138 
representing the above thin-film-mediated fundamental processes may predict significantly 139 
different field-scale migration of PFAS.   140 

It is important to point out that the impact of air–water interfaces has been studied previously 141 
for the transport of interfacially-active constituents before PFAS, such as the attachment and 142 
detachment of colloidal particles at air–water interfaces66–69. The impact of water films on colloidal 143 
transport was also examined, but the modeled mechanisms are simple—films trap and immobilize 144 
colloids with a diameter greater than their thickness41,69—without representing any of the complex 145 
surface forces. Additionally, non-PFAS surfactants in the subsurface were also studied for various 146 
applications including enhanced oil recovery70,71, surfactant-enhanced aquifer remediation72,73, 147 
and the impact of surfactant on unsaturated water flow38,74–76. Somewhat surprisingly, all the 148 
earlier surfactant-related work primarily focused on how surfactants affect fluid flow and 149 
dissolution with minimal discussion of air–water interfacial adsorption (see more detailed 150 
discussion in Guo et al. (2020)11). In contrast, the impact of air–water interfacial adsorption on 151 
transport has been a focal point of the recent PFAS work.  152 
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In addition to the different interfacial area domains and thin water films, PFAS transport in the 153 
vadose zone involves several other complexities. First, PFAS interfacial partitioning is sensitive 154 
to geochemical conditions (e.g., water chemistry and interactions with other interfacially-active 155 
constituents). For example, the partitioning of PFAS at air–water interfaces can vary greatly under 156 
different ionic strengths and electrolyte compositions20,64,77–82. The presence of co-PFAS and other 157 
interfacially-active solutes may also modify the strength of air–water interfacial partitioning80,81,83,84. 158 
Second, in addition to accumulating at air–water interfaces, it was also hypothesized that PFAS 159 
may form supramolecular structures85 such as aggregated structures, micelles, and vesicles. 160 
While micelles and vesicles are unlikely to be present due to porewater concentrations at PFAS-161 
contaminated sites being much smaller than the critical micelle concentrations26,81, self-162 
assemblies of different PFAS molecules may still arise in complex PFAS mixtures. If present, the 163 
movement of these supramolecular structures can transport PFAS themselves as well as 164 
partitioning mass with the other phases (aqueous phase, air–water interfaces, and solid surfaces). 165 
Third, strong transient flow dynamics coupled with spatial heterogeneity may introduce transport 166 
behaviors unique to PFAS due to partitioning to air–water interfaces and mass redistribution 167 
among the different phases. An example is the amplified acceleration of PFAS transport along 168 
preferential flow pathways with reduced air–water interfacial retention due to greater water 169 
saturation collapsing air-water interfaces12,31.   170 

Finally, while most of the current PFAS fate and transport work focuses on anionic PFAS (i.e., 171 
perfluoroalkyl acids, [PFAAs]), other types of PFAS including cationic, zwitterionic, and neutral 172 
compounds have been shown to be present at contaminated sites86–92. Unlike the environmentally 173 
persistent PFAAs, some of these PFAS can react under environmental conditions—driven by 174 
either abiotic or biotic processes—and eventually transform into PFAAs93–95. The fate and 175 
transport of these PFAA “precursors” in the vadose zone remain poorly understood. Furthermore, 176 
some of the neutral PFAS have relatively high vapor pressure and may partition to the gas phase 177 
as PFAS vapor 96,97. The migration of vapor-phase PFAS and their partitioning with the other 178 
phases represent another set of potentially important processes for PFAS transport in the vadose 179 
zone96.  180 

3. Challenges and opportunities for porous media research 181 

While great progress has been made over the past few years that advances our understanding 182 
of the fate and transport of PFAS in the vadose zone, many important areas are under explored 183 
and significant challenges remain. Here we comment on some of the major challenges from the 184 
perspectives of both fundamental research and practical applications.  185 
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• Quantification of air-water interfacial area. Various methods including direct imaging-based 186 
and indirect tracer-based approaches were developed to measure or estimate air–water 187 
interfacial area at varying water saturations as discussed in Section 2. However, there are still 188 
internal inconsistencies among these different methods, e.g., different methods may measure 189 
different air–water interfacial areas under the same conditions for the same media. 190 
Furthermore, the characterization of air–water interfacial area has only been done on a very 191 
limited number of soils. Because air–water interfaces play a primary role in controlling the 192 
transport of interfacially-active substances such as PFAS, it is important to conduct 193 
comprehensive investigations of air–water interfacial area for a variety of soils and under 194 
different wetting conditions, as discussed recently63. These detailed characterizations may 195 
then allow for the development of process-based models or robust empirical correlations for 196 
the air–water interfacial area as functions of other more readily available parameters. These 197 
improved quantifications of air–water interfacial area are expected to significantly advance the 198 
modeling of PFAS fate and transport in the vadose zone.   199 

• Coupled nonlinear multi-physics processes. The transport of PFAS is a multi-physics problem 200 
that involves various nonlinear processes in the vadose zone. For example, while surfactant-201 
induced flow may not be significant for many lower concentration sites 11,12, they could modify 202 
the transport behavior of PFAS at some of the highly contaminated AFFF-impacted sites 11,12,98, 203 
especially in the early period of PFAS release from fire training activities. Additionally, PFAS 204 
are almost always present at contaminated sites as mixtures of a large variety of individual 205 
PFAS and other substances. A few initial experiment studies have examined the impact of 206 
PFAS mixtures and hydrocarbon surfactants on the interfacial tension77,99–102 and 207 
transport84,103–106. The multicomponent Langmuir model was used to describe potential 208 
competitive adsorption among different components80,84,105–107, but the multicomponent 209 
Langmuir model has been argued to be thermodynamically inconsistent unless all 210 
components have equal maximum adsorption capacity81,108–111. A more rigorous 211 
thermodynamically consistent model was recently developed for multicomponent adsorption 212 
of PFAS81. However, all the studies to date focus primarily on PFAS mixtures with no opposite 213 
charges. The potentially synergistic interactions among PFAS with opposite charges (e.g., 214 
between anionic and cationic PFAS) and how they affect the fate and transport of PFAS in the 215 
vadose zone remain minimally explored. The same goes to the transport of PFAS in the vapor 216 
phase and the transformation of PFAA precursors. On top of the processes discussed above, 217 
PFAS transport in the vadose zone is also driven by transient and nonlinear variably saturated 218 
flow, which has been considered as one of the most computationally challenging processes 219 
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in hydrology112,113. Understanding and quantifying how all these processes and their coupling 220 
control PFAS transport in the vadose zone will require comprehensive experimental and field 221 
data, as well as development of new mathematical models and numerical methods.  222 

• Physical chemistry of PFAS interfacial partitioning and mass transfer in the thin water films, 223 
and how they manifest at greater spatial scales. While the importance of thin water films has 224 
been recognized in porous media literature for fluid displacement, they are often considered 225 
insignificant for solute transport because they represent a tiny fraction of the total fluid volume 226 
and hence a negligible amount of the solute mass. This conceptualization needs to be revised 227 
for PFAS transport because the majority of the PFAS mass may be associated with the thin 228 
water films due to the significant amounts of air–water interfaces arising from the thin water 229 
films. Whether these thin water films can be accessed by PFAS, and under what conditions 230 
they occur, may directly affect PFAS transport in the vadose zone31,65. Furthermore, the 231 
physical chemistry of PFAS partitioning at the air–water interface in the vicinity of a complex 232 
solid surface may deviate from that at bulk air–water interfaces64. These detailed processes 233 
occurring in the thin water films are potentially critical but are only begun to be explored.  234 

• Scale translation and the development of practical modelling approaches. An outstanding 235 
challenge prevalent in all subsurface-related problems is the significant disparity between the 236 
scales at which dominant physical and chemical processes occur (nanometers to milimeters) 237 
and that at which we make observations and engineering decisions (tens of centimeters to 238 
meters or larger). This is also the case for PFAS transport in the vadose zone. Ultimately, site 239 
characterization and remediation applications need models developed for the field scale that 240 
can be practically applied to real-world contaminated sites. These practical models must be 241 
computationally efficient and relatively simple to parameterize, which means that they likely 242 
cannot account for all the complexities discussed in Section 2. We will need to identify the 243 
sub-pore and pore-scale processes with a first-order impact and approximate them at 244 
macroscales. Experimental data and more advanced models that represent a greater level of 245 
complexities may be used to aid the development of these practical models65.  246 

We point out that the aspects discussed above are by no means an exhaustive list of important 247 
topics for PFAS transport in the vadose zone. Rather, they represent a sample of the topics that 248 
we think the porous media community may find interesting. Addressing each of these challenges 249 
will likely require an integrated investigation through experiments, field observations, and 250 
development of theory and computational models from sub-pore-scale, pore-scale, and 251 
macroscales. Just like the prior non-PFAS research efforts that helped to prepare us for tackling 252 
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the PFAS contamination problem, the fate and transport research of PFAS will likely generate 253 
new knowledge and tools that may find use in addressing emerging environmental problems in 254 
the future, with the interfacially-active micro- and nano-plastics being a potential example.   255 

4. Conclusion 256 

This commentary provides an overview of the complexities and challenges for understanding and 257 
quantifying the fate and transport of PFAS in the environment, with a particular focus on the 258 
vadose zone. We have centered on issues unique to PFAS relative to many of the previous 259 
contaminants, and how these processes manifest in the complex porous media environment. It 260 
has become clear that the PFAS contamination problem is one that can significantly benefit from 261 
the expertise of the porous media community both from fundamental and practical perspectives. 262 
This commentary is an attempt to highlight some of the opportunities to which the porous media 263 
community may make significant contributions.  264 
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