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Dicke states as matrix product states

David Raveh®!-" and Rafael I. Nepomechie ©21
' Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA
2Department of Physics, University of Miami, P.O. Box 248046, Coral Gables, Florida 33124, USA

® (Received 14 August 2024; revised 26 October 2024; accepted 13 November 2024; published 26 November 2024)

We derive an exact canonical matrix product state (MPS) representation for Dicke states |Dy) with a minimal
bond dimension x = k + 1, for general values of n and k, for which the W state is the simplest case k = 1. We
use this MPS to formulate a quantum circuit for sequentially preparing Dicke states deterministically, relating it

to the recursive algorithm of Bértschi and Eidenbenz. We also find exact canonical MPS representations with a
minimal bond dimension for higher-spin and qudit Dicke states.
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I. INTRODUCTION

Matrix product state (MPS) representations of states of
one-dimensional quantum many-body systems have important
applications, both conceptually (such as capturing the struc-
ture of entanglement, and establishing the physical basis of the
density matrix renormalization group) and practically (such
as performing explicit computations, and preparing states se-
quentially on a quantum computer) (see, e.g., Refs. [1-4]
and references therein). MPS representations are typically
obtained numerically. However, the exact MPS representa-
tion for the Affleck-Kennedy-Lieb-Tasaki (AKLT) state [5]
has had a particularly profound impact. Indeed, it has made
possible the exact computation of correlation functions in
the AKLT state, as well as the preparation of this state on
quantum computers. One recent example of the latter is the
preparation of AKLT states in constant depth on a quantum
computer using intermediate measurement and feed-forward
techniques [6]. (Quantum state preparation based on a numer-
ical MPS with a large bond dimension appears challenging
since the needed two-site unitaries and their gate decom-
positions must be determined individually for each site.)
Unfortunately, exact MPS expressions are known for only a
handful of other states, such as Greenberger-Horne-Zeilinger
(GHZ) and cluster states (see, e.g., Ref. [3]); and these exam-
ples all have a low bond dimension y = 2. It could be valuable
to identify more examples of exact MPS representations, es-
pecially for states with a higher bond dimension. Indeed, such
examples could be used for computing correlation functions,
and for quantum state preparation; moreover, they could serve
as simple toy models for treating more complicated states.
(As is well known, MPS-inspired quantum state preparation
methods, with a given bond dimension, can avoid the problem
of exponential scaling of resources with system size.)

In this paper, we derive an exact canonical MPS rep-
resentation for Dicke states [D}), which has a minimal
bond dimension x = k + 1, for general values of n and k.
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These states have been extensively studied and exploited in
quantum information and computation for numerous tasks,
including quantum networking, quantum metrology, quan-
tum tomography, quantum compression, and optimization
(see, e.g., Refs. [7-24]). Features of Dicke states that make
them particularly useful include their robustness against de-
coherence [25], their permutation symmetry that facilitates
tomography [14], their entanglement, and their relative sim-
plicity. We also find exact MPS representations for higher-spin
Dicke states [26,27], as well as for qudit Dicke states [28-36].
Our main tool for all the cases (qubit, higher-spin, and qudit
Dicke states) is the Schmidt decomposition, which for Dicke
states is particularly simple, as it is dictated by the Clebsch-
Gordan theorem. The resulting MPS representations for the
various cases are all qualitatively similar. An interesting fea-
ture of the higher-spin Dicke MPS is that the bond dimension
is given by x = k + 1, independently of the value of the spin,
while the bond dimension of the qudit Dicke MPS depends
more intricately on the occupation numbers k (see Table I).

We use the qubit MPS to formulate a quantum circuit for
sequentially preparing qubit Dicke states deterministically,
with O(k n) size and depth. This circuit closely corresponds to
the recursive algorithm given by Birtschi and Eidenbenz [20],
which has a similar size and depth. Indeed, our circuit can
be regarded as an MPS realization of the latter. However,
the latter circuit has the advantage of not requiring an an-
cilla qudit, and is therefore more practical. (Shallower, but
probabilistic, circuits for preparing these Dicke states are
known [21,22,24]).

We note that the MPS representations presented here are
not strictly canonical, but are “sufficiently” so, in the sense
that they can be used for sequential state preparation. These
MPSs can be made strictly canonical by adding suitable cor-
rection terms.

There has been surprisingly little earlier work on exact
MPS formulations of Dicke states, at least to our knowledge.
Indeed, an exact MPS is known for W states [3], which are
the simplest Dicke states |[Dj) with k = 1; however, that MPS
is not canonical (see also Ref. [37]). Building on Ref. [38],
an MPS for a linear combination of Dicke states is studied
in Ref. [34]. However, that construction requires solving a
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system of equations, whose solution appears to be singular
in the limit of a single Dicke state; moreover, that MPS is
not canonical, and has a higher bond dimension than the MPS
presented here. References [34,38] restrict to MPS represen-
tations that are translationally invariant; we do not impose
this requirement on our MPS, which allows us to achieve the
results presented here.

The remainder of the paper is organized as follows. In
Sec. II, we briefly review some key facts about MPS represen-
tations. In Sec. III, we first obtain an exact canonical MPS for
ordinary (qubit, or spin-1/2) Dicke states, and we then gener-
alize this construction to Dicke states of arbitrary half-integer
spins =1/2,1,3/2,.... In Sec. IV, we obtain an analogous
MPS for qudit Dicke states. We briefly discuss these results
in Sec. V. In the Appendix we formulate a quantum circuit
for sequentially preparing Dicke states deterministically based
on the MPS obtained in Sec. IIl. The code in CIRQ [39] for
simulating this circuit is provided in the Supplemental Mate-
rial [40].

II. GENERALITIES

Let us consider a system of n qudits, where each qudit is
multileveled, with d levels. The Hilbert space of this system
is therefore H = (C¢)®". In the computational basis, a state
|Y) € H is expressed as a sum over d" basis states with
complex coefficients:

d-1
W)= > dmpem, o omam) =Y ag i), (2.1)
i

We consider representing the coefficients in the form a; =
(LIA" - - - AT2AT"|R), so that

W) =D (LIAL" - - ATAT'[R) |1),

m

(2.2)

where A" are x x x matrices. Such a state is called a matrix
product state (MPS) of bond dimension x with open boundary
conditions, determined by the boundaries |L) and |R). Here
and in what follows, we underline a vector to emphasize that
it is a y-dimensional ancillary vector, as opposed to the d-
dimensional vectors (not underlined) corresponding to system
qudits. In the special case that A" =A™, i.e., the MPS is
site independent, the MPS is referred to as translationally
invariant in the bulk (neglecting the boundaries [L), |R)).

Every state |¢) can be expressed as an MPS given large
enough y, although nonuniquely [4]; the smallest such yx is
given by the Schmidt rank of the state |/), i.e., the maximum
number of terms in the Schmidt decompositions of |¢) (max-
imized over all possible cuts) [41]. Further, one can always
find an MPS in left-canonical form, i.e., for each site i we
have [1,3,4]

(2.3)

Y oArAr=1;

we shall simply refer to such an MPS as being “canonical.”
This condition implies that there exist two-qudit unitary oper-
ators U; acting on an ancillary qudit |j) and the system qudit

at site 7, performing the mapping

Ui 1j)10)i = Y (A 1)) Im);

m

2.4)

for all |j). This gives a natural method of preparing the state
[¥) on a quantum computer with sequential unitary oper-
ations: Beginning with n system qudits (d level) and one
ancillary qudit of dimension x, applying the two-qudit opera-
tors U, - - - UpU; on the product state |R) |0)®" gives

U, -+ UhUy |R) [0)®"

= (A APATIR)) ) = (L) W), Q2.5)

where we have chosen our A" matrices so that the ancilla
qudit decouples from the system qudits after applying our n
unitaries (this can always be done; see, e.g., Ref. [2]).

III. SU(2) DICKE STATES

An ordinary qubit (d = 2) Dicke state is a uniform super-
position of all qubit computational basis states with a fixed
number of 1’s. Such a state can be expressed as

1

Di)=—= ) lw),

(1) wep@mi

3.1)

where we sum over all permutations w with k ones and
n — k zeros. For simplicity, we restrict ourselves to k < n/2;
a similar analysis can be done for k > n/2. For example, with
(n, k) = (4,2) we have

1
NG
+ [1010) + |1100)).

|D3) = —=(|0011) + [0101) + [0110) + [1001)

3.2)

We claim that a canonical MPS for the Dicke state |D})
with minimal bond dimension x = k + 1 is given by

D) =D (kAT - AAT0) i), (3.3)

where A7 are (k + 1) x (k + 1) quasidiagonal matrices with
elements

nk i, j+m

. . i,j+m=i—1,j k
AP ) = 2L s, =

i\ (n—i
() G)
n
()

where c,*’f denotes the hypergeometric distribution.

This MPS can be derived as follows. We begin by writing
the Schmidt decomposition for the Dicke states [11]

, (34
i—1,j

min(k,i)

A

Jj=max(0,k—n+i)

oy [P |DS), (3.5)

where we have partitioned our qubits into subsystems of sizes
n — i and i. The coefficients cl’-’;‘ can be understood as SU(2)
Clebsch-Gordan coefficients.
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The idea is to search for operators U; such that

U; - - UyUy |0) |0)® Zc 7102~ | Di) (3.6)
_ chk ZCI Ll |0 R(n—i)
x m); |DZ, ), 3.7)

where we pass to the second equality by performing the
Schmidt decomposition on |D§-), and noting that |D,1n) = |m).
In other words, the U operators couple each term in the
Schmidt decomposition to a different level in the ancilla |j).
The maximum number of terms in the Schmidt decomposi-
tion occurs at i = |n/2], where there are k + 1 terms; thus,
for the Dicke states, the ancillary qudit requires dimension
x =k+1.!
Recalling (2.4), we next consider the ansatz

Ui ) 100 =D (AP 1) Im)i = Y yfon1j +m) Im)i. (3.8)

m

The reason for choosing this ansatz will soon be clear. It then
follows that

UUi_; - - - UyUy |0) 10)®"
_UZCI 1] |O®(n lJrl)‘Dl 1>

Z ety g Zy“) 17+ m) 102 ), | D), (3.9)

where the first equality follows from (3.6) with i — i — 1.
Equating (3.7) and (3.9), and enforcing j/ = j — m, it follows
that

k ij ok 0]
C:IJ Ci*l,j m C? 1,j— myj —m,m’> (310)
SO
Kk dj+m n—i
@ _ CijrmCitl . k,j,m)
yj,m o C'}k X - n—i+1)
i—1,j k—j
e SR ki
0 else,
(3.11

and (3.3) and (3.4) follow. We can now understand the
ansatz (3.8): Egs. (3.7) and (3.9) require j' = j — m because
(DD = 85 -

Strlctly speaking, this MPS is not canonical. However, the
closely related matrices A" defined by

o A) I1<i<n—k+1,
P AO—G—ZH' 'lzejj n—k+2<i<n,
Al = Al

1<i<n, (3.12)

IThe Schmidt rank of the Dicke states is invariant under k — n —
k; in general, x = min(k,n — k) + 1.

do obey the canonicity condition Y} _j A™" A = T; more-
over, the MPS result (3.3) is also satisfied if each A" is
replaced by A;". [The ey in (3.12) are elementary (k + 1) x
(k + 1) matrices, with matrix elements (eqw);,, j, = 8a,j, 0b,j,-]
In other words, the £ — 1 leftmost A? matrices are missing
some 1’s along the upper part of the diagonal. Nonetheless,
our MPS is “sufficiently” canonical, in the sense that there
still exist unitaries U; implementing (2.4) for sufficiently many
values of j in (2.4) such that

Uy U2U110)10)" = [k) [ D). (3.13)
This is due to our choice of boundary conditions. For example,
since |R) = |0), it suffices that U; implements (2.4) for just
J = 0; consequently, the only entries in the matrices A7 that
matter are the ones in the leftmost column, so setting other
columns to zero does not affect the sequential preparation
of the state with unitaries. A similar argument can be made
that the added matrix elements in A" have no impact on
the sequential preparation of the state, and so our MPS is
“sufficiently” canonical. Thus, here and in what follows, we
disregard this subtlety, and refer to our MPS representations
as canonical.

A. Higher-spin Dicke states

The qubit Dicke states can be expressed as |D})
(S7)¥10)®", where S~ is the total spin-lowering operator for
a system of n spin-1/2 spins. A natural generalization of the
qubit Dicke states to higher spin, or spin-s Dicke states, is
defined by

DY) oc (STHF 10", (3.14)
where S~ is now the total spin-lowering operator for a system
of n spin-s spins, where s = 1/2, 1, 3/2, .. .. These multiqudit
states with d = 25 + 1 were studied in detail in Ref. [27], and
were shown to take the closed-form expression

& E) - (23‘)
’Dilf;(> = Z - j225n :
Ji=0,1,....2s ( k )
Jitjat =k

Ljn -~ j2j1). (3.15)

For example, with (n, k, s) = (4, 2, 1) we have

1
DY) = %00011) +10101) + [0110) + [1001)

+11010) + [1100))

(10002) + ]0020) + 0200) + [2000)).
(3.16)

1
+_
27

The combinatorial factor in (3.15) is the multivariate hyper-
geometric distribution: Consider marbles of n colors (sites),
and 2s marbles (excitations) per color, so that there are 2sn
total marbles; then the probability of selecting j; marbles
of the ith color for each i, given that k marbles were se-
lected from the 2sn marbles without replacement, is precisely

GG G/ C).
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The Schmidt decomposition for the spin-s Dicke states
is [27]

min(k,2si)

|D§:;<> = Z C?Jks |D£:2i,k—j) |Dz(s/)>’
Jj=max[0,k—2s(n—i)]

251\ (2s(n—i)
")
2sn .
)
The Schmidt rank is symmetric under k — 2sn — k, and so we
restrict k < sn for simplicity. Using the same approach as for
the spin-1/2 case, one can show that a canonical MPS for the

spin-s Dicke states with minimal bond dimension x =k + 1
is

(3.17)

DS =D (kIAD - AAT0) ),

m

(3.18)

where AT" are (k 4+ 1) x (k + 1) matrices with elements

GIAT1LY = Vi 8 s
ks i,j+m,s 25\ (2s(n—i)
W _ CijmCicny (m)(kfjfm) 3.19
Vj,m - cnk‘v - (2S(n—i+l)) . ( . )
i—1,j ke

The unitarity of U; in (2.4) requires that Vi(,l; should satisfy the
constraint ‘

(3.20)

which, being an example of Vandermonde’s identity, is indeed
satisfied.

We note the curious fact that the MPS bond dimension x
of the Dicke state |D£f:,)() depends only on the value of k; in
particular, x does not depend on the value of s, even though
the local Hilbert space dimension grows as s. A heuristic
understanding of this fact can be gleaned from a simpler
(translationally invariant, noncanonical) MPS, namely,

()

Am =Cnm S_ ma m = A
cn (ST e (2s)"

m=0,...,2s, (3.21)
where S~ is the (k + 1) x (k 4 1) spin-lowering operator cor-
responding to spin s’ = k/2. Indeed, since S™|j) o |j + 1), it
is clear that the matrix element (k|A™" - - - A™A™0) in (3.18)
vanishes unless Zi m; = k, in accordance with (3.15). We see
that x [the size of the A matrices in (3.21)] depends on s,
rather than on s.

IV. SU(d) DICKE STATES

Similar to SU(2) Dicke states where the number of 1’s is
fixed, in SU(d) Dicke states, the occupation number for each
level (i.e., how many qudits are in each of the d levels) is
fixed. Given a specification of occupation numbers for each
level, a qudit Dicke state is a uniform superposition of all
qudit computational basis states that achieve this distribution
of occupation numbers.

More explicitly, let k = (ko,k1,...,ks_1) be a d-
dimensional vector whose components are integers from O to

n (thatis, k; € {0, 1, ..., n}) that sum to n (that is, 27;3 kj =

n). We consider the corresponding qudit Dicke state |D" (l;))
of n d-level qudits [28-36]

> 1
ID"(k)) = —=

lw),
\/(I?)WE%;M) )

where & M@ is the set of permutations of the multiset M (%),

4.1)

ME) =10,...,0,1,....1,....d—1,...,d — 1}, (4.2)
——— N—— —_—

ko ky ka1
where k; is the multiplicity of j in M (E), such that M (l;) has

cardinality n; and |w) is the state of n qudits corresponding to
the permutation w. Moreover, (g) denotes the multinomial

ny n . n!
k)~ \ko,ki, ... ko _]_[dflkj!’

j=0

4.3)

which is the cardinality of &, . An example with k=
(2,1, 1), so that d = 3 (qutrits) and n = 4, is

1
D*(2,1,1)) = ——(|0012) + |0102) + [1002) + 0021
|D( ) m(l )+ )+ )+ )
+10201) + [2001) + [0210) + [0120)
+11020) + [1200) + [2010) + [2100)).
(4.4)

The qudit Dicke state |D" (75)) has the following Schmidt
decomposition in terms of qudit Dicke states of size n — [ and
1[33,42],

ID"(k)) = Y N ID" (k- a)) D' @),
aec Al (k)
I\ (n—I
ok = 0 (,f"‘), [=1,....n, 4.5)
’ ()
where the set A’ (k) is defined by
Al (k)
d—1
=1a=(ap,ar,...,as-1)| 0<a <k, Za,:l ,
i=0
(4.6)

whose cardinality we denote by D' (/;) = | A (12)|.2 As [ varies
from 1 to n, Dl(lz) attains its maximum value for [ = [n/2],
so the minimum bond dimension of an MPS for |D”(I€)) is
Dln/2) (l; ). We now proceed to construct a canonical MPS with
this bond dimension. Examples of values of x = D"/2!(k) for
small values of n and d = 3 are listed in Table 1.

In the SU(2) case, each Dicke state is naturally associ-
ated with an integer corresponding to a basis state of the
ancilla: |D;) < |j) [see (3.6)]. For qudit Dicke states, there

The cardinality of the set A’ (ié) is known to be difficult to express
in closed form; see, e.g., Ref. [43].
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TABLE L. Examples of values of x = D"/ (k) for small values
ofnandd = 3.

-

k n X
1,1,1) 3 3
1,1,2) 4 4
(1,1,3) 5 4
1,2,2) 5 5
(2,2,2) 6 7
(1,3,3) 7 7
(2,3,3) 8 10

is no natural way to similarly associate each |D'(@)) with
an integer; instead, we simply assign integers to index the
various possible @’s. Let the elements of A’ (12) (4.6) be la-
beled by consecutive integers j/(@) =0,1,...,D'(k) — 1 in
an arbitrary manner. For @ € A~!(k), we make an ansatz
generalizing (3.8)

d—1
U j @) 10y =Y (A7 [ @) Im)
m=0
d—1
A e 0) | O TR C X))
m=0

where 71 is a d-dimensional unit vector that has compo-
nents (); = &, with m =0,1,...,d — 1. Note that a +
i e Al(K) if and only if a, < k. If @+ m ¢ A'(k), then

y(,l ) Gm = = 0. The corresponding MPS with bond dimension

x = D2(k)is

IDME) =) (0AL .. ASPATYO) ), (4.8)
where A]" are x x x matrices with elements
G @IAT @) = 7,2y B e (4.9)

where @ € A'~'(k) and @ € A!(K). Proceeding as before, we
obtain

cnk [+
) lLa+m-1-1,a
Vg =~ (4.10)
I-1,a

V. DISCUSSION

Our main results are MPS representations for
qubit, higher-spin, and qudit Dicke states [see
Egs. (3.4), (3.11), (3.19), (4.9), and (4.10)]. We emphasize
that these MPS representations are exact, canonical, and
have minimal bond dimension. [These representations are
“sufficiently” canonical in the sense that they can be used
for sequential state preparation; they can be made strictly
canonical by adding suitable correction terms, as in Eq. (3.12)
for the qubit case.]

Dicke states are translationally invariant (TT) states, since
they are invariant under the one-site shift operator. However,
the MPS formulations obtained here are not TL3 Taking (3.21)
instead of (3.4) gives a TI MPS with open boundary condi-
tions (OBCs) and bond dimension x = k 4+ 1, which however
is not canonical. A canonical TI MPS with periodic boundary
conditions (PBCs) can be obtained via the construction in
the proof of Theorem 3 in Ref. [3], at the expense of in-
creasing the bond dimension from x to ny. It is conjectured
that there does not exist a x = O(1) TI MPS with PBCs
for the W state, which is the simplest Dicke state |D}) with
k=1 (see Appendix A.l in Ref. [3] and also Ref. [37]).
The apparent clash between translational invariance and
canonicity for a given bond dimension may merit further
investigation.

We note that the MPS formulations obtained here could
be further generalized to so-called g analogs of Dicke
states, namely, generalizations of Dicke states introduced in
Refs. [42,44] that involve a (complex) parameter g, which re-
duce to usual Dicke states in the limit ¢ — 1. These g-analog
Dicke states include other studied states as special cases. For
example, antisymmetric states [28,30,35] correspond to the
particular case ¢ = —1. The Schmidt decompositions for the
SU(2) and SU(d) cases, which are necessary for deriving
the corresponding MPS formulations, were already found in
Refs. [44] and [42], respectively.

As described in Sec. II and the Appendix, the canoni-
cal MPS for the Dicke states naturally leads to a sequential
algorithm for their deterministic preparation on a quantum
computer, with O(kn) size and depth. This algorithm is
closely related to the algorithm in Ref. [20], where the re-
cursive nature of the Dicke states is leveraged to formulate
a quantum algorithm for their preparation. The primary dif-
ference between the two circuits is the manner in which the
rotation operations are controlled; in the circuit in the Ap-
pendix, the controls are implemented via the qudit ancilla,
while the circuit in Ref. [20] manages to avoid any ancillas.
However, the values of the rotation angles in the two circuits
coincide exactly; in this sense, we have brought the algorithm
in Ref. [20] into the MPS framework.

As noted in the Introduction, a constant-depth quantum cir-
cuit for preparing AKLT states deterministically has recently
been formulated using the exact MPS together with interme-
diate measurement and feed-forward techniques [6], and has
been generalized to MPS states with global on-site symme-
tries [45]. It would be very interesting to similarly formulate
a constant-depth quantum circuit for preparing Dicke states
deterministically using their exact MPS. Exploiting quantum
phase estimation as in Ref. [21], a probabilistic algorithm for
exactly preparing Dicke states |D}) in O(log, n) depth with
success probability O(k~!/?) has recently been proposed in
Ref. [24].

31t is often the case that a mathematical treatment of a problem
does not respect all of its symmetries. A well-known example is the
quantization of a gauge-invariant theory: It is convenient to specify
a gauge, which apparently breaks gauge invariance; nevertheless,
physical quantities remain gauge invariant.
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FIG. 1. Circuit diagram for 1" | j) |0).
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APPENDIX: SEQUENTIAL PREPARATION OF
DICKE STATES

We present here an explicit quantum circuit for the de-
terministic sequential preparation of the qubit Dicke state
[D}) (3.1) based on the MPS (2.5) and (3.3). The key step
is to formulate a quantum circuit for the unitary operator
U; in Egs. (3.8) and (3.11). Inspired by Ref. [20] (see also
Refs. [27,36]), we assume that U; can be expressed as an
ordered product of simpler operators / @,

k
u=11" (A1)
1=0
where the product goes from right to left with increasing /,
and the operator I,(’) performs the mapping (3.8) on |j) |0); if
=}, -

- 1) 10}, 1%,
WW%=iluW+ ol A
m=0 yj,m .] m> |m)la - ,]9
moreover,
P = 1) 0. 1#j—1. (A3)

It follows that the Il(i) operators do not interfere with each
other:

L0 100) = (0 10)), 1> ). (A4

We shall see that the product over / in (A1) can be restricted
[see (A8) below].

The operator Il(’) can be implemented by the quantum cir-
cuit whose circuit diagram is shown in Fig. 1. In this figure,

i .

(a)

the top wire represents qubit i, while the bottom wire rep-
resents the (k + 1)-level qudit ancilla. The circles @ denote
controls. The 1-qubit rotation gate R(6), which is given by

R(O) = <cos(9/2)

—sin(6/2)
sin(6/2) ’

cos(6/2)

sin(6/2) =y

cos(6/2) = yo. o, (A5)

is controlled by the ancilla, where the control value [ + 1
is understood as mod(k + 1). We remind that yf’rL is given
in (3.11). The one-qudit gates @ and &, which are defined by

®lj)=1j+1) j=0,1,...k,

(A6)

are controlled by the system qubit i, where j &= 1 is under-
stood as mod(k + 1). (Alternatively, instead of @ and ©, one
can use NOT gates X "'+ that map |I) < |l 4+ 1), and leave
invariant other basis states |j) with j # [, 4+ 1.) Indeed, it is
straightforward to check that this circuit satisfies both proper-
ties (A2) and (A4).

The unitary operator that prepares the Dicke state |Dj)
deterministically from the initial state |0) |0)®" is given by an
ordered product of the U; operators

(AT)

since U 0) |0)®" = |k) |D}) [see (3.13)]. It is possible to show
that the product over [ in (A1) can be restricted, so that U, is
given by

2
min(i—1,k—1)

U = [T 7

I=max(0,i—n+k—1)

(A8)

Let us represent U; (A8) by the circuit diagram in Fig. 2(a),
where the top wire represents qubit i, and the bottom wire
represents the (k + 1)-level qudit ancilla. The operator U (A7)
can then be represented by the circuit diagram in Fig. 2(b).
The size and depth of the circuit is 3k(n + 1 — k), as follows
from (A7) and (A8). The code in CIRQ [39] for simulating this
circuit is provided in the Supplemental Material [40].

T

) :—|
L
3
IZSZ)

FIG. 2. Circuit diagram for sequential Dicke state preparation. (a) U; = [, Il(i), withx = max(0,i —n+k —1)andy = min(i — 1,k — 1);

oYU =[], U.
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