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Abstract. We study streaking artifacts caused by beam-hardening effects in X-ray computed
tomography (CT). The effect is known to be nonlinear. We show that the nonlinearity can be
recovered from the observed artifacts for strictly convex bodies. The result provides a theoretical
support for removal of the artifacts.
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1. Introduction. In X-ray computed tomography (CT), artifacts due to beam-
hardening effects are common in imaging of patients with medical implants. These
artifacts are notorious for causing degradation of CT images and difficulties with
diagnosis. The reduction or removal of such artifacts has drawn numerous research
efforts, but the problem still remains one of the major challenges in X-ray CT.

In a seminal paper [12], Park, Choi, and Seo demonstrated the nonlinear nature
of beam-hardening effects. Let f be the attenuation coefficient of the object being
imaged. Because of the polychromatic nature of X-ray beams, we consider the depen-
dency of f on the energy level E. This is particularly significant for metal objects.
Assume that FE € [Ey — €, Eg + ¢, € > 0, and write f as fg. Assume that fg(z) =
fE,(x)+a(E—Ey)xp, where xp is the characteristic function for a metal object D C
R?, and « is a constant which can be thought of as the approximation of the derivative
of fp in E. The X-ray data can be derived from the Beer-Lambert law which gives

(1) P=Rfrg+ Pypa.

Here, Rfg denotes the Radon transform of fg, and Py;4 denotes a mismatch term.
Under further assumptions, it is derived in [12] that

sinh(aeRxp) )

2 Pya=-1
(2) MA n< aeRxDp

is a nonlinear function of Ryp. If one applies the filtered back-projection (FBP) to
reconstruct fg, the mismatch term Py 4 leads to the artifact; see Figure 1 for a demon-
stration. By using the notion of wave front set in microlocal analysis, the authors of
[12] gave a mathematical characterization of the artifacts. For strictly convex objects,
the artifacts appear to be straight lines tangent to at least two boundary points of
the metal objects; see Figure 1. For more complicated situations, the artifacts and
their relation to the geometry of metal regions are further studied in [11, 19]. Finally,
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F1G. 1. Illustration of the beam-hardening artifacts produced by a quadratic nonlinearity. The
left figure shows the reconstruction from FBP. The two bright disks represents the metal objects.
The artifacts appear to be straight lines tangent to both disks. The right figure shows the sinogram
(color map of P in (1)). The two bright strips correspond to the support of Rxp.

we mention that artifacts due to a similar mechanism are also known in attenuated
X-ray tomography; see [7].

The identification of the nonlinear effect in Py 4 is key to removal of the artifacts.
In practice, the shape of the metal objects can usually be acquired, so it is reasonable
to assume that xp is known and to think of Py;4 as a nonlinear function F(Rxp).
Then one can remove Pp;4 if F' is known. For example, the numerical scheme de-
veloped in [13] consists of two steps: first, one recovers xp from the reconstruction
for using image segmentation techniques; second, one can use the model (2) and find
the optimal o which reduces the artifact. The model (2) was derived under certain
assumptions. In general, not much can be said about the nonlinear function as it
depends on many factors, such as the energy distribution of X-ray beams, geometry,
physical properties of metal objects, and even fg,. Currently, increased effort has
been made to find the nonlinear effect by using deep learning techniques; see, for
example, [14, 20].

The purpose of this note is to show that the nonlinearity can be identified from the
observed artifacts. Also, we provide a constructive proof, which may be potentially
seful in practice.

2. The main result. Because of the local nature of the problem as we explain
later, it suffices to state our main result in a relatively simple setting. We assume
that the metal region D = Dy U Dy, where Dj;,j =1,2, are simply connected disjoint
bounded domains in R? with smooth boundary 0D;. Let xp = xp, + xp, be the
characteristic function of D. We assume that the attenuation coefficient is of the form

3) f(@)=h(z) +g(z)xp(z), =€R?
where h,g € C§°(R?). We remark that the form of f is not important for our analysis.

We take (3) mainly because it is close to the form in [12]. For the Radon transform
on R?, we use the following parametrization:

RiGo=[ e
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Here, z € R and (s,¢) € M =R x (—m, 7). Note that because we are dealing with a
local problem for Rf, it suffices to use local coordinates in the region of interest. We
model the beam-hardening effects by a polynomial function F': C — C of the form

J
(4) F(t)=) ajt’,
j=2

where a; are constant, and J € N. Then the X-ray CT data is modeled by
(5) P:Rf—l—P]\/[A, PMAZF(RXD).
For the reconstruction, we apply the FBP to get

(6) fer=f+fua, fua=R*'I 'Pya,

where .# ~! is the Riesz potential, and R* denotes the adjoint of R; see, for example,
[16]. Our main result is as follows.

THEOREM 2.1. Suppose D;,j=1,2, are strictly convex. Then F in (4) is uniquely
determined by for in (6).

Once F is determined, one can remove Py 4 from P in (5) and reconstruct f. We
remark that if F'(Rxp) has a linear part such as ag+a; Rxp, it could produce ambigu-
ity in the reconstruction of f, although the term will not change the wave front set of
f. We also remark that in the proof of Theorem 2.1, it suffices to use for away from
0D to determine F'. So the theorem really says that F' can be determined from the ar-
tifacts rather than the whole fer. This is important because f in (3) is singular at 9D.
The singularities of fasa at 0D are weaker, so it might be more difficult to recover F
from those singularities. Among other things, one useful consequence is the following.

COROLLARY 2.2. Under the assumption of Theorem 2.1, for € C=(R*\OD) if
and only if FF=0.

The result implies that the artifact is always visible unless there is no beam-hardening
effect. This seems to be the first existence result for the streaking artifacts.

Next, we make a few remarks regarding the possible generalizations of the main
results.

Remark 2.3 (the nonlinear function F'). As studied in [12, 11, 19], the artifacts are
generated from Pps4 in (5) at certain discrete points. We will see in section 3 that near
those points, it suffices to consider ¢ small in (4). Thus, assuming F' of the form (4)
is not restrictive. In fact, one can consider variable coefficient polynomial F(¢,s, ) =
E}]:z a;j(s,¢)t’ as one would when « in fg is not a constant; see equation (2.4) of
[12]. We believe that our method can be adapted to recover a;(s, ) at those discrete
points where artifacts are generated.

It is also natural to consider smooth nonlinear function F'(¢) and recover coeffi-
cients of the Taylor expansion at t =0. We believe that this is possible but requires
further efforts. In particular, our method relies on the analysis of singularities in
F(Rxp), where Rxp is a conormal distribution. The nonlinear interaction produces
new singularities. For polynomial functions, we can describe the nature of the sin-
gularities within the framework of Lagrangian distributions. For smooth functions,
the same applies to the truncated Taylor series, but it is not clear if the remainder
term can be described in terms of Lagrangian distributions. One possible solution is
to estimate the strength of new singularities in certain microlocal Sobolev spaces and
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show that the remainder term is more regular. We refer the reader to [17] for an
example of this approach.

Remark 2.4 (the number of objects). The streaking artifacts are associated with
lines tangent to both Dy and D5. If the metal regions consist of more than two disjoint
simply connected regions, our methods can be adapted to the case when there is no
line tangent to more than two of the regions.

Remark 2.5 (the convexity assumption). The assumption that D;,j = 1,2, are
strictly convex is essential. In section 4, we will show that Rxp,,j = 1,2, possess
better regularity properties under the strict convexity assumption, which is key to
determining F. The strict convexity can be relaxed to convexity of finite orders.
We believe that the techniques developed in this paper are adaptable. However, if
the boundary contains line segments, or the boundary is not smooth (e.g., contains
corners), the generation of artifacts becomes more complicated as shown in [11]. Tt
becomes unclear whether the nonlinear function can be recovered from the artifacts.

Finally, we briefly discuss the ideas of the proof. We already mentioned that
streaking artifacts are associated with singularities, more precisely, wave front sets
of F(Rxp) due to the nonlinear interactions of the singularities in Rxp. With more
precise notions of Lagrangian distributions, quantitative results on the strength of the
artifacts are obtained in [11]; see also [19] for nonconvex objects. Essentially, these
results provided the upper bound of the wave front set, which indicates where the
artifact could appear. Our idea is that when the artifact actually occurs, it carries in-
formation about the nonlinear function F'. So, we can use the artifact to reconstruct F'.
The philosophy that nonlinearity can help solve inverse problems was perhaps first
demonstrated in [9] for nonlinear wave equations. In the last decade, the method
has undergone rapid developments, and the majority of the work relies on the idea of
higher order linearization. Unfortunately, this method is not applicable to our problem
because it requires the X-ray data for a family of metal objects, but we only have one.

The way we overcome the difficulty is to study the fine structure of singularities
in F(Rxp). A key observation, discussed in section 4, is that when D is strictly
convex, Rxp is a conormal distribution vanishing to certain order at the singular
support. This allows us to obtain expansion of F(Rxp) near the interaction point in
terms of the strength of singularities instead of the magnitudes in the higher order
linearization expansion. To recover F', another key component is to show that all
terms in the expansion are nontrivial. This is done in section 5, where we finish the
proofs of Theorem 2.1 and Corollary 2.2.

3. Microlocal analysis of the artifacts. In this section, we consider the arti-
fact generation for the special case of a quadratic nonlinearity. The analysis demon-
strates some essential ingredients for proving Theorem 2.1. The other ingredients will
be studied in section 4. We remark that some of the analysis already appeared in
[11], but we need to improve them so they can be used for more general nonlinearities.
Also, we introduce relevant notions from microlocal analysis along the way.

3.1. Regularity of Rxp. We start with the notion of conormal distributions;
see section 18.2 of [5] for details. Let @ C R",n € N, denote an open and relatively
compact subset. Let ¥ C 2 be a submanifold of codimension k. The set of conormal
distributions of order m is denoted by I™(;%). Such distributions can be defined
in a coordinate invariant way, but we only need the local representations. According
to Theorem 18.2.8 of [5], u € I"(;X) if and only if u € C°(R™\ ¥), and near any
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point p € 3 and in local coordinates where ¥ ={y; =yo =--- =y =0}, y = (v, y"'),
Y = (Y1,Y2,- -, Yk), ¥ € R we have

n—2k

1 (Rk % Rnfk)’

(7) U(y)=/ eV a(n y")dn', ae ST
Rk

where for r € R, S’”(Rk X R"fk) is the class of symbols satisfying
09,0 a(n’,y")| < Cop(1+ /) 171,
It is known that WF(u) C N*¥ and the space of distributions satisfy
I %) CI™ (%), m<m'.

The principal symbol of u is defined to be the equivalence class of a(n’,y”) in the
n—2k

quotient §™+F (RF x R"~F)/5m+ "5 ~1(R¥ x R"¥), and the map

n—2k

I X) /I E) — ST (RF x RYF) /555 L (RF < R"F),
[u] — la],

is an isomorphism. The symbol map can be invariantly defined as in [5], but since our
analysis is completely local, we do not need to discuss that. It is worth mentioning that
there is an equivalent definition of conormal distributions using iterated application
of vector fields tangent toX; see Definition 18.2.6 of [5]. Then it is clear that such dis-
tributions belong to certain Besov spaces. Below, we mostly consider n =2 and k= 1.
Let Dj,j =1,2, be a simply connected bounded domain in R? with smooth strictly
convex boundary dD;. The characteristic function xp, € I “1(R? 0D;). It is known
(see, for example, [11]) that Rxp, € Ifg(M;Sj),j =1,2. Also, we will see a direct
calculation in section 3. But we give the proof below for the reader’s convenience.
To describe the conormal distribution, we start with R : &”(R?) — /(M) as an
elliptic Fourier integral operator. Using local coordinates (s, ¢) for M and = (a1, 2)
for R?, we write the Schwartz kernel of R, denoted by Kg, as an oscillatory integral

1

KR(Sa¢a $) = (27‘()%

/ ei(zl cos ¢p+x2 sin ¢75)>\d>\
R

The phase function is ¢(s,d,x;\) = (21 cosp + zasing — s)A, so the associated La-
grangian submanifold of T*M x T*R? is
A={(z1co8¢ + xasind,d, —A\, A\(—xz18in ¢ + x5 €08 @); 1, X2, ACos P, Asin @) :
A€ R\O, ¢ € (—7T, 7T),£E1,IL‘2 S R}

In particular, K e I~2 (M x R?*;A). We denote the homogeneous canonical relation
by
C ={(x1cosp+ x28in ¢, p, — A, A\(—x1 sin ¢ + x5 cos P);
(8) X1, T2, —AcCos P, —Asing) :
AER\O, ¢ € (—m,7), 21,22 €R} C T*M\0 x T*R*\0.

Let C; def N*0D;\0,j = 1,2; we think of them as canonical relations of XD, (see

Appendix A). The composition of the two homogeneous canonical relations C,C; is
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transversal (see Appendix A) so the composition C o C; is a homogeneous canoni-
cal relation, which is a Lagrangian submanifold of 7*M. Under the strict convexity
assumption, the Lagrangian becomes a conormal bundle. In fact, the projection of
CoCj to M is injective, and the projection is

S; def {(s,¢p) e M : s=m1cos¢+ xasing, (z1,22) € 0D;,

9
©) (—sing,cos @) € T(z, 2,)0D;},

which consists of codimension one submanifolds of M. We have CoC; = N*S;\0,j =
1,2. One can apply the FIO (Fourier integral operator) composition theorem [6,
Theorem 25.2.3] to conclude that Rxp, € I~2 (M;S;),j=1,2.

3.2. The nonlinear analysis. We consider a quadratic nonlinearity F(t) = ¢
and let

(1) Para ™ (R(xp))” = (R(x0,))* + (R(x.)) + 2R(xD:) R(xD,).
We analyze the singularity in each term. For (Rxp, )2,j =1,2, we recall the following
multiplicative property of conormal distributions; see [15].

LEMMA 3.1. If X C Q is a C* hypersurface, and if u,v € Im*%Jr%(Q;E) and
m < —1, then uwv € I™~i+3(Q; X).

We conclude that (Rxp,)* € I73(M;S;),j = 1,2. So, WF((Rxp,)?) C N*S; does
not produce new singularities.

Next, consider the product Ry p, Rxp, in (10). This term will produce new sin-
gularities, and the result can be described by using the notion of paired Lagrangian
distributions; see [3] for details. Let X be an n-dimensional manifold, Ag, Ay C T*X\0
be two cleanly intersecting Lagrangians in the sense that ¥ = Ag N A; is smooth, and
T,X =T,Ao NTyA1,q € X. The paired Lagrangian distributions associated with the
pair (Ag, A1) with order p,l € R is denoted by IP!(Ag,A;). We only need the case
when Ag, A; are conormal bundles. Locally, such distributions can be described as fol-
lows; see [2]. Let = (x1,...,2,) be coordinates of R". Let k1, ks € N and ky +ky =n.
Consider

le{g;l :x2:...mk120}:{x/zo}’
Yo={x1=22=" Tk, 14, =0} = {2’ =0,2" =0}

Let Ag = N*Y;\0,A; = N*Y5\0 and u € IP"!(Ag, A1) be written as
(11) u(z) = / @ g (1 €1 €Y de de”
RE1+k2
with a(z;£’,£") belonging to the product type symbols
S (R x (RF1\0) x RY?) = {a € O : 8785, 08 a(,€)|
< Capyrc(€,€")111EM 11,

where 1 =p—k1/2+n/4, ' =1—ky/2. We recall the fact that if u € I»!(Ag, A;), then
WF(u) C Ag U Ay. Also, near Ag\Ay, u is microlocally in I7*!(Ag). More precisely,
for any open sets Uy,Us in T*X\0 such that Ay C Uy C Us, let x be a smooth real
function on T*X with values in [0,1] such that x =0 on U; and x =1 on Ag\Us.
Then @ with amplitude ya as in (11) is a Lagrangian distribution in IP*!(Ag). For

(12)
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convenience, we refer to this type of statement as u € IP*/(Ag\A;). Similarly, for
u € IPY(Ag, A1), we have u € IP(A;\Ag). Thus the principal symbols can be defined
invariantly for each piece. In fact, one can also define the notion of principal symbols
for u invariantly; see [3]. However, we only need the behavior of these distributions
locally. So, it suffices to work with the expression (11).

To analyze the singularities in Rx p, Rxp,, we need to know how the Lagrangians
intersect. Asshown in [11], if Dy, Dy are strictly convex, then S; intersect Sy transver-
sally at a finite point set S, =51 N S; see Figure 1.

LEMMA 3.2. For each q € S,, there exists neighborhood O of q such that in O,
(13) R(xp,)R(xp,) € I73 71Ty M,N"Sy) + 17571 (T M, N*Sy).

Moreover, R(xp,)R(xp,) € I7>*(T M\(N*S1UN*S,)), and the principal symbol is
nonvanishing.

Proof. We repeat the proof of Lemma 1.1 of [2]. Consider the intersection of Sy, S,
at g. We choose local coordinates (z1,z») for R? such that ¢ = (0,0), S; = {z; =0},
and Sp = {z2 =0}. Then we can write

Rxp, (z) = /R N6 a(z,6)der, a€ S YRS x (Re,\0),
Ry, (z) = / (2, 6)dEs, be SYERE x (Re,\0)),

and the principal symbols of a,b are nonvanishing. Then we get

(14) Rxpy (2) Rx ( / / 2 0 (0, € )b(, ) dEydE.

Introduce a cutoff function x(¢) € C§°(R), x =1 for |¢| < 1/2 and x =0 for |¢| > 2.
Then we have

X((€2)/(€1))a(e, E0)b(x, &2) € ST2/2 73RS x (Re,\0) X Rg, ),
(1 =) ((E2) /(&) alz, &1)b(z, &) € S/ 732(RE x (R, \0) x Re,)

by directly checking that the symbols satisfy the product type estimate in (12). For
example, let’s consider the first term in (15). For a, S €N, v € N? and on a compact
set of R2, we have

10208, 07, (x((€2)/ (&1))alz, £1)b(w, €2))| < Capn (E1) /27 (&) 75277
< Capy{(€1,62)) 270 (&e) 72277,

where we used the facts that this term is supported in (&) < 2(&;) and Coag, is
a generic constant. Thus this is a symbol of a paired Lagrangian distribution in
Ip’l(T;M,N*Sg), where the orders are p=—-3/24+1/2—-1/2=-3/2 and | = —-3/2+
1/2=—1.

To find the principal symbol on T;M\(N*S; U N*S;), we consider (14) for
C1{&2) < (&) < C3(&) for some positive constants C7,C2. Then the symbol ab €
S—3(R? x R?) and the principal symbol is given by the product of principal symbols
of a and b. a0

(15)
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To summarize, we prove the following.

LEMMA 3.3. Suppose D1, Dy are strictly convex. Then for Pyra defined in (10),
we have WF(Pya) C (Uges, Ty M)UN*S1UN*S,. Moreover, (Uges, Ty M)\(N*S1U
N*Sz) C WF(PMA)

3.3. Description of the artifact. Consider fas4 R*771(Rxp)?. We show
that this term contributes to the streaking artifacts. We define Lo={L : L is a straight
line in R? tangent to D; and Dy}

LEMMA 3.4. Fiz any L € Lo,p € L, and let x € C§° (]R2~) be supported near p and
away from 0Dy U 0Dz U (Upcp E#LL)' Then we have xfaa € I72(N*L), and the
principal symbol is nonvanishing.

Proof. Essentially, .# ! can be regarded as a pseudodifferential operator of order
1 (modulo a smoothing operator); see, for instance, the treatment of Lemma 4.1 of [19].
Also, we know that R* is an elliptic FIO of order f%. Let C* be the canonical relation
of R*. Then we check that C* o N*S;\0=C*0oC o N*0D;\0=N*0D;\0,j =1,2. It
follows from the wave front analysis that

WF(R*# ' ((Rxp,))?) CN*0D;, j=1,2.

Next, consider singularities in R*.# ~}(Rxp, Rxp,). First, for ¢ € S, and letting
Xq be a smooth cut-off function supported near ¢, we have

I (xqR(xp,)R(xp,)) € T3~ H TP M,N*Sy) + "2~ (TF M, N*Sy),

and the principal symbol at T, M\(N*S; U N*S;) is nonvanishing. Here, we used
Proposition 4.1 of [3]. For the application of R*, we can still use Proposition 4.1 of
[3]. The transversality of the compositions C* o (T M\0) and C* o (N*S;\0),j = 1,2,
are verified in Appendix A. In particular, C* o (T; M\0) = N*L\0, where

L={zeR?:z,cos¢+zosing=s,q=(s,0)} € L.
So, we get
R* o 9 (xqR(xD,)R(xp,)) €IV (N*L,N*0Dy) + I~ """ (N*L,N*9D).

The principal symbol at N*L\(N*9D; U N*0Ds) is the product of the principal
symbols of R*.¢ 1 and x,R(xp,)R(xp,) at N*L, so it is nonvanishing. The analysis
can be repeated for each g € Sy, and the proof is completed. 0

According to [12, Definition 3.2], the straight lines in L, are streaking artifacts
in the sense of wave front sets. Lemma 3.4 states that such artifacts always exist,
namely singsupp(far4)\0D # 0 if the nonlinear function F is quadratic.

4. Improved regularity analysis. To analyze the singularities produced by
higher order polynomial nonlinearities, we will use a special property of the Radon
transform of xyp when D is strictly convex. We start with Piriou’s conormal distri-
butions; see [15]. We remark that this notion will not be used in any essential way
afterwards, but it provides a good motivation.

DEFINITION 4.1. If m < —1, let k(m) be the nonnegative integer such that —m —

2<k(m)<—m—1. If X CQ is a C™ hypersurface, we say that u € Im—i+3 (X)) if
n 1

we I™™ 112 (Q; ) vanishes to order k(m)+1 at X (all derivatives of u to order less

than or equal to k(m) vanish atX).
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It is proved in Proposition 2.4 of [18] that if ¥ C Q is a C'™ hypersurface, u €
Im" 2(Q;%), and m < —1, then u =& + v, with v € I~ +2 (Q; E) andgeOOO.If
velm—1+h (%) and X = {y1 0}, then v—yl( D, w e mrk(m) 2(Q;%). Now

consider n = 2 and take v € Im(Q ¥),m < —1. Then v € yk(m)lm““(m)((l 3). But
since m + k(m) < —1, we get that

v?e y%k(m)Ierk(m) (;%).

We can apply Proposition 18.2.3 of [5] to conclude that v € I"™~*(™)(Q; ¥). The argu-
ment can be repeated to yield that for I € N, v € Im*(lfl)k(m)(ﬁ; ¥). In conclusion,
if k(m) > 0, the conormal distribution becomes more and more regular after self-
multiplication. We observe that the vanishing order in Piriou’s conormal distribution
plays an important role in the argument.

Now let U be a simply connected bounded domain with smooth boundary OU.
Asin (9), let S def {(s,0) € M : s=x1c08¢ + xasing,x € OU, (—sin ¢, cos ¢) € T,,0U },
which is a codimension one submanifold of M. We know that Ryy € I~ 2 (R?;S), so
m = —3/2 and k(m)=0. It seems that we do not gain any vanishing order from the
analysis above. However, if U is strictly convex, we show below that it is possible to
gain 1/2 vanishing order. We remark that for nonconvex domain, this is not true. One
can construct simple examples to verify it; see Figure 2. It is also worth mentioning
that the vanishing order is closely related to the range characterization for R, R* and
R*R (in our notation) studied in section 4 of [10].

Below, we use t§,a > —1, to denote homogeneous distributions so that t§ = ¢¢
for t > 0 and t§ = 0 for t < 0. See section 3.2 of [4] for details. Also, the Fourier
transform of ¢¢ is homogeneous of degree —a —1; see Theorem 7.1.16 of [4]. The key
result of this section is the following.

LEMMA 4.2. Suppose U is strictly convex. For qy € S, there exists a neighborhood
of qo and local coordinates y= (y1,y2) € R? such that go = (0,0), S = {y2 =0}, and

Rxv(y) = h(@)ys's + yoir(y), eI 3/2(M;S),

where h is smooth and positive.

)

FI1G. 2. Regularity of Rxp(s,0). We consider 0 in the direction of the x2-axis. Then Rxp(s,0)
is the integration of x p(x) along the dashed line with distance s to the x1-axis. Left figure: D is not
strictly convex near O. Rxp(s,0) has a Heaviside type singularity in s. Right figure: D is strictly

1/2

convez near O. Then Rxp(s,0) behaves like a homogeneous distribution s/ " ins.
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Note that y» y € I7%/2(M;S), so the product y2 () makes sense as a product
of distributions in I=3/2(M;S) by Lemma 3.1. Also, from the local expression (7),
we see that I=3/2(M;S) C L*>; see also [2]. So, the product also makes sense in L.

Proof. Consider the Radon transform

(16) RXU(S,¢5)=/ xu (z1, T2)dr1dTs.
s=x1 cos ¢p+x2 sin p

As pointed out by a referee, we have a simple interpretation that Ry is the length
of the line segment contained in U. We can compute it in a conveniently chosen
coordinate system.

Recall that OU is a simple closed strictly convex curve if and only if the curvature
Kk is strictly positive on OU; see section 2.3 of [8]. Here, the curvature is defined in
the Frenet frame and is always nonnegative. For any ¢, we let p = (p1,p2) be a point
on OU such that § = (cos¢,sin¢) is orthogonal to T,(0U). (By the strict convexity
of U, there are two points with this property which can be distinguished by the value
S0 = p1cosd + pasing.) We compute the integral in (16) in the Frenet frame at p.
Thus, we choose local coordinates (21, z2) near p such that p=(0,0), and the z;-axis
is tangent to QU at p. Moreover, by selecting the orientation of U, we can arrange
the new coordinate system to have the same orientation as the original one, and U
stays in zp > 0. Let ® : R* — R? be the coordinate change so that z = O (xz;0). Note
that ®(e;¢) locally depends on ¢ smoothly. Also, we find that dz = J(z;¢)dz, where
J is the Jacobian factor and J = 1. Note that in this new coordinate system, we have
§ = T1C08¢Q + Tasing = sy + 29, where the sign is + if 6 is in the direction of the
positive zp-axis and — otherwise. It suffices to consider + below because the other
case is identical. Thus (16) becomes

(17) Rxu(s,¢) = /RXU(zl,s — 89)dz.

Suppose OU is parametrized by arc-length 7 starting from ¢. Then in the Frenet
frame, we have the canonical form of the curve

K273 '3

K K'T
+o(7? ,  2aolT =724

L tolr’), =)=+ ]

see section 1-6 of [1]. Here, k, k' are the curvature and its 7 derivative at ¢. As k >0,

by using the inverse function theorem, we can take z; € (—4,9) with § > 0 small as

the parameter and express the curve as the graph of a function

z(r)=7- +o(7%);

K K 23
z9 = 52% + e +o(2}).
For z; > 0 close to 0, we have two roots z;,+ given by
1 1
2\2% 1 2\2% 1
214 = (/@) 25 tag 2o+ oz =— <H> z5 +ag,_zo+ .

Finally, we use zo = s — sg to get

Rxp(s,¢) =214 — 21—
(18) 2\ 2 1

:2<m> (s —s0)7 +ca(s—s0)4 4.
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For ¢ sufficiently close to some ¢g, we note that s, s, and the coefficients of (s —s0)%

in (18) depend on ¢ smoothly. The proof is completed after a change of variable

Y2 =5 — 50,41 = ¢ — do. o
Next, we consider the situation near S,.

LEMMA 4.3. Suppose D1, Dy are strictly convex. For qy € S1NSs, there are local
coordinates y = (y1,y2) € R? near qo such that locally qo = (0,0), S1 = {y2 =0}, S, =
{y1 =0}, and

Ry, (y) = )y +y20mi(y), r1€17°/2(M:5),
Rxp,(y) = ha ()12 +y1.4m2(y), 12 € I733(M; Sy),
where h;,j=1,2 are smooth and positive.

Proof. First, we apply Lemma 4.2 to find a neighborhood V; of ¢y and coordi-
nates (z1,22) such that S; = {z3 = 0}. Then we apply Lemma 4.2 again to find a
neighborhood V; of gy and coordinates (wy,ws) such that Se = {wy =0}. Because Sy
intersects Sy transversally at go (see [11]), we know that the z-axis is not parallel to
the wsy-axis. Thus, we can find a new coordinate system (y1,y2) with y1=z29, yo=ws.
Then we write z; = 21(y), w1 = wy(y) as smooth functions. Finally, the conclusions
follow from Lemma 4.2. O

The vanishing order is the key to obtaining multiplicative properties similar to
Piriou’s distributions.

LEMMA 4.4. Let m,n € N. Under the assumptions of Lemma 4.3, we have

L (Bxp,)"(y) = Mm@’ + 55" ?ri(y) and (Rxp,)"(y) = ha(w)ui’s +
yfj_rn)mrg(y), where r; € I-3/2(M; S;),7=1,2, and h; are smooth and posi-
tive.

2. (Rxp,)" (1) (Bxp.)"(y) = h(y)ys"*yr/? + r(y), where r is a sum of paired
Lagrangian distributions such that r € I=2=™/2=7/2(T* M\(N*S; U N*S5)),
and h is smooth and positive.

Proof. (1) We prove the case for n = 2. The general case can be obtained by
induction. Also, it suffices to consider Rxp,. The analysis for Rxp, is similar. We
can find a proper coordinate as in Lemma 4.3 and write

Rxp, () = a3 + o 1(y), 7€ I72(M;8y).
Then

(Rxp,)? = h2(y)yo,+ + 2R (9)71 )y 7 + 3 73 (y).

- 1
Note that hyiy € I-%2(M;Sy). Also, 7 € I=%/2(M;Sy), so y3 71 € I73/2(M; ) as
well.

(2) We use the coordinates in Lemma 4.3 and part (1) to get

XD, Yy)=nn\y)yz 1 Yo, + r\y), T B 301 )s
(Rxpy)™(y) = ha(y)ys' s> + 98T (y),  m e I732(M;8y)
(RxD,)"(y) = ha()yi} + yt T Pra(y), re € I73/2(M; Sy),

where hq, hy are smooth and positive functions. Thus

(Rxp,)™ (%) (RxD,)" () = ha(9)ha(y)ys 2y /E + ha (y)ra(y)ys Py T2

+ ha(y)r )y ST ST Ry T P () (y).
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Note that hiry € 1_3/2(M;52). In fact, from the proof of Lemma 4.3, we know
that ro has an asymptotic expansion in y2’ +- Thus we see that hi(y)r2(y)ys, J/r €
I=1=m/2(M;S,). By using the proof of Lemma 3.2 (here, we need the result for
different orders, but the proof is the same; see also [2]), we get

hy(y)r (y)y;nfy(lﬂ)/ c[1-m/2-1- n/Q(T*M N*5y)

(19) w21 2m 2 1p N
 [3/2mn/2 L 2mm 2 (T NSy ).

Similarly, we obtain that

ha(y)r1 () Py T2 € T2l (e M NS,
+ I—3/2—m/2,—1/2—n/2(Tv(;«O]\47 N*Sz),
ygi—m)/Qy(}-i-n)/zrl(y)rz(y) c 173/27n/2,717m/2(T;0M’ N*Sl)
+ 1_3/2_m/2’_1_n/2(T;OM, N*SQ)

(20)

We conclude that microlocally away from N*S;UN*Ss, terms in (19) and (20) belong
to [—2-m/2-n/2 (T M). This completes the proof. |

5. Determination of the nonlinear term.

Proof of Theorem 2.1. Suppose F(t)= Z]j a;t’ is another nonlinear polynomial
of the form (4). Let Py A, fCT be the corresponding functions for F. Assume that
for = fer. We consider

J
(21) PMA—ISMAZZ(aj—ELj)(RxD)j.

=2
Here, we assumed J > J, and we let a; =0 for j> J. We claim that for any ¢ € S,
(22) WEF(Pyra — Paa) N (Ty M\(N*S; UN*S)) = 0.

To see this, we first use the analysis in section 3.1 and Lemma 3.2 (see also Lemma 4.4)
to conclude that Py;a — Para is a sum of paired Lagrangian distributions in

19T M N*8y) + 19 (T M, N*S,),

where we did not find the orders a,a’,b,b’ because they are not important for this
argument. Let u be the sum of terms such that v € I¢(Ty M\(N*S; U N*Sy)) with
c=max(a+b,a’ +b"). If c=—00, we are done. Otherwise, ¢ is a finite number, and
the principal symbol of u on Ty M\(N*S; U N*S5) is nonvanishing. We can repeat
the proof of Lemma 3.4 line by line, and the symbol calculation in Lemma 3.4 yields
a contradiction because for — for is smooth away from 9D.

Next, we show that a; = a; in (21). Without loss of generality, we can take a@; =0
and show a; =0. We expand and regroup the terms in (21) as

J J J
Z RXD ZCLJ RXD1 Za‘j(RXDQ)j + ZajA
j=2 j=2 j=2
where Aj = Z Cm,n(RXD1)m(RXD2)n7 Cm,n > 0.

m4n=j,m,n>1
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To determine a;, we use singularities at T, M for g € S, away from N*S; U N*Ss, so
it suffices to look at singularities in A;. According to Lemma 4.4, we know that

2 2
A= Y ConhimnW)ys" / yf/+ + Tmon(y),

m+n=j,m,n>1

where Cy, ,, and Ay, ,, are both positive. Note that
Conhimn (9)y3 1 Y115 € I7927m2202 (T2 M\(N* Sy U N S5)).

We know from Lemma 4.4 that r,,, € I’Q*m/Q*"/Q(T;M\(N*Sl U N*S3)). Thus
Aj € 1’3/2*j/2(T;M\(N*Sl U N*S3)) and 7y, do not contribute to the leading
order term.

To see that the principal symbol is nonvanishing, it suffices to find the Fourier
transform of Ajo =3, i .51 Cmynhm,n(O)y;fyf/fx(yg)x(yl), where x(t),t €
R, is any smooth cut-off function equal to 1 near t = 0. We will choose x(t) below.
Note that Cy, n,hm,(0) are all positive. It suffices to look at the Fourier transform
of x(t)t%,a > 0. First, we use the computation in Example 7.1.17 of [4] and consider
the Fourier transform of e~“*t% for € > 0 small, which is given by

oo
(eJriT)*“*l/ t%etdt.
0

Note that this is a nonvanishing symbol of order —a — 1. Now we can approximate
e~ (extended to a Schwartz function on R) by some x € C§°(R) equal to 1 near 0
and conclude that the Fourier transform of x(¢)t% is a nonvanishing symbol of order
—a — 1. Applying the procedure to the terms in A; o, we conclude that the principal
symbol of A; on Ty M\(N*S; UN*S,) is nonvanishing.

Now we can finish the proof. For j =2, we get that Ay € I=>/2(T; M\(N*S; U
N*Sy)) and A;j € I73(Ty M\(N*S; UN*Sy)) for j > 3. Because the principal symbol
of As is nonvanishing, we derive from the claim in the beginning of the proof that
az = 0. Now we can repeat the argument for j =3,...,J to get that all a; =0. This
finishes the proof. O

Proof of Corollary 2.2. If F =0, it is easy to see from (6) that fop € C*°(R*\dD).
If for € C* away from 0D, we know from the proof of Theorem 2.1 that (22) holds
true for Py;4 =0 and a; =0,7=1,2,...,J. Then the proof of Theorem 2.1 implies
that F'=0. O

Appendix A. Composition of FIOs. The purpose of this appendix is to verify
some technical conditions for the composition of Fourier integral operators in section 3.
In particular, we check that the compositions of canonical relations in section 3.1 and
Lemma 3.4 are transversal and proper.

We first recall the relevant definitions from [6, section 25.2]. Let X,Y, Z be three
manifolds. Let C; be a homogeneous canonical relation from T7*Y'\0 to 7*X\0, and
let Cy be a homogeneous canonical relation from T*Z\0 to T*Y\0; we say that the
composition CyoC is transversal if 2" = C; xCy intersects % =T* X x A(T*Y ) xT*Z
transversally, that is, for any ¢ in the intersection,

T, 2 +T, % =T,% with Z =T*X x T*Y x T*Y x T*Z.

Here, A(T*Y') denotes the diagonal set of T*Y x T*Y. The composition is proper if
the map 2" N%¥ — T*(X x Z)\0 is proper. If the composition is transversal and
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proper, then C' = Cy o (' is a canonical relation. We have Theorem 25.2.3 of [6]
for the composition of FIOs. Actually, we only need the special case of transversal
compositions. For the study of the composition of Fourier integral operators and
conormal distributions, we take Z to be a point; see the treatment on page 22 of [6].

We start with the composition of C' and Cj,j = 1,2, in section 3.1. Recall from
(8) that the canonical relation of R is parametrized as

C ={(z1cosd+ zasing,d, —\, A(—x1 sin ¢ + x4 cos ¢);
Z1,To, —ACOS P, —Asing) :
NER\O, ¢ € (—m,7), 21,72 €ER} C T*M\0 x T*R*\0.
For C; = N*0D;\0,j = 1,2, we choose local coordinates (yi,y2) near ¢ € D; such
that ¢ =0 and 5D2j ={y2 =0}. Then C; = {(1,0,0,&2) : y1 € R,& € R\0}. Now we let
F=T*"MxT'Rx TR, 2 =CxC;C %, and ¥ =T*M x A(T*R?) C #. Note
that 2 is parametrized by x1,22, A, 0,y1,& € R, and we write an element of % as
(8,9, B;21,22,1m1,M2, 21,22,71,M2) with all variables in R. The intersection Z N %
is given by
s=x1c08P+ xasing, iy =p,a=—X,0=A—z18in¢ + x3cos ),
L1 =Yl =R21,T2 =Y2 =22 :O,—)\COS¢=O=U1,—/\SiH¢=§2 =12,
which implies that ¢ = +7/2, so
N = {(0,:|:7T/2, —)\,:F)\Ltl;1'1,0,0,:F>\,"E1,0,0,:F)\) T, AE R}

We see that the projection to T* M is proper. Let ¢ € Z'N% . To compute the tangent
vector of Ty &', we use the map 7 : R?ml,mg,A@,yl,&) — Z. So, a general tangent vector
at ¢ can be obtained by

Tx (51'1a 5.’E2, 5>‘7 5¢), 52/17 552)
= ((51‘2 - I15¢, 5(}5, —5/\, —)\51’1 - $15/\, 5$1, 51‘2, /\5¢, —5)\, 5y1, O, O, (552)
For the tangent vector of T,%, we use the map p: R?&w’aﬂm’

Px (587 6¢7 (50[7 5/87 5217 5227 57717 5772)
= (0s,0v,0c,08;021,022,0n1,012,021,022,0m71,012).

y = ¥ to get

22,511,572

Now we conclude that T, 2" +T,% =T, by listing 12 linearly independent tangent
vectors, which is quite straightforward.

Next, consider the composition of C* and Cy = yM \0 needed in Lemma 3.4.
From (8), we get

C* ={(z1,x2, —Acos ¢, —Asin ¢; 1 cos ¢ + xosin ¢, P,

(23) — MA(—z1sing + z9c089)) : AER\0,¢ € (—m,7), 21,22 € R}.

We write

CO = {(0707C1a<-2) : ClaCQ € R7 Clg2 7& 0}

Then let 2 = C* x Cy, # = T*R* x A(T*M), and Z = T*R* x T*M x T*M. The
intersection 2" N% is given by

x1008¢ 4+ xosing =0, =0,—A = (1, A\(—x1 sin ¢ + x3 cos @) = (o,
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which implies 1 =0,¢ =0, so
22N ={(0,z2,—\,0;0,0, =\, —A\x3) : A\, z2 € R}.

The projection to T*R? is proper. Let ¢ € 2 N% . To compute the tangent vector of
T,Z , we use the map 7 : R?rl,za,A,¢,a,B) — . So,

T s (5%1, 5%2, (S)\, ($¢, 6(1, 5(2)
= (5331, 5$2, —5)\, —>\5¢), (le + $26¢, 5¢, —5>\, $25/\, )\61‘2, O, 0, 5<1, 6<2)

For the tangent vector of T,%, we use (21,22,m1,72;$,9,a, 3;s,¢,a,3) for a general
element of . Consider p: R?n,m,mmz;s@,a,ﬂ) — %, and we get

ps+(021,022,0m1,0n2; 05,01, 0c, 013)
= (021,022,0m1,0m2,08,00, 0,00, 05,01, 5, 03).
We can also see that T, 2" + T, % =T,%Z. ~
Finally, we consider the composition of C* and C; = N*S;\0,j = 1,2, needed in

Lemma 3.4. In this case, we can find local coordinates (y1,y2) near p € S; so that
p=0 and S; ={y1 =0}. Thus,

éj = {(O,yg,m,O) T Y2 GRJh S R\O}

Then let 2 =C* x Cj, # =T*R* x A(T*M), and Z = T*R? x T*M x T*M. Using
(23), the intersection 2 N % is given by

1080+ xosingd =0,¢ =1ya, —A =11, A(—x18in ¢ + x5 cos p) =0,
which implies 1 = x5 =0, so
2N ={(0,0,—Acosp, —Asing,0,¢,—X,0,0,¢0,—A,0) : A\, € R}

The projection to T *R? is proper. To compute the tangent vector of T,.Z", we use

6
the map R(ﬂﬁhxzﬁaﬁwﬂh) - ‘%- So

T (5$1,5Z‘2, 6)\,(5¢, (5@‘1,642)
= (dz1,0x2, —0Acos ¢ + Asin pdp, —dAsin ¢ — A cos pdo;
dx1cos @+ dxasing, d¢, —ON, —Adx sin g + Adxa cos @, 0,0y2, —IA,0).

For the tangent vector of T,%, we use (21,22,11,72;$,9, ¢, 3;s,¢,a,3) for a general

element of %'. Let p: R(821,2277]1,7]2;S,¢,04,ﬁ) — % to get

p«(021,022,0m1,0n2; 08,01, 6cr,03)
= (021,022,0m1,0n2,08,00,0c,003, 08,01, 6, 03).

Again, we can find 12 linearly independent vectors to see that T4 2 +T,% =T, Z.

Acknowledgments. The author wishes to thank Prof. Jin Keun Seo for helpful
conversations about the nonlinear nature of the beam-hardening artifacts. The author
also sincerely thanks two anonymous referees for carefully reading the manuscript and
making many thoughtful suggestions. In particular, the author is grateful to one of
the referees for pointing out a way to simplify the proof of Lemma 4.2.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/03/25 to 170.140.142.252 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(12]
13]
14]
(15]

[16]

(17]
(18]
(19]

20]

M.

A.

V.

g5 » @B I =

<< P

IDENTIFICATION OF NONLINEAR BEAM-HARDENING EFFECTS 7305
REFERENCES

P. po CArRMO, Differential Geometry of Curves and Surfaces: Revised and Updated Second
Edition, Dover Publications, 2016.

GREENLEAF AND G. UHLMANN, Recovering singularities of a potential from singularities of
scattering data, Comm. Math. Phys., 157 (1993), pp. 549-572.

GUILLEMIN AND G. UHLMANN, Oscillatory integrals with singular symbols, Duke Math. J.,
48 (1981), pp. 251-267.

. HORMANDER, The Analysis of Linear Partial Differential Operators: Distribution Theory

and Fourier Analysis, 2nd ed., Springer-Verlag, 1990.

. HORMANDER, The Analysis of Linear Partial Differential Operators: Pseudo-Differential

Operators, Classics Math., Springer-Verlag, 2007.

. HORMANDER, The Analysis of Linear Partial Differential Operators IV: Fourier Integral

Operators, Classics Math., Springer-Verlag, 2009.

. KATSEVICH, Local tomography with nonsmooth attenuation, Trans. Amer. Math. Soc., 351

(1999), pp. 1947-1974.

. KLINGENBERG, A Course in Differential Geometry, Grad. Texts Math. 51, Springer, 2013.
. KUurYLEV, M. LAssAs, AND G. UHLMANN, Inverse problems for Lorentzian manifolds and

non-linear hyperbolic equations, Invent. Math., 212 (2018), pp. 781-857.

. MoNARD, R. NICKL, AND G. PATERNAIN, Efficient nonparametric Bayesian inference for

X-ray transforms, Ann. Statist., 47 (2019), pp. 1113-1147.

. PaLAcios, G. UHLMANN, AND Y. WANG, Quantitative analysis of metal artifacts in X-ray

tomography, SIAM J. Math. Anal., 50 (2018), pp. 4914-4936, https://doi.org/10.1137/
17M1160392.

. S. PARK, J. K. CHoOI, AND J. K. SEO, Characterization of metal artifacts in X-ray computed

tomography, Comm. Pure Appl. Math., 70 (2017), pp. 2191-2217.

. S. PARK, D. HWANG, AND J. K. SEO, Metal artifact reduction for polychromatic X-ray CT

based on a beam-hardening corrector, IEEE Trans. Med. Imaging, 35 (2015), pp. 480-487.

. S. PArk, S. M. Leg, H. P. KiMm, AND J. K. SEO, Machine-Learning-Based Nonlinear Decom-

position of CT Images for Metal Artifact Reduction, preprint, arXiv:1708.00244, 2017.

. Piriou, Calcul symbolique non linéaire pour une onde conormale simple, Ann. Inst. Fourier

(Grenoble), 38 (1988), pp. 173-187.

. T. QuINTO, An introduction to X-ray tomography and Radon transforms, in The Radon

Transform, Inverse Problems, and Tomography, Papers from the American Mathematical
Society Short Course on the Radon Transform and Applications to Inverse Problems, G.
Olafsson and E. Quinto, eds., Proc. Sympos. Appl. Math., 63, AMS Short Course Lecture
Notes, American Mathematical Society, 2006, pp. 1-23.

. SA BARRETO, Interactions of semilinear progressing waves in two or more space dimensions,

Inverse Probl. Imaging, 14 (2020), pp. 1057-1105.

. SA BARRETO AND Y. WANG, Singularities generated in the triple interaction of semilinear

conormal waves, Anal. PDE, 14 (2021), pp. 135-170.

. WANG AND Y. Zou, Streak artifacts from mon-convexr metal objects in X-ray tomography,

Pure Appl. Anal., 3 (2021), pp. 295-318.

. ZHANG AND H. Yu, Convolutional neural network based metal artifact reduction in X-ray

computed tomography, IEEE Trans. Med. Imaging, 37 (2018), pp. 1370-1381.

Copyright (C) by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/17M1160392
https://doi.org/10.1137/17M1160392
https://arxiv.org/abs/1708.00244

	Introduction
	The main result
	Microlocal analysis of the artifacts
	Regularity of <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	RD?></0:tex-math></0:inline-formula>
	The nonlinear analysis
	Description of the artifact

	Improved regularity analysis
	Determination of the nonlinear term
	Acknowledgments
	References
	Composition of FIOs

