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IDENTIFICATION OF NONLINEAR BEAM-HARDENING EFFECTS
IN X-RAY TOMOGRAPHY\rightarrow 

YIRAN WANG†

Abstract. We study streaking artifacts caused by beam-hardening e!ects in X-ray computed
tomography (CT). The e!ect is known to be nonlinear. We show that the nonlinearity can be
recovered from the observed artifacts for strictly convex bodies. The result provides a theoretical
support for removal of the artifacts.
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1. Introduction. In X-ray computed tomography (CT), artifacts due to beam-
hardening e!ects are common in imaging of patients with medical implants. These
artifacts are notorious for causing degradation of CT images and di""culties with
diagnosis. The reduction or removal of such artifacts has drawn numerous research
e!orts, but the problem still remains one of the major challenges in X-ray CT.

In a seminal paper [12], Park, Choi, and Seo demonstrated the nonlinear nature
of beam-hardening e!ects. Let f be the attenuation coe""cient of the object being
imaged. Because of the polychromatic nature of X-ray beams, we consider the depen-
dency of f on the energy level E. This is particularly significant for metal objects.
Assume that E \rightarrow [E0 \uparrow \omega ,E0 + \omega ], \omega > 0, and write f as fE . Assume that fE(x) =
fE0

(x)+\varepsilon (E\uparrow E0)\vargamma D, where \vargamma D is the characteristic function for a metal object D\downarrow 
R2, and \varepsilon is a constant which can be thought of as the approximation of the derivative
of fE in E. The X-ray data can be derived from the Beer–Lambert law which gives

P =RfE + PMA.(1)

Here, RfE denotes the Radon transform of fE , and PMA denotes a mismatch term.
Under further assumptions, it is derived in [12] that

PMA =\uparrow ln

\Biggr) 
sinh(\varepsilon \omega R\vargamma D)

\varepsilon \omega R\vargamma D

\Biggl[ 
(2)

is a nonlinear function of R\vargamma D. If one applies the filtered back-projection (FBP) to
reconstruct fE , the mismatch term PMA leads to the artifact; see Figure 1 for a demon-
stration. By using the notion of wave front set in microlocal analysis, the authors of
[12] gave a mathematical characterization of the artifacts. For strictly convex objects,
the artifacts appear to be straight lines tangent to at least two boundary points of
the metal objects; see Figure 1. For more complicated situations, the artifacts and
their relation to the geometry of metal regions are further studied in [11, 19]. Finally,
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IDENTIFICATION OF NONLINEAR BEAM-HARDENING EFFECTS 7291

Fig. 1. Illustration of the beam-hardening artifacts produced by a quadratic nonlinearity. The
left figure shows the reconstruction from FBP. The two bright disks represents the metal objects.
The artifacts appear to be straight lines tangent to both disks. The right figure shows the sinogram
(color map of P in (1)). The two bright strips correspond to the support of R\omega D.

we mention that artifacts due to a similar mechanism are also known in attenuated
X-ray tomography; see [7].

The identification of the nonlinear e!ect in PMA is key to removal of the artifacts.
In practice, the shape of the metal objects can usually be acquired, so it is reasonable
to assume that \vargamma D is known and to think of PMA as a nonlinear function F (R\vargamma D).
Then one can remove PMA if F is known. For example, the numerical scheme de-
veloped in [13] consists of two steps: first, one recovers \vargamma D from the reconstruction
fCT using image segmentation techniques; second, one can use the model (2) and find
the optimal \varepsilon which reduces the artifact. The model (2) was derived under certain
assumptions. In general, not much can be said about the nonlinear function as it
depends on many factors, such as the energy distribution of X-ray beams, geometry,
physical properties of metal objects, and even fE0

. Currently, increased e!ort has
been made to find the nonlinear e!ect by using deep learning techniques; see, for
example, [14, 20].

The purpose of this note is to show that the nonlinearity can be identified from the
observed artifacts. Also, we provide a constructive proof, which may be potentially
seful in practice.

2. The main result. Because of the local nature of the problem as we explain
later, it su""ces to state our main result in a relatively simple setting. We assume
that the metal region D =D1 \updownarrow D2, where Dj , j = 1,2, are simply connected disjoint
bounded domains in R2 with smooth boundary \varpi Dj . Let \vargamma D = \vargamma D1

+ \vargamma D2
be the

characteristic function of D. We assume that the attenuation coe""cient is of the form

f(x) = h(x) + g(x)\vargamma D(x), x\rightarrow R2
,(3)

where h, g \rightarrow C
\rightarrow 
0 (R2). We remark that the form of f is not important for our analysis.

We take (3) mainly because it is close to the form in [12]. For the Radon transform
on R2, we use the following parametrization:

Rf(s,\varrho ) =

\Biggr] 

x1 cos\omega +x2 sin\omega =s
f(x)dx.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7292 YIRAN WANG

Here, x \rightarrow R and (s,\varrho ) \rightarrow M = R\nearrow (\uparrow \varsigma ,\varsigma ). Note that because we are dealing with a
local problem for Rf , it su""ces to use local coordinates in the region of interest. We
model the beam-hardening e!ects by a polynomial function F :C\searrow C of the form

F (t) =
J\Biggl\lfloor 

j=2

ajt
j
,(4)

where aj are constant, and J \rightarrow N. Then the X-ray CT data is modeled by

P =Rf + PMA, PMA = F (R\vargamma D).(5)

For the reconstruction, we apply the FBP to get

fCT = f + fMA, fMA =R
\uparrow I \downarrow 1

PMA,(6)

where I \downarrow 1 is the Riesz potential, and R
\uparrow denotes the adjoint of R; see, for example,

[16]. Our main result is as follows.

Theorem 2.1. Suppose Dj , j = 1,2, are strictly convex. Then F in (4) is uniquely
determined by fCT in (6).

Once F is determined, one can remove PMA from P in (5) and reconstruct f . We
remark that if F (R\vargamma D) has a linear part such as a0+a1R\vargamma D, it could produce ambigu-
ity in the reconstruction of f , although the term will not change the wave front set of
f . We also remark that in the proof of Theorem 2.1, it su""ces to use fCT away from
\varpi D to determine F . So the theorem really says that F can be determined from the ar-
tifacts rather than the whole fCT . This is important because f in (3) is singular at \varpi D.
The singularities of fMA at \varpi D are weaker, so it might be more di""cult to recover F
from those singularities. Among other things, one useful consequence is the following.

Corollary 2.2. Under the assumption of Theorem 2.1, fCT \rightarrow C
\rightarrow (R2\\varpi D) if

and only if F = 0.

The result implies that the artifact is always visible unless there is no beam-hardening
e!ect. This seems to be the first existence result for the streaking artifacts.

Next, we make a few remarks regarding the possible generalizations of the main
results.

Remark 2.3 (the nonlinear function F ). As studied in [12, 11, 19], the artifacts are
generated from PMA in (5) at certain discrete points. We will see in section 3 that near
those points, it su""ces to consider t small in (4). Thus, assuming F of the form (4)
is not restrictive. In fact, one can consider variable coe""cient polynomial F (t, s,\varrho ) =\Biggr\rfloor J

j=2 aj(s,\varrho )t
j as one would when \varepsilon in fE is not a constant; see equation (2.4) of

[12]. We believe that our method can be adapted to recover aj(s,\varrho ) at those discrete
points where artifacts are generated.

It is also natural to consider smooth nonlinear function F (t) and recover coe""-
cients of the Taylor expansion at t= 0. We believe that this is possible but requires
further e!orts. In particular, our method relies on the analysis of singularities in
F (R\vargamma D), where R\vargamma D is a conormal distribution. The nonlinear interaction produces
new singularities. For polynomial functions, we can describe the nature of the sin-
gularities within the framework of Lagrangian distributions. For smooth functions,
the same applies to the truncated Taylor series, but it is not clear if the remainder
term can be described in terms of Lagrangian distributions. One possible solution is
to estimate the strength of new singularities in certain microlocal Sobolev spaces and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IDENTIFICATION OF NONLINEAR BEAM-HARDENING EFFECTS 7293

show that the remainder term is more regular. We refer the reader to [17] for an
example of this approach.

Remark 2.4 (the number of objects). The streaking artifacts are associated with
lines tangent to both D1 and D2. If the metal regions consist of more than two disjoint
simply connected regions, our methods can be adapted to the case when there is no
line tangent to more than two of the regions.

Remark 2.5 (the convexity assumption). The assumption that Dj , j = 1,2, are
strictly convex is essential. In section 4, we will show that R\vargamma Dj , j = 1,2, possess
better regularity properties under the strict convexity assumption, which is key to
determining F . The strict convexity can be relaxed to convexity of finite orders.
We believe that the techniques developed in this paper are adaptable. However, if
the boundary contains line segments, or the boundary is not smooth (e.g., contains
corners), the generation of artifacts becomes more complicated as shown in [11]. It
becomes unclear whether the nonlinear function can be recovered from the artifacts.

Finally, we briefly discuss the ideas of the proof. We already mentioned that
streaking artifacts are associated with singularities, more precisely, wave front sets
of F (R\vargamma D) due to the nonlinear interactions of the singularities in R\vargamma D. With more
precise notions of Lagrangian distributions, quantitative results on the strength of the
artifacts are obtained in [11]; see also [19] for nonconvex objects. Essentially, these
results provided the upper bound of the wave front set, which indicates where the
artifact could appear. Our idea is that when the artifact actually occurs, it carries in-
formation about the nonlinear function F . So, we can use the artifact to reconstruct F .
The philosophy that nonlinearity can help solve inverse problems was perhaps first
demonstrated in [9] for nonlinear wave equations. In the last decade, the method
has undergone rapid developments, and the majority of the work relies on the idea of
higher order linearization. Unfortunately, this method is not applicable to our problem
because it requires the X-ray data for a family of metal objects, but we only have one.

The way we overcome the di""culty is to study the fine structure of singularities
in F (R\vargamma D). A key observation, discussed in section 4, is that when D is strictly
convex, R\vargamma D is a conormal distribution vanishing to certain order at the singular
support. This allows us to obtain expansion of F (R\vargamma D) near the interaction point in
terms of the strength of singularities instead of the magnitudes in the higher order
linearization expansion. To recover F , another key component is to show that all
terms in the expansion are nontrivial. This is done in section 5, where we finish the
proofs of Theorem 2.1 and Corollary 2.2.

3. Microlocal analysis of the artifacts. In this section, we consider the arti-
fact generation for the special case of a quadratic nonlinearity. The analysis demon-
strates some essential ingredients for proving Theorem 2.1. The other ingredients will
be studied in section 4. We remark that some of the analysis already appeared in
[11], but we need to improve them so they can be used for more general nonlinearities.
Also, we introduce relevant notions from microlocal analysis along the way.

3.1. Regularity of R\bfitomega D. We start with the notion of conormal distributions;
see section 18.2 of [5] for details. Let \# \downarrow Rn

, n \rightarrow N, denote an open and relatively
compact subset. Let \$\downarrow \# be a submanifold of codimension k. The set of conormal
distributions of order m is denoted by I

m(\#;\$). Such distributions can be defined
in a coordinate invariant way, but we only need the local representations. According
to Theorem 18.2.8 of [5], u \rightarrow I

m(\#;\$) if and only if u \rightarrow C
\rightarrow (Rn \ \$), and near any

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7294 YIRAN WANG

point p \rightarrow \$ and in local coordinates where \$= {y1 = y2 = · · ·= yk = 0}, y = (y\updownarrow , y\updownarrow \updownarrow ),
y
\updownarrow = (y1, y2, . . . , yk), y\updownarrow \updownarrow \rightarrow Rn\downarrow k

, we have

u(y) =

\Biggr] 

Rk

e
iy\rightarrow ·\varepsilon \rightarrow 

a(\varphi \updownarrow , y\updownarrow \updownarrow ) d\varphi \updownarrow , a\rightarrow S
m+n\uparrow 2k

4 (Rk \nearrow Rn\downarrow k),(7)

where for r \rightarrow R, Sr(Rk \nearrow Rn\downarrow k) is the class of symbols satisfying

|\varpi \vargamma 
y\rightarrow \rightarrow \varpi 

\varpi 
\varepsilon \rightarrow a(\varphi \updownarrow , y\updownarrow \updownarrow )|\simeq C\vargamma ,\varpi (1 + |\varphi \updownarrow |)r\downarrow |\varpi |

.

It is known that WF(u)\downarrow N
\uparrow \$ and the space of distributions satisfy

I
m(\#;\$)\downarrow I

m\rightarrow 
(\#;\$), m<m

\updownarrow 
.

The principal symbol of u is defined to be the equivalence class of a(\varphi \updownarrow , y\updownarrow \updownarrow ) in the
quotient Sm+n\uparrow 2k

4 (Rk \nearrow Rn\downarrow k)/Sm+n\uparrow 2k
4

\downarrow 1(Rk \nearrow Rn\downarrow k), and the map

I
m(\#;\$)/Im\downarrow 1(\#;\$)\uparrow \searrow S

m+n\uparrow 2k
4 (Rk \nearrow Rn\downarrow k)/Sm+n\uparrow 2k

4
\downarrow 1(Rk \nearrow Rn\downarrow k),

[u] \Leftarrow \uparrow \searrow [a],

is an isomorphism. The symbol map can be invariantly defined as in [5], but since our
analysis is completely local, we do not need to discuss that. It is worth mentioning that
there is an equivalent definition of conormal distributions using iterated application
of vector fields tangent to\$; see Definition 18.2.6 of [5]. Then it is clear that such dis-
tributions belong to certain Besov spaces. Below, we mostly consider n= 2 and k= 1.

LetDj , j = 1,2, be a simply connected bounded domain in R2 with smooth strictly
convex boundary \varpi Dj . The characteristic function \vargamma Dj \rightarrow I

\downarrow 1(R2;\varpi Dj). It is known
(see, for example, [11]) that R\vargamma Dj \rightarrow I

\downarrow 3

2 (M ;Sj), j = 1,2. Also, we will see a direct
calculation in section 3. But we give the proof below for the reader’s convenience.

To describe the conormal distribution, we start with R : E \updownarrow (R2)\searrow D \updownarrow (M) as an
elliptic Fourier integral operator. Using local coordinates (s,\varrho ) for M and x= (x1, x2)
for R2, we write the Schwartz kernel of R, denoted by KR, as an oscillatory integral

KR(s,\varrho , x) =
1

(2\varsigma )
1

2

\Biggr] 

R
e
i(x1 cos\omega +x2 sin\omega \downarrow s)\varrho 

d\leftharpoonup .

The phase function is \varrho (s,\varrho , x;\leftharpoonup ) = (x1 cos\varrho + x2 sin\varrho \uparrow s)\leftharpoonup , so the associated La-
grangian submanifold of T \uparrow 

M \nearrow T
\uparrow R2 is

\%= {(x1 cos\varrho + x2 sin\varrho ,\varrho ,\uparrow \leftharpoonup ,\leftharpoonup (\uparrow x1 sin\varrho + x2 cos\varrho );x1, x2,\leftharpoonup cos\varrho ,\leftharpoonup sin\varrho ) :

\leftharpoonup \rightarrow R\0,\varrho \rightarrow (\uparrow \varsigma ,\varsigma ), x1, x2 \rightarrow R}.

In particular, KR \rightarrow I
\downarrow 1

2 (M \nearrow R2;\%). We denote the homogeneous canonical relation
by

C = {(x1 cos\varrho + x2 sin\varrho ,\varrho ,\uparrow \leftharpoonup ,\leftharpoonup (\uparrow x1 sin\varrho + x2 cos\varrho );

x1, x2,\uparrow \leftharpoonup cos\varrho ,\uparrow \leftharpoonup sin\varrho ) :

\leftharpoonup \rightarrow R\0,\varrho \rightarrow (\uparrow \varsigma ,\varsigma ), x1, x2 \rightarrow R}\downarrow T
\uparrow 
M\0\nearrow T

\uparrow R2\0.
(8)

Let Cj
def
= N

\uparrow 
\varpi Dj\0, j = 1,2; we think of them as canonical relations of \vargamma Dj (see

Appendix A). The composition of the two homogeneous canonical relations C,Cj is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IDENTIFICATION OF NONLINEAR BEAM-HARDENING EFFECTS 7295

transversal (see Appendix A) so the composition C \Rightarrow Cj is a homogeneous canoni-
cal relation, which is a Lagrangian submanifold of T \uparrow 

M . Under the strict convexity
assumption, the Lagrangian becomes a conormal bundle. In fact, the projection of
C \Rightarrow Cj to M is injective, and the projection is

Sj
def
= {(s,\varrho )\rightarrow M : s= x1 cos\varrho + x2 sin\varrho , (x1, x2)\rightarrow \varpi Dj ,

(\uparrow sin\varrho , cos\varrho )\rightarrow T(x1,x2)\varpi Dj},
(9)

which consists of codimension one submanifolds of M . We have C \Rightarrow Cj =N
\uparrow 
Sj\0, j =

1,2. One can apply the FIO (Fourier integral operator) composition theorem [6,
Theorem 25.2.3] to conclude that R\vargamma Dj \rightarrow I

\downarrow 3

2 (M ;Sj), j = 1,2.

3.2. The nonlinear analysis. We consider a quadratic nonlinearity F (t) = t
2

and let

P̃MA
def
= (R(\vargamma D))2 = (R(\vargamma D1

))2 + (R(\vargamma D2
))2 + 2R(\vargamma D1

)R(\vargamma D2
).(10)

We analyze the singularity in each term. For (R\vargamma Dj )
2
, j = 1,2, we recall the following

multiplicative property of conormal distributions; see [15].

Lemma 3.1. If \$ \downarrow \# is a C
\rightarrow hypersurface, and if u, v \rightarrow I

m\downarrow n
4
+ 1

2 (\#;\$) and
m<\uparrow 1, then uv \rightarrow I

m\downarrow n
4
+ 1

2 (\#;\$).

We conclude that (R\vargamma Dj )
2 \rightarrow I

\downarrow 3

2 (M ;Sj), j = 1,2. So, WF((R\vargamma Dj )
2) \downarrow N

\uparrow 
Sj does

not produce new singularities.
Next, consider the product R\vargamma D1

R\vargamma D2
in (10). This term will produce new sin-

gularities, and the result can be described by using the notion of paired Lagrangian
distributions; see [3] for details. Let X be an n-dimensional manifold, \%0,\%1 \downarrow T

\uparrow 
X\0

be two cleanly intersecting Lagrangians in the sense that \$=\%0 \Uparrow \%1 is smooth, and
Tq\$ = Tq\%0 \Uparrow Tq\%1, q \rightarrow \$. The paired Lagrangian distributions associated with the
pair (\%0,\%1) with order p, l \rightarrow R is denoted by I

p,l(\%0,\%1). We only need the case
when \%0,\%1 are conormal bundles. Locally, such distributions can be described as fol-
lows; see [2]. Let x= (x1, . . . , xn) be coordinates of Rn

. Let k1, k2 \rightarrow N and k1+k2 = n.

Consider

Y1 = {x1 = x2 = · · ·xk1
= 0}= {x\updownarrow = 0},

Y2 = {x1 = x2 = · · ·xk1+k2
= 0}= {x\updownarrow = 0, x\updownarrow \updownarrow = 0}.

Let \%0 =N
\uparrow 
Y1\0,\%1 =N

\uparrow 
Y2\0 and u\rightarrow I

p,l(\%0,\%1) be written as

u(x) =

\Biggr] 

Rk1+k2

e
i(x\rightarrow ·\varsigma \rightarrow +x\rightarrow \rightarrow ·\varsigma \rightarrow \rightarrow )

a(x, \leftharpoondown \updownarrow , \leftharpoondown \updownarrow \updownarrow )d\leftharpoondown \updownarrow d\leftharpoondown \updownarrow \updownarrow ,(11)

with a(x; \leftharpoondown \updownarrow , \leftharpoondown \updownarrow \updownarrow ) belonging to the product type symbols

S
µ,µ\rightarrow 

(Rn \nearrow (Rk1\0)\nearrow Rk2) = {a\rightarrow C
\rightarrow : |\varpi \varphi 

x\varpi 
\varpi 
\varsigma \rightarrow \rightarrow \varpi 

\vargamma 
\varsigma \rightarrow a(x, \leftharpoondown )|

\simeq C\vargamma \varpi \varphi K\Downarrow \leftharpoondown \updownarrow , \leftharpoondown \updownarrow \updownarrow \leftrightarrow µ\downarrow |\vargamma |\Downarrow \leftharpoondown \updownarrow \updownarrow \leftrightarrow µ
\rightarrow \downarrow |\varpi |},

(12)

where µ= p\uparrow k1/2+n/4, µ\updownarrow = l\uparrow k2/2. We recall the fact that if u\rightarrow I
p,l(\%0,\%1), then

WF(u) \downarrow \%0 \updownarrow \%1. Also, near \%0\\%1, u is microlocally in I
p+l(\%0). More precisely,

for any open sets U1,U2 in T
\uparrow 
X\0 such that \%1 \downarrow U1 \downarrow U2, let \vargamma be a smooth real

function on T
\uparrow 
X with values in [0,1] such that \vargamma = 0 on U1 and \vargamma = 1 on \%0\U2.

Then ũ with amplitude \vargamma a as in (11) is a Lagrangian distribution in I
p+l(\%0). For

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7296 YIRAN WANG

convenience, we refer to this type of statement as u \rightarrow I
p+l(\%0\\%1). Similarly, for

u \rightarrow I
p,l(\%0,\%1), we have u \rightarrow I

p(\%1\\%0). Thus the principal symbols can be defined
invariantly for each piece. In fact, one can also define the notion of principal symbols
for u invariantly; see [3]. However, we only need the behavior of these distributions
locally. So, it su""ces to work with the expression (11).

To analyze the singularities in R\vargamma D1
R\vargamma D2

, we need to know how the Lagrangians
intersect. As shown in [11], if D1,D2 are strictly convex, then S1 intersect S2 transver-
sally at a finite point set S\nearrow = S1 \Uparrow S2; see Figure 1.

Lemma 3.2. For each q \rightarrow S\nearrow , there exists neighborhood O of q such that in O,

R(\vargamma D1
)R(\vargamma D2

)\rightarrow I
\downarrow 3

2
,\downarrow 1(T \uparrow 

q M,N
\uparrow 
S1) + I

\downarrow 3

2
,\downarrow 1(T \uparrow 

q M,N
\uparrow 
S2).(13)

Moreover, R(\vargamma D1
)R(\vargamma D2

)\rightarrow I
\downarrow 5/2(T \uparrow 

q M\(N\uparrow 
S1\updownarrow N

\uparrow 
S2)), and the principal symbol is

nonvanishing.

Proof. We repeat the proof of Lemma 1.1 of [2]. Consider the intersection of S1, S2

at q. We choose local coordinates (x1, x2) for R2 such that q = (0,0), S1 = {x1 = 0},
and S2 = {x2 = 0}. Then we can write

R\vargamma D1
(x) =

\Biggr] 

R
e
ix1\varsigma 1a(x, \leftharpoondown 1)d\leftharpoondown 1, a\rightarrow S

\downarrow 3/2(R2
x \nearrow (R\varsigma 1\0)),

R\vargamma D2
(x) =

\Biggr] 

R
e
ix2\varsigma 2b(x, \leftharpoondown 2)d\leftharpoondown 2, b\rightarrow S

\downarrow 3/2(R2
x \nearrow (R\varsigma 2\0)),

and the principal symbols of a, b are nonvanishing. Then we get

R\vargamma D1
(x)R\vargamma D2

(x) =

\Biggr] 

R

\Biggr] 

R
e
ix1\varsigma 1+ix2\varsigma 2a(x, \leftharpoondown 1)b(x, \leftharpoondown 2)d\leftharpoondown 1d\leftharpoondown 2.(14)

Introduce a cuto! function \vargamma (t) \rightarrow C
\rightarrow 
0 (R), \vargamma = 1 for |t| \simeq 1/2 and \vargamma = 0 for |t| \nwarrow 2.

Then we have

\vargamma (\Downarrow \leftharpoondown 2\leftrightarrow /\Downarrow \leftharpoondown 1\leftrightarrow )a(x, \leftharpoondown 1)b(x, \leftharpoondown 2)\rightarrow S
\downarrow 3/2,\downarrow 3/2(R2

x \nearrow (R\varsigma 2\0)\nearrow R\varsigma 1),

(1\uparrow \vargamma )(\Downarrow \leftharpoondown 2\leftrightarrow /\Downarrow \leftharpoondown 1\leftrightarrow )a(x, \leftharpoondown 1)b(x, \leftharpoondown 2)\rightarrow S
\downarrow 3/2,\downarrow 3/2(R2

x \nearrow (R\varsigma 1\0)\nearrow R\varsigma 2)
(15)

by directly checking that the symbols satisfy the product type estimate in (12). For
example, let’s consider the first term in (15). For \varepsilon ,\rightharpoonup \rightarrow N, \rightharpoondown \rightarrow N2 and on a compact
set of R2

x, we have

|\varpi \varphi 
x\varpi 

\vargamma 
\varsigma 1\varpi 

\varpi 
\varsigma 2
(\vargamma (\Downarrow \leftharpoondown 2\leftrightarrow /\Downarrow \leftharpoondown 1\leftrightarrow )a(x, \leftharpoondown 1)b(x, \leftharpoondown 2))|\simeq C\vargamma \varpi \varphi \Downarrow \leftharpoondown 1\leftrightarrow \downarrow 3/2\downarrow \vargamma \Downarrow \leftharpoondown 2\leftrightarrow \downarrow 3/2\downarrow \varpi 

\simeq C\vargamma \varpi \varphi \Downarrow (\leftharpoondown 1, \leftharpoondown 2)\leftrightarrow \downarrow 3/2\downarrow \vargamma \Downarrow \leftharpoondown 2\leftrightarrow \downarrow 3/2\downarrow \varpi 
,

where we used the facts that this term is supported in \Downarrow \leftharpoondown 2\leftrightarrow \simeq 2\Downarrow \leftharpoondown 1\leftrightarrow and C\vargamma \varpi \varphi is
a generic constant. Thus this is a symbol of a paired Lagrangian distribution in
I
p,l(T \uparrow 

q M,N
\uparrow 
S2), where the orders are p=\uparrow 3/2 + 1/2\uparrow 1/2 =\uparrow 3/2 and l=\uparrow 3/2 +

1/2 =\uparrow 1.
To find the principal symbol on T

\uparrow 
q M\(N\uparrow 

S1 \updownarrow N
\uparrow 
S2), we consider (14) for

C1\Downarrow \leftharpoondown 2\leftrightarrow \simeq \Downarrow \leftharpoondown 1\leftrightarrow \simeq C2\Downarrow \leftharpoondown 2\leftrightarrow for some positive constants C1,C2. Then the symbol ab \rightarrow 
S
\downarrow 3(R2 \nearrow R2) and the principal symbol is given by the product of principal symbols

of a and b.
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IDENTIFICATION OF NONLINEAR BEAM-HARDENING EFFECTS 7297

To summarize, we prove the following.

Lemma 3.3. Suppose D1,D2 are strictly convex. Then for P̃MA defined in (10),
we have WF(P̃MA)\downarrow (\updownarrow q\searrow S\downarrow T

\uparrow 
q M)\updownarrow N

\uparrow 
S1 \updownarrow N

\uparrow 
S2. Moreover, (\updownarrow q\searrow S\downarrow T

\uparrow 
q M)\(N\uparrow 

S1 \updownarrow 
N

\uparrow 
S2)\downarrow WF(P̃MA).

3.3. Description of the artifact. Consider f̃MA
def
= R

\uparrow I \downarrow 1(R\vargamma D)2. We show
that this term contributes to the streaking artifacts. We define L\nearrow ={L :L is a straight
line in R2 tangent to D1 and D2}.

Lemma 3.4. Fix any L \rightarrow L\nearrow , p \rightarrow L, and let \vargamma \rightarrow C
\rightarrow 
0 (R2) be supported near p and

away from \varpi D1 \updownarrow \varpi D2 \updownarrow (\updownarrow L̃\searrow L\downarrow ,L̃ \simeq =LL̃). Then we have \vargamma f̃MA \rightarrow I
\downarrow 2(N\uparrow 

L), and the
principal symbol is nonvanishing.

Proof. Essentially, I \downarrow 1 can be regarded as a pseudodi!erential operator of order
1 (modulo a smoothing operator); see, for instance, the treatment of Lemma 4.1 of [19].
Also, we know that R\uparrow is an elliptic FIO of order \uparrow 1

2 . Let C
\uparrow be the canonical relation

of R\uparrow 
. Then we check that C\uparrow \Rightarrow N\uparrow 

Sj\0 =C
\uparrow \Rightarrow C \Rightarrow N\uparrow 

\varpi Dj\0 =N
\uparrow 
\varpi Dj\0, j = 1,2. It

follows from the wave front analysis that

WF(R\uparrow I \downarrow 1((R\vargamma Dj ))
2)\downarrow N

\uparrow 
\varpi Dj , j = 1,2.

Next, consider singularities in R
\uparrow I \downarrow 1(R\vargamma D1

R\vargamma D2
). First, for q \rightarrow S\nearrow and letting

\vargamma q be a smooth cut-o! function supported near q, we have

I \downarrow 1
\Biggl\lceil 
\vargamma qR(\vargamma D1

)R(\vargamma D2
)
\Biggr\rceil 
\rightarrow I

\downarrow 1

2
,\downarrow 1(T \uparrow 

q M,N
\uparrow 
S1) + I

\downarrow 1

2
,\downarrow 1(T \uparrow 

q M,N
\uparrow 
S2),

and the principal symbol at T
\uparrow 
q M\(N\uparrow 

S1 \updownarrow N
\uparrow 
S2) is nonvanishing. Here, we used

Proposition 4.1 of [3]. For the application of R\uparrow , we can still use Proposition 4.1 of
[3]. The transversality of the compositions C\uparrow \Rightarrow (T \uparrow 

q M\0) and C
\uparrow \Rightarrow (N\uparrow 

Sj\0), j = 1,2,
are verified in Appendix A. In particular, C\uparrow \Rightarrow (T \uparrow 

q M\0) =N
\uparrow 
L\0, where

L= {x\rightarrow R2 : x1 cos\varrho + x2 sin\varrho = s, q= (s,\varrho )}\rightarrow L\nearrow .

So, we get

R
\uparrow \Rightarrow I \downarrow 1

\Biggl\lceil 
\vargamma qR(\vargamma D1

)R(\vargamma D2
)
\Biggr\rceil 
\rightarrow I

\downarrow 1,\downarrow 1(N\uparrow 
L,N

\uparrow 
\varpi D1) + I

\downarrow 1,\downarrow 1(N\uparrow 
L,N

\uparrow 
\varpi D2).

The principal symbol at N
\uparrow 
L\(N\uparrow 

\varpi D1 \updownarrow N
\uparrow 
\varpi D2) is the product of the principal

symbols of R\uparrow I \downarrow 1 and \vargamma qR(\vargamma D1
)R(\vargamma D2

) at N\uparrow 
L, so it is nonvanishing. The analysis

can be repeated for each q \rightarrow S\nearrow , and the proof is completed.

According to [12, Definition 3.2], the straight lines in L\nearrow are streaking artifacts
in the sense of wave front sets. Lemma 3.4 states that such artifacts always exist,
namely singsupp(f̃MA)\\varpi D \swarrow = \propto if the nonlinear function F is quadratic.

4. Improved regularity analysis. To analyze the singularities produced by
higher order polynomial nonlinearities, we will use a special property of the Radon
transform of \vargamma D when D is strictly convex. We start with Piriou’s conormal distri-
butions; see [15]. We remark that this notion will not be used in any essential way
afterwards, but it provides a good motivation.

Definition 4.1. If m<\uparrow 1, let k(m) be the nonnegative integer such that \uparrow m\uparrow 
2\simeq k(m)<\uparrow m\uparrow 1. If \$\downarrow \# is a C

\rightarrow hypersurface, we say that u\rightarrow 
o
Im\downarrow n

4
+ 1

2 (\#;\$) if
u\rightarrow I

m\downarrow n
4
+ 1

2 (\#;\$) vanishes to order k(m) + 1 at \$ (all derivatives of u to order less
than or equal to k(m) vanish at\$).
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7298 YIRAN WANG

It is proved in Proposition 2.4 of [18] that if \$ \downarrow \# is a C
\rightarrow hypersurface, u \rightarrow 

I
m\downarrow n

4
+ 1

2 (\#;\$), and m<\uparrow 1, then u= E + v, with v \rightarrow 
o
Im\downarrow n

4
+ 1

2 (\#;\$) and E \rightarrow C
\rightarrow 
. If

v \rightarrow 
o
Im\downarrow n

4
+ 1

2 (\#;\$) and \$= {y1 = 0}, then v= y
k(m)
1 w, w \rightarrow I

m+k(m)\downarrow n
4
+ 1

2 (\#;\$). Now

consider n = 2 and take v \rightarrow 
o
Im(\#;\$),m < \uparrow 1. Then v \rightarrow y

k(m)
1 I

m+k(m)(\#;\$). But
since m+ k(m)<\uparrow 1, we get that

v
2 \rightarrow y

2k(m)
1 I

m+k(m)(\#;\$).

We can apply Proposition 18.2.3 of [5] to conclude that v2 \rightarrow I
m\downarrow k(m)(\#;\$). The argu-

ment can be repeated to yield that for l \rightarrow N, vl \rightarrow I
m\downarrow (l\downarrow 1)k(m)(\#;\$). In conclusion,

if k(m) > 0, the conormal distribution becomes more and more regular after self-
multiplication. We observe that the vanishing order in Piriou’s conormal distribution
plays an important role in the argument.

Now let U be a simply connected bounded domain with smooth boundary \varpi U .

As in (9), let S
def
= {(s,\varrho )\rightarrow M : s= x1 cos\varrho + x2 sin\varrho , x\rightarrow \varpi U, (\uparrow sin\varrho , cos\varrho )\rightarrow Tx\varpi U},

which is a codimension one submanifold of M. We know that R\vargamma U \rightarrow I
\downarrow 3

2 (R2;S), so
m=\uparrow 3/2 and k(m) = 0. It seems that we do not gain any vanishing order from the
analysis above. However, if U is strictly convex, we show below that it is possible to
gain 1/2 vanishing order. We remark that for nonconvex domain, this is not true. One
can construct simple examples to verify it; see Figure 2. It is also worth mentioning
that the vanishing order is closely related to the range characterization for R,R

\uparrow and
R

\uparrow 
R (in our notation) studied in section 4 of [10].
Below, we use t

\vargamma 
+,\varepsilon > \uparrow 1, to denote homogeneous distributions so that t

\vargamma 
+ = t

\vargamma 

for t \nwarrow 0 and t
\vargamma 
+ = 0 for t < 0. See section 3.2 of [4] for details. Also, the Fourier

transform of t\vargamma + is homogeneous of degree \uparrow \varepsilon \uparrow 1; see Theorem 7.1.16 of [4]. The key
result of this section is the following.

Lemma 4.2. Suppose U is strictly convex. For q0 \rightarrow S, there exists a neighborhood
of q0 and local coordinates y= (y1, y2)\rightarrow R2 such that q0 = (0,0), S = {y2 = 0}, and

R\vargamma U (y) = h(y)y1/22,+ + y2,+r(y), r \rightarrow I
\downarrow 3/2(M ;S),

where h is smooth and positive.

O x1

x2

D

l

θ

O x1

x2

D

l

θ

Fig. 2. Regularity of R\omega D(s,\varepsilon ). We consider \varepsilon in the direction of the x2-axis. Then R\omega D(s,\varepsilon )
is the integration of \omega D(x) along the dashed line with distance s to the x1-axis. Left figure: D is not
strictly convex near O. R\omega D(s,\varepsilon ) has a Heaviside type singularity in s. Right figure: D is strictly

convex near O. Then R\omega D(s,\varepsilon ) behaves like a homogeneous distribution s
1/2
+ in s.
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IDENTIFICATION OF NONLINEAR BEAM-HARDENING EFFECTS 7299

Note that y2,+ \rightarrow I
\downarrow 3/2(M ;S), so the product y2,+r(y) makes sense as a product

of distributions in I
\downarrow 3/2(M ;S) by Lemma 3.1. Also, from the local expression (7),

we see that I\downarrow 3/2(M ;S)\downarrow L
\rightarrow ; see also [2]. So, the product also makes sense in L

\rightarrow 
.

Proof. Consider the Radon transform

R\vargamma U (s,\varrho ) =

\Biggr] 

s=x1 cos\omega +x2 sin\omega 
\vargamma U (x1, x2)dx1dx2.(16)

As pointed out by a referee, we have a simple interpretation that R\vargamma U is the length
of the line segment contained in U . We can compute it in a conveniently chosen
coordinate system.

Recall that \varpi U is a simple closed strictly convex curve if and only if the curvature
\lhook is strictly positive on \varpi U ; see section 2.3 of [8]. Here, the curvature is defined in
the Frenet frame and is always nonnegative. For any \varrho , we let p= (p1, p2) be a point
on \varpi U such that \rhook = (cos\varrho , sin\varrho ) is orthogonal to Tq(\varpi U). (By the strict convexity
of U , there are two points with this property which can be distinguished by the value
s0 = p1 cos\varrho + p2 sin\varrho .) We compute the integral in (16) in the Frenet frame at p.
Thus, we choose local coordinates (z1, z2) near p such that p= (0,0), and the z1-axis
is tangent to \varpi U at p. Moreover, by selecting the orientation of \varpi U , we can arrange
the new coordinate system to have the same orientation as the original one, and U

stays in z2 > 0. Let \& : R2 \searrow R2 be the coordinate change so that z = \&(x;\varrho ). Note
that \&(•;\varrho ) locally depends on \varrho smoothly. Also, we find that dx= J(z;\varrho )dz, where
J is the Jacobian factor and J = 1. Note that in this new coordinate system, we have
s = x1 cos\varrho + x2 sin\varrho = s0 ± z2, where the sign is + if \rhook is in the direction of the
positive z2-axis and \uparrow otherwise. It su""ces to consider + below because the other
case is identical. Thus (16) becomes

R\vargamma U (s,\varrho ) =

\Biggr] 

R
\vargamma U (z1, s\uparrow s0)dz1.(17)

Suppose \varpi U is parametrized by arc-length  \triangleleft starting from q. Then in the Frenet
frame, we have the canonical form of the curve

z1( \triangleleft ) =  \triangleleft \uparrow \lhook 
2
 \triangleleft 
3

6
+ o( \triangleleft 3), z2( \triangleleft ) =

\lhook 

2
 \triangleleft 
2 +

\lhook 
\updownarrow 
 \triangleleft 
3

6
+ o( \triangleleft 3);

see section 1-6 of [1]. Here, \lhook ,\lhook \updownarrow are the curvature and its  \triangleleft derivative at q. As \lhook > 0,
by using the inverse function theorem, we can take z1 \rightarrow (\uparrow  \triangleright ,  \triangleright ) with  \triangleright > 0 small as
the parameter and express the curve as the graph of a function

z2 =
\lhook 

2
z
2
1 +

\lhook 
\updownarrow 
z
3
1

6
+ o(z31).

For z2 > 0 close to 0, we have two roots z1,± given by

z1,+ =

\Biggr) 
2

\lhook 

\Biggl[ 1

2

z
1

2

2 + a2,+z2 + · · · ; z1,\downarrow =\uparrow 
\Biggr) 
2

\lhook 

\Biggl[ 1

2

z
1

2

2 + a2,\downarrow z2 + · · · .

Finally, we use z2 = s\uparrow s0 to get

R\vargamma D(s,\varrho ) = z1,+ \uparrow z1,\downarrow 

= 2

\Biggr) 
2

\lhook 

\Biggl[ 1

2

(s\uparrow s0)
1

2

+ + c2(s\uparrow s0)+ + · · · .
(18)
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7300 YIRAN WANG

For \varrho su""ciently close to some \varrho 0, we note that s, s0, and the coe""cients of (s\uparrow s0)a+
in (18) depend on \varrho smoothly. The proof is completed after a change of variable
y2 = s\uparrow s0, y1 = \varrho \uparrow \varrho 0.

Next, we consider the situation near S\nearrow .

Lemma 4.3. Suppose D1,D2 are strictly convex. For q0 \rightarrow S1 \Uparrow S2, there are local
coordinates y = (y1, y2) \rightarrow R2 near q0 such that locally q0 = (0,0), S1 = {y2 = 0}, S2 =
{y1 = 0}, and

R\vargamma D1
(y) = h1(y)y

1/2
2,+ + y2,+r1(y), r1 \rightarrow I

\downarrow 3/2(M ;S1),

R\vargamma D2
(y) = h2(y)y

1/2
1,+ + y1,+r2(y), r2 \rightarrow I

\downarrow 3/2(M ;S2),

where hj , j = 1,2 are smooth and positive.

Proof. First, we apply Lemma 4.2 to find a neighborhood V1 of q0 and coordi-
nates (z1, z2) such that S1 = {z2 = 0}. Then we apply Lemma 4.2 again to find a
neighborhood V2 of q0 and coordinates (w1,w2) such that S2 = {w2 = 0}. Because S1

intersects S2 transversally at q0 (see [11]), we know that the z2-axis is not parallel to
the w2-axis. Thus, we can find a new coordinate system (y1, y2) with y1=z2, y2=w2.
Then we write z1 = z1(y),w1 = w1(y) as smooth functions. Finally, the conclusions
follow from Lemma 4.2.

The vanishing order is the key to obtaining multiplicative properties similar to
Piriou’s distributions.

Lemma 4.4. Let m,n\rightarrow N. Under the assumptions of Lemma 4.3, we have
1. (R\vargamma D1

)n(y) = h1(y)y
n/2
2,+ + y

(1+n)/2
2,+ r1(y) and (R\vargamma D2

)n(y) = h2(y)y
n/2
1,+ +

y
(1+n)/2
1,+ r2(y), where rj \rightarrow I

\downarrow 3/2(M ;Sj), j = 1,2, and hj are smooth and posi-
tive.

2. (R\vargamma D1
)m(y)(R\vargamma D2

)n(y) = h(y)ym/2
2,+ y

n/2
1,+ + r(y), where r is a sum of paired

Lagrangian distributions such that r \rightarrow I
\downarrow 2\downarrow m/2\downarrow n/2(T \uparrow 

q0M\(N\uparrow 
S1 \updownarrow N

\uparrow 
S2)),

and h is smooth and positive.

Proof. (1) We prove the case for n = 2. The general case can be obtained by
induction. Also, it su""ces to consider R\vargamma D1

. The analysis for R\vargamma D2
is similar. We

can find a proper coordinate as in Lemma 4.3 and write

R\vargamma D1
(y) = h̃1(y)y

1/2
2,+ + y2,+r̃1(y), r̃1 \rightarrow I

\downarrow 3/2(M ;S1).

Then

(R\vargamma D1
)2 = h̃

2
1(y)y2,+ + 2h̃1(y)r̃1(y)y

3/2
2,+ + y

2
2,+r̃

2
1(y).

Note that h̃1r̃1 \rightarrow I
\downarrow 3/2(M ;S1). Also, r̃21 \rightarrow I

\downarrow 3/2(M ;S1), so y
1

2

2,+r̃
2
1 \rightarrow I

\downarrow 3/2(M ;S1) as
well.

(2) We use the coordinates in Lemma 4.3 and part (1) to get

(R\vargamma D1
)m(y) = h1(y)y

m/2
2,+ + y

(1+m)/2
2,+ r1(y), r1 \rightarrow I

\downarrow 3/2(M ;S1),

(R\vargamma D2
)n(y) = h2(y)y

n/2
1,+ + y

(1+n)/2
1,+ r2(y), r2 \rightarrow I

\downarrow 3/2(M ;S2),

where h1, h2 are smooth and positive functions. Thus

(R\vargamma D1
)m(y)(R\vargamma D2

)n(y) = h1(y)h2(y)y
m/2
2,+ y

n/2
1,+ + h1(y)r2(y)y

m/2
2,+ y

(1+n)/2
1,+

+ h2(y)r1(y)y
n/2
1,+y

(1+m)/2
2,+ + y

(1+m)/2
2,+ y

(1+n)/2
1,+ r1(y)r2(y).
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IDENTIFICATION OF NONLINEAR BEAM-HARDENING EFFECTS 7301

Note that h1r2 \rightarrow I
\downarrow 3/2(M ;S2). In fact, from the proof of Lemma 4.3, we know

that r2 has an asymptotic expansion in y
1

2

2,+. Thus we see that h1(y)r2(y)y
m/2
2,+ \rightarrow 

I
\downarrow 1\downarrow m/2(M ;S2). By using the proof of Lemma 3.2 (here, we need the result for

di!erent orders, but the proof is the same; see also [2]), we get

h1(y)r2(y)y
m/2
2,+ y

(1+n)/2
1,+ \rightarrow I

\downarrow 1\downarrow m/2,\downarrow 1\downarrow n/2(T \uparrow 
q0M,N

\uparrow 
S2)

+ I
\downarrow 3/2\downarrow n/2,\downarrow 1/2\downarrow m/2(T \uparrow 

q0M,N
\uparrow 
S1).

(19)

Similarly, we obtain that

h2(y)r1(y)y
n/2
1,+y

(1+m)/2
2,+ \rightarrow I

\downarrow 1\downarrow n/2,\downarrow 1\downarrow m/2(T \uparrow 
q0M,N

\uparrow 
S1)

+ I
\downarrow 3/2\downarrow m/2,\downarrow 1/2\downarrow n/2(T \uparrow 

q0M,N
\uparrow 
S2),

y
(1+m)/2
2,+ y

(1+n)/2
1,+ r1(y)r2(y)\rightarrow I

\downarrow 3/2\downarrow n/2,\downarrow 1\downarrow m/2(T \uparrow 
q0M,N

\uparrow 
S1)

+ I
\downarrow 3/2\downarrow m/2,\downarrow 1\downarrow n/2(T \uparrow 

q0M,N
\uparrow 
S2).

(20)

We conclude that microlocally away from N
\uparrow 
S1\updownarrow N

\uparrow 
S2, terms in (19) and (20) belong

to I
\downarrow 2\downarrow m/2\downarrow n/2(T \uparrow 

q0M). This completes the proof.

5. Determination of the nonlinear term.

Proof of Theorem 2.1. Suppose F̃ (t) =
\Biggr\rfloor J̃

j=2 ãjt
j is another nonlinear polynomial

of the form (4). Let P̃MA, f̃CT be the corresponding functions for F̃ . Assume that
fCT = f̃CT . We consider

PMA \uparrow P̃MA =
J\Biggl\lfloor 

j=2

(aj \uparrow ãj)(R\vargamma D)j .(21)

Here, we assumed J \nwarrow J̃ , and we let ãj = 0 for j > J̃. We claim that for any q \rightarrow S\nearrow ,

WF(PMA \uparrow P̃MA)\Uparrow (T \uparrow 
q M\(N\uparrow 

S1 \updownarrow N
\uparrow 
S2)) = \propto .(22)

To see this, we first use the analysis in section 3.1 and Lemma 3.2 (see also Lemma 4.4)
to conclude that PMA \uparrow P̃MA is a sum of paired Lagrangian distributions in

I
a,b(T \uparrow 

q M,N
\uparrow 
S1) + I

a\rightarrow ,b\rightarrow (T \uparrow 
q M,N

\uparrow 
S2),

where we did not find the orders a, a
\updownarrow 
, b, b

\updownarrow because they are not important for this
argument. Let u be the sum of terms such that u \rightarrow I

c(T \uparrow 
q M\(N\uparrow 

S1 \updownarrow N
\uparrow 
S2)) with

c=max(a+ b, a
\updownarrow + b

\updownarrow ). If c=\uparrow \prime , we are done. Otherwise, c is a finite number, and
the principal symbol of u on T

\uparrow 
q M\(N\uparrow 

S1 \updownarrow N
\uparrow 
S2) is nonvanishing. We can repeat

the proof of Lemma 3.4 line by line, and the symbol calculation in Lemma 3.4 yields
a contradiction because fCT \uparrow f̃CT is smooth away from \varpi D.

Next, we show that aj = ãj in (21). Without loss of generality, we can take ãj = 0
and show aj = 0. We expand and regroup the terms in (21) as

J\Biggl\lfloor 

j=2

aj(R\vargamma D)j =
J\Biggl\lfloor 

j=2

aj(R\vargamma D1
)j +

J\Biggl\lfloor 

j=2

aj(R\vargamma D2
)j +

J\Biggl\lfloor 

j=2

ajAj

where Aj =
\Biggl\lfloor 

m+n=j,m,n\Leftarrow 1

Cm,n(R\vargamma D1
)m(R\vargamma D2

)n, Cm,n > 0.
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7302 YIRAN WANG

To determine aj , we use singularities at T \uparrow 
q M for q \rightarrow S\nearrow away from N

\uparrow 
S1 \updownarrow N

\uparrow 
S2, so

it su""ces to look at singularities in Aj . According to Lemma 4.4, we know that

Aj =
\Biggl\lfloor 

m+n=j,m,n\Leftarrow 1

Cm,nhm,n(y)y
m/2
2,+ y

n/2
1,+ + rm,n(y),

where Cm,n and hm,n are both positive. Note that

Cm,nhm,n(y)y
m/2
2,+ y

n/2
1,+ \rightarrow I

\downarrow 3/2\downarrow m/2\downarrow n/2(T \uparrow 
q M\(N\uparrow 

S1 \updownarrow N
\uparrow 
S2)).

We know from Lemma 4.4 that rm,n \rightarrow I
\downarrow 2\downarrow m/2\downarrow n/2(T \uparrow 

q M\(N\uparrow 
S1 \updownarrow N

\uparrow 
S2)). Thus

Aj \rightarrow I
\downarrow 3/2\downarrow j/2(T \uparrow 

q M\(N\uparrow 
S1 \updownarrow N

\uparrow 
S2)) and rm,n do not contribute to the leading

order term.
To see that the principal symbol is nonvanishing, it su""ces to find the Fourier

transform of Aj,0 =
\Biggr\rfloor 

m+n=j,m,n\Leftarrow 1Cm,nhm,n(0)y
m/2
2,+ y

n/2
1,+\vargamma (y2)\vargamma (y1), where \vargamma (t), t \rightarrow 

R, is any smooth cut-o! function equal to 1 near t = 0. We will choose \vargamma (t) below.
Note that Cm,n, hm,n(0) are all positive. It su""ces to look at the Fourier transform
of \vargamma (t)ta+, a > 0. First, we use the computation in Example 7.1.17 of [4] and consider
the Fourier transform of e\downarrow \leftharpoonup t

t
a
+ for \omega > 0 small, which is given by

(\omega + i \triangleleft )\downarrow a\downarrow 1

\Biggr] \rightarrow 

0
t
a
e
\downarrow t
dt.

Note that this is a nonvanishing symbol of order \uparrow a\uparrow 1. Now we can approximate
e
\downarrow \leftharpoonup t (extended to a Schwartz function on R) by some \vargamma \rightarrow C

\rightarrow 
0 (R) equal to 1 near 0

and conclude that the Fourier transform of \vargamma (t)ta+ is a nonvanishing symbol of order
\uparrow a\uparrow 1. Applying the procedure to the terms in Aj,0, we conclude that the principal
symbol of Aj on T

\uparrow 
q M\(N\uparrow 

S1 \updownarrow N
\uparrow 
S2) is nonvanishing.

Now we can finish the proof. For j = 2, we get that A2 \rightarrow I
\downarrow 5/2(T \uparrow 

q M\(N\uparrow 
S1 \updownarrow 

N
\uparrow 
S2)) and Aj \rightarrow I

\downarrow 3(T \uparrow 
q M\(N\uparrow 

S1 \updownarrow N
\uparrow 
S2)) for j \nwarrow 3. Because the principal symbol

of A2 is nonvanishing, we derive from the claim in the beginning of the proof that
a2 = 0. Now we can repeat the argument for j = 3, . . . , J to get that all aj = 0. This
finishes the proof.

Proof of Corollary 2.2. If F = 0, it is easy to see from (6) that fCT \rightarrow C
\rightarrow (R2\\varpi D).

If fCT \rightarrow C
\rightarrow away from \varpi D, we know from the proof of Theorem 2.1 that (22) holds

true for P̃MA = 0 and ãj = 0, j = 1,2, . . . , J . Then the proof of Theorem 2.1 implies
that F = 0.

Appendix A. Composition of FIOs. The purpose of this appendix is to verify
some technical conditions for the composition of Fourier integral operators in section 3.
In particular, we check that the compositions of canonical relations in section 3.1 and
Lemma 3.4 are transversal and proper.

We first recall the relevant definitions from [6, section 25.2]. Let X,Y,Z be three
manifolds. Let C1 be a homogeneous canonical relation from T

\uparrow 
Y \0 to T

\uparrow 
X\0, and

let C2 be a homogeneous canonical relation from T
\uparrow 
Z\0 to T

\uparrow 
Y \0; we say that the

composition C2\Rightarrow C1 is transversal if X =C1\nearrow C2 intersects Y = T
\uparrow 
X\nearrow '(T \uparrow 

Y )\nearrow T
\uparrow 
Z

transversally, that is, for any q in the intersection,

TqX + TqY = TqZ with Z = T
\uparrow 
X \nearrow T

\uparrow 
Y \nearrow T

\uparrow 
Y \nearrow T

\uparrow 
Z.

Here, '(T \uparrow 
Y ) denotes the diagonal set of T \uparrow 

Y \nearrow T
\uparrow 
Y. The composition is proper if

the map X \Uparrow Y \searrow T
\uparrow (X \nearrow Z)\0 is proper. If the composition is transversal and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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IDENTIFICATION OF NONLINEAR BEAM-HARDENING EFFECTS 7303

proper, then C = C2 \Rightarrow C1 is a canonical relation. We have Theorem 25.2.3 of [6]
for the composition of FIOs. Actually, we only need the special case of transversal
compositions. For the study of the composition of Fourier integral operators and
conormal distributions, we take Z to be a point; see the treatment on page 22 of [6].

We start with the composition of C and Cj , j = 1,2, in section 3.1. Recall from
(8) that the canonical relation of R is parametrized as

C = {(x1 cos\varrho + x2 sin\varrho ,\varrho ,\uparrow \leftharpoonup ,\leftharpoonup (\uparrow x1 sin\varrho + x2 cos\varrho );

x1, x2,\uparrow \leftharpoonup cos\varrho ,\uparrow \leftharpoonup sin\varrho ) :

\leftharpoonup \rightarrow R\0,\varrho \rightarrow (\uparrow \varsigma ,\varsigma ), x1, x2 \rightarrow R}\downarrow T
\uparrow 
M\0\nearrow T

\uparrow R2\0.

For Cj = N
\uparrow 
\varpi Dj\0, j = 1,2, we choose local coordinates (y1, y2) near q \rightarrow \varpi Dj such

that q= 0 and \varpi Dj = {y2 = 0}. Then Cj = {(y1,0,0, \leftharpoondown 2) : y1 \rightarrow R, \leftharpoondown 2 \rightarrow R\0}. Now we let
Z = T

\uparrow 
M \nearrow T

\uparrow R2 \nearrow T
\uparrow R2

,X =C \nearrow Cj \downarrow Z , and Y = T
\uparrow 
M \nearrow '(T \uparrow R2)\downarrow Z . Note

that X is parametrized by x1, x2,\leftharpoonup ,\varrho , y1, \leftharpoondown 2 \rightarrow R, and we write an element of Y as
(s,\oldstyle{0},\varepsilon ,\rightharpoonup ; z1, z2,\varphi 1,\varphi 2, z1, z2,\varphi 1,\varphi 2) with all variables in R. The intersection X \Uparrow Y
is given by

s= x1 cos\varrho + x2 sin\varrho ,\oldstyle{0}= \varrho ,\varepsilon =\uparrow \leftharpoonup ,\rightharpoonup = \leftharpoonup (\uparrow x1 sin\varrho + x2 cos\varrho ),

x1 = y1 = z1, x2 = y2 = z2 = 0,\uparrow \leftharpoonup cos\varrho = 0= \varphi 1,\uparrow \leftharpoonup sin\varrho = \leftharpoondown 2 = \varphi 2,

which implies that \varrho =±\varsigma /2, so

X \Uparrow Y = {(0,±\varsigma /2,\uparrow \leftharpoonup ,\infty \leftharpoonup x1;x1,0,0,\infty \leftharpoonup , x1,0,0,\infty \leftharpoonup ) : x1,\leftharpoonup \rightarrow R}.

We see that the projection to T
\uparrow 
M is proper. Let q \rightarrow X \Uparrow Y . To compute the tangent

vector of TqX , we use the map \varsigma :R6
(x1,x2,\varrho ,\omega ,y1,\varsigma 2) \searrow X . So, a general tangent vector

at q can be obtained by

\varsigma \uparrow ( \triangleright x1,  \triangleright x2,  \triangleright \leftharpoonup ,  \triangleright \varrho ,  \triangleright y1,  \triangleright \leftharpoondown 2)

= ( \triangleright x2 \uparrow x1 \triangleright \varrho ,  \triangleright \varrho ,\uparrow  \triangleright \leftharpoonup ,\uparrow \leftharpoonup  \triangleright x1 \uparrow x1 \triangleright \leftharpoonup ,  \triangleright x1,  \triangleright x2,\leftharpoonup  \triangleright \varrho ,\uparrow  \triangleright \leftharpoonup ,  \triangleright y1,0,0,  \triangleright \leftharpoondown 2).

For the tangent vector of TqY , we use the map \oldstyle{1} :R8
(s,\leftharpoondown ,\vargamma ,\varpi ;z1,z2,\varepsilon 1,\varepsilon 2) \searrow Y to get

\oldstyle{1}\uparrow ( \triangleright s,  \triangleright \oldstyle{0},  \triangleright \varepsilon ,  \triangleright \rightharpoonup ;  \triangleright z1,  \triangleright z2,  \triangleright \varphi 1,  \triangleright \varphi 2)

= ( \triangleright s,  \triangleright \oldstyle{0},  \triangleright \varepsilon ,  \triangleright \rightharpoonup ;  \triangleright z1,  \triangleright z2,  \triangleright \varphi 1,  \triangleright \varphi 2,  \triangleright z1,  \triangleright z2,  \triangleright \varphi 1,  \triangleright \varphi 2).

Now we conclude that TqX +TqY = TqZ by listing 12 linearly independent tangent
vectors, which is quite straightforward.

Next, consider the composition of C\uparrow and C0 = T
\uparrow 
q M\0 needed in Lemma 3.4.

From (8), we get

C
\uparrow = {(x1, x2,\uparrow \leftharpoonup cos\varrho ,\uparrow \leftharpoonup sin\varrho ;x1 cos\varrho + x2 sin\varrho ,\varrho ,

\uparrow \leftharpoonup ,\leftharpoonup (\uparrow x1 sin\varrho + x2 cos\varrho )) : \leftharpoonup \rightarrow R\0,\varrho \rightarrow (\uparrow \varsigma ,\varsigma ), x1, x2 \rightarrow R}.
(23)

We write

C0 = {(0,0, \oldstyle{2}1, \oldstyle{2}2) : \oldstyle{2}1, \oldstyle{2}2 \rightarrow R, \oldstyle{2}1\oldstyle{2}2 \swarrow = 0}.

Then let X = C
\uparrow \nearrow C0, Y = T

\uparrow R2 \nearrow '(T \uparrow 
M), and Z = T

\uparrow R2 \nearrow T
\uparrow 
M \nearrow T

\uparrow 
M. The

intersection X \Uparrow Y is given by

x1 cos\varrho + x2 sin\varrho = 0,\varrho = 0,\uparrow \leftharpoonup = \oldstyle{2}1,\leftharpoonup (\uparrow x1 sin\varrho + x2 cos\varrho ) = \oldstyle{2}2,
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7304 YIRAN WANG

which implies x1 = 0,\varrho = 0, so

X \Uparrow Y = {(0, x2,\uparrow \leftharpoonup ,0; 0,0,\uparrow \leftharpoonup ,\uparrow \leftharpoonup x2) : \leftharpoonup , x2 \rightarrow R}.

The projection to T
\uparrow R2 is proper. Let q \rightarrow X \Uparrow Y . To compute the tangent vector of

TqX , we use the map \varsigma :R6
(x1,x2,\varrho ,\omega ,\vargamma ,\varpi ) \searrow X . So,

\varsigma \uparrow ( \triangleright x1,  \triangleright x2,  \triangleright \leftharpoonup ,  \triangleright \varrho ,  \triangleright \oldstyle{2}1,  \triangleright \oldstyle{2}2)

= ( \triangleright x1,  \triangleright x2,\uparrow  \triangleright \leftharpoonup ,\uparrow \leftharpoonup  \triangleright \varrho ,  \triangleright x1 + x2 \triangleright \varrho ,  \triangleright \varrho ,\uparrow  \triangleright \leftharpoonup , x2 \triangleright \leftharpoonup ,\leftharpoonup  \triangleright x2,0,0,  \triangleright \oldstyle{2}1,  \triangleright \oldstyle{2}2).

For the tangent vector of TqY , we use (z1, z2,\varphi 1,\varphi 2;s,\varrho ,\varepsilon ,\rightharpoonup ;s,\varrho ,\varepsilon ,\rightharpoonup ) for a general
element of Y . Consider \oldstyle{1} :R8

(z1,z2,\varepsilon 1,\varepsilon 2;s,\omega ,\vargamma ,\varpi ) \searrow Y , and we get

\oldstyle{1}\uparrow ( \triangleright z1,  \triangleright z2,  \triangleright \varphi 1,  \triangleright \varphi 2;  \triangleright s,  \triangleright \oldstyle{0},  \triangleright \varepsilon ,  \triangleright \rightharpoonup )

= ( \triangleright z1,  \triangleright z2,  \triangleright \varphi 1,  \triangleright \varphi 2,  \triangleright s,  \triangleright \oldstyle{0},  \triangleright \varepsilon ,  \triangleright \rightharpoonup ,  \triangleright s,  \triangleright \oldstyle{0},  \triangleright \varepsilon ,  \triangleright \rightharpoonup ).

We can also see that TqX + TqY = TqZ .
Finally, we consider the composition of C\uparrow and C̃j =N

\uparrow 
Sj\0, j = 1,2, needed in

Lemma 3.4. In this case, we can find local coordinates (y1, y2) near p \rightarrow Sj so that
p= 0 and Sj = {y1 = 0}. Thus,

C̃j = {(0, y2,\varphi 1,0) : y2 \rightarrow R,\varphi 1 \rightarrow R\0}.

Then let X =C
\uparrow \nearrow C̃j , Y = T

\uparrow R2 \nearrow '(T \uparrow 
M), and Z = T

\uparrow R2 \nearrow T
\uparrow 
M \nearrow T

\uparrow 
M. Using

(23), the intersection X \Uparrow Y is given by

x1 cos\varrho + x2 sin\varrho = 0,\varrho = y2,\uparrow \leftharpoonup = \varphi 1,\leftharpoonup (\uparrow x1 sin\varrho + x2 cos\varrho ) = 0,

which implies x1 = x2 = 0, so

X \Uparrow Y = {(0,0,\uparrow \leftharpoonup cos\varrho ,\uparrow \leftharpoonup sin\varrho ,0,\varrho ,\uparrow \leftharpoonup ,0,0,\varrho ,\uparrow \leftharpoonup ,0) : \leftharpoonup ,\varrho \rightarrow R}

The projection to T
\uparrow R2 is proper. To compute the tangent vector of TqX , we use

the map \varsigma :R6
(x1,x2,\varrho ,\omega ,y2,\varepsilon 1) \searrow X . So

\varsigma \uparrow ( \triangleright x1,  \triangleright x2,  \triangleright \leftharpoonup ,  \triangleright \varrho ,  \triangleright \oldstyle{2}1,  \triangleright \oldstyle{2}2)

= ( \triangleright x1,  \triangleright x2,\uparrow  \triangleright \leftharpoonup cos\varrho + \leftharpoonup sin\varrho d\varrho ,\uparrow  \triangleright \leftharpoonup sin\varrho \uparrow \leftharpoonup cos\varrho  \triangleright \varrho ;

 \triangleright x1 cos\varrho +  \triangleright x2 sin\varrho ,  \triangleright \varrho ,\uparrow  \triangleright \leftharpoonup ,\uparrow \leftharpoonup  \triangleright x1 sin\varrho + \leftharpoonup  \triangleright x2 cos\varrho ,0,  \triangleright y2,\uparrow  \triangleright \leftharpoonup ,0).

For the tangent vector of TqY , we use (z1, z2,\varphi 1,\varphi 2;s,\varrho ,\varepsilon ,\rightharpoonup ;s,\varrho ,\varepsilon ,\rightharpoonup ) for a general
element of Y . Let \oldstyle{1} :R8

(z1,z2,\varepsilon 1,\varepsilon 2;s,\omega ,\vargamma ,\varpi ) \searrow Y to get

\oldstyle{1}\uparrow ( \triangleright z1,  \triangleright z2,  \triangleright \varphi 1,  \triangleright \varphi 2;  \triangleright s,  \triangleright \oldstyle{0},  \triangleright \varepsilon ,  \triangleright \rightharpoonup )

= ( \triangleright z1,  \triangleright z2,  \triangleright \varphi 1,  \triangleright \varphi 2,  \triangleright s,  \triangleright \oldstyle{0},  \triangleright \varepsilon ,  \triangleright \rightharpoonup ,  \triangleright s,  \triangleright \oldstyle{0},  \triangleright \varepsilon ,  \triangleright \rightharpoonup ).

Again, we can find 12 linearly independent vectors to see that TqX + TqY = TqZ .
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