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Abstract—Recent advancements in deep learning-based wear-
able human action recognition (wHAR) have improved the cap-
ture and classification of complex motions, but adoption remains
limited due to the lack of expert annotations and domain dis-
crepancies from user variations. Limited annotations hinder the
model’s ability to generalize to out-of-distribution samples. While
data augmentation can improve generalizability, unsupervised
augmentation techniques must be applied carefully to avoid intro-
ducing noise. Unsupervised domain adaptation (UDA) addresses
domain discrepancies by aligning conditional distributions with
labeled target samples, but vanilla pseudo-labeling can lead
to error propagation. To address these challenges, we propose
µDAR, a novel joint optimization architecture comprised of three
functions: (i) consistency regularizer between augmented samples
to improve model classification generalizability, (ii) temporal
ensemble for robust pseudo-label generation and (iii) conditional
distribution alignment to improve domain generalizability. The
temporal ensemble works by aggregating predictions from past
epochs to smooth out noisy pseudo-label predictions, which are
then used in the conditional distribution alignment module to
minimize kernel-based class-wise conditional maximum mean
discrepancy (kCMMD) between the source and target feature
space to learn a domain invariant embedding. The consistency-
regularized augmentations ensure that multiple augmentations
of the same sample share the same labels; this results in (a)
strong generalization with limited source domain samples and (b)
consistent pseudo-label generation in target samples. The novel
integration of these three modules in µDAR results in a range
of ≈ 4-12% average macro-F1 score improvement over six state-
of-the-art UDA methods in four benchmark wHAR datasets.

Index Terms—Human Activity Recognition, Consistency Reg-
ularization, Temporal Ensembling, Cross-user Adaptation

I. INTRODUCTION

Over the past decade, wearable human activity recognition
(wHAR) has enabled applications in healthcare [16], sports
analytics [7], and fitness tracking [26], leveraging inertial,
gyroscopic, and magnetometric sensors in smartphones and
smartwatches to capture motion data, with neural process-
ing units facilitating real-time inference. However, traditional
models rely on supervised learning and extensive labeled data,
limiting scalable, robust activity recognition. While Activities
of Daily Living (ADLs) datasets cover simple actions like

1This work has been partially supported by NSF CAREER
Award #1750936, ONR Grant #N00014-23-1-2119, U.S. Army Grant
#W911NF2120076 and NSF CNS EAGER Grant #2233879.

running and walking, micro-complex activities show user-
specific patterns, leading to cross-user variations [23] due to
differences in body characteristics and skill levels [8]. These
variations are particularly evident in skill-based actions, where
proficiency evolves; for example, experienced badminton play-
ers exhibit more consistent patterns than novices [7], reflecting
how skill progression influences activity patterns.

In this context, unsupervised domain adaptation (UDA) [14]
offers a viable solution, particularly when annotations are lim-
ited and domain discrepancies arise from out-of-distribution
samples. UDA leverages labeled data from the source domain
(e.g., female, expert player) and unlabeled data from the
target domain (e.g., male, novice player), aligning feature
distributions to learn a domain-invariant feature space. Most
UDA research [2] focuses on marginal feature alignment,
with few models addressing conditional distribution alignment,
often requiring labeled target data [24]. Pseudo-labeling can
be an alternative, but its self-labeling nature often amplifies
initial classification errors [22], hindering effective conditional
alignment across domains.

To address these challenges, we introduce a novel joint
optimization framework using complementary loss compo-
nents. We begin by training a deep learning classifier on
labeled source data. Next, we adapt this model to unlabeled
target data by learning a domain-invariant embedding via
minimizing the class-wise kernel-based conditional maximum
mean discrepancy (kCMMD) distance, using pseudo-labels
from the target classifier. To prevent training collapse due
to incorrect pseudo-labels, we employ a temporal ensemble
approach to smooth them via aggregation. To enhance gener-
alizability, we apply unsupervised data augmentation to both
source and target data, coupled with consistency training,
by minimizing the KL divergence between predictions of
original and augmented samples. This ensures that augmented
samples receive consistent labels, increasing robustness to
data noise and covering uncertain regions in the decision
space. It also maintains consistent pseudo-labels for target
samples across augmentations, which, along with the temporal
ensemble, provides high-quality pseudo-labels for conditional
kernel regularization. This synergy minimizes the domain gap
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and improves target domain classification without labeled sam-
ples. Consequently, µDAR outperforms state-of-the-art (SOTA)
UDA baselines on four activity recognition datasets, covering
both simple daily activities and complex sports/gym actions.

The key contributions are summarized as follows:
• We propose a novel UDA framework (µDAR ) to address

two challenges in wHAR: (i) cross-user variations and (ii)
limited labeled data. Our method learns source-specific rep-
resentations from labeled data and applies them to unlabeled
target data. We open-source µDAR1 for reproducibility.

• We develop a novel joint optimization architecture incor-
porating: (i) kernel-based class-wise conditional maximum
mean discrepancy (kCMMD) to align conditional distribu-
tions between source and target features; (ii) a temporal
ensemble-based pseudo-labeling technique for robust target
labels; and (iii) a consistency regularizer between augmen-
tations and real samples to enhance generalizability and
robustness, improving pseudo-labels of target domain. We
detail the synergy of these components via ablation studies.

• We compare µDAR’s macro-F1 performance against six
SOTA UDA algorithms [10, 20, 5, 13, 3, 15] on four public
benchmark datasets [8, 1, 17, 21] covering varying label
complexities, dexterity levels (novice vs. expert). µDAR
consistently outperforms baselines by ≈ 4–12% over five
independent trials per dataset.

II. RELATED WORK

We discuss the relevant literature to µDAR on UDA in the
wHAR and consistency regularization area with an emphasis
on handling cross-user variations and limited labeled data and
to differentiate µDAR from the SOTA approaches.

1) Wearable-based Unsupervised Domain Adapta-
tion (UDA): have been significant advances in wearable-
based recognition of daily human activities [11], scaling
these models to more niche areas where annotations are
scarce has been an open challenge, especially for activities
that require expert execution like sports and gym activities.
UDA has become a valuable method for overcoming the
challenge of limited labelled data as it capitalizes on the
abundance of available unlabeled data to enhance the model’s
generalizability and robustness. One of the few works
incorporating UDA to tackle limited label data is [10],
where the authors introduced a novel sample differentiation
technique, utilizing a parameterized network to identify
whether a sample is from the source or target domain and
additionally involves assigning weights to pseudo labels for
target samples based on the confidence level of the domain
classifier. However, recent SOTA studies have addressed
minimal label information by minimizing conditional feature
distributions. In contrast, this work focuses on tackling
limited label data by minimizing conditional discrepancies.

2) Consistency Regularization: has recently become promi-
nent, especially in developing robust models invariant to data
variations, i.e., augmented samples [28]. The core principle

1https://github.com/indrajeetghosh/uDAR ICDM

Fig. 1: High level overview of the µDAR architecture

of consistency regularization is to maintain consistent pre-
dictions between real and augmented samples. This approach
promotes smoothness and low-density separation, crucial for
semi-supervised learning environments, aiding in minimizing
consistency loss [6]. Studies [27] indicate that combining
consistency regularization with unsupervised data augmenta-
tion in semi-supervised learning impedes performance degra-
dation and bolsters model generalizability and robustness.
Motivating by this, we integrate a consistent regularization
approach to tackle user variations. However, to design real-
world settings, we incorporate unsupervised data augmentation
for wHAR [25], and to our best knowledge, our work is
among the first few that have integrated unsupervised data
augmentation with consistency regularization in wHAR.

III. METHODOLOGY

In this section, we present the µDAR framework for the
wHAR domain, designed to recognize ADL actions, including
gym and sports activities. We briefly outline the problem
formulation and highlight the key functional and learning
components of µDAR.

A. Problem Formulation

Cross-user variations and limited expert-labeled datasets
hinder the effectiveness of wHAR methods. We leverage
labeled data from experienced users (source domain), Ds =
{(xi, yi)}ni=1, and unlabeled data from new users (target
domain), Dt = {xj}mj=1. Here, n and m represent the number
of instances in the source and target domains, respectively,
with both sharing the same label space, yis, y

j
t ∈ {1, 2, . . . , c},

where c denotes the number of activity classes. UDA aims
to identify activities for new users by utilizing labeled source
data alongside unlabeled target data. This assumes that both
domains use identical sensors and placements, performing
the same activities, despite conditional distribution shifts, i.e.,
P (y |xs) ̸= P (y |xt).

Figure 1 illustrates the proposed UDA framework, compris-
ing four key components to tackle these challenges: (i) learn-
ing source-specific features to capture trained user character-
istics; (ii) generating high-quality pseudo labels via temporal
ensembling; (iii) aligning source and target features using the
proposed kCMMD loss; and (iv) applying unsupervised data
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augmentation to improve robustness against user-variations.
This integrated approach minimizes domain discrepancies,
enhancing generalization to new users in the wHAR domain.

B. Supervised Learning Source-specific Feature Learning

We explore the supervised training process designed to
capture the unique features of the source domain data. Our
approach involves a specifically tailored supervised training
architecture. This architecture consists of three convolutional
layers, each with an increasing number of filters and pro-
gressively smaller kernel sizes. Each convolutional layer is
coupled with batch normalization and max-pooling layers to
minimize internal covariate shifts and enhance learning of
the high and low-level features, respectively. Followed by
two fully connected layers and a softmax layer for output.
The training objective is to minimize the CE supervised
loss LSL = − 1

n

∑n
i=1 P (ysi |xsi) logP (ŷsi |xsi)} and ensure

accurately predict the class distribution P (Ŷ |X).

C. Extracting Pseudo Labels using Temporal Ensembling

Adapting our supervised training pipeline from a well-
labeled source domain to a target domain devoid of labeled
data presents a significant challenge. This is further com-
plicated by activities’ inherent variability and complexity,
especially when dealing with data from synchronized sensors
on multiple wearable devices. To effectively generate high-
quality pseudo labels in this context, we implement temporal
ensembling [12]. This method is designed to maximize the
concurrent extraction of mutual information from both the
source and target domains, which aims to enhance the pseudo-
label generation process by aggregating model predictions in
an iterative refinement update method highlighted in Eq. 1,
where L, θ, η, t and ∇θ represents loss, model parameters,
learning rate, iteration step and gradient update, respectively.
This aggregation smoothens the overall label prediction and
enhances the quality of the pseudo labels for the target domain.

Temporal ensembling is a robust mechanism for identifying
and learning domain-invariant features, thereby reducing dis-
crepancies between the source and target data over time. The
model’s adaptation to the target domain improves significantly
by averaging predictions over time. Temporal ensembling
mitigates class imbalance [4] by generating pseudo-labels and
enabling stable learning, which helps in learning a balanced
data representation and alleviates the skew toward majority
classes seen in the labeled data. We determine the optimal
setting for α using a grid-search method and then fine-tuned
it for the optimal performance across the datasets.

θt+1 = θt − η · ∇θL (1)

D. UDA via kernel-based class-wise conditional mean maxi-
mum discrepancy (kCMMD)

We focus on aligning conditional distributions using our
proposed kernel-based class-wise conditional mean maximum
discrepancy (kCMMD) approach in the Reproducing Kernel
Hilbert Space (RKHS) [19]. In RKHS, conditional distri-
butions are mapped to a high-dimensional feature space,

and kCMMD computes the mean discrepancy between these
embeddings to minimize domain shifts. This reduces the
conditional probability gap between the source (P s(Z|Y )) and
target (P t(Z|Y )) domains, establishing a robust conditional
domain-invariant feature space. The generalized kCMMD loss
is defined in Eq. 2, where C represents the number of classes,
and nc and mc denote the number of samples from class c in
the source and target domains, respectively, with xs

i , xs
j , xt

i,
and xt

j representing feature embeddings.

LkCMMD =
C∑

c=1

[
1

nc(nc − 1)

nc∑
i,j=1
i̸=j

K(ϕ)(xs
i , x

s
j) +

1

mc(mc − 1)

mc∑
i,j=1
i̸=j

K(ϕ)(xt
i, x

t
j)−

2

ncmc

nc∑
i=1

mc∑
j=1

K(ϕ)(xs
i , x

t
j)

]
(2)

Considering our problem scenario, where the source domain
is represented by a feature set xs ∈ Rn×d with corresponding
labels ys, and a target domain represented by xt ∈ Rm×d with
pseudo-labels yt̄, the kCMMD loss focuses on minimizing
distribution differences for each class c ∈ C. kCMMD
utilizes the Radial Basis Function (RBF) kernel, defined as
K(ϕ)(x, x′) = exp(−γ|x−x′|2), where γ is the kernel band-
width parameter. For each class c from the source (Xs) and
target (Xt) domains, we compute the following kernel matrices
(KM ), quantifying intra- and inter-domain discrepancies using
element-wise multiplication [⊗]:
Source-Source[Kss

M ] = K(ϕ)(x, x′)⊗ (X(c)
s , X(c)

s , γ) + λI

Target-Target[Ktt
M ] = K(ϕ)(x, x′)⊗ (X

(c)
t , X

(c)
t , γ) + λI

Source-Target[Kst
M ] = K(ϕ)(x, x′)⊗ (X(c)

s , X
(c)
t )

Here, λI denotes the regularization constant added to the
diagonals of the source-source and target-target kernel ma-
trices to prevent issues like ill-conditioning, control overfit-
ting [19, 18] and class-imbalance during intra-domain com-
putation. This regularization ensures that the learned features
are adaptable and generalizable across users. Kernel methods
are instrumental in capturing non-linear features and mapping
data into higher-dimensional spaces so non-linear relationships
can be linearly separated. The kCMMD loss is calculated as
the mean of discrepancies across all classes using a function
δ, which computes the mean discrepancy for each class. The
overall regularized kCMMD discrepancy loss function for the
kernel matrices Kss

M , Ktt
M , and Kst

M is defined in Equation (3):

LkCMMD = (K̄ss
M + K̄tt

M − 2 · K̄st
M ) (3)

Equation 3 measures the overall conditional discrepancy be-
tween the source and target domain distributions. Regularized
Kss

M and Ktt
M represent the mean intra-domain similarities for

the source and target domains, respectively, while Kst
M quanti-

fies the mean inter-domain similarity. The equation calculates
domain discrepancy by adding the mean similarities within
each domain and subtracting twice the mean cross-domain
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similarity, i.e. ensuring a bidirectional symmetrical step to
seek to minimize differences between the source and target
domains without bias. When the source and target domain
distributions align closely, the values of Kss

M and Ktt
M will

approximate Kst
M , resulting in a lower domain discrepancy

value for effective cross-user adaptation task.

E. Unsupervised Data Augmentation Module

We address user variability such as differences in activity
execution, proficiency levels and individual traits by integrat-
ing an unsupervised data augmentation approach [27] to build
robustness against cross-user variations. Our augmentation
module ensures that (i) augmented samples are valid and real-
istic, (ii) they exhibit diversity, and (iii) they introduce specific
inductive biases. Recognizing that sudden temporal shifts in
wearable data can impair model performance, we develop a
model invariant with such transformations. To achieve this,
we implement two geometric-based augmentations: jitter in-
troduces high-frequency fluctuations in the data, distinct from
actual motion, thereby adding stochastic noise and rotation
which involves angular displacement or orientation change,
quantifying the degree and axis of rotational movement which
are well-established for capturing real-world variations in
wHAR tasks [25]. Let G denote the geometric augmentation
applied to the source and target data, xs and xt, defined as
G = [rθ, σ]. The augmented samples are then x′

s = G ·xs and
x′
t = G · xt. Our goal is to enforce consistency between the

model’s predictions on original and augmented data, ensuring
robustness to user-specific variations. We employ a consistency
loss (Eq. (4)), where fθ(xs), fθ(x

′
s), fθ(xt), and fθ(x

′
t)

represent predictions for real and augmented samples. This
approach aligns with the Lipschitz continuity theorem [9],
ensuring the model’s outputs change proportionally with input
variations, enhancing generalization to diverse user variations.

LC = Exs ∼ Ds, x
′
s ∼ t(xs) [DKL(fθ(xs)||fθ(x′

s))] +

Ext ∼ Dt, x
′
t ∼ t(xt) [DKL(fθ(xt)||fθ(x′

t))]
(4)

F. µDAR Training Procedure

The overall aim is to obtain a set of optimized model
parameters trained on labeled source data that work well on
the target domain and generate high-quality pseudo labels for
the target domain. To generate high-quality pseudo labels,
we utilize the ensembling approach due to the ability to
smoothen noisy pseudo labels. Additionally, we adopted a
conditional probability alignment approach, which provides a
robust domain-invariant feature embedding. We highlight the
overall joint optimization objective function for µDAR frame-
work enumerated in Equation (5). In the overall formulation,
θ encompasses all the parameters within the deep network.
The hyperparameters β0 and β1 are set to 1, facilitating the
fine-tuning of the overall objective function.

min
Fθ

Loverall = LSL + β0LkCMMD︸ ︷︷ ︸
Domain Adaptation

+ β1LC︸ ︷︷ ︸
Consistency Regularizer

(5)

TABLE I: List of µDAR’s Hyperparameters

Hyper-parameter Values

No. of maximum convolution layers 1,2,3
No. of filters in convolution layers 32, 128, 64
Convolution filter dimension 5x1,5x1,5x1
No. of maximum fully connected layers 2
No. of neurons in fully connected layers 8, 4
Batch size 64
Dropout rate 0.3
Optimizer Adam
Learning Rate 0.001 - 0.0003
Max number of epochs 128
λ value 0.18 - 0.45
α value 0.55 - 0.75
σ value 0.01 - 0.10
rθ value 5◦ - 45◦

IV. EXPERIMENTS

We evaluate µDAR via extensive experiments on the prob-
lem of limited supervision settings for ADLs action recogni-
tion by investigating the following research questions (RQs):
(i) RQ1 (Accuracy): How well is µDAR performing on
publically available datasets? (ii) RQ2 (Robustness): How can
we adapt µDAR for accurate recognition across different users’
proficiency levels in wHAR? (iii) RQ3 (Compatibility): Is
µDAR optimized for high quality pseudo-labels generation?
(iv) RQ4 (Comparative Analysis): Is µDAR minimizing
conditional data distribution discrepancies?

A. Setup

1) Datasets: We selected four publicly available datasets
(1) Badminton Activity Recognition (BAR) Dataset [8],
capturing 12 badminton strokes from 11 subjects in controlled
and uncontrolled environments, with 30 iterations per stroke.
(2) Daily and Sports Activity (DSADS) Dataset [1], fea-
turing 9-DOF sensor data from eight individuals performing
19 activities, recorded at 25 Hz. (3) Physical Activity Mon-
itoring (PAMAP2) Dataset [17], consisting of 18 activities
from nine subjects, captured at 100 Hz from three sensors. (4)
Workout Activities (MM-DOS) Dataset [21], with IMU data
from 50 participants performing four gym workouts, recorded
at 50 Hz across nine body locations.

2) Baselines: We evaluate and contrast the performance
of µDAR with six SOTA UDA algorithms including SWL-
Adapt [10], ContrasGAN [20], AdvSVM [13], HoMM [3],
DUA [15] and CoTMix [5].

B. Implementation Details

1) Data Pre-Processing: This study uses raw signals from
accelerometers, gyroscopes, and magnetometers in a body-
worn IMU sensor network as input features. To address
motion artifacts, we applied a median filter and normalized
48 features using a min-max scaler for the BAR dataset,
which includes data from three sensor axes. Due to signal
clipping beyond ±2g in the low-noise accelerometer, we used
wide/high-range accelerometers to capture rapid movements
more effectively. For feature extraction, we applied a sliding
window technique with varying overlap and sampling rates
across the BAR, PAMAP2, DSADS, and MMDOS datasets to
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TABLE II: Comparison of µDAR’s Macro F1 Score (± SD) and Average Improvement Margin vs. SWL-Adapt [10],
ContrasGAN [20], CoTMix [5], HoMM [3], DUA [15] and AdvSKM [13] across BAR, DSADS, PAMAP2, and MMDOS
datasets. The top and 2nd best results are in bold and underlined, respectively.

Datasets SWL-Adapt [10] ContrasGAN [20] CoTMix [5] AdvSKM [13] HoMM [3] DUA [15] µDAR (Our) Average Improvement Margin

DSADS [1] 0.70 ± (0.0188) 0.64 ± (0.0213) 0.61 ± (0.0252) 0.71 ± (0.0132) 0.68 ± (0.0265) 0.73 ± (0.0105) 0.77 ± (0.0239) 0.048 ± (0.015)
PAMAP2 [17] 0.73 ± (0.0174) 0.72 ± (0.0160) 0.66 ± (0.0248) 0.70 ± (0.0213) 0.67 ± (0.0229) 0.72 ± (0.0095) 0.78 ± (0.0211) 0.054 ± (0.011)
MMDOS [21] 0.72 ± (0.0181) 0.78 ± (0.0159) 0.68 ± (0.0227) 0.69 ± (0.0193) 0.70 ± (0.0162) 0.76 ± (0.0122) 0.84 ± (0.0256) 0.061 ± (0.013)
BAR [8] 0.68 ± (0.0219) 0.71 ± (0.0192) 0.73 ± (0.0205) 0.70 ± (0.0125) 0.65 ± (0.0217) 0.69 ± (0.0155) 0.82 ± ((0.0198) 0.097 ± (0.028)

remove artifacts and extract temporal patterns. Labeling was
done using majority voting within each window. We adopted
a grid search fine-tuned window sizes and overlaps, ranging
from 5% to 95% overlap and window durations from 0.1 to 1
second, to optimize parameter selection for capturing complex
patterns across datasets.

2) Network Architecture and Training: Our experiments
were conducted on a Linux server with an Intel i7-6850K CPU,
4x NVIDIA GeForce GTX 1080Ti GPUs, and 64 GB RAM.
We used Python, specifically PyTorch, for data preprocessing
and deep learning tasks. Given the class imbalance in most
datasets, we adopted the macro-F1 score as the primary
evaluation metric. The datasets were split into training, valida-
tion, and testing sets (60-20-20%), and hyperparameters were
optimized using the validation set. Notably, the validation and
test sets were not utilized during training.

C. Results and Discussion

1) Classification Performance (RQ1): In this analysis,
we compare and contrast µDAR against six state-of-the-art
(SOTA) UDA algorithms, demonstrating a significant average
improvement of ≈ 4-12% across four public datasets. Our re-
sults distinguish the top-performing and second-best methods,
revealing that SWL-Adapt frequently surpasses other UDA
algorithms, likely due to its meta-optimized loss function,
which assigns sample weights, enhances domain alignment,
and improves cross-user adaptation, as shown in Table II.

Notably, µDAR excels across all datasets, covering activ-
ities from complex gym and sports-related actions to ADLs
and iADLs. Its strength lies in using temporal ensembling to
generate reliable pseudo-labels and integrating kernel-based
class-wise conditional mean maximum discrepancy (kCMMD)
to enhance domain adaptation. Additionally, performance im-
proves with consistency regularization, effectively handling
augmented sample variations in real-world settings and further
supporting analyses are presented in section IV-C4.

(a) Feature Embedding on Target User
using µDAR on the BAR dataset.

(b) Correlation between α
parameter and uncertainty.

Fig. 2: Ablation Analysis for RQ1 and RQ3, respectively

(a) Augmentation on
target domain

(b) Augmentation on
source domain

(c) Augmentation on
source and target do-
mains

Fig. 3: The ablation study highlighting the performance dif-
ference between (A), (B), (C), (D) corresponds to Baseline,
Temporal Ensembling, Temporal Ensembling + kCMMD loss
and Temporal Ensembling + kCMMD loss + Consistency
Regularizer, respectively across all the benchmark datasets.

2) Robustness of µDAR to User-Variations (Proficiency
levels) (RQ2): We assess the robustness and scalability of
the µDAR framework by comparing across SOTA baseline
algorithms for handling cross-user proficiency variations. The
experiment trains models using expert data (source users)
and evaluates their performance on beginner data (target
users). Results show that µDAR significantly outperforms
benchmarks, with an average macro F1 score improvement
of [7.3 ± (1.54)]%. µDAR’s success is due to its effective
use of temporal ensembling, where the α parameter helps
identify unique instance-based features across genders. By
incorporating kCMMD loss and consistency, regularization
captures non-linear features in high-dimensional space and
ensures consistent predictions. Further analysis on optimizing
the α parameter and its impact on pseudo-label quality is
highlighted in section IV-C3.

We present the cross-proficiency user adaptation perfor-
mance comparing the best accuracy SOTA SWL-Adapt al-
gorithm and µDAR using the MM-DOS dataset and µDAR
achieves an approximate 11% improvement over SWL-Adapt
as shown in Figure 4. Additionally, the results demonstrate
that µDAR outperforms SOTA UDA algorithms in the wHAR
domain across cross-user and cross-dexterity variations.

3) Compatibility Study (RQ3): In this study, we evalu-
ated the effectiveness of self-ensembling for generating reli-
able pseudo-labels in the target domain. We used entropy,
{H(x) = −

∑n
i=1 p(xi) log(p(xi))}, to quantify prediction

uncertainty. As shown in Figure 2b, there is an inverse rela-
tionship between the α parameter of ensembling and entropy:
higher α leads to lower uncertainty, indicating more stable
pseudo-labels. Our experiments found that an α range of [0.55-
0.75] is optimal for generating high-quality pseudo-labels.
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(a) SWL-Adapt [10] (b) µDAR (Our)

Fig. 4: Confusion matrices for cross-dexterity levels (ex-
pert (source) → beginner (target)) on MMDOS dataset.

Figure 2b further validates that an α of 0.60 achieves faster
convergence, emphasizing the critical role of α in improving
pseudo-label quality for the target domain.

4) Comparative Analysis (RQ4): This analysis evaluates
the individual and combined effects of temporal ensembling,
kCMMD loss, and consistency regularization on µDAR’s per-
formance across four SOTA datasets. We report normalized F1
scores to demonstrate the synergy across three augmentation
settings, as shown in Figure 3, highlighting the generalizability
and robustness of µDAR. Our results show a significant
improvement of [22-26%] when incorporating all methods
over the baseline (no adaptation), as depicted in Fig. 3a, 3b,
and 3c. This synergy enhances overall performance, advancing
domain generalization for the wHAR domain.

V. CONCLUSION AND FUTURE WORK

This work introduces a novel single-stage joint optimization
strategy for cross-user wHAR domain. Our approach integrates
temporal-ensembling with kernel-based class-wise conditional
mean maximum discrepancy (kCMMD), effectively generating
high-quality pseudo labels and minimizing conditional domain
discrepancies. Additionally, using KL divergence for consis-
tency regularization stabilizes label predictions in the presence
of augmented samples. The µDAR framework demonstrated
notable superiority over benchmark UDA algorithms in ex-
tensive experiments, showing generalizability and robustness,
outperforming SOTA approaches by ≈ 4-12%.

In the future, we plan to expand the capabilities of the
µDAR framework by exploring higher-order statistics-based
methods, such as cross-covariance estimation for conditional
embedding alignment. These enhancements will advance do-
main generalization in the wHAR domain, paving the way for
more versatile and effective action recognition systems.
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