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Abstract—The ubiquitousness of smart and wearable devices
with integrated acoustic sensors in modern human lives presents
tremendous opportunities for recognizing human activities in our
living spaces through ML-driven applications. However, their
adoption is often hindered by the requirement of large amounts
of labeled data during the model training phase. Integration of
contextual metadata has the potential to alleviate this since the
nature of these meta-data is often less dynamic (e.g. cleaning
dishes, and cooking both can happen in the kitchen context)
and can often be annotated in a less tedious manner (a sensor
always placed in the kitchen). However, most models do not
have good provisions for the integration of such meta-data
information. Often, the additional metadata is leveraged in the
form of multi-task learning with sub-optimal outcomes. On
the other hand, reliably recognizing distinct in-home activities
with similar acoustic patterns (e.g. chopping, hammering, knife
sharpening) poses another set of challenges. To mitigate these
challenges, we first show in our preliminary study that the room
acoustics properties such as reverberation, room materials, and
background noise leave a discernible fingerprint in the audio
samples to recognize the room context and proposed AcouDL
as a unified framework to exploit room context information to
improve activity recognition performance. Qur proposed self-
supervision-based approach first learns the context features of
the activities by leveraging a large amount of unlabeled data
using a contrastive learning mechanism and then incorporates
this feature induced with a novel attention mechanism into the
activity classification pipeline to improve the activity recognition
performance. Extensive evaluation of AcouDL on three datasets
containing a wide range of activities shows that such an efficient
feature fusion-mechanism enables the incorporation of metadata
that helps to better recognition of the activities under challenging
classification scenarios with 0.7-3.5% macro F1 score improve-
ment over the baselines.

Index Terms—Context-aware, Acoustic Signature Recogni-
tion, Self-supervision, Cross-continent Dataset, Heterogeneous
Dataset, Activity Recognition

1. INTRODUCTION

In recent times, there has been a remarkable proliferation of
smart and wearable devices that come equipped with integrated
acoustic sensors. One of the most promising applications of the
advanced acoustic sensors lies in their potential to recognize
and discern human activities within the confines of our homes
(as demonstrated in Fig 1). Although video, sensor-based and
radio frequency (RF) in-home activity recognition has been ex-
plored over the years, each of these approaches comes with its
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Fig. 1: Sound-generating activities at different room environments
within a home.

own set of challenges - suffer from occlusions and lighting [1],
require deployment measures and maintenance [2], suffer from
the presence of obstructions in their operation paths [3]. The
recently introduced smart-earables (earbuds that can sense
and analyze different acoustic signals) have the potential to
overcome these challenges. Acoustic sensing does not suffer
from occlusion and is considered less intrusive compared
to video-based approaches. It can also bypass some of the
concerns encountered with sensor and RF-based approaches
mentioned earlier [4], [5]. Given the existence of a preferable
acoustic data modality, developing machine learning model
is non-trivial for some of the many common causes - 1)
traditional supervised deep models require a large volume of
labeled data samples, which are often tedious to collect, and
error-prone to manually annotate, 2) given a large number
of classes, a small collected dataset often faces reduced data
variation that negatively impacts the model generalizability, 3)
different in-home acoustic activities often share overlapping
signatures and the shared background contexts, such as noise
levels [6] and room acoustics, can lead to signal ambiguities,
making it difficult to reliably distinguish between activities
solely based on the activity cues [7].

Several factors - the variation in the room size, shape, room
surface wall materials, and the materials comprising the room
itself in a home environment influence the room’s acoustic
characteristics such as reverberation, room impulse response
(RIR), sound energy absorption, and reflection. We refer such
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characteristics altogether as context, that can be indirectly
exploited to infer the specific room where the activity oc-
curred. For example, a relatively smaller and highly reflective
bathroom would produce shorter and more pronounced rever-
beration compared to a larger, carpeted living room with more
absorptive surfaces. Such exploitation of context information
(label) in addition to class labels opens up the potential to
improve activity classification performance. A common way
to derive such context information is through room impulse
response (RIR) [8]. However, measuring the impulse response
for each room and deriving associated metrics from it (e.g.
T60 [9], C50 [10]) might not be practical. We assert that we
can directly model the context feature from a large pool of
unlabeled data with an end-to-end neural network. The next
challenge lies in finding a novel way to incorporate such
context features into the activity recognition pipeline. While
the conventional approach to achieving such a feat is to employ
a multi-task learning pipeline, we notice that such a direction
fails to effectively capture the complex interaction between the
context and activity features and results in lower classification
performance (as shown later in Section V). [11] recently
proposed a solution to this challenge in the IMU-based activity
recognition domain. Inspired by that, we implement a novel
attention mechanism to fuse the two feature spaces where the
network can selectively focus on each of the context features
to improve the final activity classification performance.

To ensure learning of strong context and activity features,
the respective feature extraction modules need to attain strong
inter-class separability and intra-class similarity. Conventional
training of end-to-end neural networks for supervised classifi-
cation tasks with Softmax loss does not fully optimize this
objective. Recent advances in self-supervision techniques mo-
tivate us to formulate the feature representation learning using
contrastive learning framework [12] that can exploit large unla-
beled data and require small labeled data samples. To address
the challenges mentioned earlier, we propose AcouDLwhere
we choose to leverage contrastive learning to learn compact
(maximized intra-class similarity) and coherent (maximized
inter-class separability) context and activity features results
in much stronger discriminative features compared to features
learned with cross-entropy (Softmax head) loss. Finally, we try
to fuse the context and activity features with a noble attention
mechanism that can easily map the correlations between the
context and activity features to achieve stronger performance
over such supervised baselines. The contributions of our work
can be summarized as follows.

- Improved home-environment human activity recognition
performance by the utilization of room context informa-
tion: In order to reliably recognize and classify human activ-
ities performed in varying home environment contexts, we
first model the room context (reverberation and background
noise) feature representation with an end-to-end model. We
then condition the activity classification pipeline on not only
the raw audio samples but also on these learned context
features with a novel attention mechanism. This enables our

model to easily discriminate challenging in-house activities
using large unlabeled and small labeled data samples and
results in superior performance to the traditional multi-task
learning approach of integrating similar external context
labels.

- Self-supervised emergence of compact and coherent
context and activity features: Instead of a traditional su-
pervised objective, we learn the context and activity features
with the self-supervised contrastive learning framework. In
the resulting embedding space, both the inter-class similarity
and intra-class separability are optimized. These compact
and coherent embedding for both activities in the contexts
synergize with our attention mechanism when we condition
the activity embedding on the room context embedding,
resulting in improved classification performance.

- Demonstration of AcouDL’s efficacy and robustness with
public and in-house datasets: To demonstrate the effect
of challenging room contexts and its effect on the activity
signatures, we first meticulously curate two datasets (/n-
house-1 and In-house-2) that captures varying samples of
different in-home activities. We then evaluate our model
(along with the baselines) on these two in-house data sets,
in addition to a public data set (Freesound). Our proposed
framework, AcouDL , attains a 0.7-3.5% macro Fl-score
advantage over the baseline approaches.

In the next section, we describe our exploration and observa-
tion of the activities in a home environment, which dictates
the development of AcouDL.

II. RELATED WORKS

A. Acoustic Activity Recognition

There exist literature works that leverage the audio data
modality for activity recognition [5], [13], [14]. [13] proposes
a framework for audio-based activity recognition that can
make use of millions of embedding features from public
online video sound clips. [5] introduces Ubicoustics, a novel,
real-time, sound-based activity recognition system. Authors
collect well-labeled and high-quality sounds from multiple
sources and these sounds act as the perfect atomic unit
for data augmentation allowing to exponentially grow the
data which significantly contributes to the performance. [14]
presents an end-to-end system for self-supervised learning of
events labeled through one-shot interaction where the proposed
framework gradually learns events specific to a deployed
environment while minimizing user burden.

B. Contrastive Learning-based Approaches

Contrastive learning is a deep metric learning paradigm
that learns embedding space such that similar sample pairs
stay close to each other while dissimilar ones are far apart.
Image classification [12], wearable activity recognition [11],
[15], cognitive health assessment [16], representation learning
from multiple modalities [17], audio-based tasks [18] are
some machine learning task that explored the benefits of
contrastive learning technique. [18] investigates the use of the
contrastive learning framework to learn audio representations
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Fig. 2: Overall architecture of AcouDL framework for audio activity recognition.

by maximizing the agreement between the raw audio and its
spectral representation.

The key difference of AcouDL with the existing approaches
discussed in II-A is that AcouDL is motivated by the self-
supervised contrastive learning mechanism to leverage un-
labeled data and incorporates modeling additional meta-
information from a homogeneous data modality to achieve a
better performance.

III. METHODOLOGY

AcouDL framework follows unsupervised training and
enables model scalability by modeling available metadata.
AcouDL framework consists of two stages - 1) self-supervised
contrastive learning to learn the context feature presentation,
and 2) combine a novel attention mechanism-induced context
feature with the activity features for activity feature represen-
tation learning.

A. Problem Formulation

Motivated by [12], we hypothesize that contrastive learning
can capture the notion of context similarity from different
audio activities that occur under a certain context (location
of the activity occurrence) and thus be able to learn the
differentiating features for context identification. We make
similar hypothesis to capture the notion of activity similarity
from different audio activities.

For a given dataset D consists of a large pool of unlabeled
data samples, Dy and a small pool of labeled data samples,
Dl such that D = D + Dl where Du = {x{i ;;"1 consist

u
of un number of unlabeled training samples, )g(i), and D; =
{ (x(%), y(zi), z&i))l"i=1 consist of I number of labeled training
samples
©)
y; and context labels z; . We assume that un >> ln

x(li) along with the associated audio activity labels
1,

B. Proposed Framework: AcouDL

Figure 2 depicts the overall framework which consists of
mainly two key components: 1) dedicated activity (top-left
yellow block) and context (bottom-left yellow block) feature
extractors, and 2) activity classifier (right side blue block).

1) Feature Extractor (F)

We deploy dedicated feature extractors to extract the activity
and context features and initially train them separately in
a self-supervised manner. Both feature extractors have the
same network architecture and operate under the same set of
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hyperparameters. Each feature extractor module consists of a
mel-spectrogram extractor and three convolution layers. Data
augmentation is performed for each batch of input data; both
the original batch and augmented batch of data are processed
through the mel-spectrogram layer. The mel-spectrogram layer
processes the input audio data and applies a Short-term Fourier
Transform (STFT) on the overlapping windowed segments
of the input audio signal. Next, the convolutional layers
process the output of the mel-spectrogram operation. Extracted
activity and context features are further processed with their
corresponding projection heads. The feature extractor-specific
projection heads process the incoming features from the cor-
responding feature extractor module.

2) Activity Classifier (C)

We deploy two fully connected layer networks as the
activity classifier. The activity classifier processes the incom-
ing features and feds the processed features to a softmax
activation function. The output of the softmax activation is
used to measure the categorical cross-entropy loss as stated in
Equation 1 and train the classifier. Here, C is the total number
of audio activities, t; is the ground truth, and p; is the softmax
probability of the activity classifier.

C

Lcis = — tilOg(pi)
=1

1

C. Network Training Details
As feature representation learning phase, AcouDL frame-

work learns context feature representation first, followed
by effectively (via an attention mechanism) combining the

attention-induced context features with the extracted activity
features to learn the activity feature representation.

Context Feature Representation Learning In the context
feature learning phase, for a batch of N data samples, we
apply data augmentation where the augmented data samples
act as the positives of the corresponding anchor samples in
the batch. Except for positive sample in each batch, for an
anchor sample the rest of the samples in the batch are treated
as their negatives. The batch of anchor and the corresponding
positive samples are passed through the feature extractor and
projection head, and SImCLR [12] (Equation 2) loss is applied
at the projection head-extracted features. Projection heads
are dropped at the end of training [12] and context feature
extractor is fine-tuned with 20% labeled data.
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Fig. 3: Label-wise sample distribution of activities in three datasets - In-house-1 (L), In-house-2 (M), and Freesound (R).

Activity Feature Representation Learning During the
activity feature representation learning, the already fine-tuned
context feature extractor is used while keeping it frozen. For
a batch of IV data samples, similar data augmentation is per-
formed, and the corresponding activity and context features are
extracted. Here, the extracted context features are processed
through a learnable attention layer (which is implemented via a
fully connected layer) and the resulting features are combined
(multiplication) with extracted activity features. We follow the
similar projection head loss calculation and finetuning of the
activity feature extractor.

For a batch with N number of samples, there are 2NN
samples, and let i € I = {1, 2, 3...2N } be the index of an
anchor sample. The following equation calculates the self-
supervised contrastive loss [12], [19] that efficiently promotes
self-supervised learning in a batch-

Lself — Lfelf
el
exp(zi.zj(i)/ T) 2)
exp(z.z /1)
T a
acA(i)

Here, zu = P (F (xw)) E RD?, the » symbol denotes the
inner (dot) product, T E R* is a scalar temperature parameter,
and A(?)) = I\ {d}. The index i is called the anchor, index
J(@) is called the positive, and the other 2(IN — 1) indices
AKEA® \{j(®}) are called the negatives. Note that for
each anchor i, there is 1 positive pair and 2N — 2 negative
pairs. The denominator has a total of 2IN—1 terms (the positive
and negatives) [12], [19].

IV. EXPERIMENTS

log

el

In this section, we discuss the details of the datasets,
preprocessing, and evaluation process in detail.

A. Dataset and Preprocessing

We use three datasets to evaluate the performance
of AcouDL - 1) In-house-1, 2) In-house-2, and 3) Freesound
dataset. The samples were collected from people with different
demographics and geographical locations. In-house-1 and In-
house-2 datasets were collected from the home environment in
North America and South Asia, respectively where volunteers
performed each activity for approximately 1 minute. On the
other hand, the Freesound dataset is curated from an online
repository !. Table I summarizes the dataset information and

Ihttps://freesound.org/
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Figure 3 shows the class distribution of the three datasets.

TABLE I: Dataset Summary.

.. .. Data
Dataset Dataset Participant Age Activity ~ Context Collection
Source No Range No No .
Device
In-house-1 Nonh 12 (M) 26-34 16 4 eSense [20]
Americ
South 10
In-h -2 - 5
n-house Asia (4M, 6F) 22-65 14 3 Smartphone
Online Commercial
Freesound Repository B B 8 3 Recorder

Preprocessing We remove audio segments representing
more than one second of silence from the audio samples. The
resulting audio files are split into 3-second audio segments
with a 1-second overlap between segments. Next, we normal-
ize the amplitude of the waveform samples. We then perform a
class-wise stratified split and use these splits in a 3:1:1 ratio as
a train-finetune-test split. We consider three splits (60% of the
total data samples) to be unlabeled and one fine-tuning split
(20% of the total data samples) as labeled. We also ensure that
the audio segments generated from the same audio file do not

simultaneously lie on the training and evaluation data splits.

Data Augmentation We perform a data augmentation using
a pytorch library from TORCH-AUDIOMENTATIONS for every
batch during the network training. Specifically, we apply
the following series of transformations - GAIN, POLAR-
ITY INVERSION, and ADD COLORED NOISE over the input
data. Following the data augmentation, we generate the mel-
spectrogram for each batch and the corresponding augmented
batch and apply masking in the frequency and time domains.
To extract the mel-log spectrogram from the audio waveform,
we follow [21] and utilize the Torchlibrosa library-
provided Spectrogram, LogmelFilterBank layers, and
use TORCHAUDIO for the time domain and frequency domain
masking.

B. Model Architecture and Hyper-parameters

Activity and context feature extractor modules are similar
in terms of the number of consisting network layers. We use
three units of convolution layer as the feature extractor. Each
convolution layer is associated with a pooling layer with a
stride of length two and a drop-out layer. Followed by the
feature extractor, we use two fully connected (FC) layers
of 32 and 32 neurons, respectively, as the projection head.
After the first fully connected layer, rectified linear activation
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unit (ReLU) and dropout are used. Finally, the output of the
final FC layer is used to compute the contrastive loss 2.
After contrastive training, the projection heads are dropped,
and two additional fully connected layers are used for the
downstream task (audio activity classification). We use the
following hyperparameters-
1) Optimizer: ADAM optimizer with the default parameters
(B1, B2) values, learning rate- 1e — 3, weight decay- le— 3
2) Mel-spectrogram generation: sampling rate - 16000, FFT
length- 400, Window size- 400 (equivalent of 25ms), Hop
size- 160 (equivalent of 10ms), number of Mel bands- 80
3) Network training: batch size- 64, contrastive training
epoch- 50, finetune epoch- 50

4) Network: kernel size- (1, 5)(1,5), (5,5), pooling
size- (1, 2), (1, 2), (2, 2), dropout- 0.1,  projec-
tion head- (32, 32), ReLU, (32, 32), classifier-

(32, 128), (128, [ClassNumber])

Overall, during the training, AcouDL framework contains
42K number of trainable parameters.

C. Baselines

We compare the performance of AcouDL with three base-
lines - two supervised and one self-supervised approach. In the
evaluation, we apply a 5-fold validation on each dataset, where
each fold is evaluated using three different seeds and report
the average macro fl score. Similar to AcouDL , baseline
approaches are fine-tuned over 50 epochs with the fine-tuning
split and evaluated in the test split. We maintain a similar set
of hyper-parameters between the baselines and AcouDL . The
baselines are described below-

- Supervised classification (activity): Randomly initialized
feature extractor and classifier modules are trained with
labeled (activity) fine-tuning split with a categorical cross-
entropy loss. This baseline demonstrates the effect of not
including the context information.

- MTL-based supervised model: A shared feature extractor
equipped with two softmax prediction heads for activity
and context recognition, both trained with categorical cross-
entropy loss in a multi-task learning setup. This baseline
demonstrates the ineffectiveness of directly integrating con-
text information.

- SimCLR [12]: SimCLR-based contrastive learning mech-
anism for audio data modality demonstrates the effect of
increased discriminative ability offered by contrastive learn-
ing. It helps to understand the effect of incorporating context
information.

D. Evaluation Metric

Table I shows that all three datasets are imbalanced, hence,
we report the macro F-1 score (in percentage %) as the
performance matrix to prevent the high-support classes from
dominating the classification performance metric.

E. Runtime Environment

We conduct our experiments on a Linux Server (Ubuntu
20.04) running on an Intel(R) Core(TM) i9-10980XE CPU

with 128GB DDR4 RAM with an NVIDIA GeForce RTX
3090 Graphics card (24GB VRAM). We use Python-

based libraries such as scikit-learn, scipy,
numpy, torch-audiomentations, torchaudio,

and librosa for the data preprocessing and PyTorch

framework for the deep learning tasks.

V. RESULTS AND DISCUSSION

We discuss the performance of AcouDL, com-
pare AcouDL performance with baseline approaches, and
analyze performance of the proposed approach in this section.

A. AcouDL Performance Comparison

Table II tabulates the performance comparison
of AcouDL with the corresponding approaches. In the
two in-house datasets, AcouDL performs 0.7-3.5% better than
the considered baseline approaches. Note that the performance
gain margin of AcouDL is higher if compared with the MTL
approach. The performance gains compared with MTL
are 7.4%, 2.9%, and 9% for the In-house-1, In-house-2,
and Freesound datasets respectively. In addition, Figure 4
presents the performance comparison of AcouDL and other
baseline approaches over different training epochs. It depicts
that both self-supervised-based approaches, SimCLR [12]
and AcouDL converge faster than the traditional supervised
approaches.

TABLE II: Comparison of AcouDL’s macro-F1 score with the base-
lines in three datasets.

Model - Datasets In-house-1 In-house-2  Freesound
Supervised (activity) 64.7 36.3 41.7
Supervised MTL 64.7 372 41.5
SupCon [19] 68.6 394 524
AcouDL 72.1 40.1 50.5

—e— Supervised
—e— MTL

—— SimCLR
—=— AcouDL

Macro f1 Score

o] 10 20 30 40 50

Fig. 4: Early convergence of self-supervised learning-based ap-
proaches. The macro f1 score is presented on the scale of percentage
(100%).

B. Influence of The Proposed Attention Mechanism

We investigate the influence of the proposed attention
mechanism on the AcouDL performance. We evaluate the same
network architecture using the context features under two
settings - 1) by directly multiplying the context features with
the activity features, and 2) by passing the context feature
through the attention layer and multiplying the resulting layers
with the activity features. Figure 5 depicts the performance
over 100 training epochs for four different folds from the
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In-house-1 dataset of a particular seed value. The attention
mechanism yields consistent and better performance compared
to the direct context feature multiplication with the activity
features.

VI. CONCLUSION

With the pervasiveness of acoustic-sensing devices, this
work aims to leverage their potential to be able to reliably
classify daily activities performed in home environments. We
explored the potential impacts the environment leaves on the
acoustic activity signatures. We proposed a robust acoustic ac-
tivity recognition framework AcouDL. AcouDL can effectively
model the context information from the limited labeled data
samples, which further helps in the audio activity recognition
task when combined with the activity features. AcouDL adapts
a self-supervised contrastive learning mechanism and applies
data augmentation on the fly to avoid heavy prior data aug-
mentation to effectively learn the room audio and activity
characteristics, and coherently leverage them via an attention
mechanism. Our evaluation of the proposed AcouDL on public
and two In-house datasets showed that AcouDL achieves
0.7-3.5% macro F-1 score improvement over the baseline
approaches in classifying daily activities.
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