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Abstract—The ubiquitousness of smart and wearable devices 
with integrated acoustic sensors in modern human lives presents 
tremendous opportunities for recognizing human activities in our 
living spaces through ML-driven applications. However, their 
adoption is often hindered by the requirement of large amounts 
of labeled data during the model training phase. Integration of 
contextual metadata has the potential to alleviate this since the 
nature of these meta-data is often less dynamic (e.g. cleaning 
dishes, and cooking both can happen in the kitchen context) 
and can often be annotated in a less tedious manner (a sensor 
always placed in the kitchen). However, most models do not 
have good provisions for the integration of such meta-data 
information. Often, the additional metadata is leveraged in the 
form of multi-task learning with sub-optimal outcomes. On 
the other hand, reliably recognizing distinct in-home activities 
with similar acoustic patterns (e.g. chopping, hammering, knife 
sharpening) poses another set of challenges. To mitigate these 
challenges, we first show in our preliminary study that the room 
acoustics properties such as reverberation, room materials, and 
background noise leave a discernible fingerprint in the audio 
samples to recognize the room context and proposed AcouDL 
as a unified framework to exploit room context information to 
improve activity recognition performance. Our proposed self- 
supervision-based approach first learns the context features of 
the activities by leveraging a large amount of unlabeled data 
using a contrastive learning mechanism and then incorporates 
this feature induced with a novel attention mechanism into the 
activity classification pipeline to improve the activity recognition 
performance. Extensive evaluation of AcouDL on three datasets 
containing a wide range of activities shows that such an efficient 
feature fusion-mechanism enables the incorporation of metadata 
that helps to better recognition of the activities under challenging 
classification scenarios with 0.7-3.5% macro F1 score improve- 
ment over the baselines. 

Index Terms—Context-aware, Acoustic Signature Recogni- 
tion, Self-supervision, Cross-continent Dataset, Heterogeneous 
Dataset, Activity Recognition 

I. INTRODUCTION 
In recent times, there has been a remarkable proliferation of 

smart and wearable devices that come equipped with integrated 
acoustic sensors. One of the most promising applications of the 
advanced acoustic sensors lies in their potential to recognize 
and discern human activities within the confines of our homes 
(as demonstrated in Fig 1). Although video, sensor-based and 
radio frequency (RF) in-home activity recognition has been ex- 
plored over the years, each of these approaches comes with its 

 

 
Fig. 1: Sound-generating activities at different room environments 
within a home. 

own set of challenges - suffer from occlusions and lighting [1], 
require deployment measures and maintenance [2], suffer from 
the presence of obstructions in their operation paths [3]. The 
recently introduced smart-earables (earbuds that can sense 
and analyze different acoustic signals) have the potential to 
overcome these challenges. Acoustic sensing does not suffer 
from occlusion and is considered less intrusive compared 
to video-based approaches. It can also bypass some of the 
concerns encountered with sensor and RF-based approaches 
mentioned earlier [4], [5]. Given the existence of a preferable 
acoustic data modality, developing machine learning model 
is non-trivial for some of the many common causes - 1) 
traditional supervised deep models require a large volume of 
labeled data samples, which are often tedious to collect, and 
error-prone to manually annotate, 2) given a large number 
of classes, a small collected dataset often faces reduced data 
variation that negatively impacts the model generalizability, 3) 
different in-home acoustic activities often share overlapping 
signatures and the shared background contexts, such as noise 
levels [6] and room acoustics, can lead to signal ambiguities, 
making it difficult to reliably distinguish between activities 
solely based on the activity cues [7]. 

Several factors - the variation in the room size, shape, room 
surface wall materials, and the materials comprising the room 
itself in a home environment influence the room’s acoustic 
characteristics such as reverberation, room impulse response 
(RIR), sound energy absorption, and reflection. We refer such 
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characteristics altogether as context, that can be indirectly 
exploited to infer the specific room where the activity oc- 
curred. For example, a relatively smaller and highly reflective 
bathroom would produce shorter and more pronounced rever- 
beration compared to a larger, carpeted living room with more 
absorptive surfaces. Such exploitation of context information 
(label) in addition to class labels opens up the potential to 
improve activity classification performance. A common way 
to derive such context information is through room impulse 
response (RIR) [8]. However, measuring the impulse response 
for each room and deriving associated metrics from it (e.g. 
T60 [9], C50 [10]) might not be practical. We assert that we 
can directly model the context feature from a large pool of 
unlabeled data with an end-to-end neural network. The next 
challenge lies in finding a novel way to incorporate such 
context features into the activity recognition pipeline. While 
the conventional approach to achieving such a feat is to employ 
a multi-task learning pipeline, we notice that such a direction 
fails to effectively capture the complex interaction between the 
context and activity features and results in lower classification 
performance (as shown later in Section V). [11] recently 
proposed a solution to this challenge in the IMU-based activity 
recognition domain. Inspired by that, we implement a novel 
attention mechanism to fuse the two feature spaces where the 
network can selectively focus on each of the context features 
to improve the final activity classification performance. 

To ensure learning of strong context and activity features, 
the respective feature extraction modules need to attain strong 
inter-class separability and intra-class similarity. Conventional 
training of end-to-end neural networks for supervised classifi- 
cation tasks with Softmax loss does not fully optimize this 
objective. Recent advances in self-supervision techniques mo- 
tivate us to formulate the feature representation learning using 
contrastive learning framework [12] that can exploit large unla- 
beled data and require small labeled data samples. To address 
the challenges mentioned earlier, we propose AcouDLwhere 
we choose to leverage contrastive learning to learn compact 
(maximized intra-class similarity) and coherent (maximized 
inter-class separability) context and activity features results 
in much stronger discriminative features compared to features 
learned with cross-entropy (Softmax head) loss. Finally, we try 
to fuse the context and activity features with a noble attention 
mechanism that can easily map the correlations between the 
context and activity features to achieve stronger performance 
over such supervised baselines. The contributions of our work 
can be summarized as follows. 

• Improved home-environment human activity recognition 
performance by the utilization of room context informa- 
tion: In order to reliably recognize and classify human activ- 
ities performed in varying home environment contexts, we 
first model the room context (reverberation and background 
noise) feature representation with an end-to-end model. We 
then condition the activity classification pipeline on not only 
the raw audio samples but also on these learned context 
features with a novel attention mechanism. This enables our 

model to easily discriminate challenging in-house activities 
using large unlabeled and small labeled data samples and 
results in superior performance to the traditional multi-task 
learning approach of integrating similar external context 
labels. 

• Self-supervised emergence of compact and coherent 
context and activity features: Instead of a traditional su- 
pervised objective, we learn the context and activity features 
with the self-supervised contrastive learning framework. In 
the resulting embedding space, both the inter-class similarity 
and intra-class separability are optimized. These compact 
and coherent embedding for both activities in the contexts 
synergize with our attention mechanism when we condition 
the activity embedding on the room context embedding, 
resulting in improved classification performance. 

• Demonstration of AcouDL’s efficacy and robustness with 
public and in-house datasets: To demonstrate the effect 
of challenging room contexts and its effect on the activity 
signatures, we first meticulously curate two datasets (In- 
house-1 and In-house-2) that captures varying samples of 
different in-home activities. We then evaluate our model 
(along with the baselines) on these two in-house data sets, 
in addition to a public data set (Freesound). Our proposed 
framework, AcouDL , attains a 0.7-3.5% macro F1-score 
advantage over the baseline approaches. 

In the next section, we describe our exploration and observa- 
tion of the activities in a home environment, which dictates 
the development of AcouDL. 

II. RELATED WORKS 
A. Acoustic Activity Recognition 

There exist literature works that leverage the audio data 
modality for activity recognition [5], [13], [14]. [13] proposes 
a framework for audio-based activity recognition that can 
make use of millions of embedding features from public 
online video sound clips. [5] introduces Ubicoustics, a novel, 
real-time, sound-based activity recognition system. Authors 
collect well-labeled and high-quality sounds from multiple 
sources and these sounds act as the perfect atomic unit 
for data augmentation allowing to exponentially grow the 
data which significantly contributes to the performance. [14] 
presents an end-to-end system for self-supervised learning of 
events labeled through one-shot interaction where the proposed 
framework gradually learns events specific to a deployed 
environment while minimizing user burden. 

B. Contrastive Learning-based Approaches 

Contrastive learning is a deep metric learning paradigm 
that learns embedding space such that similar sample pairs 
stay close to each other while dissimilar ones are far apart. 
Image classification [12], wearable activity recognition [11], 
[15], cognitive health assessment [16], representation learning 
from multiple modalities [17], audio-based tasks [18] are 
some machine learning task that explored the benefits of 
contrastive learning technique. [18] investigates the use of the 
contrastive learning framework to learn audio representations 
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Fig. 2: Overall architecture of AcouDL framework for audio activity recognition. 

 
by maximizing the agreement between the raw audio and its 
spectral representation. 

The key difference of AcouDL with the existing approaches 
discussed in II-A is that AcouDL is motivated by the self- 
supervised contrastive learning mechanism to leverage un- 
labeled data and incorporates modeling additional meta- 
information from a homogeneous data modality to achieve a 
better performance. 

III. METHODOLOGY 
AcouDL framework follows unsupervised training and 

enables model scalability by modeling available metadata. 
AcouDL framework consists of two stages - 1) self-supervised 
contrastive learning to learn the context feature presentation, 
and 2) combine a novel attention mechanism-induced context 
feature with the activity features for activity feature represen- 
tation learning. 

A. Problem Formulation 

Motivated by [12], we hypothesize that contrastive learning 
can capture the notion of context similarity from different 
audio activities that occur under a certain context (location 
of the activity occurrence) and thus be able to learn the 
differentiating features for context identification. We make 
similar hypothesis to capture the notion of activity similarity 
from different audio activities. 

For a given dataset D consists of a large pool of unlabeled 
data samples, Du and a small pool of labeled data samples, 
D such that D = D + D where D  = {x(i)}un  consist 

hyperparameters. Each feature extractor module consists of a 
mel-spectrogram extractor and three convolution layers. Data 
augmentation is performed for each batch of input data; both 
the original batch and augmented batch of data are processed 
through the mel-spectrogram layer. The mel-spectrogram layer 
processes the input audio data and applies a Short-term Fourier 
Transform (STFT) on the overlapping windowed segments 
of the input audio signal. Next, the convolutional layers 
process the output of the mel-spectrogram operation. Extracted 
activity and context features are further processed with their 
corresponding projection heads. The feature extractor-specific 
projection heads process the incoming features from the cor- 
responding feature extractor module. 

2) Activity Classifier (C) 

We deploy two fully connected layer networks as the 
activity classifier. The activity classifier processes the incom- 
ing features and feds the processed features to a softmax 
activation function. The output of the softmax activation is 
used to measure the categorical cross-entropy loss as stated in 
Equation 1 and train the classifier. Here, C is the total number 
of audio activities, ti is the ground truth, and pi is the softmax 
probability of the activity classifier. 

 

Lcls = −
   

tilog(pi) (1) 
i=1 

C. Network Training Details 
As feature representation learning phase, AcouDL frame- 

l u l u u  i=1 
of un number of unlabeled training samples, x(i), and Dl = work learns context feature representation first, followed 
{(x(i), y(i), z(i))ln consist of ln number of labeled training by effectively (via an attention mechanism) combining the l l l i=1 
samples x(i) along with the associated audio activity labels attention-induced context features with the extracted activity 

l (i) (i) features to learn the activity feature representation. 
yl  and context labels zl . We assume that un >> ln. 

B. Proposed Framework: AcouDL 

Figure 2 depicts the overall framework which consists of 
mainly two key components: 1) dedicated activity (top-left 
yellow block) and context (bottom-left yellow block) feature 
extractors, and 2) activity classifier (right side blue block). 

1) Feature Extractor (F) 

We deploy dedicated feature extractors to extract the activity 
and context features and initially train them separately in 
a self-supervised manner. Both feature extractors have the 
same network architecture and operate under the same set of 

Context Feature Representation Learning In the context 
feature learning phase, for a batch of N data samples, we 
apply data augmentation where the augmented data samples 
act as the positives of the corresponding anchor samples in 
the batch. Except for positive sample in each batch, for an 
anchor sample the rest of the samples in the batch are treated 
as their negatives. The batch of anchor and the corresponding 
positive samples are passed through the feature extractor and 
projection head, and SimCLR [12] (Equation 2) loss is applied 
at the projection head-extracted features. Projection heads 
are dropped at the end of training [12] and context feature 
extractor is fine-tuned with 20% labeled data. 
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Asia 

  

   
Fig. 3: Label-wise sample distribution of activities in three datasets - In-house-1 (L), In-house-2 (M), and Freesound (R). 

 
Activity Feature Representation Learning During the 

activity feature representation learning, the already fine-tuned 
context feature extractor is used while keeping it frozen. For 
a batch of N data samples, similar data augmentation is per- 

Figure 3 shows the class distribution of the three datasets. 
 

TABLE I: Dataset Summary. 
 

 

formed, and the corresponding activity and context features are 
extracted. Here, the extracted context features are processed 

Dataset Dataset 
Source 

Participant 
No 

Age 
Range 

Activity 
No 

Context 
No 

Data 
Collection 

Device 

through a learnable attention layer (which is implemented via a 
fully connected layer) and the resulting features are combined 

In-house-1 North 12 (M) 26-34 16 4 eSense [20] 

(multiplication) with extracted activity features. We follow the 
similar projection head loss calculation and finetuning of the 

In-house-2 South 

Online 

10 
(4M, 6F) 22-65 14 3 Smartphone 

Commercial 

activity feature extractor. Freesound Repository - - 8 3 Recorder 

For a batch with N number of samples, there are 2N 
samples, and let i ∈ I ≡ {1, 2, 3...2N } be the index of an 
anchor sample. The following equation calculates the self- 
supervised contrastive loss [12], [19] that efficiently promotes 
self-supervised learning in a batch- 

Preprocessing We remove audio segments representing 
more than one second of silence from the audio samples. The 
resulting audio files are split into 3-second audio segments 
with a 1-second overlap between segments. Next, we normal- 
ize the amplitude of the waveform samples. We then perform a 

Lself = 

i∈I 

self 
i 

  exp(zi.zj(i)/τ )  (2) 

class-wise stratified split and use these splits in a 3:1:1 ratio as 
a train-finetune-test split. We consider three splits (60% of the 
total data samples) to be unlabeled and one fine-tuning split 

= − log  exp(z .z /τ ) (20% of the total data samples) as labeled. We also ensure that 
i∈I i a 

a∈A(i) the audio segments generated from the same audio file do not 
Here, zu = P (F (x˜u)) E RDP , the • symbol denotes the 

inner (dot) product, τ E R+ is a scalar temperature parameter, 
and A(i) ≡ I \ {i}. The index i is called the anchor, index 
j(i) is called the positive, and the other 2(N − 1) indices 
({kE A(i) \ {j(i)}) are called the negatives. Note that for 
each anchor i, there is 1 positive pair and 2N − 2 negative 
pairs. The denominator has a total of 2N −1 terms (the positive 
and negatives) [12], [19]. 

IV. EXPERIMENTS 
In this section, we discuss the details of the datasets, 

preprocessing, and evaluation process in detail. 

A. Dataset and Preprocessing 

We use three datasets to evaluate the performance 
of AcouDL - 1) In-house-1, 2) In-house-2, and 3) Freesound 
dataset. The samples were collected from people with different 
demographics and geographical locations. In-house-1 and In- 
house-2 datasets were collected from the home environment in 
North America and South Asia, respectively where volunteers 
performed each activity for approximately 1 minute. On the 
other hand, the Freesound dataset is curated from an online 
repository 1. Table I summarizes the dataset information and 

1https://freesound.org/ 

simultaneously lie on the training and evaluation data splits. 
Data Augmentation We perform a data augmentation using 

a pytorch library from TORCH-AUDIOMENTATIONS for every 
batch during the network training. Specifically, we apply 
the following series of transformations - GAIN, POLAR- 
ITY INVERSION, and ADD COLORED NOISE over the input 
data. Following the data augmentation, we generate the mel- 
spectrogram for each batch and the corresponding augmented 
batch and apply masking in the frequency and time domains. 
To extract the mel-log spectrogram from the audio waveform, 
we follow [21] and utilize the Torchlibrosa library- 
provided Spectrogram, LogmelFilterBank layers, and 
use TORCHAUDIO for the time domain and frequency domain 
masking. 

B. Model Architecture and Hyper-parameters 

Activity and context feature extractor modules are similar 
in terms of the number of consisting network layers. We use 
three units of convolution layer as the feature extractor. Each 
convolution layer is associated with a pooling layer with a 
stride of length two and a drop-out layer. Followed by the 
feature extractor, we use two fully connected (FC) layers 
of 32 and 32 neurons, respectively, as the projection head. 
After the first fully connected layer, rectified linear activation 

L 
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unit (ReLU) and dropout are used. Finally, the output of the 
final FC layer is used to compute the contrastive loss 2. 
After contrastive training, the projection heads are dropped, 
and two additional fully connected layers are used for the 
downstream task (audio activity classification). We use the 
following hyperparameters- 
1) Optimizer: ADAM optimizer with the default parameters 

(β1, β2) values, learning rate- 1e − 3, weight decay- 1e − 3 
2) Mel-spectrogram generation: sampling rate - 16000, FFT 

length- 400, Window size- 400 (equivalent of 25ms), Hop 
size- 160 (equivalent of 10ms), number of Mel bands- 80 

3) Network training: batch size- 64, contrastive training 
epoch- 50, finetune epoch- 50 

4) Network: kernel size- (1, 5)(1, 5), (5, 5), pooling 
size- (1, 2), (1, 2), (2, 2), dropout- 0.1, projec- 
tion head- (32, 32), ReLU, (32, 32), classifier- 
(32, 128), (128, [ClassNumber]) 

Overall, during the training, AcouDL framework contains 
42K number of trainable parameters. 

C. Baselines 

We compare the performance of AcouDL with three base- 
lines - two supervised and one self-supervised approach. In the 
evaluation, we apply a 5-fold validation on each dataset, where 
each fold is evaluated using three different seeds and report 
the average macro f1 score. Similar to AcouDL , baseline 
approaches are fine-tuned over 50 epochs with the fine-tuning 
split and evaluated in the test split. We maintain a similar set 
of hyper-parameters between the baselines and AcouDL . The 
baselines are described below- 
• Supervised classification (activity): Randomly initialized 

feature extractor and classifier modules are trained with 
labeled (activity) fine-tuning split with a categorical cross- 
entropy loss. This baseline demonstrates the effect of not 
including the context information. 

• MTL-based supervised model: A shared feature extractor 
equipped with two softmax prediction heads for activity 
and context recognition, both trained with categorical cross- 
entropy loss in a multi-task learning setup. This baseline 
demonstrates the ineffectiveness of directly integrating con- 
text information. 

• SimCLR [12]: SimCLR-based contrastive learning mech- 
anism for audio data modality demonstrates the effect of 
increased discriminative ability offered by contrastive learn- 
ing. It helps to understand the effect of incorporating context 
information. 

D. Evaluation Metric 

Table I shows that all three datasets are imbalanced, hence, 
we report the macro F-1 score (in percentage %) as the 
performance matrix to prevent the high-support classes from 
dominating the classification performance metric. 

E. Runtime Environment 

We conduct our experiments on a Linux Server (Ubuntu 
20.04) running on an Intel(R) Core(TM) i9-10980XE CPU 

with 128GB DDR4 RAM with an NVIDIA GeForce RTX 
3090 Graphics card (24GB VRAM). We use Python- 
based libraries such as scikit-learn, scipy, 
numpy, torch-audiomentations, torchaudio, 
and librosa for the data preprocessing and PyTorch 
framework for the deep learning tasks. 

V. RESULTS AND DISCUSSION 
We  discuss  the  performance  of  AcouDL,  com- 

pare AcouDL performance with baseline approaches, and 
analyze performance of the proposed approach in this section. 

A. AcouDL Performance Comparison 

Table  II  tabulates  the  performance  comparison 
of AcouDL with the corresponding approaches. In the 
two in-house datasets, AcouDL performs 0.7-3.5% better than 
the considered baseline approaches. Note that the performance 
gain margin of AcouDL is higher if compared with the MTL 
approach. The performance gains compared with MTL 
are 7.4%, 2.9%, and 9% for the In-house-1, In-house-2, 
and Freesound datasets respectively. In addition, Figure 4 
presents the performance comparison of AcouDL and other 
baseline approaches over different training epochs. It depicts 
that both self-supervised-based approaches, SimCLR [12] 
and AcouDL converge faster than the traditional supervised 
approaches. 

 
TABLE II: Comparison of AcouDL’s macro-F1 score with the base- 
lines in three datasets. 

 

Model - Datasets In-house-1 In-house-2 Freesound 

Supervised (activity) 64.7 36.3 41.7 

Supervised MTL 64.7 37.2 41.5 

SupCon [19] 68.6 39.4 52.4 

AcouDL 72.1 40.1 50.5 

 

Fig. 4: Early convergence of self-supervised learning-based ap- 
proaches. The macro f1 score is presented on the scale of percentage 
(100%). 

 
B. Influence of The Proposed Attention Mechanism 

We investigate the influence of the proposed attention 
mechanism on the AcouDL performance. We evaluate the same 
network architecture using the context features under two 
settings - 1) by directly multiplying the context features with 
the activity features, and 2) by passing the context feature 
through the attention layer and multiplying the resulting layers 
with the activity features. Figure 5 depicts the performance 
over 100 training epochs for four different folds from the 
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Fig. 5: Influence of attention mechanism and direct feature multiplication on the performance for different folds in the In-house-1 dataset 
(same seed across the folds). The macro f1 score is presented on the scale of percentage (100%). 

 
In-house-1 dataset of a particular seed value. The attention 
mechanism yields consistent and better performance compared 
to the direct context feature multiplication with the activity 
features. 

VI. CONCLUSION 
With the pervasiveness of acoustic-sensing devices, this 

work aims to leverage their potential to be able to reliably 
classify daily activities performed in home environments. We 
explored the potential impacts the environment leaves on the 
acoustic activity signatures. We proposed a robust acoustic ac- 
tivity recognition framework AcouDL. AcouDL can effectively 
model the context information from the limited labeled data 
samples, which further helps in the audio activity recognition 
task when combined with the activity features. AcouDL adapts 
a self-supervised contrastive learning mechanism and applies 
data augmentation on the fly to avoid heavy prior data aug- 
mentation to effectively learn the room audio and activity 
characteristics, and coherently leverage them via an attention 
mechanism. Our evaluation of the proposed AcouDL on public 
and two In-house datasets showed that AcouDL achieves 
0.7-3.5% macro F-1 score improvement over the baseline 
approaches in classifying daily activities. 
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