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Abstract— Functional electrical stimulation is a promising
technique for restoring arm function to those with paralysis
from a high spinal cord injury. While simple controllers are
easy to implement, model-based controllers are likely better
equipped to leverage the arm’s kinematic and dynamic com-
plexity, particularly for the high variations associated with
functional arm movement. One modelling technique for a
model-based controller is Gaussian Process Regression. Pre-
vious simulation work has shown promise leveraging whole-
arm error data to identify the arm’s various subsystems, but
used perfect simulated data. We asked caregivers to correct
a robotic arm’s movement as simulated muscles generated
torque. The simulated muscles were controlled as if they
were electrically stimulated human arm muscles. This study
demonstrates non-expert caregivers’ ability to collect this error
data via whole-arm corrections, and provides insight into their
ability to improve arm subsystem models made with Gaussian
Process Regression. Despite significant error in caregivers’
ability to provide force corrections to hold the robot in a static
configuration, these corrections were leveraged to significantly
improve muscle models; the muscles that improved the most
were the ones primarily used to move the physiologically
actuated robot.

I. INTRODUCTION

In the United States alone, there are an estimated 302,000
people living with a spinal cord injury, with an additional
18,000 occurring each year [1]. Of these people, an estimated
59.6% have a spinal cord injury resulting in tetraplegia,
or some loss of upper limb function [1]. Regaining arm
and hand function, along with the sense of independence it
brings, is of the highest priority for people with tetraplegia
[2]. The ability to perform tasks of daily living is highly
correlated with a high quality of life as well as social
community participation [3].

Functional electrical stimulation (FES) is a promising
technology with the capability to restore arm function to
people post-stroke [4] or after a spinal cord injury. FES
is a technique in which paralyzed muscles receive targeted
electrical current in a manner that provides functional move-
ment [5]. The electrical stimulation can be applied with an
implanted system [6] or with surface electrodes [7]. FES
has shown success with restoring hand functions in people
with lower cervical spinal cord injuries (C5-C6) [8], but for
those with high cervical spinal cord injuries, restoration of
the whole arm with FES is required.
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Controlling whole-arm movement with electrical stimula-
tion is a challenging task. The human arm is a coupled and
highly redundant system. Each joint has at least 2 muscles
acting to control it, though typically more. Many of these
muscles are also biarticular, which means that they actuate
multiple joints. The biceps, for example, are engaged in both
elbow and shoulder motion [9]. Lastly, for people with spinal
cord injuries, spinal reflexes and perturbations due to spastic
muscle contractions add another layer of complexity to the
response of muscles to FES [10].

A variety of control strategies have been implemented in
attempts to control whole-arm movement. A controller which
uses fixed, pre-defined muscle stimulation patterns has been
performed [6]. While fixed stimulation patterns accomplish
movement and serve as a proof of concept, this method does
not account for the variation in the reality of functional tasks.
It also does not account for the variation of muscle capability
common in people with spinal cord injuries [11]. Using fixed
patterns does not account for any variation in the system or
surroundings, so this is not a good long term solution for
daily use.

Controllers which are capable of following any arbitrary
trajectory, such as a proportional-derivative feedback con-
troller [12] or using reinforcement learning [13], have been
successful in simulations, but have challenges associated
with modelling real human arms for control. One reason
for this limited success is the constantly changing dynamics
of human arms. As time progresses, the gains of a PD
controller or numerous parameters of neural network grow
non-representative of the true dynamics of the paralyzed arm.

Researchers in [14] demonstrated the feasibility of a
model-based controller using a technique called Gaussian
Process Regression (GPR) [15]. The controller used models
of the arm’s subsystems, the muscles and passive dynamics,
to predict their effects on the whole arm system. The
researchers demonstrated the ability to control the arm such
that it accomplished a variety of arbitrary movements.

Researchers in [16] leveraged GPR to begin to overcome
the problem of the arm’s changing dynamics. They used
large subject-specific data sets to identify parameters used in
the regression. However, a smaller data set was used on the
day of experiments as it was representative of the paralyzed
person’s arm on during the experimental reaches.

While the “day of” data collection technique addresses the
problem of the arm’s changing dynamics, it exacerbates an
additional challenge of electrical stimulation for paralyzed
arms: translation to home use from a research lab. In order
for a paralyzed person to use their electrically stimulated
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arm, a Gaussian Processes Regression system identification
expert would have to visit their home daily to develop the
“day of” model. This is not a good long-term solution, as
such expertise is limited.

A better long-term solution is to have the paralyzed arm
identification data recollected by a non-expert caregiver,
someone already at home with the paralyzed person. In our
previous work [17], we have shown that whole-system error
can be used to either improve subsystem models made with
Gaussian Process Regression, or generate them from scratch.
This modelling technique is a fantastic option for non-expert
caregivers to generate “day of” arm models. The caregiver
merely needs to generate the force/torque error of the whole
arm while it is being moved through functional tasks, and
that data can be used to produce all the models used to
control the electrically stimulated arm.

The ability of caregivers to provide accurate whole-system
error remains an unknown factor. In our simulation study to
demonstrate the feasibility of our modelling technique [17],
we used theoretically perfect force/torque error measure-
ments. In a real implementation with a paralyzed person’s
arm, the force/torque error of the arm is unknown to a
caregiver. A simple and intuitive method for the caregiver
to measure the force/torque error in the paralyzed arm
during functional movements is to apply a correction to
the arm as it moves. As the arm deviates from a desired
trajectory, the corrective force applied by a caregiver is a
measurement of the whole-system error. However, the ability
of a caregiver to apply accurate corrections is unknown.
Additionally, the effects of human generated whole-system
error measurements on model accuracy are unknown.

The first goal of this study is to measure the accuracy of
human caregiver corrections to a robotic arm. The second
goal of this study is to determine if corrections from non-
expert human caregivers can improve the system identifi-
cation models of the robotic arm. The robotic arm will be
actuated with simulations of electrically stimulated human
arm muscles rather than using a real human arm so there
is a known ground truth to measure model accuracy and
improvement.

II. METHODS

To accomplish our goals, we asked several non-expert
human participants to hold a robotic arm still as it gener-
ated torques in a way that simulated electrically stimulated
muscles. The muscle activations were randomly determined.
The participants, who we will refer to as ‘“caregivers,’
applied force to the “wrist,” or robotic end-effector, which
was instrumented with a force/torque sensor. We used the
corrective force applied to the arm by the caregivers to
update the arm subsystem models. Since the corrections were
representative of all subsystems of the arm, such as the
inverse statics and muscle contributions, they were able to
be used as additional training data to improve the model
accuracy. We then compared the models which included
caregiver correction data to those which did not in order
to determine the effects of including the whole-arm error

Fig. 1. An experimental caregiver applying a force to the wrist’s
force/torque sensor to hold the arm static. The hanging plastic balls act
as frame of reference for the end-effector target position.

data. Additionally, since the equations governing the robotic
arm’s motion were known, we were able to calculate the
theoretically perfect amount of force for a correction. We
compared the experimental corrections to these calculated
perfect corrections to measure caregiver accuracy. Note that
throughout this paper, “muscle equation” refers to the ground
truth equations used to simulate muscle torque (1), and
“muscle model” refers to predictions made with Gaussian
Process Regression.

A. Caregiver Information

A total of 8 able-bodied caregivers were recruited to act
as experimental caregivers. Their ages ranged from 20 to 28.
Informed written consent was obtained for each caregiver
according to the protocols approved by the Institutional
Review Board at Cleveland State University (IRB-FY2016-
331).

B. Experiment and Set-Up

For each trial, the arm was moved to one of 7 possible
positions, each repeated 3 times. The caregiver was then
verbally instructed to hold the arm static at that position,
as in Fig 1. Plastic balls were hung above the goal posi-
tion to provide a visual target and frame of reference to
the caregivers. Then, simulated electrical stimulation was
applied to the muscles actuating the arm. The electrical
stimulation was constant throughout the 2 second trial, but
was different between trials. The electrical stimulation was
randomly determined. For each random stimulation pattern,
the six individual muscles all had a different activation level
drawn from a uniform distribution ranging from 0 to 1 (0% to
100%). We only used randomly generated muscle activations
as our previous work [17] showed that using random muscle
activations led to better muscle model improvement. This
occurred because data was collected that was representative
of each subsystems contributions in various states and with
various control signals. Additionally, using randomized mus-
cle activations supported our first goal of measuring caregiver
correction accuracy by encouraging larger force productions
in the muscles.
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Fig. 2. The robotic arm emulated a planar human arm actuated with 6 muscles. A physical arm would have looked like (i), however we used a robot (ii).
The robot was controlled based on a 2 link arm with 6 muscles (iii). Each muscle had constant moment arms. The muscles were A) the anterior deltoid,
B) the posterior deltoid, C) the biceps, D) the triceps (long head), E) the triceps (short head), and F) the brachilialis.

There were a total of 21 trials with 21 different random
muscle activation patterns, assigned randomly to the various
arm configurations. The same 21 random muscle activation
patterns were used for all caregivers, but at different arm
configurations. As the muscle equations which governed
the arm torque were position dependent, a muscle with a
high activation might have a large force contribution in one
position, but a small force contribution in another position.

We used a robotic arm controlled in such a way that it
mimicked an electrically stimulated human arm so that we
could calculate the ground truth of the muscle dynamics.
This would not be possible with a person’s arm. It was
important to be able to calculate the ground truth of the
muscle dynamics so we could measure model improvement,
as well as calculate the force/torque error of the arm to
determine the accuracy of each caregiver’s correction.

1) Hardware: Caregivers interacted with a Proficio (Bar-
rett Technology, Newton, MA) robotic arm. It has 3 degrees
of freedom and an integrated 6 axis force/torque sensor.

2) Software: Custom C++ code was written so that the
robotic arm emulated the planar arm shown in Figs. 2 and
3. The arm was “actuated” by a total of 6 Hill-Type [18]
muscles. Each muscle’s force contribution was calculated
according to the equations below, and then multiplied by a
constant moment arm. The sum of the muscle torques about
each robot joint were then passed to the robot’s motors.

F = 0Fpaxf(Lin)g (Lm) +KP(Lm - leack)2 (D

Lm _Lopr 2
F(Ly) =exp| — <> )
(Ln) = exp 0.65Lopy
Yot g, <0
glm)=4 3)
e if Ly >0

Muscle
Activation, Robot Joint Arm state,
a Torque, 7 q

R
Equations

Fig. 3. The open loop controller was given randomized muscle activations,
then used those muscle activations in (1) to determine the robotic joint
torques.

The force F in each muscle was multiplied by constant mo-
ment arms to calculate the contribution of each muscle to the
two joint torques. The muscle lengths L,, were dependant on
joint angles such that L,, = ay —d 0 —d»6,. The parameters
of each muscle were taken from [12], and are presented in
Table I. In addition to the active component scaled by the
muscle activation o € [0,1] control signal, each muscle had
a quadratic spring with a stiffness of Kp = 7500 N /m?. This
was much stiffer than a realistic human arm, but people
with spinal cord injuries often have a passive, elastically
actuated arm support [14]. This stiffness also ensured that
some amount of force would be required to hold the planar
arm static in any configuration.

C. Gaussian Process Regression Models

We used two types of models to control the simulated
muscles with muscle activations. We used an inverse statics
model to predict the amount of force required to hold the arm
static in any desired configuration. We also used six muscle
capability models to predict the muscle force contribution
from muscle activation. In terms of (1), the single inverse
statics model attempted to predict the sum of Kp(L, —
leack)2 from all muscles, and each muscle capability model
attempted to predict 0tFyqx f (L )g (L) when the muscle was
fully activated (o« = 1). This is the component of the muscle
that is controllable with the muscle activation control signal.

To collect data to generate initial model predictions (mod-
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TABLE I
THE NAMES AND PARAMETERS OF THE MUSCLES USED TO CALCULATE MUSCLE FORCES

Muscle Name Finax (N) leack (m) Lopt (m) Vinax (m/S) Y ap (m) dl (m) dZ (m)
anterior deltoid 800 0.0538 0.1280 1.280 0.1280  0.1840 0.05 0
posterior deltoid 800 0.0538 0.1280 1.280 0.1280  0.1055 0.05 0
biceps 1000 0.2298 0.1422 1.422 0.1422  0.4283 0.03 0.03
triceps (long head) 1000 0.1905 0.0877 0.877 0.0877  0.1916 0.03 0.03
triceps (short head) 700 0.1905 0.0877 0.877 0.0877  0.2387 0 0.03
brachialis 700 0.0175 0.1028 1.028 0.1028  0.1681 0 0.03

els made before caregiver corrections), we followed the
procedure presented in [19]. We assumed the robot to be
a human arm with completely unknown dynamics. In such a
case, we only had the ability to control muscle activation, as
well as measure force/torque at the wrist, joint angles, and
joint velocities.

Following the inverse statics modeling procedure in [19],
we moved the arm to different states g = [0}, 6,, 0y, 6>]. For
each configuration, there was no muscle activation applied,
so the only forces acting on the joints were from the
nonlinear springs in (1). We measured the force required
to hold the arm static as a researcher held the force/torque
sensor. We were only concerned with force acting in the
plane f = [f:,f,]. We averaged the state and force over
each 0.5 seconds to make the data points. This joint state
and endpoint force data were used as input-output pairs for
the inverse statics model. Note that including joint velocity
technically makes this an inverse dynamics model, but we
use “inverse statics” to emphasize that we make predictions
about the static behavior of the arm. Additionally, though
the researcher attempted to hold the arm static in each
configuration, there was no guarantee that the arm was
perfectly static.

After collecting data for the inverse statics model, we
collected data for the 6 muscle capability models. As with
the entire modelling procedure, we assumed we did not have
access to the muscles’ underlying functions. We moved the
arm to the same configurations q of the inverse statics model
data. One by one, we fully activated the muscles (o = 1)
while a researcher applied force to the force/torque sensor at
the arm’s wrist to hold it static. Our goal was to model the
portion of the muscle which scales with muscle activation in
(1). To do this, we subtracted the inverse static data from the
measured force, as detailed in [19]. These six sets of joint
states g and end-effector forces f made up our data for the
six muscle capability models.

These models served as our initial models. Their error
was compared to the error of models which used the same
data and caregiver correction data. Muscle model predictions
were made with muscle-specific data and caregiver correction
data using the equation

* k(qnq*) :|T
Hi= [—aikmi,q*) @
k(qi7qi) _aik(qiaqc):| 2 >] |:fl:|
8 <[_aik(qc7qi) aizk(qcvqc) ol c

which was derived in [17]. This equation gave the predicted
maximum capability p; of the i" muscle at a desired state
q". The covariance k of the functions were compared at
both the researcher-collected initial input g; and the joint
state when caregivers applied corrections g.. The covariance
at the corrective input was multiplied by the activation the
i’ muscle received during the correction. The covariance
determined the similarity of the functions at the desired
state to previous measured states. Along with the estimated
signal noise o2, this equation the determined how similar
the prediction is to the researcher-collected initial force data
point f; or the force applied by the caregiver f,. to correct
the robot’s arm.

D. Experimental Analysis

To accomplish the goal of measuring the accuracy of
human caregiver corrections, we calculated the error of the
corrections by first calculating the force that should have
been applied to the robot to perfectly ensure it was held
static. This was done by solving for the residual force
when the muscle activations were used in the governing
muscle equations (1). After finding this “theoretically perfect
correction,” we found the norm error in the corrections
applied by the caregivers. We plotted the deviation from
a perfect correction versus the force required for the same
perfect correction. We then fit a trend line to the scatter plot
to determine if there was a correlation between the force
required to hold the arm static and the error in the correction
from the caregiver.

After calculating the accuracy of the correction data,
we used the data to generate new model predictions. We
generated predictions over the arm’s range of motion using
models with no corrective data, as well as models with
corrective data mixed with subsystem specific data. We
varied the amount of corrective data, using either 50, 100,
200, 300, 400, 500, or 672 points. For each corrective data
set size, we randomly selected from the total 672 points.
There were a total of 672 points as there were 8 caregivers
x 21 trials x 4 data points per trial (2 second trials averaged
every 0.5 seconds). We repeated the selection and prediction
calculation 4096 times for each data set size, assuming
different permutations of points would lead to different
predictions. The total number of unique combinations for
some data set sizes is on the order of 10'%°, so we used
4096 repeated trials with different, randomly selected data
sets.
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Caregivers Apply Less Accurate Corrections
When Higher Forces are Required
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Fig. 4. This scatter plot shows the data collected from the caregivers’

corrections. The horizontal axis shows the magnitude of the force required
for a perfect correction. The vertical axis shows the magnitude of the error;
data sitting exactly on the horizontal axis indicates a perfect correction.

We compared both predictions made without and with
corrective data to the ground truth given by the governing
muscle equations (1), and calculated how much the models
improved with the addition of corrective data. Model im-
provement is the error reduction from including corrective
data normalized by the error before including corrective data.

III. RESULTS

We asked several caregivers to hold a robotic arm static
while its motors generated torque. The torque was calculated
according to 6 muscle functions; as we knew the ground truth
of the arm’s dynamics, we could calculate how much force
the caregivers should have been applying to the robot to hold
it perfectly static. Comparing the force that the caregivers
applied to the arm to the calculated “theoretically perfect
correction” allowed us to calculate the error of the care-
givers’ applied corrections. We plotted the error magnitude
versus the force magnitude of the perfect correction to show
accuracy in Fig. 4. Recall each trial was 2 seconds and each
data point is made of the average of 0.5 seconds, so there are
4 data points per trial. There are a total of 672 data points.

Fig. 4 shows that when a higher force is required for a
correction, there is a higher error in the applied force. The
trend line for the corrections has a slope close to 1 with
R* = 0.82, illustrating that when a higher force is required
for correction, there is a higher error in the force applied for
the correction.

In addition to studying the ability or caregivers to accu-
rately correct static arm holds, we used the data to improve
model predictions of the arm’s muscles. We compiled the
prediction improvements, or the error reductions normalized
by the errors before including the caregiver correction data,
shown in Fig. 5. To elaborate, 100% improvement would
indicate that a model was exactly perfect after including
correction data.

Mean and Std. Error of Mean. (N = 4096) Model Improvement
from Including Varying Amounts of Corrective Data
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Fig. 5. This figure shows the muscle model improvement using different

amounts of data. There were 4096 repeated trials for each amount of data,
so the standard errors of the means are small enough to be obscured by the
data markers.

As increasing amount of corrective data were used, four
of the 6 muscle models improved; the posterior deltoid by
43% +9.9e-13%, triceps (long head) by 33% +4.1e-13%,
the anterior deltoid by 28% =+3.8e-13%, and the brachialis
by 27% =£4.0e-13%. Two muscle models, the biceps and
the short head of the triceps, have an accuracy decrease
with small amount of correction data, but the accuracy
decrease lessens with increasing amounts of correction data.
The standard errors of the means are very small, indicating
that there is little deviation across the 4096 permutations of
corrective data sets.

IV. DISCUSSION

The goals of this study were to measure the accuracy of
human caregiver corrections to a robotic arm and determine
the effects of human-generated corrections in making model
predictions. The robotic arm was actuated in a way that simu-
lated electrically stimulated human arm muscles. The results
indicate that non-expert caregivers have the ability to make
arm corrections that can improve the system identification
accuracy, but also make the accuracy worse, as was the case
with the biceps and triceps (short head) models.

When the caregivers were applying corrections to the arm,
higher errors occurred when higher forces were required.
This is likely because the muscles immediately turned on
and generated a strong force, causing a jerking motion. The
human caregivers then had to react to the jerking motion to
correct the arm. To contrast, when a small force was required
to correct the static hold of the arm, caregivers could much
more easily apply the force immediately, without having to
recover from a strong jerk. As each 2 second trial was used
to make 4 data points, the data appear in vertical groups
of 4. Each of these 4 points have the same force required
for a perfect correction, but different error as the caregivers
changed the force they applied over time.
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An unaccounted for source of error for these corrections is
potential bias introduced by the plastic balls, shown in Fig. 1,
used to mark goal end-effector positions. Slight inaccuracies
in their position, as well as the challenge of determining
the downward vertical projection of the center of the sphere
likely contributed to some of the caregiver’s error in applying
accurate correction data.

When using the corrective data to generate new predic-
tions, four of the 6 muscle models improved. While not
immediately obvious given the governing muscle equations
(1), these are the muscles with the highest endpoint force
in the robot’s range of motion. In this range of motion,
these four muscles are able to produce endpoint forces on
the order of 10® Newtons. To contrast, the biceps and short
head of the triceps are weak as a result of their large ag
relative to L,y from Table 1. In the robot’s range of motion,
the force-length curve (2) is small; the biceps and triceps
(short head) maximum endpoint forces are ~4 N and ~ 7.5
N, respectively. These values were from [12], and were not
changed in consideration for the robotic anatomy.

The results of this study indicate that corrective data works
better for stronger muscles. The corrective data is generated
when all muscles are being used, and can be used to produce
all model predictions from a single source. This is easier for
the stronger muscles, as the signal to noise ratio is much
larger; [17] details how whole-system data is learned from
output differences, and the differences in endpoint force from
the weak muscles is minor. To learn the small ground truth
value of the weaker muscles requires more data, as the force
contributions are minor. This trend is most evident in the
biceps model in Fig. 5. With small amounts of this noisy
data, the biceps model becomes 40% worse. As more data is
added, the model begins to learn the small force contribution
of the biceps. We expect that if more data were available,
the biceps and triceps (short head) models would recover and
eventually have positive improvement.

This study gives important insight how corrective data
should practically be used. While we expect all models to
improve with enough data, it is not a realistic solution to
improve the system identification of muscles. The arm’s
dynamics and muscle production capabilities change with
time. A practical implementation of the work presented here
should be used with an evolving Gaussian Process algorithm
[20], or a modelling technique where an optimal subset of
data is selected based on the most informative data. This
would reject the noisy data for the weaker muscles while
still leading to improvement for the muscles that primarily
move the electrically stimulated arm.

Accurate measurements of arm states were critical in this
experiment. If we had not used joint velocity as an input
to the models, there likely would not have been any model
improvement with the addition of caregiver correction data.
Joint velocity as a model input allowed the movement from
caregiver’s inaccurate corrections provide information on the
dynamic behavior of the muscles, which led to improvement.
To translate this modelling technique to home use, there
should be a way of measuring human joint positions and

velocities to account for caregiver correction error.

[1]
[2]

[5]

[6]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

1482

REFERENCES

NSCISC, “Traumatic spinal cord injury facts and figures at a glance,”
2023.

K. D. Anderson, “Targeting recovery: priorities of the spinal cord-
injured population,” J Neurotrauma, vol. 21, no. 10, pp. 1371-1383,
Oct. 2004.

M. Dijkers, “Quality of life after spinal cord injury: a meta analysis of
the effects of disablement components,” Spinal Cord, vol. 35, no. 12,
pp. 829-840, Dec. 1997.

M. Kutlu, C. Freeman, A.-M. Hughes, and M. Spraggs, “A Home-
based FES System for Upper-limb Stroke Rehabilitation with Iterative
Learning Control,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 12089-
12094, Jul. 2017.

P. H. Peckham and J. S. Knutson, “Functional Electrical Stimula-
tion for Neuromuscular Applications,” Annual Review of Biomed-
ical Engineering, vol. 7, no. 1, pp. 327-360, 2005, _eprint:
https://doi.org/10.1146/annurev.bioeng.6.040803.140103.

W. D. Memberg, K. H. Polasek, R. L. Hart, A. M. Bryden, K. L.
Kilgore, G. A. Nemunaitis, H. A. Hoyen, M. W. Keith, and R. F.
Kirsch, “Implanted Neuroprosthesis for Restoring Arm and Hand
Function in People With High Level Tetraplegia,” Archives of Physical
Medicine and Rehabilitation, vol. 95, no. 6, pp. 1201-1211.el, Jun.
2014.

S. Trier, J. Buckett, A. Campean, M. Miller, F. Montague, T. Vrabec,
and J. Weisgarber, “A Modular External Control Unit for Functional
Electrical Stimulation,” Jan. 2001.

K. L. Kilgore, H. A. Hoyen, A. M. Bryden, R. L. Hart, M. W. Keith,
and P. H. Peckham, “An Implanted Upper-Extremity Neuroprosthesis
Using Myoelectric Control,” J Hand Surg Am, vol. 33, no. 4, pp. 539—
550, Apr. 2008.

D. Landin, J. Myers, M. Thompson, R. Castle, and J. Porter, “The role
of the biceps brachii in shoulder elevation,” J Electromyogr Kinesiol,
vol. 18, no. 2, pp. 270-275, Apr. 2008.

C. L. Lynch and M. R. Popovic, “Functional Electrical Stimulation,”
IEEE Control Systems Magazine, vol. 28, no. 2, pp. 40-50, Apr. 2008.
V. K. Mushahwar, P. L. Jacobs, R. A. Normann, R. J. Triolo, and
N. Kleitman, “New functional electrical stimulation approaches to
standing and walking,” J Neural Eng, vol. 4, no. 3, pp. S181-197,
Sep. 2007.

K. M. Jagodnik and A. J. Van Den Bogert, “Optimization and evalua-
tion of a proportional derivative controller for planar arm movement,”
Journal of Biomechanics, vol. 43, no. 6, pp. 1086-1091, Apr. 2010.
D. C. Crowder, J. Abreu, and R. F. Kirsch, “Improving the Learning
Rate, Accuracy, and Workspace of Reinforcement Learning Con-
trollers for a Musculoskeletal Model of the Human Arm,” IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, vol. 30, pp.
30-39, 2022.

D. N. Wolf and E. M. Schearer, “Holding Static Arm Configurations
With Functional Electrical Stimulation: A Case Study,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 26, no. 10, pp. 2044-2052, Oct. 2018.
C. E. Rasmussen and C. K. I. Williams, Gaussian processes for
machine learning, 3rd ed., ser. Adaptive computation and machine
learning. Cambridge, Mass.: MIT Press, 2008.

D. N. Wolf and E. M. Schearer, “Trajectory Optimization and Model
Predictive Control for Functional Electrical Stimulation-Controlled
Reaching,” IEEE Robotics and Automation Letters, vol. 7, no. 2, Apr.
2022.

C. J. LaMack and E. M. Schearer, “Global system errors to si-
multaneously improve the identification of subsystems with mixed
data gaussian process regression,” Machine Learning: Science and
Technology, vol. 5, no. 2, May 2024.

F. E. Zajac, “Muscle and tendon: properties, models, scaling, and
application to biomechanics and motor control,” Crit Rev Biomed Eng,
vol. 17, no. 4, pp. 359-411, 1989.

E. M. Schearer, Y.-W. Liao, E. J. Perreault, M. C. Tresch, W. D. Mem-
berg, R. F. Kirsch, and K. M. Lynch, “Semiparametric Identification of
Human Arm Dynamics for Flexible Control of a Functional Electrical
Stimulation Neuroprosthesis,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 24, no. 12, pp. 1405-1415, Dec.
2016.

D. Petelin and J. Kocijan, “Control system with evolving gaussian
process models,” in 2011 IEEE Workshop on Evolving and Adaptive
Intelligent Systems (EAILS), 2011, pp. 178-184.



