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AbstractÐ Functional electrical stimulation is a promising
technique for restoring arm function to those with paralysis
from a high spinal cord injury. While simple controllers are
easy to implement, model-based controllers are likely better
equipped to leverage the arm’s kinematic and dynamic com-
plexity, particularly for the high variations associated with
functional arm movement. One modelling technique for a
model-based controller is Gaussian Process Regression. Pre-
vious simulation work has shown promise leveraging whole-
arm error data to identify the arm’s various subsystems, but
used perfect simulated data. We asked caregivers to correct
a robotic arm’s movement as simulated muscles generated
torque. The simulated muscles were controlled as if they
were electrically stimulated human arm muscles. This study
demonstrates non-expert caregivers’ ability to collect this error
data via whole-arm corrections, and provides insight into their
ability to improve arm subsystem models made with Gaussian
Process Regression. Despite significant error in caregivers’
ability to provide force corrections to hold the robot in a static
configuration, these corrections were leveraged to significantly
improve muscle models; the muscles that improved the most
were the ones primarily used to move the physiologically
actuated robot.

I. INTRODUCTION

In the United States alone, there are an estimated 302,000

people living with a spinal cord injury, with an additional

18,000 occurring each year [1]. Of these people, an estimated

59.6% have a spinal cord injury resulting in tetraplegia,

or some loss of upper limb function [1]. Regaining arm

and hand function, along with the sense of independence it

brings, is of the highest priority for people with tetraplegia

[2]. The ability to perform tasks of daily living is highly

correlated with a high quality of life as well as social

community participation [3].

Functional electrical stimulation (FES) is a promising

technology with the capability to restore arm function to

people post-stroke [4] or after a spinal cord injury. FES

is a technique in which paralyzed muscles receive targeted

electrical current in a manner that provides functional move-

ment [5]. The electrical stimulation can be applied with an

implanted system [6] or with surface electrodes [7]. FES

has shown success with restoring hand functions in people

with lower cervical spinal cord injuries (C5-C6) [8], but for

those with high cervical spinal cord injuries, restoration of

the whole arm with FES is required.
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Controlling whole-arm movement with electrical stimula-

tion is a challenging task. The human arm is a coupled and

highly redundant system. Each joint has at least 2 muscles

acting to control it, though typically more. Many of these

muscles are also biarticular, which means that they actuate

multiple joints. The biceps, for example, are engaged in both

elbow and shoulder motion [9]. Lastly, for people with spinal

cord injuries, spinal reflexes and perturbations due to spastic

muscle contractions add another layer of complexity to the

response of muscles to FES [10].

A variety of control strategies have been implemented in

attempts to control whole-arm movement. A controller which

uses fixed, pre-defined muscle stimulation patterns has been

performed [6]. While fixed stimulation patterns accomplish

movement and serve as a proof of concept, this method does

not account for the variation in the reality of functional tasks.

It also does not account for the variation of muscle capability

common in people with spinal cord injuries [11]. Using fixed

patterns does not account for any variation in the system or

surroundings, so this is not a good long term solution for

daily use.

Controllers which are capable of following any arbitrary

trajectory, such as a proportional-derivative feedback con-

troller [12] or using reinforcement learning [13], have been

successful in simulations, but have challenges associated

with modelling real human arms for control. One reason

for this limited success is the constantly changing dynamics

of human arms. As time progresses, the gains of a PD

controller or numerous parameters of neural network grow

non-representative of the true dynamics of the paralyzed arm.

Researchers in [14] demonstrated the feasibility of a

model-based controller using a technique called Gaussian

Process Regression (GPR) [15]. The controller used models

of the arm’s subsystems, the muscles and passive dynamics,

to predict their effects on the whole arm system. The

researchers demonstrated the ability to control the arm such

that it accomplished a variety of arbitrary movements.

Researchers in [16] leveraged GPR to begin to overcome

the problem of the arm’s changing dynamics. They used

large subject-specific data sets to identify parameters used in

the regression. However, a smaller data set was used on the

day of experiments as it was representative of the paralyzed

person’s arm on during the experimental reaches.

While the ªday ofº data collection technique addresses the

problem of the arm’s changing dynamics, it exacerbates an

additional challenge of electrical stimulation for paralyzed

arms: translation to home use from a research lab. In order

for a paralyzed person to use their electrically stimulated
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arm, a Gaussian Processes Regression system identification

expert would have to visit their home daily to develop the

ªday ofº model. This is not a good long-term solution, as

such expertise is limited.

A better long-term solution is to have the paralyzed arm

identification data recollected by a non-expert caregiver,

someone already at home with the paralyzed person. In our

previous work [17], we have shown that whole-system error

can be used to either improve subsystem models made with

Gaussian Process Regression, or generate them from scratch.

This modelling technique is a fantastic option for non-expert

caregivers to generate ªday ofº arm models. The caregiver

merely needs to generate the force/torque error of the whole

arm while it is being moved through functional tasks, and

that data can be used to produce all the models used to

control the electrically stimulated arm.

The ability of caregivers to provide accurate whole-system

error remains an unknown factor. In our simulation study to

demonstrate the feasibility of our modelling technique [17],

we used theoretically perfect force/torque error measure-

ments. In a real implementation with a paralyzed person’s

arm, the force/torque error of the arm is unknown to a

caregiver. A simple and intuitive method for the caregiver

to measure the force/torque error in the paralyzed arm

during functional movements is to apply a correction to

the arm as it moves. As the arm deviates from a desired

trajectory, the corrective force applied by a caregiver is a

measurement of the whole-system error. However, the ability

of a caregiver to apply accurate corrections is unknown.

Additionally, the effects of human generated whole-system

error measurements on model accuracy are unknown.

The first goal of this study is to measure the accuracy of

human caregiver corrections to a robotic arm. The second

goal of this study is to determine if corrections from non-

expert human caregivers can improve the system identifi-

cation models of the robotic arm. The robotic arm will be

actuated with simulations of electrically stimulated human

arm muscles rather than using a real human arm so there

is a known ground truth to measure model accuracy and

improvement.

II. METHODS

To accomplish our goals, we asked several non-expert

human participants to hold a robotic arm still as it gener-

ated torques in a way that simulated electrically stimulated

muscles. The muscle activations were randomly determined.

The participants, who we will refer to as ªcaregivers,º

applied force to the ªwrist,º or robotic end-effector, which

was instrumented with a force/torque sensor. We used the

corrective force applied to the arm by the caregivers to

update the arm subsystem models. Since the corrections were

representative of all subsystems of the arm, such as the

inverse statics and muscle contributions, they were able to

be used as additional training data to improve the model

accuracy. We then compared the models which included

caregiver correction data to those which did not in order

to determine the effects of including the whole-arm error

Fig. 1. An experimental caregiver applying a force to the wrist’s
force/torque sensor to hold the arm static. The hanging plastic balls act
as frame of reference for the end-effector target position.

data. Additionally, since the equations governing the robotic

arm’s motion were known, we were able to calculate the

theoretically perfect amount of force for a correction. We

compared the experimental corrections to these calculated

perfect corrections to measure caregiver accuracy. Note that

throughout this paper, ªmuscle equationº refers to the ground

truth equations used to simulate muscle torque (1), and

ªmuscle modelº refers to predictions made with Gaussian

Process Regression.

A. Caregiver Information

A total of 8 able-bodied caregivers were recruited to act

as experimental caregivers. Their ages ranged from 20 to 28.

Informed written consent was obtained for each caregiver

according to the protocols approved by the Institutional

Review Board at Cleveland State University (IRB-FY2016-

331).

B. Experiment and Set-Up

For each trial, the arm was moved to one of 7 possible

positions, each repeated 3 times. The caregiver was then

verbally instructed to hold the arm static at that position,

as in Fig 1. Plastic balls were hung above the goal posi-

tion to provide a visual target and frame of reference to

the caregivers. Then, simulated electrical stimulation was

applied to the muscles actuating the arm. The electrical

stimulation was constant throughout the 2 second trial, but

was different between trials. The electrical stimulation was

randomly determined. For each random stimulation pattern,

the six individual muscles all had a different activation level

drawn from a uniform distribution ranging from 0 to 1 (0% to

100%). We only used randomly generated muscle activations

as our previous work [17] showed that using random muscle

activations led to better muscle model improvement. This

occurred because data was collected that was representative

of each subsystems contributions in various states and with

various control signals. Additionally, using randomized mus-

cle activations supported our first goal of measuring caregiver

correction accuracy by encouraging larger force productions

in the muscles.
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Fig. 2. The robotic arm emulated a planar human arm actuated with 6 muscles. A physical arm would have looked like (i), however we used a robot (ii).
The robot was controlled based on a 2 link arm with 6 muscles (iii). Each muscle had constant moment arms. The muscles were A) the anterior deltoid,
B) the posterior deltoid, C) the biceps, D) the triceps (long head), E) the triceps (short head), and F) the brachilialis.

There were a total of 21 trials with 21 different random

muscle activation patterns, assigned randomly to the various

arm configurations. The same 21 random muscle activation

patterns were used for all caregivers, but at different arm

configurations. As the muscle equations which governed

the arm torque were position dependent, a muscle with a

high activation might have a large force contribution in one

position, but a small force contribution in another position.

We used a robotic arm controlled in such a way that it

mimicked an electrically stimulated human arm so that we

could calculate the ground truth of the muscle dynamics.

This would not be possible with a person’s arm. It was

important to be able to calculate the ground truth of the

muscle dynamics so we could measure model improvement,

as well as calculate the force/torque error of the arm to

determine the accuracy of each caregiver’s correction.

1) Hardware: Caregivers interacted with a Proficio (Bar-

rett Technology, Newton, MA) robotic arm. It has 3 degrees

of freedom and an integrated 6 axis force/torque sensor.

2) Software: Custom C++ code was written so that the

robotic arm emulated the planar arm shown in Figs. 2 and

3. The arm was ªactuatedº by a total of 6 Hill-Type [18]

muscles. Each muscle’s force contribution was calculated

according to the equations below, and then multiplied by a

constant moment arm. The sum of the muscle torques about

each robot joint were then passed to the robot’s motors.

F = αFmax f (Lm)g
(

L̇m

)

+KP(Lm −Lslack)
2 (1)

f (Lm) = exp

(

−

(

Lm −Lopt

0.65Lopt

)2
)

(2)

g
(

L̇m

)

=











Vmax+L̇m

Vmax−4L̇m
if L̇m ≤ 0

1.5L̇m+c

L̇m+c
if L̇m > 0

(3)

Fig. 3. The open loop controller was given randomized muscle activations,
then used those muscle activations in (1) to determine the robotic joint
torques.

The force F in each muscle was multiplied by constant mo-

ment arms to calculate the contribution of each muscle to the

two joint torques. The muscle lengths Lm were dependant on

joint angles such that Lm = a0−d1θ1−d2θ2. The parameters

of each muscle were taken from [12], and are presented in

Table I. In addition to the active component scaled by the

muscle activation α ∈ [0,1] control signal, each muscle had

a quadratic spring with a stiffness of KP = 7500 N/m2. This

was much stiffer than a realistic human arm, but people

with spinal cord injuries often have a passive, elastically

actuated arm support [14]. This stiffness also ensured that

some amount of force would be required to hold the planar

arm static in any configuration.

C. Gaussian Process Regression Models

We used two types of models to control the simulated

muscles with muscle activations. We used an inverse statics

model to predict the amount of force required to hold the arm

static in any desired configuration. We also used six muscle

capability models to predict the muscle force contribution

from muscle activation. In terms of (1), the single inverse

statics model attempted to predict the sum of KP(Lm −

Lslack)
2 from all muscles, and each muscle capability model

attempted to predict αFmax f (Lm)g
(

L̇m

)

when the muscle was

fully activated (α = 1). This is the component of the muscle

that is controllable with the muscle activation control signal.

To collect data to generate initial model predictions (mod-
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TABLE I

THE NAMES AND PARAMETERS OF THE MUSCLES USED TO CALCULATE MUSCLE FORCES

Muscle Name Fmax (N) Lslack (m) Lopt (m) Vmax (m/s) c a0 (m) d1 (m) d2 (m)

anterior deltoid 800 0.0538 0.1280 1.280 0.1280 0.1840 0.05 0
posterior deltoid 800 0.0538 0.1280 1.280 0.1280 0.1055 0.05 0
biceps 1000 0.2298 0.1422 1.422 0.1422 0.4283 0.03 0.03
triceps (long head) 1000 0.1905 0.0877 0.877 0.0877 0.1916 0.03 0.03
triceps (short head) 700 0.1905 0.0877 0.877 0.0877 0.2387 0 0.03
brachialis 700 0.0175 0.1028 1.028 0.1028 0.1681 0 0.03

els made before caregiver corrections), we followed the

procedure presented in [19]. We assumed the robot to be

a human arm with completely unknown dynamics. In such a

case, we only had the ability to control muscle activation, as

well as measure force/torque at the wrist, joint angles, and

joint velocities.

Following the inverse statics modeling procedure in [19],

we moved the arm to different states qqq = [θ1,θ2, θ̇1, θ̇2]. For

each configuration, there was no muscle activation applied,

so the only forces acting on the joints were from the

nonlinear springs in (1). We measured the force required

to hold the arm static as a researcher held the force/torque

sensor. We were only concerned with force acting in the

plane fff = [ fx, fy]. We averaged the state and force over

each 0.5 seconds to make the data points. This joint state

and endpoint force data were used as input-output pairs for

the inverse statics model. Note that including joint velocity

technically makes this an inverse dynamics model, but we

use ªinverse staticsº to emphasize that we make predictions

about the static behavior of the arm. Additionally, though

the researcher attempted to hold the arm static in each

configuration, there was no guarantee that the arm was

perfectly static.

After collecting data for the inverse statics model, we

collected data for the 6 muscle capability models. As with

the entire modelling procedure, we assumed we did not have

access to the muscles’ underlying functions. We moved the

arm to the same configurations qqq of the inverse statics model

data. One by one, we fully activated the muscles (α = 1)

while a researcher applied force to the force/torque sensor at

the arm’s wrist to hold it static. Our goal was to model the

portion of the muscle which scales with muscle activation in

(1). To do this, we subtracted the inverse static data from the

measured force, as detailed in [19]. These six sets of joint

states qqq and end-effector forces fff made up our data for the

six muscle capability models.

These models served as our initial models. Their error

was compared to the error of models which used the same

data and caregiver correction data. Muscle model predictions

were made with muscle-specific data and caregiver correction

data using the equation

µµµ∗
i =

[

k(qqqi,qqq
∗)

−αik(qqqi,qqq
∗)

]T

×

([

k(qqqi,qqqi) −αik(qqqi,qqqc)
−αik(qqqc,qqqi) α2

i k(qqqc,qqqc)

]

+σ2
n I

)−1 [
fff i

fff c

]

(4)

which was derived in [17]. This equation gave the predicted

maximum capability µµµ∗
i of the ith muscle at a desired state

qqq∗. The covariance k of the functions were compared at

both the researcher-collected initial input qqqi and the joint

state when caregivers applied corrections qqqc. The covariance

at the corrective input was multiplied by the activation the

ith muscle received during the correction. The covariance

determined the similarity of the functions at the desired

state to previous measured states. Along with the estimated

signal noise σ2
n , this equation the determined how similar

the prediction is to the researcher-collected initial force data

point fff i or the force applied by the caregiver fff c to correct

the robot’s arm.

D. Experimental Analysis

To accomplish the goal of measuring the accuracy of

human caregiver corrections, we calculated the error of the

corrections by first calculating the force that should have

been applied to the robot to perfectly ensure it was held

static. This was done by solving for the residual force

when the muscle activations were used in the governing

muscle equations (1). After finding this ªtheoretically perfect

correction,º we found the norm error in the corrections

applied by the caregivers. We plotted the deviation from

a perfect correction versus the force required for the same

perfect correction. We then fit a trend line to the scatter plot

to determine if there was a correlation between the force

required to hold the arm static and the error in the correction

from the caregiver.

After calculating the accuracy of the correction data,

we used the data to generate new model predictions. We

generated predictions over the arm’s range of motion using

models with no corrective data, as well as models with

corrective data mixed with subsystem specific data. We

varied the amount of corrective data, using either 50, 100,

200, 300, 400, 500, or 672 points. For each corrective data

set size, we randomly selected from the total 672 points.

There were a total of 672 points as there were 8 caregivers

x 21 trials x 4 data points per trial (2 second trials averaged

every 0.5 seconds). We repeated the selection and prediction

calculation 4096 times for each data set size, assuming

different permutations of points would lead to different

predictions. The total number of unique combinations for

some data set sizes is on the order of 10199, so we used

4096 repeated trials with different, randomly selected data

sets.
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Fig. 4. This scatter plot shows the data collected from the caregivers’
corrections. The horizontal axis shows the magnitude of the force required
for a perfect correction. The vertical axis shows the magnitude of the error;
data sitting exactly on the horizontal axis indicates a perfect correction.

We compared both predictions made without and with

corrective data to the ground truth given by the governing

muscle equations (1), and calculated how much the models

improved with the addition of corrective data. Model im-

provement is the error reduction from including corrective

data normalized by the error before including corrective data.

III. RESULTS

We asked several caregivers to hold a robotic arm static

while its motors generated torque. The torque was calculated

according to 6 muscle functions; as we knew the ground truth

of the arm’s dynamics, we could calculate how much force

the caregivers should have been applying to the robot to hold

it perfectly static. Comparing the force that the caregivers

applied to the arm to the calculated ªtheoretically perfect

correctionº allowed us to calculate the error of the care-

givers’ applied corrections. We plotted the error magnitude

versus the force magnitude of the perfect correction to show

accuracy in Fig. 4. Recall each trial was 2 seconds and each

data point is made of the average of 0.5 seconds, so there are

4 data points per trial. There are a total of 672 data points.

Fig. 4 shows that when a higher force is required for a

correction, there is a higher error in the applied force. The

trend line for the corrections has a slope close to 1 with

R2 = 0.82, illustrating that when a higher force is required

for correction, there is a higher error in the force applied for

the correction.

In addition to studying the ability or caregivers to accu-

rately correct static arm holds, we used the data to improve

model predictions of the arm’s muscles. We compiled the

prediction improvements, or the error reductions normalized

by the errors before including the caregiver correction data,

shown in Fig. 5. To elaborate, 100% improvement would

indicate that a model was exactly perfect after including

correction data.

Fig. 5. This figure shows the muscle model improvement using different
amounts of data. There were 4096 repeated trials for each amount of data,
so the standard errors of the means are small enough to be obscured by the
data markers.

As increasing amount of corrective data were used, four

of the 6 muscle models improved; the posterior deltoid by

43% ±9.9e-13%, triceps (long head) by 33% ±4.1e-13%,

the anterior deltoid by 28% ±3.8e-13%, and the brachialis

by 27% ±4.0e-13%. Two muscle models, the biceps and

the short head of the triceps, have an accuracy decrease

with small amount of correction data, but the accuracy

decrease lessens with increasing amounts of correction data.

The standard errors of the means are very small, indicating

that there is little deviation across the 4096 permutations of

corrective data sets.

IV. DISCUSSION

The goals of this study were to measure the accuracy of

human caregiver corrections to a robotic arm and determine

the effects of human-generated corrections in making model

predictions. The robotic arm was actuated in a way that simu-

lated electrically stimulated human arm muscles. The results

indicate that non-expert caregivers have the ability to make

arm corrections that can improve the system identification

accuracy, but also make the accuracy worse, as was the case

with the biceps and triceps (short head) models.

When the caregivers were applying corrections to the arm,

higher errors occurred when higher forces were required.

This is likely because the muscles immediately turned on

and generated a strong force, causing a jerking motion. The

human caregivers then had to react to the jerking motion to

correct the arm. To contrast, when a small force was required

to correct the static hold of the arm, caregivers could much

more easily apply the force immediately, without having to

recover from a strong jerk. As each 2 second trial was used

to make 4 data points, the data appear in vertical groups

of 4. Each of these 4 points have the same force required

for a perfect correction, but different error as the caregivers

changed the force they applied over time.
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An unaccounted for source of error for these corrections is

potential bias introduced by the plastic balls, shown in Fig. 1,

used to mark goal end-effector positions. Slight inaccuracies

in their position, as well as the challenge of determining

the downward vertical projection of the center of the sphere

likely contributed to some of the caregiver’s error in applying

accurate correction data.

When using the corrective data to generate new predic-

tions, four of the 6 muscle models improved. While not

immediately obvious given the governing muscle equations

(1), these are the muscles with the highest endpoint force

in the robot’s range of motion. In this range of motion,

these four muscles are able to produce endpoint forces on

the order of 102 Newtons. To contrast, the biceps and short

head of the triceps are weak as a result of their large a0

relative to Lopt from Table I. In the robot’s range of motion,

the force-length curve (2) is small; the biceps and triceps

(short head) maximum endpoint forces are ∼ 4 N and ∼ 7.5
N, respectively. These values were from [12], and were not

changed in consideration for the robotic anatomy.

The results of this study indicate that corrective data works

better for stronger muscles. The corrective data is generated

when all muscles are being used, and can be used to produce

all model predictions from a single source. This is easier for

the stronger muscles, as the signal to noise ratio is much

larger; [17] details how whole-system data is learned from

output differences, and the differences in endpoint force from

the weak muscles is minor. To learn the small ground truth

value of the weaker muscles requires more data, as the force

contributions are minor. This trend is most evident in the

biceps model in Fig. 5. With small amounts of this noisy

data, the biceps model becomes 40% worse. As more data is

added, the model begins to learn the small force contribution

of the biceps. We expect that if more data were available,

the biceps and triceps (short head) models would recover and

eventually have positive improvement.

This study gives important insight how corrective data

should practically be used. While we expect all models to

improve with enough data, it is not a realistic solution to

improve the system identification of muscles. The arm’s

dynamics and muscle production capabilities change with

time. A practical implementation of the work presented here

should be used with an evolving Gaussian Process algorithm

[20], or a modelling technique where an optimal subset of

data is selected based on the most informative data. This

would reject the noisy data for the weaker muscles while

still leading to improvement for the muscles that primarily

move the electrically stimulated arm.

Accurate measurements of arm states were critical in this

experiment. If we had not used joint velocity as an input

to the models, there likely would not have been any model

improvement with the addition of caregiver correction data.

Joint velocity as a model input allowed the movement from

caregiver’s inaccurate corrections provide information on the

dynamic behavior of the muscles, which led to improvement.

To translate this modelling technique to home use, there

should be a way of measuring human joint positions and

velocities to account for caregiver correction error.
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