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Abstract

Current advances in artificial intelligence (Al), especially machine learning and deep
learning, provide an alternative approach to problem-solving for engineers and sci-
entists in various disciplines, including materials science. Artificial neural networks
(ANNs), including their variations as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), have become one of the most effective machine
learning approaches. This paper comprehensively reviews ANNs and their applications
in different computational materials science research topics, such as multiscale
modeling, microstructure-dependent material properties, and model-free constitutive
relationships. In addition, we intend to share Al insights in the materials science
community and promote the applications of ANNs in our research.

1. Introduction

Considerable effort has been dedicated to developing next-genera-
tion materials (Peng et al., 2017; Ray & Cooney, 2018) and structures for
use in multiscale and multi-physical problems. In particular, advanced
materials promote such platforms by coupling the predominant material
properties to create multifunctional composites with enhanced mechanical,
thermal, and other material capabilities. However, understanding such
complex phenomena is highly dependent on systematic and accurate
estimations of the effective physical properties, if possible. Therefore, rapid
advancement requires numerical modeling and simulations capable of
quickly and accurately determining such properties. Furthermore, com-
putation has assisted the materials science community in various achieve-
ments as an important discovery tool, including rapid process development,
quick microstructural analysis, fast property evaluation, and significant
performance improvement.

Traditional computational methods have been extensively used to study
physical phenomena at different length and time scales independently (Attarian
& Xiao, 2022). Those methods include finite element methods (FEMs)
(Belytschko, Liu, & Moran, 2000), meshfree particle methods (MPM) (Li &
Liu, 2002; Rabczuk, Belytschko, & Xiao, 2004), phase-field methods (PFM)
(Boettinger et al., 2003), molecular dynamics (MD) (Ghaffari, Zhang, & Xiao,
2017; Samanta et al., 2019), and quantum mechanics (QM) (Griffiths, 1995). In
addition, many other advanced numerical methods have been developed
recently. Peridynamics, introduced by Silling (Silling & Lehoucq, 2010; Silling,
2000), is a nonlocal integral-type numerical method for continuum mechanics.
Notably, the internal forces in the governing equations of peridynamics are
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calculated via integrations instead of derivatives. As a result, this method can
directly handle spatial discontinuities. It has been successtully applied to fracture
mechanics (Bobaru & Zhang, 2015; Silling & Askari, 2014), as well as the
studies of plastic deformation (Madenci & Oterkus, 2016), composite materials
(Yaghoobi & Chorzepa, 2017; Tuhami & Xiao, 2022), and heterogeneous
materials (Jung & Seok, 2016). Besides bond-based peridynamics (Ghaffari et al.,
2019) mentioned above, state-based peridynamics (Silling et al., 2007; Silling,
2010) has also been developed. Another recently developed method is the
lattice element method (Rizvi, Nikoli¢, & Wuttke, 2019), a numerical method
that investigates rock materials’ fracture without predefining a crack path.

Multiscale modeling (Tadmor & Miller, 2011) is an efficient approach to
studying the physical phenomena of materials when considering the inter-
active effects between multiple spatial and temporal scales. Early develop-
ment focused on the architecture of either hierarchical (i.e., sequential) or
concurrent multiscale methods. Concurrent multiscale methods (Wagner &
Liu, 2003; Xiao & Belytschko, 2004; Xiao & Hou, 2007a, 2007b; Xiao
et al., 2008; Miller & Tadmor, 2009; Rahman et al., 2017; Tadmor &
Miller, 2017) employ an appropriate model to couple multiple length/time
scales so that simulations at different scales are conducted simultaneously.
Most of the developed concurrent multiscale methods are atomistic/con-
tinuum coupling methods, in which the molecular model is overlapped with
the continuum model. However, the scale-coupling or scale-overlapping
challenge in concurrent multiscale methods doesn’t exist in hierarchical
approaches (Tadmor, Phillips, & Ortiz, 2000). Indeed, researchers pay more
attention to passing information between scales. Homogenization (Arroyo &
Belytschko, 2003; Ericksen, 1984; Xiao & Yang, 2005, 2006; Xiao,
Andersen, & Yang, 2008; Yang & Xiao, 2008), including the RVE tech-
niques (Ghaftari, Zhang, & Xiao, 2018; Grabowski et al., 2017;
Subramanian, Rai, & Chattopadhyay, 2015), has been commonly employed
to obtain effective material properties to bridge various scales. The current
state-of-the-art multiscale methodologies can be found in several review
papers (Budarapu & Rabczuk, 2017; Gooneie, Schuschnigg, & Holzer,
2017; Kanouté et al., 2009).

Riding the current wave of artificial intelligence (Al), many disciplines,
especially robotics and control (Cai, Hasanbeig, et al., 2021; Cai et al., 2021,
Zhu et al., 2022), have applied learning-based approaches. Notably, the data-
driven approach has become another powerful tool in scientific discoveries
and engineering problem-solving (Versino, Tonda, & Bronkhorst, 2017).
One of its new paradigms in materials science is discovering new materials
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(Wang et al., 2022) or improving material designs (Pollice et al., 2021) based
on the knowledge extracted from extensive materials datasets. Himanen et al.
(2019) addressed data-driven materials science’s status, challenges, and per-
spectives. Their review focused on materials data infrastructures and dis-
cussed several critical challenges in developing a material search tool.
Tripathi, Kumar, and Tripathi (2020) presented big data models for material
science data management and feature preservation in another survey. They
also reported several challenges in big data analysis, such as data privacy, data
preprocessing, and predictive algorithms.

Machine learning (ML) (Mitchell, 1997) is an approach using statistical
models to analyze data and draw inferences from its pattern. Particularly,
supervised learning models learn the relationship between the input features
and the output targets without explicit instructions. As a subset of ML, deep
learning (DL) (Schulz & Behnke, 2012) employs artificial neural networks
(ANNs) to find appropriate representations from data progressively for good
performance. Zhang and Friedrich (2003) presented one of the first reviews on
predicting specific material properties of polymer composites by using neural
networks. According to their review, a few early works have been conducted
to predict fatigue life (El Kadi & Al-Assaf, 2002), tribological properties
(Rutherford et al., 1996), and some other mechanical behaviors (Zhang, Klein,
& Friedrich, 2002). Neural networks were also used for composite processing
optimization (Heider, Piovoso, & Gillespie, 2003) and design optimization
(Ulmer II et al., 1998). In another work, Kadi (El Kadi, 2006) summarized the
implementation of ANNs in the mechanical modeling of fiber-reinforced
composite materials, including static deformation and failure behaviors
(Olivito, 2003), creep behavior (Al-Haik, Al-Haik, Garmestani, & Savran,
2004), delamination (Valoor & Chandrashekhara, 2000), crack and damage
detection (Bar, Bhat, & Murthy, 2004), impact (Chandrashekhara, Okafor, &
Jiang, 1998), and vibration control (Smyser & Chandrashekhara, 1997). Kadi
also reviewed the applications of fuzzy ANN in studies of damage and failure
in composite materials (Jarrah, Al-Assaf, & Kadi, 2002).

Recently, the applications of ML and DL have caught more and more
attention from researchers in the materials science community, and quite a
few updated reviews and discussions have been reported. Rodrigues et al.
(2021) proposed a roadmap for future research focusing on ML-aided
discovery of new materials and analysis of chemical sensing compounds.
They also elaborated on the conceptual and practical limitations when
applying big data and ML to materials science research topics. Morgan and
Jacobs (2020) reviewed some common types of ML models in materials
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science and addressed the breadth of opportunities and the best practices for
their usage. Another recent work (Choudhary et al., 2022) reviewed the
applications of DL in atomistic simulation and material imaging.

This paper aims to provide an in-depth review of ANNSs, including
physics-informed neural networks (PINN), convolutional neural networks
(CNNs), and recurrent neural networks (RINNs), and their applications in
computational materials science and engineering. We will focus on several
advanced research topics, such as multiscale modeling, forward and inverse
problems, microstructure-dependent material property prediction, and
model-free constitutive identification. In addition, we use a case study to
demonstrate the applications of neural networks in studying the material
failure of metal-ceramic spatially tailored materials. This paper also intends
to share Al insights in the materials science community and promote the
applications of ANNs in our research.

2. Artificial neural networks

2.1 Basics of artificial neural networks
A typical ANN (Dreiseitl & Ohno-Machado, 2002), shown in Fig. 1, usually
consists of an input layer, an output layer, and one or more hidden layers.
This kind of neural network is fully-connected because every neuron con-
nects all the neurons on the previous and subsequent layers. For example, we
consider a data set of N distinct training samples (x;, ;) where I € [1, N].
Each data sample has p input features (x; € R”) and ¢ outputs (), € RI).

Fig. 1 An artificial neural network (ANN).
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Therefore, the corresponding neural network to approximate the relation
between the input and the output of the data set has p + 1 neurons on the
input layer and ¢ neurons on the output layer. The hidden layers can have
various numbers of neurons, and it is assumed that each hidden layer has d
neurons in Fig. 1.

The neural network training includes a feedforward process and a
backpropagation process. During the feedforward process, every neuron in
the hidden layers transforms the outputs from the previous layer into a
different representation, the input to the next layer. There are two steps in
the transformation. For example, the input data is projected into the first
hidden layer via the weights, w, and biases, b. Then, the projected outcome
is transformed via the activation function ¢, also called the transformation
function. Mathematically, this transformation can be expressed as

p
=g w x+b)=¢| Y wxi +b|j=1..4d
i=1 (1)
It is known that the hidden layer is not limited to having only one type
of activation function in neurons. There are a variety of activation func-
tions available, and most of them are nonlinear functions, including sig-
moid, hyperbolic tangent, and radial basis functions (RBFs). Particularly,
the RBF neurons use distances between samples and centroids as inputs,
and L', L2, or L~ norms of distances can be used.
If the last hidden layer has the output 2, as shown in Fig. 1, the esti-
mated k th output of the Ith training sample is calculated as

d
M= a =) =@ X x| k=1.q

i=1 (2)
where u are weight coefficients. ¢ is the activation function for outputs,
and it is usually an identity function for regression problems. A loss
function is calculated based on the estimated output targets and the actual
outputs to evaluate the neural network’s performance. It is also called the
data loss function as

Ly=Li(ypy v - Vs Tps Do )7N) (3)

Indeed, training a neural network becomes an optimization problem to
find appropriate weight coefficients, including w and u, for minimizing the
loss function. This is usually done using the gradient descent method or its
variations in the backpropagation process.
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2.2 Physics-informed neural networks

Training a PINN (Raissi, Perdikaris, & Karniadakis, 2019) needs a training
data set and a physical-based mathematical model, i.e., partial differential
equations (PDE), shown in Fig. 2. Without a loss of generality, we assume a
system of PDEs with appropriate initial and boundary conditions as below.

ay (x, t)
ot
s.toy(x, 0) =y (), y(O0, 1) =y,@), y@L, )=y, )

+ Dly; 7] =0

S

where D is a nonlinear operator parametrized by y.

The training data can be collected by numerically solving PDEs in
Eq. (4). It shall be noted the solutions are on the discretized spatial and
temporal grids. Therefore, in addition to the input features, the neural
network in Fig. 2 may also take time and spatial coordinates on the input
layer. In most existing works of PINN, the fully-connected neural work
was employed. Therefore, the output targets §; can be predicted as
described in Eq. (2) via the feedforward process. Such approximations to y
result in not only the data loss function but also the residual of PDEs as

_0f(x, ) _
=T TP 5

where the derivatives of j, i.e., D[§;7], can be derived via the automatic
difterentiation approach. Consequently, the physics loss function is defined

,"model parameters s
‘ Model's '\ i
' governing \:
automatic equations |:

. differentiation (e.g., PDE); |

: : ' initial H

g conditions; |:

" »\ boundary |:

! conditions / .

: \_ physical laws

Data Loss Physics Loss
o Function Function
optimization

Fig. 2 A physics-informed neural network (PINN).
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below, considering residuals of governing equations and initial and
boundary conditions.

Ly=L,(Ir], 170, 0) =y, () [, 170, ) =y, (O], | 7L, ) =y, (1)

(6)

Then, the total loss function, which is a combination of the data and
physics loss functions, i.e., Ly + L,, is implemented in the backpropagation
process to optimize the neural network’s weight coefficients.

It can be seen that the data loss function measures the difference between the
actual outputs and their approximations predicted by the neural network. On
the other hand, the physics loss function quantifies how close the input-output
relationship approximated by the neural network follows the physical laws.
Therefore, this neural network is physics informed. The concept of PINN has
been employed in many disciplines, including computational mechanics and
materials science, for both forward and inverse problems (Raissi et al., 2019).

2.3 Other neural networks

Other commonly used artificial neural networks include CNNs (Sainath
et al., 2015) and RNNs (Schmidhuber, 2015), which mainly aim to handle
image and time-series data, respectively. Convolution neural networks have
been proven to be very effective and successful in image recognition and
classification. Generally, an image can be represented as a matrix of pixel
values, and a color image has three channels — red, green, and blue. There-
fore, an image sample is indeed a three-dimensional tensor of shape, i.e.,
(height, width, and channels). To address a classification problem, a CNN
usually has four main operations in the feedforward prediction process:
convolution, nonlinearity, max pooling, and classification, as shown in Fig. 3.

classification
image

>
-

J U J L J
T T ¥

Convolution and nonlinearity max pooling fully-connected layers

Fig. 3 A convolutional neural network (CNN).
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During the convolution and nonlinearity operations (in a convolution
layer), the image is decomposed into overlapped image tiles via the sliding
window search, i.e., stridden convolution. Each image tile is then fed into a
small neural network with nonlinear activation functions. It shall be noted
that the same neural network is applied for every single tile individually.
The output feature map is a three-dimensional array with a smaller height
and width than the original image. If the original image is a color one, it has
a depth of three because of three channels. However, the resulting array
has a depth the same as the neural network’s filter number.

The next operation is max pooling, which is also called downsampling.
This operation consists of extracting windows from the input feature maps
(the output from the previous convolution layer) and outputting the max
value of each filter. The convolution layer and the max pooling can repeat
multiple times before reshaping the output feature map as a one-dimen-
sional array to a “fully-connected” network for prediction.

Recurrent neural networks mimic the biological intelligence procedure
that processes information incrementally while maintaining an internal
memory (i.e., state) for past information. They are often employed for
time-series data, and each data sample (i.e., time sequence) is encoded as a
2D tensor of size with time steps and input features. An RNN is a fully-
connected neural network that has states. Instead of taking a data sample at
one time, an RINN unit loops over time steps, as shown in Fig. 4.

At each time step f, the RNN considers the output from the previous
time step -1 as its current state, takes the tth input entry, and combines
them to obtain the output at time ¢. After applying the activation function,
the RNN sets the output as the state for the next time step. Such a
recursive update can be written as

y' =o' +uly=" +b) )

output

input

Fig. 4 A classical recurrent neural network (RNN) unit.
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where @ is the activation function, w and # are weight coeflicients, and b is
the bias. A few advanced RINN architectures have been proposed,
including long-short term memory (LSTM) (Sutskever, Vinyals, & Le,
2014) and gated recurrent unit (GRU) (Cho et al., 2014).

3. Applications of neural networks
3.1 ANNs in multiscale modeling

Multiscale modeling and simulation have benefited from ML and DL
methods (Alber et al., 2019), including fully connected ANNS. Le, Yvonnet,
and He (2015) employed ANNs and proposed a decoupled computational
homogenization method for nonlinear elastic materials. Their approach
computed the training samples’ effective potentials through random sampling
in the parameter space. Then, ANNs were used to approximate the surface
response and derive the macroscopic stress and tangent tensor components.
In another work, Unger and Konke (Unger & Konke, 2009) adopted ANNs
as material models in a multiscale approach to studying reinforced concrete
beams. In another work, Liu, Wu, and Koishi (2019) developed a new data-
driven multiscale method, i.e., a deep material network, to describe complex
overall material responses of heterogeneously structured composites. They
also simulated the macroscale dynamics of gas-solid mixtures by employing
information collected from microscale simulations via an ANN model
(Lu et al., 2012). White and co-workers (White et al., 2019) used a single-
layer feedforward neural network as a surrogate model to predict the elastic
response of the microscale metamaterial during the optimization of macro-
scale elastic structures. Other achievements include a multiscale multi-per-
meability poroplasticity model (Wang & Sun, 2018), a 3D architecture of a
deep material network (Liu & Wu, 2019), and ANN-assisted multiscale
analysis (Balokas, Czichon, & Rolfes, 2018).

In addition, Xiao et al. (2020) proposed an alternative data-driven
approach by using neural networks to pass information from the molecular
model to the continuum model in a hierarchical multiscale framework.
First, intensive molecular dynamics (MD) simulations were conducted to
generate the dataset in which the input features included strains and
temperature, while the output targets were stress components and material
failure mode. Then, the generated data was used to train several DL clas-
sification and regression models. Indeed, one of the important emergent
ML techniques, extreme learning machines (ELMs) (Huang, Zhu, & Siew,
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2006; Guang-Bin Huang et al., 2012) were adopted. It has been shown that
an ELM is a fast training method for Single-Layer Feed-forward Networks
(SLFNs). An SLEN has three layers of neurons. The term “Single” stands
for the only layer of linear/nonlinear neurons in the model and is the
hidden layer. Finally, the well-trained learning machines were directly
implemented in continuum simulations to predict material failure mode
and stress components. In this approach, as shown in Fig. 5, neither
constitutive relations nor effective material properties were explicitly
derived as achieved in existing hierarchical multiscale methods. The
learning machines served as “black boxes” to replace constitutive relations
and failure mode decisions in the continuum simulations. Such “black
boxes” were trained based on the dataset from molecular simulations;
therefore, the proposed scheme is physical-based and data-driven.

Xiao et al. (2021) and Tuhami and Xiao (2022) have extended the
above ML-based multiscale framework to study the mechanics of spatially
tailored materials (STMs) via FEMs or peridynamics. Spatially tailored
materials (Birman et al., 2008), also named functionally graded materials

Finite element simulation |

|

I

calculate nodal forces
[calcu : rees[€) |

Iso!ve eqns of motion I |

| update nodal displacement |

I calculate strains ] |

ailure classification?
stress regression

[ iteration done? | |

e ¢ no |

[ output and postprocess ]

MD simulations

dataset

0

Fig. 5 Hierarchical multiscale modeling enhanced by machine learning.
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(FGMs), are one of the next-generation composites for use in multi-
physical problems. They are essentially composites consisting of two or
more phases of distinct materials in which the volume fractions con-
tinuously change in space. This unique class of heterogeneous composites
offers advantages over traditional composites due to its ability to leverage
the predominant characteristics of the constituent materials and to tailor the
effective material properties according to the loading conditions and
operating temperatures. A metal-ceramic STM was considered in Ref.
Xiao et al. (2021) and studied via a hierarchical multiscale method from
micro to macro scales. Microstructure uncertainties, including particle
number, size, shape, and location, were considered during data collection
via microscale simulations. After being trained via the collected dataset, the
ANNSs for material property and failure predictions were implemented in
macroscale simulations.

3.2 PINNs in forward and inverse problems

Physics-informed neural networks have been adopted in various disciplines,
including computational materials science. For example, Haghighat et al.
(2020) demonstrated the application of PINN in solving a two-dimensional
linear elasticity problem with the following governing equations:

ao’ii

+f =0
dxj (8)
where 0 is the Cauchy stress tensor, f is the body force vector, and

i, j = 1,2. The constitutive model is

where &j; is the Kronecker delta, and 4 and g are material constants. €; is the
infinitesimal strain tensor and can be calculated as
L

575\ T 0
Xj Xi (10)

where u (x) is the displacement field.

The FEM solutions were used as the training dataset in their approach.
Each data sample had the coordinates (x) as the input features, and the
output targets included uy (x), up (x), 011 (x), 022 (x), and 0yp (x). Various
ANNs were employed/trained to predict each output variable individually.
In addition to the data loss, the physics loss function for this specific
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problem was written below based on the governing equations and the
constitutive model.

LP: @+@+ﬁ @4_8622
8x1 sz ax] aX2
+hH|+ @A+ 2wa + e — Gy

+ ‘(A+2ﬂ)€22+/1€]1—5'22‘ + |2M€12-5’12| (11)

where the output variables with tilde were predicted from ANNs. The
other variables, including &, &, &2, f;, and f, can be obtained from Eqs.

(8) and (10) as below, through automatic graph-based difterentiation (Giine
et al., 2018).

i oil; aa;;
Egzl(%+ﬁ)and fi== !
2\ ox; 0x; 0x; (12)

Then, the PINN’s weight coefficients can be updated via gradient
descent approaches during the backpropagation process. Haghighat et al.
(2020) also demonstrated that PINNs could be used to identify the model
parameters A and K, as solving an inverse problem (Raissi et al., 2019).

In another work, Zhang, Yin, and Karniadakis (2020) extended PINN
to solve identification problems of nonhomogeneous materials. In this
inverse problem, they sought to identify soft tissue material properties based
on the full-field displacement measurements under quasi-static loading. In
addition to a PINN employed to approximate the unknown material
parameters, another PINN was utilized to solve the corresponding forward
problem. Two PINNs were trained simultaneously, as shown in Fig. 6, and
the physics loss function was formulated according to the displacement
boundary conditions, the incompressibility constraints, traction boundary
conditions, and the governing equations (i.e., PDEs).

Recently, Zhang and Gu (2021) extended PINNs into digital material
problems, in which a composite, as a 3D-printable material, was considered
an assembly of material voxels. They addressed a few challenges, including
discontinuous material properties, nonlinear strain due to large deforma-
tion, and neural network accuracy. In digital material design, a material
configuration is generally a combination of step functions, and its deriva-
tives are often not available. To address this challenge, they adopted the
minimum energy criteria as the loss function of a PINN other than the
strong governing equations (i.e., PDEs). This energy-based PINN
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displacement,
pressure

material [}
parameters |

deformation
stress

spatial
coordinates

physics Ip

o
w

f weight coeeficients update

Fig. 6 Two PINNs were used in (Zhang et al., 2020) for an inverse problem.

achieved comparable accuracy to supervised ML models. In addition,
adding a hinge loss for the jacobian could enhance the proposed PINN
to approximate nonlinear strain properly.

Physics-informed neural networks were also adopted in studying crack
propagation of quasi-brittle materials under complex loading (Zheng et al.,
2022). In this work, the researchers used PINN to reconstruct the solution
of the displacement field. Without labeled data (i.e., a priori information),
the PINN based on the energy minimization principle could predict crack
propagation with incremental loading pattern and damage evolution
model. In addition, they introduced the domain decomposition method
and the finite basis algorithm to address complex boundaries and the gra-
dient pathology problem, respectively. Therefore, their approach is robust.

Furthermore, Shukla et al. (2020) applied PINN to identify and char-
acterize a surface-breaking crack in an aluminum alloy substrate material.
PINN was supervised with realistic ultrasonic surface acoustic wave data,
representing deformation on the top surface of the aluminum plate. It was
physically informed by the ultrasonic surface acoustic wave equation as an
inverse problem, i.e., the estimation of the unknown wave speed for given
acoustic wave data. In other words, the spatially varying surface wave
speeds were used as markers of characterizing/identifying the surface-
breaking crack in the aluminum alloy substrate. Moreover, they used
adaptive activation functions in training to accelerate convergence sig-
nificantly, even with highly noisy data. Using a small portion (i.e., 10-20%
of the total data) of the wave data, PINN accurately predicted the wave



Artificial neural networks and their applications in computational materials science 15

speed aftected by the crack in the substrate, verifying the efficiency of the
PINN by reducing the cost and time of the data acquiring process.

3.3 CNNs in microstructure quantification

Since CNNs have been successfully employed in image processing, they
were also recently used in computational materials science to quantify the
microstructure of materials (especially composite materials) for predicting
material properties. Previous approaches (Torquato & Haslach, 2002)
utilized n-point spatial correlations (Kroner, 1977), which could effectively
quantify the local neighborhoods in material microstructure as features to
measure material properties. However, the number of features could be
practically infinite when considering the complete set of possible local
neighborhood configurations.

One of the pioneering works (Cecen et al., 2018) aimed to address this
core challenge in constructing material process-structure-property linkages
for new material design and improvement by using CNNs. In their
approach, a 3D CNN was employed to learn the salient features of the
material microstructures for material property predictions as a regression
problem. Specifically, they collected 5900 microstructure images and
conducted finite element simulations to calculate material properties for
each microstructure. Each microstructure image consisted of 51 X 51 X 51
cuboidal voxels and was convolved with 32 filters. The filter size was
10 X 10 % 10, which was informed by spatial statistics. The rectifier func-
tion was used as the activation function. It shall be noted that average
pooling was used instead of the max pooling as in conventional CNNs.
After getting 256 features, linear regression was conducted to estimate the
effective material property.

In a similar work, Rao and Liu (2020) proposed a three-dimensional
CNN, shown in Fig. 7, as a homogenization surrogate model to predict the
anisotropic effective material properties for microscale RVEs with random
inclusions. A high-fidelity dataset was generated by using FEM simulations,
and the trained CNN was capable of capturing the microstructural features
of RVEs. Instead of predicting each material property with individual
CNNg, a single 3D-CNN was employed to estimate all material stiffness
and position components for the studied heterogeneous composites. They
also discussed uncertainty quantification and the model’s transferability. In
another similar work (Mianroodi et al., 2022), a CNN took the nanos-
tructured configurations as input and predicted the corresponding elasticity
tensor. Other CNN-enhanced modeling and simulations include stress field
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—/ fully-connected layers
L S J effective stiffness
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Fig. 7 A 3D-CNN (Rao & Liu, 2020) for estimating effective anisotropic material
properties.

prediction in composites (Bhaduri, Gupta, & Graham-Brady, 2022) and
optimizing material structures (Yilin, Fuh Ying Hsi, & Wen Feng, 2021).

During the data collection in approaches similar to the above-men-
tioned works (Cecen et al., 2018), computationally expensive physics-
based simulation tools (e.g., FEM) were usually employed to calculate the
effective material properties for given microstructures. Such a forward
model may not be practical for microstructure design problems in which
the target properties are usually achieved via an iterative process. Mann and
Kalidindi (2022) combined the microstructure-sensitive design (MSD)
framework with the CNN-based surrogate model to reduce the compu-
tational cost. They introduced the microstructure hull concept in MSD and
used 2-point spatial correlation maps as inputs in the CNN. Such a pro-
posed strategy made exploring the complete search space of possible
material properties feasible.

3.4 RNNs in material constitutive identification

Many previous works employed ANNs (Akbari, Mirzadeh, & Cabrera,
2015; Sabokpa et al., 2012; Singh, Rajput, & Mehta, 2016) to approximate
constitutive modeling at various strain rates and high temperatures.
However, most nonlinear constitutive relationships are stress/strain-history
dependent. In other words, the predicted stress depends on the current
deformation and the deformation history. More input features that can
capture stress/strain history need to be included to address this issue.
Furukawa and Hoffman (2004) used an ANN in FEM to conduct cyclic
plastic analysis. The inputs in their neural networks included the current
and two previous states of the back stress and inelastic strain, while the
output was the increment of the back stress. Similar works include a hybrid
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multilayer perceptron neural network approach to describe the statistical
scatter of cyclic stress-strain curves (Janezi¢, Klemenc, & Fajdiga, 2010).

Since RNNs have advantages over ANNs in analyzing time-series
data, they have been a better alternative approach to approximate stress-
strain-time relationships. An early work done by Oeser and Freitag (2009)
utilized an RNN with the input of previous load (stress) increments to
estimate the new displacement (strain) increment for the studies of
rheological materials. It shall be noted that the training data was collected
from creep simulations. In another work, Freitag, Graf, and Kaliske
(2013) employed RINNs as a complete or part of the material model
in fuzzy FEM simulations. They assumed that the material parameters in
numerical simulations were uncertain. Time-dependent stress and strain
were modeled as fuzzy processes (Moller & Beer, 2004), which were
discretized via time discretization and a-level discretization. Then, an
RNN was developed to map fuzzy strain processes onto fuzzy stress
processes, and it was applied to describe time-dependent material beha-
viors in FEM simulations.

Zopt and Kaliske (2017) coupled an RNN to the micro-sphere
approach to approximate the model-free characterization of elastic and
inelastic materials, including uncured natural rubber. Such coupling could
address the issue that material testing cannot cover the complete stress state
space. Therefore, reliable training of the proposed neural network was
achieved. Recently, Stocker et al. (2022) proposed a novel training algo-
rithm for RNN to be more robust. The algorithm could generate adver-
sarial examples based on the neural network prediction errors, i.e., the loss
function. Consequently, the neural network could yield reliable material
representations even when providing perturbed inputs. Specifically, GRU,
an advanced RNN, was used in their approach.

4. A case study
4.1 Metal-ceramic spatially tailored composite materials

In this case study, we consider metal-ceramic STMs to generate the dataset
and then employ various neural networks to predict material properties and
mechanical behaviors. The STM materials are Ti(Ti-6Al-4V)-TiB, com-
posites, and material properties are listed in Table 1 (Wiley, Manning, &
Hunter, 1969; American Society for Metals., 1979; Munro, 2000). We
only consider the room temperature (20 °C) in this case study.
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Table 1 Material properties of Ti (Ti-6Al-4V) and TiB, at 20 °C.

Young's Poisson’s Density Tensile

modulus ratio v p (kg/m®) strength

E (GPa) 0:(GPa)
Ti (Ti-6Al-4V) 106.2 0.298 4357 1.17
TiB, 495.4 0.100 4505 3.73

We use the ceramic volume fraction (CVF) to represent the composition of
ceramic in the studied STMs, which can be modeled as continuously
variable composition materials. Particularly, the CVF can be expressed as a
function of coordinates to indicate the difference between metal and
ceramic at a particular spatial location in the STM. For example, in a
Ti-TiB, plate, if the volume fraction varies along with the plate thickness,
it can be written below as a power-law distribution.

vr(z) = v+ (v — Vo)(i)n

h (13)

where h is the total thickness, and 2 is the thickness coordinate between
two surfaces z = 0 and z = h. In addition, vy and vy are the CVFs at two
surfaces. It shall be noted that 7 is the control parameter for the ceramic
content distribution. If choosing n = 1, there is a linear distribution of
ceramic volume fraction along the thickness. On the other hand, ifn = 2, a
nonlinear (i.e., quadratic) distribution exists, as shown in Fig. 8. The metal
(T1i) is the matrix material when the CVF is less than 50%. After the CVF
exceeds 50%, the matrix material switches to ceramic (TiB,).

There may be more than one directional material variation in STM
structures. Generally, Eq. (13) can be revised below for a two-dimensional
graded material with a rectangular geometry.

vr(x, y) = vo + (11 — vo) [ﬂx (5)” + 775(%)”)] (14)

where x and y are the coordinates of arbitrary material points taking one
corner of the rectangle as the origin, w and h are the total width and height,
and 7); and »; are parameters controlling the ceramic content and profile in
each direction. vy and vy are the minimum and maximum CVFs in the
material, and they are usually 0 and 1, respectively.
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Fig. 8 Metal-ceramics STMs: (A) CVF distributions and (B) an STM plate.

4.2 Peridynamics

In this case study, we will use bond-based peridynamics (Silling &
Lehoucq, 2010; Silling, 2000) to model and simulate STMs at the
microscale. Peridynamics is a nonlocal model of classical continuum
mechanics. However, the governing equations, i.e., the partial differential
equations, are reformulated below by replacing the derivative terms with
volume integrals of force densities.

piiGe. ) = [ 0. & 0dVi + b, ) (15)

where o is the material density, ii is the second time derivative of the
displacement vector, i.e., the acceleration vector, and b is the body force
density vector. In bond-based peridynamics, the simulation domain
is discretized into material points with finite volumes. The pairwise force
density vector, f, corresponds to the deformation of bonds between point

x and material points in its horizon, i.e., x’ € H,. § and 7) represent the
relative position vector and the relative displacement vector, respectively,
and they can be defined below, as shown in Fig. 9.

E=x"—x, m=u(,t) — u(x, ) (16)

The force density can be calculated from bond strain s and bond
rotation ¥ (Zhu & Ni, 2017) as

S & )=csn+xy (17)
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Reference configuration

Deformed configuration

Fig. 9 Reference and deformed configurations in bond-based peridynamics.

where

(g + &l — NN
- €l (18)

n=m+&/ln+ &l (19)

s@, §)

1
Yy, §) = ”—5”77'(1— nen) 20)

¢ and x are the first and second micromoduli. Assuming an elastic material
has Young’s modulus E and Poisson’s ratio v, the micromoduli for plane
strain problems can be derived as
_ 6E _ 6E (1 — 4v)
781+ v)(1 = 2v)’ 8> (1 + v)(1 — 2v)

21

It shall be noted that the metal-ceramic STMs have various CVFs spa-
tially at the macroscale. However, it is assumed that the CVF is a constant at
each macroscale material point. In other words, each microscale model of
STM has a constant CVF. All microscale models are the two-dimension
domain of 30 um X 30 um, assuming plane strain. The simulation domain is
discretized with 2601 (51 X 51) material points for peridynamics. According
to the CVF, the material points are randomly assigned as either metal or
ceramic.

In addition, 1-2% porosity (Patil et al., 2019) is added to the microscale
configuration by randomly selecting a small number of material points and
removing them to generate vacancies. The number of vacancies follows the
Poisson point distribution (Xiao et al., 2008). Fig. 10 illustrates two
microscale STM configurations with 25% CVF and two with 50% CVF. In
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(b) 50% CVF

Fig. 10 Microscale configurations of STM.

the microstructure configurations, gray represents metal, black represents
ceramic, and white represents vacancy.

In the peridynamic model, we choose Ax = Ay = 0.6 um and the
horizon radius § = 1.6Ax. Since we consider metal-ceramic STMs in this
study, there are three different types of bonds: metal-ceramic, metal-metal,
and ceramic-ceramic. According to the material properties listed in
Table 1, the first and second micromoduli can be calculated as in Table 2.
They are calculated via Eq. (21) for metal-metal and ceramic-ceramic
bonds. The prototype micro-elastic brittle (PMB) material model is
employed, and the critical stretches, $, are computed based on the material
tensile strength. In addition, the corresponding parameters for metal-

ceramic bonds are derived via the combining rule. For example, the first
GPa

o

micromodulus of metal-ceramic bonds is ¢, = /¢, ¢. = 622.55
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Table 2 First and second micromoduli in peridynamics models.

Metal-metal Ceramic- Metal-ceramic bond
bond ceramic bond
GPa 326.01 1188.83 622.55
um?
GPa 47.94 756.53 190.44
K um?
s 0.011 0.008 0.0094

4.3 Data collection

The microscale configurations vary at the same CVF. Therefore, 25 simu-
lations are conducted at each CVF between 1% and 99% at a 1% increment.
The model is subject to the uniaxial tension in each simulation by applying
the prescribed displacement on the top and fixing the bottom. Since the
enforcement of boundary conditions cannot be directly applied to the
boundary material points in peridynamics, fictitious walls (Ghaffari et al.,
2019) are applied to eliminate such “edge softening” phenomena (Nishawala
& Ostoja-Starzewski, 2017). A low strain rate is maintained, so the simu-
lation results (e.g., strain-stress relations) can be used for quasi-static analyses.
The stress is calculated by dividing the vertical component of the total bond
force by the area of the middle cross-section. The Young’s modulus is
calculated from the slope of a strain-stress curve at 0.005% strain. The highest
stress at the stress-strain curve is the tensile strength.

It is observed that the failure strength follows the Gaussian distribution
at a particular CVF. Table 3 illustrates the statistical characteristics of failure
strength at three different CVFs: 25%, 50%, and 75%. Obviously, the
composite with a higher CVF has a higher mean failure strength and a
larger standard deviation.

4.4 Deep learning predictive models

In the work of (Tuhami and Xiao, 2022), peridynamics was employed at
the microscale to study the mechanical behaviors of metal-ceramic com-
posites at various CVFs. The generated data were used to train multiple
machine learning models to predict material properties, including Young’s
modulus, Poisson’s ratio, and tensile strength, taking the CVF as the input.
The well-trained predictive models were then implemented in continuum
mechanics simulations at the macroscale. In those machine learning
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Table 3 Statistics of failure strength (GPa) at different CVFs.

Ceramic volume fracture 25% 50% 75%
Mean 0.956 1.290 1.880
Standard deviation 0.048 0.053 0.076

models, fully-connected neural networks were employed. They took the
CVF as the input feature and the material properties as the output target.
Therefore, they were regression models. In this case study, we utilize the
same way to generate the data. However, not only the CVF but also the
image of the microstructure is used as the input feature. Consequently, in
addition to ANN as a material failure classification model, CNN is utilized
as a regression model to predict tensile strength.

4.4.1 Failure probability prediction via ANN

During the data collection, 25 tensile simulations are conducted at each
CVF, and various tensile strengths are obtained due to the microstructure
uncertainties. In other words, although the composites have the same CVF,
they fail at different strains. According to the strain-stress histories collected
from microscale simulations, we can approximate the likelihood of failure
occurrence at a particular strain. Consequently, we use a binary map to
represent the failure probability in the strain-CVF space, as plotted in
Fig. 11. The white domain indicates a 100% probability of material failure
in the figure, while the black domain indicates non-failure. However, there
is no clear decision boundary to distinguish failure/non-failure domains but
rather a fuzzy interface, representing material failure with a probability
between 0% and 100%.

Indeed, the corresponding dataset has 154,025 data samples in which
the strain and CVF are in the input features while the output is material
failure or non-failure, represented by “1” or “0”, respectively. Instead of
developing a binary classification model, we employ and train a fully
connected ANN to predict the failure probability. The neural network
comprises two hidden layers (128 and 64 neurons) with the “relu” acti-
vation function. In addition, the “sigmoid” activation function is employed
in the output layer. Fig. 12 shows the material failure probability map that
the ANN predictive model generated in the strain-CVF space. The gray
area at the interface of failure/non-failure domains represents the change in
the failure probability.
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Fig. 11 A binary map representing the failure likelihood approximated from the

collected data.
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Fig. 12 Failure probability map generated via ANN classification model.

4.4.2 Tensile strength prediction via CNN

Table 3 shows that failure strength can vary at the same CVF due to

microstructure uncertainties. Indeed, CNN may extract the microstructure

features so that the failure strength can be deterministically predicted. There

are 2525 microscale configurations generated during the data collection.
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Fig. 13 Strength (GPa) predictions of the test data.

We use those images as the inputs, and the corresponding failure strengths
are the outputs. 5% of the dataset is randomly selected as the test set. The
others are split into training and validation sets with a ratio of 85:15.

The CNN consists of three convolutional and max pooling layers. Each
convolutional layer employs a 3 by 3 kernel. The numbers of filters are 32,
64, and 128, respectively, for convolutional layers. The max pooling uses a
2 by 2 max filter in each layer. After flattening, the fully connected neural
network has two hidden layers with 64 and 32 neurons before the output
layer. The “relu” activation function is utilized except for the output layer.
After training, the coefficient of determination is 0.985 calculated from the
test set. Compared to the actual outputs in the test set, the predictions are
shown in Fig. 13, in which the diagonal line represents the ideal prediction.

5. Conclusions

This paper briefly introduced ANNs and some variations, such as
PINNs, CNNs, and RNNs. We also reviewed the applications of those
neural networks on some advanced material science research topics,
including multiscale modeling, inverse problems, material image proces-
sing, and history-dependent constitutive modeling. In addition, we con-
ducted a case study in which metal-ceramic composite materials were
modeled and simulated at the microscale to generate the dataset. Then, we
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developed and trained neural networks to predict material failure at the
macroscale. The dataset and codes of this case study are provided on the github
(https://github.com/jwli0728/ ANNs-in-Material-Science). We believe that,
with computer and computer technology development, the further devel-
opment of AI/ML/DL algorithms will enhance scientific understanding in
different disciplines, including materials discovery and design.
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