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Abstract

Current advances in artificial intelligence (AI), especially machine learning and deep

learning, provide an alternative approach to problem-solving for engineers and sci-

entists in various disciplines, including materials science. Artificial neural networks

(ANNs), including their variations as convolutional neural networks (CNNs) and

recurrent neural networks (RNNs), have become one of the most effective machine

learning approaches. This paper comprehensively reviews ANNs and their applications

in different computational materials science research topics, such as multiscale

modeling, microstructure-dependent material properties, and model-free constitutive

relationships. In addition, we intend to share AI insights in the materials science

community and promote the applications of ANNs in our research.

1. Introduction

Considerable effort has been dedicated to developing next-genera-

tion materials (Peng et al., 2017; Ray & Cooney, 2018) and structures for

use in multiscale and multi-physical problems. In particular, advanced

materials promote such platforms by coupling the predominant material

properties to create multifunctional composites with enhanced mechanical,

thermal, and other material capabilities. However, understanding such

complex phenomena is highly dependent on systematic and accurate

estimations of the effective physical properties, if possible. Therefore, rapid

advancement requires numerical modeling and simulations capable of

quickly and accurately determining such properties. Furthermore, com-

putation has assisted the materials science community in various achieve-

ments as an important discovery tool, including rapid process development,

quick microstructural analysis, fast property evaluation, and significant

performance improvement.

Traditional computational methods have been extensively used to study

physical phenomena at different length and time scales independently (Attarian

& Xiao, 2022). Those methods include finite element methods (FEMs)

(Belytschko, Liu, & Moran, 2000), meshfree particle methods (MPM) (Li &

Liu, 2002; Rabczuk, Belytschko, & Xiao, 2004), phase-field methods (PFM)

(Boettinger et al., 2003), molecular dynamics (MD) (Ghaffari, Zhang, & Xiao,

2017; Samanta et al., 2019), and quantum mechanics (QM) (Griffiths, 1995). In

addition, many other advanced numerical methods have been developed

recently. Peridynamics, introduced by Silling (Silling & Lehoucq, 2010; Silling,

2000), is a nonlocal integral-type numerical method for continuum mechanics.

Notably, the internal forces in the governing equations of peridynamics are
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calculated via integrations instead of derivatives. As a result, this method can

directly handle spatial discontinuities. It has been successfully applied to fracture

mechanics (Bobaru & Zhang, 2015; Silling & Askari, 2014), as well as the

studies of plastic deformation (Madenci & Oterkus, 2016), composite materials

(Yaghoobi & Chorzepa, 2017; Tuhami & Xiao, 2022), and heterogeneous

materials (Jung & Seok, 2016). Besides bond-based peridynamics (Ghaffari et al.,

2019) mentioned above, state-based peridynamics (Silling et al., 2007; Silling,

2010) has also been developed. Another recently developed method is the

lattice element method (Rizvi, Nikolić, & Wuttke, 2019), a numerical method

that investigates rock materials’ fracture without predefining a crack path.

Multiscale modeling (Tadmor & Miller, 2011) is an efficient approach to

studying the physical phenomena of materials when considering the inter-

active effects between multiple spatial and temporal scales. Early develop-

ment focused on the architecture of either hierarchical (i.e., sequential) or

concurrent multiscale methods. Concurrent multiscale methods (Wagner &

Liu, 2003; Xiao & Belytschko, 2004; Xiao & Hou, 2007a, 2007b; Xiao

et al., 2008; Miller & Tadmor, 2009; Rahman et al., 2017; Tadmor &

Miller, 2017) employ an appropriate model to couple multiple length/time

scales so that simulations at different scales are conducted simultaneously.

Most of the developed concurrent multiscale methods are atomistic/con-

tinuum coupling methods, in which the molecular model is overlapped with

the continuum model. However, the scale-coupling or scale-overlapping

challenge in concurrent multiscale methods doesn’t exist in hierarchical

approaches (Tadmor, Phillips, & Ortiz, 2000). Indeed, researchers pay more

attention to passing information between scales. Homogenization (Arroyo &

Belytschko, 2003; Ericksen, 1984; Xiao & Yang, 2005, 2006; Xiao,

Andersen, & Yang, 2008; Yang & Xiao, 2008), including the RVE tech-

niques (Ghaffari, Zhang, & Xiao, 2018; Grabowski et al., 2017;

Subramanian, Rai, & Chattopadhyay, 2015), has been commonly employed

to obtain effective material properties to bridge various scales. The current

state-of-the-art multiscale methodologies can be found in several review

papers (Budarapu & Rabczuk, 2017; Gooneie, Schuschnigg, & Holzer,

2017; Kanouté et al., 2009).

Riding the current wave of artificial intelligence (AI), many disciplines,

especially robotics and control (Cai, Hasanbeig, et al., 2021; Cai et al., 2021;

Zhu et al., 2022), have applied learning-based approaches. Notably, the data-

driven approach has become another powerful tool in scientific discoveries

and engineering problem-solving (Versino, Tonda, & Bronkhorst, 2017).

One of its new paradigms in materials science is discovering new materials
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(Wang et al., 2022) or improving material designs (Pollice et al., 2021) based

on the knowledge extracted from extensive materials datasets. Himanen et al.

(2019) addressed data-driven materials science’s status, challenges, and per-

spectives. Their review focused on materials data infrastructures and dis-

cussed several critical challenges in developing a material search tool.

Tripathi, Kumar, and Tripathi (2020) presented big data models for material

science data management and feature preservation in another survey. They

also reported several challenges in big data analysis, such as data privacy, data

preprocessing, and predictive algorithms.

Machine learning (ML) (Mitchell, 1997) is an approach using statistical

models to analyze data and draw inferences from its pattern. Particularly,

supervised learning models learn the relationship between the input features

and the output targets without explicit instructions. As a subset of ML, deep

learning (DL) (Schulz & Behnke, 2012) employs artificial neural networks

(ANNs) to find appropriate representations from data progressively for good

performance. Zhang and Friedrich (2003) presented one of the first reviews on

predicting specific material properties of polymer composites by using neural

networks. According to their review, a few early works have been conducted

to predict fatigue life (El Kadi & Al-Assaf, 2002), tribological properties

(Rutherford et al., 1996), and some other mechanical behaviors (Zhang, Klein,

& Friedrich, 2002). Neural networks were also used for composite processing

optimization (Heider, Piovoso, & Gillespie, 2003) and design optimization

(Ulmer II et al., 1998). In another work, Kadi (El Kadi, 2006) summarized the

implementation of ANNs in the mechanical modeling of fiber-reinforced

composite materials, including static deformation and failure behaviors

(Olivito, 2003), creep behavior (Al-Haik, Al-Haik, Garmestani, & Savran,

2004), delamination (Valoor & Chandrashekhara, 2000), crack and damage

detection (Bar, Bhat, & Murthy, 2004), impact (Chandrashekhara, Okafor, &

Jiang, 1998), and vibration control (Smyser & Chandrashekhara, 1997). Kadi

also reviewed the applications of fuzzy ANN in studies of damage and failure

in composite materials (Jarrah, Al-Assaf, & Kadi, 2002).

Recently, the applications of ML and DL have caught more and more

attention from researchers in the materials science community, and quite a

few updated reviews and discussions have been reported. Rodrigues et al.

(2021) proposed a roadmap for future research focusing on ML-aided

discovery of new materials and analysis of chemical sensing compounds.

They also elaborated on the conceptual and practical limitations when

applying big data and ML to materials science research topics. Morgan and

Jacobs (2020) reviewed some common types of ML models in materials
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science and addressed the breadth of opportunities and the best practices for

their usage. Another recent work (Choudhary et al., 2022) reviewed the

applications of DL in atomistic simulation and material imaging.

This paper aims to provide an in-depth review of ANNs, including

physics-informed neural networks (PINN), convolutional neural networks

(CNNs), and recurrent neural networks (RNNs), and their applications in

computational materials science and engineering. We will focus on several

advanced research topics, such as multiscale modeling, forward and inverse

problems, microstructure-dependent material property prediction, and

model-free constitutive identification. In addition, we use a case study to

demonstrate the applications of neural networks in studying the material

failure of metal-ceramic spatially tailored materials. This paper also intends

to share AI insights in the materials science community and promote the

applications of ANNs in our research.

2. Artificial neural networks

2.1 Basics of artificial neural networks

A typical ANN (Dreiseitl & Ohno-Machado, 2002), shown in Fig. 1, usually

consists of an input layer, an output layer, and one or more hidden layers.

This kind of neural network is fully-connected because every neuron con-

nects all the neurons on the previous and subsequent layers. For example, we

consider a data set of N distinct training samples x y( , )I I
where I N[1, ].

Each data sample has p input features (x RI
p) and q outputs (y R

I
q).

Fig. 1 An artificial neural network (ANN).
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Therefore, the corresponding neural network to approximate the relation

between the input and the output of the data set has +p 1 neurons on the

input layer and q neurons on the output layer. The hidden layers can have

various numbers of neurons, and it is assumed that each hidden layer has d

neurons in Fig. 1.

The neural network training includes a feedforward process and a

backpropagation process. During the feedforward process, every neuron in

the hidden layers transforms the outputs from the previous layer into a

different representation, the input to the next layer. There are two steps in

the transformation. For example, the input data is projected into the first

hidden layer via the weights, w, and biases, b. Then, the projected outcome

is transformed via the activation function φ, also called the transformation

function. Mathematically, this transformation can be expressed as

= + = + = …

=

( )h w x b w x b j d1j j j
T

j j
i

p

ij i j

1 (1)

It is known that the hidden layer is not limited to having only one type

of activation function in neurons. There are a variety of activation func-

tions available, and most of them are nonlinear functions, including sig-

moid, hyperbolic tangent, and radial basis functions (RBFs). Particularly,

the RBF neurons use distances between samples and centroids as inputs,

and L1, L2, or L∞ norms of distances can be used.

If the last hidden layer has the output z, as shown in Fig. 1, the esti-

mated k th output of the Ith training sample is calculated as

= = = …

=

( )y u z u z k q˜ 1Ik o k
T

o
i

d

ik i

1 (2)

where u are weight coefficients.
o
is the activation function for outputs,

and it is usually an identity function for regression problems. A loss

function is calculated based on the estimated output targets and the actual

outputs to evaluate the neural network’s performance. It is also called the

data loss function as

= … …L L y y y y y y( , , , , )d d N N1 2 1 2 (3)

Indeed, training a neural network becomes an optimization problem to

find appropriate weight coefficients, including w and u, for minimizing the

loss function. This is usually done using the gradient descent method or its

variations in the backpropagation process.
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2.2 Physics-informed neural networks

Training a PINN (Raissi, Perdikaris, & Karniadakis, 2019) needs a training

data set and a physical-based mathematical model, i.e., partial differential

equations (PDE), shown in Fig. 2. Without a loss of generality, we assume a

system of PDEs with appropriate initial and boundary conditions as below.

+ =

= = =

y x t

t
D y

x y t y t y L t y t

( , )
[ ; ] 0

s. t. y(x, 0) y ( ), (0, ) ( ), ( , ) ( )
L0 0

(4)

where D is a nonlinear operator parametrized by .

The training data can be collected by numerically solving PDEs in

Eq. (4). It shall be noted the solutions are on the discretized spatial and

temporal grids. Therefore, in addition to the input features, the neural

network in Fig. 2 may also take time and spatial coordinates on the input

layer. In most existing works of PINN, the fully-connected neural work

was employed. Therefore, the output targets y
I
can be predicted as

described in Eq. (2) via the feedforward process. Such approximations to y

result in not only the data loss function but also the residual of PDEs as

= +r
y x t

t
D y

( , )
[ ; ].

(5)

where the derivatives of y , i.e., D y[ ; ], can be derived via the automatic

differentiation approach. Consequently, the physics loss function is defined

Fig. 2 A physics-informed neural network (PINN).
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below, considering residuals of governing equations and initial and

boundary conditions.

=L L r y x y x y t y t y L t y t(| |, | ( , 0) ( )|, | (0, )
¯

( )|, | ( , )
¯

( )|)p p L0 0

(6)

Then, the total loss function, which is a combination of the data and

physics loss functions, i.e., +L Ld p, is implemented in the backpropagation

process to optimize the neural network’s weight coefficients.

It can be seen that the data loss function measures the difference between the

actual outputs and their approximations predicted by the neural network. On

the other hand, the physics loss function quantifies how close the input-output

relationship approximated by the neural network follows the physical laws.

Therefore, this neural network is physics informed. The concept of PINN has

been employed in many disciplines, including computational mechanics and

materials science, for both forward and inverse problems (Raissi et al., 2019).

2.3 Other neural networks

Other commonly used artificial neural networks include CNNs (Sainath

et al., 2015) and RNNs (Schmidhuber, 2015), which mainly aim to handle

image and time-series data, respectively. Convolution neural networks have

been proven to be very effective and successful in image recognition and

classification. Generally, an image can be represented as a matrix of pixel

values, and a color image has three channels – red, green, and blue. There-

fore, an image sample is indeed a three-dimensional tensor of shape, i.e.,

(height, width, and channels). To address a classification problem, a CNN

usually has four main operations in the feedforward prediction process:

convolution, nonlinearity, max pooling, and classification, as shown in Fig. 3.

Fig. 3 A convolutional neural network (CNN).
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During the convolution and nonlinearity operations (in a convolution

layer), the image is decomposed into overlapped image tiles via the sliding

window search, i.e., stridden convolution. Each image tile is then fed into a

small neural network with nonlinear activation functions. It shall be noted

that the same neural network is applied for every single tile individually.

The output feature map is a three-dimensional array with a smaller height

and width than the original image. If the original image is a color one, it has

a depth of three because of three channels. However, the resulting array

has a depth the same as the neural network’s filter number.

The next operation is max pooling, which is also called downsampling.

This operation consists of extracting windows from the input feature maps

(the output from the previous convolution layer) and outputting the max

value of each filter. The convolution layer and the max pooling can repeat

multiple times before reshaping the output feature map as a one-dimen-

sional array to a “fully-connected” network for prediction.

Recurrent neural networks mimic the biological intelligence procedure

that processes information incrementally while maintaining an internal

memory (i.e., state) for past information. They are often employed for

time-series data, and each data sample (i.e., time sequence) is encoded as a

2D tensor of size with time steps and input features. An RNN is a fully-

connected neural network that has states. Instead of taking a data sample at

one time, an RNN unit loops over time steps, as shown in Fig. 4.

At each time step t, the RNN considers the output from the previous

time step t-1 as its current state, takes the tth input entry, and combines

them to obtain the output at time t. After applying the activation function,

the RNN sets the output as the state for the next time step. Such a

recursive update can be written as

= + +( )y w x u y bt T t T t 1 (7)

Fig. 4 A classical recurrent neural network (RNN) unit.
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where is the activation function, w and u are weight coefficients, and b is

the bias. A few advanced RNN architectures have been proposed,

including long-short term memory (LSTM) (Sutskever, Vinyals, & Le,

2014) and gated recurrent unit (GRU) (Cho et al., 2014).

3. Applications of neural networks

3.1 ANNs in multiscale modeling

Multiscale modeling and simulation have benefited from ML and DL

methods (Alber et al., 2019), including fully connected ANNs. Le, Yvonnet,

and He (2015) employed ANNs and proposed a decoupled computational

homogenization method for nonlinear elastic materials. Their approach

computed the training samples’ effective potentials through random sampling

in the parameter space. Then, ANNs were used to approximate the surface

response and derive the macroscopic stress and tangent tensor components.

In another work, Unger and Könke (Unger & Könke, 2009) adopted ANNs

as material models in a multiscale approach to studying reinforced concrete

beams. In another work, Liu, Wu, and Koishi (2019) developed a new data-

driven multiscale method, i.e., a deep material network, to describe complex

overall material responses of heterogeneously structured composites. They

also simulated the macroscale dynamics of gas-solid mixtures by employing

information collected from microscale simulations via an ANN model

(Lu et al., 2012). White and co-workers (White et al., 2019) used a single-

layer feedforward neural network as a surrogate model to predict the elastic

response of the microscale metamaterial during the optimization of macro-

scale elastic structures. Other achievements include a multiscale multi-per-

meability poroplasticity model (Wang & Sun, 2018), a 3D architecture of a

deep material network (Liu & Wu, 2019), and ANN-assisted multiscale

analysis (Balokas, Czichon, & Rolfes, 2018).

In addition, Xiao et al. (2020) proposed an alternative data-driven

approach by using neural networks to pass information from the molecular

model to the continuum model in a hierarchical multiscale framework.

First, intensive molecular dynamics (MD) simulations were conducted to

generate the dataset in which the input features included strains and

temperature, while the output targets were stress components and material

failure mode. Then, the generated data was used to train several DL clas-

sification and regression models. Indeed, one of the important emergent

ML techniques, extreme learning machines (ELMs) (Huang, Zhu, & Siew,
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2006; Guang-Bin Huang et al., 2012) were adopted. It has been shown that

an ELM is a fast training method for Single-Layer Feed-forward Networks

(SLFNs). An SLFN has three layers of neurons. The term “Single” stands

for the only layer of linear/nonlinear neurons in the model and is the

hidden layer. Finally, the well-trained learning machines were directly

implemented in continuum simulations to predict material failure mode

and stress components. In this approach, as shown in Fig. 5, neither

constitutive relations nor effective material properties were explicitly

derived as achieved in existing hierarchical multiscale methods. The

learning machines served as “black boxes” to replace constitutive relations

and failure mode decisions in the continuum simulations. Such “black

boxes” were trained based on the dataset from molecular simulations;

therefore, the proposed scheme is physical-based and data-driven.

Xiao et al. (2021) and Tuhami and Xiao (2022) have extended the

above ML-based multiscale framework to study the mechanics of spatially

tailored materials (STMs) via FEMs or peridynamics. Spatially tailored

materials (Birman et al., 2008), also named functionally graded materials

Fig. 5 Hierarchical multiscale modeling enhanced by machine learning.
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(FGMs), are one of the next-generation composites for use in multi-

physical problems. They are essentially composites consisting of two or

more phases of distinct materials in which the volume fractions con-

tinuously change in space. This unique class of heterogeneous composites

offers advantages over traditional composites due to its ability to leverage

the predominant characteristics of the constituent materials and to tailor the

effective material properties according to the loading conditions and

operating temperatures. A metal-ceramic STM was considered in Ref.

Xiao et al. (2021) and studied via a hierarchical multiscale method from

micro to macro scales. Microstructure uncertainties, including particle

number, size, shape, and location, were considered during data collection

via microscale simulations. After being trained via the collected dataset, the

ANNs for material property and failure predictions were implemented in

macroscale simulations.

3.2 PINNs in forward and inverse problems

Physics-informed neural networks have been adopted in various disciplines,

including computational materials science. For example, Haghighat et al.

(2020) demonstrated the application of PINN in solving a two-dimensional

linear elasticity problem with the following governing equations:

+ =

x
f 0

ij

j
i

(8)

where is the Cauchy stress tensor, f is the body force vector, and

=i j, 1,2. The constitutive model is

µ= + 2ij ij kk ij (9)

where ij is the Kronecker delta, and and µ are material constants. ij is the

infinitesimal strain tensor and can be calculated as

= +
u

x

u

x

1

2
ij

i

j

j

i (10)

where u x( ) is the displacement field.

The FEM solutions were used as the training dataset in their approach.

Each data sample had the coordinates (x) as the input features, and the

output targets included u x( )1 , u x( )2 , x( )11 , x( ),22 and x( )12 . Various

ANNs were employed/trained to predict each output variable individually.

In addition to the data loss, the physics loss function for this specific
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problem was written below based on the governing equations and the

constitutive model.

µ

= + + + +

+ + + +

L
x x

f
x x

f |( 2 ) |

p
11

1

12

2
1

12

1

22

2

2 11 22 11

µ µ+ + + +|( 2 ) | |2 |22 11 22 12 12 (11)

where the output variables with tilde were predicted from ANNs. The

other variables, including f, , ,11 22 12 1
, and f

2
can be obtained from Eqs.

(8) and (10) as below, through automatic graph-based differentiation (Güne

et al., 2018).

= + =
u

x

u

x
f

x

1

2
andij

i

j

j

i
i

ij

j (12)

Then, the PINN’s weight coefficients can be updated via gradient

descent approaches during the backpropagation process. Haghighat et al.

(2020) also demonstrated that PINNs could be used to identify the model

parameters and µ, as solving an inverse problem (Raissi et al., 2019).

In another work, Zhang, Yin, and Karniadakis (2020) extended PINN

to solve identification problems of nonhomogeneous materials. In this

inverse problem, they sought to identify soft tissue material properties based

on the full-field displacement measurements under quasi-static loading. In

addition to a PINN employed to approximate the unknown material

parameters, another PINN was utilized to solve the corresponding forward

problem. Two PINNs were trained simultaneously, as shown in Fig. 6, and

the physics loss function was formulated according to the displacement

boundary conditions, the incompressibility constraints, traction boundary

conditions, and the governing equations (i.e., PDEs).

Recently, Zhang and Gu (2021) extended PINNs into digital material

problems, in which a composite, as a 3D-printable material, was considered

an assembly of material voxels. They addressed a few challenges, including

discontinuous material properties, nonlinear strain due to large deforma-

tion, and neural network accuracy. In digital material design, a material

configuration is generally a combination of step functions, and its deriva-

tives are often not available. To address this challenge, they adopted the

minimum energy criteria as the loss function of a PINN other than the

strong governing equations (i.e., PDEs). This energy-based PINN

Artificial neural networks and their applications in computational materials science 13



achieved comparable accuracy to supervised ML models. In addition,

adding a hinge loss for the jacobian could enhance the proposed PINN

to approximate nonlinear strain properly.

Physics-informed neural networks were also adopted in studying crack

propagation of quasi-brittle materials under complex loading (Zheng et al.,

2022). In this work, the researchers used PINN to reconstruct the solution

of the displacement field. Without labeled data (i.e., a priori information),

the PINN based on the energy minimization principle could predict crack

propagation with incremental loading pattern and damage evolution

model. In addition, they introduced the domain decomposition method

and the finite basis algorithm to address complex boundaries and the gra-

dient pathology problem, respectively. Therefore, their approach is robust.

Furthermore, Shukla et al. (2020) applied PINN to identify and char-

acterize a surface-breaking crack in an aluminum alloy substrate material.

PINN was supervised with realistic ultrasonic surface acoustic wave data,

representing deformation on the top surface of the aluminum plate. It was

physically informed by the ultrasonic surface acoustic wave equation as an

inverse problem, i.e., the estimation of the unknown wave speed for given

acoustic wave data. In other words, the spatially varying surface wave

speeds were used as markers of characterizing/identifying the surface-

breaking crack in the aluminum alloy substrate. Moreover, they used

adaptive activation functions in training to accelerate convergence sig-

nificantly, even with highly noisy data. Using a small portion (i.e., 10–20%

of the total data) of the wave data, PINN accurately predicted the wave

Fig. 6 Two PINNs were used in (Zhang et al., 2020) for an inverse problem.
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speed affected by the crack in the substrate, verifying the efficiency of the

PINN by reducing the cost and time of the data acquiring process.

3.3 CNNs in microstructure quantification

Since CNNs have been successfully employed in image processing, they

were also recently used in computational materials science to quantify the

microstructure of materials (especially composite materials) for predicting

material properties. Previous approaches (Torquato & Haslach, 2002)

utilized n-point spatial correlations (Kröner, 1977), which could effectively

quantify the local neighborhoods in material microstructure as features to

measure material properties. However, the number of features could be

practically infinite when considering the complete set of possible local

neighborhood configurations.

One of the pioneering works (Cecen et al., 2018) aimed to address this

core challenge in constructing material process-structure-property linkages

for new material design and improvement by using CNNs. In their

approach, a 3D CNN was employed to learn the salient features of the

material microstructures for material property predictions as a regression

problem. Specifically, they collected 5900 microstructure images and

conducted finite element simulations to calculate material properties for

each microstructure. Each microstructure image consisted of 51 × 51 × 51

cuboidal voxels and was convolved with 32 filters. The filter size was

10 × 10 × 10, which was informed by spatial statistics. The rectifier func-

tion was used as the activation function. It shall be noted that average

pooling was used instead of the max pooling as in conventional CNNs.

After getting 256 features, linear regression was conducted to estimate the

effective material property.

In a similar work, Rao and Liu (2020) proposed a three-dimensional

CNN, shown in Fig. 7, as a homogenization surrogate model to predict the

anisotropic effective material properties for microscale RVEs with random

inclusions. A high-fidelity dataset was generated by using FEM simulations,

and the trained CNN was capable of capturing the microstructural features

of RVEs. Instead of predicting each material property with individual

CNNs, a single 3D-CNN was employed to estimate all material stiffness

and position components for the studied heterogeneous composites. They

also discussed uncertainty quantification and the model’s transferability. In

another similar work (Mianroodi et al., 2022), a CNN took the nanos-

tructured configurations as input and predicted the corresponding elasticity

tensor. Other CNN-enhanced modeling and simulations include stress field

Artificial neural networks and their applications in computational materials science 15



prediction in composites (Bhaduri, Gupta, & Graham-Brady, 2022) and

optimizing material structures (Yilin, Fuh Ying Hsi, & Wen Feng, 2021).

During the data collection in approaches similar to the above-men-

tioned works (Cecen et al., 2018), computationally expensive physics-

based simulation tools (e.g., FEM) were usually employed to calculate the

effective material properties for given microstructures. Such a forward

model may not be practical for microstructure design problems in which

the target properties are usually achieved via an iterative process. Mann and

Kalidindi (2022) combined the microstructure-sensitive design (MSD)

framework with the CNN-based surrogate model to reduce the compu-

tational cost. They introduced the microstructure hull concept in MSD and

used 2-point spatial correlation maps as inputs in the CNN. Such a pro-

posed strategy made exploring the complete search space of possible

material properties feasible.

3.4 RNNs in material constitutive identification

Many previous works employed ANNs (Akbari, Mirzadeh, & Cabrera,

2015; Sabokpa et al., 2012; Singh, Rajput, & Mehta, 2016) to approximate

constitutive modeling at various strain rates and high temperatures.

However, most nonlinear constitutive relationships are stress/strain-history

dependent. In other words, the predicted stress depends on the current

deformation and the deformation history. More input features that can

capture stress/strain history need to be included to address this issue.

Furukawa and Hoffman (2004) used an ANN in FEM to conduct cyclic

plastic analysis. The inputs in their neural networks included the current

and two previous states of the back stress and inelastic strain, while the

output was the increment of the back stress. Similar works include a hybrid

Fig. 7 A 3D-CNN (Rao & Liu, 2020) for estimating effective anisotropic material
properties.
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multilayer perceptron neural network approach to describe the statistical

scatter of cyclic stress-strain curves (Janežič, Klemenc, & Fajdiga, 2010).

Since RNNs have advantages over ANNs in analyzing time-series

data, they have been a better alternative approach to approximate stress-

strain-time relationships. An early work done by Oeser and Freitag (2009)

utilized an RNN with the input of previous load (stress) increments to

estimate the new displacement (strain) increment for the studies of

rheological materials. It shall be noted that the training data was collected

from creep simulations. In another work, Freitag, Graf, and Kaliske

(2013) employed RNNs as a complete or part of the material model

in fuzzy FEM simulations. They assumed that the material parameters in

numerical simulations were uncertain. Time-dependent stress and strain

were modeled as fuzzy processes (Möller & Beer, 2004), which were

discretized via time discretization and α-level discretization. Then, an

RNN was developed to map fuzzy strain processes onto fuzzy stress

processes, and it was applied to describe time-dependent material beha-

viors in FEM simulations.

Zopf and Kaliske (2017) coupled an RNN to the micro-sphere

approach to approximate the model-free characterization of elastic and

inelastic materials, including uncured natural rubber. Such coupling could

address the issue that material testing cannot cover the complete stress state

space. Therefore, reliable training of the proposed neural network was

achieved. Recently, Stöcker et al. (2022) proposed a novel training algo-

rithm for RNN to be more robust. The algorithm could generate adver-

sarial examples based on the neural network prediction errors, i.e., the loss

function. Consequently, the neural network could yield reliable material

representations even when providing perturbed inputs. Specifically, GRU,

an advanced RNN, was used in their approach.

4. A case study

4.1 Metal-ceramic spatially tailored composite materials

In this case study, we consider metal-ceramic STMs to generate the dataset

and then employ various neural networks to predict material properties and

mechanical behaviors. The STM materials are Ti(Ti-6Al-4V)-TiB2 com-

posites, and material properties are listed in Table 1 (Wiley, Manning, &

Hunter, 1969; American Society for Metals., 1979; Munro, 2000). We

only consider the room temperature (20 °C) in this case study.
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We use the ceramic volume fraction (CVF) to represent the composition of

ceramic in the studied STMs, which can be modeled as continuously

variable composition materials. Particularly, the CVF can be expressed as a

function of coordinates to indicate the difference between metal and

ceramic at a particular spatial location in the STM. For example, in a

Ti-TiB2 plate, if the volume fraction varies along with the plate thickness,

it can be written below as a power-law distribution.

= +v z v v v
z

h
( ) ( )f

n

0 1 0
(13)

where h is the total thickness, and z is the thickness coordinate between

two surfaces =z 0 and =z h. In addition, v0 and v1 are the CVFs at two

surfaces. It shall be noted that n is the control parameter for the ceramic

content distribution. If choosing =n 1, there is a linear distribution of

ceramic volume fraction along the thickness. On the other hand, if =n 2, a

nonlinear (i.e., quadratic) distribution exists, as shown in Fig. 8. The metal

(Ti) is the matrix material when the CVF is less than 50%. After the CVF

exceeds 50%, the matrix material switches to ceramic (TiB2).

There may be more than one directional material variation in STM

structures. Generally, Eq. (13) can be revised below for a two-dimensional

graded material with a rectangular geometry.

= + +v x y v v v
x

w

y

h
( , ) ( )f x

n

z

n

0 1 0

x y

(14)

where x and y are the coordinates of arbitrary material points taking one

corner of the rectangle as the origin, w and h are the total width and height,

and
i
and ni are parameters controlling the ceramic content and profile in

each direction. v0 and v1 are the minimum and maximum CVFs in the

material, and they are usually 0 and 1, respectively.

Table 1 Material properties of Ti (Ti-6Al-4V) and TiB2 at 20 °C.

Young’s

modulus

E (GPa)

Poisson’s

ratio v

Density

ρ (kg/m3)

Tensile

strength

σt (GPa)

Ti (Ti-6Al-4V) 106.2 0.298 4357 1.17

TiB2 495.4 0.100 4505 3.73
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4.2 Peridynamics

In this case study, we will use bond-based peridynamics (Silling &

Lehoucq, 2010; Silling, 2000) to model and simulate STMs at the

microscale. Peridynamics is a nonlocal model of classical continuum

mechanics. However, the governing equations, i.e., the partial differential

equations, are reformulated below by replacing the derivative terms with

volume integrals of force densities.

= +pu x t f t dV b x t( , ) ( , , ) ( , )
H

x
x (15)

where is the material density, u is the second time derivative of the

displacement vector, i.e., the acceleration vector, and b is the body force

density vector. In bond-based peridynamics, the simulation domain

is discretized into material points with finite volumes. The pairwise force

density vector, f , corresponds to the deformation of bonds between point

x and material points in its horizon, i.e., x Hx. and represent the

relative position vector and the relative displacement vector, respectively,

and they can be defined below, as shown in Fig. 9.

= =x x u x t u x t, ( , ) ( , ) (16)

The force density can be calculated from bond strain s and bond

rotation (Zhu & Ni, 2017) as

= +f t c s n( , , ) (17)

Fig. 8 Metal-ceramics STMs: (A) CVF distributions and (B) an STM plate.
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where

=
+

s ( , )
( )

(18)

= + +n ( )/ (19)

= I n n( , )
1

( )
(20)

c and are the first and second micromoduli. Assuming an elastic material

has Young’s modulus E and Poisson’s ratio , the micromoduli for plane

strain problems can be derived as

=

+

=

+

c
E

v v
k

E v

v v

6

(1 )(1 2 )
,

6 (1 4 )

(1 )(1 2 )3 3

(21)

It shall be noted that the metal-ceramic STMs have various CVFs spa-

tially at the macroscale. However, it is assumed that the CVF is a constant at

each macroscale material point. In other words, each microscale model of

STM has a constant CVF. All microscale models are the two-dimension

domain of 30 µm× 30 µm, assuming plane strain. The simulation domain is

discretized with 2601 (51 × 51) material points for peridynamics. According

to the CVF, the material points are randomly assigned as either metal or

ceramic.

In addition, 1–2% porosity (Patil et al., 2019) is added to the microscale

configuration by randomly selecting a small number of material points and

removing them to generate vacancies. The number of vacancies follows the

Poisson point distribution (Xiao et al., 2008). Fig. 10 illustrates two

microscale STM configurations with 25% CVF and two with 50% CVF. In

Fig. 9 Reference and deformed configurations in bond-based peridynamics.
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the microstructure configurations, gray represents metal, black represents

ceramic, and white represents vacancy.

In the peridynamic model, we choose µ= =x y m0.6 and the

horizon radius = x1.6 . Since we consider metal-ceramic STMs in this

study, there are three different types of bonds: metal-ceramic, metal-metal,

and ceramic-ceramic. According to the material properties listed in

Table 1, the first and second micromoduli can be calculated as in Table 2.

They are calculated via Eq. (21) for metal-metal and ceramic-ceramic

bonds. The prototype micro-elastic brittle (PMB) material model is

employed, and the critical stretches, s, are computed based on the material

tensile strength. In addition, the corresponding parameters for metal-

ceramic bonds are derived via the combining rule. For example, the first

micromodulus of metal-ceramic bonds is = =
µ

c c c 622.55mc m c

GPa

m
3
.

Fig. 10 Microscale configurations of STM.
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4.3 Data collection

The microscale configurations vary at the same CVF. Therefore, 25 simu-

lations are conducted at each CVF between 1% and 99% at a 1% increment.

The model is subject to the uniaxial tension in each simulation by applying

the prescribed displacement on the top and fixing the bottom. Since the

enforcement of boundary conditions cannot be directly applied to the

boundary material points in peridynamics, fictitious walls (Ghaffari et al.,

2019) are applied to eliminate such “edge softening” phenomena (Nishawala

& Ostoja-Starzewski, 2017). A low strain rate is maintained, so the simu-

lation results (e.g., strain-stress relations) can be used for quasi-static analyses.

The stress is calculated by dividing the vertical component of the total bond

force by the area of the middle cross-section. The Young’s modulus is

calculated from the slope of a strain-stress curve at 0.005% strain. The highest

stress at the stress-strain curve is the tensile strength.

It is observed that the failure strength follows the Gaussian distribution

at a particular CVF. Table 3 illustrates the statistical characteristics of failure

strength at three different CVFs: 25%, 50%, and 75%. Obviously, the

composite with a higher CVF has a higher mean failure strength and a

larger standard deviation.

4.4 Deep learning predictive models

In the work of (Tuhami and Xiao, 2022), peridynamics was employed at

the microscale to study the mechanical behaviors of metal-ceramic com-

posites at various CVFs. The generated data were used to train multiple

machine learning models to predict material properties, including Young’s

modulus, Poisson’s ratio, and tensile strength, taking the CVF as the input.

The well-trained predictive models were then implemented in continuum

mechanics simulations at the macroscale. In those machine learning

Table 2 First and second micromoduli in peridynamics models.

Metal-metal

bond

Ceramic-

ceramic bond

Metal-ceramic bond

µ( )c
GPa

m
3

326.01 1188.83 622.55

µ( )GPa

m
3

47.94 756.53 190.44

s 0.011 0.008 0.0094
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models, fully-connected neural networks were employed. They took the

CVF as the input feature and the material properties as the output target.

Therefore, they were regression models. In this case study, we utilize the

same way to generate the data. However, not only the CVF but also the

image of the microstructure is used as the input feature. Consequently, in

addition to ANN as a material failure classification model, CNN is utilized

as a regression model to predict tensile strength.

4.4.1 Failure probability prediction via ANN

During the data collection, 25 tensile simulations are conducted at each

CVF, and various tensile strengths are obtained due to the microstructure

uncertainties. In other words, although the composites have the same CVF,

they fail at different strains. According to the strain-stress histories collected

from microscale simulations, we can approximate the likelihood of failure

occurrence at a particular strain. Consequently, we use a binary map to

represent the failure probability in the strain-CVF space, as plotted in

Fig. 11. The white domain indicates a 100% probability of material failure

in the figure, while the black domain indicates non-failure. However, there

is no clear decision boundary to distinguish failure/non-failure domains but

rather a fuzzy interface, representing material failure with a probability

between 0% and 100%.

Indeed, the corresponding dataset has 154,025 data samples in which

the strain and CVF are in the input features while the output is material

failure or non-failure, represented by “1” or “0”, respectively. Instead of

developing a binary classification model, we employ and train a fully

connected ANN to predict the failure probability. The neural network

comprises two hidden layers (128 and 64 neurons) with the “relu” acti-

vation function. In addition, the “sigmoid” activation function is employed

in the output layer. Fig. 12 shows the material failure probability map that

the ANN predictive model generated in the strain-CVF space. The gray

area at the interface of failure/non-failure domains represents the change in

the failure probability.

Table 3 Statistics of failure strength (GPa) at different CVFs.

Ceramic volume fracture 25% 50% 75%

Mean 0.956 1.290 1.880

Standard deviation 0.048 0.053 0.076
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4.4.2 Tensile strength prediction via CNN

Table 3 shows that failure strength can vary at the same CVF due to

microstructure uncertainties. Indeed, CNN may extract the microstructure

features so that the failure strength can be deterministically predicted. There

are 2525 microscale configurations generated during the data collection.

Fig. 11 A binary map representing the failure likelihood approximated from the
collected data.

Fig. 12 Failure probability map generated via ANN classification model.
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We use those images as the inputs, and the corresponding failure strengths

are the outputs. 5% of the dataset is randomly selected as the test set. The

others are split into training and validation sets with a ratio of 85:15.

The CNN consists of three convolutional and max pooling layers. Each

convolutional layer employs a 3 by 3 kernel. The numbers of filters are 32,

64, and 128, respectively, for convolutional layers. The max pooling uses a

2 by 2 max filter in each layer. After flattening, the fully connected neural

network has two hidden layers with 64 and 32 neurons before the output

layer. The “relu” activation function is utilized except for the output layer.

After training, the coefficient of determination is 0.985 calculated from the

test set. Compared to the actual outputs in the test set, the predictions are

shown in Fig. 13, in which the diagonal line represents the ideal prediction.

5. Conclusions

This paper briefly introduced ANNs and some variations, such as

PINNs, CNNs, and RNNs. We also reviewed the applications of those

neural networks on some advanced material science research topics,

including multiscale modeling, inverse problems, material image proces-

sing, and history-dependent constitutive modeling. In addition, we con-

ducted a case study in which metal-ceramic composite materials were

modeled and simulated at the microscale to generate the dataset. Then, we

Fig. 13 Strength (GPa) predictions of the test data.
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developed and trained neural networks to predict material failure at the

macroscale. The dataset and codes of this case study are provided on the github

(https://github.com/jwli0728/ANNs-in-Material-Science). We believe that,

with computer and computer technology development, the further devel-

opment of AI/ML/DL algorithms will enhance scientific understanding in

different disciplines, including materials discovery and design.
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