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Abstract

Machine learning (ML) has found widespread applications in predicting material properties and mechanical behaviors
across various scales in computational materials science. This data-driven approach typically relies on large datasets
to train predictive models. However, labeling data samples through numerical simulations in materials science can be
computationally intensive. In response to this challenge, this research delves into the utilization of active learning (AL)
strategies to selectively label the most informative data samples for regression and classification models. Additionally,
Several novel AL strategies were developed to enhance the development of probabilistic ML models. Through illustrative
examples, this study demonstrated that AL could significantly boost ML training efficiency by labeling only a small subset
of data samples while achieving exceptional model performance.

Keywords Active learning - Molecular dynamics - Peridynamics - Machine learning

1 Introduction

The emergence of Artificial Intelligence (Al), particularly
Machine Learning (ML) and Deep Learning (DL), has revo-
lutionized computational approaches in materials science
[1]. Early studies have demonstrated the versatility of Arti-
ficial Neural Networks (ANNSs) in predicting material prop-
erties [2], evaluating fatigue life [3], analyzing crack and
damage [4], and approximating dynamic mechanical behav-
iors [5]. Moreover, ANNs have been pivotal in optimizing
manufacturing processes [6] and facilitating design improve-
ments [7]. They have been seamlessly integrated into mul-
tiscale modeling and simulations, enabling the transfer of
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information across different spatial scales to enhance our
understanding of material behavior [8—10]. ML and DL
techniques have further accelerated the discovery of novel
materials and the analysis of chemical sensing compounds
[11]. Recent reviews such as [12, 13] offered comprehensive
insights into these advancements. However, employing data-
driven approaches in computational materials science often
entails extensive data generation through numerical mode-
ling and simulations [14—16], which can be time-consuming.
Therefore, optimizing data generation processes to minimize
redundant computations is crucial.

Active Learning (AL) [17] can effectively address the
above-mentioned issue. It is a subfield of ML designed
to identify and label the most informative samples from a
large pool of unlabeled data for labeling, thereby achieving
maximum model performance with minimal data usage. AL
operates under different scenarios: pool-based [18], stream-
based [19], and membership query synthesis-based [20]. In
pool-based AL, the algorithm selects informative samples
from a pool containing all available unlabeled samples. In
contrast, stream-based AL processes and selects valuable
samples sequentially from a continuous stream of data.
Membership query synthesis-based AL, on the other hand,
can generate unlabeled samples within the input space with-
out a predefined pool. This paper focuses on pool-based AL,
which is particularly well-suited for datasets in materials
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science. Notably, the effectiveness of pool-based AL largely
depends on the query strategies employed to identify the
most informative samples. These strategies can be broadly
categorized into approaches suitable for classification tasks
[21-24] and those tailored for regression tasks [25-28].
AL has broad applications in different fields, including
visual data processing, Natural Language Processing
(NLP), gene expression, and more [29]. In visual data
processing, for example, Yuan et al. [30] demonstrated
that AL could be employed to selectively annotate video
sequences, significantly enhancing the performance of
Convolutional Neural Network (CNN) models for visual
tracking while reducing labeling costs. AL has also
made significant inroads into NLP. A recent example by
Schroder [31] investigated the performance of uncertainty-
based query strategies in transformer-based language
models for text classification. The study demonstrated
that traditional strategies, previously considered less
effective, achieved notable success with transformers.
For gene expression, Begum et al. [32] explored the
use of an AL model integrated with a support vector
machine (SVM) and a feature-selection algorithm called
Symmetrical Uncertainty (SU). This approach was
applied to identify biomarkers in cancer gene expression
data, enhancing the accuracy of cancer predictions while
also reducing the labeling cost and effort involved in
the analysis. Furthermore, Xiang et al. [33] proposed
an AL approach that selected experimental points close
to the limit state surface (LSS) from the Monte Carlo
population. The authors innovatively integrated a weighted
sampling technique to ensure that these selected points are
uniformly distributed. This method significantly advanced
the application of AL in structural reliability analysis.
AL has also shown significant promise in materials
science, with various applications tailored to specific
goals. Lookman et al.’s review paper [34] highlighted
the effectiveness of AL coupled with adaptive sampling
to streamline high-throughput density functional theory
calculations for data labeling. Notable achievements
included the discovery of piezoelectrics with substantial
electrostrains [35] and the development of surrogate
models to optimize optoelectronic devices [36]. In a
recent study by Farache et al. [37], AL showcased its
power in identifying multiple principal component
alloys (MPCAs) with high melting temperatures through
molecular dynamics (MD) simulations. Their work
introduced a fully autonomous workflow that utilized
Random Forests within the AL framework to manage the
inherent uncertainties in MD simulations. This approach
enabled efficient exploration of the high-dimensional
compositional space of MPCAs. Additionally, Allotey et al.
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[38] proposed integrating Graph Neural Networks (GNNs)
with Gaussian Processes (GPs) in an AL framework to
predict the properties of solid-state materials. Employing
an entropy-based sampling approach, they prioritized
labeling unlabeled samples with the highest uncertainty
predicted by GP. This AL strategy, grounded in information
theory, maximizes entropy reduction across the dataset,
thereby optimizing the learning process. Remarkably, this
method has demonstrated a twofold increase in the rate of
model performance improvement on test datasets compared
to random sampling.

This paper explored various query strategies developed
by Wu et al. [39] and Lewis [40], and assessed their impacts
on the performance of ML models in studying the mechanics
of materials across different scales, comparing them with
random sampling. The study examined one-dimensional
molecule chains and three-dimensional metal-ceramics
composite materials. Both regression and classification tasks
were investigated, such as predicting material strength and
forecasting material failure. Data labeling was conducted
using MD or peridynamics simulations. The ML methods
utilized in this study included SVMs, ANNs, and CNNs.
Additionally, drawing inspiration from the previous work
[39], several novel strategies for probabilistic ML regression
models based on the Maximum Likelihood Estimation
(MLE) were designed. Uncertainties were introduced in
data collection during MD simulations, and the impact of
these AL strategies on improving model performance was
evaluated.

The research makes two primary contributions. Firstly, it
comprehensively examines the applications of greedy sam-
pling and its variations [39] for regression tasks, as well
as uncertainty sampling for classification tasks, providing
insights into their applicability and effectiveness in predict-
ing material properties and behaviors. This offers an alterna-
tive and more efficient approach to training ML models in a
data-driven manner for multiscale modeling and simulations
[1]. Secondly, the study proposes several novel AL strategies
for probabilistic ML models that output probability distribu-
tions rather than single values in regression tasks. Existing
studies, such as those by Khatamsaz et al. [41] and Allotey
et al. [38], have utilized GP for uncertainty (i.e., entropy)
estimation to select the most informative samples for labe-
ling. However, their AL frameworks were only applied to
deterministic ML models that did not provide predictions
with probabilities or confidence intervals. In contrast, our
developed AL strategies, aligned with the pool-based greedy
sampling framework, are specifically designed for probabil-
istic ML models in regression tasks. These user-friendly and
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versatile strategies allow straightforward adaptation across
various contexts.

This paper is structured as follows. After the introduction,
the Methods section provides a comprehensive overview of
the simulation techniques, including MD, peridynamics,
and various ML methods. Subsequently, the AL section
introduces several specific pool-based AL strategies
with algorithms outlined for classification and regression
tasks. Additionally, novel AL strategies are developed for
probabilistic ML models. Following this, the Examples
and Discussions section presents case studies on one-
dimensional molecule chains and three-dimensional metal-
ceramic composites, illustrating the practical applications
and benefits of these AL approaches in predicting the
material properties and mechanical behavior. Finally, the
Conclusion summarizes our findings and outlines future
research directions.

2 Methods
2.1 Molecular dynamics

MD stands as a premier simulation technique extensively
used to explore physical phenomena and mechanical
behaviors at the nanoscale [42, 43]. Fundamentally rooted
in classical Newtonian motion, MD simulations offer
detailed insights into the molecular structure and dynamics
of materials, providing valuable information on atomistic
displacements and velocities. By employing Newton’s
equations of motion, depicted below, the trajectories
of atoms and molecules can be determined, allowing
researchers to explore and understand the intricate behaviors
occurring at the molecular level.

ma; =f; = _?)_Z (1
where m; is the mass of atom i, g, is its acceleration, f, is
the atomistic force applied on atom i, r; is atom i’s positive
vector, and U is the total potential energy of the simulated
system.

After the accelerations are computed from Eq. (1), the
atomistic velocities (v;) and displacements (#;) can be
updated via time integration using the following velocity
Verlet method.

u,(t + At) = ut) + v (At + %ai(t)Atz 2)
a(t+ Af) = fi(ri(;j' Ar)) 3)

i

v(t+ A =v,(t)+ %[ai(t) +a,(t+ Ar)] )

where At is the time step.

The initial configuration of the simulated molecular
system can be achieved through relaxation, wherein the
volume and temperature of the simulated system are
maintained over a specified number of time steps. Once
the system attains thermodynamic equilibrium, the atomic
velocities conform to the Maxwell-Boltzmann distribution,
as formulated below. This distribution describes how the
velocities (or energies) of a mixture of atoms vary at a
particular temperature 7.

2 m % 2 _m?
P = | — 2T 5
v) \/;<kBT> Ve %)

where ky = 1.38 X 10722JK~!is the Boltzmann constant.

One technique for regulating the simulated system,
consisting of N atoms, to achieve a desired temperature
T, is velocity scaling. Following the update of atomistic
velocities by solving the equations of motion, i.e., Eq. (1),
the system’s absolute temperature can be determined by
calculating the average kinetic energy from the following
equation.

2
2 1 mivi
TN &2 ©

where n is the number of degrees of freedom per atom.
Subsequently, the velocities are rescaled by multiplying
a scalar of 4/T;/T. Other commonly used temperature
regulation techniques include Berendsen, Andersen, and
Nose-Hoover thermostats [44].

Moreover, the subsequent equation can be employed to
evaluate the atomic-level Cauchy stress tensor, denoted as
o, using the interatomic distances rp=r;,—r; and forces f i
obtained after MD simulations.

1
°=5v 2 ri®f; )
i,j(i#))
where V is the total volume of the simulated system, and ®
represents the tensor product of two vectors.

2.2 Peridynamics

Peridynamics [45] serves as a valuable approach for
micro- or macro-scale simulations grounded in continuum
mechanics principles. Diverging from traditional
numerical methods like finite element methods [46] or
meshfree particle methods [47], peridynamics models
reformulate the governing equation by substituting
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derivative terms with integral terms. In peridynamics,
the mechanical behavior of discrete points is determined
by interaction forces exerted by adjacent points within
a specified range, referred to as the horizon. Thus,
peridynamics is classified as a type of nonlocal method,
which also encompasses the Nonlocal Operator Method
(NOM) [48, 49] and dual-horizon peridynamics—an
advanced version of the traditional peridynamic approach
[50]. These nonlocal methods effectively address
challenges that the local continuum mechanics approach
faces, particularly in modeling complex phenomena such
as material fractures and the interfaces of composites.
Peridynamics can be categorized into bond-based and
state-based. In bond-based peridynamics, the simulation
domain is discretized into equally spaced material points
connected by virtual bonds. The equations of motion for
a material point x, considering other material points x’
within its neighborhood H(x), can be expressed as follows.

pitx. 0= [ 1.8V, +bx.0 ®)
HX

where p represents the density, u denotes the displacement,
[ denotes the pairwise bond force vector, and 5 and & are the
relative position and displacement vectors between x and x/,
respectively. Additionally, b stands for the body force vector.

The bond force can be calculated based on bond
stretch, and the bond micromodulus can be determined
from material properties. It is noteworthy that classical
bond-based peridynamics is designed exclusively for
materials with a Poisson’s ratio of 0.25. However, to
account for the effects of bond rotation in more general
materials, Zhu and Ni [51] introduced updates to the
calculation of bond force.

In this study, we employ state-based peridynamics [52],
in which the governing equation is established as:

p(X)it(x,1) = / {I[x, {x' —x) — I[X', t(x — X')}de, + b(x,1)
HX

©))
Here, the bond force vector f, as specified in Eq. (8), is
redefined as T[x, f](x’ — x) — T[x', 7](x — x'). The terms
T[x, 7]{(x’ — x) and T[x', t](x — x’) refer to the force vector
state. The vector state operator T depends on the positions
x or X’ and time 7. This operator maps the relative position
vector between any two points x and x’ onto the force vec-
tor state field. Specifically, T is characterized by the rela-
tive position 7, the relative displacement &, and the material
constants including bulk modulus K and shear modulus G.

@ Springer

Please consult Silling et al. [52] for a detailed derivation and
discussion of the methodology.

In state-based peridynamics, when the relative position
vector between two material points, represented by a bond,
is stretched beyond the critical stretch s, the bond will
break and never be rebuilt. The critical stretch in a three-
dimensional scenario is expressed as follows:

GOC

Sc =

3G + <§)4(K— )5 (10

where G represents the critical energy release rate, and 6
is the horizon size.

2.3 Machine learning

This study utilizes a range of ML methods, encompassing
SVMs, ANNSs or fully connected neural networks, CNNs,
and a probabilistic ML model grounded in MLE.

2.3.1 Support vector machines

In shallow ML, SVMs represent a class of algorithms
applicable to regression [53], classification [54], and outlier
detection tasks. In SVM nonlinear regression, the predicted
output prediction can be written as follows:

N
) = Y (ay — €K (x5, %) +b 1)
J=1

where N denotes the total number of data samples in the
training set, a represents the Lagrange multipliers used to
reformulate the SVM optimization problem into its dual
form, and b stands for the bias term.

A fundamental aspect of SVMs is their utilization of a
kernel function, denoted as K(xy, x) in Eq. (11), to measure
the similarity or proximity between two data samples in
a transformed feature space. One widely adopted kernel
function is the radial basis function (RBF) [55] as below,
which offers advantages similar to those of the K-nearest
neighbor algorithm in overcoming space complexity issues.

K(xy,x) = e’ (12)

where y represents a hyperparameter inversely proportional
to the radius of influence of samples selected by the model. It
is crucial for controlling the behavior of the kernel function.
Another essential hyperparameter for SVMs is denoted as C,
which controls the regularization strength to mitigate model
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overfitting. Proper tuning of both y and C is important to
strike the optimal bias-variance balance for SVMs.

In classification, the SVM algorithm seeks to identify
a hyperplane that effectively separates the data points
into different classes. It defines a margin to describe the
distance between the hyperplane and the data points, with
those falling within the margin boundaries termed as support
vectors. The objective of the SVM classification algorithm
is to maximize the margin. Additionally, hyperparameter
C plays a pivotal role in determining the trade-off between
maximizing the margin and minimizing classification errors.

2.3.2 Neural networks

In DL, a typical ANN [56] consists of several layers with
numerous neurons, including the input layer, one or more
hidden layers, and the output layer. The number of neurons
in the input layers depends on the number of input features,
while the output layer possesses the same number of neurons
as the dimensions of the output variable. Every neuron in
a hidden layer connects to all the neurons on the preceding
and succeeding layers, rendering the ANN a fully connected
neural network.

Let’s consider a training set comprising of N samples
with p input features and g output variables, denoted as
X; € R and y; € R? where I =1..N. A single training
step encompasses two key processes: a feedforward pass
for prediction and a backpropagation process for updating
network weights. For instance, if we consider an ANN with
a single hidden layer containing L neurons, the feedforward
process involves projecting the original input data through
each neuron into a different input feature space as

hj(x,)=¢j(wfx,)+bj j=1.L I=1.N (13)

where w represents network weights, b denotes the bias,
and ¢; is the transformation function or activation function
applied to the weighted summation of input features at each
neuron. Commonly used activation functions include the

Fig.1 Architecture of a CNN
for classification

Image

Input layer

hyperbolic tangent, rectified linear unit (ReLU) [57], and
RBF [55], among others.

Following the feedforward process, the output can be
predicted as 9; = vI'h(x;) where v are network weights
associates with the neurons in the output layer. For
regression tasks, activation functions on the neurons in the
output layer are unnecessary. However, sigmoid and softmax
functions are commonly used activation functions in the
output layer for binary and multiclass classification tasks,
respectively. Once predictions are obtained, the loss function
can be calculated, and subsequently, network weights are
updated via the gradient descent method or its variations
during the backpropagation process. This training step is
repeated iteratively until the loss function is minimized.

CNNs [58] are a class of DL algorithms primarily
designed for processing images. In contrast to conventional
ANNS, which treat every pixel of images as an independent
input feature, CNNs leverage convolution computations to
extract spatial hierarchies and local patterns from images,
aiding the network in feature recognition.

Figure 1 illustrates the typical network structure of a CNN,
which consists of input layers, convolutional layers, pooling
layers, and fully-connected layers. Generally, a CNN takes
images as two-dimensional or three-dimensional tensors and
executes four steps during the feedforward prediction process:
convolution, nonlinearity, max pooling, and prediction. The
convolution operation uses a sliding window approach to break
down the image into many overlapped small image tiles. Each
tile then undergoes processing by a small neural network,
applying nonlinear active functions to generate an output
feature map. Subsequently, the max pooling or downsampling
operation selects windows from the feature map and outputs
the maximum value of each filter. These operations of
convolution, nonlinearity, and max pooling can be repeated
several times before reshaping the output feature map into a
one-dimensional array. This array serves as the input to the
fully connected layers for final prediction, as depicted in Fig. 1.

Classification
Output

Convolutional layer

-

Max pooling layer  Fully connected layers
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2.3.3 Probabilistic machine learning

Part of this work developed and tested several new AL strat-
egies specifically for probabilistic ML models designed for
regression tasks. We employed the maximum likelihood (Max-
Like) method [59] to train a probabilistic model. Although we
used ANN as the model architecture, it’s worth noting that the
output layer did not provide single-point prediction; instead,
it offered a probability distribution encompassing all possible
output targets for a given data sample.

In a non-Bayesian-based probabilistic ML approach, the
MaxLike estimation serves as a common method to evalu-
ate whether the predicted probability distribution effectively
explains the training data without any prior knowledge. Con-
sequently, the model training transforms into a probability
density estimation problem aimed at identifying the proper
model parameters, denoted as 0, for optimal model perfor-
mance. Given a training set (x;, y;) where i = 1...n, the objec-
tive of training a probabilistic ML model is to maximize the
joint probability of all observations, i.e., data samples, within
the training set. Assuming the data samples are independent
and identically distributed, this joint probability can be for-
mulated as a likelihood function, represented as a product of
conditional probabilities in Eqn (14).

n
L(y[x:0) = P(y1, 2, -es Y |X15 X5 00 X,,30) = HP()’i|xi§9)
i=1

(14)
This study assumes the Gaussian distribution, also known
as the normal distribution, denoted as y ~ N(u, 62). The
probability density function of the Gaussian distribution
can be expressed as

(y,» - Mxl,)z

exp(-———>—) (15)

P(y;lxipy.0,) =

1
o.\2x
. V2r

where p represents the mean (or expectation) of the
distribution, and ¢ denotes the standard deviation. It is
important to note that in the scenario of a single output
variable, our probability ANN comprises two neurons in
the output layer: one neuron represents the mean, while
the other represents the standard deviation. As a result, the
model predicts a Gaussian distribution that the output target
follows for a given input data.

Since the conditional probability of each data sample is
often small, the product of numerous small probabilities may
lead to numerical instability. Hence, it is a common practice
to work with the logarithm of the likelihood function defined
in Eq. (14). Consequently, the task of training a probabilistic
ML model can be reformulated by minimizing the Negative
Log-Likelihood (NLL), depicted in Eq. (16), which serves
as the cost function.

@ Springer
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i=1

3 Active learning

In the realm of supervised ML, the quantity and quality
of labeled data samples play a crucial role in enhancing
model performance. However, labeling can be a prohibi-
tively expensive and time-consuming task in materials
science, especially when intensive computations are
required to obtain a single data sample. AL, as one of the
ML techniques, proves invaluable in strategically select-
ing training data samples for labeling. This approach
enables the ML model to achieve optimal performance
without redundant data samples, making the time required
for data labeling and the overall training feasible and
affordable.

As outlined in the introduction, AL strategies are
commonly classified into pool-based, stream-based,
and membership query synthesis-based methodologies.
This paper specifically focuses on pool-based method-
ologies, where training samples are strategically chosen
for labeling from a predefined pool of unlabeled data.
In a typical approach [60], a pool ©, of N samples is
initially generated without labels (outputs). A small sub-
set Qg of K samples can be chosen either randomly or
through a well-defined strategy. After labeling these K
samples through simulations, this subset becomes the ini-
tial training set for a base ML model. Subsequently, the
base model predicts the outputs for the remaining N — K
samples. Taking into account both the input features and
predicted outputs, the most informative E samples are
then selected and labeled. These newly labeled samples
are incorporated into the original training set, and the
model undergoes retraining. This process, as illustrated
in Fig. 2, is iterated until the model meets the established
performance criterion.
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3.1 Active learning in classification

The essence of AL lies in its query strategy, a decisive
factor in determining which data samples shall be labeled.
Various query strategies for classification tasks within
pool-based AL have been developed including uncertainty
sampling, density-based approaches, and diversity-based
approaches, among others [17]. In this study, we opt for
uncertainty sampling [40] which is one of the most com-
monly used strategies due to its simplicity and effective-
ness. It is fast and relatively easy to implement, mak-
ing it a popular choice for many practical applications.
Uncertainty sampling prioritizes training the model with
data samples near decision boundaries. Samples located
far from decision boundaries are considered to contrib-
ute less to model training. Specifically, in the context
of a binary classification task, we refrain from relying
solely on definitive predictions. Instead, we leverage the
probability of the predictive outcome as an indicator of
the uncertainty or confidence in prediction. During each
iteration, the model from the previous step predicts the
probabilities of all unlabeled samples. A subset of data
samples with prediction probabilities around 0.5, denot-
ing maximum uncertainty, is then carefully chosen. These
samples are labeled and subsequently incorporated into
the training set for the next iteration. Such a process is
summarized in Algorithm 1.

3.2 Active learning in regression

In regression problems, AL also offers various query
strategies, including Query By Committee (QBC) [25],
Expected Model Change Maximization (EMCM) [26], and
others. In our study, we adopt the Greedy Sampling (GS)
approach and its variations. In reference [39], Wu et al.
evaluated the performance of the GS approach and its
variations against other popular pool-based AL strategies
for regression QBC and EMCM. The findings indicated
that GS and its variations outperformed QBC and EMCM.
Notably, Yu and Kim [28] categorized the GS approach as
“passive learning," distinct from typical AL methodolo-
gies. This technique selects the data samples based solely
on the distribution of locations in the input feature space
without taking into account the prediction results by the
trained model. To be more specific, the distance between
an unlabeled data sample x,, in the remaining pool (Qy_g)
and a data sample x,, in the previous training set Qj with
K labeled data samples is calculated using the following
equation.

dnm = ”Xn - Xm”’ X, € QN—K’ X € QK (17)

The minimum distance from x,, to the data samples in Q,
expressed as d, = mind,,, (x,,x,,), will be taken as the prior-
X,

m

ity of this unlabeled data sample to be chosen.

Algorithm 1 Active learning for binary classification using uncertainty sampling

Require: Unlabeled data pool Qny = {x1,X2,...,xn}, Initial labeled set size K,
Expansion size F per iteration, Total iterations T'

Ensure: Trained classification model f(-)

1: Initialize:

2:  Select K samples from Q5 to create the initial labeled training set )y, either
randomly or through a well-defined strategy.

Remove Qx from Qy.
fort=1to T do

for each x,, in Qn_g do

end for

© > g hw

Train the classification model f(-) using the current Q.
Predict the probability of the true class p(x,) using f(-).

Identify E samples with p(x,,) closest to 0.5, indicating maximum uncertainty.

10: Label these F samples and add them to Q.
11: Remove these E labeled samples from Qn_ k.

12: end for
13: return f(-)

@ Springer
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Algorithm 2 Unified active learning for regression using GS, GSO, and IGS

Require: Unlabeled data pool Qy = {xi,Xa2,...,xx}, Initial labeled set size K,
Expansion size E per iteration, Total iterations T, Active learning strategy

S € {GS, GSO, IGS}
Ensure: Trained model f(+)
1: Initialize:

2:  Select K samples from y to create the initial labeled training set Qg either
randomly or through a well-defined strategy.

3:  Remove Qg from Q.

4: fort=1to T do

5: Train the model f(-) using the current training set Q.
6: for each x,, in Qn_xg do

7: if S = GS then

8: Calculate d,,,, in Equ (17) for all x,, in Q.

9: else if S = GSO then

10: Predict output for x,, using f(-) to get f(x,).
11: Calculate d,,,,, in Equ (18) for all x,, in Q.

12: else if S = IGS then

13: Predict output for x,, using f(-) to get f(x,).
14: Calculate d,,,, in Equ (19) for all x,, in Q.

15: end if

16: Compute d,, = I)l’(lin dpm.-

17: end for

18: Select E samples from Qy_ i with the highest d,, values.
19: Label these E samples and add them to Q.

20: Remove these E labeled samples from Qn_ k.

21: end for
22: return f(+)

Building upon the GS approach, Wu et al. [39] intro-
duced two novel AL approaches: Greedy Sampling on
the Output (GSO) and Improved Greedy Sampling (IGS)
on both input and output. In the GSO approach, the ML
model f(x), trained with the current set of labeled data,
predicts the outcomes of unlabeled data samples in the
remaining pool. Unlike the distance calculation in the GS
approach, represented by Eqn (17), the GSO approach
bases its distance calculation on the output rather than the
input features, as follows.

Ay = [f(X,) = Yl (18)

where y,, is the actual output of the labeled data sample x
in the current training set, Q.

Moreover, the IGS approach incorporates both the
input features and the output prediction in its distance
calculation, aiming to leverage the strengths of both the
GS and GSO approaches. The distance calculation is
expressed below.

m

dnm = ”Xn - Xm” : lf(xn) _yml (19)

@ Springer

The detailed algorithm is outlined in Algorithm 2, including
three different query strategies in AL for regression.

3.3 Active learning in probabilistic machine
learning

In ML, data is seldom perfect, often tainted by noise
stemming from natural variations or errors. Therefore,
probabilistic ML techniques are crucial for effectively
managing these uncertainties. Unlike conventional
regression models, which yield a single deterministic value,
probabilistic models offer outputs in the form of probability
distributions.

In the previous discussion, three AL strategies - GS,
GSO, and IGS - were described for ML regression models
with deterministic predictions. While the GS strategy relies
solely on the input features to select unlabeled data samples
and can thus be directly applied to probabilistic ML models,
the GSO and IGS strategies require revision due to the
probabilistic nature of model predictions. To address this,
we propose integrating the concept of Kullback-Leibler (KL)
divergence [61] into these two AL strategies.
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Originating from information theory, the KL divergence,
also known as relative entropy, serves as a statistical measure
to quantify the difference between a probability distribution
and a reference probability distribution. Denoting the
reference probability distribution of a random variable x as
0, with the density function g(x), and considering another
probability distribution P with its corresponding density
function p(x), the following equation calculates the KL
divergence, elucidating the variance in the information
conveyed by these distributions.

p(x)
px)log <%>dx (20)

oo

KLP || Q) = /

—00

While the KL divergence is inherently asymmetric, its inte-
gration into AL for probabilistic models is intuitive. After
training the ML model, f(x), based on the current train-
ing set, the predicted probability distribution f(x,,) for a

labeled data sample x,, serves as the reference distribution.
Consequently, the distance between any unlabeled sample
X, and the labeled sample on output can be evaluated using
the KL divergence. The adaptation leads to the revision of
Eqn (18) as presented below, and the resulting strategy is
termed GSO-KL.

dy = KL(F(x,) || f(X,)) @1

Likewise, Eq. (19) can be adjusted as follows, and the
resulting strategy is denoted as IGS-KL.

Il - KL(F(x,) Il f(x,,)) 22)

dnm = ”Xn — X

Apart from these modifications, the remainder of the
methodology closely follows the AL strategies previously
employed in regression. Additional insights are provided in
Algorithm 3.

Algorithm 3 Unified active learning for probabilistic ML using GS, GSO-KL, and IGS-KL

Require: Unlabeled data pool Qy = {xi,X2,...,xx}, Initial labeled set size K,
Expansion size E per iteration, Total iterations T, Active learning strategy

S € {GS, GSO-KL, IGS-KL}
Ensure: Trained model f(-)
1: Initialize:

2:  Select K samples from 5 to create the initial labeled training set Qy, either
randomly or through a well-defined strategy.

3:  Remove Qg from Qy.

4: fort=1to T do

5: Train the model f(-) using the current training set Q.

6: for each x,, in Qn_g do

7: if S = GS then

8: Calculate d,,,, in Equ (17) for all x,, in Q.

9: else if S = GSO-KL then

10: Predict the distribution for x,, using f() to get f(xy).
11: Predict the distribution for x,, using f(-) to get f(xm).
12: Calculate d,,,, in Eqn (21) for all x,, in Q.

13: else if S = IGS-KL then

14 Predict the distribution for x,, using f() to get f(xy).
15: Predict the distribution for x,, using f(-) to get f(x,).
16: Calculate d,,,, in Eqn (22) for all x,, in Q.

17: end if

18: Compute d,, = r;lin dpm-

19: end for "

20: Select E samples from 2 _x with the highest d,, values.

21: Label these F samples and add them to Q.

22: Remove these F labeled samples from Qy_ .

23: end for
24: return f(-)
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4 Examples and discussions

This study explored two examples of computational
modeling applied to materials science. In the first example,
we employed MD simulations to analyze the mechanical
behavior of a one-dimensional molecular chain. These
simulations enabled us to investigate how the chain responds
to different temperatures and deformation gradients.
Specifically, we utilized SVMs to forecast material failure
and stresses under varying conditions. Furthermore,
we implemented a probability ML model to predict the
probability distribution of strength. In the second example,
we conducted peridynamics simulations to study metal-
ceramic composites. This involved simulating the behavior
of composites with varying ceramic volume fractions. To
predict the tensile strength and failure of these composites,
we employed CNNs.

4.1 One-dimensional molecule chain

The first example investigated the mechanical behaviors
of a one-dimensional molecule chain, we referred to
the configuration used in our previous study [8]. The
chain consisted of 1000 atoms, each with a mass of
1.993 x 1072°kg. A periodic boundary condition was
applied. Assuming the interatomic interaction (i.e., bond)
existed only between two nearest atoms, we used the
classical Lennard—Jones (LJ) potential to approximate bond
stretch and compression between atoms 7; and r; as follows.

U . 1{ 12 1{ 7 6
=s3(2) -3(3) 9

where r; =[r;,—r;| is the deformed bond length,
€ = 1.65x 10718 ] describes the potential energy well’s
depth, and v, = 1 nm represents the undeformed bond length.

In this example, each MD simulation was conducted for
10,000 steps, with a time step of 1 fs, at a given temperature
and gradient of deformation until the simulated system
reached thermodynamic equilibrium. We employed the
canonical ensemble, in which the number of molecules, the
volume, and the temperature were maintained constants. The
overall stress was calculated and averaged every 100 time

. U(r; . .
steps using Eq. (7), where f; = diﬁ"). Each simulation

L

generated one data sample with outputs of material failure
status and stress (if no failure occurred) as labels for
classification and regression tasks, respectively.

4.1.1 Material failure classification

A classification model has been developed to predict the
failure status of this one-dimensional molecule chain. The

@ Springer

model forecasted a binary outcome, with 0 representing non-
failure and 1 indicating failure. The input features included
a temperature ranging from 50K to 3000K and a deforma-
tion gradient spanning from 1.0 to 1.1. A dataset compris-
ing 3000 data samples, evenly distributed across the input
feature space, was generated. A test set was created to assess
the model’s performance by randomly selecting 30 data sam-
ples and labeling them. Consequently, the initial pool for AL
contained 2970 unlabeled data samples.

We utilized a nonlinear SVM with RBF kernels to address
the classification problem of predicting material failure. The
training phase involved fine-tuning two crucial hyperparam-
eters: C, which balances the trade-off between the model
complexity and the tolerance for deviations from the margin,
and y, which defines the influence of a single training exam-
ple. This tuning was accomplished through cross-validation.
Specifically, we employed a grid search approach, systemati-
cally exploring a range of values for both C and y to find the
combination that resulted in the best performance on our
validation dataset. The evaluation metric for assessing the
model performance was accuracy, representing the propor-
tion of correctly predicted labels.

In this example, we employed uncertainty sampling as
the AL approach, starting with randomly selected five data
samples (i.e., K =5) from the pool. These chosen data
samples were removed from the pool and labeled through
MD simulations, forming the initial training set denoted as
Q. Following training, the model could provide probability
estimates indicating the likelihood that a new data sample
belonged to each class. This information served as a measure
of the model’s uncertainty in its predictions, a valuable
aspect for implementing uncertainty sampling strategies in
AL for classification tasks.

Specifically, in this binary classification problem, once
the initial model was obtained, we utilized it to predict the
class probabilities for all unlabeled samples in the remaining
pool. Next, we selected a data sample (i.e., E = 1) from
the pool whose prediction probability was closest to 0.5.
This sample was labeled and added to the training set. The
updated training set was used to retrain the classification
model for subsequent predictions. This iterative process
continued until the model accuracy converged. Remarkably,
we observed that a total of only 37 data samples were needed
to achieve a classification model with 100% accuracy. It is
noteworthy that our previous study [8] utilized 861 data
samples.

Figure 3 illustrates how the decision boundary evolved
with the size of the training set. Notably, data samples
selected using uncertainty sampling tended to cluster near
the true decision boundary, resulting in more efficient train-
ing. Additionally, we compared the performances of uncer-
tainty sampling and random sampling, which served as the
baseline, in Table 1. The random sampling method followed
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Table 1 The numbers of training samples needed to reach certain
accuracies

Accuracy 70% 80% 90% 95% 100%

AL with uncertainty sampling 5 7 15 24 37
ML with random sampling 5 12 15 80 192

a similar iterative process to uncertainty sampling but
selected data samples for labeling randomly at each iteration.
It’s evident from the comparison that uncertainty sampling
outperformed random sampling. Specifically, uncertainty
sampling achieved 100% accuracy with much fewer data
samples compared to random sampling, which requires five
times as many samples to reach the same level of accuracy.

4.1.2 Stress prediction
To address the stress prediction problem associated with the

one-dimensional molecular chain, we developed a regression
ML model. This model utilized the deformation gradient and

0
1.00 1.02 1.04 1.06 1.08 1.10
Deformation Gradient

° o

0
1.00 1.02 1.04 1.06 1.08 1.10
Deformation Gradient

temperature as inputs, with the output being the atomic-level
stress obtained from MD simulations using Eq. (7).

In the development of our model, we leveraged the
unlabeled data pool initially defined in Sect. 4.1.1 to form
a new set. Notably, we employed the classification model
developed in the preceding section to partition the data into
subsets of “failure” and “no failure” samples. We designated
the subset consisting of “no failure” samples as the new
unlabeled pool Q,, for this specific task, comprising 1296
samples for subsequent utilization in AL. Additionally, we
randomly selected 30 samples for labeling to form the testing
set, facilitating the evaluation of the model’s performance
during the training process.

For stress prediction, we utilized an SVM regression
model with the RBF kernel. We employed the same grid
search approach in Sect. 4.1.1 with cross-validation to
fine-tune the hyperparameters C and y. And we used
the R-squared score (or the coefficient of determination,
R2) as the metric on the testing set. To explore the
potential enhancement of AL in this regression task, we
incorporated three distinct approaches: GS, GSO, and IGS,
as detailed in Sect. 3.2.

@ Springer



588 Page 12 of 21 Y.Chenetal.
Fig.4 The evolution of model 4 — L 4 o 57
performance on the testing set (a) » Predictions o i (b) . st
using AL with the IGS query E --- Perfect Predictions /,f-, E . /,/
strategy. The numbers of data O3 ,{’ O3 . '.,’/'
samples in the training set are a o /.’; . Y - ,/
5,b6,and ¢ 10 0 e ¢

S ’ = o’
n 2 Y wn 2 7
o] 7% © /:
E ’/ & B ,l
k] I k] K
LI Y
E ’ ,/ E D
a e, ./
//‘ L l/
9 i 2 3 4 g i 2 3 4
True Stress (GPa) True Stress (GPa)
4 7
() _ -

© 7 4

a “

o3 E

-

0 A

8 -

wn 2 //:.

© A

g

e R

= 2

) 1 P

a Vi

4
}.f‘
‘/
0 1 2 3 4

We began with the GS method, initially identifying five
data samples (K = 5) closest to the centroid of the pool
Q. These samples were labeled based on MD simulation
outcomes, forming an initial training set Q. Subsequently,
following the procedure outlined in Algorithm 2, we itera-
tively selected one data sample (E = 1) with the largest d,
from the remaining pool of unlabeled data samples Q,_g,
labeled it, and incorporated it into the training set Q to
update the ML model at each iteration.

Moreover, we implemented the GSO and IGS
approaches. While GS served as the initial step for sam-
ple selection, GSO and IGS diverged in their selection
strategies after forming the initial training set with five
labeled data samples. GSO relied solely on the model’s
output, whereas IGS considered both input features and

True Stress (GPa)

model predictions. Based on the steps detailed in the
Algorithm 2, we continued to select, label, and integrate
additional samples into 4, expanding the training data-
set to update the ML model until achieving the desired
performance.

Using the IGS approach as an example, Fig. 4 dem-
onstrates how the model’s performance on the testing set
improved with an increasing number of training data sam-
ples. The diagonal line in the figure represents perfect pre-
dictions. Notably, the regression ML model achieved an
impressive R2 score of up to 0.995 with only ten training
samples, showcasing remarkable efficiency. This perfor-
mance stands out when compared to our previous study [8],
where a similar model achieved comparable performance
using 436 labeled data samples. Table 2 illustrates the

Table 2 The numbers of

- R2 score 0.900 0.950 0.970 0.990 0.995

training samples needed to

achieve specific R2 scores AL with GS 5 7 9 14
AL with GSO 5 13 14
AL with IGS 5 9 10
ML with random sampling 7 10 12 21 31
AL with IGS (training data with 1% noise) 5 6 10 11
AL with IGS (training data with 2% noise) 6 7 11 12
AL with IGS (training data with 5% noise) 5 6 9 16 17
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number of training samples required for different AL
approaches to achieve specific R2 scores. Importantly, all
of these approaches surpassed the baseline approach, which
randomly selected data samples from the pool of unlabeled
data. Furthermore, the IGS approach outperformed the other
two AL approaches because it considered the influences of
both input features and output targets on sample selections.

Furthermore, to assess the impact of noise on our AL
strategies, we conducted an experiment using the IGS
approach with an additional variation in the labeling process.
We maintained the same procedures as the standard IGS
approach but introduced artificial noise at varying levels
(1%, 2%, and 5%) to the stress values obtained from
MD simulations during the labeling step for the training
dataset and the test dataset remained unchanged to ensure
consistent evaluation. Table 2 presents the comparative
results, showing that for the IGS AL strategy, the 1% and 2%
noise has little impact on performance. However, at the 5%
noise level, there is a significant increase in the number of
samples required to achieve similar R2 scores, especially at
the high R2 score stages. These findings suggest that while
IGS demonstrates a degree of resistance to noise, higher
noise levels moderately diminish its effectiveness. Notably,
even with noise introduced, the IGS method consistently
outperforms the noise-free random sampling approach in
achieving high R2 scores with fewer samples.

4.1.3 Strength distribution prediction

To incorporate uncertainty, we introduced randomness
into the LJ potential (Eq. (23)). We assumed Gaussian
distributions for the potential energy well’s depth € and the
initial (i.e., undeformed) bond length r, with mean values
of 1.65x 107'8J and 1nm, respectively. The standard
deviations STD,,.4 varied with temperature T according to
the following relationship:

STD, e = STDpyee X (sin(4z x T,) + B) (24)

where STD, ., represented the base values of the standard
deviations for e and ry, which were 0.01 x 10718J and
0.02 nm, respectively. We set B = 1.5 to ensure that STD ;.4
remained positive. The normalized temperature 7, was
calculated as T, = (T — Ty)/(T, — T,), where T, = 50K
and T; = 3000K represented the range of temperatures
considered in this study.

We utilized the MaxLike method with an ANN
framework, as elaborated in Sect. 2.3.3, to construct a
probabilistic ML model for forecasting the distributions
of the Ultimate Tensile Strength (UTS) across various
temperatures. The ANN architecture comprised three
hidden layers and one output layer. The first hidden layer
contained 20 neurons, followed by a layer with 50 neurons,

and finally, a layer with 20 neurons. Each neuron in these
layers employed a sigmoid activation function. The output
layer of the model consisted of two neurons responsible for
predicting the mean and variance of the strength distribution,
respectively. The loss function of the ANN, derived from
Eqgs. (15) and 16), is expressed as follows. It should be
noted that this neural network lacks a dedicated validation
set, therefore, hyperparameters were tuned based on the loss
observed on the training set.

1 1

—log + 752
i=1 A /271'6% O-x,-
In our investigation of the efficacy of AL strategies within
the probabilistic ML model, we employed three distinct
approaches: GS, GSO-KL, and IGS-KL. The latter two
were specifically designed for the probabilistic ML model,
as detailed in Sect. 3.3. Initially, our dataset comprised 2951
unlabeled data samples spanning temperatures ranging from
50K to 3000K. To label a single data sample at a specific
temperature, we sampled potential parameters € and r,
from the previously described probability distributions.
Subsequently, we conducted an MD simulation to determine
the material strength, thereby assigning the label to this
particular data sample. Following the guidelines outlined in
Algorithm 3, we set K = 5 and E = 1, facilitating iterative
model training, sample selection, labeling, and incorporation
of the labeled sample into the training set. Additionally, we
included random sampling as a baseline for comparative
analysis.

To evaluate the performance of our probabilistic ML
model, we introduced a metric termed the “KL score." This
score quantifies the disparity between the predicted
probability distributions generated by the ML model and the
reference distributions obtained from MD simulations. We
selected five distinct temperatures—500 K, 1000 K, 1500 K,
2000 K, and 2500 K—for evaluation. At each temperature,
we conducted 50 MD simulations, each utilizing a sampled
potential function, to determine the strengths. Subsequently,
we derived the corresponding normal distributions, denoted
as the reference distributions Q; ~ J\/‘(MQ[, o-é[) where

LOSS =

n

(yi - ﬂxi)z (25)

i = 1...5. Conversely, the probabilistic ML model predicted

Table 3 The numbers of training samples needed to achieve specific
KL scores

KL score 0.20 0.15 0.10 0.05
AL with GS 135 149 215 >400
AL with GSO-KL 48 62 124 147
AL with IGS-KL 38 47 86 169
ML with random sampling 161 175 324 >400
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distributions, denoted as P; ~ /\f(upi,of,i), for these five
temperatures. Finally, the KL score, calculated as the
average of KL divergences in Eq. (26) across the five
specified temperatures, provided a quantitative measure of
the discrepancy between the predicted probability
distributions and the reference distributions.

o op + (p = 1g) |

Z log dii

i=1

20’3 2
(26)

KLSCOTE =

DN | —

i

Table 3 illustrates the number of training samples
required by the three AL approaches to achieve specific KL
scores in comparison to the random sampling strategy. This
comparison provides valuable insights into the effectiveness
of AL strategies in optimizing the probabilistic ML model.
It’s evident that the GS approach is not comparable to
the other AL approaches, as it doesn’t consider outputs
when selecting data samples to label. Instead, due to the
randomness of the samples, it performs similarly to random
sampling, the baseline approach. Given the variability in
predicted probability distributions across temperatures,
exploration in the output space to label data samples for ML,
model improvement is crucial. This conclusion is supported
by the similar performance improvements between the

GSO-KL and IGS-KL approaches. Furthermore, these two
new approaches developed in this paper effectively quantify
the differences in probability distributions between unlabeled
data samples and labeled training samples. Additionally, we
leveraged the IGS-KL approach to demonstrate the evolution
of ML performance across various training set sizes, as
depicted in Fig. 5.

4.2 Three-dimensional metal-ceramic composites

With its unique combination of high hardness and
exceptional wear and corrosion resistance, TiB ceramic
emerges as one of the most promising candidates for
reinforcement within the Ti matrix in Ti-TiB composites
[62]. The second example in this study addressed two
distinct tasks: predicting the UTS of Ti-TiB composites,
categorized as a regression task, and evaluating composite
failure under specific deformations, which presents a
classification challenge.

4.2.1 Computational model
TiB is renowned for its extraordinary material properties,

attributed to its unique single crystal structures [63]. Com-
posites comprising Ti and TiB can be synthesized through

Fig.5 The evolution of model 6.0
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Table 4 Material properties of TiB and Ti [66]

Material Density (Kg/ Young’s Poisson’s ratio  UTS (GPa)
m?) modulus
(GPa)
TiB 4520 428.4 0.245 28
Ti 4357 106.2 0.298 1.17

the sintering of Ti and TiB2 powders. Within the Ti matrix,
TiB has been observed as whiskers or needles, typically ori-
ented along its [010] direction [64]. As TiB is not naturally
occurring, we conducted MD simulations using a recently
developed potential function [65] to characterize its mate-
rial properties. These properties, along with Ti’s material
properties outlined in Table 4, were subsequently utilized
in peridynamics for microscale simulations.

The Ceramic Volume Fraction (CVF), which represents
the volume percentage of the TiB component relative to
the overall composite volume, significantly influences the
properties of the composite. In this example, the CVF was
considered within the range of 0% to 25% [67]. Moreover, the
spatial arrangement of TiB whiskers within the composite
is crucial. Microstructures with identical CVF values
may exhibit varying properties due to the distribution and
alignment of TiB whiskers [68]. Additionally, literature [64]
suggested that the diameters of TiB whiskers vary from 1pm
to 3pum, with an aspect ratio of 12.2 +4.3.

The Peridynamics model utilized numerous discrete,
equally spaced material points throughout the simulation
domain to handle discontinuous interfaces in composite
materials. In this study, the simulation domain was
configured as a cubic microscale measuring 42 pm X 42 um
X 42 um. Each material point, representing either Ti or TiB
particles, has a diameter of 2 um, resulting in a total of 9261
material points within the simulation domain.

To incorporate TiB whiskers into the model, we randomly
selected a material point to serve as the whisker’s starting

Fig.6 Two configurations of ( a)
Ti-TiB composite materials

with 2% CVF for Peridynam-

ics simulations. Transparent

spheres represent Ti particles,

and blue spheres and their

connecting lines represent TiB %
whiskers ;

point (referred to as the “head"). Subsequently, one of its
neighboring points was randomly designated as TiB. Those
two points established a straight line, which was extended by
selecting corresponding material points until the length fell
within the range of 15.8pum and 33 pm. Notably, to prevent
intersection, two whiskers were not allowed to intersect in
our models. In addition, the number of whiskers generated
was determined by the specified CVF. Figure 6 illustrates
two different configurations with the same CVF. This 3D
model accurately depicts the dispersion of TiB whiskers
within the composite material.

In our study, we utilized Peridigm [69, 70], an open-
source peridynamics software developed by Sandia National
Laboratories, to conduct simulations of Ti-TiB composite
materials. To define the failure criterion, we required the
critical stretch s, which could be derived by the critical
energy release rate Gy, as indicated in Eq. (10). Given
the limited research available on the properties of bulk
TiB material, determining a reliable value for G, was
challenging. In our research, we calibrated the critical stretch
sc in peridynamics simulations of pure TiB to align with
the known UTS from MD simulations, thus determining an
appropriate s.. This methodology was consistently applied
to the Ti material as well.

4.2.2 Predicting ultimate tensile strength

In this regression task, each microscale configuration repre-
sented one unlabeled data sample. When labeling this sam-
ple was required, a peridynamics simulation was conducted
on this configuration subject to uniaxial tension, and then the
UTS was determined from the resulting stress—strain curve.
As the input feature, the configuration was converted into
a 3D binary tensor with “1” and “0” representing Ti and
TiB, respectively. We employed a CNN as the regression ML
model to process the 3D binary tensor as input and predict
the UTS.

(b)

CEECCCCCCC e *

@ Springer



588 Page 16 of 21

Y.Chenetal.

The CNN architecture consisted of two convolutional lay-
ers, each followed by a max pooling layer. The convolutional
layers utilized a 3D kernel sized 3 X 3 x 3, with 16 filters
for the first layer and 32 filters for the second layer. After
each convolutional operation, max pooling with a2 X2 X 2
filter was applied to reduce the spatial dimensions. Dropout
layers with a rate of 0.25 and batch normalization were intro-
duced after each max pooling layer to prevent overfitting
and promote model generalization. Additionally, the network
comprised two dense hidden layers with 32 and 16 neurons,
respectively, with dropout layers added after each dense hid-
den layer. The ReLU activation function was utilized in all
layers except for the output layer.

Based on the average length of TiB whiskers observed
in experiments [64], a simulation model comprising 235
whiskers represented the corresponding Ti-TiB composite
with a 25% CVF. Consequently, a pool of 236 unlabeled
samples or configurations was generated for AL to assist the
CNN regression model. Each sample in the pool varies in
the number of TiB whiskers, ranging from 0 to 235, leading
to configurations with diverse CVFs between 0% and 25%.
Each microscale configuration was randomly generated
based on the specific number of TiB whiskers. Additionally,
55 configurations were randomly generated to form the
testing set, with another 55 configurations to the validation
set. The validation set is utilized to tune the hyperparameters
of the CNN model, including the number and size of layers,
dropout rate, learning rate, training epochs, and batch size.
These samples were labeled using peridynamics simulations.

In our study on AL for UTS prediction, We implemented
three strategies: GS, GSO, and IGS. Following the
procedures outlined in Algorithm 2, we set the parameters
K =5and E = 1for all AL approaches. However, we made
specific revisions to calculating the distance d,,,, on input.
Recognizing the significant influence of CVF on the material
properties of the composite, we incorporated both 3D binary
tensors and the corresponding CVFs into sample selection.
Consequently, we redefined the distance d,,,, in Eq. (17) for
the GS strategy as follows:

d,, = %, —x,|l - ICVE, — CVF,| 27)

Table 5 The numbers of training samples needed to achieve specific
R2 scores

R2 score 0.85 0.90 0.95 0.96 0.97

AL with GS 13 15 26 32 47

AL with GSO 14 17 32 55 >80

AL with IGS 12 14 25 32 58

ML with random 27 29 37 48 >80
sampling
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Similarly, the distance calculation for the IGS strategy was
adjusted:

d,, = |Ix, —x,Il - |ICVF, — CVE, | - |f(x,) =y, (28)

To highlight the efficacy of AL methodologies, we
implemented the random sampling strategy as the baseline.
This sampling procedure was divided into two steps during
each iteration. Initially, we randomly selected a number of
TiB whiskers between 0 and 235, mirroring the arbitrary
selection of a CVF. Following this, we generated a
microscale configuration incorporating the specified number
of whiskers.

Continuing with our approach for regression ML models,
we also consider the R2 score as the metric for evaluating
model performance. Table 5 illustrates the number of
training samples required by different AL approaches
and the baseline method to achieve specific R2 scores.
Overall, the GS and IGS approaches performed better. This
superiority stemmed from their ability to leverage detailed
microscale configurations as input features, providing
ample information for selecting crucial training samples.
Specifically, Fig. 7 demonstrates the enhancement of the
ML model assessment on the testing set as the size of the
training dataset increases, exemplifying the effectiveness
of the GS approach. Due to the data’s complexity, the
overall model performances did not match those of the
one-dimensional example depicted in Fig. 4. Achieving a
higher R2 score necessitates a larger training set. However,
in both examples, it’s apparent that the number of training
samples exponentially increased to enhance the ML model
performance.

Conversely, GSO’s performance exceeded the baseline
only until the R2 score reached 0.95. Beyond this point,
GSO’s effectiveness declined in comparison. This decline
could be attributed to the influence of CVF on the UTS of
composite materials. A prior study [10] demonstrated that at
low CVF, the UTS exhibits minimal variation with changes
in CVF; conversely, at higher CVF, the UTS responds more
significantly to changes in CVF. Consequently, as the vol-
ume of the training set increased, the GSO approach tended
to concentrate samples with larger CVFs, thereby limiting
the data diversity. As a result, after the R2 score reached
0.95, the performance of GSO lagged behind the baseline.
A similar influence affected the IGS approach, which failed
to match the performance of the GS approach when a high
model accuracy was required.

4.2.3 Material failure classification
This classification task aimed to determine whether a

specified composite material failed under a tension-induced
deformation gradient. Each data sample consisted of two
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inputs: the microscale configuration and the deformation
gradient. The microscale configurations were generated
following the previously described procedure, while
uniaxial deformation gradients were uniformly distributed
in the range of 1.006 to 1.016. Consequently, the dataset
comprised a total of 4720 unlabeled samples. For testing
and validation, we randomly generated 55 samples for each
set. To label a data sample, a peridynamics simulation was
conducted on the composite. This simulation commenced
from its undeformed microscale configuration and continued
until the designated deformation gradient was attained. The
resulting material failure status determined the sample’s
label: “1" indicating failure and “0" indicating non-failure.

We employed the similar CNN architecture described
in Sect. 4.2.2 to input and process the 3D binary tensor
encoded from a microscale configuration. The primary
adaptation involved concatenating the deformation gradient
with the flattened output before forwarding it through the
fully connected layer for prediction. Furthermore, the ML
model was compiled using binary cross-entropy as the loss
function, with accuracy serving as the metric for evaluating
model performance.

True UTS (GPa)

To implement AL in model training, we adopted the
uncertainty sampling query strategy, as previously dis-
cussed. By using the ‘sigmoid’ activation function in the
output layer, the ML model produced a value ranging from
0 to 1, representing the probability of material failure. A
value near 0.5 indicated greater uncertainty in the predic-
tion. Given the complexity of this classification task with
two input features, ensuring the convergence of model per-
formance necessitated a relatively larger training set com-
pared to the one-dimensional example. Balancing the com-
putational time and the efficiency of the AL process, we set
K = 10and E = 10 following Algorithm 1. Accordingly, our
AL methodology utilized the trained model to select and
label 10 new samples during each iteration.

We also assessed the baseline method for comparative
purposes, which involved randomly selecting up to 350
samples. The effectiveness of the uncertainty sampling
approach, along with the baseline results, is illustrated
Fig. 8. This visualization showcases the relationship between
the number of training data samples and the model’s
accuracy. The results unequivocally reveal a significant
advantage of the uncertainty sampling approach over the
baseline method. Specifically, the AL approach achieved
nearly 100 % accuracy with 230 data samples, while the
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random sampling required 330 samples. When the number
of training data samples was 110 or fewer, the training set
became too small for the ML model to learn the underlying
relationships effectively. At this early stage, the predictions
made by the trained model using the AL approach did not
hold much practical significance over random sampling.

5 Conclusion

This study extensively examined the application of
AL strategies within computational materials science,
particularly focusing on their role in enhancing the
efficiency of ML models for predicting material properties
and mechanical behaviors. We systematically evaluated
the effectiveness of various AL strategies, including GS
and its variations, uncertainty sampling, and several novel
approaches tailored for probabilistic ML models. These
strategies were applied across a spectrum of contexts,
ranging from traditional ML tasks to advanced probabilistic
models, encompassing one-dimensional molecule chains
and three-dimensional metal-ceramic composites in both
classification and regression tasks, which successfully
demonstrated the application of AL across different
complexities. Moreover, our AL strategies effectively
adapted to varying dataset sizes, tested in our case studies
from as few as 10 samples up to 230 samples.

Overall, our findings underscored the significant
potential of AL in boosting ML model performance, often
requiring substantially fewer training samples compared
to conventional random sampling methods. This reduction
in training samples significantly lowers labeling costs.
In our study, across five examples, the labeling costs for
AL compared to random sampling were 19.27%, 32.26%,
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36.75%, 58.75%, and 69.70%, respectively, demonstrating
substantial computational cost savings. Although AL
typically requires a smaller training set, it involves iterative
training sessions rather than the single-session traditional
methods often need. In our study, data labeling involves
time-consuming MD and peridynamics simulations. As a
result, the small size of the training set makes the training
time negligible compared to the labeling time, which further
highlights the advantage of AL in reducing computational
costs, particularly in material science where labeling
demands significant computational resources. Conversely, in
fields where labeled data is readily available and less costly
to obtain, the necessity of AL might not be as pronounced.
Specifically, uncertainty sampling for classification tasks
demonstrated an intuitive selection of samples near decision
boundaries for labeling, effectively bypassing irrelevant
samples. However, the efficacy of regression ML models
with GS, GSO, and IGS strategies exhibited variability,
likely attributed to the diverse influences of input features
or output targets on sample selection. Furthermore, our
investigation into newly developed AL strategies for
probabilistic ML regression models revealed the necessity
of considering predicted probabilistic distributions as high
entropy corresponding to high information content based on
information theory.

Looking forward, future research endeavors should
aim to refine these AL methodologies further and extend
their applications into multiscale modeling and simulation,
facilitating the efficient data-driven transmission of
information across diverse scales. Additionally, while our
study encompassed shallow ML and DL techniques such as
ANN and CNN, there is considerable merit in exploring the
applications of AL strategies in Recurrent Neural Networks
(RNNs) for sequence-to-sequence predictions.
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