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Abstract

Machine learning (ML) has found widespread applications in predicting material properties and mechanical behaviors 

across various scales in computational materials science. This data-driven approach typically relies on large datasets 

to train predictive models. However, labeling data samples through numerical simulations in materials science can be 

computationally intensive. In response to this challenge, this research delves into the utilization of active learning (AL) 

strategies to selectively label the most informative data samples for regression and classification models. Additionally, 

Several novel AL strategies were developed to enhance the development of probabilistic ML models. Through illustrative 

examples, this study demonstrated that AL could significantly boost ML training efficiency by labeling only a small subset 

of data samples while achieving exceptional model performance.

Keywords Active learning · Molecular dynamics · Peridynamics · Machine learning

1 Introduction

The emergence of Artificial Intelligence (AI), particularly 

Machine Learning (ML) and Deep Learning (DL), has revo-

lutionized computational approaches in materials science 

[1]. Early studies have demonstrated the versatility of Arti-

ficial Neural Networks (ANNs) in predicting material prop-

erties [2], evaluating fatigue life [3], analyzing crack and 

damage [4], and approximating dynamic mechanical behav-

iors [5]. Moreover, ANNs have been pivotal in optimizing 

manufacturing processes [6] and facilitating design improve-

ments [7]. They have been seamlessly integrated into mul-

tiscale modeling and simulations, enabling the transfer of 

information across different spatial scales to enhance our 

understanding of material behavior [8–10]. ML and DL 

techniques have further accelerated the discovery of novel 

materials and the analysis of chemical sensing compounds 

[11]. Recent reviews such as [12, 13] offered comprehensive 

insights into these advancements. However, employing data-

driven approaches in computational materials science often 

entails extensive data generation through numerical mode-

ling and simulations [14–16], which can be time-consuming. 

Therefore, optimizing data generation processes to minimize 

redundant computations is crucial.

Active Learning (AL) [17] can effectively address the 

above-mentioned issue. It is a subfield of ML designed 

to identify and label the most informative samples from a 

large pool of unlabeled data for labeling, thereby achieving 

maximum model performance with minimal data usage. AL 

operates under different scenarios: pool-based [18], stream-

based [19], and membership query synthesis-based [20]. In 

pool-based AL, the algorithm selects informative samples 

from a pool containing all available unlabeled samples. In 

contrast, stream-based AL processes and selects valuable 

samples sequentially from a continuous stream of data. 

Membership query synthesis-based AL, on the other hand, 

can generate unlabeled samples within the input space with-

out a predefined pool. This paper focuses on pool-based AL, 

which is particularly well-suited for datasets in materials 
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science. Notably, the effectiveness of pool-based AL largely 

depends on the query strategies employed to identify the 

most informative samples. These strategies can be broadly 

categorized into approaches suitable for classification tasks 

[21–24] and those tailored for regression tasks [25–28].

AL has broad applications in different fields, including 

visual data processing, Natural Language Processing 

(NLP), gene expression, and more [29]. In visual data 

processing, for example, Yuan et al. [30] demonstrated 

that AL could be employed to selectively annotate video 

sequences, significantly enhancing the performance of 

Convolutional Neural Network (CNN) models for visual 

tracking while reducing labeling costs. AL has also 

made significant inroads into NLP. A recent example by 

Schröder [31] investigated the performance of uncertainty-

based query strategies in transformer-based language 

models for text classification. The study demonstrated 

that traditional strategies, previously considered less 

effective, achieved notable success with transformers. 

For gene expression, Begum et  al. [32] explored the 

use of an AL model integrated with a support vector 

machine (SVM) and a feature-selection algorithm called 

Symmetrical Uncertainty (SU). This approach was 

applied to identify biomarkers in cancer gene expression 

data, enhancing the accuracy of cancer predictions while 

also reducing the labeling cost and effort involved in 

the analysis. Furthermore, Xiang et  al. [33] proposed 

an AL approach that selected experimental points close 

to the limit state surface (LSS) from the Monte Carlo 

population. The authors innovatively integrated a weighted 

sampling technique to ensure that these selected points are 

uniformly distributed. This method significantly advanced 

the application of AL in structural reliability analysis.

AL has also shown significant promise in materials 

science, with various applications tailored to specific 

goals. Lookman et  al.’s review paper [34] highlighted 

the effectiveness of AL coupled with adaptive sampling 

to streamline high-throughput density functional theory 

calculations for data labeling. Notable achievements 

included the discovery of piezoelectrics with substantial 

electrostrains [35] and the development of surrogate 

models to optimize optoelectronic devices [36]. In a 

recent study by Farache et  al. [37], AL showcased its 

power in identifying multiple principal component 

alloys (MPCAs) with high melting temperatures through 

molecular dynamics (MD) simulations. Their work 

introduced a fully autonomous workflow that utilized 

Random Forests within the AL framework to manage the 

inherent uncertainties in MD simulations. This approach 

enabled efficient exploration of the high-dimensional 

compositional space of MPCAs. Additionally, Allotey et al. 

[38] proposed integrating Graph Neural Networks (GNNs) 

with Gaussian Processes (GPs) in an AL framework to 

predict the properties of solid-state materials. Employing 

an entropy-based sampling approach, they prioritized 

labeling unlabeled samples with the highest uncertainty 

predicted by GP. This AL strategy, grounded in information 

theory, maximizes entropy reduction across the dataset, 

thereby optimizing the learning process. Remarkably, this 

method has demonstrated a twofold increase in the rate of 

model performance improvement on test datasets compared 

to random sampling.

This paper explored various query strategies developed 

by Wu et al. [39] and Lewis [40], and assessed their impacts 

on the performance of ML models in studying the mechanics 

of materials across different scales, comparing them with 

random sampling. The study examined one-dimensional 

molecule chains and three-dimensional metal-ceramics 

composite materials. Both regression and classification tasks 

were investigated, such as predicting material strength and 

forecasting material failure. Data labeling was conducted 

using MD or peridynamics simulations. The ML methods 

utilized in this study included SVMs, ANNs, and CNNs. 

Additionally, drawing inspiration from the previous work 

[39], several novel strategies for probabilistic ML regression 

models based on the Maximum Likelihood Estimation 

(MLE) were designed. Uncertainties were introduced in 

data collection during MD simulations, and the impact of 

these AL strategies on improving model performance was 

evaluated.

The research makes two primary contributions. Firstly, it 

comprehensively examines the applications of greedy sam-

pling and its variations [39] for regression tasks, as well 

as uncertainty sampling for classification tasks, providing 

insights into their applicability and effectiveness in predict-

ing material properties and behaviors. This offers an alterna-

tive and more efficient approach to training ML models in a 

data-driven manner for multiscale modeling and simulations 

[1]. Secondly, the study proposes several novel AL strategies 

for probabilistic ML models that output probability distribu-

tions rather than single values in regression tasks. Existing 

studies, such as those by Khatamsaz et al. [41] and Allotey 

et al. [38], have utilized GP for uncertainty (i.e., entropy) 

estimation to select the most informative samples for labe-

ling. However, their AL frameworks were only applied to 

deterministic ML models that did not provide predictions 

with probabilities or confidence intervals. In contrast, our 

developed AL strategies, aligned with the pool-based greedy 

sampling framework, are specifically designed for probabil-

istic ML models in regression tasks. These user-friendly and 
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versatile strategies allow straightforward adaptation across 

various contexts.

This paper is structured as follows. After the introduction, 

the Methods section provides a comprehensive overview of 

the simulation techniques, including MD, peridynamics, 

and various ML methods. Subsequently, the AL section 

introduces several specific pool-based AL strategies 

with algorithms outlined for classification and regression 

tasks. Additionally, novel AL strategies are developed for 

probabilistic ML models. Following this, the Examples 

and Discussions section presents case studies on one-

dimensional molecule chains and three-dimensional metal-

ceramic composites, illustrating the practical applications 

and benefits of these AL approaches in predicting the 

material properties and mechanical behavior. Finally, the 

Conclusion summarizes our findings and outlines future 

research directions.

2  Methods

2.1  Molecular dynamics

MD stands as a premier simulation technique extensively 

used to explore physical phenomena and mechanical 

behaviors at the nanoscale [42, 43]. Fundamentally rooted 

in classical Newtonian motion, MD simulations offer 

detailed insights into the molecular structure and dynamics 

of materials, providing valuable information on atomistic 

displacements and velocities. By employing Newton’s 

equations of motion, depicted below, the trajectories 

of atoms and molecules can be determined, allowing 

researchers to explore and understand the intricate behaviors 

occurring at the molecular level.

where m
i
 is the mass of atom i, a

i
 is its acceleration, f

i
 is 

the atomistic force applied on atom i, r
i
 is atom i’s positive 

vector, and U is the total potential energy of the simulated 

system.

After the accelerations are computed from Eq. (1), the 

atomistic velocities ( v
i
 ) and displacements ( u

i
 ) can be 

updated via time integration using the following velocity 

Verlet method.
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where Δt is the time step.

The initial configuration of the simulated molecular 

system can be achieved through relaxation, wherein the 

volume and temperature of the simulated system are 

maintained over a specified number of time steps. Once 

the system attains thermodynamic equilibrium, the atomic 

velocities conform to the Maxwell-Boltzmann distribution, 

as formulated below. This distribution describes how the 

velocities (or energies) of a mixture of atoms vary at a 

particular temperature T.

where k
B
= 1.38 × 10

−23JK−1 is the Boltzmann constant.

One technique for regulating the simulated system, 

consisting of N atoms, to achieve a desired temperature 

T
0
 is velocity scaling. Following the update of atomistic 

velocities by solving the equations of motion, i.e., Eq. (1), 

the system’s absolute temperature can be determined by 

calculating the average kinetic energy from the following 

equation.

where n is the number of degrees of freedom per atom. 

Subsequently, the velocities are rescaled by multiplying 

a scalar of 
√

T
0
∕T  . Other commonly used temperature 

regulation techniques include Berendsen, Andersen, and 

Nose-Hoover thermostats [44].

Moreover, the subsequent equation can be employed to 

evaluate the atomic-level Cauchy stress tensor, denoted as 

� , using the interatomic distances rij = ri − rj and forces f ij 

obtained after MD simulations.

where V is the total volume of the simulated system, and ⊗ 

represents the tensor product of two vectors.

2.2  Peridynamics

Peridynamics [45] serves as a valuable approach for 

micro- or macro-scale simulations grounded in continuum 

mechanics principles. Diverging from traditional 

numerical methods like finite element methods [46] or 

meshfree particle methods [47], peridynamics models 

reformulate the governing equation by substituting 
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derivative terms with integral terms. In peridynamics, 

the mechanical behavior of discrete points is determined 

by interaction forces exerted by adjacent points within 

a specified range, referred to as the horizon. Thus, 

peridynamics is classified as a type of nonlocal method, 

which also encompasses the Nonlocal Operator Method 

(NOM) [48, 49] and dual-horizon peridynamics—an 

advanced version of the traditional peridynamic approach 

[50]. These nonlocal methods effectively address 

challenges that the local continuum mechanics approach 

faces, particularly in modeling complex phenomena such 

as material fractures and the interfaces of composites. 

Peridynamics can be categorized into bond-based and 

state-based. In bond-based peridynamics, the simulation 

domain is discretized into equally spaced material points 

connected by virtual bonds. The equations of motion for 

a material point x , considering other material points �′ 

within its neighborhood H(x) , can be expressed as follows.

where � represents the density, u denotes the displacement, 

f  denotes the pairwise bond force vector, and � and � are the 

relative position and displacement vectors between x and �′ , 

respectively. Additionally, b stands for the body force vector.

The bond force can be calculated based on bond 

stretch, and the bond micromodulus can be determined 

from material properties. It is noteworthy that classical 

bond-based peridynamics is designed exclusively for 

materials with a Poisson’s ratio of 0.25. However, to 

account for the effects of bond rotation in more general 

materials, Zhu and Ni  [51] introduced updates to the 

calculation of bond force.

In this study, we employ state-based peridynamics [52], 

in which the governing equation is established as:

Here, the bond force vector f  , as specified in Eq. (8), is 

redefined as T[x, t]⟨x� − x⟩ − T[x�
, t]⟨x − x

�⟩ . The terms 

T[x, t]⟨x� − x⟩ and T[x�
, t]⟨x − x

�⟩ refer to the force vector 

state. The vector state operator T depends on the positions 

x or �′ and time t. This operator maps the relative position 

vector between any two points x and �′ onto the force vec-

tor state field. Specifically, T is characterized by the rela-

tive position � , the relative displacement � , and the material 

constants including bulk modulus K and shear modulus G. 

(8)�(x)ü(x, t) = ∫
H

x

f (�, �, t)dV
�
� + b(x, t)

(9)

�(x)ü(x, t) = ∫
H

x

�
T[x, t]⟨x� − x⟩ − T[x�

, t]⟨x − x
�⟩
�

dV
x�
+ b(x, t)

Please consult Silling et al. [52] for a detailed derivation and 

discussion of the methodology.

In state-based peridynamics, when the relative position 

vector between two material points, represented by a bond, 

is stretched beyond the critical stretch s
C

 , the bond will 

break and never be rebuilt. The critical stretch in a three-

dimensional scenario is expressed as follows:

where G
0C

 represents the critical energy release rate, and � 

is the horizon size.

2.3  Machine learning

This study utilizes a range of ML methods, encompassing 

SVMs, ANNs or fully connected neural networks, CNNs, 

and a probabilistic ML model grounded in MLE.

2.3.1  Support vector machines

In shallow ML, SVMs represent a class of algorithms 

applicable to regression [53], classification [54], and outlier 

detection tasks. In SVM nonlinear regression, the predicted 

output prediction can be written as follows:

where N denotes the total number of data samples in the 

training set, � represents the Lagrange multipliers used to 

reformulate the SVM optimization problem into its dual 

form, and b stands for the bias term.

A fundamental aspect of SVMs is their utilization of a 

kernel function, denoted as K(��, x) in Eq. (11), to measure 

the similarity or proximity between two data samples in 

a transformed feature space. One widely adopted kernel 

function is the radial basis function (RBF) [55] as below, 

which offers advantages similar to those of the K-nearest 

neighbor algorithm in overcoming space complexity issues.

where � represents a hyperparameter inversely proportional 

to the radius of influence of samples selected by the model. It 

is crucial for controlling the behavior of the kernel function. 

Another essential hyperparameter for SVMs is denoted as C, 

which controls the regularization strength to mitigate model 
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overfitting. Proper tuning of both � and C is important to 

strike the optimal bias-variance balance for SVMs.

In classification, the SVM algorithm seeks to identify 

a hyperplane that effectively separates the data points 

into different classes. It defines a margin to describe the 

distance between the hyperplane and the data points, with 

those falling within the margin boundaries termed as support 

vectors. The objective of the SVM classification algorithm 

is to maximize the margin. Additionally, hyperparameter 

C plays a pivotal role in determining the trade-off between 

maximizing the margin and minimizing classification errors.

2.3.2  Neural networks

In DL, a typical ANN [56] consists of several layers with 

numerous neurons, including the input layer, one or more 

hidden layers, and the output layer. The number of neurons 

in the input layers depends on the number of input features, 

while the output layer possesses the same number of neurons 

as the dimensions of the output variable. Every neuron in 

a hidden layer connects to all the neurons on the preceding 

and succeeding layers, rendering the ANN a fully connected 

neural network.

Let’s consider a training set comprising of N samples 

with p input features and q output variables, denoted as 

xI ∈ Rp and yI ∈ Rq where I = 1...N  . A single training 

step encompasses two key processes: a feedforward pass 

for prediction and a backpropagation process for updating 

network weights. For instance, if we consider an ANN with 

a single hidden layer containing L neurons, the feedforward 

process involves projecting the original input data through 

each neuron into a different input feature space as

where w represents network weights, b denotes the bias, 

and �j is the transformation function or activation function 

applied to the weighted summation of input features at each 

neuron. Commonly used activation functions include the 

(13)hj(xI) = �j(w
T
j
xI) + bj j = 1...L I = 1...N

hyperbolic tangent, rectified linear unit (ReLU) [57], and 

RBF [55], among others.

Following the feedforward process, the output can be 

predicted as ŷI = v
T
h(xI) where v are network weights 

associates with the neurons in the output layer. For 

regression tasks, activation functions on the neurons in the 

output layer are unnecessary. However, sigmoid and softmax 

functions are commonly used activation functions in the 

output layer for binary and multiclass classification tasks, 

respectively. Once predictions are obtained, the loss function 

can be calculated, and subsequently, network weights are 

updated via the gradient descent method or its variations 

during the backpropagation process. This training step is 

repeated iteratively until the loss function is minimized.

CNNs [58] are a class of DL algorithms primarily 

designed for processing images. In contrast to conventional 

ANNs, which treat every pixel of images as an independent 

input feature, CNNs leverage convolution computations to 

extract spatial hierarchies and local patterns from images, 

aiding the network in feature recognition.

Figure 1 illustrates the typical network structure of a CNN, 

which consists of input layers, convolutional layers, pooling 

layers, and fully-connected layers. Generally, a CNN takes 

images as two-dimensional or three-dimensional tensors and 

executes four steps during the feedforward prediction process: 

convolution, nonlinearity, max pooling, and prediction. The 

convolution operation uses a sliding window approach to break 

down the image into many overlapped small image tiles. Each 

tile then undergoes processing by a small neural network, 

applying nonlinear active functions to generate an output 

feature map. Subsequently, the max pooling or downsampling 

operation selects windows from the feature map and outputs 

the maximum value of each filter. These operations of 

convolution, nonlinearity, and max pooling can be repeated 

several times before reshaping the output feature map into a 

one-dimensional array. This array serves as the input to the 

fully connected layers for final prediction, as depicted in Fig. 1.

Fig. 1  Architecture of a CNN 

for classification
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2.3.3  Probabilistic machine learning

Part of this work developed and tested several new AL strat-

egies specifically for probabilistic ML models designed for 

regression tasks. We employed the maximum likelihood (Max-

Like) method [59] to train a probabilistic model. Although we 

used ANN as the model architecture, it’s worth noting that the 

output layer did not provide single-point prediction; instead, 

it offered a probability distribution encompassing all possible 

output targets for a given data sample.

In a non-Bayesian-based probabilistic ML approach, the 

MaxLike estimation serves as a common method to evalu-

ate whether the predicted probability distribution effectively 

explains the training data without any prior knowledge. Con-

sequently, the model training transforms into a probability 

density estimation problem aimed at identifying the proper 

model parameters, denoted as � , for optimal model perfor-

mance. Given a training set (xi, yi) where i = 1...n , the objec-

tive of training a probabilistic ML model is to maximize the 

joint probability of all observations, i.e., data samples, within 

the training set. Assuming the data samples are independent 

and identically distributed, this joint probability can be for-

mulated as a likelihood function, represented as a product of 

conditional probabilities in Eqn (14).

This study assumes the Gaussian distribution, also known 

as the normal distribution, denoted as y ∼ N(�, �2) . The 

probability density function of the Gaussian distribution 

can be expressed as

where � represents the mean (or expectation) of the 

distribution, and � denotes the standard deviation. It is 

important to note that in the scenario of a single output 

variable, our probability ANN comprises two neurons in 

the output layer: one neuron represents the mean, while 

the other represents the standard deviation. As a result, the 

model predicts a Gaussian distribution that the output target 

follows for a given input data.

Since the conditional probability of each data sample is 

often small, the product of numerous small probabilities may 

lead to numerical instability. Hence, it is a common practice 

to work with the logarithm of the likelihood function defined 

in Eq. (14). Consequently, the task of training a probabilistic 

ML model can be reformulated by minimizing the Negative 

Log-Likelihood (NLL), depicted in Eq. (16), which serves 

as the cost function.

(14)

L(y|x;�) = P(y1, y2, ..., yn|x1, x2, ..., xn;�) =

n∏

i=1

P(yi|xi;�)

(15)P(yi�xi;�xi
, �xi

) =
1

�xi

√
2�

exp(−
(yi − �xi

)2

2�2
xi

)

3  Active learning

In the realm of supervised ML, the quantity and quality 

of labeled data samples play a crucial role in enhancing 

model performance. However, labeling can be a prohibi-

tively expensive and time-consuming task in materials 

science, especially when intensive computations are 

required to obtain a single data sample. AL, as one of the 

ML techniques, proves invaluable in strategically select-

ing training data samples for labeling. This approach 

enables the ML model to achieve optimal performance 

without redundant data samples, making the time required 

for data labeling and the overall training feasible and 

affordable.

As outlined in the introduction, AL strategies are 

commonly classified into pool-based, stream-based, 

and membership query synthesis-based methodologies. 

This paper specifically focuses on pool-based method-

ologies, where training samples are strategically chosen 

for labeling from a predefined pool of unlabeled data. 

In a typical approach [60], a pool Ω
N

 of N samples is 

initially generated without labels (outputs). A small sub-

set Ω
K

 of K samples can be chosen either randomly or 

through a well-defined strategy. After labeling these K 

samples through simulations, this subset becomes the ini-

tial training set for a base ML model. Subsequently, the 

base model predicts the outputs for the remaining N − K 

samples. Taking into account both the input features and 

predicted outputs, the most informative E samples are 

then selected and labeled. These newly labeled samples 

are incorporated into the original training set, and the 

model undergoes retraining. This process, as illustrated 

in Fig. 2, is iterated until the model meets the established 

performance criterion.

(16)NLL = −

n∑

i=1

logP(yi|xi;�xi
, �xi

)

Fig. 2  Pool-based active learning process
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3.1  Active learning in classification

The essence of AL lies in its query strategy, a decisive 

factor in determining which data samples shall be labeled. 

Various query strategies for classification tasks within 

pool-based AL have been developed including uncertainty 

sampling, density-based approaches, and diversity-based 

approaches, among others [17]. In this study, we opt for 

uncertainty sampling [40] which is one of the most com-

monly used strategies due to its simplicity and effective-

ness. It is fast and relatively easy to implement, mak-

ing it a popular choice for many practical applications. 

Uncertainty sampling prioritizes training the model with 

data samples near decision boundaries. Samples located 

far from decision boundaries are considered to contrib-

ute less to model training. Specifically, in the context 

of a binary classification task, we refrain from relying 

solely on definitive predictions. Instead, we leverage the 

probability of the predictive outcome as an indicator of 

the uncertainty or confidence in prediction. During each 

iteration, the model from the previous step predicts the 

probabilities of all unlabeled samples. A subset of data 

samples with prediction probabilities around 0.5, denot-

ing maximum uncertainty, is then carefully chosen. These 

samples are labeled and subsequently incorporated into 

the training set for the next iteration. Such a process is 

summarized in Algorithm 1.

Algorithm 1  Active learning for binary classification using uncertainty sampling

3.2  Active learning in regression

In regression problems, AL also offers various query 

strategies, including Query By Committee (QBC) [25], 

Expected Model Change Maximization (EMCM) [26], and 

others. In our study, we adopt the Greedy Sampling (GS) 

approach and its variations. In reference [39], Wu et al. 

evaluated the performance of the GS approach and its 

variations against other popular pool-based AL strategies 

for regression QBC and EMCM. The findings indicated 

that GS and its variations outperformed QBC and EMCM. 

Notably, Yu and Kim [28] categorized the GS approach as 

“passive learning," distinct from typical AL methodolo-

gies. This technique selects the data samples based solely 

on the distribution of locations in the input feature space 

without taking into account the prediction results by the 

trained model. To be more specific, the distance between 

an unlabeled data sample x
n
 in the remaining pool ( Ω

N−K
 ) 

and a data sample x
m

 in the previous training set Ω
K

 with 

K labeled data samples is calculated using the following 

equation.

The minimum distance from x
n
 to the data samples in Ω

K
 , 

expressed as d
n
= min

x
m

d
nm
(x

n
, x

m
) , will be taken as the prior-

ity of this unlabeled data sample to be chosen.

(17)d
nm

= ‖x
n
− x

m
‖, x

n
∈ Ω

N−K
, x

m
∈ Ω

K
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Algorithm 2  Unified active learning for regression using GS, GSO, and IGS

Building upon the GS approach, Wu et al. [39] intro-

duced two novel AL approaches: Greedy Sampling on 

the Output (GSO) and Improved Greedy Sampling (IGS) 

on both input and output. In the GSO approach, the ML 

model f (x) , trained with the current set of labeled data, 

predicts the outcomes of unlabeled data samples in the 

remaining pool. Unlike the distance calculation in the GS 

approach, represented by Eqn (17), the GSO approach 

bases its distance calculation on the output rather than the 

input features, as follows.

where y
m
 is the actual output of the labeled data sample x

m
 

in the current training set, Ω
K

.

Moreover, the IGS approach incorporates both the 

input features and the output prediction in its distance 

calculation, aiming to leverage the strengths of both the 

GS and GSO approaches. The distance calculation is 

expressed below.

(18)dnm = |f (xn) − ym|

(19)dnm = ‖xn − xm‖ ⋅ �f (xn) − ym�

The detailed algorithm is outlined in Algorithm 2, including 

three different query strategies in AL for regression.

3.3  Active learning in probabilistic machine 
learning

In ML, data is seldom perfect, often tainted by noise 

stemming from natural variations or errors. Therefore, 

probabilistic ML techniques are crucial for effectively 

managing these uncertainties. Unlike conventional 

regression models, which yield a single deterministic value, 

probabilistic models offer outputs in the form of probability 

distributions.

In the previous discussion, three AL strategies - GS, 

GSO, and IGS - were described for ML regression models 

with deterministic predictions. While the GS strategy relies 

solely on the input features to select unlabeled data samples 

and can thus be directly applied to probabilistic ML models, 

the GSO and IGS strategies require revision due to the 

probabilistic nature of model predictions. To address this, 

we propose integrating the concept of Kullback-Leibler (KL) 

divergence [61] into these two AL strategies.
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Originating from information theory, the KL divergence, 

also known as relative entropy, serves as a statistical measure 

to quantify the difference between a probability distribution 

and a reference probability distribution. Denoting the 

reference probability distribution of a random variable x as 

Q, with the density function q(x), and considering another 

probability distribution P with its corresponding density 

function p(x), the following equation calculates the KL 

divergence, elucidating the variance in the information 

conveyed by these distributions.

While the KL divergence is inherently asymmetric, its inte-

gration into AL for probabilistic models is intuitive. After 

training the ML model, f (x) , based on the current train-

ing set, the predicted probability distribution f (xm) for a 

(20)KL(P ∥ Q) = ∫
∞

−∞

p(x) log

(

p(x)

q(x)

)

dx

labeled data sample x
m
 serves as the reference distribution. 

Consequently, the distance between any unlabeled sample 

x
n
 and the labeled sample on output can be evaluated using 

the KL divergence. The adaptation leads to the revision of 

Eqn (18) as presented below, and the resulting strategy is 

termed GSO-KL.

Likewise, Eq.  (19) can be adjusted as follows, and the 

resulting strategy is denoted as IGS-KL.

Apart from these modifications, the remainder of the 

methodology closely follows the AL strategies previously 

employed in regression. Additional insights are provided in 

Algorithm 3.

(21)dnm = KL
(

f (xn) ∥ f (xm)
)

(22)dnm = ‖xn − xm‖ ⋅ KL
�
f (xn) ∥ f (xm)

�

Algorithm 3  Unified active learning for probabilistic ML using GS, GSO-KL, and IGS-KL
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4  Examples and discussions

This study explored two examples of computational 

modeling applied to materials science. In the first example, 

we employed MD simulations to analyze the mechanical 

behavior of a one-dimensional molecular chain. These 

simulations enabled us to investigate how the chain responds 

to different temperatures and deformation gradients. 

Specifically, we utilized SVMs to forecast material failure 

and stresses under varying conditions. Furthermore, 

we implemented a probability ML model to predict the 

probability distribution of strength. In the second example, 

we conducted peridynamics simulations to study metal-

ceramic composites. This involved simulating the behavior 

of composites with varying ceramic volume fractions. To 

predict the tensile strength and failure of these composites, 

we employed CNNs.

4.1  One-dimensional molecule chain

The first example investigated the mechanical behaviors 

of a one-dimensional molecule chain, we referred to 

the configuration used in our previous study  [8]. The 

chain consisted of 1000 atoms, each with a mass of 

1.993 × 10−26 kg . A periodic boundary condition was 

applied. Assuming the interatomic interaction (i.e., bond) 

existed only between two nearest atoms, we used the 

classical Lennard–Jones (LJ) potential to approximate bond 

stretch and compression between atoms r
i
 and rj as follows.

where rij = |ri − rj| is the deformed bond length, 

� = 1.65 × 10−18 J describes the potential energy well’s 

depth, and r
0
= 1 nm represents the undeformed bond length.

In this example, each MD simulation was conducted for 

10,000 steps, with a time step of 1 fs , at a given temperature 

and gradient of deformation until the simulated system 

reached thermodynamic equilibrium. We employed the 

canonical ensemble, in which the number of molecules, the 

volume, and the temperature were maintained constants. The 

overall stress was calculated and averaged every 100 time 

steps using Eq.  (7), where fij =
�U(rij)

�rij

 . Each simulation 

generated one data sample with outputs of material failure 

status and stress (if no failure occurred) as labels for 

classification and regression tasks, respectively.

4.1.1  Material failure classification

A classification model has been developed to predict the 

failure status of this one-dimensional molecule chain. The 

(23)U(rij) = 4�

[

1

4

(

r
0

rij

)12

−
1

2

(

r
0

rij

)6
]

model forecasted a binary outcome, with 0 representing non-

failure and 1 indicating failure. The input features included 

a temperature ranging from 50K to 3000K and a deforma-

tion gradient spanning from 1.0 to 1.1. A dataset compris-

ing 3000 data samples, evenly distributed across the input 

feature space, was generated. A test set was created to assess 

the model’s performance by randomly selecting 30 data sam-

ples and labeling them. Consequently, the initial pool for AL 

contained 2970 unlabeled data samples.

We utilized a nonlinear SVM with RBF kernels to address 

the classification problem of predicting material failure. The 

training phase involved fine-tuning two crucial hyperparam-

eters: C, which balances the trade-off between the model 

complexity and the tolerance for deviations from the margin, 

and � , which defines the influence of a single training exam-

ple. This tuning was accomplished through cross-validation. 

Specifically, we employed a grid search approach, systemati-

cally exploring a range of values for both C and � to find the 

combination that resulted in the best performance on our 

validation dataset. The evaluation metric for assessing the 

model performance was accuracy, representing the propor-

tion of correctly predicted labels.

In this example, we employed uncertainty sampling as 

the AL approach, starting with randomly selected five data 

samples (i.e., K = 5 ) from the pool. These chosen data 

samples were removed from the pool and labeled through 

MD simulations, forming the initial training set denoted as 

Ω
K

 . Following training, the model could provide probability 

estimates indicating the likelihood that a new data sample 

belonged to each class. This information served as a measure 

of the model’s uncertainty in its predictions, a valuable 

aspect for implementing uncertainty sampling strategies in 

AL for classification tasks.

Specifically, in this binary classification problem, once 

the initial model was obtained, we utilized it to predict the 

class probabilities for all unlabeled samples in the remaining 

pool. Next, we selected a data sample (i.e., E = 1 ) from 

the pool whose prediction probability was closest to 0.5. 

This sample was labeled and added to the training set. The 

updated training set was used to retrain the classification 

model for subsequent predictions. This iterative process 

continued until the model accuracy converged. Remarkably, 

we observed that a total of only 37 data samples were needed 

to achieve a classification model with 100% accuracy. It is 

noteworthy that our previous study [8] utilized 861 data 

samples.

Figure 3 illustrates how the decision boundary evolved 

with the size of the training set. Notably, data samples 

selected using uncertainty sampling tended to cluster near 

the true decision boundary, resulting in more efficient train-

ing. Additionally, we compared the performances of uncer-

tainty sampling and random sampling, which served as the 

baseline, in Table 1. The random sampling method followed 
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a similar iterative process to uncertainty sampling but 

selected data samples for labeling randomly at each iteration. 

It’s evident from the comparison that uncertainty sampling 

outperformed random sampling. Specifically, uncertainty 

sampling achieved 100% accuracy with much fewer data 

samples compared to random sampling, which requires five 

times as many samples to reach the same level of accuracy.

4.1.2  Stress prediction

To address the stress prediction problem associated with the 

one-dimensional molecular chain, we developed a regression 

ML model. This model utilized the deformation gradient and 

temperature as inputs, with the output being the atomic-level 

stress obtained from MD simulations using Eq. (7).

In the development of our model, we leveraged the 

unlabeled data pool initially defined in Sect. 4.1.1 to form 

a new set. Notably, we employed the classification model 

developed in the preceding section to partition the data into 

subsets of “failure” and “no failure” samples. We designated 

the subset consisting of “no failure” samples as the new 

unlabeled pool Ω
N

 for this specific task, comprising 1296 

samples for subsequent utilization in AL. Additionally, we 

randomly selected 30 samples for labeling to form the testing 

set, facilitating the evaluation of the model’s performance 

during the training process.

For stress prediction, we utilized an SVM regression 

model with the RBF kernel. We employed the same grid 

search approach in Sect. 4.1.1 with cross-validation to 

fine-tune the hyperparameters C and � . And we used 

the R-squared score (or the coefficient of determination, 

R2) as the metric on the testing set. To explore the 

potential enhancement of AL in this regression task, we 

incorporated three distinct approaches: GS, GSO, and IGS, 

as detailed in Sect. 3.2.

Fig. 3  The evolution of deci-

sion boundary through active 

learning with various numbers 

of training samples: a 5, b 10, c 

20, d 30, and e 37

Table 1  The numbers of training samples needed to reach certain 

accuracies

Accuracy 70% 80% 90% 95% 100%

AL with uncertainty sampling 5 7 15 24 37

ML with random sampling 5 12 15 80 192
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We began with the GS method, initially identifying five 

data samples ( K = 5 ) closest to the centroid of the pool 

Ω
N

 . These samples were labeled based on MD simulation 

outcomes, forming an initial training set Ω
K

 . Subsequently, 

following the procedure outlined in Algorithm 2, we itera-

tively selected one data sample ( E = 1 ) with the largest d
n
 

from the remaining pool of unlabeled data samples Ω
N−K

 , 

labeled it, and incorporated it into the training set Ω
K

 to 

update the ML model at each iteration.

Moreover, we implemented the GSO and IGS 

approaches. While GS served as the initial step for sam-

ple selection, GSO and IGS diverged in their selection 

strategies after forming the initial training set with five 

labeled data samples. GSO relied solely on the model’s 

output, whereas IGS considered both input features and 

model predictions. Based on the steps detailed in the 

Algorithm 2, we continued to select, label, and integrate 

additional samples into Ω
K

 , expanding the training data-

set to update the ML model until achieving the desired 

performance.

Using the IGS approach as an example, Fig. 4 dem-

onstrates how the model’s performance on the testing set 

improved with an increasing number of training data sam-

ples. The diagonal line in the figure represents perfect pre-

dictions. Notably, the regression ML model achieved an 

impressive R2 score of up to 0.995 with only ten training 

samples, showcasing remarkable efficiency. This perfor-

mance stands out when compared to our previous study [8], 

where a similar model achieved comparable performance 

using 436 labeled data samples. Table  2 illustrates the 

Fig. 4  The evolution of model 

performance on the testing set 

using AL with the IGS query 

strategy. The numbers of data 

samples in the training set are a 

5, b 6, and c 10

Table 2  The numbers of 

training samples needed to 

achieve specific R2 scores

R2 score 0.900 0.950 0.970 0.990 0.995

AL with GS 5 6 7 9 14

AL with GSO 5 8 9 13 14

AL with IGS 5 6 7 9 10

ML with random sampling 7 10 12 21 31

AL with IGS (training data with 1% noise) 5 6 7 10 11

AL with IGS (training data with 2% noise) 6 7 9 11 12

AL with IGS (training data with 5% noise) 5 6 9 16 17
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number of training samples required for different AL 

approaches to achieve specific R2 scores. Importantly, all 

of these approaches surpassed the baseline approach, which 

randomly selected data samples from the pool of unlabeled 

data. Furthermore, the IGS approach outperformed the other 

two AL approaches because it considered the influences of 

both input features and output targets on sample selections.

Furthermore, to assess the impact of noise on our AL 

strategies, we conducted an experiment using the IGS 

approach with an additional variation in the labeling process. 

We maintained the same procedures as the standard IGS 

approach but introduced artificial noise at varying levels 

(1%, 2%, and 5%) to the stress values obtained from 

MD simulations during the labeling step for the training 

dataset and the test dataset remained unchanged to ensure 

consistent evaluation. Table 2 presents the comparative 

results, showing that for the IGS AL strategy, the 1% and 2% 

noise has little impact on performance. However, at the 5% 

noise level, there is a significant increase in the number of 

samples required to achieve similar R2 scores, especially at 

the high R2 score stages. These findings suggest that while 

IGS demonstrates a degree of resistance to noise, higher 

noise levels moderately diminish its effectiveness. Notably, 

even with noise introduced, the IGS method consistently 

outperforms the noise-free random sampling approach in 

achieving high R2 scores with fewer samples.

4.1.3  Strength distribution prediction

To incorporate uncertainty, we introduced randomness 

into the LJ potential (Eq.  (23)). We assumed Gaussian 

distributions for the potential energy well’s depth � and the 

initial (i.e., undeformed) bond length r
0
 , with mean values 

of 1.65 × 10−18 J and 1 nm , respectively. The standard 

deviations STD
scaled

 varied with temperature T according to 

the following relationship:

where STD
base

 represented the base values of the standard 

deviations for � and r
0
 , which were 0.01 × 10

−18
J and 

0.02 nm , respectively. We set B = 1.5 to ensure that STD
scaled

 

remained positive. The normalized temperature T
n
 was 

calculated as T
n
= (T − T

0
)∕(T

1
− T

0
) , where T

0
= 50K 

and T
1
= 3000K  represented the range of temperatures 

considered in this study.

We utilized the MaxLike method with an ANN 

framework, as elaborated in Sect.  2.3.3, to construct a 

probabilistic ML model for forecasting the distributions 

of the Ultimate Tensile Strength (UTS) across various 

temperatures. The ANN architecture comprised three 

hidden layers and one output layer. The first hidden layer 

contained 20 neurons, followed by a layer with 50 neurons, 

(24)STD
scaled

= STD
base

×
(

sin(4� × T
n
) + B

)

and finally, a layer with 20 neurons. Each neuron in these 

layers employed a sigmoid activation function. The output 

layer of the model consisted of two neurons responsible for 

predicting the mean and variance of the strength distribution, 

respectively. The loss function of the ANN, derived from 

Eqs.  (15) and 16), is expressed as follows. It should be 

noted that this neural network lacks a dedicated validation 

set, therefore, hyperparameters were tuned based on the loss 

observed on the training set.

In our investigation of the efficacy of AL strategies within 

the probabilistic ML model, we employed three distinct 

approaches: GS, GSO-KL, and IGS-KL. The latter two 

were specifically designed for the probabilistic ML model, 

as detailed in Sect. 3.3. Initially, our dataset comprised 2951 

unlabeled data samples spanning temperatures ranging from 

50K to 3000K. To label a single data sample at a specific 

temperature, we sampled potential parameters � and r
0
 

from the previously described probability distributions. 

Subsequently, we conducted an MD simulation to determine 

the material strength, thereby assigning the label to this 

particular data sample. Following the guidelines outlined in 

Algorithm 3, we set K = 5 and E = 1 , facilitating iterative 

model training, sample selection, labeling, and incorporation 

of the labeled sample into the training set. Additionally, we 

included random sampling as a baseline for comparative 

analysis.

To evaluate the performance of our probabilistic ML 

model, we introduced a metric termed the “KL score." This 

score quantifies the disparity between the predicted 

probability distributions generated by the ML model and the 

reference distributions obtained from MD simulations. We 

selected five distinct temperatures—500 K, 1000 K, 1500 K, 

2000 K, and 2500 K—for evaluation. At each temperature, 

we conducted 50 MD simulations, each utilizing a sampled 

potential function, to determine the strengths. Subsequently, 

we derived the corresponding normal distributions, denoted 

as the reference distributions Qi ∼ N(�Qi
, �2

Qi

) where 

i = 1...5 . Conversely, the probabilistic ML model predicted 

(25)
LOSS =

n
∑

i=1

− log
1

√

2��2
xi

+
1

2�2
xi

(yi − �xi
)2

Table 3  The numbers of training samples needed to achieve specific 

KL scores

KL score 0.20 0.15 0.10 0.05

AL with GS 135 149 215 >400

AL with GSO-KL 48 62 124 147

AL with IGS-KL 38 47 86 169

ML with random sampling 161 175 324 >400
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distributions, denoted as P
i
∼ N(�

P
i

, �2

P
i

) , for these five 

temperatures. Finally, the KL score, calculated as the 

average of KL divergences in Eq.  (26) across the five 

specified temperatures, provided a quantitative measure of 

the discrepancy between the predicted probability 

distributions and the reference distributions.

Table  3 illustrates the number of training samples 

required by the three AL approaches to achieve specific KL 

scores in comparison to the random sampling strategy. This 

comparison provides valuable insights into the effectiveness 

of AL strategies in optimizing the probabilistic ML model. 

It’s evident that the GS approach is not comparable to 

the other AL approaches, as it doesn’t consider outputs 

when selecting data samples to label. Instead, due to the 

randomness of the samples, it performs similarly to random 

sampling, the baseline approach. Given the variability in 

predicted probability distributions across temperatures, 

exploration in the output space to label data samples for ML 

model improvement is crucial. This conclusion is supported 

by the similar performance improvements between the 

(26)

KLscore =
1

5

5
∑

i=1

{

log

(

�Qi

�Pi

)

+
�

2
Pi

+ (�Pi
− �Qi

)2

2�2
Qi

−
1

2

}

GSO-KL and IGS-KL approaches. Furthermore, these two 

new approaches developed in this paper effectively quantify 

the differences in probability distributions between unlabeled 

data samples and labeled training samples. Additionally, we 

leveraged the IGS-KL approach to demonstrate the evolution 

of ML performance across various training set sizes, as 

depicted in Fig. 5.

4.2  Three-dimensional metal-ceramic composites

With its unique combination of high hardness and 

exceptional wear and corrosion resistance, TiB ceramic 

emerges as one of the most promising candidates for 

reinforcement within the Ti matrix in Ti-TiB composites 

[62]. The second example in this study addressed two 

distinct tasks: predicting the UTS of Ti-TiB composites, 

categorized as a regression task, and evaluating composite 

failure under specific deformations, which presents a 

classification challenge.

4.2.1  Computational model

TiB is renowned for its extraordinary material properties, 

attributed to its unique single crystal structures [63]. Com-

posites comprising Ti and TiB can be synthesized through 

Fig. 5  The evolution of model 

performance using ALg with 

the IGS-KL query strategy with 

a 38, b 47, c 86, and d 169 

training samples. The red dots, 

accompanied by error bars at 

specific temperatures, represent 

the reference distributions with 

95% confidence intervals (CI), 

which are expected to align 

with the predicted distributions 

indicated by the blue lines
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the sintering of Ti and TiB2 powders. Within the Ti matrix, 

TiB has been observed as whiskers or needles, typically ori-

ented along its [010] direction [64]. As TiB is not naturally 

occurring, we conducted MD simulations using a recently 

developed potential function [65] to characterize its mate-

rial properties. These properties, along with Ti’s material 

properties outlined in Table 4, were subsequently utilized 

in peridynamics for microscale simulations.

The Ceramic Volume Fraction (CVF), which represents 

the volume percentage of the TiB component relative to 

the overall composite volume, significantly influences the 

properties of the composite. In this example, the CVF was 

considered within the range of 0% to 25% [67]. Moreover, the 

spatial arrangement of TiB whiskers within the composite 

is crucial. Microstructures with identical CVF values 

may exhibit varying properties due to the distribution and 

alignment of TiB whiskers [68]. Additionally, literature [64] 

suggested that the diameters of TiB whiskers vary from 1 μm 

to 3 μm , with an aspect ratio of 12.2 ± 4.3.

The Peridynamics model utilized numerous discrete, 

equally spaced material points throughout the simulation 

domain to handle discontinuous interfaces in composite 

materials. In this study, the simulation domain was 

configured as a cubic microscale measuring 42 µm × 42 µm 

× 42 µm. Each material point, representing either Ti or TiB 

particles, has a diameter of 2 µm, resulting in a total of 9261 

material points within the simulation domain.

To incorporate TiB whiskers into the model, we randomly 

selected a material point to serve as the whisker’s starting 

point (referred to as the “head"). Subsequently, one of its 

neighboring points was randomly designated as TiB. Those 

two points established a straight line, which was extended by 

selecting corresponding material points until the length fell 

within the range of 15.8μm and 33 μm . Notably, to prevent 

intersection, two whiskers were not allowed to intersect in 

our models. In addition, the number of whiskers generated 

was determined by the specified CVF. Figure 6 illustrates 

two different configurations with the same CVF. This 3D 

model accurately depicts the dispersion of TiB whiskers 

within the composite material.

In our study, we utilized Peridigm [69, 70], an open-

source peridynamics software developed by Sandia National 

Laboratories, to conduct simulations of Ti-TiB composite 

materials. To define the failure criterion, we required the 

critical stretch s
C
 , which could be derived by the critical 

energy release rate G
0C

 , as indicated in Eq. (10). Given 

the limited research available on the properties of bulk 

TiB material, determining a reliable value for G
0C

 was 

challenging. In our research, we calibrated the critical stretch 

s
C
 in peridynamics simulations of pure TiB to align with 

the known UTS from MD simulations, thus determining an 

appropriate s
C
 . This methodology was consistently applied 

to the Ti material as well.

4.2.2  Predicting ultimate tensile strength

In this regression task, each microscale configuration repre-

sented one unlabeled data sample. When labeling this sam-

ple was required, a peridynamics simulation was conducted 

on this configuration subject to uniaxial tension, and then the 

UTS was determined from the resulting stress–strain curve. 

As the input feature, the configuration was converted into 

a 3D binary tensor with “1” and “0” representing Ti and 

TiB, respectively. We employed a CNN as the regression ML 

model to process the 3D binary tensor as input and predict 

the UTS.

Table 4  Material properties of TiB and Ti [66]

Material Density (Kg/

m3)

Young’s 

modulus 

(GPa)

Poisson’s ratio UTS (GPa)

TiB 4520 428.4 0.245 28

Ti 4357 106.2 0.298 1.17

Fig. 6  Two configurations of 

Ti-TiB composite materials 

with 2% CVF for Peridynam-

ics simulations. Transparent 

spheres represent Ti particles, 

and blue spheres and their 

connecting lines represent TiB 

whiskers



 Y. Chen et al.  588  Page 16 of 21

The CNN architecture consisted of two convolutional lay-

ers, each followed by a max pooling layer. The convolutional 

layers utilized a 3D kernel sized 3 × 3 × 3, with 16 filters 

for the first layer and 32 filters for the second layer. After 

each convolutional operation, max pooling with a 2 × 2 × 2 

filter was applied to reduce the spatial dimensions. Dropout 

layers with a rate of 0.25 and batch normalization were intro-

duced after each max pooling layer to prevent overfitting 

and promote model generalization. Additionally, the network 

comprised two dense hidden layers with 32 and 16 neurons, 

respectively, with dropout layers added after each dense hid-

den layer. The ReLU activation function was utilized in all 

layers except for the output layer.

Based on the average length of TiB whiskers observed 

in experiments [64], a simulation model comprising 235 

whiskers represented the corresponding Ti-TiB composite 

with a 25% CVF. Consequently, a pool of 236 unlabeled 

samples or configurations was generated for AL to assist the 

CNN regression model. Each sample in the pool varies in 

the number of TiB whiskers, ranging from 0 to 235, leading 

to configurations with diverse CVFs between 0% and 25%. 

Each microscale configuration was randomly generated 

based on the specific number of TiB whiskers. Additionally, 

55 configurations were randomly generated to form the 

testing set, with another 55 configurations to the validation 

set. The validation set is utilized to tune the hyperparameters 

of the CNN model, including the number and size of layers, 

dropout rate, learning rate, training epochs, and batch size. 

These samples were labeled using peridynamics simulations.

In our study on AL for UTS prediction, We implemented 

three strategies: GS, GSO, and IGS. Following the 

procedures outlined in Algorithm 2, we set the parameters 

K = 5 and E = 1 for all AL approaches. However, we made 

specific revisions to calculating the distance d
nm

 on input. 

Recognizing the significant influence of CVF on the material 

properties of the composite, we incorporated both 3D binary 

tensors and the corresponding CVFs into sample selection. 

Consequently, we redefined the distance d
nm

 in Eq. (17) for 

the GS strategy as follows:

(27)d
nm

= ‖x
n
− x

m
‖ ⋅ �CVF

n
− CVF

m
�

Similarly, the distance calculation for the IGS strategy was 

adjusted:

To highlight the efficacy of AL methodologies, we 

implemented the random sampling strategy as the baseline. 

This sampling procedure was divided into two steps during 

each iteration. Initially, we randomly selected a number of 

TiB whiskers between 0 and 235, mirroring the arbitrary 

selection of a CVF. Following this, we generated a 

microscale configuration incorporating the specified number 

of whiskers.

Continuing with our approach for regression ML models, 

we also consider the R2 score as the metric for evaluating 

model performance. Table  5 illustrates the number of 

training samples required by different AL approaches 

and the baseline method to achieve specific R2 scores. 

Overall, the GS and IGS approaches performed better. This 

superiority stemmed from their ability to leverage detailed 

microscale configurations as input features, providing 

ample information for selecting crucial training samples. 

Specifically, Fig. 7 demonstrates the enhancement of the 

ML model assessment on the testing set as the size of the 

training dataset increases, exemplifying the effectiveness 

of the GS approach. Due to the data’s complexity, the 

overall model performances did not match those of the 

one-dimensional example depicted in Fig. 4. Achieving a 

higher R2 score necessitates a larger training set. However, 

in both examples, it’s apparent that the number of training 

samples exponentially increased to enhance the ML model 

performance.

Conversely, GSO’s performance exceeded the baseline 

only until the R2 score reached 0.95. Beyond this point, 

GSO’s effectiveness declined in comparison. This decline 

could be attributed to the influence of CVF on the UTS of 

composite materials. A prior study [10] demonstrated that at 

low CVF, the UTS exhibits minimal variation with changes 

in CVF; conversely, at higher CVF, the UTS responds more 

significantly to changes in CVF. Consequently, as the vol-

ume of the training set increased, the GSO approach tended 

to concentrate samples with larger CVFs, thereby limiting 

the data diversity. As a result, after the R2 score reached 

0.95, the performance of GSO lagged behind the baseline. 

A similar influence affected the IGS approach, which failed 

to match the performance of the GS approach when a high 

model accuracy was required.

4.2.3  Material failure classification

This classification task aimed to determine whether a 

specified composite material failed under a tension-induced 

deformation gradient. Each data sample consisted of two 

(28)dnm = ‖xn − xm‖ ⋅ �CVFn − CVFm� ⋅ �f (xn) − ym�

Table 5  The numbers of training samples needed to achieve specific 

R2 scores

R2 score 0.85 0.90 0.95 0.96 0.97

AL with GS 13 15 26 32 47

AL with GSO 14 17 32 55 >80

AL with IGS 12 14 25 32 58

ML with random 

sampling

27 29 37 48 >80
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inputs: the microscale configuration and the deformation 

gradient. The microscale configurations were generated 

following the previously described procedure, while 

uniaxial deformation gradients were uniformly distributed 

in the range of 1.006 to 1.016. Consequently, the dataset 

comprised a total of 4720 unlabeled samples. For testing 

and validation, we randomly generated 55 samples for each 

set. To label a data sample, a peridynamics simulation was 

conducted on the composite. This simulation commenced 

from its undeformed microscale configuration and continued 

until the designated deformation gradient was attained. The 

resulting material failure status determined the sample’s 

label: “1" indicating failure and “0" indicating non-failure.

We employed the similar CNN architecture described 

in Sect. 4.2.2 to input and process the 3D binary tensor 

encoded from a microscale configuration. The primary 

adaptation involved concatenating the deformation gradient 

with the flattened output before forwarding it through the 

fully connected layer for prediction. Furthermore, the ML 

model was compiled using binary cross-entropy as the loss 

function, with accuracy serving as the metric for evaluating 

model performance.

To implement AL in model training, we adopted the 

uncertainty sampling query strategy, as previously dis-

cussed. By using the ‘sigmoid’ activation function in the 

output layer, the ML model produced a value ranging from 

0 to 1, representing the probability of material failure. A 

value near 0.5 indicated greater uncertainty in the predic-

tion. Given the complexity of this classification task with 

two input features, ensuring the convergence of model per-

formance necessitated a relatively larger training set com-

pared to the one-dimensional example. Balancing the com-

putational time and the efficiency of the AL process, we set 

K = 10 and E = 10 following Algorithm 1. Accordingly, our 

AL methodology utilized the trained model to select and 

label 10 new samples during each iteration.

We also assessed the baseline method for comparative 

purposes, which involved randomly selecting up to 350 

samples. The effectiveness of the uncertainty sampling 

approach, along with the baseline results, is illustrated 

Fig. 8. This visualization showcases the relationship between 

the number of training data samples and the model’s 

accuracy. The results unequivocally reveal a significant 

advantage of the uncertainty sampling approach over the 

baseline method. Specifically, the AL approach achieved 

nearly 100 % accuracy with 230 data samples, while the 

Fig. 7  The evolution of model 

performance on the testing set 

using AL with the GS approach. 

The numbers of data samples in 

the training set were a 15, b 26, 

c 32, and d 47
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random sampling required 330 samples. When the number 

of training data samples was 110 or fewer, the training set 

became too small for the ML model to learn the underlying 

relationships effectively. At this early stage, the predictions 

made by the trained model using the AL approach did not 

hold much practical significance over random sampling.

5  Conclusion

This study extensively examined the application of 

AL strategies within computational materials science, 

particularly focusing on their role in enhancing the 

efficiency of ML models for predicting material properties 

and mechanical behaviors. We systematically evaluated 

the effectiveness of various AL strategies, including GS 

and its variations, uncertainty sampling, and several novel 

approaches tailored for probabilistic ML models. These 

strategies were applied across a spectrum of contexts, 

ranging from traditional ML tasks to advanced probabilistic 

models, encompassing one-dimensional molecule chains 

and three-dimensional metal-ceramic composites in both 

classification and regression tasks, which successfully 

demonstrated the application of AL across different 

complexities. Moreover, our AL strategies effectively 

adapted to varying dataset sizes, tested in our case studies 

from as few as 10 samples up to 230 samples.

Overall, our findings underscored the significant 

potential of AL in boosting ML model performance, often 

requiring substantially fewer training samples compared 

to conventional random sampling methods. This reduction 

in training samples significantly lowers labeling costs. 

In our study, across five examples, the labeling costs for 

AL compared to random sampling were 19.27%, 32.26%, 

36.75%, 58.75%, and 69.70%, respectively, demonstrating 

substantial computational cost savings. Although AL 

typically requires a smaller training set, it involves iterative 

training sessions rather than the single-session traditional 

methods often need. In our study, data labeling involves 

time-consuming MD and peridynamics simulations. As a 

result, the small size of the training set makes the training 

time negligible compared to the labeling time, which further 

highlights the advantage of AL in reducing computational 

costs, particularly in material science where labeling 

demands significant computational resources. Conversely, in 

fields where labeled data is readily available and less costly 

to obtain, the necessity of AL might not be as pronounced. 

Specifically, uncertainty sampling for classification tasks 

demonstrated an intuitive selection of samples near decision 

boundaries for labeling, effectively bypassing irrelevant 

samples. However, the efficacy of regression ML models 

with GS, GSO, and IGS strategies exhibited variability, 

likely attributed to the diverse influences of input features 

or output targets on sample selection. Furthermore, our 

investigation into newly developed AL strategies for 

probabilistic ML regression models revealed the necessity 

of considering predicted probabilistic distributions as high 

entropy corresponding to high information content based on 

information theory.

Looking forward, future research endeavors should 

aim to refine these AL methodologies further and extend 

their applications into multiscale modeling and simulation, 

facilitating the efficient data-driven transmission of 

information across diverse scales. Additionally, while our 

study encompassed shallow ML and DL techniques such as 

ANN and CNN, there is considerable merit in exploring the 

applications of AL strategies in Recurrent Neural Networks 

(RNNs) for sequence-to-sequence predictions.

Fig. 8  Comparing the base-

line and the active learning 

approaches in model accuracy 

with various numbers of train-

ing data samples



Exploring active learning strategies for predictive models in mechanics of materials  Page 19 of 21   588 

Acknowledgements The authors gratefully acknowledge the support 

from the National Science Foundation (#2104383) and the US Depart-

ment of Education (ED#P116S210005).

Author Contributions Yingbin Chen: Data curation, Formal analysis, 

Investigation, Methodology, Software, Validation, Visualization, 

Writing—original draft. Phillip Deierling: Conceptualization, Formal 

analysis, Funding acquisition,Project administration, Writing—review 

& editing. Shaoping Xiao: Conceptualization, Formal analysis, 

Funding acquisition, Methodology, Project administration, Resources, 

Supervision, Writing—original draft, Writing—review and editing.

Data availibility The datasets and code generated during the current 

study are available from the corresponding author upon reasonable 

request.

Declarations 

 Conflict of interest The authors declare that they have no conflict of 

interest.

References

 1. S.P. Xiao, J. Li, S.P.A. Bordas, T.Y. Kim, Artificial neural net-

works and their applications in computational materials science: 

A review and a case study. Adv. Appl. Mech. 57, 1–33 (2023) 

https:// doi. org/ 10. 1016/ bs. aams. 2023. 09. 001

 2. Z. Zhang, K. Friedrich, Artificial neural networks applied to poly-

mer composites: a review. Compos. Sci. Technol. 63(14), 2029–

2044 (2003). https:// doi. org/ 10. 1016/ S0266- 3538(03) 00106-4

 3. H. El Kadi, Y. Al-Assaf, Prediction of the fatigue life of unidirec-

tional glass fiber/epoxy composite laminae using different neu-

ral network paradigms. Compos. Struct. 55(2), 239–246 (2002). 

https:// doi. org/ 10. 1016/ S0263- 8223(01) 00152-0

 4. H.N. Bar, M.R. Bhat, C.R.L. Murthy, Identification of failure 

modes in gfrp using pvdf sensors: Ann approach. Compos. Struct. 

65(2), 231–237 (2004). https:// doi. org/ 10. 1016/j. comps truct. 2003. 

10. 019

 5. Z. Zhang, P. Klein, K. Friedrich, Dynamic mechanical properties 

of ptfe based short carbon fibre reinforced composites: experiment 

and artificial neural network prediction. Compos. Sci. Technol. 

62(7–8), 1001–1009 (2002). https:// doi. org/ 10. 1016/ S0266- 

3538(02) 00036-2

 6. D. Heider, M.J. Piovoso, J.W. Gillespie, A neural network model-

based open-loop optimization for the automated thermoplastic 

composite tow-placement system. Compos. Part A Appl. Sci. 

Manuf. 34(8), 791–799 (2003). https:// doi. org/ 10. 1016/ S1359- 

835X(03) 00120-9

 7. C.W. Ulmer II., D.A. Smith, B.G. Sumpter, D.I. Noid, Compu-

tational neural networks and the rational design of polymeric 

materials: the next generation polycarbonates. Comput. Theor. 

Polym. Sci. 8(3–4), 311–321 (1998). https:// doi. org/ 10. 1016/ 

S1089- 3156(98) 00035-X

 8. S.P. Xiao, R. Hu, Z. Li, S. Attarian, K. Bjork, A. Lendasse, A 

machine-learning-enhanced hierarchical multiscale method for 

bridging from molecular dynamics to continua. Neural Comput. 

Appl. 32(18), 14359–14373 (2020). https:// doi. org/ 10. 1007/ 

S00521- 019- 04480-7

 9. S.P. Xiao, P. Deierling, S. Attarian, A. Tuhami, Machine learn-

ing in multiscale modeling of spatially tailored materials with 

microstructure uncertainties. Comput. Struct. 249, 106511 (2021). 

https:// doi. org/ 10. 1016/j. comps truc. 2021. 106511

 10. A. Tuhami, S.P. Xiao, Multiscale modeling of metal-ceramic 

spatially tailored materials via gaussian process regression and 

peridynamics. Int. J. Comput. Methods 19(10), 2250025 (2022). 

https:// doi. org/ 10. 1142/ S0219 87622 25002 56

 11. J.F. Rodrigues, L. Florea, M.C.F. Oliveira, D. Diamond, O.N. 

Oliveira, Big data and machine learning for materials science. 

Discov. Mater. 1(1), 1–27 (2021). https:// doi. org/ 10. 1007/ 

S43939- 021- 00012-0

 12. D. Morgan, R. Jacobs, Opportunities and challenges for 

machine learning in materials science. Annu. Rev. Mater. 

50 ,  71–103 (2020). https:// doi. org/ 10. 1146/ ANNUR 

EV- MATSCI- 070218- 010015

 13. K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza, R. Cohn, 

C.W. Park, A. Choudhary, A. Agrawal, S.J.L. Billinge, E. Holm, 

S.P. Ong, C. Wolverton, Recent advances and applications of deep 

learning methods in materials science. NPJ Comput. Mater. 8(1), 

1–26 (2022). https:// doi. org/ 10. 1038/ s41524- 022- 00734-6

 14. S.P. Xiao, W. Hou, Studies of nanotube-based resonant oscillators 

through multiscale modeling and simulation. Phys. Rev. B 75(12), 

125414 (2007). https:// doi. org/ 10. 1103/ PhysR evB. 75. 125414

 15. S.P. Xiao, J. Ni, S.W. Wang, The bridging domain multiscale 

method and its high performance computing implementation. J. 

Comput. Theor. Nanosci. 5(7), 1220–1229 (2008). https:// doi. org/ 

10. 1166/ jctn. 2008. 2557

 16. B. Ren, J. Qiang, X. Zeng, A.K. Jha, S.P. Xiao, S. Li, Recent 

developments on thermo-mechanical simulations of ductile failure 

by meshfree method. Comput. Model. Eng. Sci. 71(3), 253–277 

(2011). https:// doi. org/ 10. 3970/ cmes. 2011. 071. 253

 17. P. Kumar, A. Gupta, Active learning query strategies for classifica-

tion, regression, and clustering: a survey. J. Comput. Sci. Technol. 

35, 913–945 (2020). https:// doi. org/ 10. 1007/ s11390- 020- 9487-4

 18. D.D. Lewis, J. Catlett, Heterogeneous Uncertainty Sampling 

for Supervised Learning. Proceedings of the 11th International 

Conference on Machine Learning, Rutgers University, New Brun-

swick, 148–156 (1994). https:// doi. org/ 10. 1016/ B978-1- 55860- 

335-6. 50026-X

 19. X. Zhu, P. Zhang, X. Lin, Y. Shi, Active learning from data 

streams. Proceedings of the 7th IEEE International Conference 

on Data Mining, Omaha, Nebraska, 757–762 (2007). https:// doi. 

org/ 10. 1109/ ICDM. 2007. 101

 20. B. Settles, M. Craven, An analysis of active learning strategies 

for sequence labeling tasks. Proceedings of the 2008 conference 

on empirical methods in natural language processing, Honolulu, 

Hawaii, 1070–1079 (2008)

 21. S. Tong, D. Koller, Support vector machine active learning with 

applications to text classification. J. Mach. Learn. Res. 2(Nov), 

45–66 (2001) https:// doi. org/ 10. 1162/ 15324 43027 60185 243

 22. P. Melville, R.J. Mooney, Diverse ensembles for active learning. 

Proceedings of the 21st international conference on Machine 

learning, Banff, Alberta, 74 (2004). https:// doi. org/ 10. 1145/ 

10153 30. 10153 85

 23. S.C. Hoi, R. Jin, M.R. Lyu, Large-scale text categorization by 

batch mode active learning. Proceedings of the 15th interna-

tional conference on World Wide Web, Edinburgh, Scotland, 

633–642 (2006). https:// doi. org/ 10. 1145/ 11357 77. 11358 70

 24. N. Roy, A. McCallum, Toward optimal active learning through 

monte carlo estimation of error reduction. Proceedings of the 

18th international conference on machine learning, Williams-

town, Massachusetts, 441–448 (2001)

 25. J.J.R. Burbidge, K. R. D. Rowland, Active learning for regres-

sion based on query by committee. Proceedings of the 8th 

international conference on intelligent data engineering and 

automated learning, Birmingham, England, 209–218 (2007). 

https:// doi. org/ 10. 1007/ 978-3- 540- 77226-2_ 22

https://doi.org/10.1016/bs.aams.2023.09.001
https://doi.org/10.1016/S0266-3538(03)00106-4
https://doi.org/10.1016/S0263-8223(01)00152-0
https://doi.org/10.1016/j.compstruct.2003.10.019
https://doi.org/10.1016/j.compstruct.2003.10.019
https://doi.org/10.1016/S0266-3538(02)00036-2
https://doi.org/10.1016/S0266-3538(02)00036-2
https://doi.org/10.1016/S1359-835X(03)00120-9
https://doi.org/10.1016/S1359-835X(03)00120-9
https://doi.org/10.1016/S1089-3156(98)00035-X
https://doi.org/10.1016/S1089-3156(98)00035-X
https://doi.org/10.1007/S00521-019-04480-7
https://doi.org/10.1007/S00521-019-04480-7
https://doi.org/10.1016/j.compstruc.2021.106511
https://doi.org/10.1142/S0219876222500256
https://doi.org/10.1007/S43939-021-00012-0
https://doi.org/10.1007/S43939-021-00012-0
https://doi.org/10.1146/ANNUREV-MATSCI-070218-010015
https://doi.org/10.1146/ANNUREV-MATSCI-070218-010015
https://doi.org/10.1038/s41524-022-00734-6
https://doi.org/10.1103/PhysRevB.75.125414
https://doi.org/10.1166/jctn.2008.2557
https://doi.org/10.1166/jctn.2008.2557
https://doi.org/10.3970/cmes.2011.071.253
https://doi.org/10.1007/s11390-020-9487-4
https://doi.org/10.1016/B978-1-55860-335-6.50026-X
https://doi.org/10.1016/B978-1-55860-335-6.50026-X
https://doi.org/10.1109/ICDM.2007.101
https://doi.org/10.1109/ICDM.2007.101
https://doi.org/10.1162/153244302760185243
https://doi.org/10.1145/1015330.1015385
https://doi.org/10.1145/1015330.1015385
https://doi.org/10.1145/1135777.1135870
https://doi.org/10.1007/978-3-540-77226-2_22


 Y. Chen et al.  588  Page 20 of 21

 26. W. Cai, Y. Zhang, J. Zhou, Maximizing expected model change 

for active learning in regression. Proceedings of the IEEE 13th 

international conference on data mining workshops, Dallas, 

Texas, 51–60 (2013).https:// doi. org/ 10. 1109/ ICDM. 2013. 104

 27. D. Wu, V.J. Lawhern, S. Gordon, B.J. Lance, C.T. Lin, Offline 

EEG-based driver drowsiness estimation using enhanced batch-

mode active learning (EBMAL) for regression. Proceedings of 

the IEEE international conference on systems, man, and cyber-

netics, Budapest, Hungary, 730–736 (2016). https:// doi. org/ 10. 

1109/ SMC. 2016. 78443 28

 28. H. Yu, S. Kim, Passive sampling for regression. Proceedings 

of the 10th IEEE International Conference on Data Mining, 

Sydney, Australia, 1151–1156 (2010). https:// doi. org/ 10. 1109/ 

ICDM. 2010.9

 29. P. Ren, Y. Xiao, X. Chang, P.Y. Huang, Z. Li, B.B. Gupta, X. 

Chen, X. Wang, A survey of deep active learning. ACM Com-

put. Surv. 54(9), 1–40 (2021). https:// doi. org/ 10. 1145/ 34722 91

 30. D. Yuan, X. Chang, Q. Liu, Y. Yang, D. Wang, M. Shu, Z. He, 

G. Shi, Active learning for deep visual tracking. IEEE Trans. 

Neural Netw. Learn. Syst., 1–13 (2023) https:// doi. org/ 10. 1109/ 

TNNLS. 2023. 32668 37

 31. C. Schröder, A. Niekler, M. Potthast, Revisiting uncertainty-

based query strategies for active learning with transformers. 

Preprint at arXiv: 2107. 05687 (2021)

 32. S. Begum, R. Sarkar, D. Chakraborty, S. Sen, U. Maulik, Appli-

cation of active learning in dna microarray data for cancerous 

gene identification. Expert Syst. Appl. 177, 114914 (2021) 

https:// doi. org/ 10. 1016/j. eswa. 2021. 114914

 33. Z. Xiang, J. Chen, Y. Bao, H. Li, An active learning method 

combining deep neural network and weighted sampling for 

structural reliability analysis. Mech. Syst. Signal Process. 140, 

106684 (2020) https:// doi. org/ 10. 1016/j. ymssp. 2020. 106684

 34. T. Lookman, P.V. Balachandran, D. Xue, R. Yuan, Active learn-

ing in materials science with emphasis on adaptive sampling 

using uncertainties for targeted design. NPJ Comput. Mater. 

5(1), 21 (2019). https:// doi. org/ 10. 1038/ s41524- 019- 0153-8

 35. R. Yuan, Z. Liu, P.V. Balachandran, D. Xue, Y. Zhou, X. Ding, 

J. Sun, D. Xue, T. Lookman, Accelerated discovery of large elec-

trostrains in batio3- based piezoelectrics using active learning. Adv. 

Mater. 30(7), 1702884 (2018). https:// doi. org/ 10. 1002/ adma. 20170 

2884

 36. B. Rouet-Leduc, C. Hulbert, K. Barros, T. Lookman, C.J. Hum-

phreys, Automatized convergence of optoelectronic simulations 

using active machine learning. Appl. Phys. Lett. 111(4) (2017) 

https:// doi. org/ 10. 1063/1. 49962 33

 37. D.E. Farache, J.C. Verduzco, Z.D. McClure, S. Desai, A. Strachan, 

Active learning and molecular dynamics simulations to find high 

melting temperature alloys. Comput. Mater. Sci. 209, 111386 (2022) 

https:// doi. org/ 10. 1016/j. comma tsci. 2022. 111386

 38. J. Allotey, K.T. Butler, J. Thiyagalingam, Entropy-based active 

learning of graph neural network surrogate models for materials 

properties. J. Chem. Phys. 155(17), 174116 (2021). https:// doi. org/ 

10. 1063/5. 00656 94

 39. D. Wu, C.T. Lin, J. Huang, Active learning for regression using 

greedy sampling. Inf. Sci. 474, 90–105 (2019). https:// doi. org/ 10. 

1016/j. ins. 2018. 09. 060

 40. D.D. Lewis, A sequential algorithm for training text classifiers: Cor-

rigendum and additional data. In Acm Sigir Forum, New York, USA 

29(2), 13–19 (1995). https:// doi. org/ 10. 1145/ 219587. 219592

 41. D. Khatamsaz, B. Vela, P. Singh, D.D. Johnson, D. Allaire, R. 

Arróyave, Bayesian optimization with active learning of design 

constraints using an entropy-based approach. NPJ Comput. Mater. 

9(1), 49 (2023). https:// doi. org/ 10. 1038/ s41524- 023- 01006-7

 42. W.Y. Hou, S.P. Xiao, Mechanical behaviors of carbon nanotubes 

with randomly located vacancy defects. J. Nanosci. Nanotechnol. 

7(12), 4478–4485 (2007). https:// doi. org/ 10. 1166/ jnn. 2007. 862

 43. M.A. Ghaffari, Y. Zhang, S.P. Xiao, Molecular dynamics modeling 

and simulation of lubricant between sliding solids. J. Micromechan-

ics Mol. Phys. 2(2), 1750009 (2017). https:// doi. org/ 10. 1142/ S2424 

91301 75000 96

 44. D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Ber-

endsen, Gromacs: Fast, flexible, and free. J. Comput. Chem. 26(16), 

1701–1718 (2005). https:// doi. org/ 10. 1002/ jcc. 20291

 45. S. Silling, Reformulation of elasticity theory for discontinuities and 

long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000). 

https:// doi. org/ 10. 1016/ S0022- 5096(99) 00029-0

 46. T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for 

Continua and Structures (Wiley, New York, 2000)

 47. S.F. Li, W.K. Liu, Meshfree and particle methods and their appli-

cations. Appl. Mech. Rev. 55(1), 1–34 (2002). https:// doi. org/ 10. 

1115/1. 14315 47

 48. T. Rabczuk, H. Ren, X. Zhuang, A nonlocal operator method for 

partial differential equations with application to electromagnetic 

waveguide problem. Comput. Mater. Contin. 59(1), 31–55 (2019). 

https:// doi. org/ 10. 32604/ cmc. 2019. 04567

 49. H. Ren, X. Zhuang, T. Rabczuk, A higher order nonlocal operator 

method for solving partial differential equations. Comput. Methods 

Appl. Mech. Eng. 367(1), 113132 (2020). https:// doi. org/ 10. 1016/j. 

cma. 2020. 113132

 50. H. Ren, X. Zhuang, T. Rabczuk, Dual-horizon peridynamics: A 

stable solution to varying horizons. Comput. Methods Appl. Mech. 

Eng. 318(1), 762–782 (2017). https:// doi. org/ 10. 1016/j. cma. 2016. 

12. 031

 51. Q.Z. Zhu, T. Ni, Peridynamic formulations enriched with bond rota-

tion effects. Int. J. Eng. Sci. 121, 118–129 (2017). https:// doi. org/ 10. 

1016/j. ijeng sci. 2017. 09. 004

 52. S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic 

states and constitutive modeling. J. Elast. 88(2), 151–184 (2007). 

https:// doi. org/ 10. 1007/ s10659- 007- 9125-1

 53. A.J. Smola, B. Scholkopf, A tutorial on support vector regression. 

Stat. Comput. 14(3), 199–222 (2004). https:// doi. org/ 10. 1023/B: 

STCO. 00000 35301. 49549. 88

 54. C.W. Hsu, C.J. Lin, A comparison of methods for multiclass support 

vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002). 

https:// doi. org/ 10. 1109/ 72. 991427

 55. S. Chen, C.F.N. Cowan, P.M. Grant, Orthogonal least squares learn-

ing algorithm for radial basis function networks. IEEE Trans. Neural 

Netw. 2(2), 302–309 (1991). https:// doi. org/ 10. 1109/ 72. 80341

 56. L.S. Dreiseitl, andOhno-Machado: Logistic regression and artifi-

cial neural network classification models: A methodology review. J. 

Biomed. Inform. 35(5–6), 352–359 (2002). https:// doi. org/ 10. 1016/ 

S1532- 0464(03) 00034-0

 57. V. Nair, G.E. Hinton, Rectified linear units improve restricted boltz-

mann machines. Proceedings of the 27th International Conference 

on International Conference on Machine Learning, 807–814, Haifa, 

Israel (2010)

 58. T. Sainath, O. Vinyals, A. Senior, H. Sak, Convolutional, Long 

Short-Term Memory, fully connected Deep Neural Networks. 2015 

IEEE International Conference on Acoustics, Speech and Signal 

Processing - Proceedings, 4580–4584 (2015). https:// doi. org/ 10. 

1109/ ICASSP. 2015. 71788 38

 59. I.J. Myung, Tutorial on maximum likelihood estimation. J. Math. 

Psychol. 47(1), 90–100 (2003). https:// doi. org/ 10. 1016/ S0022- 

2496(02) 00028-7

 60. D. Wu, Pool-based sequential active learning for regression. IEEE 

Trans. Neural Netw. Learn. Syst. 30(5), 1348–1359 (2019). https:// 

doi. org/ 10. 1109/ TNNLS. 2018. 28686 49

https://doi.org/10.1109/ICDM.2013.104
https://doi.org/10.1109/SMC.2016.7844328
https://doi.org/10.1109/SMC.2016.7844328
https://doi.org/10.1109/ICDM.2010.9
https://doi.org/10.1109/ICDM.2010.9
https://doi.org/10.1145/3472291
https://doi.org/10.1109/TNNLS.2023.3266837
https://doi.org/10.1109/TNNLS.2023.3266837
http://arxiv.org/abs/2107.05687
https://doi.org/10.1016/j.eswa.2021.114914
https://doi.org/10.1016/j.ymssp.2020.106684
https://doi.org/10.1038/s41524-019-0153-8
https://doi.org/10.1002/adma.201702884
https://doi.org/10.1002/adma.201702884
https://doi.org/10.1063/1.4996233
https://doi.org/10.1016/j.commatsci.2022.111386
https://doi.org/10.1063/5.0065694
https://doi.org/10.1063/5.0065694
https://doi.org/10.1016/j.ins.2018.09.060
https://doi.org/10.1016/j.ins.2018.09.060
https://doi.org/10.1145/219587.219592
https://doi.org/10.1038/s41524-023-01006-7
https://doi.org/10.1166/jnn.2007.862
https://doi.org/10.1142/S2424913017500096
https://doi.org/10.1142/S2424913017500096
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1016/S0022-5096(99)00029-0
https://doi.org/10.1115/1.1431547
https://doi.org/10.1115/1.1431547
https://doi.org/10.32604/cmc.2019.04567
https://doi.org/10.1016/j.cma.2020.113132
https://doi.org/10.1016/j.cma.2020.113132
https://doi.org/10.1016/j.cma.2016.12.031
https://doi.org/10.1016/j.cma.2016.12.031
https://doi.org/10.1016/j.ijengsci.2017.09.004
https://doi.org/10.1016/j.ijengsci.2017.09.004
https://doi.org/10.1007/s10659-007-9125-1
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1109/72.991427
https://doi.org/10.1109/72.80341
https://doi.org/10.1016/S1532-0464(03)00034-0
https://doi.org/10.1016/S1532-0464(03)00034-0
https://doi.org/10.1109/ICASSP.2015.7178838
https://doi.org/10.1109/ICASSP.2015.7178838
https://doi.org/10.1016/S0022-2496(02)00028-7
https://doi.org/10.1016/S0022-2496(02)00028-7
https://doi.org/10.1109/TNNLS.2018.2868649
https://doi.org/10.1109/TNNLS.2018.2868649


Exploring active learning strategies for predictive models in mechanics of materials  Page 21 of 21   588 

 61. S. Kullback, R.A. Leiber, On information and sufficiency. Ann. 

Math. Statist. 22(1), 79–86 (1951). https:// doi. org/ 10. 1214/ aoms/ 

11777 29694

 62. K. Morsi, V.V. Patel, Processing and properties of titanium-titanium 

boride (tibw) matrix composites. J. Mater. Sci. 42, 2037–2047 

(2007). https:// doi. org/ 10. 1007/ s10853- 006- 0776-2

 63. B.F. Decker, J.S. Kasper, The crystal structure of tib. Acta Crystal-

logr. 7(1), 77–80 (1954). https:// doi. org/ 10. 1107/ S0365 110X5 40001 

4X

 64. F.C. Ma, P. Liu, W. Li, X.K. Liu, X.H. Chen, K. Zhang, D. Pan, 

W.J. Lu, The mechanical behavior dependence on the tib whisker 

realignment during hot-working in titanium matrix composites. Sci. 

Rep. 6(1), 1–9 (2016). https:// doi. org/ 10. 1038/ srep3 6126

 65. S. Attarian, S.P. Xiao, Development of a 2nn-meam potential for tib 

system and studies of the temperature dependence of the nanohard-

ness of tib2. Comput. Mater. Sci. 201, 11857 (2022). https:// doi. org/ 

10. 1016/J. COMMA TSCI. 2021. 110875

 66. ASM (ed.): Properties and Selection-Nonferrous Alloys and Pure 

Metals Volume 1: Metals Park. American Society for Metal, Ohio 

(1979)

 67. S.S. Sahay, K.S. Ravichandran, R. Atri, B. Chen, J. Rubin, Evolu-

tion of microstructure and phases in in situ processed ti-tib compos-

ites containing high volume fractions of tib whiskers. Mater. Res. 

14(11), 4214–4223 (1999). https:// doi. org/ 10. 1557/ JMR. 1999. 0571

 68. F. Ma, B. Zheng, P. Liu, W. Li, X. Liu, X. Chen, K. Zhang, D. 

Pan, W. Lu, Modeling of effects of thermomechanical processing 

on elevated-temperature mechanical properties of in situ (tib+ tic)/

ti-1100 composite. J. Mater. Sci. 51(16), 7502–7511 (2016). https:// 

doi. org/ 10. 1007/ s10853- 016- 0029-y

 69. D.J. Littlewood, M.L. Parks, J.T. Foster, J.A. Mitchell, P. Diehl, 

The peridigm meshfree peridynamics code. J. Peridynamics 

Nonlocal Model. 6(1), 118–148 (2024). https:// doi. org/ 10. 1007/ 

s42102- 023- 00100-0

 70. M.L. Parks, D.J. Littlewood, J.A. Mitchell, S.A. Silling, Peridigm 

users’ guide. V1. 0.0. Sandia National Laboratories (SNL), Albu-

querque, New Mexico, and Livermore, California (2012)

Publisher's Note Springer Nature remains neutral with regard to 

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 

exclusive rights to this article under a publishing agreement with the 

author(s) or other rightsholder(s); author self-archiving of the accepted 

manuscript version of this article is solely governed by the terms of 

such publishing agreement and applicable law.

https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1007/s10853-006-0776-2
https://doi.org/10.1107/S0365110X5400014X
https://doi.org/10.1107/S0365110X5400014X
https://doi.org/10.1038/srep36126
https://doi.org/10.1016/J.COMMATSCI.2021.110875
https://doi.org/10.1016/J.COMMATSCI.2021.110875
https://doi.org/10.1557/JMR.1999.0571
https://doi.org/10.1007/s10853-016-0029-y
https://doi.org/10.1007/s10853-016-0029-y
https://doi.org/10.1007/s42102-023-00100-0
https://doi.org/10.1007/s42102-023-00100-0

