IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

4408419

TreeStructor: Forest Reconstruction With
Neural Ranking

Xiaochen Zhou", Bosheng Li, Bedrich Benes™, Senior Member, IEEE, Ayman Habib"™, Member, IEEE,
Songlin Fei*, Jinyuan Shao™, and Soren Pirk

Abstract— We introduce TreeStructor, a novel approach for
isolating and reconstructing forest trees. The key novelty is a deep
neural model that uses neural ranking to assign pregenerated
connectable 3-D geometries to a point cloud. TreeStructor is
trained on a large set of synthetically generated point clouds. The
input to our method is a forest point cloud (FPC) that we first
decompose into point clouds that approximately represent trees
(TPC) and then into point clouds that represent their parts (PPC).
We use a point cloud encoder—decoder to compute embedding
vectors that retrieve the best-fitting surface mesh for each PPC
from a large set of predefined branch parts. Finally, the retrieved
meshes are connected and oriented to obtain individual surface
meshes of all trees represented by the FPC. We qualitatively and
quantitatively validate that our method can reconstruct forest
trees with unprecedented accuracy and visual fidelity. TreeStruc-
tor outperforms the state-of-the-art reconstruction method for
around 6% on quantitative metrics and 12% less error compared
with QSM on low-quality scanned data. The code and data are
available at https://lewkesy.github.io/treestructor/

Index Terms—3-D reconstruction, forest modeling, neural
networks, remote sensing.

I. INTRODUCTION

ASER scanners are becoming commodity hardware,

which makes point cloud data widely available. Point
clouds are unstructured and do not include topological
information. Thus, an important task is their reconstruction
into other representations, the most prevalent of which are
polygonal meshes. This is an ill-posed problem, and some
assumptions are often made, e.g., reconstructing man-made
objects assumes smooth surfaces and symmetries [1], [2].
Reconstructing noisy data, and, in particular, vegetation, poses

Received 14 December 2024; revised 12 March 2025; accepted 1 April
2025. Date of publication 7 April 2025; date of current version 24 April 2025.
This work was supported in part by the U.S. National Science Foundation
under Award 2417510 and Award 2412928. The work of Bedrich Benes
and Ayman Habib was supported in part by the National Institute of Food
and Agriculture (NIFA) under Grant 2024-67013-42449, Grant 2024-67021-
42879, and Grant 2023-68012-38992. The work of Songlin Fei was supported
in part by the Natural Resources Conservation Service (NRCS) under
Grant NR233A750004G044. The work of Soren Pirk was supported by the
European Research Council (ERC) under Grant 101170158 -WildfireTwins.
(Corresponding author: Bedrich Benes.)

Xiaochen Zhou, Bosheng Li, and Bedrich Benes are with the Department
of Computer Science, Purdue University, West Lafayette, IN 47907 USA
(e-mail: bbenes@purdue.edu).

Ayman Habib is with the Department of Civil Engineering, Purdue Univer-
sity, West Lafayette, IN 47906 USA.

Songlin Fei and Jinyuan Shao are with the Department of Forestry and
Natural Resources, Purdue University, West Lafayette, IN 47907 USA.

Soren Pirk is with the Department of Computer Science, Kiel University,
24143 Kiel, Germany.

Digital Object Identifier 10.1109/TGRS.2025.3558312

unique challenges. For one, trees and other plants often grow in
proximity, and their canopies overlap. This makes distinguish-
ing them as separate objects (instance segmentation) difficult,
and single-tree reconstruction algorithms cannot be readily
applied. Second, captured point clouds of forests suffer from
intra- and interplant occlusion, leading to incomplete point
clouds. Multiple pass capture can be applied to address this
issue [3]. Finally, while laser scanners have become more
accurate, their resolution still does not capture all the details.
However, the increasing precision shifts the error to a higher
signal frequency, i.e., to thinner branches and leaves.

Several methods address the reconstruction of 3-D veg-
etation from point clouds, but many operate under strict
assumptions due to the challenges mentioned above. For
example, some expect that clean point clouds of isolated
trees [4], high point density [5], or branches are assumed
to be simple conical elements [6]. These assumptions make
it difficult to scale to dense foliage or trees that overlap.
Also, they do not work well with low-density data. Other
methods extract only tree skeletons [7], [8], [9]. Tree skeletons
can be used to extract important phenological traits, such as
branching angles and the number of branches at different
ordering levels. However, they cannot be used to extract
volumetric information, such as diameter at breast height
(DBH). An important task is the point cloud segmentation that
assigns a unique identifier to each point as to which branch it
belongs [8], [10]. These methods then approximate the canopy
in tandem with procedural modeling techniques [11]. However,
the segmentation or skeletonization requires clear branching
structures and complete LiDAR scans, which cannot be easily
achieved using the existing LiDAR scanned data, such as
airborne and TLS. Only a few methods focus on multiple trees.
They often do so only for tree counting [4], [12] or to extract
some information from the forest, such as DBH.

This article introduces TreeStructor, a novel approach to
reconstructing tree models from point clouds of forests.
We show that our method works with data from TLS, airborne
UAVs, or backpack scanning. The key idea of our approach is
to find branch parts from a dataset of predefined connectable
branch meshes. As processing the entire forest point cloud
(FPC) is not feasible, and instance segmentation algorithms
fail, we aim to split the FPC into a set of tree part point
clouds (PPC). However, decomposing the FPC into point
clouds of individual parts (PPC) is challenging, so we first
compute tree part point clouds (TPCs). Each TPC contains

1558-0644 © 2025 1IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2280-7799
https://orcid.org/0000-0002-5293-2112
https://orcid.org/0000-0001-6498-5951
https://orcid.org/0000-0003-2772-0166
https://orcid.org/0000-0003-0441-9565
https://orcid.org/0000-0003-1937-9797

4408419

Fig. 1.

one trunk and approximately represents one tree. It may also
be incomplete and contain branches of other trees. We then
further decompose each TPC into a set of PPCs—point clouds
representing branch parts.

We perform a neural ranking to retrieve the best-fitting
branch mesh for a PPC. We build a synthetic dataset of 4M
branch meshes, each with clearly defined ends, allowing them
to connect easily. We store the meshes and their corresponding
PPCs to capture various branch shapes. We train a point
cloud autoencoder on the synthetically generated PPCs to
learn an embedding space of branch parts. With the trained
autoencoder, we can encode a PPC to an embedding vector
stored along with the branch graph and the surface mesh of
a branch part. Encoding all PPCs allows us to retrieve branch
parts based on their embedding vector.

We embed the PPC of a real branch to retrieve its nearest
neighbors of synthetic tree parts in the embedding space. The
neighbors are the geometrically most similar branch parts from
the dataset. To reconstruct the input FPC into tree meshes,
we perform neural ranking for all part point clouds (PPCs) of
all TPCs. The retrieved branch parts are then connected based
on their geometric properties.

TreeStructor reconstructs trees from large, unstructured
FPCs from various sources to showcase our method (see
Fig. 1). The experiments indicate that TreeStructor qual-
itatively and quantitatively outperforms existing methods
for single-tree reconstruction. Our contributions are as fol-
lows: 1) a novel approach to decomposing FPCs into
point cloud parts; 2) an encoder—decoder neural network
to organize an embedding space to support the ranking

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

TreeStructor framework reconstructs meshes of individual tree models from complex FPCs with tree part neural ranking. (Top) Input point cloud,
(middle) its reconstructed branching structures without leaves, and (bottom) fully reconstructed forest consisting of individual tree meshes with leaves (inset:
part of the forest from a different angle is shown on the right side).

of nearest neighbors of connectable forest parts, allowing
us to obtain the best-fitting set of meshes from a syn-
thetically generated dataset of branch segments; and 3) an
algorithm for connecting and consolidating a set of tree part
meshes into tree meshes. The code and data are available at
https://lewkesy.github.io/treestructor/

II. RELATED WORK
A. Tree 3-D Modeling and Reconstruction

Generative vegetation models date back to 1968 when
L-systems were introduced to describe cell subdivision [13]
mathematically. L-systems were extended to allow for 3-D
branching [14]. Nowadays, L-systems are a mathematical
formalism capable of simulating plant signaling [15] and even
competition for space [16]. A disadvantage of L-systems is that
they are difficult to describe, so inverse procedural approaches
attempt to learn L-systems from data [17], [18], [19]. Recent
approaches to vegetation use simulation engines to account for
space occupancy [20], dynamic growth [21], [22], wind [23],
wilting [24], root growth [25], climatic gradients [26], volu-
metric data [27], fire [28], [29], or even plant ecosystems [30],
[311, [32], [33], [34]. Generative models for plants often do
not represent all variations present in real plants, so recon-
struction algorithms generate tree models from acquired data.
Image-based approaches extract visual hulls [35], volumetric
spaces by image-to-image translation [36], or attempt to use
single images [37], [38], [39], [40] or multiple images [41]
to generate 3-D models. Image-based reconstruction cannot
correctly estimate parts that are not directly visible, which

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: TreeStructor: FOREST RECONSTRUCTION WITH NEURAL RANKING

4408419

Newral Ranking
Training

! Legend

| d) Neural Ranking
| Trained Model

r -
- i
" bj Tree Point €} Tree Part PC
L SF::::“: I Clouds Cal +
Tree Part Meshes
p b (
|) Real Forest " 1} Tree Part
Point Cloud Tree e Tree Part Paint Clouds
Segmentation 814‘?’ Segmentation
5 | Sag? b= :&
o ¥V &4
|

g) Tree Part Meshes —_—
and unused points h) Reconstructed

Troe Meshes

Meural Ranking

Tree Graph Generation
and Mesh Completion

Fig. 2. Overview: [top row (a)-(d)] during the training, (a) we use a synthetic model of a forest to (c) extract pairs of point clouds and tree meshes. (b) We
first find tree instances and (c) then smaller tree part point clouds and meshes. This creates a large dataset organized by training an encoder—decoder neural
network. The network (d) finds the most suitable set of tree geometries (meshes) for a given point cloud. [Bottom row (e)-(h)] During the reconstruction,
(b) we also find the tree instances and (f) tree point clouds. The previously trained neural ranking network (d) is then applied to the branch point clouds to
find the corresponding set of branch meshes in the embedding space. Each set is positioned in the 3-D space, and the used points are removed, (g) resulting
in tree part meshes and unused points. (h) We then process the unused points to connect the detected meshes into tree graphs and complete the forest mesh

geometry.

can be partially alleviated by acquiring a video around the
plant [42]. The so-called inverse procedural methods attempt
to find the parameters of the developmental models and
reconstruct the plant by regrowing them [43] that leads to an
approximate model, but capable of environmental adaptation
and recent inverse methods encode plant shape as neural
model [17], [44]. Our approach builds on the related work
in that we use synthetic tree and forest models to build the
training dataset of tree parts that are then detected in real
point cloud data. Moreover, our approach is related to the work
of Xie et al. [45], who used real tree blocks to enhance the
appearance of 3-D tree models. TreeStructor does not require
real tree parts as it uses synthetically generated branching
structures specifically designed for connecting. Moreover, our
method attempts to reconstruct multiple trees in a forest.

B. Point Cloud Vegetation Reconstruction

A key inspiration for our approach is the recent works of
Uy et al. [46] that extract cylindrical parts of CAD models
from point clouds and [8], [45], [47] that attempt to divide
the 3-D geometry into smaller parts. Liu et al. [8] provide tree
part instances only for cylinders and bifurcations for a single
tree, and Xie et al. [45] used carefully designed tree parts
from the real world and modeled new geometries. TreeStructor
reconstructs forests instead of single trees, where connecting
parts from individual trees is an unsolved problem. Moreover,
our approach leverages a learned embedding space to find
and connect the closest tree parts to represent a complete tree
model.

Vegetation point cloud reconstruction has primarily
addressed small or single plants and leaves [48], [49], [50] in
controlled environments [51]. Our approach works on large,
complex point clouds that store many large trees with noise.
The most common way to reconstruct individual trees is to
find their skeleton [7], [9], [52], [53], [54] (see also the recent
review [55]), circles [6], cylinders [56], [57], [58], or other
parts [59], [60], [61] and then complete the detected geometric
blocks into a 3-D model. While skeletons provide important
phenotypic traits, such as branching angle or branch length,
they do not provide volumetric information or branch surface.

Forest reconstruction from point clouds is an open prob-
lem. Current methods attempt to count trees in forests from

terrestrial LiDAR scans (TLS) [4], segment point clouds
into tree instances [62], detect trees in urban forests and
street data from TLS or car-mounted LiDAR [63], [64], [65],
UAVs [66], [67], or segment the forest into foliage and
wood [5], [68], [69], [70], [71]. Recent approaches also extract
specific features from LiDAR data, such as tree height [72],
height from an interferometric synthetic aperture radar [73],
[74], forest age [75], or species detection [76]. Hu et al. [77]
reconstructed small clusters of separated trees captured from
airborne UAVs into voxels and skeleton, which have also
been captured by a recent work of [78]. The previous work
addresses only individual trees with clean points and fails
on large and occluded data. They cannot be used on forest
datasets, as they cannot disentangle the individual trees. Our
method provides a topological forest data structure, where each
tree model is also a mathematical tree.

Furthermore, precise metric measurement for individual
trees is also a key requirement for forest reconstruction. Tree-
QSM [79] addresses this requirement by decomposing trees
into cylinders and optimizing these cylinders to fit the point
clouds. Similarly, Hu et al. [80] introduce AdTree, a method
that generates tree models by first constructing a skeleton
and then refining the structure by fitting cylinders to the
point clouds. While these methods excel in achieving high
metric precision, they often suffer from visual artifacts and
twisting, resulting in models that are less visually satisfying.
Our method can generate high-quality visual results with high
measurement accuracy.

III. OVERVIEW

TreeStructor (see Fig. 2) uses self-supervised learning to
organize an embedding space of tree parts by using the
corresponding point clouds [see Fig. 2(c) and (d)]. We generate
a large dataset of synthetic tree parts with their corresponding
point clouds, and we use it to learn an embedding space that
is used to perform neural ranking. During the reconstruction,
we use parts of a real input point cloud to find its closest
synthetic point cloud as the nearest neighbor in the learned
embedding space—a branch that resembles the geometric struc-
ture of the input. Each synthetic point cloud is associated with
its branch mesh, which is used for reconstruction (see Fig. 6
for more detailed visualization of the real forest reconstruction
process).

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

4408419

A. FPC Decomposition

Neural ranking is performed on small point clouds.
We devised a pipeline that decomposes the large FPC into a
set of TPCs [see Fig. 2(b)], which are then decomposed into a
collection of tree part point clouds (PPCs) [see Fig. 2(c), (f),
and (g)]. We segment FPCs into the ground and individual
trees using state-of-the-art point cloud instance segmentation.
While this does not provide reliable results for complex
canopies (see Fig. 3), our algorithm does not require precise
tree segmentation, as the tree topology and geometry are
recovered later in the pipeline. However, the segmentation
requires that we reliably identify the position of the trunk
(root) of a tree. The TPCs are then segmented into smaller
PPCs.

B. Training the Neural Ranking Model (Fig. 2, Top Row)

We use the ecosystem model [30] to generate synthetic
forests (a), which are segmented into tree instances (b) and
synthetic tree parts (c). Each synthetically generated tree part
is represented as a point cloud, a branch graph, and additional
attributes used to describe the branch mesh, such as an end
normal vector and the cap used to connect the parts. This
provides a large dataset of tree parts. We then train a point
cloud autoencoder network [80] to reconstruct point clouds of
branches autoregressively. The embedding vector of the trained
autoencoder (d) is used to retrieve tree parts (represented
as point clouds associated with meshes and graphs) struc-
turally similar to the input PPC. To reconstruct a real branch,
we encode the point cloud with the encoder of our network
and perform a lookup into the embedding space to retrieve the
top n nearest neighbors of the encoded synthetic tree parts. It is
important to note that finding matching branch parts does not
significantly depend on the tree species. The reconstruction
will provide correct results if enough tree parts with a wide
variety of branch shapes are provided for the lookup. The
forest simulation provides a wide variety of shapes, which
accounts for tree competition for resources, light, and gravity.

C. Forest Reconstruction (Fig. 2, Bottom Row)

The input to TreeStructor is a large unstructured FPC
[see Fig. 2(e)], and the output is a set of tree meshes (h).
We decompose the real FPC (e) into the PPCs [see Fig. 2(f)] in
the same way the synthetic point clouds are decomposed, i.e.,
breaking the trees into smaller pieces. We then use the trained
autoencoder (d) to compute the embedding vector of the real
points to fetch the tree parts whose point clouds best fit the
input ones. This obtains the associated tree part meshes. The
meshes are positioned into the point clouds using a stochastic
gradient-based optimization. The tree part meshes also store
their local topology as graphs. Once they are identified and
positioned, the input forest is represented as a collection of
disconnected branch graphs and unused points [see Fig. 2(g)].
The last step connects the detected tree part meshes into tree
meshes [see Fig. 2(h)]. Leaves are procedurally generated and
added to small branches and twigs. The output of TreeStructor
is a collection of tree meshes matching the input FPC.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

Fig. 3. State-of-the-art point cloud instance segmentation does not correctly
isolate single trees, making it difficult to reconstruct forests by single-tree
reconstruction approaches.

IV. POINT CLOUD PROCESSING

Synthetic Forests: We use the method of [30] to generate
synthetic forests to provide data to train the point autoencoder.
We create a large database of synthetic tree part meshes and
their corresponding PPC (about 4M). The input to this step is
a synthetic forest, and the output is a set of tree part meshes
that are virtually scanned, and the corresponding P PC are
generated. We follow the LiDAR scanning simulation [81] and
simulate the understory mobile laser scanning (handheld or
backpack-mounted) to cover a larger forest area and reduce
occlusion. A moving laser is positioned 1.4 m above the
ground and emits laser rays.

When these rays strike an object, we capture the 3-D data of
that point at contact. The synthetic tree part meshes also store
additional information to connect the parts later. In particular,
the corresponding topology is stored as a skeletal graph (shown
in red in the associated figure), and the endpoints are stored
as disks with normal vectors.

Real Forests are also decomposed into PPC. However,
contrary to the synthetic forest used for training, the goal is
to use the neural ranking to retrieve the best tree part mesh to
input PPC and connect them later into complete tree meshes.

We decompose the real FPC using the same algorithm used
for the synthetic FPC that decomposes them into PPCs. In the
first step, we take the input FPC and convert it into TPCs
using the state-of-the-art tree instance segmentation. Although
the existing algorithms often provide erroneous results (see
Fig. 3), we can still use them because misplaced tree meshes
will be correctly connected in the later stages of our algorithm.
The TPCs are then segmented into smaller PPC.

The input to our framework is a large unstructured FPC
Pr of points, where each point is only associated with a
3-D position. We decompose P into PPC in two steps: first,
we find the instances of trees that we call TPCs, then split
each tree into PPC.

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: TreeStructor: FOREST RECONSTRUCTION WITH NEURAL RANKING

(a) (b)

Fig. 4. (a) Segmentation of a TPC to PPCs uses PDC with an adaptive
threshold to assign a unique ID to points belonging to the same tree part
cluster. (b) Examples of individual tree parts representations as point clouds,
corresponding meshes, and foliage, if they exist.

Emedding Vecor
Chamier distance loss

i £

R-CHN —‘
-+
Point Feature for

m Branch Parts
Y

Fig. 5. Point cloud embedding network. An R-CNN backbone extracts a
feature vector of branch point clouds concatenated with a position feature
for where the branch part is located in the tree. We train the network to
reconstruct the branch point cloud, classify foliage branches, and predict the
direction of a branch and its radius. Together, this ensures that the learned
embedding encodes geometric properties of the branch point cloud to enable
neural ranking of the branch parts.

Classification loss

¥ZOT
952
95E
8zt

Main dir cos loss

€

Position Feature for

Branch Parts Radius mse loss

ZE
v
T
v

1

h‘[.

A. FPC to Tree Point Clouds (FPC — TPC)

We use the state-of-the-art point cloud instance segmenta-
tions OneFromer3D [82] and SoftGroup [83] to segment the
forest into the ground and individual trees. The goal is not
for precise segmentation because tree parts will be connected
in the last step of the algorithm. We also tested the state-
of-the-art pipeline for cloth simulation filters (CSF) [84], but
the SoftGroup outperforms CSF on steep terrain and noisy
scanned data. Although we experimented with other clustering
algorithms, such as the DBSCAN, the state-of-the-art methods
better restore the geometrical and topological information in
the segmented individuals (See Table V).

Root Detection: Our algorithm requires the tree to have
correctly detected the lowest part of the trunk that we call
its root. The tree instance segmentation tends to over- and
undersegment the data, leading to trees having either none or
multiple roots. To ensure precisely one root, we first obtain
all roots from the FPC generated by raising the segmented
ground for 2 (h = 0.1 m in our work) and clustering the point
cloud beneath the ground by DBSCAN. Then, we compute the
geometric center of the tree and assign each tree to a root with

4408419

the closest L? distance. This guarantees that the forest will be
decomposed into trees with only one root. Note again that we
segment the forest into individual trees approximately. Even if
some parts are assigned incorrectly, they will be reconnected
by the algorithm from Section VI.

B. Tree Point Clouds to Part Point Clouds (TPC — PPC)

We use peak density clustering (PDC) [85] to decompose
the TPCs into PPCs. The input for the PDC is an individual
TPC P, a threshold for the neighbor range r, and the center
of the tree root proo. We first compute the density faensiy Of
each point p as a weighted sum of the distances of all points
within a threshold

fdensity(p’ P,r)= Z max(O, 1—

pieP

dist(p, pi)
r))]

where dist is the L? distance between two points. We find
the closest point with a larger density in the point cloud for
each point p and add the vertices and edge to a graph G.
After G is constructed, we remove all edges larger than the
threshold r related to the radius of the main trunk, which
will decompose the graph into several subgraphs with points
considered a cluster.

The threshold value for the neighbor range r impacts the
clustering. Setting the value too small will separate tree parts
into clusters that should remain connected, while larger values
lead to only a few clusters of several smaller branches. Thus,
we introduce an adaptive threshold function f,q, that changes
the neighbor threshold for PPC segmentation

-1
dist(p, Proot)
diStyax

Jadp(Ps 7y Proo) =71 1+ 2)
where dist,,x denotes the maximum distance from all the
points to the root point. Additionally, we define another density
threshold to filter the clusters with fewer point numbers, which
improves the robustness of the clustering when encountering
noisy inputs that frequently occur in the forest data. The
pseudo-code of our peak density algorithm is provided in the
Appendix as Algorithm 3. The resulting branch part instances
are shown in Fig. 4(a).

V. NEURAL RANKING

The main goal of our approach is to retrieve branch parts
represented as skeletal graphs and meshes from input point
clouds of branch parts. We train a point-based neural network
to perform this retrieval-based reconstruction that projects
branch point clouds into an embedding space. The idea is
to embed a large collection of diverse branch parts, where
each branch part is represented as a point cloud along with
the skeletal graph and additional attributes to reconstruct and
connect the surface meshes of the branch part.

A. Point Cloud Embedding Network

Our point cloud embedding network (see Fig. 5) consists of
a relation-shape convolution network (R-CNN) [80] backbone

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

4408419

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

|:‘ ' k

Fig. 6. Representations of our pipeline: (a) our framework uses unstructured point clouds as input. (b) We perform instance segmentation on the points (each
tree is in different color), (c) then compute PDC to obtain branch part instances (each part in a different color). (d) We then perform neural ranking to obtain
branch meshes (marked as differnet color) (e) that can be connected to complex branching structures, (g) which can further be rendered as tree branches or

fully rendered as complete.

to embed point clouds of branches into a feature vector.
Additionally, we provide the network with a position feature
for each branch part as global information concatenated with
the point cloud feature vector. Both features are projected
into a 256-D embedding feature space from which we aim
to reconstruct the point cloud. We add four output heads to
classify if the branch obtains foliage and predict the orientation
and radius to ensure that the network learns to represent the
geometric features of branch point clouds.

B. Nearest-Neighbor Lookup

The trained point cloud network encodes point clouds of
tree parts into embedding vectors that represent the geometric
properties of a point cloud. This embeds a large collection
of synthetically generated branch point clouds and organizes
an embedding space of branch parts. When reconstructing the
tree, the network projects the real point cloud into the embed-
ding space. We then perform neural ranking by computing the
distance of the query point cloud embedding and all embedded
branch parts to select a list of the top n nearest neighbors.
Fig. 7 shows the point clouds of a query branch part and its
top five nearest neighbors (both point clouds and meshes).

C. Branch Candidate Selection

The point cloud embedding network retrieves the geomet-
rically most similar parts from a large dataset of branch
part candidates. The nearest neighbors are ranked by their
embedding space distance to the query shape. However, as the
embedding network performs a nonlinear projection of the
input points to the embedding vector, the branch part with

Query | Mearest Neighbors
o | W/ o g)
f o # f F
% r o W - o B
1 T | ¥ | E 2
F 5" S &
. > \% i ¥
L BV e ey Wy g
- ak \ R ™
. ¥ \N\ .) %

Fig. 7. Neural ranking: (left) given a query branch point cloud, we retrieve
the most similar point clouds of a dataset of embedded branch parts and the
corresponding meshes that were used to generate it. The nearest-neighbor
selection is performed by computing the distance in the embedding space.

the smallest distances to the query shape may not best fit com-
pared to the other nearest neighbors. Therefore, we perform
an optimization step to identify the best-fitting branch part
out of the set of top n nearest neighbors. For each candidate
from the set of the top-ranked branches, we use gradient
descent to find an optimal transformation (translation, rotation,
and scale) with respect toto the corresponding point cloud.

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: TreeStructor: FOREST RECONSTRUCTION WITH NEURAL RANKING

Fig. 8. Tree mesh generation: (a) the input is the tree branch parts with
their skeletal graphs and the unused points P,. (b) Each tree part is assigned
candidate connections within a visibility cone. (c) Shortest path through the
unused points within the candidates from endpoints pi to starting points p
is detected. (d) Tree part skeletal graphs are completed, and (e) tree part

geometry and the new parts of the skeletal graphs are used to generate
generalized cylinders that complete the tree geometry.

:Unused points py

: Visibility cone
: Shortest path

: Connectivity

The objective function is the Chamfer distance (CD) between
the input and candidate point clouds and the cosine distance
between the predicted and branch directions. The best-fitting
branch part is the transformed candidate with the lowest error.
After optimizing all branch parts, we remove the points used
to identify the parts and position the corresponding branch
part mesh geometry at the detected location and orientation.
A tree is then represented as a set of disconnected tree parts
(with their skeletal graphs) and a set of unused points from
the input point cloud [see Fig. 6(d)].

VI. FOREST MESH CONSTRUCTION

The tree part matching fits only point clouds with more
points than a certain threshold (50 points in our implementa-
tion). The points that were not used for part matching are
called the unused points and denoted by Py € Pr [see
Fig. 8(a)]. We decompose the tree parts into cylindrical tree
parts, and each cylinder is oriented to include start pi and the
endpoint p.. Some ends can be shared. Each tree branch part
also includes topological information about the connectivity.
We first connect all tree parts into a graph that is later divided
into individual trees. The unused points guide the completion
of the graph [see Fig. 8(c)]. The graph includes all correctly
separated branch parts that are then connected by meshes. The
output of the algorithm is the mesh of the forest [see Fig. 8(e)].

The mesh construction is a three-step process. First,
we build the branch part connectivity graph denoted by Bg
where each tree branch is associated with a list of potential
connections in a visibility cone [see Fig. 8(b)]. In the second
step, we convert the connectivity graph Bg into a set of
geometrical tree graphs denoted by T by connecting the
tree branches. Specifically, for each tree branch, the endpoint

4408419

Zig-zag Angle Parallel shift Point test

Iy

Four geometry checks are performed for each potential connection.

i Branch 1 i i Branch 2 Z
Branch 4 : . Final Graph

Fig. 10. Set of tree graphs T generation: the input is the branch connectivity
graph Bg with all potential connections, and the output is a set of tree
graphs 7. The initial graph has allocated branch parts corresponding to roots
(orange). We then query unallocated parts (blue) and connect them to the
allocated ones.

Fig. 9.

nitial Graph

Branch 3

is connected to the possible starting points of tree branches
in the visibility cone by following the unused points. Tree
branches with the shortest path are then connected. Note that
the connections point down from endpoints to the starting
points [see Fig. 8(c)]. In the third step, we fit the T with
smooth skeletal curves that are interpolated by generalized
cylinders that provide the smooth meshes [see Fig. 8(d)].

A. Branch Part Connectivity Graph Bg

The input is the unused point cloud Py, and the output is the
branch part connectivity graph B¢ that includes all potential
connections for each branch part. Each branch part has an
assigned orientation from the previous step. The center of the
lower cap is denoted as the starting point Py, and the center
of the second cap is the endpoint P,.

The connectivity graph construction proceeds as follows
(see also Algorithm 1, Appendix). We put a visibility cone on
the point p! with a 45° radius that prunes the Py, and only
the points within this cone are considered. All starting points
with direct visibility within this radius will be considered
a potential connection. We then trace the path between p!
and each potential connection through the unused points Py
by performing the bread-first search from p’. We connect
it with the closest points from Py and repeat this process
for all connected points. The same process is executed from
each potential endpoint. The shortest path [see Fig. 8(b)] is
then stored with the set of potential connections. We allocate
the unused points to a voxel grid to speed up the lookup
calculations. The output is the connectivity graph, i.e., a set
of possible parent nodes assigned to each tree part. Note that
one node can have multiple possible connections, as shown in
Fig. 10.

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

4408419

(a) (b)
(e) i (f)
Fig. 11.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

(c) (d)

() (h)

\\ |

Occlusion robustness: a tree (e) in a forest [(a), highlighted in blue] is occluded during the scanning, resulting in (b) and (f) incomplete point cloud.

Our method reconstructs a tree model (c), (d), (g), and (h) that closely resembles the ground-truth model.

At the same time, each potential connection needs to pass
four geometric tests (see Fig. 9): 1) zig-zag test detects con-
nections in an incorrect order; 2) branching angle test detects
connections that have excessive branching angles; 3) parallel-
shift test detects nearly parallel connections but far away in
the direction perpendicular to their axis; and 4) point test
detects if the connection misses the unused points from the
point cloud Py. A connection that does not pass the test is
not included in Bg.

B. Set of Tree Graphs Tg

We then split B into a set of mathematical tree graphs T
(see Fig. 10) by removing edges that point to two parents
(such as the connection of tree branches 3, 4, and 7). We call
a tree branch allocated (shown as orange) if it belongs to 7.
We first allocate all root tree parts (L and R). We then sort all
unallocated branches by their height (shown in blue with the
number corresponding to the height and the order in which
they are processed). We take the lowest unallocated branch
(branch 1), check all allocated branches in their proximity,
and allocate them to the closest one. This is repeated for all
unallocated branches until all branches have been allocated.

C. Mesh Generation

The previous step results in a set of mathematical trees
that connect the branch parts (meshes). In the last step,
we complete the meshes by connecting them as shown in
Fig. 8(d)—(e). For more details, please refer to Algorithm 2
(Appendix).

The ending, the beginning points, and the normal vectors
for each pair of tree parts mesh are known (the dataset was
designed to include them), as this information is associated
with the detected tree part by neural ranking. We connect
the two points and normals by Hermite spline and use it as

the spine of a generalized cylinder that interpolates the caps
of the connecting branches. We use the Frenet frame of the
spine curve to orient the surface of the generalized cylinder
for consistent texturing.

VII. IMPLEMENTATION

We implemented a framework in C++- to generate synthetic
forest data. We use a state-of-the-art procedural model to
generate models of forests with eight different species [25].
We decompose the generated forest models into unique
tree parts, their skeletal graphs, and meshes. Furthermore,
we obtain a synthetic point cloud by scanning the forest model
with a virtual LiDAR simulator, and we add random noise to
each scanned point based on the distance between the scanner
and the destination point. Additionally, the direction of rays is
modified randomly to mimic the inaccuracy of the hardware.
We use the framework to generate a dataset of 160 forests,
each including 40 tree models. We extract around 1M tree parts
from the generated tree models, including associated meshes,
skeletal graphs with radius and growth directions, and foliage
if they exist. To augment the data, we rotate each part around
the x- and z-axes (£45°) and by adding per-point to each
branch point cloud. After data augmentation, the final dataset
contains around 4M tree parts with the associated information.

The second part of our framework implements a Python
framework for a point cloud embedding network, a point cloud
encoder—decoder architecture based on an R-CNN backbone.
We use this network to reconstruct PPCs in an autoregressive
manner. We supervise the network with additional losses to
improve the encoding of point cloud geometric features. Once
the neural ranking and the selection of tree parts are complete,
we hand the generated collection of tree parts back to our C++
framework. We then perform the geometric consolidation of
branch graph collections into a full skeletal branch graph to
generate a surface mesh for rendering. We define a simple

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: TreeStructor: FOREST RECONSTRUCTION WITH NEURAL RANKING

(b)

Fig. 12. Comparison of reconstructing the same tree model with different
tree parts. (a) Ground-truth point cloud and the corresponding tree mesh.
(b) Reconstructed tree composed of tree parts from eight different tree species
(the color on the point clouds indicates from which species a part was taken).
(c) Tree model was reconstructed from parts of the same species. (d) Different
species reconstructed from parts of the species shown in (a).

Ground truth 500 1000 5000 10000 40000

Fig. 13. Reconstruction results with a varying number of points: (left) given
an input point cloud and the corresponding mesh, we show the reconstruction
results from points with 500, 1000, 5000, 10 000, and 40 000 points. As shown,
while there are subtle differences in the reconstructed branching structure, our
approach is robust against using different amounts of points.

procedural model for leaves that attaches leaves with different
orientations to smaller branches and twigs.

During the PDC (see Section IV-B), each tree part is
composed of point clouds from individual trees. The skeleton
information of the tree part is the combination of the remaining
skeletons within the point clouds in the tree part.

A. Forest Data

We used real point cloud data from FOR-instance [86]
and TreeLearn [87]. The average number of trees in a forest
patch is 46, and the average point density is 4061 points
per m~2. The dataset covers various forest types, including
coniferous-dominated boreal forests, temperate forests, native
dry sclerophyll eucalypt forests, and deciduous-dominated
alluvial forests. The scans of real trees shown in Fig. 20 are
from [8], and Fig. 21 are from multiview stereo reconstruction
with images captured using a smartphone. The real forest
data vary the point cloud quality. Some datasets include
understory (see Fig. 1), and some are from tree plantations (the
same tree species in semiregular spacing) [see Fig. 23(a)—(c)].

4408419

Some datasets were captured only by a UAV, and some were
combined with data from a person walking through the forest
with a backpack LiDAR scanner and carefully merged [3] [see
Fig. 23(d)—(f)]. We provide details when we discuss particular
results below.

Large scenes may not fit into the GPU memory and are
divided into patches that are processed independently. In our
implementation, we use overlapping patches and discard the
trees on the patch boundaries that are partially reconstructed.

B. Neural Network Training

The neural networks were trained on four NVIDIA RTX
A5000 GPUs (24 GB memory) and an Intel' Xeon' Sil-
ver 4316 CPU with 256 GB RAM. The input point clouds
are subsampled to 40000 points by farthest point sampling.
When constructing a mini-batch, we normalized the point
clouds into a unit cube and augmented each point cloud with
a random rotation along with the up direction. The point cloud
embedding network requires around 72 h of training with
a learning rate le~* and batch size 200. This network also
operates on tree parts obtained from the normalized tree point
clouds. Each part is subsampled to 500 points by farthest point
sampling and moved to the origin in 3-D space. If a tree part
has less than 500 points, we fill the input tensor for that part
with “0s.”

VIII. RESULTS AND VALIDATION

We present qualitative results to demonstrate the effective-
ness of our method. Additionally, we conducted experiments
to assess our method quantitatively and compare it to state-of-
the-art methods in the field.

A. Results

Figs. 1 and 23 show forests reconstructed from large
unstructured point clouds. Our method reconstructed individ-
ual trees in a forest with a high degree of detail. Fig. 1 is
a forest dominated by European beech from TreeLearn [87]
dataset, including 127 trees with around 8M points, captured
by GeoSLAM ZEB Horizon RT. The processing took around
90 min with a single NVIDIA RTX A5000 GPU, Intel Xeon
Silver 4316 CPU, and a maximum of 64 GB RAM during
inference. Fig. 23 shows forests from FOR-instance [86],
where the species vary from coniferous-dominated temperate
forest (a), coniferous-dominated boreal forest (d), deciduous-
dominated alluvial forests (g), and native dry sclerophyll
eucalypt forest (j). The average number of trees in these forest
patches is 64, and the number of points is around 3.6M,
as scanned by UVA. The processing time is around 50 min.

1) Tree Part Variability: Fig. 12 shows how the reconstruc-
tion depends on the variability of the parts in the tree part
dataset. Trees of the same species include similar geometric
features such as the internode length or branching angle, and
the underlying idea is that if the variability of the tree parts
is high and the dataset is sufficiently large, the tree parts will
show sufficient variability to fit models independently of the

Registered trademark.

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

4408419
120 —
100 100
80 ' -
60 | Top 1l Top 2 Top 3 0
121x 45x 37x 0 20 40 60 80100

Fig. 14. Distribution of the frequency of (a) used part for reconstruction of
(b) small forest. The most frequent part is used 121x, the second most used
part is used 45x, and the third 37x. The curve follows a power law, and
the inset on the right shows the distribution for the top 100 parts. The forest
reconstructed with all available tree parts used 2387 parts out of 4M possible
(a) and two reconstructions from a subset of the most frequently used parts,
where we only used (c) 50% (1193) and (d) 20% (477) of initially used tree
parts.

Ground Truth

Chamfer Distance

Top 1 wio Opti

Top 1w Opti

Tep 10w Optimization

Fig. 15. Comparison with different tree part ranking methods. The first row
represents the error maps, and the second shows the reconstruction results.
As shown in the figure, the top-10 ranked tree parts with optimization can
reconstruct models with the lowest error.

tree species. A tree model (a) is reconstructed using a neural
ranking of a large collection of all 4M tree parts from all
possible species (b). We then reconstruct the tree model by
only using tree parts obtained from tree models from the same
species for around 500000 tree parts (c). Finally, (d) shows a
different tree species reconstructed from around 480000 tree
parts of the species shown in (a). As can be seen, most of the
tree parts are not used for reconstruction of one species.

2) Part Usage Frequency: We have counted how often a
tree part is used to reconstruct trees in Fig. 14(b). As expected,
the distribution follows the power law shown in Fig. 14(a).
Of all possible 4M parts, the most frequent part is used 121 x,
the second 45x, and the third 37 x. Moreover, 1524 are used
1x, and 411 are used 2x. The high number of unused parts
is because the neural network is trained on a large and highly
variable dataset. The trees in this reconstructed set are the
same species, and their geometric variability is much lower.
Note that this observation agrees with the previous experiment
about the tree part variability.

An experiment in Fig. 14(b)-(d) shows what happens if we
use only the most frequently used tree parts for reconstruction.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

TABLE I

QUANTITATIVE COMPARISON OF TREE PART RANKING METHODS
ON SYNTHETIC DATASETS

Threshold 7=0.01
CDx1004 | EMDx000) F-scoreT | PrecisionT | Recallt
chamfer distance 0.058 3.845 0.697 0.630 0.782
top 1 w/o optimization | 0.022 2.804 0.765 0.669 0.905
top I w optimization 0.021 2.191 0.769 0.654 0.936
top 10 w optimization 0.019 2.445 0.799 0.704 0.925

The figure shows a small group of trees reconstructed from all
2387 parts (b), the top 50% or 1193 parts (c), and the top 20%
or 477 parts (d). With the decreasing amount of used parts,
the reconstruction fails, and the most affected parts are in the
top canopy, which has the highest variability.

3) Robustness: Figs. 11 and 13 show reconstructing trees
and forests from partial point clouds (with occlusion shadow)
and from point clouds with varying densities. Fig. 11(a)—(d)
shows the reconstruction of a forest scene with our framework.
A tree (a), (e) is occluded during the scanning, and we only
obtain a partial point cloud (f), which is a common scenario
when reconstructing trees from TLS point clouds. Although
the point cloud is incomplete, our method reconstructs a tree
model (g) closely resembling the ground truth (e). Most of the
inconsistencies are in the small branches. Fig. 13 shows recon-
struction from point clouds of different densities. TreeStructor
reconstructs branching structures that follow the ground truth.
Similar to the previous case, the main inconsistencies are in
the small branches.

B. Validation

We are not aware of any dataset of a reconstructed forest.
Thus, we compare the meshes of our synthetic forest data
scanned with a virtual LiDAR simulator. We further show a
comparison to the state-of-the-art single tree reconstruction,
and we ablate TreeStructor.

1) Validation Metrics: We evaluate the performance of
the reconstruction method by using the precision, recall, and
F-score from [88] between the ground-truth mesh and the
reconstructed mesh. This method samples one mesh and
compares the points to the second mesh and vice versa. The
F-score is computed using precision P(r) and recall R(t)
with a quality threshold t. The precision is the indicator of
the reconstruction accuracy, where the scanned points from the
reconstructed mesh find the minimum distance to the ground-
truth mesh. The points are valid if their minimum distance
from the mesh is within the threshold 7. The precision is
computed as the ratio of the valid points number to the total
points number. The recall indicates how tight the reconstructed
mesh covers the set of points from the other mesh. The recall
is given by the ratio of the valid input points to all points.
Finally, the F-score is the harmonic mean between precision
and recall.

We also evaluate quantitatively our reconstruction by com-
puting the distance between the input point clouds and the
reconstructed meshes. We used the CD and earth-mover dis-
tance (EMD) between the input point cloud and the point cloud
of the reconstructed mesh simulated by a virtual scanner.

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: TreeStructor: FOREST RECONSTRUCTION WITH NEURAL RANKING

[

ﬂ I'| 1Y

[Guo etal.2017]

it
|

ground truth

input

[Livny et

Fig. 16. Reconstruction comparison on three synthetic FPCs: The first colu

4408419

al.2010] [Liu et al.2021]

ours ours with foliage

mn is the input point cloud scanned with foliage from the synthetic dataset,

and the second column is the branching ground truth of the forest. The remaining columns compare with the state-of-the-art method, where the last column
visualizes our reconstructed forest with foliage. As can be seen, our method achieves better reconstruction performance than other methods.

TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT TREE RECONSTRUCTION METHODS ON SYNTHETIC DATASETS
. Threshold 7=0.005 Threshold 7=0.01 Threshold 7=0.02
Figure Method | CDx1004 EMD/ 10004 Precision | Recall | F-score | Precision | Recall | F-score | Precision | Recall | F-score

[89] 0.862 39.6 0.382 0.920 0.539 0.496 0.974 0.657 0.714 0.982 0.826
Fig. 16(Top) [8] 0.980 40.1 0.345 0911 0.500 0.448 0.973 0.613 0.668 0.985 0.795
. 9] 0.454 329 0.506 0.798 0.619 0.686 0.868 0.766 0.903 0.887 0.894
Ours 0.412 31.2 0.501 0.900 0.643 0.661 0.969 0.786 0.879 0.984 0.928
[89] 1.058 40.9 0.450 0.942 0.609 0.545 0.993 0.703 0.702 0.998 0.824
Fig. 16(Middle) [8] 1.079 41.3 0.426 0.928 0.583 0.521 0.96 0.682 0.682 0.990 0.810
’ 9] 0.350 28.3 0.619 0.925 0.741 0.746 0.988 0.850 0.891 1.000 0.942
Ours 0.151 23.2 0.706 0.932 0.803 0.847 0.987 0.911 0.965 0.990 0.981
[89] 1.083 412 0.362 0.93 0.521 0.483 0.982 0.647 0.659 0.998 0.794
Fig. 16(Bottom) [8] 0.958 39.2 0.320 0.922 0.475 0.440 0.980 0.607 0.655 1.000 0.791
’ 9] 0.900 36.5 0.531 0.922 0.673 0.706 0.980 0.820 0.897 0.998 0.945
Ours 0.203 19.6 0.566 0.937 0.705 0.767 0.985 0.862 0.973 0.992 0.986

TABLE IIT

QUANTITATIVE COMPARISON OF DIFFERENT TREE RECONSTRUCTION METHODS ON REAL-WORLD DATASETS

. Threshold 7=0.005 Threshold 7=0.01 Threshold 7 =0.02

Figure Method | CDx100 | EMD/10004 PrecisionT | Recallf | F-scoreT | PrecisionT | Recallf | F-scoreT | PrecisionT | Recallf | F-scoref

[89] 0.029 2.385 0.501 0.476 0.488 0.796 0.796 0.796 0.980 0.984 0.982

Fig. 20 (Left) [8] 0.029 1,776 0.567 0.516 0.540 0.831 0.828 0.829 0.966 0.991 0.978

. 9] 0.026 1.987 0.610 0.4341 0.507 0.914 0.790 0.847 0.980 0.984 0.982

Ours 0.014 1.230 0.735 0.672 0.702 0.939 0.927 0.932 0.990 0.996 0.993

[89] 0.423 12.01 0.187 0.507 0.273 0.392 0.762 0.518 0.738 0.953 0.832

Fig. 20 (Right) [8] 0.552 13.98 0.202 0.598 0.302 0.433 0.931 0.591 0.725 0.989 0.837

. 9] 0.521 7.074 0.407 0.756 0.529 0.644 0.918 0.756 0.926 0.823 0.871

Ours 0.433 7.780 0.337 0.792 0.473 0.681 0.974 0.802 0.942 0.891 0.942

[89] 1.801 196.3 0.067 0.079 0.073 0.215 0.374 0.273 0.530 0.782 0.632

Fig. 21 [8] 2.852 216.2 0.068 0.078 0.072 0.218 0.368 0.273 0.525 0.776 0.626

. 9] 1.684 197.9 0.062 0.078 0.069 0.195 0.384 0.258 0.050 0.798 0.618

Ours 1.509 159.3 0.068 0.070 0.069 0.351 0.439 0.390 0.669 0.857 0.751

2) Comparison to the State-of-the-Art Methods: We evalu-
ate the quality of the reconstruction results by comparing them
with learning-based TreePartNet [8], global-optimization-
based [9], and procedural modeling guided reconstruction [89].
For single-tree reconstruction methods [8] and [9], the recon-
struction is based on instance segmentation from [83]. The
comparisons are shown in Figs. 16, 20, 21, and 22 and
in Tables II and IIl. For reconstruction quality evaluation,
tree reconstruction methods are evaluated using CD, EMD,
precision, recall, and F-score.

First, we evaluate the quality of the forest reconstruction
on synthetic datasets. The comparison is shown in Fig. 16
and Table II. In Fig. 16, the first column is the input point

cloud scanned with foliage from the synthetic dataset, and
the second column is the branching ground truth of the forest.
We visualize the branching mesh here for better visual compar-
ison. The remaining columns compare with the state-of-the-art
method, where the last column visualizes our reconstructed
forest with foliage. The reconstructed forest mesh obtained a
similar geometry to the ground truth, and the rendered forest
with foliage covers the input point cloud well. Our method
outperforms the current reconstruction method by around 2%
on average in the synthetic dataset (see Table II).

We evaluate the reconstruction performance using real data.
Apart from the metrics above, we visualize the error map
from [8], computed by the closest distance for the point

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

4408419

(a) (b) (c)
(d) (e) (f)
Fig. 17. Comparison with QSM on different LIDAR scanning data. (a) and

(d) Same tree scanned by full sampling and TLS simulation. Compared with
(c) and (f) QSM results, our model can generate more realistic tree shapes
with fewer twisting artifacts.

Fig. 18. Tree reconstruction from different laser scans. We reconstruct
the single tree with input from (a) and (e) backpack, (b) and (f) TLS,
(c) and (g) airborne, and (d) and (h) combined data aligned with all sources.
TreeStructor reconstructs high-quality tree models from multiple types of laser
scans.

in the input point clouds to the reconstructed mesh, the
first row of Figs. 20 and 21 is the error map, where red
represents high and blue low error. Fig. 22 shows a real FPC
reconstruction with foliage. Contrary to the previous work,
TreeStructor reconstructs complete geometry and distinguishes
outer branches from noise. Moreover, as seen from Table III,
TreeStructor generates branching structures with lower error
and fewer artifacts compared to the state-of-the-art methods.
In particular, TreeStructor outperforms the state-of-the-art
method for around 6% on average, especially on precision,
recall, and F-score with larger t for at least 13%.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

Ground Truth TreePartNet

DBSCAN

Fig. 19. Comparison with different tree part clustering methods. The first row
represents the error maps, and the second shows the reconstruction results.
DBSCAN cannot capture small branches in detail, and TreePartNet tends to
split the trunk into small subelements.

TABLE IV

QUANTITATIVE COMPARISON OF BACKBONE ON
SYNTHETIC DATASETS

Classification | Classification

CDyx 1004 | Cosine Dist| Precision), Recall) L2 Radius]
PointNet++ 0.035 0.025 0.703 0.811 0.0021
DGCNN 0.027 0.012 0.778 0.852 0.0010
PointTransformer | 0.025 0.010 0.792 0.875 0.0009
Ours 0.030 0.009 0.775 0.854 0.0010

3) Ablation Study: We compare the tree part ranking
methods by using CD with top-1 closest tree part without
optimization, top-10 without optimization, and top-10 with
optimization (see Fig. 15 and Table I). Our optimization
method for orienting and positioning the tree parts outperforms
positioning based only on the CD. We also evaluated the
influence of using different backbones for the neural embed-
ding. Table IV shows that the reconstruction results between
different backbones are less than 2%. We selected R-CNN as
our backbone because the reconstruction result achieves high
accuracy, and the inference is 16% better.

4) Experiments on Different LIDAR Sources: We evaluate
the robustness of our model by reconstructing the same tree
model with different laser scans. Fig. 18 shows a scanned tree
by backpack, TLS, airborne, and combined point cloud aligned
by all laser sources. Our method reconstructs high-quality
tree models from multiple types of laser scans owing to the
diversity of the dataset and geometric awareness of the branch
parts from the neural network.

5) Comparison to QSM: We compare the reconstruction
model with QSM [79] to evaluate the accuracy of model recon-
struction. We create realistic synthetic data by full sampling
and TLS scanning, and measure DBH (m), total volume (m?),
and tree height (m). Table VI shows that our model shares
similar reconstruction capability compared with QSM, while
our model outperforms QSM on TLS data with 12% fewer
errors on average. Besides, the reconstructed models from our
method do not suffer from twisting artifacts (see Fig. 17).

IX. DISCUSSION AND LIMITATIONS

Our method focused on exploring neural ranking for recon-
structing tree-branching structures. Specifically, our goal was

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: TreeStructor: FOREST RECONSTRUCTION WITH NEURAL RANKING

4408419

[Guo et al. 2020] [Liuetal. 2021]

[Livny et al. 2010]

Qurs

[Guo et al. 2020] [Livetal. 2021] [Livny et al. 2010] Ours
Fig. 20. Reconstruction comparison on two real point clouds: the first row shows the error map of single-side CD as a color overlay, where red indicates a

large error and blue is a low error. The second row shows the reconstructed tree meshes from the point clouds. As can be seen, compared to the state-of-the-art
methods, our approach generates branching structures with lower error.

[Livny et al.2010]

[Liu et al.2010]

Fig. 21.

Reconstruction comparison on a real FPC: The first row shows the error map (red indicates a large error, and blue indicates a low error). The
second row shows the reconstructed forest meshes from the point clouds. Our method generates reconstructed meshes with lower error.

input

[Guo et al.2017] [Livny et al.2010] [Liu et al.2021]

=y N
!.\\ LR &{-I
i i i
_)
| i
input [Guo et al.2017] [Livny et al.2010) [Liu et al.2021] Ours
AR Bt | T % ¥

! A
\ \ 4] i

N (111
| | ‘|| [
|) {]
| IR

input [Guo et al.2017)

[Livny et al.2010] [Liu et al.2021] Ours

Fig. 22. Reconstruction comparison of a real FPC with foliage. Contrary to the previous work, TreeStructor reconstructs complete geometry and distinguishes
outer branches from noise.

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

4408419 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

(b)

(e)

Fig. 23. Four forest reconstruction examples: our method can reconstruct large collections of trees by decomposing point clouds of forests (left column)
into individual trees and branch parts. (a)—(c) and (g)—(i) We show the reconstruction of deciduous forests and (d)—(f) and (j)—(1) pine forests (middle column)
without and (right column) with leaves. The output of our algorithm is a set of highly detailed and connected geometries.

TABLE V TABLE VI
QUANTITATIVE COMPARISON OF TREE PART CLUSTERING METHODS QUANTITATIVE COMPARISON OF RECONSTRUCTION
ON SYNTHETIC DATASETS ERROR WITH QSM
Threshold 7=0.01 DBH Total Volume Tree Height
€100} | EMDx 1000 PrecisionT | Recallf | F-scoref mean | std mean | std mean zg;td
DBSCAN 0.032 5.200 0.629 0.562 0.717

TreePartNet | 0.021 5.744 0.799 0.704 0.925 QSM 0015 | 0.029 | 0.007 | 0.018 | 0.051 | 0.067
Ours 0.019 3.445 0.824 0.739 0.933 QSM TLS | 0.025 | 0.003 | 0.012 | 0.098 | 0.087 | 0.117
Ours 0.011 | 0.013 | 0.006 | 0.004 | 0.059 | 0.079
Ours TLS 0.020 | 0.019 | 0.007 | 0.002 | 0.106 | 0.173

to devise a pipeline to reconstruct real point clouds of multiple
trees into individual tree models in forest settings. Therefore,
we rely on established techniques, such as OneFormer [82] of individual tree point clouds into tree parts. We rely on
and SoftGroup [83], to first decompose large point clouds into synthetically generated tree models for both neural network
smaller tree-centric point clouds that can be processed with architectures that we generate with a procedural model for tree
neural network architectures, such as for the decomposition development. While this workflow enables the generation of

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: TreeStructor: FOREST RECONSTRUCTION WITH NEURAL RANKING

4408419

Algorithm 1 Building Connectivity Graph

Algorithm 2 Construct Skeletons

Input: Predicted Branches from tree parts B, Scattered
points P.
Output: Connectivity graph G..
1 Procedure:

2 Add starting point of by, ..., b, in B to
G, as vsg, ..., US,.

3 Add ending point of by, ..., b, in B to
G, as veg, ..., ve,.

4 Addsg,...,s,in P to G, as vpy, ..., Up,.

5 For each vp; and vp; in G, do:

6 — If dist (vp;, vp;) < Ry:

7 — Add edge vp; — vp; to G..

8 — end

9 end

10 For each vp; and vs; in G, do:

n — If dist (vp;, vs;) < Rp:

12 — Add edge vp; — vs; to G..

13 — end

14 end

15 For each ve; and vp; in G, do:

16— If dist (ve;, vp;) < R,:

17 — Add edge ve; — vp; to G.

18 — end

19 end

precise labels for point clouds, which is commonly not the case
for real data, it is limited by the capabilities of the procedural
model. Even state-of-the-art procedural models commonly do
not provide branching structures as diverse as what can be
observed in nature. However, our neural ranking approach is
not limited by the expressiveness of the developmental model.
We have shown that large collections of tree parts can be
organized with a learned embedding space to disentangle their
geometric properties successfully. One of the key insights of
our approach is that the more synthetic point cloud parts are
embedded and the more diverse they are, the more likely we
will find a meaningful representative for the input tree part
point cloud.

Our approach differs from existing neural network-based
approaches (e.g., TreePartNet [8]) as TreeStructor focuses on
learning a representation for tree parts that can be leveraged
for neural ranking instead of instance segmentation. Compared
with TreePartNet, the instance segmentation in our work is
accomplished by an optimized unsupervised clustering, which
is not limited by the number of cluster numbers. Our work
resembles other approaches that rely on tree parts to gen-
erate tree models (e.g., [45]). However, unlike the existing
methods, we focus on reconstructing FPCs with minimal user
intervention.

Currently, our method has several limitations. First,
although we rely on a tree part dataset with high diver-
sity, there may still be some tree species with unique tree
part geometry that will not be successfully reconstructed
(e.g., Adansonia digitata tree). Second, our graph connection
algorithm cannot reconstruct detailed branch surfaces. Real

Input: Connectivity graph G..

Output: List of skeletons Sy, ..., S,.
1 Procedure:
2 For each ve; and vs; in G, do:
3 — If dist (ve;, vs;) < Ry:
4 or exist path [ve; — vp,, ..., vp, — vp;] do:
5 — Add b; to b;’s parent candidate list L ;.
6 — end
7 For each b; in B do:
8 — If height (vs;) < H,:
9 — Add new skeleton S,,.
10 — Add b; as the root branch of skeleton S,,.
11 — end
12 end
13 While any S; modified do:
14 — For each b; in B do:
15 — 1If b; has parent b, do:
16 — For each b; in L; do:
17 — If distance (b;, b;) < distance (b;, b)) do:
18 — Replace b, with b; as b;’s parent.
19 — end
20 — end
21 — Else do:
22 — Add any b; from L; as b;’s parent.
23 — end
24 — end
25 end
26 For each b; in Sy, ..., S, do:
27— Connect all b;’s descendants to corresponding S.
28 end

trees in forests often have pronounced branches as the result
of lateral growth, while others may be covered by moss or
climbing plants. Currently, our method cannot reconstruct
these branches and additional features. Third, our approach
may fail if the scanned point cloud input is too sparse or the
number of points is too low. In these cases, the neural ranking
will fail to retrieve meaningful branch candidates. Fourth,
although we can retrieve thickness information from predicted
tree parts, it is inaccurate due to the variance introduced
during the scanning process. Fifth, the lowest layer of many
forests often includes dead trees, bushes, and other debris [90].
Our method assumes that we can detect the lowest part of
individual trees, but it may fail in the presence of such features.
Finally, our method cannot extract foliage information from
the FPCs; foliage is generated with our procedural tree model.

X. CONCLUSION AND FUTURE WORK

We have introduced TreeStructor, a novel method for
reconstructing individual tree meshes from point scans of
forests. A large unstructured FPC is decomposed into point
clouds of trees and branches. To perform this decomposition,
we devised a point cloud processing pipeline of different
clustering and segmentation techniques that allow us to com-
pute the instance segmentation of trees and branches with

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

4408419

Algorithm 3 Peak Density Cluster

Input: Point cloud P, Threshold r, Root point p, e
Output: Tree part clusters C.
1 Procedure:

2 Create empty graph G for clustering

3 Create adaptive neighbor list R

4 Create density list D

5 For each p; in P do:

6 — Compute adaptive neighbor r; by f.a,(pi, ¥, Proot)

7 — Compute density for each point d; by
fdensity(piv P)

8 — Push r; into R

9 — Push d; into D

10 end

11 For each p; in P do:

12 - dcurr_denxity <0

13 — Qcurr_dist < 0

14 — For each p; in P do:

15 — If diSf(Pi» Pj) < dcurr?dist and D[lr]] >
dcurr_densily

16 - dcurr_denxity <~ D[l’]]

17 — Qcurr_dist < diSt(Pi» PJ)

18 — Pk < Dj

19 — end

20 — Add [p;, pk, e] into G

21 — end

22 — end

23 For each ¢;_; in G do:

24 — If ¢;_; > R[i] do:

25 — Remove ¢; ; from G

26 — end

27 — end

28 For each Gy _group in G do:

29 — If |[{v|v € Goup_group}l < distyax do:

30 — Add {v|v € Ggup_group} t0 C

31 — end

32 end

unprecedented quality. To reconstruct trees, we leverage and
extend a state-of-the-art point cloud network to project a point
cloud of branches into an embedding space. Once trained, the
embedding space can be used to perform neural ranking—
identifying nearest neighbors—of branch parts that closely
matches the geometry a given input point cloud represents. The
branch parts are connected and geometrically consolidated,
eventually leading to skeletal graphs that can be transformed
into high-quality surface meshes of the scanned trees. We have
carefully validated our method through numerous experiments
and shown various qualitative examples of reconstructions.
We have shown that the reconstruction of branches can be
performed through neural ranking, which leads to multiple
possible avenues for future work. First, extending our method
to other organic shapes that are difficult to reconstruct from
point clouds, such as flowers and grass or various leaf shapes,
seems interesting. While we have shown that it is possible
to reconstruct branching structures through neural ranking,

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

it would be interesting to explore the robustness of neural
ranking toward even denser forest scenarios, higher degrees
of noise in the sensor data, or for the reconstruction of point
clouds obtained with different types of capturing modalities
(e.g., UAV, hand-held [91]). Finally, we could explore multi-
modal network architectures that allow simultaneous operation
on point clouds and images. Our method attempts to use
as broad a shape variety as possible to reconstruct various
forests and tree species. Another interesting future work is
determining the smallest set of the most representative shapes
for a given forest.

APPENDIX
See Algorithms 1-3.

ACKNOWLEDGMENT

The findings and conclusion should not be construed to
represent any agency determination or policy. Any opinions,
findings, and conclusion or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect those of the National Science Foundation.

REFERENCES

[1] N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan, “Symmetry in 3D
geometry: Extraction and applications,” Comput. Graph. Forum, vol. 32,
no. 6, pp. 1-23, Sep. 2013.

[2] T. Rumezhak, O. Dobosevych, R. Hryniv, V. Selotkin, V. Karpiv, and
M. Maksymenko, “Towards realistic symmetry-based completion of
previously unseen point clouds,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. Workshops (ICCVW), Oct. 2021, pp. 2542-2550.

[3] T. Zhou, R. Ravi, Y.-C. Lin, R. Manish, S. Fei, and A. Habib, “In situ
calibration and trajectory enhancement of UAV and backpack LiDAR
systems for fine-resolution forest inventory,” Remote Sens., vol. 15,
no. 11, p. 2799, May 2023.

[4] A. Bienert, L. Georgi, M. Kunz, G. von Oheimb, and H.-G. Maas,
“Automatic extraction and measurement of individual trees from mobile
laser scanning point clouds of forests,” Ann. Botany, vol. 128, no. 6,
pp- 787-804, Oct. 2021.

[5] C. Zhu, X. Zhang, M. Jaeger, and Y. Wang, “Cluster-based construction
of tree crown from scanned data,” in Proc. 3rd Int. Symp. Plant Growth
Modeling, Simulation, Vis. Appl., Nov. 2009, pp. 352-359.

[6] F. Aiteanu and R. Klein, “Exploring shape spaces of 3D tree point
clouds,” Comput. Graph., vol. 100, pp. 21-31, Nov. 2021.

[7]1 S. Du, R. Lindenbergh, H. Ledoux, J. Stoter, and L. Nan, “AdTree:
Accurate, detailed, and automatic modelling of laser-scanned trees,”
Remote Sens., vol. 11, no. 18, p. 2074, Sep. 2019.

[81 Y. Liu, J. Guo, B. Benes, O. Deussen, X. Zhang, and H. Huang,
“TreePartNet: Neural decomposition of point clouds for 3D tree recon-
struction,” ACM Trans. Graph., vol. 40, no. 6, pp. 1-16, Dec. 2021.

[91 Y. Livny, F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-Sana,
“Automatic reconstruction of tree skeletal structures from point clouds,”
in Proc. ACM SIGGRAPH Asia Papers-SIGGRAPH ASIA, New York,
NY, USA, 2010, pp. 1-11.

[10] A. Zarei et al., “PlantSegNet: 3D point cloud instance segmentation
of nearby plant organs with identical semantics,” Comput. Electron.
Agricult., vol. 221, Jun. 2024, Art. no. 108922.

[11] Y. Livny et al., “Texture-lobes for tree modelling,” in Proc. ACM
SIGGRAPH Papers, NY, NY, USA, Jul. 2011, pp. 1-10.

[12] P. B. Boucher, I. Paynter, D. A. Orwig, 1. Valencius, and C. Schaaf,
“Sampling forests with terrestrial laser scanning,” Ann. Botany, vol. 128,
no. 6, pp. 689-708, Oct. 2021.

[13] A. Lindenmayer, ‘“Mathematical models for cellular interactions in
development I. Filaments with one-sided inputs,” J. Theor. Biol., vol. 18,
no. 3, pp. 280-299, Mar. 1968.

[14] P.Prusinkiewicz, “Graphical applications of L-systems,” in Proc. Graph.
Interface, Aug. 1986, pp. 247-253.

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: TreeStructor: FOREST RECONSTRUCTION WITH NEURAL RANKING

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

P. Prusinkiewicz and J. Hanan, “Visualization of botanical structures and
processes using parametric I-systems,” Sci. Vis. Graph., vol. 22, no. 4,
pp- 183-201, 1990.

R. Méch and P. Prusinkiewicz, “Visual models of plants interacting with
their environment,” in Proc. 23rd Annu. Conf. Comput. Graph. Interact.
Techn., New York, NY, USA, Aug. 1996, pp. 397-410.

J. J. Lee, B. Li, and B. Benes, “Latent L-systems: Transformer-based
tree generator,” ACM Trans. Graph., vol. 43, no. 1, pp. 1-16, Feb. 2024.
J. Guo et al., “Inverse procedural modeling of branching structures by
inferring L-systems,” ACM Trans. Graph., vol. 39, no. 5, pp. 1-13,
Jun. 2020.

I. McQuillan, J. Bernard, and P. Prusinkiewicz, “Algorithms for inferring
context-sensitive L-systems,” in Proc. 17th Int. Conf. Unconventional
Comput. Natural Comput., Fontainebleau, France. Cham, Switzerland:
Springer, Jan. 2018, pp. 117-130.

'W. Palubicki et al., “Self-organizing tree models for image synthesis,”
ACM Trans. Graph., vol. 28, no. 3, pp. 1-10, Jul. 2009.

S. Pirk et al., “Plastic trees: Interactive self-adapting botanical tree
models,” ACM Trans. Graph., vol. 31, pp. 1-10, Jul. 2012.

T. Hédrich, B. Benes, O. Deussen, and S. Pirk, “Interactive modeling and
authoring of climbing plants,” Comput. Graph. Forum, vol. 36, no. 2,
pp. 49-61, May 2017.

S. Pirk, T. Niese, T. Hédrich, B. Benes, and O. Deussen, “Windy trees:
Computing stress response for developmental tree models,” ACM Trans.
Graph., vol. 33, no. 6, pp. 1-11, Nov. 2014.

F. Maggioli et al., “A physically-inspired approach to the simulation of
plant wilting,” in Proc. SIGGRAPH Asia Conf. Papers, New York, NY,
USA, Dec. 2023, pp. 1-8.

B. Li, J. Klein, D. L. Michels, B. Benes, S. Pirk, and
W. Patubicki, “Rhizomorph: The coordinated function of shoots
and roots,” ACM Trans. Graph., vol. 42, no. 4, pp.1-16,
Jul. 2023.

W. Patubicki, M. Makowski, W. Gajda, T. Héadrich, D. L. Michels,
and S. Pirk, “Ecoclimates: Climate-response modeling of
vegetation,” ACM Trans. Graph., vol. 41, no. 4, pp.1-19,
Jul. 2022.

B. Li, N. A. Schwarz, W. Patubicki, S. Pirk, and B. Benes, “Interactive
invigoration: Volumetric modeling of trees with strands,” ACM Trans.
Graph., vol. 43, no. 4, pp. 1-13, Jul. 2024.

S. Pirk, M. Jarzabek, T. Hidrich, D. L. Michels, and W. Palubicki,
“Interactive wood combustion for botanical tree models,” ACM Trans.
Graph., vol. 36, no. 6, pp. 1-12, Nov. 2017.

T. Hédrich, D. T. Banuti, W. Patubicki, S. Pirk, and D. L. Michels, “Fire
in paradise: Mesoscale simulation of wildfires,” ACM Trans. Graph.,
vol. 40, no. 4, pp. 1-15, 2021.

M. Makowski, T. Hédrich, J. Scheffczyk, D. L. Michels, S. Pirk,
and W. Palubicki, “Synthetic silviculture: Multi-scale modeling
of plant ecosystems,” ACM Trans. Graph., vol. 38, pp. 1-14,
Jul. 2019.

K. Kapp, J. Gain, E. Guérin, E. Galin, and A. Peytavie, “Data-driven
authoring of large-scale ecosystems,” ACM Trans. Graph., vol. 39, no. 6,
pp. 1-14, Dec. 2020.

T. Niese, S. Pirk, M. Albrecht, B. Benes, and O. Deussen, “Procedural
urban forestry,” ACM Trans. Graph., vol. 41, no. 2, pp. 1-18, Mar. 2022.
B. Benes, N. Andrysco, and O. Stava, “Interactive modeling of virtual
ecosystems,” in Proc. Eurographics Workshop Natural Phenomena,
Apr. 2009, pp. 9-16.

G. Cordonnier et al., “Authoring landscapes by combining ecosystem
and terrain erosion simulation,” ACM Trans. Graph., vol. 36, no. 4,
pp- 1-12, Jul. 2017.

I. Shlyakhter, M. Rozenoer, J. Dorsey, and S. Teller, “Reconstructing
3D tree models from instrumented photographs,” IEEE Comput. Graph.
Appl., vol. 21, no. 1, pp. 53-61, Jan. 2001.

T. Isokane, F. Okura, A. Ide, Y. Matsushita, and Y. Yagi, “Proba-
bilistic plant modeling via multi-view image-to-image translation,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2906-2915.

Z. Liu, K. Wu, J. Guo, Y. Wang, O. Deussen, and Z. Cheng, “Single
image tree reconstruction via adversarial network,” Graph. Models,
vol. 117, Sep. 2021, Art. no. 101115.

B. Li et al., “Learning to reconstruct botanical trees from single images,”
ACM Trans. Graph., vol. 40, no. 6, pp. 1-15, Dec. 2021.

P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan, “Single image tree
modeling,” ACM Trans. Graph., vol. 27, no. 5, pp. 1-7, Dec. 2008.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

4408419

J. J. Lee et al., “Tree-D fusion: Simulation-ready tree dataset from
single images with diffusion priors,” in Proc. Comput. Vis.-ECCV. Cham,
Switzerland: Springer, Nov. 2024, pp. 439—460.

B. Neubert, T. Franken, and O. Deussen, “Approximate image-based
tree-modeling using particle flows,” ACM Trans. Graph., vol. 26, no. 99,
p. 88, Jul. 2007.

C. Li, O. Deussen, Y.-Z. Song, P. Willis, and P. Hall, “Modeling and
generating moving trees from video,” ACM Trans. Graph., vol. 30, no. 6,
pp. 1-12, Dec. 2011.

O. Stava et al., “Inverse procedural modelling of trees,” Comput. Graph.
Forum, vol. 33, no. 6, pp. 118-131, Sep. 2014.

X. Zhou, B. Li, B. Benes, S. Fei, and S. Pirk, “DeepTree: Modeling
trees with situated latents,” IEEE Trans. Vis. Comput. Graphics, vol. 30,
no. 8, pp. 5795-5809, Aug. 2024.

K. Xie, F. Yan, A. Sharf, O. Deussen, H. Huang, and B. Chen, “Tree
modeling with real tree-parts examples,” IEEE Trans. Vis. Comput.
Graph., vol. 22, no. 12, pp. 2608-2618, Dec. 2016.

M. A. Uy et al., “Point2Cyl: Reverse engineering 3D objects from point
clouds to extrusion cylinders,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 11840-11850.

P. Li, J. Guo, H. Li, B. Benes, and D.-M. Yan, “SfmCAD: Unsuper-
vised CAD reconstruction by learning sketch-based feature modeling
operations,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2024, pp. 4671-4680.

R. Ando, Y. Ozasa, and W. Guo, “Robust surface reconstruction of plant
leaves from 3D point clouds,” Plant Phenomics, vol. 2021, Jan. 2021,
Art. no. 3184185.

Y. Li, X. Fan, N. J. Mitra, D. Chamovitz, D. Cohen-Or, and B. Chen,
“Analyzing growing plants from 4D point cloud data,” ACM Trans.
Graph., vol. 32, no. 6, pp. 1-10, Nov. 2013.

K. Yin, H. Huang, P. Long, A. Gaissinski, M. Gong, and A. Sharf,
“Full 3D plant reconstruction via intrusive acquisition,” Comput. Graph.
Forum, vol. 35, no. 1, pp. 272-284, Feb. 2016.

M. Boukhana, J. Ravaglia, F. Hétroy-Wheeler, and B. De Solan,
“Geometric models for plant leaf area estimation from 3D point
clouds: A comparative study,” Graph. Vis. Comput., vol. 7, Dec. 2022,
Art. no. 200057.

H. Xu, N. Gossett, and B. Chen, “Knowledge and heuristic-based
modeling of laser-scanned trees,” ACM Trans. Graph., vol. 26, no. 4,
p- 19, Oct. 2007.

W. Zhang, X. Peng, G. Cui, H. Wang, D. Takata, and
W. Guo, “Tree branch skeleton extraction from drone-based
photogrammetric point cloud,” Drones, vol. 7, no. 2, p.65,
Jan. 2023.

Z. Wang et al., “A structure-aware global optimization method for
reconstructing 3-D tree models from terrestrial laser scanning data,”
IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5653-5669,
Sep. 2014.

J. L. Cardenas-Donoso, C. J. Ogayar, F. R. Feito, and J. M. Jurado,
“Modeling of the 3D tree skeleton using real-world data: A survey,”
IEEE Trans. Vis. Comput. Graphics, vol. 29, no. 12, pp. 4920-4935,
2022.

X. Zhang, H. Li, M. Dai, W. Ma, and L. Quan, “Data-driven synthetic
modeling of trees,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 9,
pp- 1214-1226, Sep. 2014.

J. Ravaglia, A. Bac, and R. A. Fournier, “Extraction of tubular
shapes from dense point clouds and application to tree reconstruc-
tion from laser scanned data,” Comput. Graph., vol. 66, pp. 23-33,
Aug. 2017.

X. Li, X. Zhou, and S. Xu, “Individual tree reconstruction
based on circular truncated cones from portable LiDAR scan-
ner data,” IEEE Geosci. Remote Sens. Lett., vol. 20, pp. 1-5,
2023.

M. Akerblom and P. Kaitaniemi, “Terrestrial laser scanning: A new
standard of forest measuring and modelling?” Ann. Botany, vol. 128,
no. 6, pp. 653-662, Oct. 2021.

B. N. Bailey and M. H. Ochoa, “Semi-direct tree reconstruction using
terrestrial LIDAR point cloud data,” Remote Sens. Environ., vol. 208,
pp- 133-144, Apr. 2018.

P. Raumonen et al., “Fast automatic precision tree models from ter-
restrial laser scanner data,” Remote Sens., vol. 5, no. 2, pp. 491-520,
Jan. 2013.

A. Burt, M. Disney, and K. Calders, “Extracting individual trees from
LiDAR point clouds using treeseg,” Methods Ecology Evol., vol. 10,
no. 3, pp. 438-445, Mar. 2019.

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

4408419

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

(73]

(741

[75]

[76]

(77]

(78]

[79]

(80]

[81]

(82]

[83]

J. Li, X. Cheng, and Z. Xiao, “A branch-trunk-constrained hierar-
chical clustering method for street trees individual extraction from
mobile laser scanning point clouds,” Measurement, vol. 189, Feb. 2022,
Art. no. 110440.

T. Jiang, Y. Wang, S. Liu, Q. Zhang, L. Zhao, and J. Sun, “Instance
recognition of street trees from urban point clouds using a three-stage
neural network,” ISPRS J. Photogramm. Remote Sens., vol. 199,
pp. 305-334, May 2023.

Z. Hui, Z. Li, S. Jin, B. Liu, and D. Li, “Street tree extraction
and segmentation from mobile LiDAR point clouds based on spatial
geometric features of object primitives,” Forests, vol. 13, no. 8, p. 1245,
Aug. 2022.

M. Weinmann, M. Weinmann, C. Mallet, and M. Brédif,
“A classification-segmentation framework for the detection of individual
trees in dense MMS point cloud data acquired in urban areas,” Remote
Sens., vol. 9, no. 3, p. 277, Mar. 2017.

X. Wang et al., “GlobalMatch: Registration of forest terrestrial point
clouds by global matching of relative stem positions,” ISPRS J. Pho-
togramm. Remote Sens., vol. 197, pp. 71-86, Mar. 2023.

S. W. Chen et al., “SLOAM: Semantic LiDAR odometry and map-
ping for forest inventory,” IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 612-619, Apr. 2020.

J. Sun et al., “Wood-leaf classification of tree point cloud based on
intensity and geometric information,” Remote Sens., vol. 13, no. 20,
p. 4050, Oct. 2021.

X. Chen, K. Jiang, Y. Zhu, X. Wang, and T. Yun, “Individual tree crown
segmentation directly from UAV-borne LiDAR data using the PointNet
of deep learning,” Forests, vol. 12, no. 2, p. 131, Jan. 2021.

J. Shao, Y.-T. Cheng, Y. Koshan, R. Manish, A. Habib, and S. Fei,
“Radiometric and geometric approach for major woody parts segmenta-
tion in forest LIDAR point clouds,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS), Jul. 2023, pp. 6220-6223.

W. Yang, S. Vitale, H. Aghababaei, G. Ferraioli, V. Pascazio, and
G. Schirinzi, “A deep learning solution for height estimation
on a forested area based on pol-TomoSAR data,” IEEE Trans.
Geosci. Remote Sens., vol. 61, 2023, Art. no. 5208214, doi:
10.1109/TGRS.2023.3274395.

L. Zhao, E. Chen, Z. Li, W. Zhang, and Y. Fan, “A new approach for
forest height inversion using X-band single-pass InSAR coherence data,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5206018, doi:
10.1109/TGRS.2021.3072125.

J. Shao et al., “Large-scale inventory in natural forests with mobile
LiDAR point clouds,” Sci. Remote Sens., vol. 10, Dec. 2024,
Art. no. 100168.

Z. Huang et al., “An algorithm of forest age estimation based
on the forest disturbance and recovery detection,” IEEE Trans.
Geosci. Remote Sens., vol. 61, 2023, Art. no. 4409018, doi:
10.1109/TGRS.2023.3322163.

M. Zhang, W. Li, X. Zhao, H. Liu, R. Tao, and Q. Du, “Morphological
transformation and spatial-logical aggregation for tree species classifi-
cation using hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 61, 2023, Art. no. 5501212.

S. Hu, Z. Li, Z. Zhang, D. He, and M. Wimmer, “Efficient tree modeling
from airborne LiDAR point clouds,” Comput. Graph., vol. 67, pp. 1-13,
Oct. 2017.

Y. Li, Z. Liu, B. Benes, X. Zhang, and J. Guo, “SVDTree: Seman-
tic voxel diffusion for single image tree reconstruction,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2024,
pp. 4692-4702.

G. Fan et al., “A new quantitative approach to tree attributes estimation
based on LiDAR point clouds,” Remote Sens., vol. 12, no. 11, p. 1779,
Jun. 2020, doi: 10.3390/rs12111779.

L. Hu, M. Qin, F. Zhang, Z. Du, and R. Liu, “RSCNN: A CNN-based
method to enhance low-light remote-sensing images,” Remote Sens.,
vol. 13, no. 1, p. 62, Dec. 2020.

A. Lépez, C. J. Ogayar, J. M. Jurado, and F. R. Feito, “A GPU-
accelerated framework for simulating LiDAR scanning,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 3000518.

M. Kolodiazhnyi, A. Vorontsova, A. Konushin, and D. Rukhovich,
“OneFormer3D: One transformer for unified point cloud segmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2024, pp. 20943-20953.

T. Vu, K. Kim, T. M. Luu, T. Nguyen, and C. D. Yoo, “Soft-
Group for 3D instance segmentation on point clouds,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 2708-2717.

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

S. Cai, S. Yu, Z. Hui, and Z. Tang, “ICSF: An improved cloth simulation
filtering algorithm for airborne LiDAR data based on morphological
operations,” Forests, vol. 14, no. 8, p. 1520, Jul. 2023.

A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492-1496, Jun. 2014.

S. Puliti et al., “FOR-instance: A UAV laser scanning benchmark dataset
for semantic and instance segmentation of individual trees,” 2023,
arXiv:2309.01279.

J. Henrich, J. van Delden, D. Seidel, T. Kneib, and A. Ecker, “Tree-
Learn: A deep learning method for segmenting individual trees from
ground-based LiDAR forest point clouds,” 2023, arXiv:2309.08471.

R. Hanocka, G. Metzer, R. Giryes, and D. Cohen-Or, “Point2Mesh:
A self-prior for deformable meshes,” 2020, arXiv:2005.11084.

J. Guo, Z. Cheng, S. Xu, and X. Zhang, “Realistic procedural plant
modeling guided by 3D point cloud,” in Proc. ACM SIGGRAPH Posters,
Jul. 2017, pp. 1-2.

L. R. Jarron, N. C. Coops, W. H. MacKenzie, and P. Dykstra, “Detection
and quantification of coarse woody debris in natural forest stands using
airborne LiDAR,” Forest Sci., vol. 67, no. 5, pp. 550-563, Sep. 2021.
X. Liang et al., “Forest data collection using terrestrial image-based point
clouds from a handheld camera compared to terrestrial and personal
laser scanning,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 9,
pp- 5117-5132, Sep. 2015.

Xiaochen Zhou is currently pursuing the Ph.D.
degree in computer graphics, 3-D computer vision,
and machine learning with Purdue University, West
Lafayette, IN, USA.

His research interests include Al-driven 3-D recon-
struction, point cloud processing, and procedural
modeling.

Bosheng Li is currently pursuing the Ph.D. degree
in computer graphics, procedural modeling, and
physics-based simulation with Purdue University,
West Lafayette, IN, USA.

His work covers geometric modeling of plants,
forest reconstruction, and creating simulation-ready
synthetic datasets for image- and point cloud-based
tree reconstruction, and agriculture and environmen-
tal modeling.

Bedrich Benes (Senior Member, IEEE) received
the Ph.D. degree from Czech Technical University,
Prague, Czech Republic, in 1998.

He is a Professor and an Associate Head of
Computer Science with Purdue University, West
Lafayette, IN, USA. His research interests include
generative methods, simulation of natural phenom-
ena, and geometric modeling with Al

Dr. Benes is a member of ACM and a Eurographics
Fellow.

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TGRS.2023.3274395
http://dx.doi.org/10.1109/TGRS.2021.3072125
http://dx.doi.org/10.1109/TGRS.2023.3322163
http://dx.doi.org/10.3390/rs12111779

ZHOU et al.: TreeStructor: FOREST RECONSTRUCTION WITH NEURAL RANKING

Ayman Habib (Member, IEEE) received the B.Sc.
degree in 1986, the M.Sc. degree in 1989, and the
Ph.D. degree from Ohio State University, Columbus,
OH, USA, in 1994.

He is a Thomas A. Page Professor of Civil Engi-
neering with Purdue University, West Lafayette, IN,
USA, and the Co-Director of the Civil Engineering
Center for Applications of UAS for a Sustainable
Environment. His research interests include terres-
trial and aerial mobile mapping systems, modeling
the perspective geometry of nontraditional imaging
scanners, automatic matching and change detection, calibration of low-cost
digital cameras, object recognition, LIDAR mapping, and photogrammetric
data.

Songlin Fei received the M.S. degree in statistics
and the Ph.D. degree in ecology from Pennsylvania
State University, University Park, PA, USA, in 1999
and 2024, respectively.

He is a Professor and the Dean’s Chair of remote
sensing with Purdue University, West Lafayette, IN,
USA. His research interests include the ecology and
management of invasive species, the understanding
of forest responses to climate change, and the mod-
ernization of forestry into the digital age.

4408419

Jinyuan Shao received the B.S. degree in informa-
tion engineering from Huaqiao University, Xiamen,
China, in 2018, and the M.S. degree in ecology from
the University of Chinese Academy of Sciences,
Beijing, China, in 2021. He is currently pursu-
ing the Ph.D. degree with Purdue University, West
Lafayette, IN, USA.

His research interests include remote sensing
image segmentation and LiDAR point cloud analysis
and visualization using computer vision and deep
learning methods.

Soren Pirk received the Ph.D. degree from the Uni-
versity of Konstanz, Konstanz, Germany, in 2013.

He is a Professor of Computer Science with Kiel
University, Kiel, Germany, where he leads the Visual
Computing and Artificial Intelligence group. Before
joining the Faculty of Engineering, he was a Senior
Research Scientist and Manager at Adobe Research
and a Software Engineer at Google Al

Authorized licensed use limited to: Purdue University. Downloaded on April 26,2025 at 15:00:21 UTC from IEEE Xplore. Restrictions apply.

