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FULLY DISCRETIZED SOBOLEV GRADIENT FLOW FOR THE
GROSS-PITAEVSKII EIGENVALUE PROBLEM

ZIANG CHEN, JIANFENG LU, YULONG LU, AND XIANGXIONG ZHANG

ABSTRACT. This paper studies the numerical approximation of the ground
state of the Gross-Pitaevskii (GP) eigenvalue problem with a fully discretized
Sobolev gradient flow induced by the H' norm. For the spatial discretization,
we consider the finite element method with quadrature using P* basis on a
simplicial mesh and Q¥ basis on a rectangular mesh. We prove the global
convergence to a critical point of the discrete GP energy, and establish a local
exponential convergence to the ground state under the assumption that the lin-
earized discrete Schréodinger operator has a positive spectral gap. We also show
that for the Pl finite element discretization with quadrature on an unstruc-
tured shape regular simplicial mesh, the eigengap satisfies a mesh-independent
lower bound, which implies a mesh-independent local convergence rate for the
proposed discrete gradient flow. Numerical experiments with discretization
by high-order Q¥ spectral element methods in two and three dimensions are
provided to validate the efficiency of the proposed method.

1. INTRODUCTION

1.1. The Gross-Pitaevskii eigenvalue problem. A standard mathematical
model of the equilibrium states in Bose-Einstein condensation (BEC) [11,21,27,46]
is through the minimization of the Gross-Pitaevskii energy. For N identical bosons,
with an scattering length a and an external potential V' (x), the Gross-Pitaevskii
(GP) energy functional is defined as

£ (¢) = /RS (IVo(@)]? +V(@)|6(@)* + 4ma|g(x)|*) da,

and the GP energy, denoted by ESF(N,a), is defined as the infimum of £ under
normalization [ps [¢(2)|?*dx = N. It has been used for finding the ground state
energy per unit volume of a dilute, thermodynamically infinite, homogeneous gas.
In some typical experiments the value of a is about 1073, while N varies from 103
to 107.
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2 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

Computations are usually done on a finite domain and it is usually acceptable
to make the assumption that we can approximate wave function of interest by
compact support due to the fast decay rate at infinity [29,38]. Let £FF denote the
energy functional defined on a box domain Q = [~L, L]? and E¢P (N, a) denote the
corresponding GP energy, then Ll;n;o ESP(N,a) = EYP(N,a), see [44]. Since the

GP energy satisfies the scaling relation E¢F(N,a) = NEYF(1, Na), we consider
the following simplified rescaled model for finding ground state: minimizing the
energy functional

BO) = 5 [ (Vo@F +V@lo@P)do+ § [ o@)'de, 0= [-L.L"
over the constraint set {¢ € H}(Q) : [, |¢(x)|*de =1}, whered = 1,2,3, V() >0
and 8 > 0. While it is also of interest to extend the problem to 8 < 0, see e.g., [3],
we restrict to the case 8 > 0 in this work.

The existence, uniqueness, and regularity of the GP ground states are well un-
derstood, see e.g., [44]. For § > 0, E(¢) has the unique positive ground state
¢(x) > 0, which is also the eigenfunction to the nonlinear eigenvalue problem

(1.1)
—Au(zx) + V(z)u(z) + Blu(z)*u(x) = Iu(x), /Q lu(z)|?dx = 1,u(x)|s0 = 0.

Notice that (1.1) should be understood in the sense of distribution, i.e., the varia-
tional form of (1.1) is to seek A € R and u € H}(Q) satisfying

(1.2) (Vu, Vo) + (Vu,v) + B(\u|2u, v) = Mu,v), YvéE Hé(ﬂ),

where (u,v) = [, u(x)v(z)de. Let u* be the ground state to E(-), then by setting
u=v =u" in (1.2), the corresponding eigenvalue should satisfy

. o B

N =2F(u*) + 5P P= |p(z)|*dex.
Q

Since the ground state v* remains unchanged under a constant shift of the potential,

without loss of generality, we may assume V(x) > ¢ > 0 for some ¢ > 0.

1.2. Related work. The study of numerical solutions to the Gross-Pitaevskii
problem (1.2) has a long history. Self-consistent field iteration (SCF) [14,15,24,50]
is one of the most popular iterative techniques for a nonlinear eigenvalue prob-
lem, which involves a linearized eigenvalue problem during each iteration. For the
problem (1.1), SCF may diverge unless a good initial guess is provided.

Another category of popular methods takes an optimization perspective of the
energy functional. They can be viewed as discrete-in-time gradient flows (i.e.,
gradient descent) of the energy functional linked to (1.2). Earlier works in this
category are based on an implicit Euler discretization of the L2-gradient flow [8-10].
More recently, several alternative gradient flows have been proposed by modifying
the underlying metric, including the projected Sobolev gradient flow [16,22,23, 31,
33,36,53] and the J-method [2,35]. Projected Sobolev gradient flow is based on first
computing the Sobolev gradients, which are the Riesz representation of the Fréchet
derivative of the GP energy functional within an appropriate Hilbert space (e.g.,
H'(9)), and then projecting the gradients to the tangent space of the Riemannian
manifold defined by the normalization constraint. Despite the empirical success
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THE GROSS-PITAEVSKII EIGENVALUE PROBLEM 3

of projected Sobolev gradient flows for solving the GP eigenvalue problem, their
convergence analysis is still underdeveloped. Our work fits in this line of research.

For the existing convergence results for gradient-flow-based methods: The work
[36] established the global exponential convergence of the continuous-in-time pro-
jected Hl-gradient flow to a critical point of E. The work [33] obtained a global
exponential convergence of a continuous projected Sobolev flow with an alternative
metric to the ground state and also proved the global convergence (without a rate)
of its forward Euler discretization. A more recent work [53] established a local ex-
ponential convergence of the discrete-in-time flow of [33] under the assumption that
the discrete iterates are uniformly bounded. A more explicit local convergence rate
depending on the eigengap of the linearized problem at the ground state is obtained
in [32]. In our previous work [16], we improved the analysis of the global conver-
gence and local rate of convergence of discrete-in-time projected Sobolev gradient
flows with several common choices of inner products in H'-space.

In addition to the time-discretization of the projected Sobolev gradient flows,
their spatial discretization [8] is of course necessary for the practical implementation
of the schemes. However, most of the prior theoretical work on projected Sobolev
flows for the GP eigenvalue problem does not consider spatial discretization and it
remains open how to extend the convergence analysis to the fully discretized setting.
The convergence of the numerical solution using finite element method has been
first established in [13], and there is also some recent progress on estimating the
discretization error for energy, eigenvalue, and eigenfunction in the setting of mixed
finite element method [28], but the convergence of the fully discretized gradient flows
has not been analyzed before the initial submission of this work. After the initial
submission of this work, some very recent progress was reported in [30], which
extended the results in [33] to the fully discretized A, Sobolev gradient descent
with the monotone P! finite element method. Compared to [30], we consider the
fully discretized H' Sobolev gradient descent and we also prove locally exponential
convergence rate that is not covered in [30].

Let us also mention some works on numerical analysis for general nonlinear eigen-
value problems, where g fQ |¢(x)|*dx in the energy functional of the GP eigen-
value problem is generalized to § [, F(|¢(x)|?)d@; we refer interested readers to
[12,13,26].

1.3. Contribution of the present work. We summarize our major contribution
as follows.

e We propose a fully discretized Sobolev gradient descent for approximating
the ground state of the GP energy, which can be viewed as a Riemannian
gradient descent method on the sphere under a metric induced by a modified
H'-norm.

e We prove the global convergence of the fully discretized Sobolev gradient
descent with respect to the modified H' metric to a critical point of the
discrete GP energy and a local convergence to the ground state with an
exponential rate. See Corollary 5.3 and Theorem 5.10. We prove the con-
vergence of the ground eigenpair of the discrete GP energy to those of the
continuous counterpart as well as a positive discrete eigengap as the mesh
size diminishes for P! finite element method with quadrature on unstruc-
tured shape regular simplicial meshes under the classical mesh constraint
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for monotonicity, which includes the second-order finite difference scheme;
see Theorem E.6 and Theorem E.8.

e We provide numerical experiments with Q¥ spectral element method as
spatial discretization to verify the accuracy and efficiency of the proposed
approach for solving GP problems in both two and three dimensions. Due
to the fact that only Laplacian needs to be inverted in the algorithm, the
scheme on a structured mesh can be easily implemented and efficiently
accelerated on modern GPUs.

1.4. Organization of the rest of the paper. As preliminaries, we first discuss
the spatial discretization of the GP eigenvalue problem based on finite element
method in Section 2, then review some useful properties of the discrete energy
in Section 3. In particular, the second-order finite element method on a uniform
gives the most popular second-order finite difference scheme. The fully discretized
Sobolev gradient descent methods are given in Section 4. We present the two
main convergence results in Section 5, with numerical experiments given in Section
6. Further preliminary results and proof details can be found in the Appendix.
Concluding remarks are given in Section 7.

2. THE CLASSICAL FINITE ELEMENT METHOD WITH QUADRATURE

We consider the classical continuous finite element method with quadrature using
P* basis on a simplicial mesh or Q* basis on a rectangular mesh. This section
briefly reviews its definition. If the finite element method is defined on a uniform
structured mesh, it is well known that both the P! scheme and the Q! scheme are
equivalent to the second-order finite difference scheme.

2.1. Finite element Galerkin method. We first consider a uniform rectangular
mesh €, for the rectangular domain €. For any rectangle e in the mesh €2y, let Q*
be the space of tensor product polynomials of degree k:

k

Qk(e) = {p(w) = Z pi1i2-~~z‘d$?$§2“'$3‘ia T = ($1,.’I]2,...,$d) 66}.

i1,02 500 yia=0
Let VJ* C H(Q) be continuous piecewise Q* polynomial space with zero boundary:
Vit = {on(m) € C(Q) : va(@)|aq = 0, vn|, € Q%(e), Ve € i} C Hy(Q).

We also consider an unstructured simplicial mesh €2;, with e denoting a simplex in
Qp, e.g., a triangular mesh in two dimensions with e denoting a triangle. Let P*
be the space of polynomials of degree k:

P*(e) = {p(m) = Z Divig-ig ¥ 0 -l @ = (x1,29,...,2q) € e},
i1+ig+-+ig<k
and V' C HZ () be continuous piecewise P* polynomial space with zero boundary:
Vo' = {vn(z) € C(Q) : va(w)|oq = 0, vn|, € P*(e), Ve € 0} C Hy(Q).

The finite element Galerkin method for (1.1) is to seek A\, € R and uyp, € Voh
satisfying

(21) (Vuh, Vvh) + (Vuh, Uh) + ﬁ(|uh|2uh, vh) = /\h(uh, Uh), Yoy, € Voh.
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THE GROSS-PITAEVSKII EIGENVALUE PROBLEM 5

The corresponding discrete energy can be given as

1 1
E(up) = i(Vuh,Vuh) + §(Vuh,uh) + %(ui,zﬁ)

The convergence of the finite element method for the nonlinear eigenvalue prob-
lem (1.1) was discussed in [13]. The standard a priori error estimates for a linear
eigenvalue problem, e.g., 8 = 0 in (2.1) is 2k-order for eigenvalues and k-order for
eigenvector in H'-norm, under suitable regularity assumptions. See [4-6,17,37] for
discussions on the rate of convergence of numerical schemes for eigenvalue problems.

2.2. Finite element method with quadrature. In practice, one often uses
quadrature for integrals to implement the finite element method. The Q¥ spectral
element method is to replace all integrals in (2.1) by (k 4+ 1)-point Gauss-Lobatto
quadrature in each dimension. Standard a priori finite element method error esti-
mates still hold, see [18] and references therein. For the P* finite element method,
suitable quadrature on a simplex can be used, e.g., the simplest quadrature using
the average of values at vertices can be used for the P! finite element method. Let
(+,-) denote that integrals are replaced by quadrature, then the method is to find
up, € VP satisfying

(2.2) (Vuh, Vvh> + (Vup,vp) + ,B<|uh|2uh, vp) = /\h<uh, o), Yo € Voh.

The corresponding discrete energy is given as
1 1 3
(2.3) Ep(up) = §<Vuh, Vuyp) + §<Vuh, up) + Z(ui,ui)

2.3. The matrix-vector form. For either Q* or P* finite element method, we
will use a quadrature rule such that a matrix-vector form of the scheme can be
easily written.

We first describe the Q¥ finite element method on a uniform rectangular mesh.
Assume that €2, consists of uniform NZ cubic cells for the cubic domain Q =
[~L,L]. Then there are in total (N.k + 1)¢ Gauss-Lobatto points. Any Q*
polynomial on a cubic element e can be represented as a Lagrangian interpola-
tion polynomial at (k + 1)¢ Gauss-Lobatto points, thus the Q¥ spectral element
method (2.2) also becomes a finite difference scheme on all Gauss-Lobatto nodes.
For Q' and @Q? bases, all the Gauss-Lobatto points form a uniform grid. For
k > 3, the Gauss-Lobatto points are not uniform in each element. For homoge-
neous Dirichlet boundary condition, the boundary points are not unknown. Thus
the total number of unknowns is the interior grid points with the number N = n¢
where n = N.k — 1. To derive an equivalent matrix form of the scheme (2.2), let
¢i(x) € VI (i = 1,---,N) be the continuous piecewise Q* Lagrangian basis at
all Gauss-Lobatto points @; (i = 1,---, N) in the interior of ;. For any piece-
wise polynomial uy(z) € VJ, let u; = up(x;). Then up(x) = Zi\il u;pi(x). Let
u=— [ul uN]T and w; be the quadrature weight at «;.

Next we consider the P* finite element method on a simplicial mesh. The num-
(k+d)!
Elal -

Consider a (k + 1)-th order accurate quadrature rule on a simplex using (k,:!rj)!

quadrature points, e.g., the quadrature rule using 3 vertices for P! on a triangle,
the quadrature rule using 6 vertices for P! on a tetrahedron and the quadrature
rule using 3 vertices and 3 edge centers for P? on a triangle. Assume there are

ber of degree of freedoms of P* polynomial on a d-dimensional simplex is
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6 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

in total NV quadrature points which lie in the interior of the domain €2;,. Let x;
(i = 1,---,N) be all interior quadrature points with w; being the quadrature
weight at x;. Let ¢;(xz) € VJ* (i = 1,---,N) be the continuous piecewise P*
Lagrangian basis at all interior quadrature points x; (¢ = 1,--- , N). For any piece-
wise polynomial uy(z) € VJ, let u; = up(x;). Then up(x) = Zfil u;pi(x). Let
u = [ul s UN] T

With the notation above, we have

(2.4) (Vup,vp) = Z w;Viuv; = v MVu,
i=1
where M = diag{w;, -+ ,wy} and V = diag{V4,---,Vn} are diagonal matrices
and V; = V(x;). We also have
(2.5) (Vup, Vo) = v Su,
where S is the stiffness matrix given by S;; = (V¢;, V¢;).
Using (2.4) and (2.5), the matrix form of (2.2) is to find u € RY satisfying
v'Su+ v MVu+ v Mu® = \pv ' Mu, YveRY,
or equivalently
(2.6) Su + MVu + gMu?® = \,Mu,

where u?® = [uf - u?V]T Let A, = —M™!S, then (2.6) can also be written as

2.7 —Apu+ Vu+ pu® = \u
(

In the formulation (2.6), all the matrices are symmetric positive definite, but the
discrete Laplacian A, = —M™!S is in general not symmetric in (2.7) except the
special case of second-order finite difference, which however does not affect numeri-
cal implementations since the symmetric form (2.6) should be implemented instead
of the form (2.7).

2.4. The discrete energy and discrete L? norm. Using the same notation, the
discrete energy (2.3) can be written as

1 1
(2.8) En(up) = 5uTSu + 5uTMVu + %(u2)TMuQ.
Introduce the interpolation operator
N
(2.9) m:RY — VP, v Zwi(m)
i=1

The discrete integration by parts is ensured in the following sense:

(2.10) (Vaup, Vop) = vSu= v M(=Ap)u = (~T[Apu], vs).

For two vectors u,v € RY, we define the discrete L? inner product (u,v); by
setting

(2.11) (u,v)), :=u' Mv.

Thus the discrete energy (2.8) and (2.3) can also be written in matrix form

(2.12) En(up) = Ep(u) = %( ,ayp + (Vu u)y, + i(u u?)y,

with normalization constraint (u,u)p =
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THE GROSS-PITAEVSKII EIGENVALUE PROBLEM 7

3. PROPERTIES OF THE DISCRETE ENERGY

We discuss some properties of the discrete energy Fj (up) = Ep,(u) in this section.

3.1. The monotonicity of the discrete Laplacian. A matrix A € R" " is
called monotone if its inverse has nonnegative entries A=' > 0. At a fixed vector
u, the linearized operator for (2.7) is given by

(3.1) Ay = —Ap +V + Bdiag(u?).

The matrix Ay, is irreducible, which can be easily verified by the graph that the dis-
crete Laplacian represents, see [41]. The definition of irreducible matrices is given
in Appendix B.2. By the Perron Frobenius Theorem in Appendix B.2, if A, is also
monotone, then its smallest eigenvalue has multiplicity one, with a unique unit pos-
itive eigenvector. For the Q! finite element scheme on a uniform rectangular mesh
(or equivalently the second-order finite difference scheme) or the P! finite element
method on a simplical mesh under suitable constraints is used, it is straightforward
to verify that A, satisfies Theorem B.1, implying that A, is an M-matrix thus
monotone, which is a well-known result in the literature; see Appendix B. The ex-
plicit expressions of the second-order finite difference and P! finite element method
on an unstructured mesh are given in Appendix A.

For a simplex T in a simplicial mesh €, C R? of dimension d, let kL be the
(d — 2)-dimensional simplex opposite to the edge E in the simplex T and 6% be the
angle between the two faces containing the edge F in the simplex T'. By [52, Lemma
2.1], the simplicial mesh constraint for monotonicity is

1 T T
(32) Z m“{E‘COtGEZO,
TOFE

where T' O F means summation over all simplexes T containing the edge E. Such a
constraint reduces to a Delaunay triangular mesh in two dimensions (see Appendix
A.2), which is more general and more practical than a non-obtuse triangulation.
We summarize the results in Theorem 3.1:

Theorem 3.1. For the P! finite element scheme with quadrature on a simpli-
cial mesh satisfying (3.2), which includes the classical second-order finite difference
scheme, Ay = —Ap, +V + Bdiag(u?) is an M-matriz thus monotone. As a result,
it has a unique positive unit eigenvector and the corresponding eigenvalue is simple
and the smallest eigenvalue of Ay.

For the high-order accurate discrete Laplacian, the matrix —Ay 4+ V is no longer
an M-matrix. It is proven in [41] that the fourth-order accurate Laplacian of Q2
scheme in two dimensions are products of M-matrices and thus still monotone
under certain mesh size constraints. It is possible to prove similar results for the
three-dimensional case following the same arguments in [41]. Extensions to quasi-
uniform meshes are given in [19]. It is also possible to extend the monotonicity to
Q3 element [20]. All these monotonicity results for high-order schemes hold under
mesh size constraints, which makes further discussion of global convergence much
more complicated. Thus we only discuss the global convergence for the second-order
scheme.
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8 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

3.2. Ground state of the discrete energy. In this subsection, we only focus on
P! finite element scheme on a simplicial mesh satisfying (3.2), which includes the
second-order finite difference scheme. In general, it is difficult to extend all results
about the discrete energy (2.12) to high-order schemes.

Theorem 3.2. For the P! finite element method with quadrature weights w; on
a simplicial mesh satisfying (3.2), for any v, € V& satisfying sz\; w;v; = 1 and
v; > 0, Vi, where v; = vp(x;), Epn(y/V) is strongly conver w.r.t. the vector v =

[or - on]
Proof. Let uj, € V' satisfy up(x;) = \/v; = \/vn(x;). By (2.3), we have

E,(VV) = %(Vuh,Vuh> l<Vuh,uh> + §<ui,ui>.

[\)

The quadrature yields that g(u%,u%> = gzz w;v? is quadratic and strongly

convex in v and that (Vuy,un) =3, w;Viv; is linear in v. By (A.2), we have

(Vup, Vup) = Z(Zd nElcot9T>|f VUil

TOE
the edge E connects vertices x; and x;.

With (3.2), the convexity of the term (Vuy, Vup) is induced by the convexity of
the bivariate function f(z,y) = [z — \/y|?, which is easy to verify. O

Theorem 3.3. For the P! finite element method with quadrature on a simplicial
mesh satisfying (3.2), Yup, € VJ, Ex(u) > Ep(|u).

Proof. It suffices to verify that (Vup, Vup) > (V|up|, Vl]up|). By (A.2), we have

(Vup, Vuy) = Z <Z a0 nE|cot9T> lu; — uj)?,

TOE
the edge E connects vertices x; and x;.

With (3.2), it suffices to verify (z — y)? > (Jz| — |y|)?, which is trivial. O

Theorem 3.4. For the P! finite element method with quadrature on a simplicial
mesh satisfying (3.2), the discrete energy En(up) under the constraint (up,up) =1
has a unique and positive minimizer uy. Let u* be the vector representing its point
values uj(x;), then u* solves (2.7), and u* is the eigenvector associated to the
smallest eigenvalue of the linear operator Ay« = —Ay, +V + Bdiag(u*)?.

Proof. Strong convexity over a convex constraint in Theorem 3.2 gives the exis-
tence and uniqueness of the minimizer uj. Theorem 3.3 implies that wuj (x;) > 0.
For minimizing E},(up) with (up,un) = 1, or equivalently minimizing Ep(u) with
u”Mu = 1, the Lagrangian for the constrained minimization is given by L(up, \p,) =
Ep(un) — An((up, up) — 1). The minimizer must satisfy the critical point equation
éSTLh = 0, thus v} satisfies (2.2), or equivalently, u satisfies (2.7). By Theorem
3.1, the matrix A4, = —A; + V + Bdiag(u?) is monotone. By Perron Frobenius
Theorem (Theorem B.3), such a monotone matrix A,« has a unique positive unit
eigenvector associated with its smallest eigenvalue. Since u* > 0, it is the unique
unit eigenvector to the smallest eigenvalue of the linear operator A,«. O
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THE GROSS-PITAEVSKII EIGENVALUE PROBLEM 9

Remark 3.5. Neither Theorem 3.2 nor Theorem 3.3 can be extended to @Q? finite
element method. Nonetheless, the monotonicity of the fourth-order scheme may
hold if the mesh size is very small, which ensures that the ground state of the non-
linear eigenvalue problem gives rise to a positive eigenvector by Perron-Frobenius
Theorem.

4. FULLY DISCRETIZED SOBOLEV GRADIENT DESCENT AND MODIFIED H'
SCHEME

We define the schemes for minimizing the discrete energy (2.8) or (2.12) associ-
ated with the P* or Q* finite element method with suitable quadrature, under the
normalization constraint:

(4.1) M= {u, € Vg : (up,up) =1} = {fu e RN : (u,u), =u'Mu =1},
where uj, = II(u) with II being the interpolation operator defined in (2.9). The
tangent space of the manifold M at uy or u is

Tu, M = TaM = {Uh eVl (up,vp) = 0} = {V eRN : (u,v)), = 0}.
4.1. The Sobolev gradient descent. The gradient of the energy FEj(uy), say

VE(up) € V', should be understood in the sense of the Fréchet derivative in the
space V', and can be computed by

. Eh(uh + t’l)h) — Eh(uh)
(VEw(up),vp) = lim ;

=v'Su’ + v 'MVu+ gv' Mu?
= (Vup, Vo) + (Vug, o) + BIT(u?), v),
for all v, € V. With the discrete integration by parts (2.10), we get
VE(up) = —1[Apu] 4 II(Vu) + BII(u®).

Similarly, since (u,v), = u'Mv as in (2.11), the gradient VEj(u) € RY is given
by

VE.(u) = M (Su + MVu + fMu?) = (=Aj, + V)u + fu® = A,u,
where A, is defined in (3.1). Thus the two Fréchet derivatives V E}, (up,) and VEg (u)
are also identical in the sense that VE},(up,) = II[VEy (u)].

Given any inner product (-,-)x on R¥, one can equip the manifold M c RY
defined in (4.1) with an Riemannian metric g(u,v) = (u,v)x. Let Gx € RV*V
be the positive definite matrix satisfying

(W,Gxv)x = (u,v), Vu,veRY,
The Riemannian gradient of Ep(u) at u € M is defined as VEEp(u) € TuM
satisfying
g(VEEL(u),v) = (VE,(u),v)n, Vv E TuM.
Following a similar derivation of Fréchet derivatives as before, the gradient of the
discrete energy with respect to the inner product (-, ) x can be computed as
VXEh(u) = GxAuu.

For any w € RY the projection of w onto Ty M with respect to (-,-)x is given by
(u, w)

w2 R
Primx(w)=w (u,GXu>hGXu'
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10 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

Therefore, the Riemannian gradient is
<u, VX Eh (u)>

(12)  VEEA(W) = Provx (VxBa(w) = VxEn(w) = = “Gxu,
Xuvu>h

and the Riemannian gradient descent of minimizing Ej (u) over M with step size
T is
u
(u,u),

where Ry (u) is the retraction operator approximating the exponential map [1].

u"t = R, (u” — TV?Eh(un)) , Rp(u)=

4.2. The modified H' scheme. Different choices of the inner product (u,v)y or
the Riemannian metric g would lead to different schemes. In this work, we mainly
focus on the modified H! scheme. In particular, for some constant o > 0 the inner
product (Vu, Vo) + a(u,v) for H} () gives the following discrete inner product or
metric

(4.3)

g(u,v) = (u,v)x = (Vun, Vo) + alup,vn) = (u, (=Ap +al)v), =u' (S+aM)v.

This induces Gx = (=Ap + al)~! and
(4.4a) VxEn(u) = GxAgu = (=Ap, +al) " H(=Ay + V + Bdiag(u)?)u.
The corresponding Riemannian gradient is

(u, Vx Ep(w)n
(u, (—Ap +al)~tu)y
and the Riemannian gradient descent method or the Sobolev gradient flow under
the modified H'-norm is hence given by

(4.4c) u"t =Ry, (0" — TVRE,(u")).

If a = 0, then (4.4) is the H' gradient flow algorithm in [33]. There are algorithms
induced by other more complicated Riemannian metrics such as ag-scheme with
gu(w,z) = (Vw,Vz) + (w,Vz) and the a,-scheme with g,(w,z) = (Vw,Vz) +
(w,Vz) + B(w,u?2). We refer interested readers to [16,33,53].

(4.4b) VREL(u) = VxEj(u) — (=Ap + al) "'y,

5. GLOBAL AND LOCAL CONVERGENCE

This section proves the convergence of the modified H' scheme (4.4). The theo-
ries are inspired by our prior work [16] without spatial discretization and the main
difficulty /novelty of this work is the analysis of the discrete schemes and discrete

eigengap.

5.1. Energy decay and global convergence. We define the discrete L? norm
and the X-norm with a fixed parameter o > 0 as follows:

lullz = v/{u, u), = VuTMu,

lullx = v{(u,u)x = \/<u,G}1u>h = \/uT(S +aM)u = /(u, (A, + al)u)y,.

Note that we have omitted the dependence of X-norm on « in the above. The main
theorem in this subsection is stated as follows, which quantitatively characterizes
the energy decay property of the Sobolev gradient flow under the modified H'-norm
(4.4).
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THE GROSS-PITAEVSKII EIGENVALUE PROBLEM 11

Assumption 5.1. The potential energy V satisfies that Viyiy <V < Vijax for some
constants Viin, Vinax € (0, +00).

Theorem 5.2. Suppose that Assumption 5.1 holds. Let u® € M C RY and let
{u"}5%, be the sequence generated by (4.4). There exists constants Cy,Cy,Cr >0
depending only on ||u||x and Q, Vinin, Vinax, @, B, k, such that as long as 0 < Tmin <
Tn < Tmax < min{1,C.}, Vn > 0, the followings holds for any n > 0:
(') [a" ||y < Ch.
(i) |[VREx(u™)||, < IVxExn(u")|y < Cy.
(it}) By (u") = By (™) > Cy || VEE ().

A direct corollary is the global convergence to a critical point.

where Cy = 75t

Corollary 5.3. In the same setting as in Theorem 5.2, every limit point of {u™}52
s a critical point.

The rest of this subsection is for proving Theorem 5.2 and Corollary 5.3. We
need a sequence of lemmas with the proofs of the first two lemmas being deferred
to Appendix C.

Lemma 5.4. For any u € M and v € TyM, it holds that

(5.1) 1B+ v) = (4 ¥l < 3 IV vy

Lemma 5.5. There exists positive constants C1,Cy independent of the mesh size

h such that for any u € RV :
(@) [lully < = [y
(ii) [[(=An+al) tuf <

(i) 2] < Ci[ulk
() o’ < Callulk.

Lemma 5.6. Let Cy be the one in Lemma 5.5 and Vo max = ||V — al|p(q). Then
it holds for any u € M that

(VRER(1), VxEx(u))x = [VXEL ()%,

L Jully;

B
\/— X

Va,max
(52)  [[VEEL ()| < IVxEn(w)]x < Jlully + o lullx +
Proof. Since VKE(u) € TaM implies (VEEj,(u),u), =0,

<V§Eh(u), MGXU-> = (, VarBi(u))n (VXEn(u), u), = 0.
X

(Gxu,u) (Gxu,u)y,
Due to VxEj(u) = VEE,(u) + %Gxu the first equation holds, and
VxEj(u)) 2
E 2 _ RE 2 (117 x
VB = [VER ] + | e ]

= |[VREL(0)]|y <[[VxEn(u)lly -
Let Vo, =V —aly, then —Ap +V = (A, +al) +V,. By (4.4a) and Lemma 5.5,
IVxEp(u)]x < ||11||X +I( —Ah +al) T (Vau)||  + B][(=An + o) (u

BCs
[l x + N [l -

I

< lullx + e

\/— Voull, + \/— 2 [lufl < laflx +

Licensed to Purdue Univ. Prepared on Sat May 3 15:43:18 EDT 2025 for download from IP 128.210.107.25.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

O
Lemma 5.7. Let Cy be the constant in Lemma 5.5. For any u,v € RV,
\Eh(u—i- V) — Eh(u) — <VXEh(u),V>X|
1 2 Ve ,max SﬂCQ ﬁc
< 3 VB + 2222 v+ 2l IvI + 862 fully I + 552 vl

Proof. Tt can be computed that

Ep(u+v)—Ex(u) = (%(—Ah(u—l— v),u+v), — %(—Ahu,u>h)

T (%<V(u—|—v),u+V>h - %(Vu, u>h>

(v v - fut )
= (=Apu+Vu + pu?,v),
+ (;( Apv, v + 1<Vv vin+ %(u2 V3 4 Bla, v, + i(v v2)h) )

which leads to
|En(u+v) — Ep(u) — (VxEp(u),v) x|
=|En(u+v)—Ey(u) - <—Ahu+Vu+Bu3,v>hy

< S{(-Antalv, vt 5 <<V OV, Vot 2 )t B, v+ D (v 2

=3
Vi me
<3 IVl 2 2 2 2 2+ 2 2+ (V)

1 2 Va,m'x 360 /BC
o IV B+ 25me w3 + 2 v

% V1% +B8CT lullx V1% + Ix -
We can now present the proof of Theorem 5.2 and Corollary 5.3.

Proof of Theorem 5.2. Let C; and Cs be constants in Lemma 5.5. Define C5 <1
as a constant depending on « and Vi,;, that satisfies

(5.3) (=Apu,u);, + (Vu,u)y, > Csllull%, vVueRY.
Define
2 2V BC2 12 1% BC.
— = max 0 Pl 0 — a,max 2 ~3
Com (G + 2o ) w0l + LI ) = L, By,

We prove the theorem by inductlon. It is clear that (i) holds for n = 0 since
Cs < 1 implies C,, > HuOHX. Suppose that (i) holds for 0,1,...,n and that (ii)
and (iii) hold for 0,1,...,n — 1. We aim to show that (ii) and (iii) hold for n and
that (i) holds for n + 1.

It follows directly from Lemma 5.6 and (i) that (ii) holds for n. We focus on (iii)
then. The iterative scheme is

=Ry, (0" — 7, VRE,(u")) = u" — 7,VEE,(u") + R",
R" = Ry (0" — 7, VXE,(u")) — (u” — 7, VRE, (u")) .
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THE GROSS-PITAEVSKII EIGENVALUE PROBLEM 13

According to Lemma 5.4 and Lemma 5.5, it holds that

2
IR < 2 VR )} o = m VERA )
2 (Cy + C,)C2
< 5 (Cu+ G ) |[VREL ™) < #

where we used 7, < 1. Denote g" = VXE,(u") and 4" = u" — 7,VRE;(u"). By
Lemma 5.7, we have

~ 1 Vamax n
[Ba@) — B (" + R < (VB ). Rl + (5 + 5 ) IR

3/80 ~Nn n ~Nn n BC n
+< etk IR + BCT 8" IRy + = IR Ix)

n ~n 1 Va max n
< IR 5 <|vth<u i+ (— + —) IR

2 2

30CE L IR + B2 far | IR + 21 ||R”|X)

<T2ORHVREh ||X,

where Cr depends only on C,,, Cy, Vamax, @, B, and C;. Similarly, we have

|Ep (u* — 7, VREL(0")) — Ey(u”) — (VxEj(u"), =7, VXE4 (u”)) |
3501

Va max

Imng" I + 1% lImg” %

3 B 4
+ BCH g + 2 gl

. 2012 202
< 72 || VERE, ()| <1+Va’m°"‘+35010 + BC2C,C, s ‘7>.

1
< 5 g% +

2 2a 2 4

BC? cg

By Lemma 5.6, if Tuax (5 + Y352 + 2G% 4 5020, + +Cr) < 4,
then
E;(u") — Ey(u"h) = Ep(u”) — By(a") + E(0") — Ex(a" + R")

> 7, (VxEn(u"), VRE(u")) o — |En(@") — Ex(@" + R")|

— |En (0" = 7, VEE, (u")) — By (u”) — (VxEp(u"), -7, VXE, (u")) , |

2 7 [ VRER () 7 [ VEE )
1 Vamax | 38CFC2 cicy
— 72 ||VREL(u")| <2+ e+ 621 "+/3Cfcucg+6 . g)
Trnln
= 25 [ VREA )

which means that (iii) holds for n. Since

1 1
—(Vuth uthy, > §C3HU"H||§<7

Eh (unJrl) 5

< Ahu 1 n+1>h 4

l\9|’—‘
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14 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

one can conclude that

" 2 2 " 2 2 2 2V max B8 2
o= 2= 20 < 2+ e 2
2 2Viax 2 50
< (G + 2 ) Il + gt Il
which implies that Hu"‘HHX < Cy, ie., (1) holds for n + 1. Furthermore, we also
have (ii) hold for n 4+ 1 by applying (5.2) and Hu"'HH < Cy,. O

Proof of Corollary 5.3. It follows from Theorem 5.2 that hm HVREh HX 0.

Let u* be any limit point of {u g, le, u™ = u* for some subsequence. Then
Gxu™ — Gxu* and VxE,(u™) — VXEh(u*). Hence VRE;, (u™) — VRE, (u*),
which leads to VRE,(u*) = 0. O

5.2. Locally exponential convergence. In this subsection, we prove the local
convergence rate of the modified H' scheme (4.4). We need Assumption 5.8.

Assumption 5.8. Let u* € M be the ground state of the nonlinear eigenvalue
problem (2.7), i.e., the global minimizer to (2.12). We assume that the multiplicity
of the smallest eigenvalue of Ay = —Aj + V + Bdiag(u*)? is one, i.e., )\2 < )\,11
where A) and A} be the smallest and the second smallest eigenvalue of Ay-«.

Remark 5.9. Perron-Frobenius Theorem ensures Assumption 5.8 if a monotone
scheme is used. For example, the matrix Ay« is monotone for the second-order
finite difference scheme with any mesh size h. For Q? spectral element method
with a priori assumption on infinity norm of u*, the matrix A, is monotone for
small enough mesh size. However, Perron-Frobenius Theorem does not provide a
quantification of the eigengap [A\) — A}|. In Appendix E, we prove that [A) — A} |
has a uniform positive lower bound as h — 0 for the P! finite element method with
quadrature on an unstructured shape regular simplicial mesh.

The main local convergence result is stated as follows.

Theorem 5.10. Suppose that Assumption 5.1 and Assumption 5.8 hold. Assume
the step size bounds Tmin and Tmax Satisfy

1 0
(5.4) sup {(1—|—L2 2)—— 'n{)\ )\0/\ 1}}§C’T<1,

Tmin ST <Tmax Cs
where Ly depends on €, Viyin, Vinax, @, B,k and u*. Then {u"}22, converges expo-
nentially to the ground state u* in || - ||x when ||u® —u*||x is sufficiently small.

)‘h

For given Ly, Cs, 2 > 0, the condition (5.4) holds for some C, < 1 as long

as Tmin > 0 and Tyax 1S suﬂ"lmently small, since the coefficient of the linear term is
negative.

Lemma 5.11. Suppose that Assumption 5.8 holds. Then
. AL =AY AL =0
(55) Biu(a) - By(u) > M fu w2

u’f|;
Lemma 5.12. Suppose that Assumption 5.8 holds. Then there exists constants
L,, L, >0 depending on Q,V,«a, B,k such that

<u7 vXEh(u)>h
<GXua u>h

u—u*||3, vu € RV,

) [[VRER(w)]| g < Lo lu—uy, = M| S Ly lu—uy,
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as long as u € M and |[u —u*|  is sufficiently small.

The proof of the two lemmas will be given in Appendix D.
Proof of Theorem 5.10. If ||u™ — u*||x is sufficiently small, then by Lemma 5.12,

H(u” —u*) - 7, VRE,(u HX
— [lu” — u |} — 27 (0" — u*, VEE, (u") x + 72| VEE, (") |5
< (L+Lyry) [l —u’ |5 =27 (u” —u*, VEE, (u")) x
= (1+L§7’,2L) Hu”—u*||§(+27n<u*—u”, VxE,(u"))x —2m,7" (u*—u", Gxu")x,

where we used (4.4b) with 4" = % Set " = u" — u*, then

1 1
E,(u*) —Ep(u") = 5(—Ah(u" —e"),u" —e", + =(V(u" —e"),u” —e");

5¢
+ ﬁ((un _ en)Q, (un _ en)2>h _ %<_Ahun7 un>h

4
— St = L,
= (VxBL (W), e")x + g (~Ane e+ g (Ve o)
2w, ()2 — B, () 2 (), ()
= —(VxE,(u"),e >X—|—%<Au*e ey
=Dty e w2 (@) Bt (e + (), (e
(VxEp(u"),e™) x + 1(All*e ,e"n
0 - ) ()2 - Bl () + (e, (7))
(VB (), ") x + L (Awee, e — 23
(VB (7)€" x + (e, e — 2L e

2

where Lemma 5.5 was used in the last step. As a consequence, we obtain that

(VXEp(u"),u" —u")x <Ep(u”) —Ej(u”) — §<Au*e e+ ﬂ4—1|\e 1%

ALSAD oAb BCE
<= Ay e 2<Au*e7e>h+—1|| 14
<= 2 Mg - Laeen e+ (M2 2 e,

where we used (5.5) and Lemma 5.5. Note that u” € M = Huan =1, thus

1
(=", Gau”) = (" —u” )= 5 ([ a3 = o = ) = =5 e 3.
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16 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

Combining all estimations above we obtain that

H(u”—u ) — T VRE,(u”" HX
§(1—|—L§Tg) [u"—u ||X—|—2Tn<u*—u”,VXEh(u”)>X—2Tn7"<u*—u",GXu">X
<(1+Lgm) ||e”||§< +7a(y" = (s = AR le"]3 = mn(Au-e”, ")

A0 gy
w (B2 B ey

<@+ Lim) lle™ 5 + (A = (A = AD)[e”]I3 = 7 (Au-e™ €™

L AL BC2N . .
w4 (A2 B e L\I‘ég

<(+L:72) ||e”||X—|—Tn max{)\o (AL —=AP) 0} (Ay-e™ e —Tp(Ay-e™ e™)y,
L. M-N L BCEY
# oo+ (M ) le" 4
a
2 2 n L“/ ni|3
<+ Lyry) e 1% — 7 min Ay-e”,e" h+TnE||e (5%
AN BeRy

nn2 n . )\1 —AO n
<(1+ L3 e - émm{w,l o 1%
L, . AN Bo2Y
#rn 2 e+ (2 + 500 et

where we have used (5.6) and (5.3). Since we assume that ||[u™ — u*||x is suffi-
ciently small, there are some constants C1°¢, C’loc > 0 such that ||u"||x < C¢ and
[VREL(u")|x < Cie°. Recall in the proof of Theorem 5.2, we define

R" =R, (u — TnVXEh(u )) — (u — TnV§Eh(u )) ,

and have the following bound

2
n oc oc n oc oc n| 2
[R™[x < (C1 +Cl) | VRE, ()| < a(ci +CPVLE e -
With (5.4), we have
[t —wf < (0" —u?) = 7 VREA ()| + IR
" Tn . [AE=X) " Ly, .
((1+L2 et - émm{%,l}le 5% 4-%77”e 1%
h

1/2
AL — BC? " 72 2
o (M Ny 20 Vel ) o+ (ke s co2 el

I . AL 602 . 1/2 .
< (CT +Tn§”e lx + 7 <h472 + T) lle |?X) le™ [l x

2
)
+ 5 (O + O Ll -
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Since C; < 1, if ||e™|| y is sufficiently small, then we get
n+l

Ju w < Cslle”x = Csflu” —u¥x,

where Cs € (0,1) is a constant. O

At the end of this section, let us remark that our results for both global and
local convergence are for a > 0 and they do not directly apply to o = 0 although
the algorithm remains valid when setting & = 0. The constants in Theorem 5.2
and Theorem 5.10 depend on the choice of o > 0.

6. NUMERICAL TESTS

For numerical implementation, we will only consider the Q¥ spectral element
method, which can be easily implemented with significant acceleration on modern
GPUs [45]. In this section, we implement the H' gradient flow (4.4) with the
following spatial discretization for the Laplacian operator and energy function:

(1) The Q* spectral element method for any k > 1, see [42,45].

(2) For k =1, it is exactly the same as the classical second-order finite differ-
ence.

(3) The fourth-order compact finite difference scheme, see [40,43] for details.
The definition of the discrete energy is the same as the one for the second-
order finite difference scheme, i.e., the trapezoidal rule is used for approxi-
mating the integral. Only the discrete Laplacian is replaced by the compact
finite difference.

6.1. Accuracy test of discrete Laplacian schemes. We consider an exact so-

lution to the nonlinear eigenvalue problem (1.1) on = [—1,1]% with a potential
V(x) = B(1 — |u*(x)|?) where the ground state is

1 1 1
(6.1) u*(x) = Bsin (WQH_ )sin (Tfy+ )sin (71’2_5 )

and the eigenvalue and energy are A* = d’% +8, E(u*)=3ix— % (%)d. We test
the accuracy of various discrete Laplacian and discrete energy schemes, shown in
Table 1. The H'! scheme (4.4) converges within 20 iterations with o = 0.2 and step
size 1.

6.2. Comparison of various gradient flow algorithms in 2D. We consider
the 2D problem with V' (x) = sin (%x)2 sin (%y)2 on the region 2 = [—16, 16]2. The
performance of different gradient flow algorithms with fixed step size 1 is shown
in Figure 1 (a) and (b). See [33] and references therein for the definition of these
schemes. We emphasize that these algorithms could be faster with different step
sizes, e.g., the L? flow will be faster with a larger step size, and A, algorithm can
be faster with adaptive step size. Here we just use the same step size to compare
them. Notice that only (—Aj +al)~! needs to be applied twice in the modified H*
gradient flow (4.4). In each iteration of L?, A, and Ag schemes, one needs to invert
matrices like —Aj, + V(x) or —Ap, + V(z) + BJul?, which is much more expensive
than computing (—Ay, +al)~! [45]. As shown in Figure 1 (a) and (b), (4.4) with a
proper parameter a > 0 can allow a much larger step size for convergence, compared
to o = 0. Since H', Ay and A, schemes can all be written as Riemannian gradient
descent methods, in each iteration, one can also numerically compute the best step
size by minimizing the energy function w.r.t. the step size. For simplicity, we use
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18 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

TABLE 1. Accuracy test of various schemes for a 3D problem (6.1).
For both finite difference schemes, the discrete ground state coin-
cides with the exact ground state at grid points for (6.1), so ground
state errors are meaningless for (6.1) thus not listed.

The second-order finite difference (FD)

FD grid Az |Af —A*| order | |[E} — E*| order
393 h=0.05 | 3.80E-3 1.999 | 1.90E-3 -
79° | h=0.025| 9.51E-4 2.000 | 4.76E-4 2.000

The fourth-order compact finite difference

393 h=0.05 | 1.17E-6 4.001 | 5.87E-7 -

793 h=0.025 | 7.33E-8 4.000 | 3.66E-8  4.000

High-order finite element methods
DoFs [ Mesh | [A\; — X*[ order [ [E; — E*| order | [u, —u*[o order
QQ? spectral element method
93 55 | 8.13E-4 - 4.05E-4 - 3.67E-4 -
19° | 10% | 5.02E-5 4.016 | 251E-5 4.012| 2.39E-5 3.94

Q3 spectral element method

113 43 | 5.20E-5 - 2.87E-6 - 1.48E-5 -

233 83 8.98E-8 5.855 | 4.49E-8  6.000 5.21E-7 4.83

Q7 spectral element method

113 33 9.00E-7 - 5.22E-8 - 4.99E-6 -

233 63 | 4.11E-10 11.09 | 2.05E-10 7.990 8.30E-8 5.91

473 123 | 2.26E-12 7.506 | 1.23E-12 7.384 1.44E-9 5.85

@° spectral element method

93 23 1.49E-6 - 3.87E-5 - 1.14E-6 -

193 43 6.84E-11 14.41 | 6.50E-12 22.51 7.87E-9 717

QO spectral element method

9% [ 2° | 808E9 - [ 73IE7 - | 4.06E-8 -
Q" spectral element method

133 | 23 | 1.89E-10 - | 9.99E-9 - | 1.61E-9 -
QB spectral element method

15 | 2° |376E-13 - [ 1.03E-10 - [ 5.76E-11 -

the fminbnd function in MATLAB to solve such a one-dimensional minimization
problem, which involves evaluating the energy function quite a few times. In Figure
1 (c) and (d), we show the performance of H', Ay, and A, schemes using such an
optimal step size. We observe that iteration numbers in all the Riemannian gradient
descent schemes with the optimal step size to reach convergence are almost the
same. On the other hand, for CPU time of solving this particular problem, H!
scheme with o = 0.15 and the optimal step size is obviously slower than H! scheme
with o = 0.15 and a constant step size 1, due to the extra computational cost of
computing the optimal step size, which would be more expensive for 3D problems.

6.3. Comparison with the Backward Forward Euler method. The modified
H' flow has the advantage of inverting only constant coefficient Laplacian, which
can be easily accelerated on modern GPUs as shown recently in [45]. On the other
hand, in the literature, there are similar schemes, e.g., the Backward Forward Euler
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(c) Optimal step size is used for gradient flows.(d) Optimal step size is used for gradient flows.

FicUrRE 1. A 2D example with 8 = 10 of second-order finite dif-
ference on a 800 x 800 grid. The modified H'! norm has parameter
a = 0.15in (4.4). The H' seminorm scheme is (4.4) with a = 0.
The CPU time for the H' scheme with o = 0.15 and the fixed
step size 1 to converge is 3 seconds, and the CPU time for the H'
scheme with o = 0.15 or a = 0 with optimal step size to converge
is more than 6 seconds. For L%, A,, and Ay schemes (see [33] for
definition), preconditioned conjugate gradient (PCG) is used for
inverting a matrix like —Aj, + V() and (—Aj)~! is used as a pre-
conditioner. The PCG converges within 30 iterations for all linear
systems in this test.

method with a stabilization parameter in [7] is given by
(6.2)

1 \" 1 ) . a
u=|-A I+ —TI — —V —4di " " M=
R R B AR A LUy R

The modified H' flow is very different from (6.2). For instance, (4.4) is a Rie-
mannian gradient descent method. In particular, only one inversion of Laplacian is
needed in each step of (6.2), but there are two inversions of Laplacian in (4.4). The
optimal parameter « for (6.2) was given in [7], yet it is unclear what the optimal
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a should be for the modified H' flow. In numerical tests, the modified H' flow
performs better when using tuned «, see Figure 2.

0
, . . 10 T T T
+ H1 modified norm scheme + H1 modified norm scheme
| + Backward Forward Euler with stabilization +_Backward Forward Euler with stabilization
10° k
8 g 10
] im]
B 10 g
o) @
f= f=s
w i
.02) .02-’ 10710}
T qn-10L s
S0 3
o o
10 "t 1 n n i 1 O °r 1 1 n n
0 100 200 300 400 500 0 1 2 3 4 5
Iteration Number CPU Time

FIGURE 2. A 2D example with 5 = 5 of second-order discrete
Laplacian on a 300 x 300 grid. The modified H' norm has pa-
rameter o = 0.15 and step size 1 in (4.3). The Backward Forward
Euler with stabilization (6.2) uses the optimal parameters « in [7]
and the largest stable step size 0.1, which is also the most efficient
step size. The initial condition is the ground state for 5 = 0.

6.4. Tuning parameters. We consider Q = [—16,16]® with a potential:

2 2 2
(6.3) V(x) = sin (%x) sin (%y) sin (%z) .
For (6.3) and 3 = 10, the modified H' scheme (4.4) with « = 0.15 and 7 = 1
has the same convergence performance for any grid size or any discrete Laplacian,
unless it is an extremely coarse grid, as shown in Figure 3 (a). Thus we can easily

find the best step size for a given 3 = 4000 by tuning it on a 100® grid as shown in
Figure 3 (b).

6.5. 3D implementation on GPUs. As shown recently in [45], any discrete
Laplacian on a Cartesian grid can be easily accelerated on modern GPUs with
a simple implementation in MATLAB 2023. In particular, to invert a discrete
Laplacian on a grid size 10003, it only takes 0.8 seconds on one Nividia A100 GPU
card. And such a result holds for Q" spectral element method, see [45] for details.

We consider solving the 3D problem with potential (6.3). See Figure 4 for visu-
alization of the potential and its ground state for 5 = 10 and g = 4000. We define
the online computation time as the computational time without counting the offline
computational time such as preparing discrete Laplacian matrices and loading data
to the GPU. For the potential 4 with 3 = 10, the modified H' flow scheme (4.4)
with @ = 0.15 and 7 = 1, we stop the iteration when the relative residue stops
decreasing, where the relative residue is defined as

—Apu+ Vu+ glul?
= Awur v A |17
The results of computing energy and the eigenvalue are listed in Table 2, in which
GPU time is the online computational time. In particular, the online computation

residue = |ju
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0
o second order finite difference on a 1003 grid]| 10 [, —
10° B, + second order finite difference on a 8003 grid| ":uq” N : :z:p zlzgzgg i
Q* element on a 203 mesh: DoFs are 793 R 4 P Stee= 52
+ Q% element on a 2003 mesh: DoF's are 7995 Step size=t.
2 @ element on a 100° mesh: DoFs are 8993 + step S!ZE_O'B
9] o | a R, TR, |- step size=1
3 s 3 10°
‘5 107 @
4] 4]
o« o«
1 1
2 =
® ®
3 < 10-10
21010 2 10
i - |
1071 . 1018 X
0 20 40 60 80 100 0 20 40 60 80 100
Iteration Number Iteration Number
(a) Step size is 1, a = 0.15, 8 = 10. (b) Fixed B = 4000, o = 0.15, second-order

finite difference on a 1003 grid.

FIGURE 3. The performance of the modified H' scheme (4.4) solv-
ing 3D Gross-Pitaevskii nonlinear eigenvalue problem with poten-
tial (6.3). The left shows that the performance is independent of
discretization and grid size. Thus parameters can be tuned on a
coarse grid as shown in the right.

time is 214 seconds on the Nvidia A100 for 100 iterations of (4.4) on a 1000% grid.
For g = 4000, we use step size 0.7 and a = 0.15, we stop the iteration when
the relative residue stops decreasing. The performance is listed in Table 3. In
both Tables 2 and 3, the reference solutions are generated by Q'° spectral element

method on a 100% mesh, and the ground state errors %

at the nodes of matching with nodes of Q'° elements a 100 mesh. For instance,

u‘—u
for Q° element on a 203 mesh, W
re oo

2 -3 -3
10 x10
Potential Ground state X Ground state 8
0.9
7
0.8
0.7 6
5 0.6 5 5 N
0.5 L 0 4
s -5 -
: 0.4
E - 3
X 0.3 X E
2
10 0.2
10
° 0 0.1 1
-10 - K
Y -10 X N -

(a) The potential function. (b) B =10 (c) B = 4000

are measured only

is measured only at the cell vertices.

FIGURE 4. The potential function (6.3) and its ground state

6.6. A 3D example with a combined harmonic and optical lattice poten-
tial. We consider the 3D example in [7] with the following combined harmonic and
optical lattice potential on the domain [—8, 8]3:

V(z,y,2) =2 +y* + 2%+ 100 (sin2 ? + sin? % + sin? %) _
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TABLE 2. The 3D problem as shown in Figure 4 with 8 = 10. The
GPU (Nvidia A100 80G) online computation time of the scheme
(4.4) with @ = 0.15 and 7 = 1. The iteration stops when the
relative residue stops decreasing. The reference eigenvalue A7, =
0.143834048046, energy E,.r = 0.071660785256 and ground state
U, are generated by Q' SEM on a 100® mesh.
The second-order finite difference
DoFs | Mesh size Mh;ﬁ‘f”fl ‘E"(H;Z;E”fl ”ui;:;"”flm Iteration # | GPU time
1993 h = % 3.70E-4 3.72E-4 8.04E-4 86 0.88 second
999° | h= 2 | 1.48E5 1.48E-5 3.21E-5 76 165 seconds
The fourth-order compact finite difference
1993 h = % 1.17E-6 1.18E-6 2.00E-6 84 0.92 second
999° =155 | 1.86E-9 1.87E-9 3.21E-9 73 161 seconds
Q7 spectral element method
DoFs | FEM Mesh ‘A’L;)‘;S-"I ‘Eh(uE*z;E”fl ”uﬂgiﬁ{l‘m Tteration # | GPU time
1993 503 8.57E-10 8.62E-10 2.73E-7 83 0.88 second
3993 100° 3.60E-12 | 3.62E-12 4.86E-9 78 6.10 seconds
QQ° spectral element method
99° [ 20° [ 353E9 | 349E9 | 6.06E7 | 88 [ 0.54 second
Q?° spectral element method
993 53 5.31E-12 5.23E-12 1.29E-8 83 0.54 second
199° 10° 8.79E-12 | 8.85E-12 6.42E-12 75 0.82 second
TABLE 3. The 3D problem as shown in Figure 4 with g = 4000.
The GPU (Nvidia A100 80G) online computation time of the
scheme (4.4) with a = 0.15 and 7 = 0.7. The iteration stops
when the relative residue stops decreasing. The reference eigen-
value A7, = 0.34919956116, energy Ey.y = 0.127936543199 and
ground state u,.s are generated by Q'° SEM on a 100® mesh.
The second-order finite difference
DoFs | Mesh size ‘/\"/\_f;sfl ‘E’L(UI;EEE“” ”ui;::j{l’w Tteration # | GPU time
999° | h= a5 | 5.67E-6 7.82E-6 2.96E-5 48 105 seconds
The fourth-order compact finite difference
999% [ h= 2. [5.67E-10[ 872E-10 [ 277E-9 | 43 | 106 seconds
Q* spectral element method
DoFs | FEM Mesh | Piteerl | LG —Feer] [ I 2ueelex | peration 4 | GPU time
ot sl
1993 503 2.64E-10 4.06E-10 2.81E-7 54 0.63 second
3993 100° 1.79E-12 | 2.33E-12 4.45E-9 50 3.88 seconds
@’ spectral element method
995 [ 20° [ T749E8 [ 6.44E-8 [ 218E-7 | 57 | 0.42 second
Q2" spectral element method
99° 53 3.43E-12 | 4.07E-12 8.32E-9 54 0.37 second
1993 103 3.58E-12 4.96E-12 3.22E-12 50 0.57 second
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For § = 1600, we find that « = 10 and At = 0.1 are efficient parameters.
The modified H' flow with Q*° spectral element method on a 5 x 5 x 5 finite
element mesh converges with residue reaching 6.3 x 10713 after 665 iterations using
a simple and crude initial guess u® = 1. The online computation time is 6 seconds
on Nvidia A100. The numerical ground state energy and eigenvalue are E(uj}) =
33.80227900547 and A; = 80.89511440602. The results are consistent with findings
in [7]. Due to the different definitions of energy functions in this paper and [7],
B = 1600, E(u;) = 33.80227900547 and %)\;‘L = 40.44755720301 in this paper,
correspond to the case for g = 800, E, = 33.8023, and pg, = 40.4476 in [7]. See
Figure 5.

0 R
5 -5 X Y

FIGURE 5. A 3D example for a combined harmonic and optical
lattice potential. Left is the isosurface of the ground state for iso-
value 0.002, and right is the slice view of the ground state. For
B = 1600, using Q*° spectral element method on a 53 mesh, (4.4)
with o = 10 and 7 = 0.1 and u® = 1 converges after 665 itera-
tions. The online computation time is 6 seconds on Nvidia A100.
E(u}) = 33.80227900547 and A} = 80.89511440602, consistent
with the results in [7].

7. CONCLUDING REMARKS

We have considered the H' Sobolev gradient flow for finding the ground state
of the Gross-Pitaevskii eigenvalue problem, under a modified H'-norm. Global
convergence to a critical point and the local exponential convergence rate have
been established. Numerical experiments suggest that the scheme with the spectral
element method can be very efficient when using tuned parameters, which can be
easily and efficiently implemented on modern GPUs.

APPENDIX A. EXPLICIT FINITE DIFFERENCE FORMULATION AND DISCRETE
ENERGY

We give explicit equivalent finite difference formulation of the Q* spectral ele-
ment scheme (2.7), especially the Q! case, which is equivalent to the second-order
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finite difference. We also give the explicit expressions of the P! finite element
method on an unstructured mesh.

A.1. The second-order finite difference scheme. For a one-dimensional uni-

form grid —L = 29 < 21 < -+ < x,, < Tpy1 = L with grid spacing h = nz—_fl,
for any vector u, € V& with P! polynomial basis, it can be represented by u =

T . . . ..
[ul Ug - un] with ug = un,4+1 = 0. The discrete inner product is given by

1 - 1
(up,vp) = ihuovo + Zuﬂlih + §hunvn =hu'v.
i—1

Define M = hl,,x, and K = M~'S where S =

nxn

Then the matrices in (2.6) and (2.7) for 1D are M= M, S= 5, and —A, = K.

For a two-dimensional problem on a uniform grid for the domain [—L, L]?, assume
there are n x n interior grid points. Let U, V and F denote 2D arrays of size
n x n consisting of point values of up(x1,z2), V (21, 22), f(z1,22) at grid points.
Let vec(U) be the vector generated by arranging U column by column. The scheme
(2.6) becomes

[S® M 4+ M ® S + diag(vec(V))]vec(U) 4+ BM @ Mvec(U?) = \y M @ Mvec(U),
where U? denotes the entrywise cubic power. In 2D, (2.7) can be written as
[K®I+1® K + diag(vec(V))]vec(U) + Bvec(U?) = \vec(U).

With the property (BT ® A)vec(X) = vec(AX B), it can be equivalently expressed
as

KU+UK" +VoU + BU? = \,U,

where o represents Hadamard product, i.e., entrywise product. With similar nota-
tion as in [45], the three-dimensional case of (2.7) can be expressed as

KRIQI+IK@I+I1®1® K + diag(vec(V))]vec(U) + Bvec(U?) = Apvec(U).

Thus, the matrix —Ay, is given explicitly as follows:

K, d:L
(A.1) A= K®I+I®K, d=2,
KQIQI+IRKRQ~I+IQIR K, d=3.

Remark A.1. The Q! scheme with quadrature gives exactly the same second-order
centered difference for the interior grid. For Neumann boundary condition, the Q!
scheme with quadrature gives a slightly different scheme from a conventional finite
difference scheme, see Remark 3.3 in [34]. When deriving finite difference from
the finite element method, convergence is trivially implied by finite element error
estimates.
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A.2. The P! finite element scheme on a simplicial mesh. Let Q;, C R¢ be a
simplicial mesh satisfying (3.2). Let @;,i = 1,--- , N denote all interior quadrature
points. For any wup,v, € V{, since Vuy, and Vuj, are piecewise constants, the
quadrature is exact. For an edge E in a simplex T', let «; and x; be its ends and
dpuy, denote up(x;) — up(x;) = u; — u;. By formulae in [52, Section 2],

1

(Vup, V) = Vuy, - Vopde = Z Z m%' cot 9£6Euh6Evh,
Qn TeQ, ECT

which can also be written as

1
(A2) <VUh, V'Uh) = Z Z m|l§}g| cot 9%(11,1 — Uj)('Ui - Uj),
E TDE
x;, x; are two ends of the edge F.

By notation in Section 2, we have u’'Sv = (Vuy, Vu,), which implies that the
stiffness matrix can be explicitly written as follows. The off-diagonal entries of S
are given as

1
Sij=— Z ———|kp|cotfF, i#j and E is the edge connecting x; and x;.
TOE d(d—1)

And the diagonal entries of S can be obtained by the fact that each row sum of S
should be Zero.

In a triangular mesh in two dimensions, for the edge x;
connecting two interior vertices x;, x;, there are two an-
gles 6;; and 67; as shown in the figure, thus the stiffness
matrix can be written as

cot 0} +cot 07, . .
5, = [~ G
77 _ S . 7
>t Sig J =71
The necessary and sufficient condition for cot Hilj +

cot 91-2]- > 0is H}j —1—92-2]- < . For S to be an M-matrix, it suffices to have 91-1]- +91-2j <m,
which can be achieved in a Delaunay triangulation.

A.3. The discrete Laplacian from Q¥ scheme. The full details can be found in
[45]. Let S be the stiffness matrix and M be the mass matrix Q¥ spectral element
method in one dimension. In two dimensions (2.6) can be written as

[S@M+M®S+ (M@ M)diag(vec(V))]vec(U) = A (M @ M)vec(U).
Define H = M~1S, the scheme (2.7) in two dimensions can be written as
[H®I+I® H + diag(vec(V))]vec(U) + Bvec(U?) = Apvec(U),
or equivalently HU + UH " +V o U + BU? = A\,U, and in three dimensions it is
HRIQI+I@HI+I1®1® H + diag(vec(V))]|vec(U) + Bvec(U?) = Apvec(U).

It is possible to derive explicit entries of matrices S, M, H, see [42,49] for more
details.
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Remark A.2. For k > 2, the discrete Laplacian above gives a (k + 2)-th order
finite difference scheme in discrete (>-norm for solving elliptic equations [42] and
for parabolic, wave and Schrodinger equations [39]. For solving a linear eigenvalue
problem, e.g., 8 = 0in (2.7), standard a priori error estimate for eigenvalues is that
Q" spectral element method gives 2k-th order of accuracy if assuming sufficient
regularity.

A.4. Discrete energy of the second-order finite difference. The formula
(A.2) can be written out more explicitly when the vertices in the simplicial mesh
form a Cartesian grid, i.e., when the P! finite element method becomes the second-
order finite difference method. For the one-dimensional case, recall that ug =
Upy1 = 0 for uy, € Voh, we have

n+1
Vuh,vh S Voh, (Vuh, Vvh> =h ; Ui _hui_l . Yi —hUi—l.
1
-1 1
Define the matrix D = % . Then it satisfies DT D =
-1 1
-1 (n+1)xn

K. In one dimension (up,us) = u'Mv = hu'v. Thus we have
(Vup, Vo) = (Du, Dv)), = (DT Du,v);, = (Ku,v), = (—Apu, v)p,.

In two dimensions, by plugging in the quadrature, for any uy, v, € VJ*, we have

(A.3)
sy u u v v u U v v
3 g — i1,y Vij — Vi-1 ij — Wij—1 Vij — Vij-1
<vuhvvvh> — h2 v, ? Y ® J + ?J 2, Y] 2J .
— h h h
)=

With our notation for the two-dimensional problem, let u = vec(U), then we have
(Vup, Vo) =(DU,DV);, + (UD,VD),=(D" DU, V), + (UDD", V),
(Vup,Vop) =(KU + UK, V),=(K®I+1Q K)vec(U),vec(V))p=(—Apu, V).

The three-dimensional case of the discrete gradient can be similarly written out.

APPENDIX B. M-MATRIX AND PERRON-FROBENIUS THEOREM

B.1. M-matrix. Nonsingular M-matrices are monotone. There are many equiv-
alent definitions or characterizations of M-matrices, see [47]. The following is a
convenient sufficient but not necessary characterization of nonsingular M-matrices
[41]):

Theorem B.1. For a real square matriz A with positive diagonal entries and non-
positive off-diagonal entries, A is a nonsingular M-matriz if all the row sums of A
are nonnegative and at least one row sum is positive.

B.2. Irreducible nonnegative matrices. A matrix A € C"*" is called reducible
if there exists a permutation matrix P such that PAPT is block upper triangular.
A matrix is irreducible if and only the graph it represents is strongly connected.

Lemma B.2. For a nonsingluar irreducible matriz A, A" is also irreducible.
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The following results can be found in [51]:

Theorem B.3 (Perron-Frobenius). If A > 0 is irreducible, then:

(1) The spectral radius p(A) is a simple eigenvalue of A with an eigenvector
x> 0.
(2) p(A) increases when any entry of A increases.

Theorem B.4. The positive eigenvector (Perron-Frobenius eigenvector) for an
irreducible nonnegative matrix is unique up to scalar multiplication.

Proof. Let x > 0 be the left Perron-Frobenius eigenvector then ' A = p(A)x .
If there exists another eigenvector y > 0 for an eigenvalue A, then Ay = \y —
v Ay = MrTy. Since 2TA = p(A)zT = 2TAy = p(A)z "y, we get (p(A) —
MNzTy=0and 2"y >0 = p(A) = A\. Thus there is only one eigenvalue, i.e.,
p(A), with positive eigenvectors, and p(A) is a simple eigenvalue by Theorem B.3.

O

APPENDIX C. DEFERRED PROOFS FOR SECTION 5.1
C.1. Norm equivalence and standard regularity results.
Lemma C.1. There are positive constants D1, Do, D3 independent of mesh size h,
such that the following holds for any v, € V{:

1

(C.1) D

L L
[{vh, vi) 122 < [lonllz2e@) < Dyl (v, vp)l*, p=1,2,3.

Proof. We first prove it for Q* spectral element method. Consider a cubic cell

e=[r¢— Lt + 4] x - x[2§— 2 25+ 1] € Q) and a reference cell K =[-1,1]3.
For vj,(x) defined on e, consider 0y (t) = vy (t1% + a5, -+ ,ta% + 25), which is

defined on K. Let (o, ) j denote the approximation to the integral [ |05 (t)[*dt
by (k+1)-point Gauss Lobatto quadrature for each variable. Since both /(95, 0n) &

and 4/ [% |0n(t)|2dt are norms of Q" (K), by the equivalence of any two norms on

the finite-dimensional space Qk( , we have

Yoy € Qk \/ vh,vh “ "Uh ‘2dt < Dl\/ ’Uh,’l)h

By mapping back to e, and summing over e, we get (C.1) for p = 1.

With the same notation and arguments above, for a Q¥ polynomial v;, with
(k + 1)-point Gauss-Lobatto quadrature, let w; and ¥; be quadrature weights
and quadrature node values on the reference cell K, then we have |(02,93) K‘% =

ngil) }174 , which can be easily verified to be a norm of R*+D? thus a norm

of Q¥(K). By the equivalence of any two norms on Q*(K), we have

. 1

Vi, € QMK), —

oy, € Q7 (K) Ds

By mapping back to e, and summing over e, we get (C.1) for p = 2. The proof of
p = 3 is almost identical to the case p = 3. Finally, the same proof also applies to

P* finite element method on a simplicial mesh with quadrature. O

1 1
(@1, 0 & |* < 0nll pagiy < D2 (07, 07) | * -
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Second, we want to show the X-norm is equivalent to H'-norm for piecewise
polynomials in VJ*. By Lemma 5.1 in [42], we have the following standard V"-
ellipticity result for a domain on which elliptic regularity holds, e.g., Q = [~ L, L]¢.

Lemma C.2. Let ||lvp|lx = /(Vvn, Voi) + a(vp, o) = ||[V|x. Let Q be a domain
with elliptic reqularity. There is a constant Dy > 0 independent of mesh size h s.t.

1
(C.2) oy, € Vg, D_4||”hHX < llvnllz @) < Dallvnllx.

C.2. Proofs of Lemma 5.4 and Lemma 5.5.

Proof of Lemma 5.4. Since (u,v);, = 0, we have that |[u+v|]3 = [[ul]3 + |v]3 =
1+ ||v||3. This implies that

1

Rp(u+v)—(utv)= (m_

) v = (0 VD) 7 1) (v,

Then (5.1) follows from the elementary inequality 1 — £ < (14+2)" /2 <1, 2 >
0. U

Proof of Lemma 5.5. (i) Hu||§( =u' (S+aM)u>au'Mu =« ||u||§
(ii) By Cauchy-Schwartz inequality for the inner product (-,-), and (i), we get

[l(=Aan+ a]I)’luHi =((-Ap+ol)Muu), < ||(=An + o)l |lull, < ﬁ [[(=2n + o)~ ul| [,

(iii) Since II(u?) coincides with u? at the quadrature nodes, by (C.1) for p = 2,

0?2 = v/{u2, u), = /(II(u?), 1I(u?)) = \/(u}, u}) < DF[lunllFaq)-

With the Sobolev embedding H*(2) ¢ L*(Q) for dimension d < 3, and (C.2), we
get

Huh||2L4(Q) < D2||Uh||%11(9) < DQDEH“H%@

where D > 0 is the constant associated with the embedding H'(Q) C L*(1Q).
(iv) The proof is almost identical to that of (iii), which uses (C.1) for p = 3,
(C.2), and the Sobolev embedding H'(2) C L5(Q) for dimension d = 1,2, 3. O

APPENDIX D. DEFERRED PROOFS FOR SECTION 5.2

Proof of Lemma 5.11. Since Ay is self-adjoint w.r.t. (-, ), it has orthonormal
eigenvectors. Let u = (u,u*),u* be the orthogonal projection of u onto the
subspace spanned by u*. Let u; = u—uy, then (uj,ur), = 0and |[uy|3+|ur| =
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1. Thus,

1 1
E;(u) — Ep(u*) = 5<—Ahu, u), + 5<Vu, u), +

1 * * 1 * *
—5(—Ahu ,u >h—5<Vu ,u >h—§

(=B w3 (Vw5 (), )

\ \/

1 1 * *
L - Sy - D
1 1 1 1 A
= 5 Awu ), = S(Aw " u)y = o {Awuy, whn + 5 (Awus, uidn =
A 2 A 2 X A=A
> 7” g I3 + 7}1 lurlly — 5 = Th lurlfs-

With the following fact, (5.5) follows from the estimate above:

2 2 o |2 1 2\ ?
fucl = 1= fluy ;= 1= [ w)al = 1= 7 (2= u—u’)
_ *12 1 x4
=[u-u Hz_ZHu_u 2 -
O
Lemma D.1. There is some constant L1 > 0 independent of the mesh size h s.t.
va,v € RV, [|(=A +aD) 7 (u? = v < il = vy (lallx + VI ) -

Proof. Using Lemma 5.5 (ii) and (iv), we can compute that

Ian+a™ @ = < 3’ =¥y = £ 3wt -

1
> sz(uz - U'L)Q(U? + uv; + Uf)2

8

SEZU%( *'Uz + Zwl 271}1 v;
1/3 2/3 1/3 2/3

< % <Zw¢(ui—vi)6> <Z wm?) +2 <Z ’U}i(ui_’Ui)S) <Z ww?)

8 / / /
= o = (" + Iv17)

8C3
< 5 v (e + VL)

O

Lemma D.2. For any u,v € RN with ||lul|x < 2|u*||x and ||v]x < 2|u*||x, it
holds for some constant Ly > 0 depending on ||u*||x and independent of the mesh
size h that [|[VxEp(u) = VxE,(v)||x < Lo lu—v| .
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Proof. Recall that VxE;(u) = u + (=Ap, + al) "1V — al + Bdiag(u)?)u. Using
Lemma D.1 and Lemma 5.5, we can conclude that
IVxEp(u) = VxEn(v)| x
<Ju—vly + H(—Ah + aH)_l(V—aH)(u—V)HX + 4 ||(—Ah + aH)_l(u?’—v3)HX

Va ,max

4 4
< vl + =2 fuvly + 8Ly fuvlx (e + vl )

V. max *
< (1 T2 g9 ) vl

O
Proof of Lemma 5.12. Recall VB, (1) = VxEj(u) — 70 WInG u. Set
E * E * * A u*
v (u, VxEp(u))s and 7 = (', VxEp(u")n _ (", GxAu-u)p — 0.

(Gxu,u)y (Gxu*,u*), (Gxu*,u*),

Suppose that ||[u—u*|, < |[u*|y, then |lully < 2||u*|y. With Lemma 5.5 and
Lemma D.2, it holds that

[VXER(w)]
= HV}?E;L(U) — V§Eh(U*)||X
= [[VxEp(u) —1Gxu — VxE,(u®) + 7" Gxu’|
< | VxEp(a) = VXEL(u)[x + v =7 IGxul x + 7| - |[Gxu - Gxu™| x

HU*HX|

* * /y* *
< Lo+ I e

Thus it suffices to estimate |y — v*|. Set

A= <ll, VXEh(u)>h, A* = <u*,VXEh(u*)>h,
B = (Gxu,u)h, B* = (Gxu*,u*>h.

By Lemma 5.5, Lemma D.2, and |ju||2 = |ju*||2 = 1, we have
[A = A <flu—u"[ly [VxEn (), + [[ully [VxEn(u) = VxEp(u?)],

< ”vXEh(u )HX Hu

2
- ~ W+ 77 lullx e =l

B = B*| <[lu—u’[[|Gxul; + [[u’]; [|[Gxu - GxuT|, < u—uty,

— |

A A |A— A*|-|B*| + |A*| - |B — B*|
=2 -2 < <L.llu—u*
v=l=|5 - 5| < pass <Ly fu- g
for small |ju — u*||y and some constant L, > 0, which completes the proof. O

APPENDIX E. POSITIVE EIGENGAP INDEPENDENT OF THE MESH SIZE

In this section, we prove that Assumption 5.8 holds with a positive eigengap
independent of the mesh size for the P! finite element method with quadrature on
an unstructured simplicial mesh with shape regularity.
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Definition E.1 (Shape regular meshes). A simplicial mesh with hx denoting the
size of each simplex K is shape regular if there exists some constant ¢ > 0 inde-
pendent of the mesh size h = supy hx, such that Z—g < o holds for all K, where
pxk is the diameter of the largest sphere contained in K.

E.1. Technical lemmas.

Lemma E.2. Suppose that V € CY(Q). There exists constants Ey, Ey, B3 > 0
independent of the mesh size, so that for any h > 0 and u € RY, the following
holds for Pl finite element method with quadrature on an unstructured simplicial
mesh with shape regularity:
(1) 0 <[l - ||HuHL2(Q < E1h(=Apu,u)p.

(ii) |< Vu), — [, V|ul? | < Exh(—=Apu,u)y, + Esh||ul3.
(iif) (—Apu,u)y = IHu|§{1

) (u?

(iv

@
u?, u?), > [|Thl|7. g

Proof. Tt suffices to prove the results on each simplex K of the mesh since all of
them are additive. Consider a single simplex K. For convenience, by abusing

notation, we let all vertices of K be indexed as {x;,i = 1,---,d + 1} and the
P! interpolation polynomial (ITu)(x) = a +b'x on K satisfying (ITu)(x;) = ;.
d+1
Define the barycentric coordinates as > t; = 1,¢; > 0 for the simplex K, i.e.,
i=1
d+1 '
=) tixz;,Vx € K. It is straightforward to verify that the polynomial [ITu(z)]?

i=1
is a convex function of x, thus we have Jensen’s inequality

d+1 d+1
2 (Z tiXi> S Ztl(ﬂu)2(xl)
i=1 i=1

Consider a barycentric simplex Ap = {(t1,- -+ ,tq41) € [0, 1] : 3, ti =1} C
R4+, By regarding A; as an embedded manifold in R4, its volume |A;| can be
written as an integral of constant 1:

d+1

|Ar| = / 1dV = <Z ti) dV = (d+ 1)/ t;dV, for any fixed j,
A Ar Ar

=1

where dV is the volume form of the manifold and in the last step we have used the
symmetry of integrating each ¢; on the simplex A;. Since # = |A1| fAz ;) dV,
Vj, we have

d+1 d+1 d+1

K| 2 |K]| _ Kl
RS~z o ST )2 xg) 5(TTu)? (x;)dV

15| 2 (N, ) av - 2
> A AI(Hu) <;tlxz> dV—/K(Hu) (x)dx.

Summing the inequality above over all simplexes in the mesh, the first inequality

(E.1)

in (i) is proven Note that the quadrature % ;1:11 (x;) = % xek f(®i) is
equal to [} f(x)dx for any linear function f(x). Let E; = 2sup,cq [|x]|, then we
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have
(E.2)

LY T2 / T )2 K] T2 / T )2
-— b'x;)” — b dx = —— b'x;)" — b d
d+1x§((a+ X;) K(a+ x)2dx de;(( X;) K( x)2dx

<|K| sup ((b'x)*—(b'x)?)=|K| sup (b'x—Db'x)(b'x+b'x)
x,x' €K x,x' €K
< E1h|K|||b]%.
With notation in (2.11), the discrete integration by parts (2.10) can be also be
written as
(E.3) (—Apu,u)p, = (Vup, Vup) = (VIIu(z), VIIu(z)).

Notice that VIIu(x) = b is a constant over K, thus after summing over K, the
term |K|||b||? becomes (VIIu(z), VIIu(z)) = (—=Apu, u)y,. By the same notation,
we also have

K| , B
270 Y (a+bTx)? = (u(e), Hu()) = (u,w,

(E4) K x; €K
Z/ (a+bTx)2dx= ||HU.H%2(Q),
K K

which proves the second inequality of (i).
Notice that (E.1) can also be written as

K|
T2 T2
(E.5) /K(a—f—b x)“dx < d+1x§eK(a+b x;)~.

For proving (ii), with some fixed x € K, we have

K|
d+1

X;)la TX'2— X)la T)(2)(
X;KV( )(a+bTx,) /Kv< J(a+bTx)d

<[VE)I-

K] T2 T o2
-— (a+b'x;)"— [ (a+b x)%dx
Tr1 2 p

+ — Z V(%) = V(X)|(a+bx)? + /K [V(x) = V(%)|(a +b'x)%dx

ﬂ Z (a—|—bTxi)2—/ (a—|—bTX)2dX

x; €K K

K|

(a + bTx)de>
x; EK K

K|
< Vg @ ErbIK|[b]* + 2hic[VV e @) 7 D (a+b'xy)?,
x; EK
where we have used (E.2) and (E.5) in the last step. By summing over K, we
have proven (ii). Since VIIu is a constant over K, the quadrature for (VIIu)? is

exact, i.e., (VIIu(z), VIIu(z)) = ||VHu||%2(Q), thus by (E.3) the result (iii) is true.
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Finally, with a similar argument as in (E.1), the result (iv) is also a consequence of
Jensen’s inequality since [[Tu(z)]* is a convex function on K. O

Lemma E.3. Consider P! finite element method with quadrature on an unstruc-
tured simplicial mesh with shape regularity in dimension d =1,2,3. For any h > 0
and u € H*(Q)NHE(Q), it holds for some constant E4 > 0 independent of the mesh

2
H3(Q)
the values of u at quadrature points.

size that ||ul <—Ahu,u>h’ < E4h\|u||%12(m, where u € RY is the vector of

Remark E.4. Lemma E.2 holds for any dimension d, but Lemma E.3 holds only for
dimension d < 3 since we need the point values u(x;) being well defined, ensured by
the Sobolev embedding u € H?(Q)N H(2) € C(Q), which holds only in dimension
d=1,2,3.

Proof. By Lemma E.2 (iii), we have
[ulfs ) — (—Anu, u)h‘ = ‘|U\?{5(Q) - |HU|§{5(Q)‘
<lu— HU\H(%(Q) |lu + HU|H§(Q) <lu-— HU|H3(Q) (2|U\Hg(sz) +[u— HU|H5(Q)) .

We can conclude the proof after combining the estimates above and the standard
interpolation estimate |u — Iu| g1 () = O(h) - [[ul| g2 (q), see [18]. O

Lemma E.5. Under the same assumptions as in Lemma E.2, let IIu be the piece-
wise constant interpolation of u, i.e., (Ilu)(x) = ﬁ S (M) (x")dx" on any sim-
plex K. There is some constant E5 > 0 independent of the mesh size s.t. |1lu —
Hu||%2(ﬂ) < Esh?(—Apu,u)y,.

Proof. Consider a simplex K on which we assume (ITu)(x) = a+b"x and (ITu)(x)
=a+ % > x,ek Xi- Then we have

2
_ bT
] ()60 - (Tt = [ (bTx—7 > xi> dx < K [bIP <h || b
K K K
By the same arguments as in the proof for Lemma E.2, the result holds with
Es =1. O

E.2. Proof of consistency and eigengap.

Theorem E.6. Consider P! finite element method with quadrature on an unstruc-
tured simplicial mesh with shape reqularity in dimension d = 1,2,3. Let u* and \*
be the ground state and the corresponding eigenvalue of the continuous energy E.
Let uj and X;, be the ground state and the corresponding eigenvalue of the discrete
energy Ey,. Suppose that u* € H?(Q) N HE(Q) and that V € C1(Q). Then u} — u*
in H} () and N} — \* as h — 0.

Proof. By our previous notation, u* € R¥ is the vector collecting the values of u}
at quadrature points and II(u*) = u}. For convenience, define u®®®* € RY as the
vector representing the values of u* at quadrature points. Due to the embedding
H?(Q) — C°%Q) for d = 1,2,3 and the convergence of Riemannian integral for
continuous functions, one has (U, u**), = |[u*[|7>o) + o(1) = 1+ o(1),
<uemact7Vuemact>h — fv|u*|2 + 0(1)7 and <((uemact)2, (uexact)2)>h — f ‘u*|4 + 0(1)
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Furthermore, thanks to Lemma E.3, we have Ej,(u®**?") = F(u*) 4 o(1). Then it
holds that
(€6 By < By (

exact

u exac *
which implies that (—Apu*, u*); is bounded as h — 0.
By Lemma E.2 (i) and boundedness of (—Aj,u*,u*);,, one has H“Z”m(g) =
1+ o(1). Therefore, it follows from Lemma E.2 (ii)—(iv) that
U

(E7) En(u}) = By(u") > E(uf) +o(1) = E ( ) +o(1) > B(u*) +o(L).

||UZ||L2(Q)

Then we can conclude from (E.6) and (E.7) that E(u*) = E (#> + o(1).
UnllL2 (o)

By compact embeddings H}(Q) cC L%(Q) and HZ () CC L*(), there exists

— k converging weakly in H}(Q)
UrllL2 )

and strongly in L?(Q2) and L*(Q) to some function in € H}(2). Without loss of
generality, we assume that the whole sequence converges:

a subsequence of the bounded sequence |

W — ug, weakly in H3(Q) and strongly in L?(Q) and L*(Q).
UpllL2 (o)

Since the weak convergence guarantees that

. up
HUOHHg(Q) < llgligf L

)

HY(Q)

||u,’;||L2(Q)

E(w) <E@W’) < lmE [ —" | = E(u"),
h—0 HuhHL2(Q)

which implies that E(u®) = E(u*) and hence that v = u* by the uniqueness of
— u* weakly in H}(Q) and

*

positive ground state. Then we know that |

Unllp2(q)
H T — |[u* |51 (o) Note that the weak convergence and convergence
||uh ||L2(Q) Hé (Q)
of norm imply the strong convergence. Thus |u—h — u* and u; — u* strongly
UnllL2(a)

in H}(Q).

In the discussion above, we have shown that every subsequence of {u}} has a
subsequence that converges strongly in H} () to u*. Therefore, the whole sequence
{u}} converges strongly in H}(Q2) to u*. This immediately implies that \; —
A*. O

Assumption E.7. We assume that the multiplicity of the eigenvalue A\* to the
following problem is one: —Au + Vu + flu*|>u = Au, u =0 on 9Q.

We remark that the smoothness of u* depends on the smoothness of V' [44], and
the assumption above can be proven with suitable smoothness assumptions on V
and u*, e.g., the smallest eigenvalue of an elliptic operator —A + V + Blu*|? is
simple due to the positivity and the maximum principle of the operator (—A +
V + Blu*|?)~!, implied by the Krein-Rutman Theorem (the extension of Perron-
Frobenius Theorem from positive matrices to positive compact linear operators),
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see [25, Chapter 1]. The spectrum, including simplicity of the smallest eigenvalue,
of Schrédinger operators like —A + V' + Blu*|?, was also thoroughly studied in
[48, Section XTI1.12].

Theorem E.8. Suppose that Assumption E.7 and assumptions made in Theo-
rem E.6 hold. Let (\},u') with (u',u'), = 1 be the second eigenpair of the lin-
earized problem —Apu + Vu + f(u*)?u = A\yu. Then liminf, 0 A\j — A > 0.

We remark that A} in Theorem E.8 is exactly /\2 in Assumption 5.8. In this
sense Theorem E.8 validates Assumption 5.8 with a positive lower bound for the
eigengap that is independent of the mesh size h.

Proof of Theorem E.8. Suppose that there is no positive eigengap. Then A} — \*
when passing to a subsequence. Notice that

(E.8) (=Aput ut), + (Vat al), + g((u*)2ut, ut), = A,

which implies the boundedness of |u,11|Hé(Q) < /(—Apul,ul),, where uj = Iu'
and we used Lemma E.2 (iii). There exists u' € H}(Q) such that uj converges
to ul, a.e., weakly in H}(Q), and strongly in L?(Q2) and L*(Q2), when passing to
another subsequence.

Let us analyze the limiting behavior of each term in (E.8). It follows from the
weak convergence uj — u' in Hg () that

ligl_jgﬂ—ﬁhul,ul% 2 lim inf lurll s ) = N 13 -

By Fatou’s lemma and Lemma E.2 (ii), one has
hmlnf(Vu u'), :liminf/V|u%L|2 > /V\u1|2.
h—0 h—0

Let u; = ITu* and uy, = TTu' be the piecewise constant approximation of u* and
u' in the sense of the one in Lemma E.5, then

lim [|a, —upllr2@) =0 and  lim @, — upll 20y = 0,

which implies @} —u} — 0 and @} —uj — 0 a.e. when passing to a subsequence.
By Fatou’s lemma, it holds that

liminf((u*)?u’, u 11m1nf/|uh\ |lay|* > /\u 1 ut 2.

h—0

Then taking limit for (E.8) as h — 0, one obtains that
/\* Z /|Vu1|2+V|u1|2+ﬂ\u*|2|u1|2 Z )\*/|u1|2 :A*,

where the last equality follows from Hu}LHLQ(Q) =1+ o(1) by Lemma E.2 (i) and

u,1I — wu' strongly in L2(2). This implies that u' is also a ground state of the

linearized problem at u*. However, one has from Lemma E.2 (i) that
0=(u"ul), =1~ §IIU* —w 3 =1~ —Ilu}i = up |20y + O(R?),

which implies that 0 =1 — %Hu* 1||L2 @ = = (u*,u )L?(Q), leading to a contradic-
tion. (I
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