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FULLY DISCRETIZED SOBOLEV GRADIENT FLOW FOR THE

GROSS-PITAEVSKII EIGENVALUE PROBLEM

ZIANG CHEN, JIANFENG LU, YULONG LU, AND XIANGXIONG ZHANG

Abstract. This paper studies the numerical approximation of the ground
state of the Gross-Pitaevskii (GP) eigenvalue problem with a fully discretized
Sobolev gradient flow induced by the H1 norm. For the spatial discretization,
we consider the finite element method with quadrature using Pk basis on a
simplicial mesh and Qk basis on a rectangular mesh. We prove the global

convergence to a critical point of the discrete GP energy, and establish a local
exponential convergence to the ground state under the assumption that the lin-
earized discrete Schrödinger operator has a positive spectral gap. We also show
that for the P 1 finite element discretization with quadrature on an unstruc-
tured shape regular simplicial mesh, the eigengap satisfies a mesh-independent
lower bound, which implies a mesh-independent local convergence rate for the
proposed discrete gradient flow. Numerical experiments with discretization
by high-order Qk spectral element methods in two and three dimensions are
provided to validate the efficiency of the proposed method.

1. Introduction

1.1. The Gross-Pitaevskii eigenvalue problem. A standard mathematical
model of the equilibrium states in Bose–Einstein condensation (BEC) [11,21,27,46]
is through the minimization of the Gross-Pitaevskii energy. For N identical bosons,
with an scattering length a and an external potential V (x), the Gross-Pitaevskii
(GP) energy functional is defined as

EGP(φ) =

∫

R3

(

|'φ(x)|2 + V (x)|φ(x)|2 + 4πa|φ(x)|4
)

dx,

and the GP energy, denoted by EGP(N, a), is defined as the infimum of EGP under
normalization

∫

R3 |φ(x)|2dx = N . It has been used for finding the ground state
energy per unit volume of a dilute, thermodynamically infinite, homogeneous gas.
In some typical experiments the value of a is about 10−3, while N varies from 103

to 107.
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Computations are usually done on a finite domain and it is usually acceptable
to make the assumption that we can approximate wave function of interest by
compact support due to the fast decay rate at infinity [29,38]. Let EGP

L denote the
energy functional defined on a box domain Ω = [−L,L]d and EGP

L (N, a) denote the
corresponding GP energy, then lim

L→∞
EGP

L (N, a) = EGP (N, a), see [44]. Since the

GP energy satisfies the scaling relation EGP (N, a) = NEGP (1, Na), we consider
the following simplified rescaled model for finding ground state: minimizing the
energy functional

E(φ) =
1

2

∫

Ω

(

|'φ(x)|2 + V (x)|φ(x)|2
)

dx+
β

4

∫

Ω

|φ(x)|4dx, Ω = [−L,L]d,

over the constraint set
{

φ ( H1
0 (Ω) :

∫

Ω
|φ(x)|2dx = 1

}

, where d = 1, 2, 3, V (x) ≥ 0
and β > 0. While it is also of interest to extend the problem to β < 0, see e.g., [3],
we restrict to the case β > 0 in this work.

The existence, uniqueness, and regularity of the GP ground states are well un-
derstood, see e.g., [44]. For β > 0, E(φ) has the unique positive ground state
φ(x) > 0, which is also the eigenfunction to the nonlinear eigenvalue problem
(1.1)

−∆u(x) + V (x)u(x) + β|u(x)|2u(x) = λu(x),

∫

Ω

|u(x)|2dx = 1, u(x)|∂Ω = 0.

Notice that (1.1) should be understood in the sense of distribution, i.e., the varia-
tional form of (1.1) is to seek λ ( R and u ( H1

0 (Ω) satisfying

(1.2) ('u,'v) + (V u, v) + β(|u|2u, v) = λ(u, v), ∀v ( H1
0 (Ω),

where (u, v) =
∫

Ω
u(x)v(x)dx. Let u∗ be the ground state to E(·), then by setting

u = v = u∗ in (1.2), the corresponding eigenvalue should satisfy

λ∗ = 2E(u∗) +
β

2
ρ̄, ρ̄ =

∫

Ω

|φ(x)|4dx.

Since the ground state u∗ remains unchanged under a constant shift of the potential,
without loss of generality, we may assume V (x) ≥ c > 0 for some c > 0.

1.2. Related work. The study of numerical solutions to the Gross-Pitaevskii
problem (1.2) has a long history. Self-consistent field iteration (SCF) [14,15,24,50]
is one of the most popular iterative techniques for a nonlinear eigenvalue prob-
lem, which involves a linearized eigenvalue problem during each iteration. For the
problem (1.1), SCF may diverge unless a good initial guess is provided.

Another category of popular methods takes an optimization perspective of the
energy functional. They can be viewed as discrete-in-time gradient flows (i.e.,
gradient descent) of the energy functional linked to (1.2). Earlier works in this
category are based on an implicit Euler discretization of the L2-gradient flow [8–10].
More recently, several alternative gradient flows have been proposed by modifying
the underlying metric, including the projected Sobolev gradient flow [16,22,23,31,
33,36,53] and the J-method [2,35]. Projected Sobolev gradient flow is based on first
computing the Sobolev gradients, which are the Riesz representation of the Fréchet
derivative of the GP energy functional within an appropriate Hilbert space (e.g.,
H1(Ω)), and then projecting the gradients to the tangent space of the Riemannian
manifold defined by the normalization constraint. Despite the empirical success
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THE GROSS-PITAEVSKII EIGENVALUE PROBLEM 3

of projected Sobolev gradient flows for solving the GP eigenvalue problem, their
convergence analysis is still underdeveloped. Our work fits in this line of research.

For the existing convergence results for gradient-flow-based methods: The work
[36] established the global exponential convergence of the continuous-in-time pro-
jected H1-gradient flow to a critical point of E. The work [33] obtained a global
exponential convergence of a continuous projected Sobolev flow with an alternative
metric to the ground state and also proved the global convergence (without a rate)
of its forward Euler discretization. A more recent work [53] established a local ex-
ponential convergence of the discrete-in-time flow of [33] under the assumption that
the discrete iterates are uniformly bounded. A more explicit local convergence rate
depending on the eigengap of the linearized problem at the ground state is obtained
in [32]. In our previous work [16], we improved the analysis of the global conver-
gence and local rate of convergence of discrete-in-time projected Sobolev gradient
flows with several common choices of inner products in H1-space.

In addition to the time-discretization of the projected Sobolev gradient flows,
their spatial discretization [8] is of course necessary for the practical implementation
of the schemes. However, most of the prior theoretical work on projected Sobolev
flows for the GP eigenvalue problem does not consider spatial discretization and it
remains open how to extend the convergence analysis to the fully discretized setting.
The convergence of the numerical solution using finite element method has been
first established in [13], and there is also some recent progress on estimating the
discretization error for energy, eigenvalue, and eigenfunction in the setting of mixed
finite element method [28], but the convergence of the fully discretized gradient flows
has not been analyzed before the initial submission of this work. After the initial
submission of this work, some very recent progress was reported in [30], which
extended the results in [33] to the fully discretized Au Sobolev gradient descent
with the monotone P 1 finite element method. Compared to [30], we consider the
fully discretized H1 Sobolev gradient descent and we also prove locally exponential
convergence rate that is not covered in [30].

Let us also mention some works on numerical analysis for general nonlinear eigen-
value problems, where β

4

∫

Ω
|φ(x)|4dx in the energy functional of the GP eigen-

value problem is generalized to 1
2

∫

Ω
F (|φ(x)|2)dx; we refer interested readers to

[12, 13, 26].

1.3. Contribution of the present work. We summarize our major contribution
as follows.

• We propose a fully discretized Sobolev gradient descent for approximating
the ground state of the GP energy, which can be viewed as a Riemannian
gradient descent method on the sphere under a metric induced by a modified
H1-norm.

• We prove the global convergence of the fully discretized Sobolev gradient
descent with respect to the modified H1 metric to a critical point of the
discrete GP energy and a local convergence to the ground state with an
exponential rate. See Corollary 5.3 and Theorem 5.10. We prove the con-
vergence of the ground eigenpair of the discrete GP energy to those of the
continuous counterpart as well as a positive discrete eigengap as the mesh
size diminishes for P 1 finite element method with quadrature on unstruc-
tured shape regular simplicial meshes under the classical mesh constraint
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for monotonicity, which includes the second-order finite difference scheme;
see Theorem E.6 and Theorem E.8.

• We provide numerical experiments with Qk spectral element method as
spatial discretization to verify the accuracy and efficiency of the proposed
approach for solving GP problems in both two and three dimensions. Due
to the fact that only Laplacian needs to be inverted in the algorithm, the
scheme on a structured mesh can be easily implemented and efficiently
accelerated on modern GPUs.

1.4. Organization of the rest of the paper. As preliminaries, we first discuss
the spatial discretization of the GP eigenvalue problem based on finite element
method in Section 2, then review some useful properties of the discrete energy
in Section 3. In particular, the second-order finite element method on a uniform
gives the most popular second-order finite difference scheme. The fully discretized
Sobolev gradient descent methods are given in Section 4. We present the two
main convergence results in Section 5, with numerical experiments given in Section
6. Further preliminary results and proof details can be found in the Appendix.
Concluding remarks are given in Section 7.

2. The classical finite element method with quadrature

We consider the classical continuous finite element method with quadrature using
P k basis on a simplicial mesh or Qk basis on a rectangular mesh. This section
briefly reviews its definition. If the finite element method is defined on a uniform
structured mesh, it is well known that both the P 1 scheme and the Q1 scheme are
equivalent to the second-order finite difference scheme.

2.1. Finite element Galerkin method. We first consider a uniform rectangular
mesh Ωh for the rectangular domain Ω. For any rectangle e in the mesh Ωh, let Q

k

be the space of tensor product polynomials of degree k:

Qk(e) =

{

p(x) =
k
∑

i1,i2,...,id=0

pi1i2···idx
i1
1 xi2

2 · · ·xid
d , x = (x1, x2, . . . , xd) ( e

}

.

Let V h
0 ⊂ H1

0 (Ω) be continuous piecewise Q
k polynomial space with zero boundary:

V h
0 = {vh(x) ( C(Ω) : vh(x)|∂Ω = 0, vh

∣

∣

e
( Qk(e), ∀e ( Ωh} ⊂ H1

0 (Ω).

We also consider an unstructured simplicial mesh Ωh with e denoting a simplex in
Ωh, e.g., a triangular mesh in two dimensions with e denoting a triangle. Let P k

be the space of polynomials of degree k:

P k(e) =

{

p(x) =
∑

i1+i2+···+id≤k

pi1i2···idx
i1
1 xi2

2 · · ·xid
d , x = (x1, x2, . . . , xd) ( e

}

,

and V h
0 ⊂ H1

0 (Ω) be continuous piecewise P
k polynomial space with zero boundary:

V h
0 = {vh(x) ( C(Ω) : vh(x)|∂Ω = 0, vh

∣

∣

e
( P k(e), ∀e ( Ωh} ⊂ H1

0 (Ω).

The finite element Galerkin method for (1.1) is to seek λh ( R and uh ( V h
0

satisfying

(2.1) ('uh,'vh) + (V uh, vh) + β(|uh|2uh, vh) = λh(uh, vh), ∀vh ( V h
0 .
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THE GROSS-PITAEVSKII EIGENVALUE PROBLEM 5

The corresponding discrete energy can be given as

E(uh) =
1

2
('uh,'uh) +

1

2
(V uh, uh) +

β

4
(u2

h, u
2
h).

The convergence of the finite element method for the nonlinear eigenvalue prob-
lem (1.1) was discussed in [13]. The standard a priori error estimates for a linear
eigenvalue problem, e.g., β = 0 in (2.1) is 2k-order for eigenvalues and k-order for
eigenvector in H1-norm, under suitable regularity assumptions. See [4–6,17,37] for
discussions on the rate of convergence of numerical schemes for eigenvalue problems.

2.2. Finite element method with quadrature. In practice, one often uses
quadrature for integrals to implement the finite element method. The Qk spectral
element method is to replace all integrals in (2.1) by (k + 1)-point Gauss-Lobatto
quadrature in each dimension. Standard a priori finite element method error esti-
mates still hold, see [18] and references therein. For the P k finite element method,
suitable quadrature on a simplex can be used, e.g., the simplest quadrature using
the average of values at vertices can be used for the P 1 finite element method. Let
〈·, ·〉 denote that integrals are replaced by quadrature, then the method is to find
uh ( V h satisfying

(2.2) 〈'uh,'vh〉+ 〈V uh, vh〉+ β〈|uh|2uh, vh〉 = λh〈uh, vh〉, ∀vh ( V h
0 .

The corresponding discrete energy is given as

(2.3) Eh(uh) =
1

2
〈'uh,'uh〉+

1

2
〈V uh, uh〉+

β

4
〈u2

h, u
2
h〉.

2.3. The matrix-vector form. For either Qk or P k finite element method, we
will use a quadrature rule such that a matrix-vector form of the scheme can be
easily written.

We first describe the Qk finite element method on a uniform rectangular mesh.
Assume that Ωh consists of uniform Nd

c cubic cells for the cubic domain Ω =
[−L,L]d. Then there are in total (Nck + 1)d Gauss-Lobatto points. Any Qk

polynomial on a cubic element e can be represented as a Lagrangian interpola-
tion polynomial at (k + 1)d Gauss-Lobatto points, thus the Qk spectral element
method (2.2) also becomes a finite difference scheme on all Gauss-Lobatto nodes.
For Q1 and Q2 bases, all the Gauss-Lobatto points form a uniform grid. For
k ≥ 3, the Gauss-Lobatto points are not uniform in each element. For homoge-
neous Dirichlet boundary condition, the boundary points are not unknown. Thus
the total number of unknowns is the interior grid points with the number N = nd

where n = Nck − 1. To derive an equivalent matrix form of the scheme (2.2), let
φi(x) ( V h

0 (i = 1, · · · , N) be the continuous piecewise Qk Lagrangian basis at
all Gauss-Lobatto points xi (i = 1, · · · , N) in the interior of Ωh. For any piece-

wise polynomial uh(x) ( V h
0 , let ui = uh(xi). Then uh(x) =

∑N
i=1 uiφi(x). Let

u =
[

u1 · · · uN

]�
and wi be the quadrature weight at xi.

Next we consider the P k finite element method on a simplicial mesh. The num-

ber of degree of freedoms of P k polynomial on a d-dimensional simplex is (k+d)!
k!d! .

Consider a (k + 1)-th order accurate quadrature rule on a simplex using (k+d)!
k!d!

quadrature points, e.g., the quadrature rule using 3 vertices for P 1 on a triangle,
the quadrature rule using 6 vertices for P 1 on a tetrahedron and the quadrature
rule using 3 vertices and 3 edge centers for P 2 on a triangle. Assume there are
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6 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

in total N quadrature points which lie in the interior of the domain Ωh. Let xi

(i = 1, · · · , N) be all interior quadrature points with wi being the quadrature
weight at xi. Let φi(x) ( V h

0 (i = 1, · · · , N) be the continuous piecewise P k

Lagrangian basis at all interior quadrature points xi (i = 1, · · · , N). For any piece-

wise polynomial uh(x) ( V h
0 , let ui = uh(xi). Then uh(x) =

∑N
i=1 uiφi(x). Let

u =
[

u1 · · · uN

]�
.

With the notation above, we have

(2.4) 〈V uh, vh〉 =
N
∑

i=1

wiViuivi = v�
MVu,

where M = diag{w1, · · · , wN} and V = diag{V1, · · · , VN} are diagonal matrices
and Vi = V (xi). We also have

(2.5) 〈'uh,'vh〉 = v�
Su,

where S is the stiffness matrix given by Sij = 〈'φi,'φj〉.
Using (2.4) and (2.5), the matrix form of (2.2) is to find u ( RN satisfying

v�
Su+ v�

MVu+ βv�
Mu3 = λhv

�
Mu, ∀v ( R

N ,

or equivalently

(2.6) Su+MVu+ βMu3 = λhMu,

where u3 =
[

u3
1 · · · u3

N

]�
. Let ∆h = −M

−1
S, then (2.6) can also be written as

(2.7) −∆hu+ Vu+ βu3 = λhu.

In the formulation (2.6), all the matrices are symmetric positive definite, but the
discrete Laplacian ∆h = −M−1S is in general not symmetric in (2.7) except the
special case of second-order finite difference, which however does not affect numeri-
cal implementations since the symmetric form (2.6) should be implemented instead
of the form (2.7).

2.4. The discrete energy and discrete L2 norm. Using the same notation, the
discrete energy (2.3) can be written as

(2.8) Eh(uh) =
1

2
u�

Su+
1

2
u�

MVu+
β

4
(u2)�Mu2.

Introduce the interpolation operator

(2.9) Π : RN −→ V h
0 , v 
−→

N
∑

i=1

viφi(x).

The discrete integration by parts is ensured in the following sense:

(2.10) 〈'uh,'vh〉 = v�
Su = v�

M(−∆h)u = 〈−Π[∆hu], vh〉.
For two vectors u,v ( RN , we define the discrete L2 inner product 〈u,v〉h by
setting

(2.11) 〈u,v〉h := u�
Mv.

Thus the discrete energy (2.8) and (2.3) can also be written in matrix form

(2.12) Eh(uh) = Eh(u) =
1

2
〈−∆hu,u〉h +

1

2
〈Vu,u〉h +

β

4
〈u2,u2〉h,

with normalization constraint 〈u,u〉h = 1.
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THE GROSS-PITAEVSKII EIGENVALUE PROBLEM 7

3. Properties of the discrete energy

We discuss some properties of the discrete energy Eh(uh) = Eh(u) in this section.

3.1. The monotonicity of the discrete Laplacian. A matrix A ( Rn×n is
called monotone if its inverse has nonnegative entries A−1 ≥ 0. At a fixed vector
u, the linearized operator for (2.7) is given by

(3.1) Au = −∆h + V+ β diag(u2).

The matrix Au is irreducible, which can be easily verified by the graph that the dis-
crete Laplacian represents, see [41]. The definition of irreducible matrices is given
in Appendix B.2. By the Perron Frobenius Theorem in Appendix B.2, if Au is also
monotone, then its smallest eigenvalue has multiplicity one, with a unique unit pos-
itive eigenvector. For the Q1 finite element scheme on a uniform rectangular mesh
(or equivalently the second-order finite difference scheme) or the P 1 finite element
method on a simplical mesh under suitable constraints is used, it is straightforward
to verify that Au satisfies Theorem B.1, implying that Au is an M-matrix thus
monotone, which is a well-known result in the literature; see Appendix B. The ex-
plicit expressions of the second-order finite difference and P 1 finite element method
on an unstructured mesh are given in Appendix A.

For a simplex T in a simplicial mesh Ωh ⊂ Rd of dimension d, let κT
E be the

(d− 2)-dimensional simplex opposite to the edge E in the simplex T and θTE be the
angle between the two faces containing the edge E in the simplex T . By [52, Lemma
2.1], the simplicial mesh constraint for monotonicity is

(3.2)
∑

T⊃E

1

d(d− 1)
|κT

E | cot θTE ≥ 0,

where T ⊃ E means summation over all simplexes T containing the edge E. Such a
constraint reduces to a Delaunay triangular mesh in two dimensions (see Appendix
A.2), which is more general and more practical than a non-obtuse triangulation.
We summarize the results in Theorem 3.1:

Theorem 3.1. For the P 1 finite element scheme with quadrature on a simpli-
cial mesh satisfying (3.2), which includes the classical second-order finite difference
scheme, Au = −∆h + V+ β diag(u2) is an M-matrix thus monotone. As a result,
it has a unique positive unit eigenvector and the corresponding eigenvalue is simple
and the smallest eigenvalue of Au.

For the high-order accurate discrete Laplacian, the matrix −∆h+V is no longer
an M-matrix. It is proven in [41] that the fourth-order accurate Laplacian of Q2

scheme in two dimensions are products of M-matrices and thus still monotone
under certain mesh size constraints. It is possible to prove similar results for the
three-dimensional case following the same arguments in [41]. Extensions to quasi-
uniform meshes are given in [19]. It is also possible to extend the monotonicity to
Q3 element [20]. All these monotonicity results for high-order schemes hold under
mesh size constraints, which makes further discussion of global convergence much
more complicated. Thus we only discuss the global convergence for the second-order
scheme.
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8 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

3.2. Ground state of the discrete energy. In this subsection, we only focus on
P 1 finite element scheme on a simplicial mesh satisfying (3.2), which includes the
second-order finite difference scheme. In general, it is difficult to extend all results
about the discrete energy (2.12) to high-order schemes.

Theorem 3.2. For the P 1 finite element method with quadrature weights wi on

a simplicial mesh satisfying (3.2), for any vh ( V h
0 satisfying

∑N
i=1 wivi = 1 and

vi ≥ 0, ∀i, where vi = vh(xi), Eh(
√
v) is strongly convex w.r.t. the vector v =

[

v1 · · · vN
]�

.

Proof. Let uh ( V h
0 satisfy uh(xi) =

√
vi =

√

vh(xi). By (2.3), we have

Eh(
√
v) =

1

2
〈'uh,'uh〉+

1

2
〈V uh, uh〉+

β

4
〈u2

h, u
2
h〉.

The quadrature yields that β
4 〈u2

h, u
2
h〉 = β

4

∑

i wiv
2
i is quadratic and strongly

convex in v and that 〈V uh, uh〉 =
∑

i wiVivi is linear in v. By (A.2), we have

〈'uh,'uh〉 =
∑

E

(

∑

T⊃E

1

d(d− 1)
|κT

E | cot θTE

)

|√vi −
√
vj |2,

the edge E connects vertices xi and xj .

With (3.2), the convexity of the term 〈'uh,'uh〉 is induced by the convexity of
the bivariate function f(x, y) = |√x−√

y|2, which is easy to verify. �

Theorem 3.3. For the P 1 finite element method with quadrature on a simplicial
mesh satisfying (3.2), ∀uh ( V h

0 , Eh(u) ≥ Eh(|u|).
Proof. It suffices to verify that 〈'uh,'uh〉 ≥ 〈'|uh|,'|uh|〉. By (A.2), we have

〈'uh,'uh〉 =
∑

E

(

∑

T⊃E

1

d(d− 1)
|κT

E | cot θTE

)

|ui − uj |2,

the edge E connects vertices xi and xj .

With (3.2), it suffices to verify (x− y)2 ≥ (|x| − |y|)2, which is trivial. �

Theorem 3.4. For the P 1 finite element method with quadrature on a simplicial
mesh satisfying (3.2), the discrete energy Eh(uh) under the constraint 〈uh, uh〉 = 1
has a unique and positive minimizer u∗

h. Let u∗ be the vector representing its point
values u∗

h(xi), then u∗ solves (2.7), and u∗ is the eigenvector associated to the
smallest eigenvalue of the linear operator Au∗ = −∆h + V+ β diag(u∗)2.

Proof. Strong convexity over a convex constraint in Theorem 3.2 gives the exis-
tence and uniqueness of the minimizer u∗

h. Theorem 3.3 implies that u∗
h(xi) ≥ 0.

For minimizing Eh(uh) with 〈uh, uh〉 = 1, or equivalently minimizing Eh(u) with
uTMu = 1, the Lagrangian for the constrained minimization is given by L(uh, λh) =
Eh(uh) − λh(〈uh, uh〉 − 1). The minimizer must satisfy the critical point equation
δL
δuh

= 0, thus u∗
h satisfies (2.2), or equivalently, u satisfies (2.7). By Theorem

3.1, the matrix Au = −∆h + V + β diag(u2) is monotone. By Perron Frobenius
Theorem (Theorem B.3), such a monotone matrix Au∗ has a unique positive unit
eigenvector associated with its smallest eigenvalue. Since u∗ ≥ 0, it is the unique
unit eigenvector to the smallest eigenvalue of the linear operator Au∗ . �
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Remark 3.5. Neither Theorem 3.2 nor Theorem 3.3 can be extended to Q2 finite
element method. Nonetheless, the monotonicity of the fourth-order scheme may
hold if the mesh size is very small, which ensures that the ground state of the non-
linear eigenvalue problem gives rise to a positive eigenvector by Perron-Frobenius
Theorem.

4. fully discretized Sobolev gradient descent and modified H1

scheme

We define the schemes for minimizing the discrete energy (2.8) or (2.12) associ-
ated with the P k or Qk finite element method with suitable quadrature, under the
normalization constraint:

(4.1) M =
{

uh ( V h
0 : 〈uh, uh〉 = 1

}

=
{

u ( R
N : 〈u,u〉h = u�

Mu = 1
}

,

where uh = Π(u) with Π being the interpolation operator defined in (2.9). The
tangent space of the manifold M at uh or u is

Tuh
M = TuM =

{

vh ( V h
0 : 〈uh, vh〉 = 0

}

=
{

v ( R
N : 〈u,v〉h = 0

}

.

4.1. The Sobolev gradient descent. The gradient of the energy Eh(uh), say
'Eh(uh) ( V h

0 , should be understood in the sense of the Fréchet derivative in the
space V h

0 , and can be computed by

〈'Eh(uh), vh〉 = lim
t→0

Eh(uh + tvh)− Eh(uh)

t

= v�
Su� + v�

MVu+ βv�
Mu3

= 〈'uh,'vh〉+ 〈V uh, vh〉+ β〈Π(u3), vh〉,
for all vh ( V h

0 . With the discrete integration by parts (2.10), we get

'Eh(uh) = −Π[∆hu] + Π(Vu) + βΠ(u3).

Similarly, since 〈u,v〉h = u�
Mv as in (2.11), the gradient 'Eh(u) ( R

N is given
by

'Eh(u) = M
−1(Su+MVu+ βMu3) = (−∆h + V)u+ βu3 = Auu,

whereAu is defined in (3.1). Thus the two Fréchet derivatives'Eh(uh) and'Eh(u)
are also identical in the sense that 'Eh(uh) = Π['Eh(u)].

Given any inner product 〈·, ·〉X on RN , one can equip the manifold M ⊂ RN

defined in (4.1) with an Riemannian metric g(u,v) = 〈u,v〉X . Let GX ( RN×N

be the positive definite matrix satisfying

〈u,GXv〉X = 〈u,v〉h, ∀u,v ( R
N .

The Riemannian gradient of Eh(u) at u ( M is defined as 'R
XEh(u) ( TuM

satisfying

g
(

'R
XEh(u),v

)

= 〈'Eh(u),v〉h, ∀v ( TuM.

Following a similar derivation of Fréchet derivatives as before, the gradient of the
discrete energy with respect to the inner product 〈·, ·〉X can be computed as

'XEh(u) = GXAuu.

For any w ( RN , the projection of w onto TuM with respect to 〈·, ·〉X is given by

PTuM,X(w) = w − 〈u,w〉h
〈u,GXu〉h

GXu.
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Therefore, the Riemannian gradient is

(4.2) 'R
XEh(u) = PTuM,X ('XEh(u)) = 'XEh(u)−

〈u,'XEh(u)〉h
〈GXu,u〉h

GXu,

and the Riemannian gradient descent of minimizing Eh(u) over M with step size
τ is

un+1 = Rh

(

un − τ'R
XEh(u

n)
)

, Rh(u) =
u

√

〈u,u〉
h

,

where Rh(u) is the retraction operator approximating the exponential map [1].

4.2. The modified H1 scheme. Different choices of the inner product 〈u,v〉X or
the Riemannian metric g would lead to different schemes. In this work, we mainly
focus on the modified H1 scheme. In particular, for some constant α > 0 the inner
product ('u,'v) +α(u, v) for H1

0 (Ω) gives the following discrete inner product or
metric
(4.3)
g(u,v) = 〈u,v〉X = 〈'uh,'vh〉+α〈uh, vh〉 = 〈u, (−∆h +αI)v〉h = u�(S+αM)v.

This induces GX = (−∆h + αI)−1 and

(4.4a) 'XEh(u) = GXAuu = (−∆h + αI)−1(−∆h + V+ βdiag(u)2)u.

The corresponding Riemannian gradient is

(4.4b) 'R
XEh(u) = 'XEh(u)−

〈u,'XEh(u)〉h
〈u, (−∆h + αI)−1u〉h

(−∆h + αI)−1u,

and the Riemannian gradient descent method or the Sobolev gradient flow under
the modified H1-norm is hence given by

(4.4c) un+1 = Rh

(

un − τ'R
XEh(u

n)
)

.

If α = 0, then (4.4) is the H1 gradient flow algorithm in [33]. There are algorithms
induced by other more complicated Riemannian metrics such as a0-scheme with
gu(w, z) = ('w,'z) + (w, V z) and the au-scheme with gu(w, z) = ('w,'z) +
(w, V z) + β(w, u2z). We refer interested readers to [16, 33, 53].

5. Global and local convergence

This section proves the convergence of the modified H1 scheme (4.4). The theo-
ries are inspired by our prior work [16] without spatial discretization and the main
difficulty/novelty of this work is the analysis of the discrete schemes and discrete
eigengap.

5.1. Energy decay and global convergence. We define the discrete L2 norm
and the X-norm with a fixed parameter α > 0 as follows:

‖u‖2 =
√

〈u,u〉h =
√
u�Mu,

‖u‖X =
√

〈u,u〉X =
√

〈u,G−1
X u〉h =

√

u�(S+ αM)u =
√

〈u, (−∆h + αI)u〉h.

Note that we have omitted the dependence of X-norm on α in the above. The main
theorem in this subsection is stated as follows, which quantitatively characterizes
the energy decay property of the Sobolev gradient flow under the modified H1-norm
(4.4).
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Assumption 5.1. The potential energy V satisfies that Vmin ≤ V ≤ Vmax for some
constants Vmin, Vmax ( (0,+∞).

Theorem 5.2. Suppose that Assumption 5.1 holds. Let u0 ( M ⊂ R
N and let

{un}∞n=0 be the sequence generated by (4.4). There exists constants Cu, Cg, Cτ > 0
depending only on ‖u0‖X and Ω, Vmin, Vmax, α, β, k, such that as long as 0 < τmin ≤
τn ≤ τmax ≤ min{1, Cτ}, ∀n ≥ 0, the followings holds for any n ≥ 0:

(i) ‖un‖X ≤ Cu.
(ii)

∥

∥'R
XEh(u

n)
∥

∥

X
≤ ‖'XEh(u

n)‖X ≤ Cg.

(iii) Eh(u
n)−Eh(u

n+1) ≥ Cd

∥

∥'R
XEh(u

n)
∥

∥

2

X
, where Cd = τmin

2 .

A direct corollary is the global convergence to a critical point.

Corollary 5.3. In the same setting as in Theorem 5.2, every limit point of {un}∞n=0

is a critical point.

The rest of this subsection is for proving Theorem 5.2 and Corollary 5.3. We
need a sequence of lemmas with the proofs of the first two lemmas being deferred
to Appendix C.

Lemma 5.4. For any u ( M and v ( TuM, it holds that

(5.1) ‖Rh(u+ v)− (u+ v)‖X ≤ 1

2
‖v‖22 ‖u+ v‖X .

Lemma 5.5. There exists positive constants C1, C2 independent of the mesh size
h such that for any u ( RN :

(i) ‖u‖2 ≤ 1√
α
‖u‖X ;

(ii)
∥

∥(−∆h + αI)−1u
∥

∥

X
≤ 1√

α
‖u‖2;

(iii) ‖u2‖2 ≤ C1‖u‖2X ;
(iv) ‖u3‖2 ≤ C2‖u‖3X .

Lemma 5.6. Let C2 be the one in Lemma 5.5 and Vα,max = ‖V − α‖L∞(Ω). Then
it holds for any u ( M that

〈'R
XEh(u),'XEh(u)〉X = ‖'R

XEh(u)‖2X ,

∥

∥'R
XEh(u)

∥

∥

X
≤ ‖'XEh(u)‖X ≤ ‖u‖X +

Vα,max

α
‖u‖X +

βC2√
α

‖u‖3X .(5.2)

Proof. Since 'R
XEh(u) ( TuM implies

〈

'R
XEh(u),u

〉

h
= 0,

〈

'R
XEh(u),

〈u,'XEh(u)〉
〈GXu,u〉 GXu

〉

X

=
〈u,'XEh(u)〉h

〈GXu,u〉h
〈

'R
XEh(u),u

〉

h
= 0.

Due to 'XEh(u) = 'R
XEh(u) +

〈u,∇XEh(u)〉h
〈GXu,u〉h GXu, the first equation holds, and

‖'XEh(u)‖2X =
∥

∥'R
XEh(u)

∥

∥

2

X
+

∥

∥

∥

∥

〈u,'XEh(u)〉
〈GXu,u〉 GXu

∥

∥

∥

∥

2

X

⇒
∥

∥'R
XEh(u)

∥

∥

X
≤ ‖'XEh(u)‖X .

Let Vα = V−αIN , then −∆h +V = (−∆h +αI) +Vα. By (4.4a) and Lemma 5.5,

‖'XEh(u)‖X ≤ ‖u‖X +
∥

∥(−∆h + αI)−1(Vαu)
∥

∥

X
+ β

∥

∥(−∆h + αI)−1(u3)
∥

∥

X

≤ ‖u‖X +
1√
α
‖Vαu‖2 +

βC2√
α

‖u‖3X ≤ ‖u‖X +
Vα,max

α
‖u‖X +

βC2√
α

‖u‖3X .
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�

Lemma 5.7. Let C1 be the constant in Lemma 5.5. For any u,v ( R
N ,

|Eh(u+ v)−Eh(u)− 〈'XEh(u),v〉X |

≤ 1

2
‖v‖2X +

Vα,max

2α
‖v‖2X +

3βC2
1

2
‖u‖2X ‖v‖2X + βC2

1 ‖u‖X ‖v‖3X +
βC2

1

4
‖v‖4X .

Proof. It can be computed that

Eh(u+ v)−Eh(u) =

(

1

2
〈−∆h(u+ v),u+ v〉h − 1

2
〈−∆hu,u〉h

)

+

(

1

2
〈V(u+ v),u+ v〉h − 1

2
〈Vu,u〉h

)

+

(

β

4
〈(u+ v)2, (u+ v)2〉h − β

4
〈u2,u2〉h

)

= 〈−∆hu+ Vu+ βu3,v〉h

+

(

1

2
〈−∆hv,v〉h +

1

2
〈Vv,v〉h +

3β

2
〈u2,v2〉h + β〈u,v3〉h +

β

4
〈v2,v2〉h

)

,

which leads to

|Eh(u+ v)−Eh(u)− 〈'XEh(u),v〉X |
=
∣

∣Eh(u+ v)−Eh(u)− 〈−∆hu+ Vu+ βu3,v〉h
∣

∣

≤ 1

2
〈(−∆h+αI)v,v〉h+

1

2
〈(V−αI)v,v〉h+

3β

2
〈u2,v2〉h+β|〈u,v3〉h|+

β

4
〈v2,v2〉h

≤ 1

2
‖v‖2X+

Vα,max

2
‖v‖22+

3β

2

∥

∥u2
∥

∥

2

∥

∥v2
∥

∥

2
+β
∥

∥u2
∥

∥

1
2

2

∥

∥v2
∥

∥

3
2

2
+
β

4

∥

∥v2
∥

∥

2

2

≤ 1

2
‖v‖2X+

Vα,max

2α
‖v‖2X+

3βC2
1

2
‖u‖2X ‖v‖2X+βC2

1 ‖u‖X ‖v‖3X+
βC2

1

4
‖v‖4X .

�

We can now present the proof of Theorem 5.2 and Corollary 5.3.

Proof of Theorem 5.2. Let C1 and C2 be constants in Lemma 5.5. Define C3 ≤ 1
as a constant depending on α and Vmin that satisfies

(5.3) 〈−∆hu,u〉h + 〈Vu,u〉h ≥ C3‖u‖2X , ∀u ( R
N .

Define

Cu=

((

2

C3
+

2Vmax

αC3

)

∥

∥u0
∥

∥

2

X
+

βC2
1

2C3

∥

∥u0
∥

∥

4

X

)1/2

, Cg=Cu+
Vα,max

α
Cu+

βC2√
α
C3

u.

We prove the theorem by induction. It is clear that (i) holds for n = 0 since
C3 ≤ 1 implies Cu ≥

∥

∥u0
∥

∥

X
. Suppose that (i) holds for 0, 1, . . . , n and that (ii)

and (iii) hold for 0, 1, . . . , n− 1. We aim to show that (ii) and (iii) hold for n and
that (i) holds for n+ 1.

It follows directly from Lemma 5.6 and (i) that (ii) holds for n. We focus on (iii)
then. The iterative scheme is

un+1 = Rh

(

un − τn'R
XEh(u

n)
)

= un − τn'R
XEh(u

n) +Rn,

Rn = Rh

(

un − τn'R
XEh(u

n)
)

−
(

un − τn'R
XEh(u

n)
)

.
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According to Lemma 5.4 and Lemma 5.5, it holds that

‖Rn‖X ≤ τ2n
2

∥

∥'R
XEh(u

n)
∥

∥

2

2

∥

∥un − τn'R
XEh(u

n)
∥

∥

X

≤ τ2n
2α

(Cu + Cg)
∥

∥'R
XEh(u

n)
∥

∥

2

X
≤

(Cu + Cg)C
2
g

2α
,

where we used τn ≤ 1. Denote gn = 'R
XEh(u

n) and ũn = un − τn'R
XEh(u

n). By
Lemma 5.7, we have

|Eh(ũ
n)− Eh(ũ

n +Rn)| ≤ |〈'XEh(ũ
n),Rn〉X |+

(

1

2
+

Vα,max

2α

)

‖Rn‖2X

+

(

3βC2
1

2
‖ũn‖2X ‖Rn‖2X + βC2

1 ‖ũn‖X ‖Rn‖3X +
βC2

1

4
‖Rn‖4X

)

≤ ‖Rn‖X
(

‖'XEh(ũ
n)‖X +

(

1

2
+

Vα,max

2α

)

‖Rn‖X

+
3βC2

1

2
‖ũn‖X ‖Rn‖2X + βC2

1 ‖ũn‖X ‖Rn‖2X +
βC2

1

4
‖Rn‖3X

)

≤ τ2nCR

∥

∥'R
XEh(u

n)
∥

∥

2

X
,

where CR depends only on Cu, Cg, Vα,max, α, β, and C1. Similarly, we have

∣

∣Eh

(

un − τn'R
XEh(u

n)
)

− Eh(u
n)−

〈

'XEh(u
n),−τn'R

XEh(u
n)
〉

X

∣

∣

≤ 1

2
‖τngn‖2X +

Vα,max

2α
‖τngn‖2X +

3βC2
1

2
‖un‖2X ‖τngn‖2X

+ βC2
1 ‖un‖X ‖τngn‖3X +

βC2
1

4
‖τngn‖4X

≤ τ2n
∥

∥'R
XEh(u

n)
∥

∥

2

X

(

1

2
+

Vα,max

2α
+

3βC2
1C

2
u

2
+ βC2

1CuCg +
βC2

1C
2
g

4

)

.

By Lemma 5.6, if τmax

(

1
2 +

Vα,max

2α +
3βC2

1C
2
u

2 + βC2
1CuCg +

βC2
1C

2
g

4 + CR

)

≤ 1
2 ,

then

Eh(u
n)−Eh(u

n+1) = Eh(u
n)− Eh(ũ

n) + Eh(ũ
n)− Eh(ũ

n +Rn)

≥ τn
〈

'XEh(u
n),'R

XEh(u
n)
〉

X
− |Eh(ũ

n)− Eh(ũ
n +Rn)|

−
∣

∣Eh

(

un − τn'R
XEh(u

n)
)

−Eh(u
n)−

〈

'XEh(u
n),−τn'R

XEh(u
n)
〉

X

∣

∣

≥ τn
∥

∥'R
XEh(u

n)
∥

∥

2

X
− τ2nCR

∥

∥'R
XEh(u

n)
∥

∥

2

X

− τ2n
∥

∥'R
XEh(u

n)
∥

∥

2

X

(

1

2
+

Vα,max

2α
+

3βC2
1C

2
u

2
+ βC2

1CuCg +
βC2

1C
2
g

4

)

≥ τmin

2

∥

∥'R
XEh(u

n)
∥

∥

2

X
,

which means that (iii) holds for n. Since

Eh(u
n+1) ≥ 1

2
〈−∆hu

n+1,un+1〉h +
1

2
〈Vun+1,un+1〉h ≥ 1

2
C3‖un+1‖2X ,
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one can conclude that
∥

∥un+1
∥

∥

2

X
≤ 2

C3
Eh(u

n+1)≤ 2

C3
Eh(u

0)≤ 2

C3

∥

∥u0
∥

∥

2

X
+

2Vmax

C3

∥

∥u0
∥

∥

2

2
+

β

2C3

∥

∥(u0)2
∥

∥

2

2

≤
(

2

C3
+

2Vmax

αC3

)

∥

∥u0
∥

∥

2

X
+

βC2
1

2C3

∥

∥u0
∥

∥

4

X
,

which implies that
∥

∥un+1
∥

∥

X
≤ Cu, i.e., (i) holds for n + 1. Furthermore, we also

have (ii) hold for n+ 1 by applying (5.2) and
∥

∥un+1
∥

∥

X
≤ Cu. �

Proof of Corollary 5.3. It follows from Theorem 5.2 that lim
n→∞

∥

∥'R
XEh(u

n)
∥

∥

X
= 0.

Let u∗ be any limit point of {un}∞n=0, i.e., u
nl → u∗ for some subsequence. Then

GXunl → GXu∗ and 'XEh(u
nl) → 'XEh(u

∗). Hence'R
XEh(u

nl) → 'R
XEh(u

∗),
which leads to 'R

XEh(u
∗) = 0. �

5.2. Locally exponential convergence. In this subsection, we prove the local
convergence rate of the modified H1 scheme (4.4). We need Assumption 5.8.

Assumption 5.8. Let u∗ ( M be the ground state of the nonlinear eigenvalue
problem (2.7), i.e., the global minimizer to (2.12). We assume that the multiplicity
of the smallest eigenvalue of Au∗ = −∆h + V + βdiag(u∗)2 is one, i.e., λ0

h < λ1
h

where λ0
h and λ1

h be the smallest and the second smallest eigenvalue of Au∗ .

Remark 5.9. Perron-Frobenius Theorem ensures Assumption 5.8 if a monotone
scheme is used. For example, the matrix Au∗ is monotone for the second-order
finite difference scheme with any mesh size h. For Q2 spectral element method
with a priori assumption on infinity norm of u∗, the matrix Au∗ is monotone for
small enough mesh size. However, Perron-Frobenius Theorem does not provide a
quantification of the eigengap |λ0

h − λ1
h|. In Appendix E, we prove that |λ0

h − λ1
h|

has a uniform positive lower bound as h → 0 for the P 1 finite element method with
quadrature on an unstructured shape regular simplicial mesh.

The main local convergence result is stated as follows.

Theorem 5.10. Suppose that Assumption 5.1 and Assumption 5.8 hold. Assume
the step size bounds τmin and τmax satisfy

(5.4) sup
τmin≤τ≤τmax

{

(1 + L2
gτ

2)− τ

C3
min

{

λ1
h − λ0

h

λ0
h

, 1

}}

≤ Cτ < 1,

where Lg depends on Ω, Vmin, Vmax, α, β, k and u∗. Then {un}∞n=0 converges expo-
nentially to the ground state u∗ in ‖ · ‖X when ‖u0 − u∗‖X is sufficiently small.

For given Lg, C3,
λ1
h−λ0

h

λ0
h

> 0, the condition (5.4) holds for some Cτ < 1 as long

as τmin > 0 and τmax is sufficiently small, since the coefficient of the linear term is
negative.

Lemma 5.11. Suppose that Assumption 5.8 holds. Then

(5.5) Eh(u)−Eh(u
∗) ≥ λ1

h − λ0
h

2
‖u− u∗‖22 −

λ1
h − λ0

h

8
‖u− u∗‖42 , ∀u ( R

N .

Lemma 5.12. Suppose that Assumption 5.8 holds. Then there exists constants
Lγ , Lg > 0 depending on Ω, V, α, β, k such that

(5.6)
∥

∥'R
XEh(u)

∥

∥

X
≤ Lg ‖u− u∗‖X ,

∣

∣

∣

∣

〈u,'XEh(u)〉h
〈GXu,u〉h

− λ0
h

∣

∣

∣

∣

≤ Lγ ‖u− u∗‖X ,
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as long as u ( M and ‖u− u∗‖X is sufficiently small.

The proof of the two lemmas will be given in Appendix D.

Proof of Theorem 5.10. If ‖un − u∗‖X is sufficiently small, then by Lemma 5.12,

∥

∥(un − u∗)− τn'R
XEh(u

n)
∥

∥

2

X

= ‖un − u∗‖2X − 2τn〈un − u∗,'R
XEh(u

n)〉X + τ2n
∥

∥'R
XEh(u

n)
∥

∥

2

X

≤ (1+L2
gτ

2
n) ‖un−u∗‖2X−2τn〈un−u∗,'R

XEh(u
n)〉X

= (1+L2
gτ

2
n) ‖un−u∗‖2X+2τn〈u∗−un,'XEh(u

n)〉X−2τn³
n〈u∗−un,GXun〉X ,

where we used (4.4b) with ³n = 〈un,∇XEh(u
n)〉h

〈GXun,un〉h . Set en = un − u∗, then

Eh(u
∗)−Eh(u

n) =
1

2
〈−∆h(u

n − en),un − en〉h +
1

2
〈V(un − en),un − en〉h

+
β

4
〈(un − en)2, (un − en)2〉h − 1

2
〈−∆hu

n,un〉h

− 1

2
〈Vun,un〉h − β

4
〈(un)2, (un)2〉h

= −〈'XEh(u
n), en〉X +

1

2
〈−∆he

n, en〉h +
1

2
〈Ven, en〉h

+
3β

2
〈(un)2, (en)2〉h − β〈un, (en)3〉h +

β

4
〈(en)2, (en)2〉h

= −〈'XEh(u
n), en〉X +

1

2
〈Au∗en, en〉h

− β

2
〈(u∗)2, (en)2〉h +

3β

2
〈(un)2, (en)2〉h − β〈un, (en)3〉h +

β

4
〈(en)2, (en)2〉h

≥ −〈'XEh(u
n), en〉X +

1

2
〈Au∗en, en〉h

+
β

2
〈(un)2 − (u∗)2, (en)2〉h − β〈un, (en)3〉h +

β

4
〈(en)2, (en)2〉h

= −〈'XEh(u
n), en〉X +

1

2
〈Au∗en, en〉h − β

4
‖(en)2‖22

≥ −〈'XEh(u
n), en〉X +

1

2
〈Au∗en, en〉h − βC2

1

4
‖en‖4X ,

where Lemma 5.5 was used in the last step. As a consequence, we obtain that

〈'XEh(u
n),u∗ − un〉X ≤ Eh(u

∗)−Eh(u
n)− 1

2
〈Au∗en, en〉h +

βC2
1

4
‖en‖4X

≤− λ1
h − λ0

h

2
‖en‖22 +

λ1
h − λ0

h

8
‖en‖42 −

1

2
〈Au∗en, en〉h +

βC2
1

4
‖en‖4X

≤− λ1
h − λ0

h

2
‖en‖22 −

1

2
〈Au∗en, en〉h +

(

λ1
h − λ0

h

8α2
+

βC2
1

4

)

‖en‖4X ,

where we used (5.5) and Lemma 5.5. Note that un ( M ⇒ ‖un‖22 = 1, thus

〈u∗−un,GXun〉X =〈u∗−un,un〉h=
1

2

(

‖u∗‖22 − ‖un‖22 − ‖un − u∗‖22
)

=−1

2
‖en‖22 .
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16 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

Combining all estimations above we obtain that
∥

∥(un − u∗)− τn'R
XEh(u

n)
∥

∥

2

X

≤(1+L2
gτ

2
n) ‖un−u∗‖2X+2τn〈u∗−un,'XEh(u

n)〉X−2τn³
n〈u∗−un,GXun〉X

≤(1 + L2
gτ

2
n) ‖en‖2X + τn(³

n − (λ1
h − λ0

h))‖en‖22 − τn〈Au∗en, en〉h

+ τn

(

λ1
h − λ0

h

4α2
+

βC2
1

2

)

‖en‖4X

≤(1 + L2
gτ

2
n) ‖en‖

2
X + τn(λ

0
h − (λ1

h − λ0
h))‖en‖22 − τn〈Au∗en, en〉h

+ τn
Lγ

α
‖en‖3X + τn

(

λ1
h − λ0

h

4α2
+

βC2
1

2

)

‖en‖4X

≤(1+L2
gτ

2
n) ‖en‖2X+τn max

{

λ0
h−(λ1

h−λ0
h), 0

} 1

λ0
h

〈Au∗en, en〉h−τn〈Au∗en, en〉h

+ τn
Lγ

α
‖en‖3X + τn

(

λ1
h − λ0

h

4α2
+

βC2
1

2

)

‖en‖4X

≤(1 + L2
gτ

2
n) ‖en‖

2
X − τn min

{

λ1
h − λ0

h

λ0
h

, 1

}

〈Au∗en, en〉h + τn
Lγ

α
‖en‖3X

+ τn

(

λ1
h − λ0

h

4α2
+

βC2
1

2

)

‖en‖4X

≤(1 + L2
gτ

2
n) ‖en‖2X − τn

C3
min

{

λ1
h − λ0

h

λ0
h

, 1

}

‖en‖2X

+ τn
Lγ

α
‖en‖3X + τn

(

λ1
h − λ0

h

4α2
+

βC2
1

2

)

‖en‖4X ,

where we have used (5.6) and (5.3). Since we assume that ‖un − u∗‖X is suffi-
ciently small, there are some constants C loc

u , C loc
g > 0 such that ‖un‖X ≤ C loc

u and

‖'R
XEh(u

n)‖X ≤ C loc
g . Recall in the proof of Theorem 5.2, we define

Rn = Rh

(

un − τn'R
XEh(u

n)
)

−
(

un − τn'R
XEh(u

n)
)

,

and have the following bound

‖Rn‖X ≤ τ2n
2α

(C loc
u + C loc

g )
∥

∥'R
XEh(u

n)
∥

∥

2

X
≤ τ2n

2α
(C loc

u + C loc
g )L2

g ‖en‖2X .

With (5.4), we have
∥

∥un+1 − u∗∥
∥

X
≤
∥

∥(un − u∗)− τn'R
XEh(u

n)
∥

∥

X
+ ‖Rn‖X

≤
(

(1 + L2
gτ

2
n) ‖en‖2X − τn

C3
min

{

λ1
h − λ0

h

λ0
h

, 1

}

‖en‖2X + τn
Lγ

α
‖en‖3X

+ τn

(

λ1
h − λ0

h

4α2
+

βC2
1

2

)

‖en‖4X

)1/2

+
τ2n
2α

(C loc
u + C loc

g )L2
g ‖en‖2X

≤
(

Cτ + τn
Lγ

α
‖en‖X + τn

(

λ1
h − λ0

h

4α2
+

βC2
1

2

)

‖en‖2X
)1/2

‖en‖X

+
τ2n
2α

(C loc
u + C loc

g )L2
g ‖en‖2X .
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Since Cτ < 1, if ‖en‖X is sufficiently small, then we get
∥

∥un+1 − u∗∥
∥

X
≤ Cδ ‖en‖X = Cδ ‖un − u∗‖X ,

where Cδ ( (0, 1) is a constant. �

At the end of this section, let us remark that our results for both global and
local convergence are for α > 0 and they do not directly apply to α = 0 although
the algorithm remains valid when setting α = 0. The constants in Theorem 5.2
and Theorem 5.10 depend on the choice of α > 0.

6. Numerical tests

For numerical implementation, we will only consider the Qk spectral element
method, which can be easily implemented with significant acceleration on modern
GPUs [45]. In this section, we implement the H1 gradient flow (4.4) with the
following spatial discretization for the Laplacian operator and energy function:

(1) The Qk spectral element method for any k ≥ 1, see [42, 45].
(2) For k = 1, it is exactly the same as the classical second-order finite differ-

ence.
(3) The fourth-order compact finite difference scheme, see [40, 43] for details.

The definition of the discrete energy is the same as the one for the second-
order finite difference scheme, i.e., the trapezoidal rule is used for approxi-
mating the integral. Only the discrete Laplacian is replaced by the compact
finite difference.

6.1. Accuracy test of discrete Laplacian schemes. We consider an exact so-
lution to the nonlinear eigenvalue problem (1.1) on Ω = [−1, 1]3 with a potential
V (x) = β(1− |u∗(x)|2) where the ground state is

(6.1) u∗(x) = β sin

(

π
x+ 1

2

)

sin

(

π
y + 1

2

)

sin

(

π
z + 1

2

)

and the eigenvalue and energy are λ∗ = dπ2

4 +β, E(u∗) = 1
2λ

∗ − β
4

(

3
4

)d
. We test

the accuracy of various discrete Laplacian and discrete energy schemes, shown in
Table 1. The H1 scheme (4.4) converges within 20 iterations with α = 0.2 and step
size 1.

6.2. Comparison of various gradient flow algorithms in 2D. We consider

the 2D problem with V (x) = sin
(

π
4x
)2

sin
(

π
4 y
)2

on the region Ω = [−16, 16]2. The
performance of different gradient flow algorithms with fixed step size 1 is shown
in Figure 1 (a) and (b). See [33] and references therein for the definition of these
schemes. We emphasize that these algorithms could be faster with different step
sizes, e.g., the L2 flow will be faster with a larger step size, and Au algorithm can
be faster with adaptive step size. Here we just use the same step size to compare
them. Notice that only (−∆h+αI)−1 needs to be applied twice in the modified H1

gradient flow (4.4). In each iteration of L2, Au and A0 schemes, one needs to invert
matrices like −∆h + V (x) or −∆h + V (x) + β|u|2, which is much more expensive
than computing (−∆h+αI)−1 [45]. As shown in Figure 1 (a) and (b), (4.4) with a
proper parameter α > 0 can allow a much larger step size for convergence, compared
to α = 0. Since H1, A0 and Au schemes can all be written as Riemannian gradient
descent methods, in each iteration, one can also numerically compute the best step
size by minimizing the energy function w.r.t. the step size. For simplicity, we use
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18 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

Table 1. Accuracy test of various schemes for a 3D problem (6.1).
For both finite difference schemes, the discrete ground state coin-
cides with the exact ground state at grid points for (6.1), so ground
state errors are meaningless for (6.1) thus not listed.

The second-order finite difference (FD)
FD grid ∆x |λ∗

h − λ∗| order |E∗
h − E∗| order

393 h = 0.05 3.80E-3 1.999 1.90E-3 -
793 h = 0.025 9.51E-4 2.000 4.76E-4 2.000

The fourth-order compact finite difference
393 h = 0.05 1.17E-6 4.001 5.87E-7 -
793 h = 0.025 7.33E-8 4.000 3.66E-8 4.000

High-order finite element methods
DoFs Mesh |λ∗

h − λ∗| order |E∗
h − E∗| order ‖u∗

h − u∗‖∞ order
Q2 spectral element method

93 53 8.13E-4 - 4.05E-4 - 3.67E-4 -
193 103 5.02E-5 4.016 2.51E-5 4.012 2.39E-5 3.94

Q3 spectral element method
113 43 5.20E-5 - 2.87E-6 - 1.48E-5 -
233 83 8.98E-8 5.855 4.49E-8 6.000 5.21E-7 4.83

Q4 spectral element method
113 33 9.00E-7 - 5.22E-8 - 4.99E-6 -
233 63 4.11E-10 11.09 2.05E-10 7.990 8.30E-8 5.91
473 123 2.26E-12 7.506 1.23E-12 7.384 1.44E-9 5.85

Q5 spectral element method
93 23 1.49E-6 - 3.87E-5 - 1.14E-6 -
193 43 6.84E-11 14.41 6.50E-12 22.51 7.87E-9 7.17

Q6 spectral element method
93 23 8.08E-9 - 7.31E-7 - 4.06E-8 -

Q7 spectral element method
133 23 1.89E-10 - 9.99E-9 - 1.61E-9 -

Q8 spectral element method
153 23 3.76E-13 - 1.03E-10 - 5.76E-11 -

the fminbnd function in MATLAB to solve such a one-dimensional minimization
problem, which involves evaluating the energy function quite a few times. In Figure
1 (c) and (d), we show the performance of H1, A0, and Au schemes using such an
optimal step size. We observe that iteration numbers in all the Riemannian gradient
descent schemes with the optimal step size to reach convergence are almost the
same. On the other hand, for CPU time of solving this particular problem, H1

scheme with α = 0.15 and the optimal step size is obviously slower than H1 scheme
with α = 0.15 and a constant step size 1, due to the extra computational cost of
computing the optimal step size, which would be more expensive for 3D problems.

6.3. Comparison with the Backward Forward Euler method. The modified
H1 flow has the advantage of inverting only constant coefficient Laplacian, which
can be easily accelerated on modern GPUs as shown recently in [45]. On the other
hand, in the literature, there are similar schemes, e.g., the Backward Forward Euler
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(a) Fixed step size 1.
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(b) Fixed step size 1.
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(c) Optimal step size is used for gradient flows.
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(d) Optimal step size is used for gradient flows.

Figure 1. A 2D example with β = 10 of second-order finite dif-
ference on a 800× 800 grid. The modified H1 norm has parameter
α = 0.15 in (4.4). The H1 seminorm scheme is (4.4) with α = 0.
The CPU time for the H1 scheme with α = 0.15 and the fixed
step size 1 to converge is 3 seconds, and the CPU time for the H1

scheme with α = 0.15 or α = 0 with optimal step size to converge
is more than 6 seconds. For L2, Au, and A0 schemes (see [33] for
definition), preconditioned conjugate gradient (PCG) is used for
inverting a matrix like −∆h+V (x) and (−∆h)

−1 is used as a pre-
conditioner. The PCG converges within 30 iterations for all linear
systems in this test.

method with a stabilization parameter in [7] is given by
(6.2)

ũ =

(

−∆h + αI+
1

∆t
I

)−1(

α+
1

∆t
− V− β diag(un)2

)

un, un+1 =
ũ

‖ũ‖2
.

The modified H1 flow is very different from (6.2). For instance, (4.4) is a Rie-
mannian gradient descent method. In particular, only one inversion of Laplacian is
needed in each step of (6.2), but there are two inversions of Laplacian in (4.4). The
optimal parameter α for (6.2) was given in [7], yet it is unclear what the optimal
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20 Z. CHEN, J. LU, Y. LU, AND X. ZHANG

α should be for the modified H1 flow. In numerical tests, the modified H1 flow
performs better when using tuned α, see Figure 2.
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Backward Forward Euler with stabilization
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Figure 2. A 2D example with β = 5 of second-order discrete
Laplacian on a 300 × 300 grid. The modified H1 norm has pa-
rameter α = 0.15 and step size 1 in (4.3). The Backward Forward
Euler with stabilization (6.2) uses the optimal parameters α in [7]
and the largest stable step size 0.1, which is also the most efficient
step size. The initial condition is the ground state for β = 0.

6.4. Tuning parameters. We consider Ω = [−16, 16]3 with a potential:

(6.3) V (x) = sin
(π

4
x
)2

sin
(π

4
y
)2

sin
(π

4
z
)2

.

For (6.3) and β = 10, the modified H1 scheme (4.4) with α = 0.15 and τ = 1
has the same convergence performance for any grid size or any discrete Laplacian,
unless it is an extremely coarse grid, as shown in Figure 3 (a). Thus we can easily
find the best step size for a given β = 4000 by tuning it on a 1003 grid as shown in
Figure 3 (b).

6.5. 3D implementation on GPUs. As shown recently in [45], any discrete
Laplacian on a Cartesian grid can be easily accelerated on modern GPUs with
a simple implementation in MATLAB 2023. In particular, to invert a discrete
Laplacian on a grid size 10003, it only takes 0.8 seconds on one Nividia A100 GPU
card. And such a result holds for Qk spectral element method, see [45] for details.

We consider solving the 3D problem with potential (6.3). See Figure 4 for visu-
alization of the potential and its ground state for β = 10 and β = 4000. We define
the online computation time as the computational time without counting the offline
computational time such as preparing discrete Laplacian matrices and loading data
to the GPU. For the potential 4 with β = 10, the modified H1 flow scheme (4.4)
with α = 0.15 and τ = 1, we stop the iteration when the relative residue stops
decreasing, where the relative residue is defined as

residue =

∥

∥

∥

∥

u− −∆hu+ Vu+ β|u|3
‖ −∆hu+ Vu+ β|u|3‖

∥

∥

∥

∥

/‖u‖.

The results of computing energy and the eigenvalue are listed in Table 2, in which
GPU time is the online computational time. In particular, the online computation
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(a) Step size is 1, α = 0.15, β = 10. (b) Fixed β = 4000, α = 0.15, second-order
finite difference on a 1003 grid.

Figure 3. The performance of the modified H1 scheme (4.4) solv-
ing 3D Gross-Pitaevskii nonlinear eigenvalue problem with poten-
tial (6.3). The left shows that the performance is independent of
discretization and grid size. Thus parameters can be tuned on a
coarse grid as shown in the right.

time is 214 seconds on the Nvidia A100 for 100 iterations of (4.4) on a 10003 grid.
For β = 4000, we use step size 0.7 and α = 0.15, we stop the iteration when
the relative residue stops decreasing. The performance is listed in Table 3. In
both Tables 2 and 3, the reference solutions are generated by Q10 spectral element

method on a 1003 mesh, and the ground state errors
‖u∗−uref‖�∞

‖uref‖∞

are measured only

at the nodes of matching with nodes of Q10 elements a 1003 mesh. For instance,

for Q5 element on a 203 mesh,
‖u∗−uref‖�∞

‖uref‖∞

is measured only at the cell vertices.

(a) The potential function. (b) β = 10 (c) β = 4000

Figure 4. The potential function (6.3) and its ground state

6.6. A 3D example with a combined harmonic and optical lattice poten-

tial. We consider the 3D example in [7] with the following combined harmonic and
optical lattice potential on the domain [−8, 8]3:

V (x, y, z) = x2 + y2 + z2 + 100
(

sin2
πx

4
+ sin2

πy

4
+ sin2

πz

4

)

.
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Table 2. The 3D problem as shown in Figure 4 with β = 10. The
GPU (Nvidia A100 80G) online computation time of the scheme
(4.4) with α = 0.15 and τ = 1. The iteration stops when the
relative residue stops decreasing. The reference eigenvalue λ∗

ref =
0.143834048046, energy Eref = 0.071660785256 and ground state
uref are generated by Q10 SEM on a 1003 mesh.

The second-order finite difference

DoFs Mesh size
|λ∗

h−λ∗

ref |
λ∗

ref

|Eh(u
∗)−Eref |
Eref

‖u∗−uref‖�∞

‖uref‖∞

Iteration # GPU time

1993 h = 32
200 3.70E-4 3.72E-4 8.04E-4 86 0.88 second

9993 h = 32
1000 1.48E-5 1.48E-5 3.21E-5 76 165 seconds

The fourth-order compact finite difference
1993 h = 32

200 1.17E-6 1.18E-6 2.00E-6 84 0.92 second
9993 h = 32

1000 1.86E-9 1.87E-9 3.21E-9 73 161 seconds
Q4 spectral element method

DoFs FEM Mesh
|λ∗

h−λ∗

ref |
λ∗

ref

|Eh(u
∗)−Eref |
Eref

‖u∗−uref‖�∞

‖uref‖∞

Iteration # GPU time

1993 503 8.57E-10 8.62E-10 2.73E-7 83 0.88 second
3993 1003 3.60E-12 3.62E-12 4.86E-9 78 6.10 seconds

Q5 spectral element method
993 203 3.53E-9 3.49E-9 6.06E-7 88 0.54 second

Q20 spectral element method
993 53 5.31E-12 5.23E-12 1.29E-8 83 0.54 second
1993 103 8.79E-12 8.85E-12 6.42E-12 75 0.82 second

Table 3. The 3D problem as shown in Figure 4 with β = 4000.
The GPU (Nvidia A100 80G) online computation time of the
scheme (4.4) with α = 0.15 and τ = 0.7. The iteration stops
when the relative residue stops decreasing. The reference eigen-
value λ∗

ref = 0.34919956116, energy Eref = 0.127936543199 and

ground state uref are generated by Q10 SEM on a 1003 mesh.

The second-order finite difference

DoFs Mesh size
|λ∗

h−λ∗

ref |
λ∗

ref

|Eh(u
∗)−Eref |
Eref

‖u∗−uref‖�∞

‖uref‖∞

Iteration # GPU time

9993 h = 32
1000 5.67E-6 7.82E-6 2.96E-5 48 105 seconds

The fourth-order compact finite difference
9993 h = 32

1000 5.67E-10 8.72E-10 2.77E-9 48 106 seconds
Q4 spectral element method

DoFs FEM Mesh
|λ∗

h−λ∗

ref |
λ∗

ref

|Eh(u
∗)−Eref |
Eref

‖u∗−uref‖�∞

‖uref‖∞

Iteration # GPU time

1993 503 2.64E-10 4.06E-10 2.81E-7 54 0.63 second
3993 1003 1.79E-12 2.33E-12 4.45E-9 50 3.88 seconds

Q5 spectral element method
993 203 7.49E-8 6.44E-8 2.18E-7 57 0.42 second

Q20 spectral element method
993 53 3.43E-12 4.07E-12 8.32E-9 54 0.37 second
1993 103 3.58E-12 4.96E-12 3.22E-12 50 0.57 second
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For β = 1600, we find that α = 10 and ∆t = 0.1 are efficient parameters.
The modified H1 flow with Q40 spectral element method on a 5 × 5 × 5 finite
element mesh converges with residue reaching 6.3×10−13 after 665 iterations using
a simple and crude initial guess u0 ≡ 1. The online computation time is 6 seconds
on Nvidia A100. The numerical ground state energy and eigenvalue are E(u∗

h) =
33.80227900547 and λ∗

h = 80.89511440602. The results are consistent with findings
in [7]. Due to the different definitions of energy functions in this paper and [7],
β = 1600, E(u∗

h) = 33.80227900547 and 1
2λ

∗
h = 40.44755720301 in this paper,

correspond to the case for β = 800, Eg = 33.8023, and μg = 40.4476 in [7]. See
Figure 5.

Figure 5. A 3D example for a combined harmonic and optical
lattice potential. Left is the isosurface of the ground state for iso-
value 0.002, and right is the slice view of the ground state. For
β = 1600, using Q40 spectral element method on a 53 mesh, (4.4)
with α = 10 and τ = 0.1 and u0 ≡ 1 converges after 665 itera-
tions. The online computation time is 6 seconds on Nvidia A100.
E(u∗

h) = 33.80227900547 and λ∗
h = 80.89511440602, consistent

with the results in [7].

7. Concluding remarks

We have considered the H1 Sobolev gradient flow for finding the ground state
of the Gross-Pitaevskii eigenvalue problem, under a modified H1-norm. Global
convergence to a critical point and the local exponential convergence rate have
been established. Numerical experiments suggest that the scheme with the spectral
element method can be very efficient when using tuned parameters, which can be
easily and efficiently implemented on modern GPUs.

Appendix A. Explicit finite difference formulation and discrete

energy

We give explicit equivalent finite difference formulation of the Qk spectral ele-
ment scheme (2.7), especially the Q1 case, which is equivalent to the second-order
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finite difference. We also give the explicit expressions of the P 1 finite element
method on an unstructured mesh.

A.1. The second-order finite difference scheme. For a one-dimensional uni-
form grid −L = x0 < x1 < · · · < xn < xn+1 = L with grid spacing h = 2L

n+1 ,

for any vector uh ( V h
0 with P 1 polynomial basis, it can be represented by u =

[

u1 u2 · · · un

]�
with u0 = un+1 = 0. The discrete inner product is given by

〈uh, vh〉 =
1

2
hu0v0 +

n
∑

i=1

uivih+
1

2
hunvn = hu�v.

Define M = hIn×n and K = M−1S where S = 1
h

»

¼

¼

¼

¼

¼

½

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

¾

¿

¿

¿

¿

¿

À

n×n

.

Then the matrices in (2.6) and (2.7) for 1D are M = M , S = S, and −∆h = K.
For a two-dimensional problem on a uniform grid for the domain [−L,L]2, assume

there are n × n interior grid points. Let U , V and F denote 2D arrays of size
n × n consisting of point values of uh(x1, x2), V (x1, x2), f(x1, x2) at grid points.
Let vec(U) be the vector generated by arranging U column by column. The scheme
(2.6) becomes

[S ⊗M +M ⊗ S + diag(vec(V ))]vec(U) + βM ⊗Mvec(U3) = λhM ⊗Mvec(U),

where U3 denotes the entrywise cubic power. In 2D, (2.7) can be written as

[K ⊗ I + I ⊗K + diag(vec(V ))]vec(U) + βvec(U3) = λhvec(U).

With the property (B� ⊗A)vec(X) = vec(AXB), it can be equivalently expressed
as

KU + UK� + V ◦ U + βU3 = λhU,

where ◦ represents Hadamard product, i.e., entrywise product. With similar nota-
tion as in [45], the three-dimensional case of (2.7) can be expressed as

[K ⊗ I ⊗ I + I ⊗K ⊗ I + I ⊗ I ⊗K +diag(vec(V ))]vec(U) + βvec(U3) = λhvec(U).

Thus, the matrix −∆h is given explicitly as follows:

(A.1) −∆h =

⎧

⎪

«

⎪

¬

K, d = 1,

K ⊗ I + I ⊗K, d = 2,

K ⊗ I ⊗ I + I ⊗K ⊗ I + I ⊗ I ⊗K, d = 3.

Remark A.1. The Q1 scheme with quadrature gives exactly the same second-order
centered difference for the interior grid. For Neumann boundary condition, the Q1

scheme with quadrature gives a slightly different scheme from a conventional finite
difference scheme, see Remark 3.3 in [34]. When deriving finite difference from
the finite element method, convergence is trivially implied by finite element error
estimates.
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A.2. The P 1 finite element scheme on a simplicial mesh. Let Ωh ⊂ Rd be a
simplicial mesh satisfying (3.2). Let xi, i = 1, · · · , N denote all interior quadrature
points. For any uh, vh ( V h

0 , since 'uh and 'vh are piecewise constants, the
quadrature is exact. For an edge E in a simplex T , let xi and xj be its ends and
´Euh denote uh(xi)− uh(xj) = ui − uj . By formulae in [52, Section 2],

〈'uh,'vh〉 =
∫

Ωh

'uh · 'vhdx =
∑

T∈Ωh

∑

E⊂T

1

d(d− 1)
|κT

E | cot θTE´Euh´Evh,

which can also be written as

(A.2) 〈'uh,'vh〉 =
∑

E

∑

T⊃E

1

d(d− 1)
|κT

E | cot θTE(ui − uj)(vi − vj),

xi,xj are two ends of the edge E.

By notation in Section 2, we have uTSv = 〈'uh,'vh〉, which implies that the
stiffness matrix can be explicitly written as follows. The off-diagonal entries of S
are given as

Sij=−
∑

T⊃E

1

d(d− 1)
|κT

E | cot θTE , i �= j and E is the edge connecting xi and xj .

And the diagonal entries of S can be obtained by the fact that each row sum of S
should be zero.

xj

xi

θ1ij

θ2ij

In a triangular mesh in two dimensions, for the edge
connecting two interior vertices xi,xj , there are two an-
gles θ1ij and θ2ij as shown in the figure, thus the stiffness
matrix can be written as

Sij =

{

− cot θ1
ij+cot θ2

ij

2 , j �= i,

−∑j �=i Sij j = i.

The necessary and sufficient condition for cot θ1ij +

cot θ2ij ≥ 0 is θ1ij+θ2ij ≤ π. For S to be an M-matrix, it suffices to have θ1ij+θ2ij ≤ π,
which can be achieved in a Delaunay triangulation.

A.3. The discrete Laplacian from Qk scheme. The full details can be found in
[45]. Let S be the stiffness matrix and M be the mass matrix Qk spectral element
method in one dimension. In two dimensions (2.6) can be written as

[S ⊗M +M ⊗ S + (M ⊗M) diag(vec(V ))]vec(U) = λh(M ⊗M)vec(U).

Define H = M−1S, the scheme (2.7) in two dimensions can be written as

[H ⊗ I + I ⊗H + diag(vec(V ))]vec(U) + βvec(U3) = λhvec(U),

or equivalently HU + UH� + V ◦ U + βU3 = λhU , and in three dimensions it is

[H ⊗ I ⊗ I + I ⊗H ⊗ I + I ⊗ I ⊗H +diag(vec(V ))]vec(U) + βvec(U3) = λhvec(U).

It is possible to derive explicit entries of matrices S,M,H, see [42, 49] for more
details.
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Remark A.2. For k ≥ 2, the discrete Laplacian above gives a (k + 2)-th order
finite difference scheme in discrete l2-norm for solving elliptic equations [42] and
for parabolic, wave and Schrödinger equations [39]. For solving a linear eigenvalue
problem, e.g., β = 0 in (2.7), standard a priori error estimate for eigenvalues is that
Qk spectral element method gives 2k-th order of accuracy if assuming sufficient
regularity.

A.4. Discrete energy of the second-order finite difference. The formula
(A.2) can be written out more explicitly when the vertices in the simplicial mesh
form a Cartesian grid, i.e., when the P 1 finite element method becomes the second-
order finite difference method. For the one-dimensional case, recall that u0 =
un+1 = 0 for uh ( V h

0 , we have

∀uh, vh ( V h
0 , 〈'uh,'vh〉 = h

n+1
∑

i=1

ui − ui−1

h
· vi − vi−1

h
.

Define the matrix D = 1
h

»

¼

¼

¼

¼

¼

½

1
−1 1

. . .
. . .

−1 1
−1

¾

¿

¿

¿

¿

¿

À

(n+1)×n

. Then it satisfies D�D =

K. In one dimension 〈uh, uh〉 = u�
Mv = hu�v. Thus we have

〈'uh,'vh〉 = 〈Du, Dv〉h = 〈D�Du,v〉h = 〈Ku,v〉h = 〈−∆hu,v〉h.
In two dimensions, by plugging in the quadrature, for any uh, vh ( V h

0 , we have
(A.3)

〈'uh,'vh〉 = h2
n+1
∑

i,j=1

ui,j − ui−1,j

h
· vi,j − vi−1,j

h
+

ui,j − ui,j−1

h
· vi,j − vi,j−1

h
.

With our notation for the two-dimensional problem, let u = vec(U), then we have

〈'uh,'vh〉=〈DU,DV 〉h + 〈UD, V D〉h=〈D�DU, V 〉h + 〈UDD�, V 〉h,
〈'uh,'vh〉 =〈KU + UK, V 〉h=〈(K ⊗ I + I ⊗K)vec(U), vec(V )〉h=〈−∆hu,v〉h.
The three-dimensional case of the discrete gradient can be similarly written out.

Appendix B. M-matrix and Perron-Frobenius theorem

B.1. M-matrix. Nonsingular M-matrices are monotone. There are many equiv-
alent definitions or characterizations of M-matrices, see [47]. The following is a
convenient sufficient but not necessary characterization of nonsingular M-matrices
[41]:

Theorem B.1. For a real square matrix A with positive diagonal entries and non-
positive off-diagonal entries, A is a nonsingular M-matrix if all the row sums of A
are nonnegative and at least one row sum is positive.

B.2. Irreducible nonnegative matrices. A matrix A ( C
n×n is called reducible

if there exists a permutation matrix P such that PAP� is block upper triangular.
A matrix is irreducible if and only the graph it represents is strongly connected.

Lemma B.2. For a nonsingluar irreducible matrix A, A−1 is also irreducible.
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The following results can be found in [51]:

Theorem B.3 (Perron-Frobenius). If A ≥ 0 is irreducible, then:

(1) The spectral radius ρ(A) is a simple eigenvalue of A with an eigenvector
x > 0.

(2) ρ(A) increases when any entry of A increases.

Theorem B.4. The positive eigenvector (Perron-Frobenius eigenvector) for an
irreducible nonnegative matrix is unique up to scalar multiplication.

Proof. Let x > 0 be the left Perron-Frobenius eigenvector then x�A = ρ(A)x�.
If there exists another eigenvector y > 0 for an eigenvalue λ, then Ay = λy =⇒
x�Ay = λx�y. Since x�A = ρ(A)x� =⇒ x�Ay = ρ(A)x�y, we get (ρ(A) −
λ)x�y = 0 and x�y > 0 =⇒ ρ(A) = λ. Thus there is only one eigenvalue, i.e.,
ρ(A), with positive eigenvectors, and ρ(A) is a simple eigenvalue by Theorem B.3.

�

Appendix C. Deferred proofs for Section 5.1

C.1. Norm equivalence and standard regularity results.

Lemma C.1. There are positive constants D1, D2, D3 independent of mesh size h,
such that the following holds for any vh ( V h

0 :

(C.1)
1

Dp
|〈vph, v

p
h〉|

1
2p ≤ ‖vh‖L2p(Ω) ≤ Dp|〈vph, v

p
h〉|

1
2p , p = 1, 2, 3.

Proof. We first prove it for Qk spectral element method. Consider a cubic cell
e = [xe

1 − h
2 , x

e
1 +

h
2 ]× · · · × [xe

d − h
2 , x

e
d +

h
2 ] ( Ωh and a reference cell K̂ = [−1, 1]3.

For vh(x) defined on e, consider v̂h(t) = vh
(

t1
h
2 + xe

1, · · · , td h
2 + xe

d

)

, which is

defined on K̂. Let 〈v̂h, v̂h〉K̂ denote the approximation to the integral
∫

K̂
|v̂h(t)|2dt

by (k+1)-point Gauss Lobatto quadrature for each variable. Since both
√

〈v̂h, v̂h〉K̂
and

√

∫

K̂
|v̂h(t)|2dt are norms of Qk(K̂), by the equivalence of any two norms on

the finite-dimensional space Qk(K̂), we have

∀v̂h ( Qk(K̂),
1

D1

√

〈v̂h, v̂h〉K̂ ≤
√

∫

K̂

|v̂h(t)|2dt ≤ D1

√

〈v̂h, v̂h〉K̂ .

By mapping back to e, and summing over e, we get (C.1) for p = 1.
With the same notation and arguments above, for a Qk polynomial vh with

(k + 1)-point Gauss-Lobatto quadrature, let ŵi and v̂i be quadrature weights

and quadrature node values on the reference cell K̂, then we have |〈v̂2h, v̂2h〉K̂ | 14 =
∣

∣

∣

∑(k+1)d

i=1 ŵiv̂
4
i

∣

∣

∣

1
4

, which can be easily verified to be a norm of R(k+1)d thus a norm

of Qk(K̂). By the equivalence of any two norms on Qk(K̂), we have

∀v̂h ( Qk(K̂),
1

D2

∣

∣〈v̂2h, v̂2h〉K̂
∣

∣

1
4 ≤ ‖v̂h‖L4(K̂) ≤ D2

∣

∣〈v̂2h, v̂2h〉K̂
∣

∣

1
4 .

By mapping back to e, and summing over e, we get (C.1) for p = 2. The proof of
p = 3 is almost identical to the case p = 3. Finally, the same proof also applies to
P k finite element method on a simplicial mesh with quadrature. �
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Second, we want to show the X-norm is equivalent to H1-norm for piecewise
polynomials in V h

0 . By Lemma 5.1 in [42], we have the following standard V h-
ellipticity result for a domain on which elliptic regularity holds, e.g., Ω = [−L,L]d.

Lemma C.2. Let ‖vh‖X =
√

〈'vh,'vh〉+ α〈vh, vh〉 = ‖v‖X . Let Ω be a domain
with elliptic regularity. There is a constant D4 > 0 independent of mesh size h s.t.

(C.2) ∀vh ( V h
0 ,

1

D4
‖vh‖X ≤ ‖vh‖H1(Ω) ≤ D4‖vh‖X .

C.2. Proofs of Lemma 5.4 and Lemma 5.5.

Proof of Lemma 5.4. Since 〈u,v〉h = 0, we have that ‖u + v‖22 = ‖u‖22 + ‖v‖22 =
1 + ‖v‖22. This implies that

Rh(u+ v)− (u+ v) =

(

1

‖u+ v‖2
− 1

)

(u+ v) =
(

(

1 + ‖v‖22
)− 1

2 − 1
)

(u+ v).

Then (5.1) follows from the elementary inequality 1 − x
2 ≤ (1 + x)−1/2 ≤ 1, x ≥

0. �

Proof of Lemma 5.5. (i) ‖u‖2X = u�(S+ αM)u ≥ αu�Mu = α ‖u‖22.
(ii) By Cauchy-Schwartz inequality for the inner product 〈·, ·〉h and (i), we get

∥

∥(−∆h + αI)−1u
∥

∥

2

X
=
〈

(−∆h + αI)−1u,u
〉

h
≤
∥

∥(−∆h + αI)−1u
∥

∥

2
‖u‖2 ≤ 1√

α

∥

∥(−∆h + αI)−1u
∥

∥

X
‖u‖2.

(iii) Since Π(u2) coincides with u2
h at the quadrature nodes, by (C.1) for p = 2,

‖u2‖2 =
√

〈u2,u2〉h =
√

〈Π(u2),Π(u2)〉 =
√

〈u2
h, u

2
h〉 ≤ D2

2‖uh‖2L4(Ω).

With the Sobolev embedding H1(Ω) ⊂ L4(Ω) for dimension d ≤ 3, and (C.2), we
get

‖uh‖2L4(Ω) ≤ D2‖uh‖2H1(Ω) ≤ D2D2
4‖u‖2X ,

where D > 0 is the constant associated with the embedding H1(Ω) ⊂ L4(Ω).
(iv) The proof is almost identical to that of (iii), which uses (C.1) for p = 3,

(C.2), and the Sobolev embedding H1(Ω) ⊂ L6(Ω) for dimension d = 1, 2, 3. �

Appendix D. Deferred proofs for Section 5.2

Proof of Lemma 5.11. Since Au∗ is self-adjoint w.r.t. 〈·, ·〉h, it has orthonormal
eigenvectors. Let u‖ = 〈u,u∗〉hu∗ be the orthogonal projection of u onto the

subspace spanned by u∗. Let u⊥ = u−u‖, then 〈u‖,u⊥〉h = 0 and ‖u‖‖22+‖u⊥‖22 =
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1. Thus,

Eh(u)−Eh(u
∗) =

1

2
〈−∆hu,u〉h +

1

2
〈Vu,u〉h +

β

4
〈u2,u2〉h

− 1

2
〈−∆hu

∗,u∗〉h − 1

2
〈Vu∗,u∗〉h − β

4
〈(u∗)2, (u∗)2〉h

≥ 1

2
〈−∆hu,u〉h +

1

2
〈Vu,u〉h +

β

2
〈(u∗)2,u2〉h

− 1

2
〈−∆hu

∗,u∗〉h − 1

2
〈Vu∗,u∗〉h − β

2
〈(u∗)2, (u∗)2〉h

=
1

2
〈Au∗u,u〉h − 1

2
〈Au∗u∗,u∗〉h =

1

2
〈Au∗u‖,u‖〉h +

1

2
〈Au∗u⊥,u⊥〉h − λ0

h

2

≥ λ0
h

2

∥

∥u‖
∥

∥

2

2
+

λ1
h

2
‖u⊥‖22 −

λ0

2
=

λ1
h − λ0

h

2
‖u⊥‖22 .

With the following fact, (5.5) follows from the estimate above:

‖u⊥‖22 = 1−
∥

∥u‖
∥

∥

2

2
= 1− |〈u,u∗〉h|2 = 1− 1

4

(

2− ‖u− u∗‖22
)2

= ‖u− u∗‖22 −
1

4
‖u− u∗‖42 .

�

Lemma D.1. There is some constant L1 > 0 independent of the mesh size h s.t.

∀u,v ( R
N ,

∥

∥(−∆h + αI)−1(u3 − v3)
∥

∥

X
≤ L1 ‖u− v‖X

(

‖u‖4X + ‖v‖4X
)

.

Proof. Using Lemma 5.5 (ii) and (iv), we can compute that

∥

∥(−∆h + αI)−1(u3 − v
3)
∥

∥

2

X
≤

1

α

∥

∥

u
3 − v

3
∥

∥

2

2
=

1

α

∑

i

wi(u
3

i − v
3

i )
2

=
1

α

∑

i

wi(ui − vi)
2(u2

i + uivi + v
2

i )
2

≤
8

α

∑

i

wi(ui − vi)
2
u
4

i +
8

α

∑

i

wi(ui − vi)
2
v
4

i

≤
8

α

(

∑

i

wi(ui−vi)
6

)

1/3 (
∑

i

wiu
6

i

)

2/3

+
8

α

(

∑

i

wi(ui−vi)
6

)

1/3 (
∑

i

wiv
6

i

)

2/3

=
8

α

∥

∥(u− v)3
∥

∥

2/3

2

(

∥

∥

u
3
∥

∥

4/3

2
+

∥

∥

v
3
∥

∥

4/3

2

)

≤
8C2

2

α
‖u− v‖2X

(

‖u‖4X + ‖v‖4X
)

.

�

Lemma D.2. For any u,v ( R
N with ‖u‖X ≤ 2‖u∗‖X and ‖v‖X ≤ 2‖u∗‖X , it

holds for some constant L2 > 0 depending on ‖u∗‖X and independent of the mesh
size h that ‖'XEh(u)−'XEh(v)‖X ≤ L2 ‖u− v‖X .
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Proof. Recall that 'XEh(u) = u + (−∆h + αI)−1(V − αI + βdiag(u)2)u. Using
Lemma D.1 and Lemma 5.5, we can conclude that

‖'XEh(u)−'XEh(v)‖X
≤ ‖u−v‖X +

∥

∥(−∆h + αI)−1(V−αI)(u−v)
∥

∥

X
+ β

∥

∥(−∆h + αI)−1(u3−v3)
∥

∥

X

≤ ‖u−v‖X +
Vα,max√

α
‖u−v‖2 + βL1 ‖u−v‖X

(

‖u‖4X + ‖v‖4X
)

≤
(

1 +
Vα,max

α
+ 32βL1‖u∗‖4X

)

‖u−v‖X .

�

Proof of Lemma 5.12. Recall 'R
XEh(u) = 'XEh(u)− 〈u,∇XEh(u)〉h

〈GXu,u〉h GXu. Set

³ =
〈u,'XEh(u)〉h

〈GXu,u〉h
and ³∗ =

〈u∗,'XEh(u
∗)〉h

〈GXu∗,u∗〉h
=

〈u∗,GXAu∗u∗〉h
〈GXu∗,u∗〉h

= λ0
h.

Suppose that ‖u− u∗‖X ≤ ‖u∗‖X , then ‖u‖X ≤ 2 ‖u∗‖X . With Lemma 5.5 and
Lemma D.2, it holds that
∥

∥'R
XEh(u)

∥

∥

X

=
∥

∥'R
XEh(u)−'R

XEh(u
∗)
∥

∥

X

= ‖'XEh(u)− ³GXu−'XEh(u
∗) + ³∗

GXu∗‖X
≤ ‖'XEh(u)−'XEh(u

∗)‖X + |³ − ³∗| · ‖GXu‖X + |³∗| · ‖GXu−GXu∗‖X

≤ L2 ‖u− u∗‖X +
‖u∗‖X

α
|³ − ³∗|+ |³∗|

α
‖u− u∗‖X .

Thus it suffices to estimate |³ − ³∗|. Set

A = 〈u,'XEh(u)〉h, A∗ = 〈u∗,'XEh(u
∗)〉h,

B = 〈GXu,u〉h, B∗ = 〈GXu∗,u∗〉h.

By Lemma 5.5, Lemma D.2, and ‖u‖2 = ‖u∗‖2 = 1, we have

|A−A∗| ≤ ‖u− u∗‖2 ‖'XEh(u
∗)‖2 + ‖u‖2 ‖'XEh(u)−'XEh(u

∗)‖2

≤‖'XEh(u
∗)‖X

α
‖u− u∗‖X +

L2√
α
‖u‖X ‖u− u∗‖X ,

|B −B∗| ≤ ‖u− u∗‖2 ‖GXu‖2 + ‖u∗‖2 ‖GXu−GXu∗‖2 ≤ 2

α3/2
‖u− u∗‖X ,

|³ − ³∗| =
∣

∣

∣

∣

A

B
− A∗

B∗

∣

∣

∣

∣

≤ |A−A∗| · |B∗|+ |A∗| · |B −B∗|
|BB∗| ≤ Lγ ‖u− u∗‖X ,

for small ‖u− u∗‖X and some constant Lγ > 0, which completes the proof. �

Appendix E. Positive eigengap independent of the mesh size

In this section, we prove that Assumption 5.8 holds with a positive eigengap
independent of the mesh size for the P 1 finite element method with quadrature on
an unstructured simplicial mesh with shape regularity.
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Definition E.1 (Shape regular meshes). A simplicial mesh with hK denoting the
size of each simplex K is shape regular if there exists some constant σ > 0 inde-
pendent of the mesh size h = supK hK , such that hK

ρK
≤ σ holds for all K, where

ρK is the diameter of the largest sphere contained in K.

E.1. Technical lemmas.

Lemma E.2. Suppose that V ( C1(Ω̄). There exists constants E1, E2, E3 > 0
independent of the mesh size, so that for any h > 0 and u ( RN , the following
holds for P 1 finite element method with quadrature on an unstructured simplicial
mesh with shape regularity:

(i) 0 ≤ ‖u‖22 − ‖Πu‖2L2(Ω) ≤ E1h〈−∆hu,u〉h.
(ii)

∣

∣〈u,Vu〉h −
∫

Ω
V |Πu|2

∣

∣ ≤ E2h〈−∆hu,u〉h + E3h‖u‖22.
(iii) 〈−∆hu,u〉h = |Πu|2

H1
0 (Ω)

.

(iv) 〈u2,u2〉h ≥ ‖Πu‖4L4(Ω).

Proof. It suffices to prove the results on each simplex K of the mesh since all of
them are additive. Consider a single simplex K. For convenience, by abusing
notation, we let all vertices of K be indexed as {xi, i = 1, · · · , d + 1} and the
P 1 interpolation polynomial (Πu)(x) = a + b�x on K satisfying (Πu)(xi) = ui.

Define the barycentric coordinates as
d+1
∑

i=1

ti = 1, ti ≥ 0 for the simplex K, i.e.,

x =
d+1
∑

i=1

tixi, ∀x ( K. It is straightforward to verify that the polynomial [Πu(x)]2

is a convex function of x, thus we have Jensen’s inequality

(Πu)2

(

d+1
∑

i=1

tixi

)

≤
d+1
∑

i=1

ti(Πu)2(xi).

Consider a barycentric simplex ∆I = {(t1, · · · , td+1) ( [0, 1]d+1 :
∑

i∈I ti = 1} ⊂
R

d+1. By regarding ∆I as an embedded manifold in R
d+1, its volume |∆I | can be

written as an integral of constant 1:

|∆I | =
∫

∆I

1dV =

∫

∆I

(

d+1
∑

i=1

ti

)

dV = (d+ 1)

∫

∆I

tjdV, for any fixed j,

where dV is the volume form of the manifold and in the last step we have used the
symmetry of integrating each tj on the simplex ∆I . Since 1

d+1 = 1
|∆I |

∫

∆I
(tj) dV,

∀j, we have

|K|
d+ 1

d+1
∑

i=1

u2
i =

|K|
d+ 1

d+1
∑

i=1

(Πu)2(xi) =
|K|
|∆I |

∫

∆I

d+1
∑

i=1

ti(Πu)2(xi)dV

≥ |K|
|∆I |

∫

∆I

(Πu)2

(

d+1
∑

i=1

tixi

)

dV =

∫

K

(Πu)2(x)dx.

(E.1)

Summing the inequality above over all simplexes in the mesh, the first inequality

in (i) is proven. Note that the quadrature |K|
d+1

∑d+1
i=1 f(xi) =

|K|
d+1

∑

xi∈K f(xi) is

equal to
∫

K
f(x)dx for any linear function f(x). Let E1 = 2 sup

x∈Ω ‖x‖, then we
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have

|K|
d+ 1

∑

xi∈K

(a+ b�xi)
2 −
∫

K

(a+ b�x)2dx =
|K|
d+ 1

∑

xi∈K

(b�xi)
2 −
∫

K

(b�x)2dx

≤ |K| sup
x,x′∈K

(

(b�x)2 − (b�x′)2
)

= |K| sup
x,x′∈K

(

b�x− b�x′) (b�x+ b�x′)

≤ E1h|K|‖b‖2.

(E.2)

With notation in (2.11), the discrete integration by parts (2.10) can be also be
written as

(E.3) 〈−∆hu,u〉h = 〈'uh,'uh〉 = 〈'Πu(x),'Πu(x)〉.
Notice that 'Πu(x) = b is a constant over K, thus after summing over K, the
term |K|‖b‖2 becomes 〈'Πu(x),'Πu(x)〉 = 〈−∆hu,u〉h. By the same notation,
we also have

(E.4)

∑

K

|K|
d+ 1

∑

xi∈K

(a+ b�xi)
2 = 〈Πu(x),Πu(x)〉 = 〈u,u〉h,

∑

K

∫

K

(a+ b�x)2dx = ‖Πu‖2L2(Ω),

which proves the second inequality of (i).
Notice that (E.1) can also be written as

(E.5)

∫

K

(a+ b�x)2dx ≤ |K|
d+ 1

∑

xi∈K

(a+ b�xi)
2.

For proving (ii), with some fixed x̃ ( K, we have
∣

∣

∣

∣

∣

|K|
d+ 1

∑

xi∈K

V (xi)(a+ b�xi)
2 −
∫

K

V (x)(a+ b�x)2dx

∣

∣

∣

∣

∣

≤ |V (x̃)| ·
∣

∣

∣

∣

∣

|K|
d+ 1

∑

xi∈K

(a+ b�xi)
2 −
∫

K

(a+ b�x)2dx

∣

∣

∣

∣

∣

+
|K|
d+ 1

∑

xi∈K

|V (xi)− V (x̃)|(a+ b�xi)
2 +

∫

K

|V (x)− V (x̃)|(a+ b�x)2dx

≤ ‖V ‖L∞(Ω̄)

∣

∣

∣

∣

∣

|K|
d+ 1

∑

xi∈K

(a+ b�xi)
2 −
∫

K

(a+ b�x)2dx

∣

∣

∣

∣

∣

+ hK‖'V ‖L∞(Ω̄)

(

|K|
d+ 1

∑

xi∈K

(a+ b�xi)
2 +

∫

K

(a+ b�x)2dx

)

≤ ‖V ‖L∞(Ω̄)E1h|K|‖b‖2 + 2hK‖'V ‖L∞(Ω̄)

|K|
d+ 1

∑

xi∈K

(a+ b�xi)
2,

where we have used (E.2) and (E.5) in the last step. By summing over K, we
have proven (ii). Since 'Πu is a constant over K, the quadrature for ('Πu)2 is
exact, i.e., 〈'Πu(x),'Πu(x)〉 = ‖'Πu‖2L2(Ω), thus by (E.3) the result (iii) is true.

Licensed to Purdue Univ. Prepared on Sat May  3 15:43:18 EDT 2025 for download from IP 128.210.107.25.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE GROSS-PITAEVSKII EIGENVALUE PROBLEM 33

Finally, with a similar argument as in (E.1), the result (iv) is also a consequence of
Jensen’s inequality since [Πu(x)]4 is a convex function on K. �

Lemma E.3. Consider P 1 finite element method with quadrature on an unstruc-
tured simplicial mesh with shape regularity in dimension d = 1, 2, 3. For any h > 0
and u ( H2(Ω)∩H1

0 (Ω), it holds for some constant E4 > 0 independent of the mesh

size that
∣

∣

∣|u|2H1
0 (Ω)

− 〈−∆hu,u〉h
∣

∣

∣ ≤ E4h‖u‖2H2(Ω), where u ( R
N is the vector of

the values of u at quadrature points.

Remark E.4. Lemma E.2 holds for any dimension d, but Lemma E.3 holds only for
dimension d ≤ 3 since we need the point values u(xi) being well defined, ensured by
the Sobolev embedding u ( H2(Ω)∩H1

0 (Ω) ⊂ C(Ω), which holds only in dimension
d = 1, 2, 3.

Proof. By Lemma E.2 (iii), we have
∣

∣

∣|u|2H1
0 (Ω) − 〈−∆hu,u〉h

∣

∣

∣ =
∣

∣

∣|u|2H1
0 (Ω) − |Πu|2H1

0 (Ω)

∣

∣

∣

≤|u−Πu|H1
0 (Ω)|u+Πu|H1

0 (Ω) ≤ |u−Πu|H1
0 (Ω)

(

2|u|H1
0 (Ω) + |u−Πu|H1

0 (Ω)

)

.

We can conclude the proof after combining the estimates above and the standard
interpolation estimate |u−Πu|H1

0 (Ω) = O(h) · ‖u‖H2(Ω), see [18]. �

Lemma E.5. Under the same assumptions as in Lemma E.2, let Π̄u be the piece-
wise constant interpolation of u, i.e., (Π̄u)(x) = 1

|K|
∫

K
(Πu)(x′)dx′ on any sim-

plex K. There is some constant E5 > 0 independent of the mesh size s.t. ‖Πu −
Π̄u‖2L2(Ω) ≤ E5h

2〈−∆hu,u〉h.

Proof. Consider a simplex K on which we assume (Πu)(x) = a+b�x and (Π̄u)(x)

= a+ b
�

3

∑

xi∈K xi. Then we have

∫

K

((Πu)(x)−(Π̄u)(x))2=

∫

K

(

b�x−b�

3

∑

xi∈K

xi

)2

dx≤h2
K |K|‖b‖2≤h2|K|‖b‖2.

By the same arguments as in the proof for Lemma E.2, the result holds with
E5 = 1. �

E.2. Proof of consistency and eigengap.

Theorem E.6. Consider P 1 finite element method with quadrature on an unstruc-
tured simplicial mesh with shape regularity in dimension d = 1, 2, 3. Let u∗ and λ∗

be the ground state and the corresponding eigenvalue of the continuous energy E.
Let u∗

h and λ∗
h be the ground state and the corresponding eigenvalue of the discrete

energy Eh. Suppose that u∗ ( H2(Ω)∩H1
0 (Ω) and that V ( C1(Ω̄). Then u∗

h → u∗

in H1
0 (Ω) and λ∗

h → λ∗ as h → 0.

Proof. By our previous notation, u∗ ( RN is the vector collecting the values of u∗
h

at quadrature points and Π(u∗) = u∗
h. For convenience, define uexact ( RN as the

vector representing the values of u∗ at quadrature points. Due to the embedding
H2(Ω) ↪→ C0(Ω) for d = 1, 2, 3 and the convergence of Riemannian integral for
continuous functions, one has 〈uexact,uexact〉h = ‖u∗‖2L2(Ω) + o(1) = 1 + o(1),

〈uexact,Vuexact〉h =
∫

V |u∗|2 + o(1), and 〈((uexact)2, (uexact)2)〉h =
∫

|u∗|4 + o(1).
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Furthermore, thanks to Lemma E.3, we have Eh(u
exact) = E(u∗) + o(1). Then it

holds that

(E.6) Eh(u
∗) ≤ Eh

(

uexact

〈uexact,uexact〉h

)

= Eh(u
exact) + o(1) = E(u∗) + o(1),

which implies that 〈−∆hu
∗,u∗〉h is bounded as h → 0.

By Lemma E.2 (i) and boundedness of 〈−∆hu
∗,u∗〉h, one has ‖u∗

h‖L2(Ω) =

1 + o(1). Therefore, it follows from Lemma E.2 (ii)–(iv) that

(E.7) Eh(u
∗
h) = Eh(u

∗) ≥ E(u∗
h)+ o(1) = E

(

u∗
h

‖u∗
h‖L2(Ω)

)

+ o(1) ≥ E(u∗)+ o(1).

Then we can conclude from (E.6) and (E.7) that E(u∗) = E

(

u∗

h

‖u∗

h‖L2(Ω)

)

+ o(1).

By compact embeddings H1
0 (Ω) ⊂⊂ L2(Ω) and H1

0 (Ω) ⊂⊂ L4(Ω), there exists

a subsequence of the bounded sequence

{

u∗

h

‖u∗

h‖L2(Ω)

}

converging weakly in H1
0 (Ω)

and strongly in L2(Ω) and L4(Ω) to some function in ( H1
0 (Ω). Without loss of

generality, we assume that the whole sequence converges:

u∗
h

‖u∗
h‖L2(Ω)

→ u0, weakly in H1
0 (Ω) and strongly in L2(Ω) and L4(Ω).

Since the weak convergence guarantees that

‖u0‖H1
0 (Ω) ≤ lim inf

h→0

∥

∥

∥

∥

∥

u∗
h

‖u∗
h‖L2(Ω)

∥

∥

∥

∥

∥

H1
0 (Ω)

,

E(u∗) ≤ E(u0) ≤ lim
h→0

E

(

u∗
h

‖u∗
h‖L2(Ω)

)

= E(u∗),

which implies that E(u0) = E(u∗) and hence that u0 = u∗ by the uniqueness of

positive ground state. Then we know that
u∗

h

‖u∗

h‖L2(Ω)

→ u∗ weakly in H1
0 (Ω) and

∥

∥

∥

∥

u∗

h

‖u∗

h‖L2(Ω)

∥

∥

∥

∥

H1
0 (Ω)

→ ‖u∗‖H1
0 (Ω). Note that the weak convergence and convergence

of norm imply the strong convergence. Thus
u∗

h

‖u∗

h‖L2(Ω)

→ u∗ and u∗
h → u∗ strongly

in H1
0 (Ω).

In the discussion above, we have shown that every subsequence of {u∗
h} has a

subsequence that converges strongly in H1
0 (Ω) to u∗. Therefore, the whole sequence

{u∗
h} converges strongly in H1

0 (Ω) to u∗. This immediately implies that λ∗
h →

λ∗. �

Assumption E.7. We assume that the multiplicity of the eigenvalue λ∗ to the
following problem is one: −∆u+ V u+ β|u∗|2u = λu, u = 0 on ∂Ω.

We remark that the smoothness of u∗ depends on the smoothness of V [44], and
the assumption above can be proven with suitable smoothness assumptions on V
and u∗, e.g., the smallest eigenvalue of an elliptic operator −∆ + V + β|u∗|2 is
simple due to the positivity and the maximum principle of the operator (−∆ +
V + β|u∗|2)−1, implied by the Krein-Rutman Theorem (the extension of Perron-
Frobenius Theorem from positive matrices to positive compact linear operators),
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see [25, Chapter 1]. The spectrum, including simplicity of the smallest eigenvalue,
of Schrödinger operators like −∆ + V + β|u∗|2, was also thoroughly studied in
[48, Section XIII.12].

Theorem E.8. Suppose that Assumption E.7 and assumptions made in Theo-
rem E.6 hold. Let (λ1

h,u
1) with 〈u1,u1〉h = 1 be the second eigenpair of the lin-

earized problem −∆hu+ Vu+ β(u∗)2u = λhu. Then lim infh→0 λ
1
h − λ∗

h > 0.

We remark that λ∗
h in Theorem E.8 is exactly λ0

h in Assumption 5.8. In this
sense Theorem E.8 validates Assumption 5.8 with a positive lower bound for the
eigengap that is independent of the mesh size h.

Proof of Theorem E.8. Suppose that there is no positive eigengap. Then λ1
h → λ∗

when passing to a subsequence. Notice that

(E.8) 〈−∆hu
1,u1〉h + 〈Vu1,u1〉h + β〈(u∗)2u1,u1〉h = λ1

h,

which implies the boundedness of |u1
h|H1

0 (Ω) ≤
√

〈−∆hu1,u1〉h, where u1
h = Πu1

and we used Lemma E.2 (iii). There exists u1 ( H1
0 (Ω) such that u1

h converges
to u1, a.e., weakly in H1

0 (Ω), and strongly in L2(Ω) and L4(Ω), when passing to
another subsequence.

Let us analyze the limiting behavior of each term in (E.8). It follows from the
weak convergence u1

h → u1 in H1
0 (Ω) that

lim inf
h→0

〈−∆hu
1,u1〉h ≥ lim inf

h
‖u1

h‖2H1
0 (Ω) ≥ ‖u1‖2H1

0 (Ω).

By Fatou’s lemma and Lemma E.2 (ii), one has

lim inf
h→0

〈Vu1,u1〉h = lim inf
h→0

∫

V |u1
h|2 ≥

∫

V |u1|2.

Let ū∗
h = Π̄u∗ and ū1

h = Π̄u1 be the piecewise constant approximation of u∗ and
u1 in the sense of the one in Lemma E.5, then

lim
h→0

‖ū∗
h − u∗

h‖L2(Ω) = 0 and lim
h→0

‖ū1
h − u1

h‖L2(Ω) = 0,

which implies ū∗
h − u∗

h → 0 and ū1
h − u1

h → 0 a.e. when passing to a subsequence.
By Fatou’s lemma, it holds that

lim inf
h→0

〈(u∗)2u1,u1〉h = lim inf
h→0

∫

|ū∗
h|2|ū1

h|2 ≥
∫

|u∗|2|u1|2.

Then taking limit for (E.8) as h → 0, one obtains that

λ∗ ≥
∫

|'u1|2 + V |u1|2 + β|u∗|2|u1|2 ≥ λ∗
∫

|u1|2 = λ∗,

where the last equality follows from
∥

∥u1
h

∥

∥

L2(Ω)
= 1 + o(1) by Lemma E.2 (i) and

u1
h → u1 strongly in L2(Ω). This implies that u1 is also a ground state of the

linearized problem at u∗. However, one has from Lemma E.2 (i) that

0 = 〈u∗,u1〉h = 1− 1

2
‖u∗ − u1

h‖22 = 1− 1

2
‖u∗

h − u1
h‖2L2(Ω) + O(h2),

which implies that 0 = 1− 1
2‖u∗ − u1‖2L2(Ω) = (u∗, u1)L2(Ω), leading to a contradic-

tion. �
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