A simple GPU implementation of spectral-element
methods for solving 3D Poisson type equations on
rectangular domains and its applications

Xinyu Liu!, Jie Shen? and Xiangxiong Zhang'~*,

! Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067.
2 Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China.

Abstract. It is well known since 1960s that by exploring the tensor product structure
of the discrete Laplacian on Cartesian meshes, one can develop a simple direct Poisson

solver with an O(N d%l) complexity in d-dimension, where N is the number of the to-
tal unknowns. The GPU acceleration of numerically solving PDEs has been explored
successfully around fifteen years ago and become more and more popular in the past
decade, driven by significant advancement in both hardware and software technolo-
gies, especially in the recent few years. We present in this paper a simple but extremely
fast MATLAB implementation on a modern GPU, which can be easily reproduced, for
solving 3D Poisson type equations using a spectral-element method. In particular, it
costs less than one second on a Nvidia A100 for solving a Poisson equation with one
billion degree of freedoms. We also present applications of this fast solver to solve
a linear (time-independent) Schrodinger equation and a nonlinear (time-dependent)
Cahn-Hilliard equation.

1 Introduction

It is well known that the tensor product structure of the discrete Laplacian on Cartesian
meshes can be used to invert the Laplacian since 1960s [15]. This approach has been
particularly popular for spectral and spectral-element methods [2,8,12,17,18]. In fact,
this method can be used for any discrete Laplacian on a Cartesian mesh. In this paper,
as an example, we focus on the Qk spectral-element method, which is equivalent to the
classical continuous finite element method with Lagrangian QF basis implemented with
the (k+1)-point Gauss-Lobatto quadrature [13,16].

Tensor based solvers naturally fit the design of graphic processing units (GPUs). The
earliest successful attempts to accelerate the computation of high order accurate methods

*Corresponding author. Email addresses: 1iul957@purdue.edu (Liu), jshen@eitech.edu.cn (Shen),
zhan1966@purdue . edu (Zhang)

http:/ /www.global-sci.com/ Global Science Preprint

in scientific computing communities include nodal discontinuous Galerkin method [11]
almost fifteen years ago. These pioneering efforts of GPU acceleration of high order meth-
ods, or even those ones published later such as [3] in 2013, often rely on intensive coding.

In recent years, the surge in computational demands from machine learning and neu-
ral network based approaches has led to the evolution of modern GPUs. Correspond-
ingly, software technologies have advanced considerably, streamlining the utilization of
GPU computing. The landscape of both hardware and software has dramatically trans-
formed, differing substantially from what existed a decade or even just two years ago.

In this paper, we present a straightforward yet robust implementation of accelerating
the spectral-element method for three-dimensional discrete Laplacian on modern GPUs.
In particular, for a total number of degree of freedoms as large as 1000°, the inversion
of the 3D Laplacian using an arbitrarily high order QF spectral-element method, takes
no more than one second on one Nvidia A100 GPU card with 80G memory. While this
impressive computational speed is naturally contingent on the hardware, it is noteworthy
that our approach is grounded in a minimalist MATLAB implementation, ensuring ease
of replication. In the Appendix, we give a full MATLAB code for solving a 3D Poisson
equation on a rectangular domain using Q spectral-element method.

We remark that a similar simple implementation on GPUs can also be achieved using
Python using the Python package JAX, which however provides better performance than
MATLAB only for single precision computation under TensorFloat-32 precision format.
Our numerical tests and comparison on one Nvidia A100 GPU card suggest that MAT-
LAB implementation performs better than Python for double precision computation for
large problems like one billion DoFs.

We emphasize that the ability of solving Poisson type equation fast can play an im-
portant role in many fields of science and engineering. In fact, a large class of time de-
pendent nonlinear systems, after a suitable implicit-explicit (IMEX) time discretization,
often reduces to solving Poisson type equations at each time step (see, for instance, [19]).
Therefore, having a simple, accurate and very fast solver for Poisson type equations can
lead to very efficient numerical algorithms on modern GPUs for these nonlinear sys-
tems which include, e.g., Allen-Cahn and Chan-Hillard equations and related phase-
field models [19], nonlinear Schrodinger equations, Navier-Stokes equations and related
hydro-dynamic equations through a decoupled (projection, pressure correction etc.) ap-
proach [7]. In particular, by using the code provided in the Appendix, one can build,
with a relatively easy effort, very efficient numerical solvers on modern GPUs for these
time dependent complex nonlinear systems.

The rest of the paper is organized as follows. In Section 2, we give the implementation
details for 3D problems, which is robust for very high order elements with the compu-
tation approach in Section 2.3. In Section 3, we demonstrate the good performance of
this simple implementation for equations including the Poisson equation, a variable co-
efficient elliptic problem solved by the preconditioned conjugate gradient descent using
Laplacian as a preconditioner, as well as a Cahn-Hilliard equation. Although our focus
in this paper remains on the spectral-element method for these particular equations, sim-

ilar results can be obtained for other problems with the same tensor product structure,
e.g., finite difference schemes in implementing the matrix exponential in the exponential
time differencing [6] and spectral fractional Laplacian [4]. We also compare it with a sim-
ilar simple implementation in Python, and the numerical results suggest that MATLAB
implementation is better than Python for double precision computation on A100. Some
concluding remarks are given in Section 4.

2 A spectral-element method for Poisson type equations

To fix the idea, we describe the implementation details for solving the Poisson type equa-
tion
au—Au=f, 2.1)

with a constant coefficient « >0 and homogeneous Neumann boundary conditions on
a rectangular domain Q). In this paper, we only consider the spectral-element method
with continuous piecewise QF polynomial basis on uniform rectangular meshes, and all
integrals are approximated by (k+1)-point Gauss-Lobatto quadrature [14].

2.1 The spectral-element method in two dimensions

We first consider the two dimensional case. As shown in Figure 1, such quadrature points
naturally define all degree of freedoms since a single variable polynomial of degree k is
uniquely determined by its values at k+1 points.

On a rectangular mesh for Q* basis as shown in Figure 1 (a) or (c), let (x;,y;) (i=
1,---,Ny;j=1,---N,) denote all the points in Figure 1 (b) or (d). We consider the following
finite element space of continuous piecewise Q* polynomials:

V" =Span{¢i(x)$;(y),1 <i <Ny 1<j< Ny},

where ¢;(x) (i=1,---,Ny) denotes the i-th Lagrangian interpolation polynomial of degree
k in the x direction as shown in Figure 1 (b) or (d).

Then, the QF spectral-element method for solving (2.1) on a rectangular domain Q is
to seek uy, € V" satisfying

a(uy,op) + (Vuy, Vo) = (f,04), Vo€V, (2.2)

where (f,g) denotes the approximation to the integral [, f(x,y)g(x,y)dxdy by the (k+
1) x (k+1) Gauss-Lobatto quadrature rule in each cell as shown in Figure 1.
The numerical solution uy,(x,y) € V" can be expressed by the basis as

Ny Ny

up(,y) =YY ui ipi(x)¢;(y),

i=1j=1

(a) A 3x2mesh for Q2 element and (b) All the quadrature points for

the 3x3 Gauss-Lobatto quadrature. Q? element.
(c) A 2x2 mesh for Q3 element and (d) All the quadrature points for
the 4 x4 Gauss-Lobatto quadrature. Q° element.

Figure 1: An illustration of Lagrangian QF element and the (k+1) x (k41) Gauss-Lobatto quadrature.

where the coefficients u; ; = uy,(x;,y;) since ¢;(x) and ¢;(y) are chosen as the Lagrangian
interpolation polynomials at x; and y;.

Next, we define the one-dimensional stiffness matrix and the mass matrix as follows.
The stiffness matrix Sy is a matrix of size N, x Ny with (i,j)-th entry being (¢! (x),(p;(x)).
The mass matrix M, is a matrix of size Ny x Ny with (i,)-th entry being (¢;(x),¢;(x)). The
matrices Sy and M, are similarly defined, with a size N, x Nj.. Since the basis polynomials
¢i(-) are Lagrangian interpolants at the quadrature points, the mass matrices M, and M,
are diagonal.

Remark 2.1. Instead of the Lagrangian basis, we can also use the modal basis L;(x)—
Lj;2(x) in each cell, where Li(x) is the Legendre polynomial of degree k, as the interior
basis functions and the piecewise linear hat function at the intersecting points of two
subintervals. This leads to sparse mass and stiffness matrices [2,12].

Let U be a matrix of size Ny x N, with u; ; being its (i,j)-entry. Then u(x,y) can be
equivalently represented by the matrix U. Similarly, let F be a matrix of size N, x N, with
f(xi,y;) being its (i,)-entry. Then the scheme (2.2) can be equivalently written as

aM UMy +S,UM; +MUS] = M FM,. (2.3)

Detailed derivations of (2.3) can be found in [10, 14,20].

2.2 Inversion by eigenvalue decomposition

For any matrix X of size m x n, define a vectorization operation vec(-), and let vec(X) be
the vector of size mn obtained by reshaping all entries of X into a column vector in a
column by column order. Then for any two matrices A1, A, of proper sizes, it satisfies

vec(A1XAT) = (Ay® Ay)vec(X), (24)

where ® denotes the Kronecker product. With (2.4), the QF spectral-element method (2.3)
is also equivalent to

We remark that many other types of boundary conditions on a cubic domain can be
written in the form of (2.3) or (2.5) include periodic boundaries and the simple homoge-
neous Dirichlet boundary treatment described in [14]. For non-homogeneous Neumann
and Dirichlet boundary conditions, the boundary conditions will be added to the right
hand side of (2.3) or (2.5), and the left hand side of (2.3) or (2.5) stays the same, i.e., the
matrix to be inverted stays the same. The left hand side of (2.5) would no longer hold if
the boundary value problem does not have a tensor product structure, e.g., on a curved
domain.

The linear system (2.3), or equivalently (2.5), can be solved by the following well-
known method by using eigenvalue decomposition for only small matrices such as S and
M. For convenience, we only consider the simplified equivalent system

alU+H,U+UH, =F, (2.6)
or
(a+1I,®Hy+H,® I)vec(U) =vec(F), (2.7)

where [is the identity matrix and H=M"!S.
First, solve a generalized eigenvalue problem for small matrices S and M, i.e., finding
eigenvalues A; and eigenvectors v; satisfying

SV,‘ =)\ini- (28)

Regardless of what kind of basis functions is used in a spectral-element method, the
variational form of (2.2) ensures the symmetry of S and M, thus a complete set of eigen-
vectors exists for (2.8). Let A be a diagonal matrix with all eigenvalues A; being diagonal
entries, and let T be the matrix with all corresponding eigenvectors v; as its columns.
Then

ST=MTA=H=M"'S=TAT .

Thus (2.7) becomes
[a+(Ty L, T,) @ (Te AT)+ (T, Ay T,) @ (T L Ty 1) Jvec(U) = vec (F),
which is equivalent to
(Ty@To)[a+ 1, @ Ar+ Ay O LY(T, ' @ T, ")vec(U) = vec(F). (2.9)

Notice that a+ I, ® Ay +Ay®I, is a diagonal matrix, thus its inverse is simple to compute.
Let A2D be a matrix of size Ny x N, with its (7,j) entry being equal to a+ (Ay); i+ (Ay)
then (2.9) can be solved by

Jojr

U=T[(T,'FT,T)./A2D]T, (2.10)

where ./ denotes the entrywise division between two matrices.

2.3 Robust computation of the generalized eigenvalue problem

In our spectral-element implementation, M is diagonal. So we can consider an eigen-
value problem instead of the generalized eigenvalue problem (2.8). A numerically robust
method, especially for very high order polynomial basis, is to solve the following sym-
metric eigenvalue problem. Let

H=M"'S=M"">(M~2sM™/?)M"/2,

Since S;=M~1/2SM~1/2 is real and symmetric, we can first find its eigenvalue decompo-
sition as S; = QAQT where A is a diagonal matrix and Q is an orthogonal matrix. Then,
we have

H=M12(QAQT)MY2=TAT™},

with T=M"12Q and T-! = QT M'/2. In Section 3.4, we will show numerical tests vali-
dating the robustness of this implementation for very high order elements.

2.4 Implementation for the three-dimensional case

On a three dimensional rectangualar mesh, any continuous piecewise QF polynomial
uy, can be uniquely represented by a 3D array U of size Ny x Ny x N, with (1,j,k)-th entry
denoting the point value uy, (xi,y]-,zk), where (xi,y]-,zk) (i=1,---,Ny;j=1,---,Ny;k=1,---,N;)
denotes all the quadrature points.

For a 3D array U, we define a page as the matrix obtained by fixing the last index of
U. Namely, U(:,:,k) for any fixed k is a page of U. For a matrix U(:,:,k) of size Ny x Ny,
recall that vec(U(:,:,k)) is a column vector of size NyN,. We define U as the following
matrix of size NxN, x N, obtained by reshaping U:

U= [vec(U(:,:,1)) wvec(U(:,:,2)) - wvec(U(:,:,Nz))].

Then we define vec(U) as the vector of size NyN,N; x 1 by reshaping U in a column by
column order.
With the notation above, it is straightforward to verify that

(AT @AY ® Ay)vec(U) =vec((Al @ A1) UA3). (2.11)

Next, we consider how to implement the matrix vector multiplication in (2.11) with-
out reshaping the 3D arrays. Let Y be a 3D array of size N, X Ny, X N; defined by

vec(Y) = (A} ®AJ ® Ap)vec(U). (2.12)

With the simple property (2.11), in our numerical tests, we find that the following simple
implementation of (2.12) in MATLAB 2023 is efficient using two functions tensorprod and
pagemtimes:

1 % Computing a 3D array Y of the same size as U defined above
2 Y = tensorprod(U,A3,3,1);

3 Y = pagemtimes (Y,A2);

4 Y = squeeze (tensorprod(Al,Y,2,1));

For the three-dimensional case, for simplicity, we consider the equation (2.1) with
a =0. With similar notation as in the two-dimensional case, the matrix form of the QF
spectral-element method (2.2) can be given as

(M;®My®Sx+M:®S,@Mx+S;®M,®@My)vec(U) = (M. @M, ®M,) vec(F),

or equivalently,

where U is a 3D array with (i,j,k)-th entry denoting the point value uy,(x;,y;,z¢), and F is
a 3D array with (i,j,k)-th entry denoting the point value f(x;,y;,z).

With the eigenvalue decomposition H=M"'S=TAT"!, similar to the derivation of
(2.9), the equation (2.13) is equivalent to

(TOTyRTy) (LOL A+ LOAyRLAA@ L, L) (T, '@ T, '@ T,)vec(U) =vec(F).

(2.14)
Define a 3D array A3D with its (i,j,k)-th entry being equal to (Ay);i+(Ay);i+(Az)kk
then (2.14) can be implemented efficiently as the following in MATLAB:

% Simple and efficient implementation of (14)
% TInv denotes the inverse matrix of T

a

tensorprod(F,TzInv',3,1);
pagemtimes (U, TyInv');

squeeze (tensorprod(TxInv,U,2,1));
U./Lambda3D;
tensorprod(U,Tz"',3,1);
pagemtimes (U, Ty"') ;

squeeze (tensorprod(Tx,U,2,1));

O ® N o U e W N =

cccacaa

Table 1: The MATLAB 2023 script of implementing (2.14) on both CPU and GPU.

3 Numerical tests

In this section, we report the performance of the simple MATLAB implementation in
Table 1. In particular, a demonstration code is provided in the Appendix. The perfor-
mance and speed-up are of course dependent on the hardwares. We test our code on the
following three devices:

1. CPU: Intel i7-12700 2.10 GHz (12-core) with 16G memory;
2. GPU: Quadro RTX 8000 (48G memory);
3. GPU: Nvidia A100 (80G memory).

In MATLAB 2023, for computation on either CPU or GPU, the code for implementing
(2.14) is the same as in Table 1. On the other hand, matrices like Ty, T,, T; and arrays like
F and A3D must be loaded to GPU memory before performing the GPU computation,
see the full code in the Appendix. We define the process of loading matrices and arrays

Ty, T, T;,F,A3D as the offline step since it is preparatory, and undertaken only once, re-
gardless of how many times the Laplacian needs to be inverted. We define the step in
Table 1 as the online computation step. All the computational time reported in this
section are online computational time, i.e., we do not count the offline preparational
time.

3.1 Accuracy tests

We list a few accuracy tests to show that the scheme implemented is indeed high order
accurate. In particular, the QF (k>2) spectral-element method is (k+2)-th order accurate
for smooth solutions when measuring the ¢ error in function values for solving second
order PDEs, which has been rigorously proven recently in [13,14].

We consider the Poisson type equation (2.1) with a =1 in domain Q =[-1,1]3. For
Dirichlet boundary conditions, we test a smooth exact solution

uh (x) =sin(rrx)sin(27y)sin(37z) + (x — %) (v* —y*) (1—22).
For Neumann boundary conditions, we test a smooth exact solution
u (%) = cos(rrx)cos(2my)cos(37z) + (1—x2)3(1—y?)?(1—22)%

The results of Q° and Q° spectral-element methods are listed in Table 2.

Q° spectral-element method (SEM)
Dirichlet boundary Neumann boundary
FEM Mesh Total DoFs (%2 error order | Total DoFs ¢2 error order
23 93 2.27E-1 - 113 4.76E-1 -
43 193 391E-3 5.86 213 5.49E-3 6.44
83 393 4.12E-5 657 413 432E-5 6.99
16° 793 3.34E-7 6.95 813 3.42E-7 698
323 1593 2.63E-9 6.99 1613 2.67E-9 7.00
Q° spectral-element method (SEM)
Dirichlet boundary Neumann boundary
FEM Mesh Total DoFs ¢? error order | Total DoFs ¢? error order
23 113 9.68E-2 - 133 1.18E-1 -
43 233 6.05E-4 7.32 253 8.42E-4 713
8 47° 3.11E-6 7.60 493 3.24E-6 8.02
163 953 1.26E-8 7.95 973 1.28E-8 7.98
323 1913 496E-11 7.98 1933 5.09E-11 7.98

Table 2: Accuracy tests for discrete Laplacian for a 3D problem with Dirichlet boundary conditions and a 3D problem
with Neumann boundary conditions.

10

3.2 GPU acceleration for solving a Poisson type equation

In this subsection, we list the online computational time comparison for solving au—Au=
f on Q=[-1,1]3 with =1 and Neumann boundary conditions, by using the Q° spectral-
element method. To obtain a more accurate estimate of the online computational time, we
count the online computation time for solving the Poisson equation 200 times. The results
of online computational time, depicted in Figure 2 and Table 3, demonstrate a speed-up
factor of at least 60 for sufficiently large problems when comparing Nvidia A100 to Intel
i7-12700. In particular, we observe that on the A100, solving a Poisson type equation
(2.1) with a total degree of freedoms (DoFs) equal to 10013, takes approximately only 0.8
second.

For completeness, in Table 4, we also include the offline preparation time which in-
cludes the time for generating arrays and loading arrays to GPU memory.

x10*
o CPU: Intel i7-12700 13.0 hrs —s o CPU: Intel i7-12700
o GPU: Nvidia Quadro RTX o GPU: Nvidia Quadro RTX
» #« GPU: Nvidia A100 ®» 104 * Gl’l‘:‘ Nvidia A100
B4 B o
5 5 -
] 9 o
iz Iz 103 - o
£3 o o £ »
: : 8 g :
< PO = “
S2 8 83 10
B ® ¥
=] =1
[} g. 2
g 1 G10'¢
o o
o= 1.3 hrs
Qumend § § §2 2 2 o » * #= 2.7 mins 100
0 2 4 6 8 10 12 107 108 10°
Total number of unknowns in the 3D problem 108 Total number of unknowns in the 3D problem
(a) Comparison on three devices. (b) Semilogx plot shows the complexity on all

devices are O(N3) for problems with proper
sizes.

Figure 2: Online computation time of Q° spectral-element method solving a 3D Poisson equation two hundred
times. On the A100, it takes approximately only 0.8 second when solving one Poisson equation for the total

number of DoFs being 10015.

3.3 GPU acceleration for solving a Schrodinger equation

For a Problem with general variable coefficients, the tensor product structure of the eigen-
vectors no longer holds. Then, an efficient method for solving such problems is to use a
preconditioned conjugate gradient method with the inverse of Poisson type equation as
a preconditioner. As an example, we consider the following equation

au—Au+V(x)u=f, (3.1)
on O =[-16,16)° with a =1,

V(x) :,Bsin(gx)zsin(%y)zsin(gz)‘z, B>0, (3.2)

11

Total DoFs Intel i7-12700 NVIDIA Quadro NVIDIA A100
CPU time | GPUtime speed-up | GPU time speed-up
2013 2.29E1 1.03E1 223 9.00E-1 25.47
251° 4.86E1 1.91E1 2.54 1.15E0 42.14
301° 1.08E2 4.10E1 2.65 2.05E0 52.94
351° 1.81E2 7.82E1 2.32 3.31E0 54.77
401° 3.36E2 1.36E2 2.47 5.41E0 62.12
4513 4.98E2 2.25E2 222 8.52E0 58.49
5013 7.13E2 2.96E2 241 1.11E1 64.09
5513 1.05E2 4.46E2 2.35 1.71E1 61.19
601° 1.57E3 6.40E2 2.46 2.35F1 67.09
6513 2.05E3 9.09E2 2.25 3.37E1 60.68
7013 2.63E3 1.11E3 2.37 4.07E1 64.63
7513 3.30E3 1.48E3 2.23 5.31E1 62.19
8013 6.29E3 1.97E3 3.20 6.86E1 91.64
8513 1.13E4 2.55E3 4.45 8.97E1 126.36
9013 2.79E4 3.27E3 8.53 1.14E2 244.19
9513 4.69E4 3.77E3 12.45 1.34E2 349.16

Table 3: Online computation time of solving a 3D Poisson equation two hundred times on three devices: the time unit
is second, and the speed-up is GPU versus CPU.

Total DoFs | 2003 2503 3003 3503 4003 4503
Quadro | 1.59E0 | 1.60E0 | 1.64E0 | 1.72E0 | 1.77E0 | 1.85E0
A100 3.01E-1 | 3.19E-1 | 3.41E-1 | 3.85E-1 | 4.36E-1 | 4.93E-1

Total DoFs | 5007 5503 600° 650° 700° 750°
Quadro 1.92E0 | 2.01E0 | 2.16E0 | 2.42E0 | 2.46E0 | 2.49E0
A100 5.57E-1 | 6.30E-1 | 7.07E-1 | 8.41E-1 | 9.61E-1 | 1.12E0
Total DoFs | 800° 850° 900° 950° 1000° 1050°
Quadro 2.52E0 | 2.82E0 | 3.08E0 | 3.40E0 | 3.70E0 | 4.37EQ
A100 1.24E0 | 1.41E0 | 1.60E0 | 1.83E0 | 2.04E0 | 2.29E0

Table 4: Offline preparation time in MATLAB on GPU for solving a 3D Poisson equation: the time unit is second.

and an exact solution

u(x) :cos(%x)cos(%y)cos(%z). (3.3)

The equation (3.1) is sometimes referred to as a Schrodinger equation, which emerges in
solving more complicated problems originated from the nonlinear Schrédinger equation,
e.g., the Gross-Pitaevskii equation [5]. The boundary conditions can be either periodic or
homogeneous Neumann.

Note that 0 < V(x) <B. We use ((a+%B)I—A)~! as a preconditioner in the precon-

12

ditioned conjugate gradient (PCG) method inverting the operator aI —A+V(x) with pe-
riodic boundary conditions in the Q° spectral-element method, where ((a+3B)I—A)™!
is implemented in the same way as in Table 1. We emphasize that eigenvectors can not
be implemented by fast Fourier transform (FFT) for high order schemes with periodic
boundary conditions, because the stiffness matrix S for QF SEM is a circulant matrix
only when k=1, i.e., FFT can be used to invert Laplacian only for second order accurate
schemes.

Obviously, the performance of such a simple method depends on the condition num-
ber of the operator a] —A+V(x), which is affected by the choice of V(x). By choosing
different B in (3.2), the performance of PCG, e.g., the number of PCG iterations needed
for the PCG iteration residue to reach round-off errors, would vary. We first list the per-
formance of PCG for the Q° spectral-element method on different meshes for different
in Table 5. We can observe that the performance only depends on V(x) for a fine enough
mesh.

Total Number of PCG iterations

DoFs | =1 | 10 | 100 | 200 | 400 | 800 | 1000 | 2000 | 4000 | 10000
2503 10 | 35| 8 | 112|149 | 191 | 214 | 288 | 388 535
3503 10 |32 | 81 | 108 | 143 | 184 | 202 | 265 | 348 522
4503 10 |30 | 80 | 105 | 142 | 181 | 191 | 252 | 333 467
5503 10 28 | 76 | 104 | 129 | 174 | 183 239 321 448
650° 10 |27 | 77 | 100 | 135 | 169 | 182 | 248 | 327 465
7503 10 |27 | 76 | 100 | 130 | 173 | 192 | 233 | 320 456
850° 10 |27 | 76 | 100 | 134 | 173 | 188 | 233 | 305 430
9503 10 | 25| 72 | 98 | 128 | 165 | 180 | 234 | 305 428
1000° | 10 |25 72 [101 | 134 | 172 | 188 | 243 | 305 433

Table 5: Number of PCG iterations needed for PCG with ((a+%B)I—A)~1 as the preconditioner to converge for
solving a Schradinger equation by the Q° SEM on different meshes with different f=1,10,100,200,---,10000.

The online computational time of using PCG for the Q° spectral-element method solv-
ing one Schrodinger equation with p=1 in (3.2) is listed in both Figure 3 and Table 6. We
can observe a satisfying speed-up. With 10 PCG iterations, it costs about 20 seconds on
A100 for inverting a 3D Schrédinger operator for a total number of DoFs as large as 1000°.

3.4 Robustness of the implementation for very high order elements

For very high order elements, it is important to have a robust procedure for finding the
eigenvalue decomposition of the matrix H. We test the implementation in Remark 2.3 for
the Q% spectral-element method solving the Schrodinger equation. The error in Table 7
and the online computational time in Table 8 validate the robustness of the implemen-
tation. In other words, even for Q% element, the numerical computation of eigenvalue
decomposition in Remark 2.3 is still accurate.

13

2000 o CPU: Intel i7-12700 o CPU: Intel i7-12700

o GPU: Nvidia Quadro RTX 40| © GPU: Nvidia Quadro RTX
» 30.1 mins =0 # GPU: Nvidia A100 » 107 GPU: Nvidia A100
o ° -~ O(N1)
5]
8 1500 310°
" (2]
£ o o > £ -
o o o
£ g 8 g 2.0
= 1000 b g % =
S]] g S
= T ot
£ £10 .
g 500 £ o
3 S 10%)
o= 3.5 mins
0 wa8f 8 282 9 i & a4 x % #= 0.3 mins * *
0 2 4 6 8 10 12 107 108 10°
Total number of unknowns in the 3D problem 108 Total number of unknowns in the 3D problem
(a) Comparison on three devices. (b) Semilogx plot shows the complexity on

all devices are O(N %) for problems of proper
sizes.

Figure 3: Online computational time of Q% SEM for a Schradinger equation with =1 in (3.2), solved by PCG
with (I—A)~! as the preconditioner.

Total DoFs 2003 2503 300° 3503 400° 4503
Intel i7-12700 | 2.99E0 | 5.50E0 | 1.09E1 | 1.81E1 | 3.27E1 | 4.83E1l
Nvidia Quadro | 9.48E-1 | 1.58E0 | 3.32E0 | 6.30E0 | 1.10E1 | 1.80E1
Nvidia A100 | 1.04E-1 | 1.23E-1 | 2.21E-1 | 3.61E-1 | 5.75E-1 | 8.86E-1

Total DoFs 500° 5503 600° 650° 700° 750°
Intel i7-12700 | 6.90E1 | 9.83E1 | 2.16E2 | 5.63E2 | 1.03E3 | 1.80E3
Nvidia Quadro | 2.38E1 | 3.55E1 | 5.11E1 | 7.23E1 | 8.78E1 | 1.18E2
Nvidia A100 1.18E0 | 1.75E0 | 2.38E0 | 3.35E0 | 4.10EO | 5.30E0
Total DoFs 800° 850° 900° 950° 1000°
Nvidia Quadro | 1.57E2 | 2.09E2 - - -
Nvidia A100 6.79E0 | 8.71E0 | 1.11E1 | 1.88E1 | 2.04E1

Table 6: The online computational time (unit is second) of using PCG for the Q% SEM solving one Schrodinger
equation with =1 in (3.2).

/% error
B=1 B=10 [B=100
5007 1.89E-13 | 1.62E-13 | 1.29E-13
8003 4.86E-13 | 4.09E-13 | 2.97E-13
10003 6.28E-13 | 5.23E-13 | 3.76E-13

Total DoFs

Table 7: The ¢* error for Q*° SEM solving one Schrodinger equation with different B in (3.2).

3.5 Comparison with FFT on GPU

It is also interesting to compare the implementation in Table 1 with the performance of
fast Fourier transform (FFT) on GPU. In order to do so, we consider solving the Poisson

14

B=1 B=10 B=100

Total DoFs 0 % pEG T Time [#PCG | Time | #PCG
500° | 123E0 | 10 | 2.36E0 | 23 | 647E0 | 68
800° | 7.13E0 | 11 | 3.A5E1| 56 | 7.84E1| 142
1000° | 2.04E1| 10 | 440E1| 23 | 130E2| 70

Table 8: Online computational time in seconds for Q*° SEM solving one Schrodinger equation with different B in
(3.2).

type equation(2.1) and the Schrédinger equation (3.9) with periodic boundary conditions
using second order finite difference, or equivalently the Q! spectral-element method, for
which the discrete Laplacian can be diagonalized by FFT, e.g., the eigenvector matrices
T~ in (2.14) is the discrete Fourier transform matrix. In other words, for Q' element
with periodic boundary, the implementation in Table 1 can be replaced by the following
implementation via FFT in MATLAB:

fftn(F);
U./Lambda3D;
real (ifftn(U));

W N =
c cc
o

Table 9: The FFT implementation of a second order scheme for the Poisson equation with periodic boundary
conditions.

We will refer to such an implementation for a second order scheme as FFT in Figure
4 and Figure 5. On the other hand, even if the Poisson equation has periodic boundary
conditions, the matrices T and T~! for high order elements cannot be implemented by
FFT. We simply refer to the implementation in Table 1 for high order elements as SEM
in Figure 4 and Figure 5. The detailed comparison is listed in Figure 4 and Figure 5, as
well as Table 10 and Table 11. We can observe that FFT is faster as expected, on most
meshes. However, the memory cost of performing FFT is more demanding, especially on
finer meshes. For the Schrodinger problem, the performance of FFT deteriorates on finest
meshes.

idia A100 SEM
a A100 FET
8 400 6.8 mins =o
5
(5]
Q
2 °
£ 300) G
2 g ° g
E g
£200 8 o 8
5 o= 2.7 mins
g °
E °
G100 © # = 1.3 mins
o ° #
Q ? L #*
Py L
0 0.5 1 1.5 2

Total number of unknowns in the 3D problem ,10®

(a) Comparison on one device.

15

+ Quadro RTX

Nvi

8 Nvidia A100 (O
2 ; &6
g o P

-~ O(Nlog N 55
B 10° (Vlog V) P
2 o
£ 5 -
o 5" ¥ 00°
E PP 0°
£, Ea¥ o
5§ : W 25T een
2 o
5 ® L o s
£10 e o ®
8 » L o

* 2 *

10% 2
i
107 108 10°

Total number of unknowns in the 3D problem

(b) Semilogx plot shows the complexity.

Figure 4: Comparison between Q° SEM implemented in Table 1 and a second order scheme implemented by
FFT in Table 9, for solving a Poisson equation 200 times. On A100, the FFT implementation cannot solve a

problem of size 1050% in MATLAB 2023, due to the larger memory cost of FFT.

25
o Nvidia A100 SEM
Nvidia A100 FFT
[}
820 o= 20.4 secs
S 18.4 secs =+ °
Q
1z
£15
()
£
s
5 . o= 11.1 secs
=10
s °
3
£ . %
o
o8 0 8 8
2 b -
8 @ @
0 2? # 8 8
0 2 4 6 8 10 12

Total number of unknowns in the 3D problem 102

(a) Comparison on one device.

o SEM Nvidia Quadro RTX
Nvidia A100 SEM
Nvidia Quadro RTX
Nvidia A100

[}
)
c
(e}
o
[
(2]
£
[0) 57 ©
E£10° o
= e
o o7 * w700
® o R # 50
5 T 08’
E s P 8]
o -5 e #

310%. -0k 9 ®

% L]

L
a

b o

2

107 108 10°

Total number of unknowns in the 3D problem

(b) Semilogx plot shows the complexity.

Figure 5: Comparison between Q° SEM implemented in Table 1 and a second order scheme implemented by
FFT in Table 9 for solving a Schrodinger equation by PCG. On A100, the FFT implementation cannot solve a

problem of size 950% in MATLAB 2023, due to the larger memory cost of FFT.

3.6 A Cahn-Hilliard equation

We consider solving the Cahn-Hilliard equation [1], which is not only a fourth-order
equation in space, but also incorporates a time derivative. Consider a domain Q=[-1,1]3
with its boundary denoted as 0(). Within this domain, the Cahn-Hilliard equation with

simple boundary conditions is given by

pr=mA(—eAp+1F(¢p)) inQ,
0,9=0, 0,A¢p=0 ondQ),

(3.4)

where ¢ is a phase function with a thin, smooth transitional layer, whose thickness is
proportional to the parameter €, m is the mobility constant, and F(¢) = 3(¢*—1)?is a

16

Total DoFs 200° 250° 300° 350° 400° 450°
Quadro (SEM) | 1.03E1 | 1.91E1 | 4.10E1 | 7.82E1 | 1.36E2 | 2.25E2
Quadro (FFT) | 2.06E0 | 4.61E0 | 7.82E0 | 1.33E1 | 1.83E1 | 2.70E1

A100 (SEM) | 9.00E-1 | 1.15E0 | 2.05E0 | 3.31E0 | 5.41E0 | 8.52E0

A100 (FFT) 4.58E-1 | 7.50E-1 | 1.49E0 | 2.44E0 | 3.37E0 | 4.52E0

Total DoFs 500° 550° 600° 650° 700° 750°
Quadro (SEM) | 2.96E2 | 4.46E2 | 6.40E2 | 9.09E2 | 1.11E3 | 1.48E3
Quadro (FFT) | 5.19E1 | 6.89E1 | 9.12E1 | 1.64E2 | 1.57E2 | 1.31E2

A100 (SEM) 1.11E1 | 1.71E1 | 2.35E1 | 3.37E1 | 4.07E1 | 5.31E1

A100 (FFT) 8.22E0 | 1.21E1 | 1.56E1 | 2.55E1 | 3.02E1 | 2.17E1

Total DoFs 8003 8503 9003 9503 1000% | 1050°
Quadro (SEM) | 1.97E3 | 2.55E3 | 3.27E3 | 3.77E3 | 4.656E3 | 5.79E3
Quadro (FFT) | 1.52E2 | 3.82E2 | 2.13E2 - - -

A100 (SEM) | 6.86E1 | 8.97E1 | 1.14E2 | 1.34E2 | 1.59E2 | 2.01E2

A100 (FFT) | 3.38E1 | 5.76E1 | 3.32E1 | 8.43E1 | 7.97E1 -

Total DoFs 11003 1150° | 1200° | 12503 13003 13503
A100 (SEM) 2.46E2 | 2.85E2 | 3.27E2 | 4.06E2 - -

Table 10: Online computational time comparison between Q° SEM implemented in Table 1 and a second order scheme
implemented by FFT in Table 9, for solving a Poisson equation 200 times. On A100, the FFT implementation cannot

solve a problem of size 1050 in MATLAB 2023, due to the larger memory cost of FFT. Unit is in seconds.

double-well form function.

Due to the simplicity of the boundary conditions, we can avoid solving a fourth-
order equation directly by reformulating (3.4) as a system of second-order equations after
introducing the chemical potential 1, which can be expressed as the variational derivative
of the energy functional:

E(g)= [SIVgP+2Flg)dx 65)

Then, the system can be derived as

¢r—mAu=0 1in(Q),
pu=—eAp+1F(¢) inQ, (3.6)
0np=0, 9dyu=0 onodQ.

For the space discretization, we use Q° spectral-element method. For time discretization,
we implement the second order backward differentiation formula (BDF-2) to the system
(3.6):

a1 —Pn —
{t;f_mA””“ =U (3.7)

Hnr1= _GA(Pn—i-l + %F/((ﬁi’l)r

17

Total DoFs 200° 250° 300° 350° 400° 450°
Quadro (SEM) | 9.48E-1 | 1.58E0 | 3.32E0 | 6.30E0 | 1.10E1 | 1.80E1
Quadro (FFT) | 4.25E-1 | 8.22E-1 | 1.60E0 | 2.91E0 | 4.76E0 | 7.60EO

A100 (SEM) | 1.04E-1 | 1.23E-1 | 2.21E-1 | 3.61E-1 | 5.75E-1 | 8.86E-1

A100 (FFT) 7.55E-2 | 1.19E-1 | 2.13E-1 | 3.41E-1 | 5.02E-1 | 7.17E-1

Total DoFs 500° 550° 600° 650° 7003 750°
Quadro (SEM) | 2.38E1 | 3.55E1 | 5.11E1 | 7.23E1 | 8.78E1 | 1.18E2
Quadro (FFT) | 1.09E1 | 1.58E1 | 2.24E1 | 3.36E1 | 4.16E1 | 5.14E1

A100 (SEM) 1.18E0 | 1.75E0 | 2.38E0 | 3.35E0 | 4.10E0 | 5.30EO

A100 (FFT) 1.09E0 | 1.57E0 | 2.05E0 | 3.04E0 | 3.89E0 | 4.66E0

Total DoFs 8003 8503 9003 9503 1000 | 10503
Quadro (SEM) | 1.57E2 | 2.09E2 - - - -
Quadro (FFT) - - - - - -

A100 (SEM) | 6.79E0 | 8.71E0 | 1.11E1 | 1.88E1 | 2.04E1 -

A100 (FFT) | 1.05E1 | 1.64E1 | 1.84F1 - - -

Table 11: Online computational time comparison between Q> SEM implemented in Table 1 and a second order scheme
implemented by FFT in Table 9 for solving a Schrodinger equation by PCG. On A100, the FFT implementation cannot

solve a problem of size 950° in MATLAB 2023, due to the larger memory cost of complex numbers. Unit is in seconds.

where a = %, qAbn =2¢, — %qﬁn_l, and ¢, =2¢, —¢P,—1. To solve this linear system, we can

write it as
al —motA (P . fl
IR o0
and its solution is given by

7 =[o%y "])= [Bhm] s
where D = (al+mdteA?) 1.

Notice that y and ¢ are already decoupled in (3.9). Thus for implementing the scheme
(3.7), we only need to compute ¢ without computing :

Pn+1 =D<f>n+m5%DAP/(an), (3.10)

where both D = (al+méteA?) ™' and DA = (al+mdteA?) A can be implemented in the
same way as shown in Table 1.

Since (al+méteA?)~! and (al+mdteA?) 1A share the same eigenvectors, the imple-
mentation of (3.10) costs slightly less than solving the Poisson type equation twice. In
Table 3, we observe that, the average online computational time of inverting Laplacian
once is approximately 0.8 second for the number DoFs being 1001°. For the same mesh

and same DoFs, each time step (3.10) of solving the Cahn-Hilliard equation costs about
1.27 seconds in Table 12.

18

3.6.1 Accuracy test

We first use a manufactured analytical solution of the Cahn-Hilliard equation to validate
the convergence rate of the BDF-2 scheme (3.7). This solution is in the domain Q=[-1,1]?
with € =0.2, m =0.01:

¢*(x) =cos(mx)cos(my)cos(mz)exp(t), (3.11)

and the corresponding forcing term can be obtained from the equation (3.6). We fix the
number of basis function as Ny = N, = N, =51 in Q% SEM so that the spatial error is
negligible compared with the time discretization error. Figure 6 shows that the scheme
(3.7) achieves the expected second order time accuracy.

104
106
&
=108
Sa)
10710
——slope 2 line
1012 —— ¢? relative error

100-* 107% 1072 107!
ot

Figure 6: The (? relative error of BDF2 scheme (3.10) for the Cahn—Hilliard equation.

3.6.2 Coalescence of two drops

We now study the coalescence of two droplets, as described by the Cahn-Hilliard equa-
tion, within the computational domain () = [—1,1]3. Drawing from parameter settings
in [2], we select € =0.02, the mobility constant m =0.02, and the time step size 6t =0.001
with an end time T =10. For stable computation, we use the same simple stabilization
method and stabilization parameter as in [2]. Initially, at time ¢ =0, the domain is occu-
pied by two neighboring spherical regions of the first material, while the second material
fills the remaining space. As time progresses under the Cahn-Hilliard dynamics, these
two spherical regions coalesce to form a singular droplet. More specifically, the initial
condition for the phase function is given by

|x—x1|—R " tanh |lx—x2| —R
V2e V2e

where x1 = (x1,1,21) = (0,0,0.37) and x = (x2,y2,22) = (0,0,—0.37) are the centers of the

initial spherical regions of the first material, and R=0.35 is the radius of these spheres.
Owing to the mass conservation and energy dissipation of the system (3.6), the en-

ergy E(¢) first decreases before stabilizing at a constant value, as shown in Figure 7. The

¢o(x) =1—tanh (3.12)

19

—E(9)|

>N |
o l
5t t tNg ty 5t th
GH24 ;
22 I~ \ dl

1 L L Lo L 1 L L Lo L - L I 1 Lo
0 0.1 02 04 08 1.6 3 2 10
Time

Figure 7: Semilogx plot shows the temporal evolution of energy E(¢).

coalescence dynamics of the two droplets is illustrated through a series of temporal snap-
shots in Figure 8. These snapshots capture the evolving interfaces between the materials,
visualized by the level set of ¢ =0. In Table 12, we enumerate the online computational

to=0 t1=0.1 tr=0.2 t3=0.4
t4=0.8 ts=1.6 te=3.2 tr=10

L
Va7 v v

Figure 8: Snapshots of the zero-isocontour of the phase function ¢ show the coalescence of two drops at different time
instants as indicated. See Table 12 for the computational time.

costs associated with various total DoFs. As explained above, the online computational
time at each time step is less than solving two Poisson equations.

20

Total DoFs 5013 5513 6013 6513 7013 7513
Total time 8.46E2 | 1.29E3 | 1.79E3 | 2.53E3 | 3.10E3 | 4.02E4
Time for each time step | 8.46E-2 | 1.29E-1 | 1.79E-1 | 2.53E-1 | 3.10E-1 | 4.02E-1
Total DoFs 8013 8513 9013 9513 1001° | 10513
Total time 541E3 | 6.79E3 | 8.84E3 | 1.03E4 | 1.27E4 -
Time for each time step | 5.41E-1 | 6.79E-1 | 8.84E-1 | 1.03E0 | 1.27E0 -

Table 12: Online computational time in seconds for Q° SEM in the BDF2 scheme (3.10) solving the Cahn—Hilliard
equation with 10,000 time steps for computing the solution at T =10 on Nivida A100. The Total time represents the
online computational time for 10,000 time steps, and the Time for each time step is average online computational time
per time step.

3.7 Comparison with implementation in Python

For implementing (2.14) on both CPU and GPU, similar to the implementation in MAT-
LAB shown in Table 1, (2.14) can be efficiently implemented using the function jax.numpy.einsum
in the Python package JAX as shown in Table 13.

jnp.einsum('ijk,k1->ijl',f,invTz.transpose())
jop.einsum('ijk,jl->ilk"',u,invTy.transpose())
jnp.einsum('1li,ijk->1jk"',invTx ,u)

u/Eig3D
jnp.einsum('ijk,kl1->ijl',u,Tz.transpose())
jnp.einsum('ijk,jl->ilk',u,Ty.transpose())
jnp.einsum('1li,ijk->1jk',Tx,u)

NG e W N e
8 B8 B B &

Table 13: The Python script of implementing (14) on both CPU and GPU where jnp means jaz.numpy.

Since both Python and MATLAB allow similar simple implementations of (2.14) on
GPU, it is interesting to compare them. We compare the performance of MATLAB with
Python under double precision, as well as single precision, which often depends on spe-
cific hardware and their driver versions.

In Table 14, we list the online computational time comparison of similar implementa-
tions in MATLAB and Python on A100 for solving a 3D Poisson equation 200 times. As
we can see in Table 14, for double precision computation and problems with size smaller
than 10003, there is no significant difference in the online computational time between
MATLAB and Python on GPUs. However, on A100 with 80G memory, MATLAB allows
a problem size as large as 1250°, for which Python can handle only with single precision
computation. It is noteworthy that the performance of single precision computation in
Python can be significantly affected by the use of the TF32 (TensorFloat-32) format on
NVIDIA GPUs. TF32 is a lower-precision format that requires less memory bandwidth
and compute resources compared to the traditional FP32 (Float-32) format, leading to
faster computation at the cost of some loss in precision.

21

Python(JAX) MATLAB
Total DoFs Single(TF32) ySimgle(FPC%Z) Double | Single | Double
2003 4.80E-1 6.88E-1 6.70E-1 | 4.72E-1 | 5.20E-1
2503 5.85E-1 9.92E-1 1.17E0 | 7.32E-1 | 9.11E-1
3003 7.43E-1 1.67E0 2.10E0 | 1.54E0 | 1.80E0
3503 1.39E0 2.80E0 3.47E0 | 2.56E0 | 3.04E0
4003 1.51E0 4.56E0 5.47E0 | 4.63E0 | 5.07E0
4503 2.89E0 7.24EQ 8.74E0 | 7.05E0 | 8.09E0
5003 2.92E0 9.48E0 1.20E1 | 8.92E0 | 1.07E1
5503 6.07E0 1.41E1 1.82E1 | 1.45E1 | 1.65E1
6003 5.41E0 1.99E1 2.40E1 | 1.97E1 | 2.28E1
6503 1.02E1 2.80E1 3.35E1 | 3.02E1 | 3.32E1
7003 9.76E0 341E1 4.24E1 | 3.55E1 | 4.04E1
7503 1.66E1 4.48E1 5.66E1 | 4.57E1 | 5.22E1
8003 1.45E1 6.12E1 7.14E1 | 6.32E1 | 6.89E1
8503 2.66E1 7.92E1 9.28E1 | 8.01E1 | 9.05E1
9003 2.37E1 1.00E2 1.15E2 | 1.05E2 | 1.15E2
9503 4.10E1 1.17E2 1.37E2 | 1.20E2 | 1.35E2
1000° 3.17E1 1.40E2 - 1.40E2 | 1.60E2
1050° 6.12E1 1.81E2 - 1.87E2 | 2.04E2
1100° 4.77E1 2.13E2 - 2.16E2 | 2.51E2
11503 7.96E1 2.37E2 - 2.39E2 | 291E2
12003 6.30E1 2.94E2 - 295E2 | 3.34E2
12503 1.13E2 3.36E2 - 3.45E2 | 4.13E2

Table 14: Online computational time of single precision and double precison on one Nvidia A100 80G GPU card, for
Q® SEM for solving a 3D Poisson equation 200 times. The time unit is second. For double precision computation in
Python on A100, an out-of-memory error will emerge for problems with size larger than 9503

22

As shown in Table 14, for larger problems such as one billion DoFs, the fastest imple-
mentation on GPU is Python with single precision computation, which might be suitable
for some practical simulations. When using the default TF32 setting on A100, the accu-
racy of the Q° spectral-element method deteriorates for larger problem sizes, with the
order of accuracy dropping below the expected value. However, by setting the environ-
ment variable NVIDIA_TF32_0VERRIDE=0 to disable TF32 precision for certain operations,
such as matrix multiplication and jax.numpy.einsum, the accuracy can be improved, and
the expected order of accuracy is maintained. To investigate the impact of TF32 on the
accuracy of single precision computation in Python, we conducted additional tests with
and without the TF32 format. Table 15 presents the accuracy results for the Q° spectral-
element method under single precision on A100 with both TF32 and FP32 format. In
general, the implementation for high order SEM with TF32 single precision is not robust
on A100, e.g., computation with SEM for the problem in Figure 8 might blow up.

(Q° spectral-element method (TF32 single precision)
Dirichlet boundar Neumann boundar
FEM Mesh Total DoFs ¢2 error };rder Total DoFs ¢2 error (}),rder
23 93 2.27E-1 - 113 4.82E-1 -
43 19° 3.92E-3 5.86 213 6.60E-3 6.19
83 393 412E-5 6.57 413 432E-5 7.26
16° 793 1.44E-3 -5.13 813 2.46E-3 -5.83
323 1593 1.95E-3 -0.44 1613 2.73E-3 -0.15
Q° spectral-element method (FP32 single precision)
Dirichlet boundar Neumann boundar
FEM Mesh Total DoFs ¢? error }:)rder Total DoFs /2 error z)lrder
23 93 2.27E-1 - 113 4.76E-1 -
43 19° 391E-3 5.86 213 5.49E-3 6.44
83 393 411E-5 6.57 413 432E-5 6.99
16° 793 1.67E-6 4.62 81° 1.63E-6 4.72
323 1593 1.34E-6 0.32 1613 1.95E-6 -0.26

Table 15: Accuracy tests under TF32 and FP32 single precision in Python on Nvidia GPU A100 for the 3D Poisson
equation (2.1) with « =1. The actual accuracy of single precision computation depends very much on the hardware
and version of hardware drivers. For Python, we implement the code under the environment JAX version 0.4.19 for
Nvidia GPU A100, with Driver Version 535.86.10 and CUDA Version 12.2. See Table 2 for the results of MATLAB
with double precision on Nvidia GPU A100.

On the other hand, the second order finite difference implemented in Python Jax
with TF32 single precision computation is robust as suggested by Table 16. For periodic
boundary conditions, the eigenvectors of second order finite difference (i.e., Q! spectral-
element method) can be implemented by FFT as shown in Table 17. As a demonstration,
we include the computation results for the Cahn-Hilliard equation of Python in TF32 sin-
gle precision on A100 in Figure 9, which is comparable to the double precision results on

23

FFT implementation on A100 for periodic boundary
Total DoFs }2}732 Single precision Dzouble precision
error order £# error order
103 5.00E-1 - 5.00E-1 -
203 1.05E-1 2.25 1.05E-1 2.25
40° 2.53E-2 2.06 2.53E-2 2.06
80° 6.26E-3 2.01 6.26E-3 2.01
1603 1.56E-3 2.01 1.56E-3 2.00
320° 3.88E-4 2.00 390E-4 2.00
6403 8.57E-5 2.18 9.75E-5 2.00
900° 5.64E-5 1.23 493E-5 2.00
12003 9.32E-5 -1.75 - -

Table 16: Accuracy tests for second order finite difference with periodic boundary (FFT implementation) in Python
on Nvidia GPU A100 for the 3D Poisson equation (2.1) with u* =sin(27tx)sin(37ty)sin(47z) and a =1.

A100 in Figure 8.

1 u = jnp.fft.fftn(£f)/Eig3D

2 if alpha == 0:

3 ul0,0,0] = 0.

4 u = jonp.real(jnp.fft.ifftn(u))

Table 17: The Python script for FFT implementation of a second order (i.e., Q' spectral-element method) for the
Poisson equation with periodic boundary conditions on both CPU and GPU where jnp means jax. numpy.

4 Concluding remarks

In this paper, we have discussed a simple MATLAB 2023 implementation for accelerating
high order methods on GPUs. For large enough 3D problems, a speed-up of at least 60
can be achieved on Nvidia A100. In particular, solving a 3D Poisson type equation with
one billion DoFs costs only 0.8 second for QF spectral-element method. As examples of
applications, we applied this fast solver to solve a linear (time-independent) Schrodinger
equation and a nonlinear (time-dependent) Cahn-Hilliard equation in three-dimension.
We expect the proposed simple implementation to have the same performance for any
problem with similar tensor product structure, e.g., exponential time differencing and
spectral fractional Laplacians.

24

to=0 t1=0.1 tr =0.2 t3=0.4
t4=0.8 ts=1.6 t=3.2 tz=10

L
v a7 v v

Figure 9: Snapshots of the same problem in Figure 8, implemented by Python in TF32 single precision on A100 for
second order finite difference (i.e., Q' spectral-element method) by FFT with total DoFs 8003.

Data availability statements

The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information files.

Declarations

J. Shen’s research was supported in part by NSFC 12371409, and X. Zhang’s research was

supported by NSF DMS-220815. The authors declare they have no financial interests.

Appendix

A MATLAB scripts for a 3D Poisson equation

We provide a demonstration in MATLAB 2023 for Q* spectral-element method solving a
Poisson equation in three dimensions, which involves three MATLAB scripts:

1. Poisson3D.m for solving the Poisson equation on either CPU or GPU;

25
2. SEGenerator1D.m for generating stiffness and mass matrices in spectral element
method;
3. LegendreD.m for Legendre and Jocaboi polynomials from [9].

Readers can easily reproduce the results in Section 3.1 and Section 3.2 using these three
MATLAB scripts.

26

Poisson3D.m:

o

% Solving the Poisson equation by Q5 SEM with Neumann b.c.
if gpuDeviceCount ('available')<1l; Param.device='cpu';

o

else;Param.device="gpu'; Param.deviceID=1l;end % ID=1,2,3,...
Np=5; Param.Np=Np; % polynomial degree Q5

Ncellx=40; Ncelly=40; Ncellz=40; % finite element cell number
% total number of unknowns in each direction

nx=NcellxxNp+l; ny=Ncelly*Np+l; nz=Ncellz*Np+l;

% the domain is [-Lx, Lx]*[-Ly, Lyl=*[-Lz, Lz]

Lx=1; Ly=1; Lz=1; cx=pil; cy=2xpi; cz=3xpi; alpha=1l;
Param.Ncellx=Ncellx; Param.Ncelly=Ncelly; Param.Ncellz=Ncellz;
Param.nx = nx; Param.ny = ny; Param.nz = nz;

fprintf ('3D Poisson with total DoFs %d by %d by %d \n',nx,ny,nz);
fprintf ('Laplacian is Q%d spectral element method \n', Np) ;
[x,ex,Tx,eigx]=SEGeneratorlD('x"',Lx,Param);
[y,ey,Ty,eigy]=SEGeneratorlD('y',Ly,Param);
[z,ez,Tz,eigz]=SEGeneratorlD('z',Lz,Param);

% a smooth solution

ulx=cos (cxx*x); ul2x=power (l-power (x,2),3); dulZx=30xpower (x,4)-36xpower (x,2)+6;

uly=cos (cy*y); u2y=power (l-power (y,2),2); duly=4-12xpower (y,2);
ulz=cos(czxz); u2z=power (l-power(z,2),4);
du2z=(8-56*power (z,2)) .xpower (L-power (z,2),2);
uexact=squeeze (tensorprod (ulxxuly',ulz)+tensorprod(u2x+u2y',u2z));
f=(cxxcxtcy*cy+czxcz) xsqueeze (tensorprod (ulxxuly',ulz))+...
squeeze (tensorprod (du2x*u2y',u2z) ttensorprod (u2x*du2y',u2z)+. ..
tensorprod (u2x*u2y',du2z)) +alpharuexact;
TxInv=pinv (Tx); TyInv=pinv(Ty); TzInv=pinv(Tz);
if strcmp (Param.device, '"gpu') ;Device=gpuDevice (Param.devicelD) ;
fprintf ('GPU computation: starting to load matrices/data \n');
Tx=gpuArray (Tx); Ty=gpuArray (Ty); Tz=gpuArray(Tz);
eigx=gpuArray (eigx);eigy=gpulArray (eigy) ; eigz=gpulArray (eigz) ;
ex=gpuArray (ex); ey=gpulArray (ey); ez=gpulArray(ez); f=gpuArray(f);
TxInv=gpuArray (TxInv) ; TyInv=gpuArray (TyInv); TzInv=gpuArray (TzInv) ;
end
Lambda3D=squeeze (tensorprod (eigx, ey*ez') +tensorprod(ex,eigy*ez') ...
+tensorprod(ex,ey*xeigz'));
if strcmp (Param.device, 'gpu'); wait (Device);
fprintf ('GPU loading finished and computing started \n');
end
tic; % online computation
u = tensorprod(f,TzInv',3,1); u = pagemtimes (u,TyInv');

u = squeeze (tensorprod(TxInv,u,2,1)); u = u./(Lambda3D + alpha);

u = tensorprod(u,Tz',3,1); u = pagemtimes (u,Ty');

u = squeeze (tensorprod(Tx,u,2,1));

if strcmp (Param.device, '"gpu');wait (Device) ;end;time=toc;err=u-uexact;
fprintf ('The ell infinity norm error is %d \n',norm(err(:),inf));

if strcmp (Param.device, "gpu')

fprintf ('The online GPU computation time is %d \n', time);
else

fprintf ('The online CPU computation time is %d \n', time);
end

SEGenerator1D.m:

27

function [varargout] = SEGeneratorlD (direction,L,Param)
% generate 1D spectral element with Neumann B.C.
switch direction

case 'x'

N=Param.Np; Ncell=Param.Ncellx; n=Param.nx;

case 'y'

N=Param.Np; Ncell=Param.Ncelly; n=Param.ny;
case 'z'
N=Param.Np; Ncell=Param.Ncellz; n=Param.nz;

end

% generate the mesh with Ncell intervals with domain [Left, Right]

[D,r,w] = LegendreD (N); Left = -L; Right = L;
Length = Right - Left; dx = Length/Ncell;
for j = 1:Ncell

cellleft = Left+dxx(j-1);

localPoints = cellLeft+dx/2+r*dx/2;

if (§==1)

x = localPoints;

else

x = [x;localPoints (2:end)];

end
end

°

SLocal = D'xdiag(w)=xD; % local stiffness matrix for each element

S=[1; M=[];
for j = 1:Ncell % global stiffness and lumped mass matrices
S = blkdiag(SLocal,S); M = blkdiag(diag(w),M);
end
% Next step: "glue" the cells
Np = N+1; % number of points in each cell
Glue = sparse(zeros (NcellxNp-Ncell+l, NcellxNp));
for 3 = 1l:Ncell
rowStart=(j-1) *Np+2-j; rowEnd=rowStart+Np-1;
colStart=(j-1)*Np+l; colEnd=colStart+Np-1;
Glue (rowStart:rowEnd, colStart:colEnd) =speye (Np) ;
end
S=GluexS*xGlue'; M=Glue*MxGlue'; H=diag(l./diag(M)) *S;
ex=ones (n,1l); MHalfInv=diag(l./sqrt(diag(M)));
S1=MHalfInv*«S*MHalfInv; S1=(S1+S1'")/2;
[U,d]l=eig(S1l, 'vector'); [lambda, indexSort]=sort (d);
T=U(:, indexSort); h=dx/2; lambda=lambda/ (hxh);
Sl=sparse (S1/ (h*h)); M=sparse (M) ;
% after this step, T is the eigenvector of H
T = MHalfInvT; H=full (H/ (hxh)); S=S/h; M=full (Mxh);

varargout{l}=x; varargout{2}=ex; varargout{3}=T; varargout{4}=lambda;

end

28

LegendreD.m:
function [D,r,w] = LegendreD (N)
Np = N+1; r = JacobiGL(0,0,N);
w = (2+%N+1)/ (N*N+N) ./power (JacobiP (r,0,0,N),2);
Distance = rxones(l,N+1)-ones (N+1,1)+r'+eye (N+1);
omega = prod(Distance,2); D = diag(omega)* (1l./Distance)xdiag(l./omega);
D(l:Np+l:end) = 0; D(l:Np+tl:end) = -sum(D,2);
end
function [x] = JacobiGL (alpha,beta,N)
x = zeros (N+1,1);
if (N==1); x(1)=-1.0; x(2)=1.0; return; end
[xint,temp] = JacobiGQ (alpha+l,beta+1,N-2);
x = [-1, xint', 1]'; return;
end
function [x,w] = JacobiGQ (alpha,beta,N)
if (N==0)
x (1) = - (alpha-beta)/ (alphatbeta+2); w(l) = 2; return;
end

hl = 2% (0:N)+alpha+t+beta;

J = diag(-1/2x (alpha*alpha-betaxbeta) ./ (hl+2)./hl) +
diag(2./(h1(1:N)+2) .xsqrt ((1:N).*((1:N)+alphatbeta) .*...
((1:N)+alpha) .+ ((1:N)+beta)./ (h1(1:N)+1)./(h1(1:N)+3)),1);

if (alpha+beta<lOxeps); J(1,1)=0.0; end

J=J+ J'; [V,D] = eig(J); x = diag(D);

w = power (V(1l,:)"',2)*power (2,alphatbeta+l)/ (alphatbeta+l)*...
gamma (alpha+1l) rgamma (beta+1) /gamma (alphat+beta+1l) ;

end
function [P] = JacobiP (x,alpha,beta,N)

Xp = x; dims = size(xp);

if (dims(2)==1); xp = xp'; end

PL = zeros(N+1,length(xp));

gamma0 = power (2, alphatbeta+l)/ (alphatbeta+l) xgamma (alpha+1l) *. ..
gamma (beta+1) /gamma (alpha+beta+1) ;

PL(1,:) = 1.0/sqgrt (gamma0) ;

if (N==0); P = PL'; return; end

gammal = (alpha+1l) x (beta+1l)/ (alpha+beta+3) xgammaOl;

PL(2,:) = ((alphatbeta+2)x*xp/2 + (alpha-beta)/2)/sqgrt (gammal);

if (N==1); P = PL(N+1,:)'; return; end
aold = 2/ (2+alpha+beta) *sqrt ((alpha+1l) x (beta+1) / (alphatbeta+3));
for 1 = 1:N-1
hl = 2«it+alpha+beta;
anew = 2/ (hl1+2)*sqrt((i+1l)* (i+l+alpha+beta)* (i+l+alpha) ...
(i+1l+beta)/ (h1+1)/ (h1+3));

bnew = - (alphaxalpha-betaxbeta)/hl/ (h1l+2);
PL(i+2,:) = 1/anewx(—aold+PL(i,:) + (xp-bnew) .*PL(i+1,:));
aold = anew;

end

P = PL(N+1,:)";
end

29

References

[1] John W Cahn and John E Hilliard. Free energy of a nonuniform system. i. interfacial free
energy. The Journal of chemical physics, 28(2):258-267, 1958.

[2] Feng Chen and Jie Shen. Efficient spectral-Galerkin methods for systems of coupled second-
order equations and their applications. Journal of Computational Physics, 231(15):5016-5028,
2012.

[3] Feng Chen and Jie Shen. A GPU parallelized spectral method for elliptic equations in rect-
angular domains. Journal of Computational Physics, 250:555-564, 2013.

[4] Sheng Chen and Jie Shen. An efficient and accurate numerical method for the spectral frac-
tional Laplacian equation. Journal of Scientific Computing, 82(1):17, 2020.

[5] Ziang Chen, Jianfeng Lu, Yulong Lu, and Xiangxiong Zhang. On the convergence of Sobolev
gradient flow for the Gross—Pitaevskii eigenvalue problem. SIAM Journal on Numerical Anal-
ysis, 62(2):667-691, 2024.

[6] Qiang Du, Lili Ju, Xiao Li, and Zhonghua Qiao. Maximum principle preserving exponential
time differencing schemes for the nonlocal Allen—Cahn equation. SIAM Journal on numerical
analysis, 57(2):875-898, 2019.

[7] Jean-Luc Guermond, Peter Minev, and Jie Shen. An overview of projection methods for
incompressible flows. Computer methods in applied mechanics and engineering, 195(44-47):6011—
6045, 2006.

[8] Dale B Haidvogel and Thomas Zang. The accurate solution of Poisson’s equation by expan-
sion in Chebyshev polynomials. Journal of Computational Physics, 30(2):167-180, 1979.

[9] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin methods: algorithms, anal-
ysis, and applications. Springer Science & Business Media, 2007.

[10] Jingwei Hu and Xiangxiong Zhang. Positivity-preserving and energy-dissipative finite dif-
ference schemes for the Fokker—Planck and Keller-Segel equations. IMA Journal of Numerical
Analysis, 43(3):1450-1484, 2023.

[11] A. Klockner, T. Warburton, J. Bridge, and J.S. Hesthaven. Nodal discontinuous Galerkin
methods on graphics processors. Journal of Computational Physics, 228(21):7863-7882, 2009.

[12] Yuen-Yick Kwan and Jie Shen. An efficient direct parallel spectral-element solver for sepa-
rable elliptic problems. Journal of Computational Physics, 225(2):1721-1735, 2007.

[13] Hao Li, Daniel Appeld, and Xiangxiong Zhang. Accuracy of Spectral Element Method for
Wave, Parabolic, and Schréodinger Equations. SIAM Journal on Numerical Analysis, 60(1):339—
363, 2022.

[14] Hao Li and Xiangxiong Zhang. Superconvergence of high order finite difference schemes
based on variational formulation for elliptic equations. Journal of Scientific Computing,
82(2):36, 2020.

[15] Re Lynch, John R Rice, and Donald H Thomas. Tensor product analysis of partial difference
equations. Bull. Amer. Math. Soc., 70, 1964.

[16] Yvon Maday and Einar M Renquist. Optimal error analysis of spectral methods with em-
phasis on non-constant coefficients and deformed geometries. Computer Methods in Applied
Mechanics and Engineering, 80(1-3):91-115, 1990.

[17] Anthony T Patera. Fast direct poisson solvers for high-order finite element discretizations in
rectangularly decomposable domains. Journal of Computational Physics, 65(2):474-480, 1986.

[18] Jie Shen. Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order
equations using Legendre polynomials. SIAM Journal on Scientific Computing, 15(6):1489—
1505, 1994.

30

[19] Jie Shen, Jie Xu, and Jiang Yang. A new class of efficient and robust energy stable schemes
for gradient flows. SIAM Review, 61(3):474-506, 2019.

[20] Jie Shen and Xiangxiong Zhang. Discrete maximum principle of a high order finite difference
scheme for a generalized Allen-Cahn equation. Communications in Mathematical Sciences,
20(5):1409-1436, 2022.

