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Abstract

In many applications, it is desired to obtain extreme eigenvalues and eigenvectors of large Hermitian matrices by efficient and
compact algorithms. In particular, orthogonalization-free methods are preferred for large-scale problems for finding eigenspaces
of extreme eigenvalues without explicitly computing orthogonal vectors in each iteration. For the top p eigenvalues, the simplest
orthogonalization-free method is to find the best rank-p approximation to a positive semi-definite Hermitian matrix by algorithms
solving the unconstrained Burer-Monteiro formulation. We show that the nonlinear conjugate gradient method for the uncon-
strained Burer-Monteiro formulation is equivalent to a Riemannian conjugate gradient method on a quotient manifold with the
Bures-Wasserstein metric, thus its global convergence to a stationary point can be proven. Numerical tests suggest that it is effi-
cient for computing the largest k eigenvalues for large-scale matrices if the largest k eigenvalues are nearly distributed uniformly.
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1. Introduction

1.1. The eigenvalue problem of Hermitian positive definite matrices

In this paper, we are interested in solving the eigenvalue problem for a Hermitian matrix B € C™" to find its
largest p eigenvalues and the corresponding eigenvectors. For large enough u > 0, A := B + ul € C™" is a positive
definite Hermitian matrix with the same extreme eigenspaces. Thus we focus only on Hermitian positive definite or
semi-definite matrices.

Extreme eigenvalue problems for Hermitian matrices naturally arise in many applications [, 2, 3, i4, 15, |6, [7].
For example, many problems can be cast as a graph, for which the adjacency matrix and the graph Laplacian are
real symmetric thus Hermitian [8]. The extreme eigenvalues and eigenvectors of these matrices contain information
about the graph and the point cloud data such as diffusion maps [9]. Notice that the discussion in this paper also
applies to the smallest k eigenvalues for a positive definite Hermitian matrix B by considering either A = ul — B with
large enough u or A = B! if an efficient implementation of linear system solver for Bx = b is available, i.e., the
matrix-vector multiplication B~'b can be efficiently implemented.

The extreme eigenvalue problem can be written as an optimization problem, with many different cost functions to
consider. The most well-known one is to minimize the multicolumn Rayleigh quotient

mnggﬂl)ze f(x): Itr((x X)~ 'x*Ax) (D
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If assuming the spectrum of x*x is bounded by one and take the inverse of x*x as the first order approximation of the
Neumann series expansion, then as an approximation to multicolumn Rayleigh quotient, a popular method known as
orbital minimization method (OMM) is to minimize the cost function [10]:

minimize f(x) :=tr (21 — x"*x)x*Ax) | (2)
xe(C/le}
Another simple formulation is to consider optimization over the noncompact Stiefel manifold C;¥ = {X e C™7:
rank(X)=p}:
minimize  f(x) := 1 |lxx* — Al} 3)
xeC*P ’

where || - || is the matrix Frobenius norm. Various orthogonalization-free algorithms for solving both @) and (3) were
considered and compared numerically in [[11].

A third choice is LOBPCG method first introduced in [[12]. A critical step in the LOBPCG method is a Rayleigh-
Ritz procedure in which an orthonormal basis is computed to simplify calculations and ensure numerical stability
and it is the only orthogonalization step. LOBPCG without orthogonalization also gives an orthogonalization-free
method, which may still work well for many problems in practice, though it might suffer from some instability when
the number of eigenpairs to be computed becomes large. Careful base selection strategies [[13] [14] can improve its
robustness.

1.2. The real inner product and Fréchet derivatives

In this paper, we mainly focus on the cost function (3) and consider the nonlinear conjugate gradient (CG) methods

solving (@).

Since f(x) is real-valued and thus not holomorphic, f(x) does not have a complex derivative with respect to
x € C™P. The linear spaces of complex matrices will therefore be regarded as vector spaces over R. For any real
vector space &, the inner product on & is denoted by (., .)s. For real matrices A, B € R™?, the Hilbert-Schmidt inner
product is (A, B)gwy = tr(AT B). Let R(A) and J(B) represent the real and imaginary parts of a complex matrix A. For
A, B € C™? the real inner product for the real vector space C"™*” then equals

(A, B)ewo := R(tr(A*B)), 4

where * is the conjugate transpose. We emphasize that (@) is a real inner product, rather than the complex Hilbert—
Schmidt inner product. It is straightforward to verify that (@) can be written as

(A, B)emwa = ti(R(A)R(B)) + tr(F(A)T T(B)) = (R(A), R(B))gos + (F(A), (B -

With the real inner product () for the real vector space C™P, a Fréchet derivative for the real-valued function f(x)
can be defined as

VI (x) = Virwm@) +1V fg(x) € c™P, (5)

where V fg (1 (%), V f ) (x) € R™P are the gradient of the cost function f with respect to the real and imaginary parts of
x, respectively. In particular, for f(x) = %Ilﬂ(xx*) - blllzp with a linear operator A, the Fréchet derivative (3) becomes

Vi(x) = 2A (A(xx") — b)x,
where A* is the adjoint operator of A. See Appendix in [15] for details.

1.3. The conjugate gradient method solving the Burer-Monteiro formulation

Notice that C2** is an open set in the Euclidean space C™?, thus any line search method x;4; = x; + @y starting
with the iterate x, € C;” and a small enough step size a; will give x;4; € C;*. Therefore, any such line search
algorithm can be regarded as the same algorithm solving an unconstrained problem with a non-degenerate x; € C;”:

e . 1 % 2
minimize X) =5 |lxx" —A
inimize  f(x) := ;|| lIF . (©6)

2
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In the literature, the formulation (@) is often called the Burer-Monteiro method for Hermitian positive semi-definite
(PSD) fixed rank p constraint, i.e., for minimizing || X — A|I% where X is a Hermitian PSD matrix of rank p.
The nonlinear conjugate gradient method for (@) can be written as
X+l = X+ Qs 7
Mke1 = =Vf(x) + B = =2(xx™ — A)x + By,

where a is the step size, i is a nonlinear coefficient computed by various formulae, and 7y is the search direction in
CG method. In this paper, we only consider two variants for how to compute 5x: one is the Polak—Ribiére CG method,
and the other one is the Fletcher-Reeves CG method for computing the conjugate direction [16].

1.4. The main result: the convergence of Riemannian conjugate gradient method via quotient geometry

The CG method (@) for finding top p eigenvalues of Hermitian PSD matrix A has been considered in [11]. In
particular, (@) does not require any orthogonalization operation in each iteration, and its performance is superior
especially for uniformly distributed eigenvalues in numerical tests.

The landscape of (@) has been well studied in [11, 17, [18, [19] and its local minimizers must also be global
minimizers. Theorem 2.1 in [[11]] implies that, if £ € CPP satisfies Vf(x) =0 for f(x) = %Hxx* - A||12V, then X = UO
where O € CP*P is a unitary matrix, and U € C"™? has orthogonal columns as some eigenvectors of A. Furthermore,
any local minimum is a global minimum, i.e., any local minimizer of (&) in C™? has the form £ = UO with columns
of U being eigenvectors of a Hermitian PSD matrix A corresponding to its top p eigenvectors.

However, the convergence of CG method (@) for (6) has never been rigorously justified.

Notice that there is an ambiguity up to unitary matrices in both formulations (@) and @), that is f(xO) = f(x)
for any O € O,, where O, are all p X p unitary matrices. To this end, mathematically it is proper to consider an
equivalence class for each x € C*":

[x] ={xO : YO € O,},

and a quotient set
CX?/0, :={[x] : Vx € CI*"}.

The quotient set with a proper metric becomes a quotient manifold. It is not uncommon to abuse notation by
letting x denote the equivalent class [x], and X denote one representation of this equivalent class. So we can instead
consider the optimization over the quotient manifold:

_ . 2
minimize h(x) := f(x) = 1 |[xx* - A
xeC>?/0, ) f( ) 2| ”F ' ®)

Following the recent progress in [13] for Riemannian optimization over Hermitian PSD fixed rank manifolds, we
first show that the simple unconstrained Burer-Monteiro CG method (7) is equivalent to a Riemannian CG method
solving (8) over the quotient manifold C."” /O, with the Bures-Wasserstein metric [20] and proper retraction and
vector transport operators. Then with existing Riemannian optimization convergence theory, we can establish the
global convergence of the simple algorithm (7)) to a stationary point of (3). We emphasize that the main result of this
paper is the global convergence proof for the classical simple algorithm (@), and we do not modify the algorithm (Z)
at all. The Riemannian optimization is used only for proving convergence of (), and (Z) should not be implemented
via much more complicated Riemannian optimization over a quotient manifold.

1.5. Related work and contributions

To be more specific, we will show that both the Polak—Ribiére CG method and the Fletcher-Reeves CG method in
(@) are equivalent to their Riemannian variants over the quotient manifold C;*/ O, with the Bures-Wasserstein metric
[20].

Moreover, this equivalence allows us to establish the global convergence of the conventional Fletcher-Reeves CG
method (7)) to a stationary point of (3), following the convergence of the Riemannian Fletcher-Reeves CG method in
[21]. For the problem (@), it has been well known that local minima are also global minima [[17, [18, [19, [11], e.g.,
critical points are either global minima or saddle points. Combined with the result that first-order methods almost

3
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always avoid strict saddle points [22], we obtain a justification of the global convergence of the conventional Fletcher-
Reeves CG method (@) to the global minimizer of @). For the Polak—Ribiére CG method, the convergence is much
harder to establish, but its numerical performance is often superior.

In the literature, notable convergence results for orthogonalization-free methods include global convergence of
perturbed gradient descent for (@) in [[18] and global convergence of TriOFM in [23].

The same CG algorithm (7) was also considered in [[11] for real symmetric matrices. Both our algorithm and
convergence proof also apply to the Hermitian matrices. We also verify the numerical performance of the discussed
algorithms on large matrices of the size millions by millions. In particular, our numerical tests for large matrices are
consistent with the observation in [[11] that the simple CG method () is superior for nearly uniformly distributed
extreme eigenvalues.

This paper mainly focuses on the convergence analysis of the simplest orthogonalization-free method () which
is fully scalable in parallel computing. Developing distributed and parallel numerical implementation will be left as
future work. In the literature, most numerical solvers for eigenvalue problems rely on orthogonalization to achieve
high efficiency in sequential computing. Well-developed algorithms with orthogonalization include [12, 24, 25, 26].
To achieve better parallel efficiency for a full eigendecomposition, spectrum slicing can be applied to estimate different
eigenpairs in different spectrum regions simultaneously [27, 28,129, 130, 31}, 132].

1.6. Outline of this paper

We first review basic concepts and known results for Riemannian quotient manifolds C; ™"/ O, in Section[2] Then
we review the equivalence of the conventional CG method to the Riemannian CG method in Section[3 The conver-
gence proof of the Riemannian CG method is provided in Section[dl In Section[3 we show that the simple coordinate
descent method of minimizing () is also equivalent to a coordinate Riemannian gradient descent method. Section|[6]
includes numerical tests. Concluding remarks are given in Section[7l

2. Preliminaries: Riemannian Quotient Manifold C.” /O,

In this section, we briefly review some known results of the Riemannian geometry of C;” /O, that will be used
in this paper. Any missing details can be found in [13].

2.1. C*" /0, as a quotient manifold

Define C*7 = {X € C™ : rank(X) = p} and an equivalence relation on C*” through the smooth Lie group action
of unitary matrices O, on the manifold C}"":

C’’x0,—> C, (% 0)- *O.

This action defines an equivalence relation on cre by setting X; ~ X, if there exists an O € O, such that X; = x,0.
Hence we have constructed a quotient space C,*” /O, that removes this ambiguity. The set C;"” is called the fotal
space of CI7 |O,,.

Denote the natural projection as

n:Cr7 - Cr7/0,, I - X
We denote the equivalence class containing x as
[x] =7 (x) = {010 € 0,}.

Following Corollary 21.6 and Theorem 21.10 of [33], cre /O, is a smooth manifold as stated in the following
theorem.

Theorem 2.1. The quotient space Ci" /O, is a quotient manifold over R of dimension 2np — p* and has a unique
smooth structure such that the natural projection m is a smooth submersion.

4
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2.2. Vertical space

The equivalence class [X] = 77 1(x) is an embedded submanifold of C**([34, Prop. 3.4.4]). The tangent space of
[x] at X is therefore a subspace of C"™? called the vertical space at x and is denoted by V. The following proposition
characterizes V.

Proposition 2.2. The vertical space at x € [x] = {EOlO € Op}, which is the tangent space of [x] at X is
Vz={3QIQ" = -Q,Q € CP*P}.

2.3. Riemannian metric

A Riemannian metric g is a smoothly varying inner product defined on the tangent space. That is, gz(-,-) is an
inner product on 7C;”. Once we choose a Riemannian metric g for C1”, we can obtain the orthogonal complement
in T<C? of V5 with respect to the metric. In other words, we choose the horizontal distribution as orthogonal
complement w.r.t. Riemannian metric, see [34, Section 3.5.8]. This orthogonal complement to ‘Vx is called horizontal
space at x and is denoted by Hz. We thus have

T;(C::Xp =H:0 V5. )

Once we have the horizontal space, there exists a unique vector E; € Hs that satisfies Dn(})[gy] = &, for each
& € T,CP? /0, This & is called the horizontal lift of £, at X.
In this paper, we consider the Riemannian metric on C} ¥ to be the canonical Euclidean inner product on C™™?
defined by
gw(A, B) := (A, B)owo = R(tr(A*B)), VA,Be T<CP = C™P. (10)

Proposition 2.3. Under metric g defined in (I0), the horizontal space at X satisfies
He = [zeC™P :Xz=77%) = {x(z*x)—‘s +%. KIS*=5,5 eCPP K e <C<"—P>XP}.

2.4. Projections onto vertical space and horizontal space

Due to the direct sum property (9), for our choices of Hy, there exist projection operators for any z € TyCL™? =
C"™P to Hy as
z=PY(2) + PH(A).

It is straightforward to verify the following formulae for projection operators P;y and PZ,“{.

Proposition 2.4. The orthogonal projections of any z € C"™*? to Vs and Hz are
PY(z)=3Q, PH()=z-3Q,
where Q is the skew-symmetric matrix that solves the Lyapunov equation
QX' x+x"xQ =Xx"7-7'x.

Remark 2.5. The solution X to the Lyapunov equation XE + EX = Z for a Hermitian E is unique if E is Hermitian
positive-definite [35, Section 2.2]. Let E = UAU” be the SVD, then the Lyapunov equation XE + EX = Z becomes

(U*XU)A + A(U*XU) = U*ZU,

which gives the solution
(UXU); ;= (U ZU); j/(Aii + Ay j)-
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2.5. (C'ZX”/OP as Riemannian quotient manifold

First, we show in the following lemma the relationship between the horizontal lifts of the quotient tangent vector
¢, lifted at different representatives in [x].

Lemma 2.6. Let n be a vector field on Ci" /O, and let 7] be the horizontal lift of n. Then for eachx € C.", we have
ﬁ}o = ﬁ;O, VO € Op.
Proof. See [35, Prop. A.8] o

Recall from [34, Section 3.6.2] that if the expression g;(%, Z;) does not depend on the choice of X € 7~ (%) for
every x € CI*" /O, and every &,, ¢, € T,C:*?/O,, then

ge &) = gx (6. 55) an

defines a Riemannian metric on the quotient manifold C"”/ O,. By Lemma[2.0] it is straightforward to verify that
the Riemannian metric (I0) on C2™” induces a Riemannian metric on C,’*” /O, defined as (IT). The quotient manifold
cre /O, endowed with a Riemannian metric defined in (I1) is called a Riemannian quotient manifold. By abuse
of notation, we use g for denoting Riemannian metrics on both total space C.*” and quotient space C,”/0,. This
particular metric is also call the Bures-Wasserstein metric for PSD matrices of fixed-rank [20].

2.6. Riemannian gradient

The cost function of (6) induces a cost function on C*” /Op.

h:CY"/0, - C, x B fX). (12)

That is, f = h o n. Notice when we solve (@), we restrict f on the noncompact Stiefel manifold C} ¥, which is a

submanifold of C"?. Hence the Riemannian gradient of f on C,” at X is the projection of the Fréchet gradient of

f on C™P, denoted by V (%), onto the tangent space T=C,” = C™P. Since Vf is already in C"™?, the projection is
identity. That is,

grad () = V(). (13)

Remark 2.7. One can refer to [15, Appendix A] for more details about Fréchet derivative. A Fréchet gradient for
any real-valued function f(X) at X € C"™" can be defined as

VIX) = Vfrao(X) + iV fye (X) € C™, (14)

where V frx)(X), V fx)(X) € R™" are the gradient of f with respect to the real and imaginary parts of X, respec-
tively. In particular, for the cost function considered in this paper f(x) = %Hﬁ* - A|I%, the Fréchet gradient (14)
becomes

VIE) = 2(x" — A)x.

Now consider the Riemannian gradient of i at x € C;*? /O, grad h(x) is a tangent vector in T,C2*” /O, . The next
theorem shows that the horizontal lift of grad 4(x) can be obtained from the Riemannian gradient of f.

Theorem 2.8. The horizontal lift of the Riemannian gradient of h at X is the Riemannian gradient of f at x. That is,
grad h(x); = grad f(%).

Therefore, although grad f(x) belongs in C™?, it is automatically in Hx.

Proof. See [34, Section 3.6.2]. O
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2.7. Retraction

The retraction on the quotient manifold C;*” /O, can be defined using the retraction on the total space C;”. Let
Y € CY, for any Z € C and a step size 7 > 0,

Ry(1Z) :=Y +71Z,

is a retraction on CY? if Y + 7Z remains full rank, which is ensured for small enough 7. Then Lemma 2.6 indicates
that R satisfies the conditions of [34, Prop. 4.1.3], which implies that

R () := n(Re(177)) = n(X + 1775) (15)

defines a retraction on the quotient manifold C} "/ O, for a small enough step size 7 > 0.

2.8. Vector transport

We use differentiated retraction as our vector transport [34, Section 8.1.4].

d
77];(6):) = DRx(r]x)[fx] = E

. R (nx + 1£5). (16)

1=

Notice that

T (&) =

D R, (1.)[€,] = D 7 (Re(775)) [D Re(G)IEx1] = D (% + ) Ry (75 + %)

t=0

(3 + 15 + f%)] =Dr(x+7x) [E}] =Dn(x+75) [P;iﬁ? (E})] :

Dﬂ'(}‘i‘ﬁ;)

E =0
Hence the horizontal lift of a transported vector is simply the projection of the original horizontal lift to the new
horizontal space, as shown in the following formula.

T €y, = Phiz &) (17)

3. The Conjugate Gradient Methods

We first recall the traditional conjugate gradient method for solving (6), which is summarized as Algorithm[Il We
present the abstract Riemannian conjugate gradient method for solving (8) over the quotient manifold as Algorithm[2]
with Wolfe conditions

h(Ry (axmi)) < h(xi) + craxgx (grad A(xi), nx), (18)

|38, (@m0 (grad A(Ry (@), D Ry (@) [mid)| < c2 |, (grad h(xi). me)| - (19)

O<cy<cr <.

The abstract Algorithmlcan be implemented as Algorithm[3] in which each tangent vector is treated as horizontal
lift and each iterate is a representative of its equivalence class, and it is independent of the choice of the representative
of the equivalent class.
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Algorithm 1 (Polak—Ribiére or Fletcher-Reeves) Conjugate Gradient on C™™?
Require: initial iterate xp € C™?, tolerance € > 0, initial descent direction as negative gradient 79 = —V f(xp) =
—2(x0x5 — A)Xo
1: for k=0,1,2,... do
2: Use backtracking to compute the step size a; > 0 satisfying the strong Wolfe conditions
3: Obtain the new iterate by

X+l = Xk + Qi

4: Compute the gradient
&1 1= V(xke1)
5: Check for convergence
if ||€x+11lp < &, then break
6: Compute a conjugate direction by the Polak—Ribiére method or the Fletcher-Reeves method

M+l = =&kt + Btk

VfGre), Vf (ore) = VS (xk») if using Polak-Ribiére

max (0’ Y Fx0, VF(x0)
(Y F i), V fCrnn)
(VP VF(0)

where By =

if using Fletcher-Reeves.

7: end for

Algorithm 2 Riemannian Conjugate Gradient on the quotient manifold C.” /O, with metric g

Require: initial iterate xy € C2” /O,, tolerance & > 0, tangent vector 779 = —grad a(xo)
1: for k=0,1,2,... do
2: Compute the step size a; > 0 satisfying the strong Wolfe conditions (I8) and (19)
3: Obtain the new iterate by retraction

Xk+1 = RXk (aknk)

4: Compute the gradient
&1 1= grad h(xg,1)
5: Check for convergence

if [|Ees1ll := @xr (k15 Ev1) < &, then break

6: Compute a conjugate direction by the Polak—Ribiére (PR, ) method or the Fletcher-Reeves (FR) method, and
vector transport

Mir1 = —Eks1 + Bra1 T o, (M)

2v,., (grad h(xe,1), grad h(xes1) = To, (&)
gx, (grad h(xy), grad h(xy))

8. (grad A(xpy1), grad h(xp41))
gx, (grad h(xy), grad h(xy))

max |0, PR,

where By =

FR

7: end for
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Algorithm 3 Implementation for Riemannian Conjugate Gradient on the quotient manifold C;*” /O, with metric g

Require: initial iterate Xy € C.*”, tolerance & > 0, initial descent direction as 7y = —grad f(xp) = —2(xpx, — A)Xo
1: for k=0,1,2,... do
2: Compute the step size a; > 0 satisfying the strong Wolfe conditions
3: Obtain the new iterate by retraction

Tea1 = Ry () = X + iy

4: Compute the horizontal lift of gradient
Ear = grad f (K1) = 2(Fs1 X — A)Xka 1
5: Check for convergence
if ”Elm” =8 (k15 €xr1) < & then break
6: Compute a conjugate direction by PR, or by FR and vector transport

ﬁk+l = _§k+l +ﬂk+l7—aknk(nk)}k+]

8% (gradf(}k‘” ), grad f(Xe+1) — ﬁlkﬂk(fk)}kﬂ)
max |0, — a7 0o, grad 1050) PR,
where By = g, (grad f(%p), g X
xer (grad f(Xpr1), grad f(Xes1)) =

gx, (grad f(Xx), grad f(xy))

7: end for

The following results were first proven in [[15]. For completeness, we include a detailed proof.

Lemma 3.1. Let 1 be the descent direction generated by Algorithm[2l Then we have
Tamk(r]k)}k“ = PjTIcZJrakﬁk (ﬁk) = ﬁk' (20)

Proof. The first equality follows from (I7). Recall the projection formula given in proposition 2.4l Denote X, =
X + ;1. Then we have

lH — _ = —
P e, (M) = T = X1 Qe 21
Hence in order to show P;—k{"'(lkﬁk (M) = 1. it is equivalent to show the Lyapunov equation
QX1 Xt + Xy Xirt Qe = X M — MieXkert (22)

only has trivial solution ; = 0 for all k£ > 0.

The solution X to the Lyapunov equation XE + EX = Z for a Hermitian E is unique if £ is Hermitian positive-
definite [35, Section 2.2]. Thus (22)) has a unique solution if Xz, € C™?_ Thus we only need to show the right-hand
side of the equation is zero. We prove this by induction.

When k = 0, the right hand side of 22) is

}Tﬁo - ﬁf)}] = (}0 + (Ioﬁo)*ﬁo — ﬁS(EO + (Ioﬁo) = E(’;ﬁo — ﬁfﬁo = —2}6(}0}6 —A)xp + 238(}0}8 — A*)}() =0.

Now suppose X77;_; — Tr—1Xx = 0 and hence Pf_fk’(ﬁk_l) =17;_,- Then

YT = MXiet = (R + ) N = MK + udly) = Xl — X
= X (_Ek +:8kP;:(ﬁk—l)) - (_Ek +ﬁkP§Z(ﬁk_1)) X =X (_Ek +,3kﬁk—1) - (_Ek +,3kﬁk—1) Xk
= —XE +EX = 22X (X, — A)Xy + 22X (X, — A = 0.

Hence P;{ ](ﬁk) = 77, also holds and we have proved this lemma. o
9
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‘We can now state our first main result:

Theorem 3.2. Algorithm[3|is equivalent to Algorithm|l] which is the conjugate gradient method solving (@), in the
sense that they produce exactly the same iterates if started from the same initial point.

Proof. By ([13), the gradients generated by Algorithm [I] and Algorithm [3] are the same. By Lemma [3.1] and the
equivalence between the Riemannian metric on C*” and the inner product on C"*?, we see that 8, generated by these
two algorithms are also equivalent. Hence the conjugate directions are also the same. So the two algorithms generate
the same iterates. O

4. The Convergence of the Fletcher-Reeves Conjugate Gradient Method

In this section, we will prove that the Riemannian Fletcher-Reeves Conjugate Gradient method converges to a
stationary point thus Algorithm[T]also converges by the equivalence Theorem[3.2]

The discussion in this section follows the same lines as in standard convergence theory, e.g., [21]. The cost
function and vector transport considered in this paper satisfy the conditions for convergence analysis in [21]. Many
results in this section are standard convergence results for a line search method, see [[16]. For completeness, we
include the full proof.

Letn € Tka',ZXP /O, be a descent direction. Define the angle 6; between —grad i(x;) and 17 by

8 (grad h(xe), i)
|lgrad AC)|, limell,,”

cos O = (23)

Let £:={x e CY?/0, : 0 < h(x) < h(xo)} and 77 '(£L) = {x € C;7 : 0 < f(X) < f(Xo)}. We can show that 77! (L)
is bounded.

Lemma 4.1. There is a constant C such that || < C, VY% e n /(L.

Proof Assume it is not true, then Va € N, 3%, € n~'(L) such that ||%,||r > n. Lety, = ﬁ, then |[y,|lr = 1 and

%0 = I%allFyn = @nyn with @, > n. Thus f(%,) = $llay.y; — Al — oo since a, — oo and |ly,|l = 1. On the other
hand, %, € 7~ '(£) implies that f(%,) should be bounded, which is a contradiction. O

Lemma 4.2. The Riemannian gradient of f, i.e., grad f(X) = 2(xx* — A)X is Lipschitz continuous on n~'(L). That is,
there exists a constant L > 0 such that

ligrad f3) — grad f@|lp < LIy =y,  forall %,y € n(L). (24)

Proof. 1t suffices to show that ¢ : X = Xx'X is Lipschitz continuous on 7~'(£). Let X,y € 7~'(£). Then |[x|l <
C, |yl < C by Lemma[dE2l

lg® - gl =[x, = [T - =+ =5 -,
< -3 + [y -3 = [P -3 + Ry - 5y 5% - 55
< =%+ [y - 35+ EY -5
< /IR =3l + 17 =l 7] 15 + 1[5 = 5] 151 < 3C2 1% =3l

O

Theorem 4.3 (Zoutendijk’s theorem on manifold). Let 1 be a descent direction and let «y satisfy the strong Wolfe
conditions (I8) and (19). Then for the cost function h defined in[I2] the following series converges.

oo

Z cos® O llgrad h(xp)|I}, < oo.
%

10
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Proof. From the strong Wolfe condition (I9) we have

IA

8xeny ((grad ARy, (i), D Ry (i) i) — g, (grad A(xx), mi)
gv, (grad fi + o), P, = (10) = g (grad £(%0), 7)
= 8% (grad f(}k + a’kﬁk)7 ﬁk) — 8% (grad f(}k)a ﬁk) .

(c2 = D)gu(grad h(x), mi)

Notice that our Riemannian metric g is simply the inner product on the Euclidean space C"™?, hence

g5 (grad f(xx + aumy), i) — gz, (grad f(), 1) = (grad f(xx + au7,) — grad f(3x), 7. - (25)
From Lemmald.2] we know

(grad f(X¢ + auyy) — grad f(Xi), 7)) < axL ||ﬁk||i~

Hence for any k£ we have
_ (c2= Dgy,(grad (). )

(26)
— 2
L
Now it follows from (I8) and 26) that
0 <h(xre) < h(x) + craggy, (grad h(xi), 17x)
all-—c) > all-c) s, >
< h(x) - -1 cos” 6, ngadh(xk)llxk < h(xp) — -1 Zcos 0; ||gradh(x_,')”x‘.
/=0 ’
Hence .
2 L
Zcos2 Ok [Jgrad (x| < () < oo, 27)
=0 ci(l =)
O

Lemma 4.4. If using Fletcher-Reeves method in Algorithm then for 0 < ¢ < ¢ < 1/2, the search direction 1 is a
descent direction satisfying
1 gulgradhtnm) _ 26— |
l—c2 ™ lgradh(xpl, ~— 1-c2’

(28)
Proof. We prove it by induction on k.
When k = 0, (28) holds since

8x(grad i(xo), 110) _ 8 (gradfi(xo), —grad i(xo)) _
lgrad hCxo)|[} lerad o),

Now suppose (28) holds for some k > 0.
Recall that we use differentiated retraction as our vector transport:

T ey (M) = D Ry (i) [17x]-
And the B in Fletcher-Reeves method is defined as

By = B (grad h(xr1), grad h(xe.1))
T g, (grad h(x), grad h(xy))

Hence the middle term in @28) for k + 1 is

8., (@radh(xe ). mee) 8 (grad h(xe+1), —grad h(xe.1) + ﬂkn‘Tam(nk))

jerad |}, |l e,
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8, (grad h(xis1), —grad h(xe.1) + Brs1 D Ry, (axmi)[1x]))
2
[lerad hGx D[,
4 S (grad h(xe+1)), D Ry, (axmpi) [17x])

- -] . (29)
lerad A,
From the strong Wolfe condition (I9) we have
28 (grad h(xi), M) < gx,., (grad h(xi+1), D Ry, (imi)[mi]) < —c2gx, (grad h(xe), mi). (30)
Hence from (29) and (30) we have
B 2gxk(graxd h(xi), ni) < S (grad A(xgs1), ks1) < l-¢ 8x.(grad h(xy), le).
H grad h(x")”i | grad A(xp )||)2(k“ || grad h(x")”i
And the result (2Z8) follows from the induction hypothesis.
(]

Theorem 4.5. For cost function h in (12), the Algorithm 2] with Fletcher-Reeves method generates iterates x; such
that
lilgn inf [lgrad h(x)l,, = 0. (€20

Proof. If grad h(x;) = 0 for some k = ko. Then grad h(x;) = O for all k > ko.
So we consider grad i(x;) # 0 for all k. We shall prove (BI) by contradiction. Suppose (3I)) does not hold. Then
there exists a constant ¢ > 0 such that

[lgrad ()|, 2 ¢ >0, Vk=o0. 32)
From (23)) and (28) we have

1 - 2¢, lerad G,

cos b > (33)
I-c (177,
It follows by Theorem[4.3] that the following series converges.
0 ”grad h(xk)”i
o — (34)
k=0 ”r]k”xk
For k > 1, the strong Wolfe condition (I9) and 28)) gives rise to
25 (grad h(xp), Tak_,,]k_,(nk,l))' < —cagy, (grad h(x-1), mi-1) < 1 izcz ||grad h(xk*1)||ik,l .
Hence we have the following recurrence equation for ”77/<”J2cw
I, = [|-grad hCx) + BTy, u)|f,
< lerad e, + 28e[g (grad h, Toe in, O50)| + B [T om0,
2
< Neranoll} + 1= Aullerad Il + B 1Tor e e,
2
= Neradnell; + 7= lerad il + B 7o s,
1
= - h Z lgrad ), + B2 1T me-n)[ - 35)

12



/ (2023) 1123 13
Recall that we use differentiated retraction as our vector transport:

T s (1) = DRy (@ame 1)1l = Dy + vl [PE L, 0 ()] -

Hence

”ka-ﬂ]k-l(nkfl)”ik = 8u (ka e Me=1)s T oy |(77k*1)) = ng( a1 (k= 1) T s (k- l)xk)

H
= en (P2 i O PE o 2 i) = g5 (s Tieey) = el -

Hence (33) becomes the following recurrence formula for ||r]k||)2(k.

lmell?, _—IIgradh<xk>|| + B2 i, - (36)

By recursively using (33) and recall the definition of 3, in Fletcher-Reeves method we obtain

I, < % (leraa o, + 82 lrad cuvf,, +++-+ 262, .. 3 erad e, )
+BiBi- ---Bo ol
- ) (”gradh(xk)” + |lerad || 7+ ~+ngadh(xk)||;|2)
+ lerad hoo)|[, flerad oo
PR DR s s k+1
< xk;ngadh(xj)”xj = lerad AGe)[;

where we have used the contradiction assumption (32) in the last inequality. (37) results in the divergence of the
following series.

4
©_ |lerad h(xy) 1 _
Slioll o1zast -
— lImll?, 1 + k+1
This contradicts to (34) and hence we have completed the proof. o

In general, it is more difficult to prove the convergence of the Riemannian PR, CG method. It is possible to extend
the convergence proof of PR, CG method in [36] to Riemannian PR, CG method, but it is beyond the scope of this

paper.

5. Coordinate Riemannian Gradient Descent (CRGD)

The orthogonalization-free methods are preferred for large scale problems. For much larger problems, the coor-
dinate descent method is favored, since the full gradient can be too large to even store. For instance, the coordinate
gradient descent method for finding leading eigenvalue in [19] is the coordinate descent method for minimizing (6)
with rank p = 1. In this section, following the same Riemannian manifold notation as in previous sections, we show
that the a Riemmanian coordinate descent method is also equivalent to the coordinate descent method for minimizing
(6) with any rank p > 0, which is the generalization of the algorithm in [19].

In [37], a method called the tangent subspace descent method was proposed: this method generalized the block
coordinate descent method to manifold settings. Instead of updating the full gradient at each iteration, the tangent
direction in each update is a projected vector of the full Riemannian gradient to a subspace of the tangent space by
some subspace selection rule Py. In the specific case of C}” /O, considered in this paper, this method is written as
Algorithm[d] and we denote it as Coordinate Riemannian Gradient Descent (CRGD).

13
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Since the horizontal lift of grad h(x;) is a n-by-p matrix, we can simply choose the subspace selection rule by
cyclically selecting the N-column block of the n-by-p matrix grad f(x;). Let My denote the mask that evaluates the
k-th N-column block of a n-by-p matrix cyclically. That is, if Z is a n-by-p matrix, then

M (Z) = Zins1:+ DN, (38)

where Ziy+1.k+1)n,: denotes the N-by-p matrix that takes the (kN + 1)-th to (k + 1)N-th columns of Z. And the index
that exceeds the matrix range is understood as modulo by the matrix size, namely, cyclically. Then our update to Xy, is
written through the following

T = Ry, (@Mi(grad fG)), (39)

where « is a constant step size.
With the simple retraction as in Section[2.7] (39) simply reduces to

Xps1 = Xpa1 — AMp2(axy, — A)Xp). (40)

Notice that @Q) with p = 1 and N = 1 reduces to the coordinate descent method for the leading eigenvalue in [19]. In
particular, if p = 1 and we set N = 1 and Py in Algorithm @] to be M, defined in (38), then Algorithm[@lis equivalent
to Algorithm 2 in [[19]. So the generalization of the method in [[19] to top p eigenvalues can be equivalently written as
@0 or (39), which is a Riemannian coordinate descent method.

To take the advantage of CRGD to solve large-scaled problems, one should implement it through compact imple-
mentation. That is, each update should only depend on the block size N and should be independent of the problem
size n. In the case of eigenvalue problem, f(X) = % ”ﬁ* - AHi If we assume that A is a sparse matrix such that we
can achieve M;(Av) in O(N), then we can indeed achieve a compact implementation of CRGD as in Algorithm[3}

Algorithm 4 Coordinate Riemannian gradient descent (CRGD) on the quotient manifold crr /O, with metric g

Require: initial iterate xy € cr /O,, tolerance & > 0, tangent vector & = —grad ii(xy), subspace selection rule Py,
0o := Po(&), stepsize a > 0.
1: for k=0,1,2,... do

2: Obtain the new iterate by retraction
X1 = Ry (ady)
3: Compute the projection of &y := —grad h(xi41) to a subspace of Ty, C™? /O,
O+t 1= Pre1(€e1)
4: Check for convergence
if [|6k+11l := /8xi. (Ok+1, Ok+1) < &, then break
5: end for

6. Numerical Experiments

The numerical performance of the simple CG methods (@) has been well studied in the literature, e.g., see [11] for
a comparison with other orthogonalization-free methods. In general, the performance of (7)) for solving (6) depends
on the spectrum of the matrix A. For completeness, in this section we verify the numerical performance of the simple
CG methods () on large matrices A.

6.1. Real symmetric PSD matrices

We consider two types of matrices A. The first type is a 2D Laplacian matrix, which has a nearly uniform
eigenvalue gap for a few top eigenvalues. Consider the discretization of a 2D Poisson equation with homogeneous
Dirichlet boundary conditions on [0, 1] X [0, 1] using m-by-m interior grid points. Then the matrix representing the
Laplacian operator is a 2D Laplacian matrix A of size m>-by-m? given as

1 1
A= —K&I,+1,® —K, 41

Ax? Ay? @1
14
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Algorithm 5 Compact implementation for cyclic coordinate Riemannian gradient descent on the quotient manifold
CY? /0, with metric g

Require: initial iterate Xy € Cy, 5, = —grad f(xy) € C™P, first N columns of 7p: 6o = Mo(7), ao = X5 X0,
bo = 6 x0, co = 600, stepsize a > 0, 5o = ag + aby + ab}, + a*cy, tolerance & > 0.
1: for k=0,1,2,... do

2: Obtain the new iterate by retraction
Y1 = Ry (@6y) = X + ady
3: Cyclically compute the next N columns of 77, ; = —grad f(Xe+1) B
Okt := —2Mp 1 (Xsi) = 20Miy1 (SxSk) + 2Ms1 (AXy) + 2 M1 (Ady)
4: Check for convergence
if |[Sks1]| := /g5, Brr1s Oxe1) < &, then break
5: Compute and update a1, bi+1, Crri

— —% —k—

Ars1 = G + X0 + A0 X5 + 26,0k
—

bie1 = 6k+1xk+1

—x
Ckal = Opy1Oks1

6: Compute temporary variable sy, € CP*P
Skil = Qg1 + @bgyr +abp + @
7: end for
where Ax = Ay = ﬁ and K is a m-by-m tridiagonal matrix.
[2 -1
-1 2 -1
-1 2 -1
K= o (42)
-1 2 -1
-1 2|

The second type is constructed by eigenvalue decomposition A = VAV~! where eigenvectors V are given by
discrete cosine transform. We assign A so that the eigenvalues A; have four types of distribution of eigenvalues,
similar to the numerical experiments considered in [11] but with a much larger matrix size:

1. (random) 4; ~ |N(O, 1), where N(O, 1) is standard normal distribution.
2. (uniform) A; = 1 — % 1<i<r

bl

_ 14 _ 10 _ 8 _ 1 _ 5 _ 1
3' (u_Sha’pe)/ll E’/IZ_E’/l3_ﬁa/l4—ﬁ,/ls—ﬁ,/l[—ﬁ.

. _ 21+Uog2uJ L .
4. (logarithm) A; = — 1<i<r

We first compare the simple CG methods (Z) with the TriOFM method in [[23] for a 2D discrete Laplacian matrix,
shown in Figure[1l

Next, we compare TriOFM, CG and LOBPCG for different distributed eigenvalues. We use Algorithm 1 in [[14] as
the orthogonalization-free LOBPCG method in numerical tests. The comparison is shown for randomly distributed
eigenvalues in Figure2] uniformly distributed eigenvalues in Figure[3] U-shape distribution of eigenvalues in Figured]
and log distribution of eigenvalues in Figure[3l In all these comparisions, the orthogonalization-free LOBPCG method
is the most efficient one. Notice that the simple CG-PR method is much less efficient than the TriOFM method for the
log distribution of eigenvalues. However, this slowness is due to the eigenvalue gap between o, and 0, 1. In Figure
[@ the top p eigenvalues with p = 5 have a log distribution but the gap between o, and o+ is enlarged by shifting
the top p eigenvalues from the same matrix in Figure[3] and we observe that the simple CG-PR method is efficient in

15
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this scenario. In other words, the matrix in Figure 5 has eigenvalues A; > A, > --- > A, and the matrix in Figure
has eigenvalues 41 +C 2 A, +C 2 24, +C 2 Ay 2 -+ 2 A,

10% : : 10% :
z ~5-TriOFM-0bj2(OMM) z ~5-TriOFM-0bj2(OMM)
~+ CG-PR ~+ CG-PR
1072 CG-FR 102 CG-FR

Relative Error
>
N

Relative Error
)
N
=)
&

-
<
>

-
o
9
-
S
-3

0.5 1 1.5 2 25 5000 10000 15000
Iteration x10* CPU Time

o
o

(a) Relative error vs iteration (b) Relative error vs CPU time

Figure 1. Comparison for computing the top-10 eigenvalues of a 2D Laplacian matrix of size 10° x 10°.
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O 102 S | O 1102 't
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= § ¢ =2
S 4 4 ey <4
10 ‘ \
& y % 2"
+ \
By ]
+ \
Y ]
10°® N ‘ ‘ b 10°®
0 50 100 150 200 250 0
Iteration CPU Time
(a) Relative error vs iteration (b) Relative error vs CPU time

Figure 2. Comparison for computing the top-10-eigenvalue problem of a 10*-by-10* matrix with randomly distributed eigenvalues.
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Figure 3. Comparison for computing the top-10-eigenvalue problem of a 10*-by-10* matrix with uniformly distributed eigenvalues.
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Figure 4. Comparison for computing the top-10-eigenvalue problem of a 10*-by-10* matrix with U-shape distributed eigenvalues.
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Figure 5. Comparison for computing the top-5-eigenvalue problem of a 10*-by-10* matrix with logarithm distributed eigenvalues.
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Figure 6. Comparison for computing the top-5-eigenvalue problem of a 10*-by-10* matrix with eigenvalues 1y + C > 1 +C > --- > 15 +C >
Asy1 = -+ = Ay, where C = A1 and 41 > Ap > --- > 4, has a log distribution.

6.2. Hermitian PSD matrices

It is shown in [IE] that Algorithm 2] can be used for finding the top eigenvalues of a Hermitian PSD matrix. We
test Algorithm 2] on [6] for a matrix A with eigenvectors defined by 2D Fast Fourier Transform. Namely, the linear

operator of applying A to a 2D array u is defined by

Au = if fR2(Z. = ff2(w)),

where .+ denotes the entrywise product and X is a 2D array consisting of nonnegative eigenvalues of A.
The performance of the CG-PR method is shown in Figure [7] for four kinds of eigenvalue distributions in such a

Hermitian PSD matrix.
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Figure 7. The CG-PR method for the top-10-eigenvalue problem with rank-1000 Hermitian matrices of 10°-by-10° with different distributions of
eigenvalues.

6.3. Smallest eigenvalues
6.3.1. Inverse 2D Laplacian matrix

One technique to find the smallest eigenvalues of a given invertible matrix A is through the shift-and-inverse
method. That is, to find the largest eigenvalues of (A + u)~!, where u > 0 is a shift constant such that A + uI becomes
positive definite. We use this method to find the smallest eigenvalues of the 2D Laplacian matrix A as in (1.

Notice that the top eigenvalues of A~! almost follow a logarithm distribution. Based on our observation, we
can choose y appropriately to make the top eigenvalues of (A + ul)~! have a uniform distribution to accelerate the
convergence of the CG method. Since we know the true eigenvalues of A, we shift it by choosing u to be the smallest
desired eigenvalue. That is, suppose the smallest r eigenvalues of A is 0y < 05 < -+ < 0. Then we choose u = ;.
As a result the top eigenvalues of (A + uI)~! would be mlm > Uzlm > 2 Urlm that almost follows a uniform
distribution. A fast matrix inversion is implemented by using the eigendecomposition of the matrix. The performance
is shown in Figure[8land Figure [0l
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0 50 100 150 0 100 200 300 400
Iteration CPU Time
(a) Relative error vs iteration (b) Relative error vs CPU time

Figure 8. The shift-and-inverse method on the smallest-10-eigenvalue problem of a 10%-by-10° 2D-Laplacian matrix.
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Figure 9. The shift-and-inverse method on the smallest-3-eigenvalue problem of a 106-by-10° 2D-Laplacian matrix.

6.3.2. Negative 2D Laplacian matrix

Another way to find the smallest eigenvalues of a given matrix A is through the negative-shift method. That is,
to consider finding the largest eigenvalues of ul — A, where y > 0 is a shift constant such that u/ — A is positive
semi-definite. We use this method to find the smallest eigenvalues of the 2D Laplacian matrix defined in (1.

Notice we need to shift at least the largest eigenvalue of A to ensure that u/ — A is PSD. And once we find the top
eigenvalues of I — A we need to shift back and extract the smallest eigenvalues of A by computing u — (1 — o), where
o’s are the smallest eigenvalues of A. Hence when the condition number of A is bad, i.e., if u >> o, then we might
lose a significant number of digits of accuracy for computing u — (¢ — o). In our numerical tests, we did not encounter
this numerical accuracy issue. The performance is shown in Figure[IQl Notice that the negative-shift method is much
slower than the shift-and-inverse method, because of the different distributions of the largest eigenvalues of ul — A

and (A + ul)~".

(a) Relative error vs iteration
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(b) Relative error vs CPU time

Figure 10. The negative-shift method on the smallest-10-eigenvalue problem of a 10°-by-10° 2D-Laplacian matrix.

6.4. Negative 3D Laplacian matrix
We repeat the same test as in previous subsection for a larger problem of finding the smallest eigenvalues of a
3D discrete Laplacian on a 500° grid, which corresponds to a matrix of size 1.25E8x1.25E8. We implement both the
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simple CG method (7) and TriOFM method on a Nvidia GPU A100 80G.
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Figure 11. The shift-and-inverse method on the smallest-3-eigenvalue problem of a 3D-Laplacian matrix on a 500 grid. The matrix size is
1.25E8x1.25E8. Computation was done on Nvidia GPU A100 80G.

6.5. Coordinate Riemannian gradient descent

We consider applying the coordinate Riemannian gradient descent method described in Section[3lto a 1D Laplacian
matrix of size n-by-n given byA = ﬁK , where Ax = n}r—l and K is the tridiagonal matrix defined in (42). This example
is only for the demonstration purpose of the coordinate gradient descent method. Choosing this simple A makes it
easy for the compact implementation of the matrix-vector multiplication of Au. One can also apply this method to any
sparse matrix A as long as one has the compact implementation of M;(Au) in O(N), where N is a constant independent
of the problem size n.

As we can see from Figure the CPU time for running the first 3000 iterations is independent of problem size.
This demonstrated the O(1) computational complexity of the coordinate Riemannian gradient descent method for

leading eigenpairs.

10 T T 100L
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(a) CPU time of the first 3000 iterations vs problem size n = 100 * (b) Relative error vs iteration. Problem size n = 100 % 2°. Each
2K for k goes from 4 to 13. Each iteration cyclically updates N = iteration cyclically updates N = 100 columns with constant step
1000 columns. size 10710,

Figure 12. Coordinate Riemannian gradient descent for solving the top-10 eigenvalues of a Laplacian matrix.
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7. Conclusions

In this paper we have studied the orthogonalization-free method to find leading eigenpairs of a positive semi-
definite Hermitian matrix via an unconstrained Burer-Monteiro formulation. For this optimization problem, we have
shown the equivalence between the nonlinear conjugate gradient method and a Riemannian conjugate gradient method
on a quotient manifold with the Bures-Wasserstein metric, leading to a new understanding of the global convergence
of the nonlinear conjugate gradient method in Burer-Monteiro formulation to a stationary point. We have also shown
that the simple coordinate descent method in Burer-Monteiro formulation is equivalent to a coordinate Riemannian
gradient descent method. Numerical tests on large scale matrices have verified the numerical performance of the sim-
ple conjugate gradient method in Burer-Monteiro formulation for computing leading eigen-pairs, which is consistent
with findings in the literatue.
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