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A B S T R A C T   

The Type-II Twin Boundary (TB) is a critical interface in functional materials whose irrational 
Miller-index identity has recently drawn significant research interest. This study establishes 
general structural characteristics of the Type-II twin interface, utilizing TBs in Shape Memory 
Alloys (SMAs) - TiPd, TiPt, and AuCd - as study targets. It is shown how the irrational identity of 
each TB is explained by the Terrace-Disconnection (T-D) structural topology. It is proposed that 
the terrace is the rational-plane nearest to the irrational TB in the reciprocal space, having in-
tegral Miller-indices of least magnitude. Crystallographic-registry on this terrace requires non- 
trivial coherence-strains. A novel kinematic-origin of the coherence-strain is proposed, coming 
directly from a transformation of the classical twinning deformation-gradient. This trans-
formation revealed that the classical twinning-shear partitions into the coherence-strain and a 
new metric termed the “terrace-shear”. It is shown that the magnitude of shear relating the twin- 
structure to the matrix is the terrace-shear and not the twinning-shear, contrary to classical un-
derstanding. Furthermore, the Burgers vector of the twinning disconnection is shown to be related 
directly to the terrace-shear. The energy of each Type-II interface is determined from ab initio 
Density Functional Theory (DFT) calculations. It is shown that the energy-minimal atomic- 
structure on the terrace requires determination of a “lattice-offset” that is non-trivial and un-
known apriori. In summary, this study expounds on T-D topological structure of Type-II twin 
interfaces, establishing methods to identify rational terraces, coherence strains, ab initio planar 
TB energies and revealing a unique partitioning of the twinning-shear exhibited by this class of 
interfaces.   

1. Introduction 

Twin Boundaries (TBs) are ubiquitous interfaces prominent in multiple materials spanning structural, functional, semiconductor, 
and two-dimensional materials (Gengor et al., 2021; Jozaghi et al., 2022; Rooney et al., 2018; Rothmann et al., 2017; Wang et al., 
2015; Zárubová et al., 2010). In these materials, TBs critically influence properties such as material strength (Lu, 2016; Zhang et al., 
2017; Zhao et al., 2021), strain-hardening capacity (Bönisch et al., 2018a; Bönisch et al., 2018b; Celebi et al., 2022; Chowdhury et al., 
2016b), fatigue-resistance (Alkan et al., 2016; Chowdhury et al., 2016a, 2016b), functional/actuating characteristics (Bucsek et al., 
2019; Mohammed and Sehitoglu, 2020a; Müllner et al., 2003; Sidharth et al., 2021; Šittner et al., 2020) and electron-transport 
properties (Blömers et al., 2011; Qian et al., 2015). In addition to their technological relevance, TB structures are scientifically 
instructive as they portray versatile behaviors across the spectrum of interface-coherency (from fully-coherent, to semi-coherent and 
also incoherent) and serve as benchmarks to understand grain boundaries and other crystalline interfaces in general (Beyerlein et al., 
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2014; Mohammed and Sehitoglu, 2020b; Zhu et al., 2022). Therefore, it is vital to develop a thorough understanding of the structure 
and energies of twin interfaces. 

This study focuses on TBs in the class of functional materials known as Shape Memory Alloys (SMAs), where twinning is widely 
prevalent as a mode of Lattice-Invariant-Deformation (LID) accompanying phase-transformation mechanisms in the material. A 
prevalent twinning mode in these materials is the Type-II twin mode (Adachi et al., 1986; Hara et al., 1992; Knowles, 1982; Liu and 
Dunne, 2003; Morii et al., 1991; Nishida et al., 1997, 2008b; Okamoto et al., 1986; Xie and Liu, 2004; Zou et al., 2018) where the 
type-classification comes from the relation between the lattice-orientations of the twin variants. Three major orientation relationships 
were defined by the classical theory of deformation twinning (Bilby and Crocker, 1965; Christian and Mahajan, 1995), presented here 
in brief for the reader’s convenience:  

I. Type I twins: The lattices of the twin variants are related by mirror symmetry with the TB being the mirror plane  
II. Type II twins: The lattices of the twin variants are related by a 180◦ rotational symmetry about an axis along the direction of 

twinning shear  
III. Compound twins: The lattices of the twin variants obey both symmetries defining Type-I and Type-II twins. 

The nature of symmetry obeyed by the twin-variants in Type-I and Compound twinning modes allow their TBs to exhibit rational 
Miller-index identities, defining an unambiguous crystallographic plane for the TB. Type-II TBs, on the other hand, uniquely distin-
guish themselves by exhibiting irrational Miller indices. Their underlying structure is consequently more complex and has been a topic 
of recent research interest (Hirth and Wang, 2021; Karki et al., 2020; Mohammed and Sehitoglu, 2020b, 2021; Müllner, 2019; Pond 
and Hirth, 2018; Pond et al., 2019). 

The presence and mobility of Type-II twins has important implications to mechanical behavior of SMAs. Fatigue in SMAs is gov-
erned by cyclic accumulation of transformation-induced plastic strains, known to be caused by the emission of slip-dislocations from 
internal martensitic TBs (Kajiwara and Kikuchi, 1982; Kajiwara and Owen, 1973; Mohammed and Sehitoglu, 2020a; Norfleet et al., 
2009; Simon et al., 2010). The equilibrium TB energy dictates the twin density accompanying the martensitic transformation, 
consequently impacting the propensity for transformation-induced plasticity and fatigue. The mobility of the TB influences the ease of 
TB migration and detwinning, impacting the functional performance of ferromagnetic SMAs such as NiMnGa (Heczko, 2014; Zou et al., 
2018). The role of TB disconnections in dictating twinning mechanisms and TB mobility has also drawn significant research attention, 
especially in recent times (Gong et al., 2021, 2022; Hirth et al., 2020; Li et al., 2023; Wang et al., 2024; Xu et al., 2022). Therefore, a 
clear understanding of the structure, topology, and energy of Type II TBs is a necessary precursor to assess their influence on me-
chanical behavior of SMAs. 

The Terrace-Disconnection (T-D) topology has been recently proposed as an energetically-favorable structural model for the 
irrationality of the Type II TB, reconciling with experimental results and the topologies of TBs of other types (Type I and Compound) 
(Mohammed and Sehitoglu, 2021). Briefly, the T-D topology explains the irrationality as an array of periodically spaced twinning 
disconnections residing on a rational terrace plane, such that the effective stepped-structure exhibits an irrational identity. Previously, 
significant focus has been attributed to the NiTi system, where the scientific and commercial success of the material’s functionality 
fostered strong prior research on experimental and modeling fronts directed toward understanding its Type-II TB (Ezaz and Sehitoglu, 
2011; Knowles, 1982; Knowles and Smith, 1981; Liu and Xie, 2003; Mohammed and Sehitoglu, 2020b; Nishida et al., 2008a, 1995a; 
Pond et al., 2019; Xie and Liu, 2004). This study examines the applicability of the Terrace-Disconnection (T-D) topology to explain 
irrationality of the Type II TBs in other SMAs (namely TiPd, TiPt and AuCd) and determine the energies of the interface. By doing so, 
the goal is to develop a general framework to model Type II TBs in general and to reveal novel characteristics of the irrational TB that 
have broader relevance beyond a given specific alloy system. Experimental evidence of Type II TBs in the selected SMAs can be found 
in refs. (Morii et al., 1991; Nishida et al., 1997, 2008b), for instance. 

Table 1 lists all the lattice parameters, atomic positions, and crystallography of the twin interfaces considered in this study. The 3 
SMAs considered exhibit a B2 austenitic phase and transform to a B19-orthorhombic martensitic phase. The B19 phase has been 
proposed to be similar to the Hexagonal Close-Packed (HCP) phase, based on parallels drawn between the B2-to-B19 transformation 

Table 1 
Crystallography of Type II TBs in SMAs considered in this study (the indices of K1 are calculated following the procedure outlined in Appendix A).  

Material Austenitic crystal structure Martensitic crystal 
structure 

Lattice-Motif atomic positions Crystallography of Type II Twin 
Boundary 

TiPd B2 cubic 
a0 = 3.18 Å 
(Donkersloot and Van Vucht, 
1970) 

B19 Orthorhombic 
a = 4.89 Å, b = 2.81 Å, 
c = 4.56 Å 
(Dwight et al., 1965) 

Ti (0,0,0), (0.402,0,0.5)
Pd (0.89,0.5,0.5), (0.512,0.5,0)
(Ye et al., 1997) 

K1 = (1 0.678 0.356)
η1 = [121], s = 0.361 

TiPt B2 cubic 
a0 = 3.192 Å 
(Donkersloot and Van Vucht, 
1970) 

B19 Orthorhombic 
a = 4.84 Å, b = 2.76 Å, 
c = 4.59 Å 
(Dwight et al., 1965) 

Ti (0,0,0), (0.394, 0.0,0.5)
Pt (0.885, 0.5,0.5), (0.509,0.5,0)
(Ye et al., 1997) 

K1 = (1 0.748 0.497)
η1 = [121], s = 0.386 

AuCd B2 cubic 
a0 = 3.323 Å 
(Morii et al., 1991) 

B19 Orthorhombic 
a = 4.86 Å, b = 3.15 Å, 
c = 4.766 Å 
(Ohba et al., 1990) 

Cd (0,0,0), (0.41,0,0.5)
Au (0.9053,0.5,0.5), (0.5047,0.5,
0)
(Ohba et al., 1990) 

K1 = (1 0.786 0.572)
η1 = [121], s = 0.156  
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and Body-Centered-Cubic (BCC)-to-HCP transformation mechanisms (Huang et al., 2003). A theoretical analysis of the 
cubic-to-orthorhombic phase-change based on the phenomenological theory of martensitic transformation can be found in ref. (Lie-
berman et al., 1955). Martensitic phases generally exhibit high yield stresses for slip (Sehitoglu et al., 2000) in SMAs and deform 
through internal detwinning or TB migration. Three evident twinning modes in the B19 phase is the {111} Type I twin mode, {101}
Compound twin mode and the 〈121〉 Type II twin mode (Morii et al., 1991; Nishida et al., 2008b), the last of which is the twinning 
mode of focus in this study. 

It is worth emphasizing that the Type II twin mode considered in this study is the conjugate to the {111} Type I twin mode in all the 
B19-orthorhombic systems. The Type II TBs are observed in the B19 phase, a generalized unit cell description of which is provided in 
Fig. 1. The atomic-site at the lattice point of the unit cell is termed a lattice-site and the remaining atomic-positions within the cell are 
defined as the motif points. To begin with, there is no basis for the choice of rational terrace preferred by the TBs in these materials. 
This issue is very much unlike NiTi where significant prior research work identified the (111) plane as the rational terrace for the 
irrational K1 = (0.7205 1 1) TB (Knowles, 1982; Knowles and Smith, 1981; Liu and Xie, 2003, 2006; Nishida et al., 2008a, 1995a, 
1995b; Xie and Liu, 2004). Thus, an evaluation of the newer Type-II systems listed in Table 1 offers the opportunity to examine the 
basis behind determination of the rational terrace. Once this terrace is identified, the atomistic structure needs to be determined in 
order to compute the TB energy. Here again, there is no benefit of a reliable interatomic potential as is available in the case of NiTi (Kim 
et al., 2017; Ko et al., 2015; Muralles et al., 2017; Ren and Sehitoglu, 2016; Zhong et al., 2011). To determine the atomic-structure on 
the terrace, a key unknown to be computed is known as the “lattice-offset” which specifies the relative positioning of the twin lattice 
with respect to the matrix. Given the challenge of absence of reliable potentials, it provides the opportunity to determine lattice-offsets 
more accurately using Density Functional Theory (DFT) calculations as proposed in this study. Furthermore, the analysis of the new 
Type-II systems reveals an important distinction between the classical twinning shear and the “terrace-shear” carried by the twinning 
disconnections on rational terraces, revealed for the first time in this study to the best of the authors’ knowledge. The simulation 
methods and results of the study are elaborated in Section 2, implications of these results are discussed in Section 3, and the con-
clusions of the study are presented in Section 4. 

2. Methodology and results 

This section describes the methodology for defining the T-D topology and the determination of the atomic-structure on the terraces, 
presenting the results concurrently. First in Section 2.1, a formal framework to determine the rational terraces is provided. In Section 
2.2, The presence of coherence-strains on the terraces is illustrated from a crystallographic standpoint following which a continuum 
origin for these strains is revealed, obtained directly from the twinning deformation-gradient. Next, a distinction between the classical 
twinning shear and a newly-defined “terrace-shear” is forwarded in Section 2.3, noting the stronger physical relevance of the latter 
metric over the former classical definition. Subsequently, the Burgers vector of the twinning disconnection is calculated in Section 2.4 
and it is shown that its magnitude relates to the terrace-shear and not the twinning shear. The periodic spacing between the array of 
disconnections in the T-D topology is calculated using the Frank-Bilby equation and the resulting structure is shown to explain the 
irrational Miller indices of each Type II TB. Finally in Section 2.5, the energy of the TB is calculated from ab initio DFT simulations. The 
lattice-parameters and lattice-motif atomic positions suited to the chosen pseudopotentials are determined. The atomic-structure on 
the rational terraces is established by defining and calculating the lattice-offset on the terrace. The equilibrium TB energy is then 
determined at the value of lattice-offset that yields the lowest energy. 

2.1. Rational terrace for the Type II TB 

The rational-terrace with the least Miller-indices is determined for each of the irrational TBs listed in Table 1. For this purpose, the 
real-space and reciprocal-space lattices of the martensitic crystal structure must be defined. The real-space lattice can be defined by a 

Fig. 1. B19 Orthorhombic unit cell of martensitic crystal structures of SMAs considered in this study, comprising unequal lattice parameters a, b, 
and c, and atomic-sites at lattice (L) and Motif (M) positions; All SMAs in this study have two elemental species, one of them is indicated in blue and 
the other in gray; an orthonormal coordinate system Ê1 − Ê2 − Ê3 aligned with the crystallographic lattice vectors is also shown. 
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matrix CLAT in which the columns represent the components of the crystallographic basis [100] − [010] − [001] in reference to an 
orthonormal coordinate system Ê1 − Ê2 − Ê3 (shown in Fig. 1), given by the equation: 

CLAT =

⎛

⎝
a 0 0
0 b 0
0 0 c

⎞

⎠ (1)  

where a, b and c are the lattice constants of the orthorhombic B19 phase. The components of any crystallographic lattice vector [uvw] is 

then given by CLAT

⎛

⎝
u
v
w

⎞

⎠. The reciprocal space lattice is then defined by the matrix PLAT: 

PLAT = (CLAT)−T (2)  

where the columns of PLAT represent the components of the unit-cell lattice vectors of the reciprocal lattice and the superscript (−T)
refers to the inverse-of-transpose (or equivalently the transpose-of-inverse) matrix operation. The components of the normal of any 

crystallographic plane is given by n̂ = d(hkl)PLAT

⎛

⎝
h
k
l

⎞

⎠, where d(hkl) is the interplanar spacing given by the inverse-norm of PLAT

⎛

⎝
h
k
l

⎞

⎠. 

With the reciprocal lattice defined, all crystallographic planes (hkl) are plotted in this space and the irrational TB K1 is also plotted. By 
viewing the reciprocal space along the direction of twinning η1 = [121], the crystallographic plane nearest to K1 is proposed to be the 
rational terrace KT , illustrated in Fig. 2. More precisely, the rational terrace is one which has the nearest normal to that of the irrational 
interface K1. The angle of inclination θ between the normal to the terrace plane KT, say with indices (hTkTlT) and interplanar spacing 
d(hTkT lT), and the normal to the irrational TB plane K1, with indices (hkl) and interplanar spacing d(hkl), is calculated following the 

Fig. 2. Identification of nearest “least-index” rational terrace of Type II TB from the reciprocal space of the underlying lattice, shown for (a) TiPd, 
where K1 = (1 0.678 0.356), θ = 17.22o and the rational terrace is KT = (111), and for the better known case of (b) NiTi, where K1 = (0.7205 1 1), 
θ = 10.07o and the rational terrace is KT = (111).

Fig. 3. Crystallography of the rational terrace plane with normal n̂T , indicating the common twinning direction η1, shear-mismatch between lattice 
vectors v→tw and v→M and coherence strain γT required for atomic-registry on the rational terrace; the orthonormal global axes ê1 −ê2 −ê3 are 
also indicated. 
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equation: 

θ = cos−1(n̂K.n̂T) (3)  

where n̂K = d(hkl)PLAT

⎛

⎝
h
k
l

⎞

⎠ and n̂T = d(hTkT lT)PLAT

⎛

⎝
hT
kT
lT

⎞

⎠. Note that the direction of twinning has orthonormal components given by 

CLATη1 and the reciprocal lattice is viewed along this vector. The rational terrace for all the B19 orthorhombic systems in Table 1 is 
found to be KT = (111). The case of NiTi is also illustrated for reference where the rational terrace KT = (111) is well-known for the 
irrational type II TB. 

2.2. Coherence strains on the rational terrace KT 

Having established the rational-terrace, the crystallography on the terrace must be examined to construct the equilibrium atomic- 
structure on this plane. The crystallography is defined with reference to a new orthonormal coordinate system ê1 −ê2 −ê3 (refer 
Fig. 3). The lattice of the matrix variant is defined as follows. The direction of twinning η1 = [121] is aligned with ̂e1, the normal to the 
rational terrace KT = (111), given by n̂T , is aligned parallel to ê3. The CM

LAT matrix, introduced in Section 2.1, can be redefined 
consistent with this orientation for the matrix variant, and for the case of TiPd, is given by: 

CM
LAT =

⎛

⎝
2.7377 1.8080 2.3807
3.4350 −0.0967 −3.2417
−2.1489 2.1489 −2.1489

⎞

⎠ (4) 

The crystallography of the twin variant is chosen consistent with the Type II orientation relationship, where the twin is related to 
the matrix by a 180◦ rotation about the direction of twinning (Bilby and Crocker, 1965). Consequently, for the twin variant, Ctw

LAT is 
given by: 

Ctw
LAT = (2(η̂1 ⊗ η̂1)− I)CM

LAT (5)  

where η̂1 = CM
LATη1/|CM

LATη1| is the unit vector along the direction of twinning η1 = [121]. Having defined these orientations, the 
crystallographic registry between the twin variants on the rational terrace must be addressed. There exists a shear-mismatch on the 
rational-terrace KT as illustrated in Fig. 3. With the twinning direction η1 aligned in both variants, the vectors v→M = [101]M and v→tw 

= [101]tw are misaligned. An in-plane shear-strain, γT must be applied to both the twin and matrix variants for atomic-registry on the 
terrace (Fig. 3). The magnitude of the shear-strains for all SMAs considered is listed in Table 2, and note that the magnitudes are 
significant, of the order of few percent. The coherently-strained lattices are defined by the matrices in Eq. (6). 

CM,C
LAT =

⎛

⎝
1 −γT 0
0 1 0
0 0 1

⎞

⎠CM
LAT (6)  

Ctw,C
LAT =

⎛

⎝
1 γT 0
0 1 0
0 0 1

⎞

⎠Ctw
LAT  

2.3. Concept of “Terrace-shear” and distinction from classical twinning shear 

Thus far, the necessity of a coherence-strain was determined from crystallographic considerations on the rational terrace plane. In 
this section, a physical origin from a continuum mechanics standpoint is offered, noted for the first time in literature, to the best of the 
authors’ knowledge. From classical twinning theory (Bilby and Crocker, 1965) and conventional understanding of twinning, it is well 
established that the twin variant is related to the matrix by an Invariant Plane Strain (IPS) and the invariant plane is the plane of 
twinning. The IPS is given by the deformation gradient of the form: 

Ftw = (I+ s(η̂1 ⊗ n̂K)) (7)  

where s is the classical twinning shear (listed in Table 1), the unit vector along the direction of twinning η̂1 and the unit normal n̂K of 

Table 2 
Coherence-strains required on rational terraces of Type II TBs.  

Material Type II Twin Boundary (K1) Twinning shear, s Rational-Terrace KT (with normal n̂T) Coherence-strain, γT (%) Terrace-Shear, sT 

TiPd (1 0.678 0.356) 0.361 (111) 5.35 0.345 
TiPt (1 0.748 0.497) 0.386 (111) 4.09 0.376 
AuCd (1 0.786 0.572) 0.156 (111) 1.42 0.153  
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the irrational twinning plane (refer figure 4(a)). In the coordinate system η̂1 − v→K − n̂K defined on the irrational twinning plane, the 
deformation gradient is given by: 

[Ftw]K =

⎛

⎝
1 0 s
0 1 0
0 0 1

⎞

⎠ (8) 

Consider the same deformation gradient resolved along a coordinate system attached to the rational terrace plane, η̂1 − v→−n̂T as 
illustrated in figure 4(b). In this coordinate system, the deformation gradient is obtained from a rotational transformation, given by the 
following equations: 

[Ftw]T = [Q]T [Ftw]K[Q]

[Q] =

⎛

⎝
1 0 0
0 cosθ sinθ
0 −sinθ cosθ

⎞

⎠ (9)  

[Ftw]T =

⎛

⎝
1 −γT sT
0 1 0
0 0 1

⎞

⎠

where θ is the angle between the irrational plane K1 and the rational terrace KT (refer Figs. 4 and 2, illustrating the angle in real and 
reciprocal spaces respectively). Note that the components of the deformation gradient Ftw resolved in the terrace coordinate system 
(described by [Ftw]T in Eq. (9)) directly yields the coherence strain γT. Additionally, a new metric sT is revealed which is defined as the 
“terrace-shear”. The terrace-shear sT is the shear required to twin on the rational terrace. It transforms the coherently-strained matrix 
to the coherently-strained twin variant, and recall that these coherence-strains are necessary for atomic-registry on the terrace. From 
Eqs. (8) and (9), the terrace-shear, sT , and coherence-strain, γT, can be determined as functions of θ and s as follows: 

sT = scosθ; γT = ssinθ (10) 

Figure 5(a) illustrates the role of terrace-shear sT in twinning the atomic-structure on the terrace-plane for TiPd. A comparison is 
provided with the well-studied {111} twinning mode in Face-Centered-Cubic materials (Copper, Cu, chosen as example) shown in 
figure 5(b), where such a distinction between terrace-shear and twinning-shear is not required. The significance of this distinction will 
be discussed in Section 3. Table 2 lists all the terrace-shears for the SMA systems considered, note that they are all not equal to the 
respective classical twinning shears. The following section outlines another physical significance of the terrace-shear in how it con-
nects with the Burgers vector of the twinning disconnection. 

2.4. Twinning disconnection Burgers vector and Terrace-Disconnection topology of Type II TBs 

Defining the Terrace-Disconnection (T-D) topology requires the Burgers vector and step height of the twinning disconnection. The 
Burgers vector is determined following the methods developed in refs. (Bilby and Crocker, 1965; Hirth and Pond, 1996; Karki et al., 

Fig. 4. Deformation gradient relating the twin to the matrix described in two frames of reference (a) the conventional coordinate system based on 
normal to the irrational plane of twinning n̂K, direction of twinning shear η1 and a third orthonormal vector v→K ; the deformation-gradient only 
reveals the classical twinning shear s in this system. (b) In the terrace coordinate system described by the terrace-normal n̂T , twinning-shear di-
rection η1 and third orthonormal vector v→, the deformation-gradient reveals both the coherence-strain γT and the terrace-shear sT ; the angle be-
tween the rational terrace and irrational plane, θ, is also illustrated. 
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2020; Pond and Hirth, 2018; Pond et al., 2019), found to be the smallest-norm difference-vector between two translational symmetry 
vectors in the twin and matrix variant. The translational symmetry vectors for the TBs considered are found to be t→tw = [110]tw and 
t→M = [110]M, thereby yielding the Burgers vector as: 

b
→

tw = [110]tw − [110]M (11) 

The translational symmetry vectors are indicated in a dichromatic pattern representing lattice vectors of both the matrix and the 
twin variant (with TiPd lattice as the exemplary case) in Appendix B. The Burgers vectors are all aligned with the direction of twinning 
shear η1 and their magnitudes are listed in Table 3. The step-height of the disconnection is given by: 

hD =
⃒⃒
⃒ t→M.n̂T

⃒⃒
⃒ = 2d(111) (12) 

Thus, the step height of the disconnection spans two interplanar spacings between the KT = (111) terrace-planes. The shear carried 

by the Burgers vector can be determined as | b
→

tw|/hD, found to be exactly equal to the terrace-shear sT, i.e. 
⃒⃒
⃒ b
→

tw

⃒⃒
⃒
/

hD = sT (13) 

Thus, the Burgers vector of the twinning disconnection carries the terrace-shear sT, defined in Section 2.3, and not the classical 
twinning shear s. The implications of this feature will be discussed in Section 3. 

Finally, the irrationality of the Type II TBs are explained using the T-D model by deriving the spacing between the twinning 
disconnections and the Miller-index identity of the effective stepped topology. The twinning disconnections will be periodically spaced 
on the rational terrace such that their strain-field exactly cancels out the coherence-strains on the rational terrace. For the shear- 
mismatch strain on the rational terraces, an array of screw-dislocations with dislocation lines parallel to η1 will cancel out the 
coherence strain exactly. The spacing of these dislocations to nullify the strain is determined from the Frank-Bilby equation, given by: 

B→= b
→

tw

/
d = −Ec. v→= −

(
D−1

tw −D−1
M
)

v→ (14)  

where v→ is the vector perpendicular to the direction of the dislocation line, in this case perpendicular to η1 (refer Fig. 6). The tensor Ec 

represents the three-dimensional coherence-strain-mismatch tensor between the matrix and the twin variant. The tensors D−1
tw,M 

represent the deformation gradients that map the coherently-strained state of the twin and matrix, respectively, to their unstrained 
states, given by the equations: 

D−1
tw =

⎛

⎝
1 −γT 0
0 1 0
0 0 1

⎞

⎠;D−1
M =

⎛

⎝
1 γT 0
0 1 0
0 0 1

⎞

⎠ (15) 

The disconnection spacing is consequently determined as: 

Table 3 
Effective irrational-plane predicted by Terrace-Disconnection topology, through the Frank-Bilby equation.  

Material Burgers vector of twinning disconnection | b
→

TW |
(Å) 

Spacing between disconnections, 
d (Å) 

Angle of deviation,θ 
(̊) 

Type II Twin Boundary (K1)

TiPd 1.482 13.85 17.24 (1 0.678 0.355)
TiPt 1.608 12.2 12.2 (1 0.748 0.496)
AuCd 0.715 24.986 10.48 (1 0.786 0.573)

Table 4 
Energy-minimal lattice-parameters and lattice-offset triads determined from DFT to determine the equilibrium twin boundary structure on rational 
terraces.  

Material Martensitic crystal structure (From 
DFT) 

Cohesive energy, 
ECOH 

(eV/atom) 

Lattice-Motif atomic positions (from 
DFT) 

Lattice-Offset triad (x,y,
z)

TB Energy 

ETB

(mJ
m2

)

TiPd a = 4.899 Å, b = 2.787 Å, 
c = 4.576 Å 

−7.016 Ti (0,0,0), (0.403,0,0.5)
Pd (0.89,0.5,0.5), (0.513,0.5,0)

(0.06,0.450,0.097) 189.8 

TiPt a = 4.874 Å, b = 2.764 Å, 
c = 4.626 Å 

−7.837 Ti (0,0,0), (0.395,0,0.5)
Pt (0.885,0.5,0.5), (0.509,0.5,0)

(0.066,0.446,0.105) 287.3 

AuCd a = 5.009 Å, b = 3.176 Å, 
c = 4.899 Å 

−2.174 Cd (0,0,0), (0.409,0,0.5)
Au (0.504,0.5,0), (0.905,0.5,0.5)

(0.05,0.454,0.091) 211.4  
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d =
⃒⃒
⃒ b
→

tw

⃒⃒
⃒
/

2γT (16) 

Consequently, the angle of inclination of the stepped topology is given by θ = tan−1hD
d . Both d and θ are listed in Table 3 for all SMAs 

considered in this study. Note that the calculated angle of inclination θ from the stepped topology is consistent with that of Eq. (3) in 
Section 2.1, employing the normal vectors of the rational terrace plane and irrational TB plane. The Miller-indices of the effective plane 
defined by the topology can be obtained from the reciprocal space lattice PM

LAT, calculated from CM
LAT through the Eq. (2). The indices are 

normalized such that one of the index is unity and listed in Table 4. 
⎛

⎝
h
k
l

⎞

⎠ =
(
PM

LAT
)−1

⎛

⎝
0

−sinθ
cosθ

⎞

⎠ (17) 

Note that the effective Miller-indices of each T-D topology, given in column 5 of Table 3 closely reproduces the irrational identity of 
the Type-II TB in column 5 of Table 1. 

2.5. Ab initio calculation of twin boundary energy 

Finally, the energies of the Type II TBs are calculated. It has been shown recently that the atomistic potential energy on the rational 
terraces of the T-D topology strongly dominates the strain-energy of the array of disconnections and therefore decides the total TB 
energy (Mohammed and Sehitoglu, 2021). Therefore, in this section, a framework to establish the atomic-structure on the terrace is 
proposed and the energy is computed within a Density Functional Theory (DFT) framework using the Vienna Ab-initio Simulation 
Package (VASP) (Hafner, 2008). For the simulations, the pseudopotentials with Projector-Augmented-Wave (PAW) basis wave-
functions and Perdew-Burke-Ernzerhof parametrization of Generalized-Gradient-Approximation (PBE-GGA) exchange-correlation 
functional were employed. First, the converged DFT parameters are determined, namely the plane-wave energy cut-off ECUT and 
the number of k-points. Self-Consistent-Field (SCF) simulations are run on a B2 unit cell, with the lattice constant a0 chosen to be that 
measured by experiment (listed in Table 1). The energy tolerance for convergence of the SCF calculations was chosen to be 1 meV. The 
simulations are performed at increasing magnitudes of the energy cut-off ECUT and the number of k-points until the total energy of the 
system converges within 5 meV/atom. The values of parameters at which this convergence is achieved are used for subsequent 
simulations of the TB atomic structure. The converged magnitudes of the plane-wave energy cut-off and the number of k-points are 
found to be ECUT = 550 eV and kCUT = 12 respectively (illustrated in Fig. 7). Note that, although results in Fig. 7 are illustrated from 
simulations on TiPd, individual simulations for each SMA system were performed and converged parameters were obtained. It was 
found that the set of values (ECUT = 550 eV, kCUT = 12) sufficed for all the systems considered in this study. 

Next, the B19 orthorhombic lattice constants consistent with the chosen pseudopotentials must be determined. The procedure is 
described for TiPd in this section, and the same was applied for both TiPt and AuCd as well. First, the volume of the unit cell is 
determined by performing fixed-volume SCF calculations, results of which are given in Fig. 8(a). Then the individual ratios b /a and c 
/a are varied across a grid to determine the most energetically favorable pair, the results of which are illustrated in Fig. 8(b). With the 
energy-minimizing lattice constants, a, b, c, an ionic-relaxation is performed (with a force tolerance of 5 meV/Å) to determine the 
equilibrium atomic-positions within the B19 unit cell. Results of the DFT lattice constants and lattice-motif positions for the unit cell 
are listed in Table 4. 

Having determined the lattice constants suitable for the simulations, the TB structure can now be determined. Note that both the 
atomic-structures of both the matrix and twin variants will be subject to the coherence-strains defined in Section 2.2 and defined by 
CM,C

LAT , Ctw,C
LAT respectively, defined by Eq. (6). First, a periodic simulation cell suitable for the TB structure must be defined. Since DFT 

calculations are expensive and scale quickly with the number of atoms, care must be taken to involve the least number of atoms in the 
structure. Owing to the non-cubic structure of the martensite, the simulation cell is found to be triclinic, illustrated in figure 9(a). The 
bounding box vectors L→1 − L→2 − L→3 are defined with reference to the same orthonormal coordinate system ê1 − ê2 − ê3 (defined in 
Fig. 3 in Section 2.2). The vector components for these vectors are obtained through the matrix CM,C

LAT defined in Eq. (6). For instance, the 

vector L→2 = [110]M has the components CM,C
LAT

⎛

⎝
1
1
0

⎞

⎠, and the other vectors L→1 = [121], L→3 = 4[111]M are determined similarly. There 

is no subscript on [121] as it is identical in both the matrix and the twin variants. The vector L→2 is aligned with [011]tw in the 
coherently-strained twin crystal structure. A total of 12 KT = (111) planes are simulated with N = 6 planes corresponding to the twin 
variant, remaining 6 to the matrix variant, and with each plane containing 4 atoms (shown in Fig. 9(b)). To incorporate N twin planes, 
the vector L→3 must be incremented by NsTd(111), where d(111) is the interplanar spacing, accounting for the presence of the terrace- 
shear in the system (figure 9(b)). This is necessary as without this shear, the periodicity across the top and bottom boundaries of 
the simulation cell would be broken precluding an accurate simulation of the twinned structure. 

Having defined the simulation cell, the TB structure can now be determined. The crystallography of the KT terrace is not atomically 
flat as noted previously in Fig. 5. Furthermore, the atomic-positions in the matrix and twin are not commensurate with each other 
precluding the construction of the TB as a common plane between the variants (refer figure 9(c)). The atomic-structure must be 
unambiguously defined by determining the relative position of the twin variant with respect to the matrix. This relative position is 
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otherwise termed as the “lattice-offset”, defined and determined for the TBs considered as follows. Two reference origin points Otw and 
OM are chosen on the lattice-sites of two crystallographic planes Ptw and PM, shown in figure 10(a). Recall that the lattice and motif sites 
were defined in Section 1. The plane Ptw lies on the twin variant and PM is a virtual crystallographic plane that were to exist if the matrix 
variant was presumed to extend by one more plane into the twin. The triad vector (x, y, z) describing the relative position of OT with 
respect to OM defines the lattice-offset vector that needs to be determined. Given the periodicity of the lattice, the vector can be defined 
in a normalized form given by: 

x = x
|[121]|

; y = y
|[101]|

; z = z
d(111)

(18)  

where d(111) is the interplanar spacing of the (111) planes. The components (y, z) can be determined based on two considerations:  

a) The volume must be conserved during twinning, therefore requiring the interplanar spacing to be preserved as one moves from the 
matrix to the twin. This determines z.  

b) The crystal structure of the matrix and the twin would look identical when seen along the direction of twinning η1 = [121]. This 
determines y. 

The magnitude of x however requires atomistic simulation and is not known apriori. At incremental magnitudes of x between 0 and 
1, an SCF simulation is performed to determine the potential energy of the atomic-structure at that offset. The magnitude of x that 
yields the lowest energy is determined. The results are plotted in figure 10(c). The relative changes in the TB potential energy are 
plotted with respect to the energy at zero-offset i.e. at x = 0. Non-trivial lattice-offsets were found and are reported in Table 4, 
determined to within ±0.01. These findings of non-trivial lattice-offsets are consistent with prior results in NiTi as reported in ref. 
(Mohammed and Sehitoglu, 2020b). Thus without the simulation of the energetics, there is no basis on which a reliable choice for x can 
be made apriori. Determination of the lattice-offset unambiguously defines the relative position of the twin variant with respect to the 
matrix and completes definition of the TB structure on the rational terrace. The resulting TB structure is equilibriated following the 
conjugate-gradient scheme, specifying the force-tolerance for convergence as 5 meV/ Å. The energy of the relaxed atomic-structure is 
used to obtain the planar TB energy ETB, and the results are reported in Table 4. 

3. Discussions 

The purpose of this study is to explain the irrationality of Type II TBs in three SMAs through the Terrace-Disconnection (T-D) 
structure and to calculate their energies from ab initio calculations. And by doing so, it is expected that further generalized charac-
teristics of this TB could be deciphered. In the well-studied NiTi system, research on the Type II TB has greatly benefited from the 
availability of extensive experimental results, postulates regarding the possible rational terrace, and the availability of interatomic 
potentials for atomistic simulations (Knowles, 1982; Knowles and Smith, 1981; Ko et al., 2015; Liu and Xie, 2003, 2006; Nishida et al., 
2008a, 1995a, 1995b; Ren and Sehitoglu, 2016; Xie and Liu, 2004; Zhong et al., 2011). In moving beyond this system and examining 
other Type II TBs, the conspicuous absence of similar groundwork posed multiple challenges associated with definition of the rational 
terrace plane, the physical origins of the coherence strains, and choice of a suitable atomistic framework to determine the TB energy. 
This study proposes to resolve these challenges and gleans certain generalized characteristics of Type II TBs that would be of both 

Fig. 5. Physical significance of the distinction between twinning-shear s and terrace-shear sT : (a) the terrace-shear sT describes the shear on the 
coherently-strained rational-terrace of the Type II twin in B19 orthorhombic TiPd, and this shear is distinct from the classical twinning shear s. (b) 
Such a distinction is absent and thus cannot be inferred from twinning behavior of highly-symmetric crystal structures such as {111} twinning in 
Face-Centered Cubic (FCC) materials e.g. Cu, as shown. 
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scientific relevance in the field of twinning and of technological relevance in SMA materials. 
The first challenge in studying the Type II TBs is the definition of the rational terrace. On first look, it is not trivial to determine the 

rational terrace for all the irrational TBs listed in Table 2. For instance, in TiPd, the rational terrace for irrational plane (1 0.6780.356)
could be postulated as either KT = (111) or KT = (110). An objective approach was proposed in Section 2.1 where the rational-terrace 
could be determined by visualizing the discrete reciprocal space lattice, and proposing the terrace to be the nearest rational-plane to 
the irrational K1 TB, immediately noting the preference of (111) over (110). Note that this approach, in effect, only finds the rational- 
terrace with a normal closest to the irrational plane. Although simple, there is an important challenge that this approach overcomes. 
When it comes to the choice of rational terraces, one could always choose a better rational-approximation, say KT = (531) or KT =
(753). The normals to these terraces would indeed be closer to the normal to K1. However, their high Miller-indices imply the atomic- 
densities on these planes would be low and a low planar density would lead to higher atomistic potential energy of the TB. In fact, this 
was recently illustrated explicitly in NiTi (Mohammed and Sehitoglu, 2021), where the potential energy of a low-index rational plane 
was shown to have much lower potential energy than a higher-index rational plane, using Molecular Statics simulations. Therefore, it is 
energetically preferable for the rational terrace to have the least possible Miller indices. By visualizing the reciprocal space lattice 
points, the least-index planes closest to K1 can be unambiguously determined by focusing only on the lattice-points closest to the 
central 000 zone (refer Fig. 2(a)). 

Once the rational terrace is determined, the required coherence-strains on the terrace can be determined by examining the crys-
tallography as illustrated in Section 2.2. The necessity of atomic-registry on the terrace dictates the alignment of crystallographic 
vectors v→M = [101]M and v→tw = [101]tw, revealing the requirement of coherence-strain γT. Though from a continuum mechanics 
standpoint, it is a necessary question to ask where this strain originates from. For the first time, a partitioning between the terrace 
coherence-strain and terrace-shear is shown in Section 2.3, resulting from a simple rotational transformation of the twinning defor-
mation gradient. This partitioning is necessary to understand since, on the terrace, the shear that transforms the matrix to the twin is 
indeed the terrace-shear and not the twinning-shear (illustrated in Fig. 5). This effect is also illustrated in the calculated Burgers vector 
of the twinning disconnection in Section 2.4. The Burgers vector was determined from a difference of lattice-symmetry vectors, and the 
calculated magnitude turns out to be a multiple of sT and not s. Therefore, as the Burgers vector sweeps through the terrace, it carries 
the shear of btw/hD = sT i.e. the terrace-shear and not the twinning shear. Such an understanding could not have been achieved from 
more common Compound twins in FCC materials or even rational Type I twins in SMAs, where neither coherence strains nor a distinct 
terrace-shear is required. It was the challenge of irrationality of the Type II TBs and consequent necessity of the T-D topology that has 
led to this understanding. 

Furthermore, in the absence of a reliable interatomic potential, a formal procedure to determine the atomic-structure on the 
rational terraces of Type II TBs is offered within a DFT framework, in Section 2.5. The lattice-offsets are critical to establish the correct 
TB structure and consequently the TB energy. For non-single-lattice structures, as considered in this study and as prevalent in multiple 
other martensitic phases of SMAs, these offsets overcome the ambiguity in determining the TB given the incommensurate and non-flat 
atomic-structures of the twinning planes (for instance on the (111) terrace-planes in this case). These offsets, particularly x, cannot be 
determined without a simulation of the energetics of the TB. The importance of such offsets has been noted in crystal structures beyond 
SMAs as well, such as in Hexagonal Close-Packed (HCP) materials (Gengor et al., 2021). Note that the calculated TB energies in Table 4 
are generally higher than that of conventional FCC twins such as for {111} twins in FCC Copper, where γTB ∼ 24 mJ/m2 (Mishin et al., 
2001). This can be expected for the complex martensitic structure of the binary alloys considered, as also seen previously in the 
well-studied NiTi system with relatively high TB energy (Ezaz and Sehitoglu, 2011; Ezaz et al., 2011), and detwinning stress (Nishida 
et al., 1998; Šittner et al., 2020). There may also be contributions from the individual atomic species involved, for instance, similar 
magnitudes of TB energies were predicted in HCP Ti (Gengor et al., 2021, 2023) with relatively high twinning stress calibrated from 
experiments (Ma et al., 2019). Additionally, calculated TB energies and twinning stress in FCC Pd, Pt, are also higher than in Cu (Kibey 
et al., 2007). A complete assessment of the driving factors dictating the magnitude of TB energies, although out of scope for the present 

Fig. 6. Terrace-Disconnection topology of Type II Twin Boundary, with periodic array of twinning disconnections b
→

tw with spacing d; the angle of 
deviation θ between the irrational plane and the rational-terrace initially seen in the reciprocal lattice is reproduced in the T-D topology. 
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study, would be a worthwhile topic for further research, evaluating factors such as the specific atomic species involved, the planar ionic 
density on the rational terrace plane, and distribution of the electron-density. 

Section 2.4 establishes how the T-D topology sufficiently explains the irrationality of all Type II TBs considered in this study. Thus, 
the T-D structural model proposed in this study is defined by the topology derived in Section 2.4 (refer Fig. 6) and the terrace atomic- 
structure constructed through DFT in Section 2.5 (refer Fig. 10). The twinning-disconnections are spaced such that they nullify the 
coherence-strain at the terrace, γT, in the far-field away from the TB. Recall from previous discussion that the twinning-disconnections 
only carry the terrace-shear sT. Both these points reveal an elegance behind the adoption of the T-D topology by the TB. This is 
illustrated in Fig. 11 below. In Fig. 11(a), the classical notion is illustrated. By this notion, for minimum strain-energy from a 
continuum-mechanics standpoint, the twin plane must inhabit an invariant plane shared between the twin and matrix so that there are 
no strain-energies in the system and both the crystal-structures are in their un-strained native configurations. This requirement leads to 
determination of the invariant plane K1 as having an irrational Miller-index identity, and the twinning shear s necessary to transform 
the matrix to the twin. However, here lies the catch. The irrational plane, while a perfectly plausible continuum entity, is not an 
energetically favorable atomic-plane for the TB. If the TB were to reside on such a plane it would have to pay the cost of a high atomistic 
potential energy. This is not preferred by the material and instead an alternative route is taken. The interface adopts a T-D topology 
where there are rational terraces that are strained into coherence, with coherence-strains γT. By inhabiting a low-index rational terrace, 
the atomistic potential energy is minimized, at the cost of the continuum strain-energy of having coherence-strains. However, these 
strains-are relieved by a periodic arrangement of twinning-disconnections on the rational-terrace. Note that when the twin-migrates, 

Fig. 7. DFT parameters for simulations of lattice-offset and twin boundary energy: (a) Energy cut-off ECUT and (b) number of k-points; the B2 
simulation cell used for the simulations is illustrated, with the example of TiPd. 

Fig. 8. Determination of (a) B19 unit-cell volume and (b) B19 lattice-parameter ratios of orthorhombic cell of TiPd.  
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the twinning disconnections only carry a part of the classical twinning shear s, and it is only the terrace-shear sT. By relieving the strain- 
energy in the bulk, the additional cost of continuum strain-energy is minimized to a magnitude near insignificant compared to the 
gained reduction of atomistic potential energy in preferring a rational terrace. Thus, the picture of twinning changes from a continuum- 
compatible (K1, s) description to a continuum- and atomistic- compatible (KT, sT , γT) picture as shown in Fig. 11(b). In summary, the T- 
D topology is, in a manner of speaking, the material’s solution to exhibiting an effective irrational plane by involving atomistically- 
favorable rational terraces and continuum-favorable periodic disconnections relieving far-field strains. 

The proposed topological characteristics of Type II TBs serve to clarify the internal twin interface structure in the martensite phase 
of SMAs where Type II twins are prevalent as a LID mode. Such an understanding serves as a pre-requisite to subsequently examine the 
irrational nature of the austenite-martensite phase-transformation front, where the internal martensitic twin interfaces meet the parent 
austenite phase. In addition, the importance of these internal TBs in causing transformation-induced slip on austenitic slip-planes 

Fig. 9. Construction of simulation cell in DFT for analysis of twinned structure: (a) Triclinic simulation cell with lattice vectors L→1 − L→2 − L→3 

defined in an orthonormal basis ê1 − ê2 − ê3; this cell is suitable to construct a single pure variant of the matrix crystal structure (b) Twinned 
structure constructed within simulation cell, where the vector L→3 is corrected with the applied terrace-shear, sT based on the number of twin-planes 
(with interplanar spacing d(111)) included in the simulation cell, N; there are 4 atoms per {111} plane within this cell (c) Twinned structure 
illustrated with multiple periodic images across the periodic boundaries, illustrated only for visualization (the actual simulation cell employed has 4 
atoms per plane). 

Fig. 10. Determination of lattice-offset for construction of twin boundary structure: Defining the normalized lattice-offsets (a) (y, z) and (b) x; the 
energy-minimizing offset is determined from DFT simulations, results of which are shown in (c) (E is the potential energy at a general offset x and E0 
is the energy at offset x = 0). 
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aligned with the TB plane has long been known (Kajiwara and Kikuchi, 1982; Kajiwara and Owen, 1973; Mohammed and Sehitoglu, 
2020a; Norfleet et al., 2009; Simon et al., 2010; Zhang et al., 2012). A clear understanding of the irrational TB identity of Type II twins 
would now help to unambiguously identify the rational terraces and corresponding twinning disconnections mechanistically relevant 
for slip-emission. The validity of the proposed T-D topology can be verified for the considered SMAs and twin systems much in the same 
way as it was done for NiTi in the past (Hirth and Wang, 2021; Hirth et al., 2023; Knowles, 1982; Liu and Xie, 2003; Mohammed and 
Sehitoglu, 2020b, 2021; Shilo et al., 2021; Xie and Liu, 2004). In NiTi, the T-D topology for the Type-II twin interface K1 =
{0.7205 1 1} was proposed from High-Resolution Transmission Electron Microscopy (HRTEM) observations of the interface, iden-
tifying the KT = {111} rational terrace plane and periodic disconnections (Knowles, 1982; Liu and Xie, 2003; Xie and Liu, 2004). 
Similar experimental studies focused on the Type II systems considered in this study would be promising directions of future research. 
From a modeling standpoint, another promising direction for future research would be to simulate the complete atomic-structure of the 
irrational interface by assembling multiple terrace-structures spaced by disconnections following the T-D topology. Such a study would 
however require a large number of atoms making it computationally infeasible for the current DFT-based approach and necessitating 
the use of Molecular Statics/Dynamics (MS/MD) frameworks relying on empirical interatomic potentials. 

4. Conclusions 

This study focuses on Type II twins in 3 SMA systems – TiPd, TiPt and AuCd - exhibiting B19 orthorhombic martensitic crystal 
structures. The Type II twin interfaces exhibit irrational identities and are conjugate to the rational {111} Type I twin mode in these 
systems. The irrational identities of all TBs are explained using the T-D topology revealing novel general characteristics exhibited by 
this type of TB. It is shown that the choice of rational terrace comes from the reciprocal space of the crystal lattice and that the terrace 
should be a low-index plane to have the highest planar atomic-density. The origin of the coherence strain on the terrace is shown from 
both a crystallographic standpoint and from a continuum kinematics standpoint. The continuum perspective reveals the partitioning of 
the classical twinning shear s on the irrational plane K1 to coherence-strain and terrace-shear (γT, sT) components on the T-D topology. 
The Burgers vector of the twinning disconnection was determined from a crystallographic approach involving translational symmetry 
vectors, and it is shown for the first time that the Burgers vector carries the terrace-shear sT and not the twinning shear s, on the rational 
terrace KT. The spacing of the twinning disconnections on the terrace is calculated from the Frank-Bilby equation, closely reproducing 
the irrational Miller-index identity of the Type II TB. The atomic-structure on the rational-terraces are determined from DFT calcu-
lations establishing formal procedures to construct TB structures within the simulation framework. The energy-minimizing lattice- 
offsets are determined to construct the TB structure on the terrace, ultimately leading to determination of the total TB energy. A novel 
perspective on the energetic preference of the T-D topology by the Type II TB is forwarded, discussing how the topology balances both 
the continuum-energy and atomistic-energy considerations. Such an understanding could not have been achieved from rational TBs 
such as Compound twins in FCC materials or Type I twins in SMAs and is a necessary advancement in understanding the energetics of 
twin interfaces. 
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Appendix A. Crystallographic calculation of irrational indices of Type II TBs 

The formulae for calculation of the irrational indices of K1 twin-plane (refer Table 1) are presented in this appendix. The reader is 
directed to the classical work of ref. (Jaswon and Dove, 1960) for a detailed exposition of the theory. The irrational indices can be 
calculated from the lattice-parameters (a, b, c in Table 1), the indices of the direction of twinning η1 = [pqr], and the rational indices of 
the conjugate Type I twinning mode K2 = (hkl). In this study, p = 1,q = 2, r = 1,h = 1,k = 1, l = 1. The irrational indices for K1 =
(hʹḱ ĺ ) can be computed from the formulae below and normalized: 

hʹ = h − (ph+ qk+ lr)
(
a2p

)/(
a2p2 + b2q2 + c2r2)

kʹ = k − (ph+ qk+ lr)
(
b2q

)/(
a2p2 + b2q2 + c2r2) (19)  

ĺ = l − (ph+ qk+ lr)
(
l2r

)/(
a2p2 + b2q2 + c2r2)

Appendix B. Illustration of translational symmetry vectors and Burgers vector 

Fig. B1. Illustration of translational symmetry vectors t→tw, t→M , and Burgers vector b
→

tw, in a dichromatic pattern representing lattice vectors of the 
coherently strained matrix and twin variants; the open blue circles correspond to the lattice points of the matrix variant whereas the filled red circles 
represent that of the twin variant. 
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