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Abstract. For time-dependent PDESs, the numerical schemes can be rendered bound-preserving
without losing conservation and accuracy by a postprocessing procedure of solving a constrained
minimization in each time step. Such a constrained optimization can be formulated as a nonsmooth
convex minimization, which can be efficiently solved by first order optimization methods, if using the
optimal algorithm parameters. By analyzing the asymptotic linear convergence rate of the generalized
Douglas—Rachford splitting method, optimal algorithm parameters can be approximately expressed
as a simple function of the number of out-of-bounds cells. We demonstrate the efficiency of this simple
choice of algorithm parameters by applying such a limiter to cell averages of a discontinuous Galerkin
scheme solving phase field equations for 3D demanding problems. Numerical tests on a sophisticated
3D Cahn—Hilliard—Navier—Stokes system indicate that the limiter is high order accurate, very efficient,
and well suited for large-scale simulations. For each time step, it takes at most 20 iterations for the
Douglas—Rachford splitting to enforce bounds and conservation up to the round-off error, for which
the computational cost is at most 80N with N being the total number of cells.
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1. Introduction.

1.1. Objective and motivation. We are interested in a simple approach to
enforce the bound-preserving property of a high order accurate scheme for phase field
models, without destroying conservation and accuracy. Many numerical methods,
especially high order accurate schemes, do not preserve bounds. For the sake of both
physical meaningfulness and robustness of numerical computation, it is critical to
enforce both conservation and bounds.

Bound-preserving schemes have been well studied in the literature for equations
like hyperbolic and parabolic PDEs. One popular approach of constructing a bound-
preserving high order scheme was introduced in [44, 45] for conservation laws, which
can be extended to parabolic equations [40, 39] and Navier—Stokes equations [12, 43],
as well as implicit or semi-implicit time discretizations [35, 31]. However, this method,
and most of other popular bound-preserving schemes for conservation laws and para-
bolic equations such as exponential time differencing [10], are based on the fact that
the simplest low order scheme is bound-preserving, which is no longer true for a fourth
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order PDE like the Cahn—Hilliard equation, unless a very special implementation is
used such as implicit treatment of a logarithmic potential [6].

A simple cut-off without enforcing conservation does not destroy accuracy but
it is of little interest, because convergence might be lost due to loss of conservation.
A meaningful objective is to enforce bounds without destroying conservation. For
the Cahn—Hilliard equation, an exponential function transform approach was used in
[23], with conservation achieved up to some small time error. If the logarithmic energy
potential is used and treated implicitly, bounds can also be ensured [6]. A Lagrange
multiplier approach in [7, 8] provides a new interpretation for the cut-off method and
can preserve mass by solving a nonlinear algebraic equation for the additional space
independent Lagrange multiplier. Even though the flux limiting [25, 42, 22, 11] can be
formally extended to the Cahn—Hilliard equation [17, 30], it is not clear whether flux
limiters can preserve high order accuracy for a fourth order PDE. Recently a bound-
preserving finite volume scheme, which is first order accurate in time and second order
accurate in space, has been constructed for the Cahn—Hilliard equation [1].

In practice, the logarithmic potential causes additional difficulty in nonlinear
system solvers in many schemes; thus the double well polynomial potential with a
degenerate mobility is often used as an easier surrogate. With the double well poten-
tial, numerical schemes might violate the bounds much more since it does not enforce
bounds ¢ € [—1,1] like the log potential. In this paper, we will explore a simple and
efficient high order accurate postprocessing procedure for preserving bounds and con-
servation up to round-off errors, such that it can be easily applied to any numerical
method solving the Cahn—Hillard equation, especially for the polynomial potential.

1.2. A bound-preserving limiter via convex minimization. Consider a
scalar PDE as an example. Assume its solution u satisfies m < u < M for all time
and locations, where m and M are constant bounds. For simplicity, we only consider
enforcing cell averages in a high order accurate discontinuous Galerkin (DG) scheme
by convex minimization and then using the simple Zhang—Shu limiter in [44, 45] to
enforce bounds of point values of the DG solution. But this convex minimization
approach can be easily extended to enforcing bounds of point values for any other
numerical scheme such as finite difference and continuous finite element methods.

Let @w; (¢ =1,...,N) be all the DG solution cell averages at time step n on a
uniform mesh. Given u= (41 Uy --- QN]T € RY, we would like to postprocess it
tox = [:cl Lo - wN] € RY such that it is bound-preserving in that x; € [m, M],

conservative in that ) . x; =", u;, and accurate in the sense that || — u|| should be
small. Namely, we consider minimizing || — u|| under constraints x; € [m, M] and
Zf\; Ti= Zf\;l ;. To change as few cell averages as possible, the convex ¢!-norm is
often used to approximate the NP-hard #°-norm. The ¢'-norm is nonsmooth without
any strong convexity; thus the minimization might still be too expensive to solve. For
the sake of efficiency, we propose the £2-norm instead:

N N
(1.1) min ||z —u|3 st. ;€ [m,M] and Zmizzm.
x
i=1 i=1

Obviously, the minimizer to (1.1) is conservative and bound-preserving. The
justification of accuracy is also straightforward, as long as w is an accurate numerical
solution, which is a reasonable assumption and has been proved to hold for many DG
schemes of a variety of PDEs; e.g., see [29] for Cahn—Hilliard-Navier—Stokes (CHNS)
equations. Let @} and 4 be the cell averages of the exact solution at time " and initial
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condition, respectively. Then Y, uf => . a9 =>", @; and @} € [m, M] imply that u*
is a feasible point satisfying the constraints of (1.1). The minimizer * to (1.1) then
satisfies ||@* —ull2 < ||lu* —u||2; thus ||[2* —u*||s < ||* —ull2 +[[u—u*|2 < 2||u* —u|s.
Therefore, the limiter (1.1) does not lose the order of accuracy.

1.3. Efficient convex optimization algorithms. The main catch of using
(1.1) in a large-scale computation is the possible huge cost of solving (1.1) to machine
accuracy, unless proven or shown otherwise, which is our main focus. It is a convention
use the indicator function

0, x €,
to(x) = {

+oo, x¢Q,
for any set 2, to rewrite (1.1) as
e
(12) min %~} + 1, (@) + o, (@),

where o > 0 is a parameter and the sets A; and Ay are Ay ={x: >, x; =), u;},Aa =
{x: z; € [m, M]}. The two indicator functions in (1.2) are convex but nonsmooth,
and the ¢? term is strongly convex; thus (1.2) has a unique minimizer x*. Many
optimization algorithms, e.g., fast proximal gradient (FISTA) [34, 3] applied to (1.2),
can be proven to converge linearly. But a provable global linear rate is usually quite
pessimistic; it is much slower than the actual convergence rate. It is possible to obtain
sharp asymptotic rate for methods like the generalized Douglas—Rachford splitting
solving ¢! minimization [9], which can be used for designing best parameters. So we
consider the generalized Douglas—Rachford splitting [26], which is equivalent to some
other popular methods such as PDHG [5], ADMM [13], and dual split Bregman [20];
see also [9] and references therein for the equivalence.

1.4. The generalized Douglas—Rachford splitting method. Splitting al-
gorithms naturally arise for composite optimization of the form

(1.3a) min f(z) + g(),

where functions f and g are convex and have simple subdifferentials and resolvents.
Let 0f and Og denote the subdifferentials of f and g. Their resolvents are defined as

_ . 1
Jop = (L+70f)™" —argmin.f(2) + 1z~ allf, 7>,

_ . 1
Jyog = (1+70g)~" = argmin_vg(2) + ;|2 — 23, 7>0.
We rewrite (1.2) into ming f(x) + g(x) by defining
o'
(1.3b) f@)=5lz—ul+u (@) and g(@)=1s, (@),

where two sets are Ay = {z: Az =b} and Ay = {&:m <x < M}, withA=[1 --- 1],
b=7>,u;, and m < x < M denoting entrywise inequality. The subdifferentials and
resolvents can be explicitly given as

1
a+1

oo’
a+1

7

(1.4) Of(x) = a(x —u) + R(AT), J,Yaf(w):,y (A*(ban:)Jra:)Jrv
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[0,400] ifx; =M,
(1.5)  [9g(x)]i =40 ifz; € (m, M), [Jyag(a)]i = min (max (z;,m), M),
[—00,0] ifz; =m,

where R(AT) denotes the range of the matrix A™ and AT = AT(AAT)~1.

Define reflection operators as Ryoy = 2J,0y — I and Rypy = 2J,94 — I, where 1
denotes the identity operator. The generalized Douglas—Rachford splitting for (1.3a)
can be written as

(1.6)
RooiRogs + 1
yktt = A%y’“ + (1= XNy =Myo5 0 (2J109 — Dy" + (1= Ayag)y",
xht :Jwag(ykﬂ)y

where y is an auxiliary variable, v > 0 is step size, and A\ € (0,2) is a parameter.
For two convex functions f(x) and g(x), (1.6) converges for any v > 0 and any fixed
A € (0,2); see [26]. If one function is strongly convex, then A =2 also converges.

1.5. The bound-preserving postprocessing procedure for DG schemes.
At time step n, let u;(x,y, 2) be the DG polynomial on a uniform mesh in the ith cell
with cell average ;. We define the following bound-preserving limiter.

Step 1. Solve (1.2) to postprocess the cell averages. Let ¢ = ﬁ; then the
iteration (1.6) on (1.3) can be explicitly written as

xk =min (max (y*,m), M),

(1.7a) zF =2zF —y*,
Yy =Xe(2F - 1[5 (X 2F b)) + A1 - u + y* — AxP,

where 1 is the constant one vector of size N, and b = ) . 4; is a constant, and
A € (0,2] is the fixed relaxation parameter. Each iterate z* is bound-preserving but is
not conservative until converging to the minimizer x*. We iterate (1.7a) until relative
change is small enough ||y**! — y¥||; < € to get an approximated minimizer z* to
(1.2), for which the conservation would be satisfied up to round-off errors. We then
modify DG polynomials by modifying the cell averages, i.e., shift them by a constant:

(1.7b) wi(z,y,2) =ui(z,y,2) —4; +xf, i=1,...,N.

Step II. Cell averages of modified DG polynomials u;(z,y,z) are in the range
[m, M], so we can apply the simple scaling limiter by Zhang and Shu in [44, 45] to
further enforce bounds at quadrature points, without losing conservation and accu-
racy. Let S; be the set of interested points in each cell; then the Zhang—Shu limiter
for the polynomial @;(z,y, z) with cell average =} € [m, M] is given as

N ot M — 2t
(18)  Aula,y.2) = 0@ (e.y,2) —af) + ezmm{L m — i | x}

mi —}|" |M; — |

where m; = min(, y -)es, 4i(7,y,2) and M; = max, , »)es, Ui(T,y,2). See the appen-
dix in [43] for a rigorous proof of the high order accuracy of (1.8).

We emphasize that the Zhang—Shu limiter (1.8) can preserve bounds or positiv-
ity provided that the cell averages are within bounds or are positive, which can be
proven for DG methods coupled with the limiter (1.8) for hyperbolic problems includ-
ing scalar conservation laws and compressible Euler and compressible Navier—Stokes
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equations [44, 45, 43], because DG methods with suitable numerical fluxes satisfy a
weak monotonicity property for these problems [43]. However, such a weak mono-
tonicity property is simply not true for high order DG schemes solving fourth order
PDEs. Thus, if using only the limiter (1.8), the high order DG methods will not be
bound-preserving for Cahn—Hilliard equations. For all the numerical tests shown in
this paper, DG methods with only the Zhang—Shu limiter will produce cell averages
outside of the range [—1,1].

1.6. The main results. We will analyze the asymptotic convergence rate of
iteration (1.7a) and give a sharp convergence rate formula, by which it is possible
to pick up a nearly optimal combination of parameters ¢ = a'y1+1 and X\ to achieve
fast convergence for the iteration (1.7a). The asymptotic linear convergence rate we
derive for (1.2) is similar to the one for ¢! minimization in [9]. These rate formulae
depend on the unknown x*, so usually it is impossible to use the formulae for tuning
algorithm parameters, unless &* can be easily estimated. For (1.2), it is possible to
pick up a nearly optimal combination of optimization algorithm parameters by only
calculating the number of bad cells @; ¢ [m, M], which is the first main result of this
paper.

Let 7 be the number of bad cells @; ¢ [m, M], and let 6 = cos™* \/%; then our
analysis suggests the following simple choice of nearly optimal parameters:

C:%,A:m ifée(%ﬂ',éﬂ'],
_ 1 _ 2 ) 1,3
(19) €= (COS é+Siné)2 ’ )\ h 1+ 1+cloté - (cos éisin 9)2 lf 0 e (471-’ Sﬂ-}’
— 1 — T 1
c= (cosé+siné)2’>‘ 2 if 0 € (0, 37|

We emphasize that both ¢ and A should be the constants w.r.t. iteration index k
in (1.7a), once they are chosen by (1.9). Notice that A(1 — ¢)u is a constant for
the iteration (1.7a) and each entry of 2% — 1[% (>, 2F — b)] can be computed by
2F — [+ (3, 2F — b)]; thus if only counting number of computing multiplications, min,
and max, the computational complexity of each iteration in (1.7a) is 4N. By using
the parameters (1.9), it takes at most 20 iterations of (1.7a) to converge in all our
numerical tests; thus the cost of iterating (1.7a) until convergence would be at most
80N, which is highly efficient and well suited for large-scale simulations.

The numerical observation of at most 20 iterations can also be explained by the
asymptotic convergence rate analysis, which is another main result. Assuming the
number of bad cells @; ¢ [m, M] is much smaller than the number of total cells N, we

will show that the asymptotic convergence rate of (1.7a) using (1.9) is given by

cos(20) cos(20)  1-2cosh? 1-2%
2 — cos (20) 2—cos(20) 3—2cosf2 3-2+%

(1.10) -

1
~— if # <N,
5 7
with 8(x*) being an unknown angle, which can be approximated by 0. If the ratio of
bad cells is very small, (1.7a) will have a local convergence rate almost like ||y* —y*|| <

C (%)k, which would take around 30 iterations to reach around 1E-15 if C =1.

1.7. Organization of the paper. The rest of the paper is organized as fol-
lows. In section 2, we analyze the asymptotic linear convergence rate of the Douglas—
Rachford splitting (1.6) and (1.7a), and derive the parameter guideline (1.9). In
section 3, we discuss an application of our bound-preserving limiting strategy to an
important phase-field model, the CHNS system. The numerical tests are given in
section 4. Section 5 contains concluding remarks.
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2. Asymptotic linear convergence rate analysis. In this section, we de-
rive the asymptotic linear convergence rate of generalized Douglas—Rachford splitting
(1.6) for solving the minimization problem (1.3). The discussion in this section fol-
lows closely the analysis for £ minimization in [9]. Even though ¢! minimization is
harder than ¢? minimization, the analysis for (1.3) is not necessarily a straightforward
extension of those in [9] because (1.4) and (1.5) are different from operators in [9].

For convenience, let F'=0f and G = dg denote the subdifferential operators. Let
S(x) be the cut-off operator, i.e., [Jya(x)]; = [S(x)]; = min (max (x;, m), M).

We keep the discussion a bit more general by considering a general linear con-
straint Az = b = Aw in the function f(z) in (1.3b) and assume that A has a
smaller number of rows than the number of columns, with full row rank such that
At = AT(AAT)_1 is well defined. When needed, we will plug in the special case
A= [1 1 .- 1} .

2.1. The fixed point set. Let P(x) = AT (b — Azx) + x denote the projection

operator. Then, the resolvents can be written as J,p(x) = ﬁP(w) + saq7w and

Jya(x) =S(x). Let T, denote the iteration operator for y in (1.6); then it becomes

Ay

2.1 :
(2.1) P

Po(28—T)+ (I—AS)+

7T ya+1
The fixed point y* of T, is not the minimizer of (1.3), while z* = J,¢(y*) =S(y*) is
the minimizer. The fixed point set of the operator T, has the following structure.

THEOREM 2.1. The set of fixed point of operator T is

M={y":y"=x" +n, ne-0f(x")Nadg(x")}.

Proof. We first show any y* € II is a fixed point of the operator T.,. Vn € dg(x*)
in (1.5), we have S(y*) = «*, since the ith entry of the vector y* = x* + yn satisfies

€[M,+o0] ifzf=M,
[y*li § = af ifzr € (m, M),

€|-oo,m] ifzf=m.

Thus, we have Po (2S5 —)y* = P(2z* — y*) = P(x* —yn) = =* — yn +yATAn, where
Az* =bis used. And n € —0f(x*) in (1.4) implies that there exists & such that
n=—alz*—u)+ AT¢. Multiplying both sides by A, with Az* = b = Au, we get
An=AA"¢; thus € = (AAT)"1An and yn = —ya(x* — u) +yATAn. Then, we have
Po (2S —Dy* = (ya + 1)x* — yau. Therefore

My .
atr1tTY

Cya+1
Next, we show any fixed point y* belongs to set II. Let n = (y* — x*)/y. Then, y*
being a fixed point implies J,c(y*) = «*. Recalling that J,q =S, we have
i if af +ym; > M, then xf =S(xF + y1;) = M; thus n; € [0, 4+00];

il. if &f +m; € (m, M), then zF =S(zf +yn;) = xF + yn;; thus n; = 0;

iii. if 2F +yn; <m, then zf = S(x} + yn;) = m; thus n; € [—00,0].
So m € dg(x*). And y* =T, (y*) is equivalent to y* = 3(R,rRyc + Dy* + (1 — \)y*,
which implies y* =R, rR,¢(y*). Recalling J,¢(y*) =x* and y* =x* + yn, we have

Yy = R’)’F(QJ’)’G(y*) -y")= R"/F(CC* —m) = QJWF(QU* —m) — (" —n).
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So &* = Jyp(z* — yn), which implies @* = argmin_vf(z) + 3|z — (z* — vyn)|3. By
the critical point equation, we have 0 € y0f(x*) + yn thus n € —0f(x*). 0

Let B,.(z) denote a closed ball in ¢2-norm centered at z with radius r. Define

set O:

[M,+o00] ifazf=M,
0=Q1®Q2® - ®Qn, where Q;=< (m,M) ifz}e(m,M),

[-oo,m] ifzf=m.
For any fixed point y*, Theorem 2.1 implies there exists an n = %(y* —x*) € dg(x*)
and by (1.5) we have &* +~yn € Q for any v > 0, which gives y* € Q. Let ¢ > 0 be the
least upper bound such that B.(y*) C Q. If ¢ > 0, then y* is an interior fixed point
and we call this the standard case; otherwise, y* is a boundary fixed point and we
call this the nonstandard case. In the standard case that the sequence y* converges
to an interior fixed point y*, there exists a large enough integer K > 0 such that
|y® — y*||2 < € holds. For any k> K, the operator T, is nonexpansive [26], so

ly* =yl =Ty (" ) = Tyl < Y =yl < < [ly" —y*[l2 <e

Thus, after taking the generalized Douglas—Rachford iteration (1.6) sufficiently many
times, the iterates will always belong to the ball B.(y*) C Q; namely the iteration
enters the asymptotic convergence regime, and the cut-off location does not change.

In the rest of this paper, we only focus on the standard case. The nonstandard
case can be analyzed by utilizing the same technique as in [9]. The nonstandard case
has not been observed in our numerical experiments.

2.2. The characterization of the operator T,. Assume the unique solution
a* of the minimization problem (1.3) has r components equal to m or M. We further
assume 7 < N, e.g., not all the cell averages will touch the boundary m or M, which is
a quite reasonable assumption. We emphasize that r is unknown, unless «* is given.

Let e; (i=1,...,N) be the standard basis of RN. Let e; (j =i1,...,i,) denote the
basis vectors corresponding to entries * of being m or M. Let B be the corresponding
r x N selector matrix, i.e., B=e;,,...,e; ]

Recall that we only discuss the standard case, i.e., y* is in the interior of Q.
Then, in the asymptotic convergence regime, i.e., after sufficiently many iterations,
the iterate y, will stay in the interior of Q; thus the operator S has an expression

(2.2) S(y)=y—BTBy+ > aje;.
je{i1, - ir}

Note that the jth component of z*, namely the 27 in (2.2), takes value m or M for
any j € {i1,...,i,}. Let Iy denote an N x N identity matrix.

LEMMA 2.2. For any y in the interior of Q, and a standard fixed point y* in the
interior of Q, we have T (y) — T~ (y*) =Tea(y —y*), where the matriz T, x is given
by

Ton= )\(c(IN —A*A)(Iy —B*B) + cATABYB + (1 — c)B*B) + (1= Ny,

Here, c= ——7 is a constant in (0,1).
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Proof. By (2.2), S(y) —S(y*) = (Ixn — B*B)(y — y*). So by (2.1),
A

Ty y) = To(y) = = (POS() ~ 9)-PSW) ~y7) ) +(y-y") -AS(y)-S(y")
- mi (v~ ATA)(Ix —2B7B)(y —y) + (v~ ") ~ Ay ~ B'B)(y ~y")
_ Wﬁ (v — A*A)(Iy ~ B*B)(y — y") + Wl ATABB(y - y°)
+ %WB@ —y) + (1= Ny —y").
Therefore, the matrix T, ) can be expressed as follows:
Ten= WAJF : ((lN ~“A*A)(Iy — B*B) + A+AB+B) + %B*B +(1-Mly. O

DEFINITION 2.3. Let U and V be two subspaces of RN with dim(U) = p < dim(V).
The principal angles 6y, € [0, 5] (k=1,...,p) between U and V are recursively defined

by

cosf = ugvk = maxmaxu’v,

ueU vey
such that |lullz=|v|o=1, vju=0,v;v=0,j=1.2,... k-1
The vectors (u1,...,up) and (v1,...,v,) are principal vectors.

Our next goal is to decompose the matrix T, with principal angles between
subspaces N (A) and N(B). To simplify the writeup, we define matrix T = (Iy —
ATA)(Ix—BTB)+ATABTB. Thus, we rewrite T,y =A(cT+(1—¢)BTB)+(1—))lx.
Let Ag be an N x (N — 1) matrix whose columns are an orthogonal basis of N'(A),
and let A; be an N x 1 matrix whose columns are an orthogonal basis of R(AT).
Similarly, let By be an N x (N — r) matrix whose columns are an orthogonal basis of
N(B) and B; be an N x r matrix whose columns are an orthogonal basis of R(BT).

Since both ATA and A1A1T represent the projection to R(AT), we have ATA =
A AT Similarly, Iy — ATA=AA;. Thus we have T =AyA] BoB; + A;ATB,B.

Define matrix Eg = Ay By and matrix E; = A] Bg. Since AgA; + A;AT =y, we
have By = (AgAj + A1AT)Bg = A¢Ey + A E;. Therefore, we rewrite

(2.3) BoBT — (AoEy + A Ey)(ETAT + ETAT) = [A, A, |EEg EoEi][Ag

. 0 0&0 1E1 0 Mo 1™ 0 1 EIE"OF E1E1T A"lf .
The singular value decomposition (SVD) of the (N — 1) x (N — r) matrix Eq is Eg =
Uy cos OVT with singular values cosfy, ..., cosfy_, in nonincreasing order. We know
that 6; (i=1,..., N —r) are the principal angles between N (A) and N (B).

Notice that E{ E; = By AjATBg and A;AT = Iy —AgA;; we have E]E; = Bj By —
BJAoA; By = Iy, — EJEg. Recalling the SVD of Ey, we have ETE; = Vsin?@©V™T.
Thus E; can be expressed as U;sin ('-)VT7 which is however not the SVD of E;. To
this end, let matrix A =[AgUg A;U4]; then (2.3) becomes

2 .
T X cos* O sin®cos®| ~T
(2.4) BoBy =A Lin Bes® 26 ] A
~~T
Because of BlBrf =1y — By Bg and AA = Iy, we have the decomposition
) .
T X sin“ © —sin®cos®| xT
(2.5) BB, =A {_ 1O s © P ] A
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Notice that AgAjA = [AgUy On(n_n] and A;ATA =[Oy (v_r) AiUi]; by (2.4)
and (2.5), we obtain

~ cos’ @ sin®cos®| =T
(2.6) T=A —sin © cos ©® cos? ® '

Therefore, use (2.6) and consider BtB =B, B;F; the matrix T, x becomes
(2.7)
T . _QA Aecos? @ +A(1—¢)sin?® + (1 = M)ly_,  A2c—1)sin®cos® | #T
A —

—\sin © cos © Acos?® + (1= N)lIy_, A

2.3. Asymptotic convergence rate. With the assumption » < N, there exists
a nonzero principal angle between subspaces N'(A) and A/(B). The following lemma
gives values of all the principal angles.

LEMMA 2.4. The principal angles 0;, i = 1,...,N — r, between subspaces N (A)
and N (B) satisfy

(2.8) cosfy=---=coslOy_,_1=1 and COSGN,T:”%.

Proof. Let N(A)* denote the orthogonal complement of space N'(A). Since A =
1 1 -+ 1] € RN we have N(A)+ = span{1}. Recall that the columns of By
are the orthogonal basis of A(B). The principal angles between A(A)* and N(B)
can be computed via the SVD of X/%ITBO. Each column of By is a standard basis

e;, where j #41,...,%,. Thus

1 1 1
T 1 1 --- 1
1 1 1
—17B —17By | ==
(\FN 0) (\FN 0) N|: :
1 1 1

(N—=r)x(N—r)

The eigenvalues of the (N —r) X (N — r) matrix consisting of all ones are N — r and

0,...,0. So the singular values of ﬁlTBo are 4/ N]\*,T and 0,...,0. We conclude

cosOn_, = /%, since the nontrivial principal angles between N'(A) and N/(B) and
the corresponding nontrivial principal angles between N'(A)+ and N(B) sum up to
7; see the Theorem 2.7 in [24]. In addition, since the dimension of A'(A) is N —1 and
the dimension of A/(B) is N —r, as long as N —r > 1, from the definition of principal
angles, it is straightforward to see that cosf; =---=cosOn_,_1 =1. O

By Lemma 2.4, there exists only one nonzero principal angle 5 _,.. By eliminating
zero columns in (2.7), (2.7) can be simplified as

Tex=[AoUp Aq]
Orfl
a
Aecos? Oy + A1 —¢)sin® Oy, + (1 —X) \2c—1)sinfy_,cosOn_,
—AsinOn_, cosOn_, Acos?On_p+ (1 —N)
TAT
. [UR?O} , where a=(1—-A+Ac)Iy_r_1.
1
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From (2.7) we know the matrix T, is a nonnormal matrix; thus ||T§AH2 is sig-
nificantly smaller than ||T. |5 for sufficiently large k. Therefore, the asymptotic

convergence rate is governed by limg_, oo HT’(f \|I3, which is equal to the norm of the
eigenvalue of T, » with the largest magnitude. We have

det(Tex—ph=(p—1+A=2)VN " Hp—14+ )"
x [p* = (Mccos20n_, — 1) +2)p+ ANesin® Oy, + A(ccos 20—, — 1) + 1] .

By Lemma 2.4, the matrix T. ) has eigenvalues pg =1 — Ac and p; =1 — A(1 —¢)
corresponding to the principle angles 61, ...,05_,_1, Corresponding to the principle
angle Ox_,, the matrix T, has another two eigenvalues, p; and ps, satisfying the
following quadratic equation:

(2.9)  p* = (Mccos20y_, — 1) +2)p+ Nesin® Oy, + Mccos20n_, — 1) +1=0.

The discriminant of above equation is A = A\?(c? cos? 20, —2c+1). The two solutions
of A =0 are [1 £sin(20x_,)]/cos?(20y_,). Notice that [1 + sin(26)]/cos?(20) > 1
for any 6 € [0,%] and ¢ € (0,1). Let ¢* = [1 — sin(20n5_,)]/ cos®(20n_,); then the
magnitudes of ps and p3 are

1
ife<c®, then|ps|= §|)\ccos(29N,r) —A+24+M/cos2(20n_, )2 —2c+ 1],

1
lps| = §|)\ccos(29N,r) —A+2-A/cos2(20n_, )2 —2c+ 1],

ife>c*,  then|pa| =|ps3|= \/c/\2 sin?On_, — (1 — ccos(20n_ )N+ 1.

Recall that the generalized Douglas—Rachford splitting (1.6) and (1.7a) converges due
to convexity [26]. When the iterations enter the asymptotic regime (after the cut-off
location of the operator S does not change), the convergence rate is governed by the
largest magnitude of eigenvalues pg, p1, p2, and ps.

THEOREM 2.5. For a standard fized point of generalized Douglas—Rachford split-
ting iteration as defined in section 2.1, the asymptotic convergence rate of (1.6) solving
(1.3) is linear. There exists a sufficiently large K > 0, such that for any integer k > K,
we have

~ k
ly* ="l < C((minmax{lool.lpil. p2l. Ipal})

where K and C may depend on A, b, and y°.

2.4. A simple strategy of choosing nearly optimal parameters. For solv-
ing problem (1.3), after the iteration of algorithm (1.6) enters the asymptotic linear
convergence regime, the rate of convergence is governed by the largest magnitude of
Po, P1, p2, and p3. For seeking optimal parameters, we can safely ignore py because it
is straightforward to verify that py < p; with the optimal parameters derived below.
It is highly preferred to construct a guideline for selecting parameters ¢ and A such
that for max{|p1],|p2|, |ps|} is reasonably small.

We first consider the case Oy, € (7, g] It is easy to check ¢*= (cosOn rsm Oy )2
€ (3,1]. Define surfaces I'; = {(c,A\,2) : 0 < ¢ < ¢*, 0 < XA <2,z = |p;|}, where
i € {1,2,3}. For any point (¢, \,z) € To NT3, due to the fact that |a+b| = |a — b
implies ab =0 for any a,b € R, we have (Accos(20n_,) — A+ 2)v/A =0. When ¢ < ¢*
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and the discriminant A > 0, we get Accos(20y_,) — A+ 2 =0. Thus, if there exists a
point belonging to I'y NT's N3, then it satisfies

1= A1 —c)|=%+/cos?(20y_,)c2 —2c+1,
Accos(20n_r) — A +2=0.

On surfaces I';, i € {1,2,3}, the parameters ¢ € (0,¢*) and A € (0,2] imply the above

equations only have one solution ¢ = % and A = W. Thus, we have

/1 4 cos (20n_,)
(2.10) inlznls= {(27 2—cos(20n_,)" 2—cos (QGN,T)) }

Therefore, we know that when On_, € (%,%], the minimum of max{|p1|,|p2],

5|} for ¢ € (0,c*) and A € (0,2] is not greater than —-232%=r) T4 deal with
P 2—cos (20N 1)
c€[c*, 1), we need the following lemma.

LEMMA 2.6. Assume py and ps are functions of ¢ and X\, for which the minimum
can be attained. Then, the following inequality holds:

min max{[pa], [pa]} = max{min | pa, min |ps}.
c,\ A\ c,A

Proof. Assume the minimum of max{|p1|, |p2|} is achieved at (cg, \g). We have
the following:
L If [p1(co, M) = [p2(co, Ao)|, then ming x max{|p1],|p2[} = [p1(co,ro)| =
ming x |[p1]-
ii. If [p1(co, Ao)| < [p2(co, Ao)|, then mine,x max{|p1], |p2[} = [p2(co, Ao)| > [p1(co,
Ao)|- Proof by contradiction: assume min, y max{|p1|, |p2|} < min, x|p1|; then
this implies |p1(co, Ao)| < mine x|p1|, which is impossible.
Thus, min. ymax{|p1],|p2|} > min.x|p1|. Similarly, min, ) max{|p1],|p2|} >

ming »|p2|. 1]

When ¢ € [¢*,1), the magnitudes of py and p3 are equal; namely we only need
to find suitable parameters ¢ and A such that the max{|p1],|p2|} is reasonably small.
It is easy to verify that, when ¢ € [¢*,1) and A € (0, 2], the function p; is monoton-
ically increasing with respect to ¢ and monotonically decreasing with respect to .
Thus, p1(c*,2) =2¢* — 1> 0 gives |p1]| = p1. Associated with A greater or less than

20N
—08@0n-r) o have two cases.
sin?fOn_, °’

1. When A € (0, —%?g’j)}, recalling the monotonicity of p;, we have

. . cos(20n_,)
i, iS22
cE[c*,l),AE(O,—Z}% ST UN —p
- co's (220N,r) (1 B 1 ' ) >1 __cos(20n—;) '
sin Oy _, (cosOn—_p +sinfn_,)? 2 2 —cos(20n_,)

By Lemma 2.6, when the principal angle Oy, € (§, 5], we know

. cos (20—,
i (. [pa]) > - O CONr)

celer,1), AE(0,— SogiN =) —cos (20N )

Therefore, the common point of the three surfaces I'y, I's, and I's in (2.10) is
still a good choice.
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2. When A € (—<2208=x) 9] define k= cA?sin® Oy, — (1 — ccos(20y—,))A+1.

sinZ? Opn _
We have g“ =A(A sin? Oy, + cos (20n—,)) > 0, which implies x is monotoni-
cally increasing with respect to ¢ in the interval [¢*,1). Thus, for any ¢ > c*,
then |pa(c, \)| > |p2(c*, A)| holds. Again, recalling the monotonicity of p;, we
obtain

min max{|p1|, |p2[}
. cos (20 _ )
c€le”.1), A (= Trga=r" 2]

= i max{loa(e ALl V)
T

Since |p1(c*, A)|=1—=A(1—c*) and |p2(c*, N)| =1 — m\ when On_, €

(% 5], m>l—c*, then the equation |p1(c*,A)| = |p2(c®, A)| has one
and only one root

2
A=

1+

1 1
T+cotOn_, (cosOn—r+sinOn_,)?

Therefore, we know that when Oy, € (F, 5], the minimum of max{|p1|,|p2],

lps|} for c€[c*,1) and A € (— %ﬁgr) 2] is not larger than 1 — A*(1 —c*).

Next, let us consider the case Oy, € (0,%]. When c € (0,¢*) and X € (0,2], the
discriminant A > 0, namely the quadratic equatlon (2.9) has two real roots. Moreover,

|p2| > |p3| obviously. Thus, we only need to minimize the max{|p1|, |p2|}. Define

E=Xccos(20n_,) — A+ 2+ Ay/cos2(20n_,)c® — 2c + 1.

Since for any On_, € (0, %], ¢ € (0,¢*), and X € (0,2] the Accos(20n_,) —A+2 >0,
we have |ps| = 1&. From
Ok

e = A(cos(QGN_T) +

ccos?(20n_,) — 1 )
Veos2(20n_)c2 —2c+ 1

0

a—': =ccos(20n_,) — 1+ +/cos?2(20n_,)c2 —2¢+1<0,

we know that % is monotonically decreasing with respect to both ¢ and A. Thus & take
minimum at ¢ = ¢* and A =2. By Lemma 2.6, when the principal angle 65 _,. € (0, §],
we know

1
2.11 min max , > min = —k(c*,2) =c"cos20n_,.
( ) c€(0,c¢*), A€(0,2] {ledl.lo2l} T c€(0,e%), Ae(0,2] el 2 ( ) N

Notice that when ¢ =c* and A =2, the magmtude of p; and pg can be simplified as

|p1] = |2¢* — 1| and |p2| = ¢* cos 20N _,-, where c* = (costn™ T+smeN, 2. It is easy to
check that |pz| > |p1] holds for any 6y_, € (0,F]. We have
(2.12)

min_ max{|pil,|pal} < max{lpr(c*, 2, oa(e”, 2)[} = pa(e,2)] = ¢ cos 2.
ce(0,¢%), A€(0,2]

From above (2.11) and (2.12), we obtain the minimum of max{|p1,|p2|, |p3|} equals

c* cos 20y _,, which is achieved at ¢ = ¢* and A = 2. When ¢ € [¢*,2), following an

argument similar to that above, we can show |p1| =1 — A(1 — ¢), which is monoton-

ically increasing with respect to ¢ and monotonically decreasing with respect to .
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In addition, we also have |p2| = |ps|, which is monotonically increasing with respect
to ¢. Thus, we have

min max ,p2], = min max c A, 1 pa(c*, A
o min o el Il = i o (e VL pa( )

= min })\c* cos(20n_,) — })\ +1.
X€(0,2] 2

The last equality above is due to the fact that |p1(c*, \)| < |p2(c*, A)| holds for any
On—r € (0, F]. From the fact that Ac* cos(20nx_,) — A is monotonically decreasing with
respect to A, we know, in this case, that the minimum equals ¢* cos(20y_,), which is

taken at c=c* and A =2.
To this end, let us make a summary of the parameter selection principle as follows.
1. When 0yn_, € (%ﬂ', %ﬂ, a suitable choice of parameters is ¢ = %, A=
m. The associated asymptotic linear convergence rate is governed

b cos (20N —»)

" 2—cos (20N _1)"

2. When Oy_,. € (%w, %w], a suitable choice of parameters is ¢ =c*, A= \*. The
associated asymptotic linear convergence rate is governed by 1 — A*(1 — ¢*).

3. When 6y_, € (0, iwL a suitable choice of parameters is ¢ = ¢*, A = 2. The

associated asymptotic linear convergence rate is governed by ¢* cos(20y_).

Remark 2.7. The exact value of the principal angle Oy_, in (2.8) is unknown.
But it is simple to estimate Oy _, by counting the number of bad cells; e.g., let # be
the number of u; ¢ [m, M| and use 7 instead of 7 in (2.8) to compute 0 _,. This gives
a simple guideline (1.9) for choosing nearly optimal parameters, which is efficient in
all our numerical tests as shown in section 4.

Remark 2.8. In a large-scale 3D problem, usually the ratio of bad cells with cell
averages out of bound in the DG scheme is quite small. In such a case, we expect
r < N, with which 0y_, is very close to zero. In this case, by the discussions above,
the convergence rate in Theorem 2.5 becomes —%. If # is also a good
approximation to r, which is usually true in this context, then we get the rate (1.10).

With the guideline (1.9) for choosing nearly optimal parameters in (1.7a), we can
use the two-step limiter as explained in section 1.5 to enforce bounds of DG solutions.

3. Application to phase-field equations. One of the popular approaches for
modeling multiphase fluid flow in micro-to-millimeter pore structures is to use phase-
field equations [15]. Efficient and accurate pore-scale fluid dynamics simulators have
important applications in digital rock physics (DRP), which has been extensively used
in the petroleum industry for optimizing enhanced oil recovery schemes.

3.1. Mathematical model. In an open bounded domain Q C R? over a time
interval (0,77, the dimensionless CHNS equations are given by

(3.1a) O — Piev-(M(¢)w)+v-(¢u):o in (0,7] x Q,
(3.1b) p4Cn?A¢ — &' (¢)=0 in(0,7] x Q,
(3.1c)
ov+v-Vu— iV-.fs(v) + LVp— $MV¢:0 in (0,7] x 9,
Re ReCa 2v/2ReCaCn
(3.1d) V-v=0 in(0,7] x 9,

where ¢, i, v, and p are order parameter, chemical potential, velocity, and pressure.
The nondimensional quantities Pe, Cn, Re, and Ca denote the Péclet number, Cahn
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number, Reynolds number, and capillary number, respectively. The strain tensor is
given by e(v) = 3(Vv + (Vo)"). The function M denotes mobility. Typical choices
of M include the constant mobility M(¢$) = Mg > 0, where My can be set to 1 after
nondimensionalization, and the degenerate mobility M(¢) =1 — ¢. The function ®
is a scalar potential, which is also called chemical energy density. Classical and widely
used forms are the polynomial Ginzburg-Landau (GL) double well potential, ®(¢) =

1(1—=9)?(14¢)?, and the Flory-Huggins (FH) logarithmic potential with parameters

aand B, ®(¢) =5 ((1+¢)In (1E2) + (1-¢)In (152)) + £(1 - ¢?).

We supplement (3.1) with initials ¢ = ¢ and v = v° on {0} x Q. Let m denote
the unit outward normal to domain 2. We decompose the boundary 0f2 into three
disjoint subsets 9Q = 921U IO UON™, where OQV2! denotes fluid-solid interface

and 0™ and 90Q°" are inflow boundary and outflow boundary
OV ={xcIN: v-n <0} and GQ° =90\ (Y U oO™M).

We prescribe Dirichlet boundary conditions ¢ = ¢p and v = vp on (0,7] x OQ™".
For velocity, the no-slip boundary condition v = 0 is used on (0,7] x Q"2 and “do
nothing” boundary condition (2e(v) — gzpl)n =0 is applied on (0,7] x 9Q". Wet-
tability is modeled by a contact angle ¥ that is enforced by V¢ -n = —Wg’ (0)

n (0,7] x (9Q¥a U 90°u)| where the function g is a blending function. The closed-
form expression of g depends on the choice of chemical energy density [4]. For the
Ginzburg-Landau potential, we have g(¢) = 1(¢® — 3¢ +2). In addition, we employ
the homogeneous Neumann boundary condition M(¢)Vy-n =0 on (0,T] x 9Q to
ensure the global mass conservation.

The order parameter ¢ is the difference between the mass fraction ¢ and ¢ of
the phase A and phase B. With constraint ¢4 + ¢ =1 for a two-component mixture
as well as mass fractions belonging to [0, 1], a physically meaningful range of the order
parameter field is [—1,1]. The Cahn-Hilliard equation with the degenerate mobility
or with the logarithmic potential enjoys bound-preserving property [41]. However,
for constant mobility with GL polynomial potential, the analytical solution of Cahn—
Hilliard equation is not bound-preserving [2]. For a given initial datum ¢° € [—1,1], it
is an open question whether the solution of a fully coupled CHNS system should have
a bounded order parameter in [—1,1]. On the other hand, empirically we would expect
a reasonable solution, e.g., the discrete order parameter field, should be bounded by
—1 and 1 for any time ¢t > 0.

3.2. Time discretization. The CHNS equations form a highly nonlinear cou-
pled system. One of the popular approaches to constructing efficient numerical algo-
rithms for large-scale simulations in complex computational domains is to use splitting
methods, e.g., to decouple the mass and momentum equations and to further split
the convection from the incompressibility constraint [37]. Also, see [21, 19] for an
overview of the splitting methods for time-dependent incompressible flows.

We uniformly partition the interval [0, 7] into Ng; subintervals. Let 7 denote the
time step size. For the chemical energy density, we adopt a convex—concave decompo-
sition of the form ® = ¢, 4+ ®_, where the convex part @, is treated time implicitly
and the concave part ®_ is treated time explicitly. For the nonlinear convection v-Vuv,
the form C(+,-) is a semidiscretization that satisfies a positivity property; see equa-
tion (12) in [27]. For any 1 < n < Ny, our first-order time discretization algorithm
consists of the following steps:
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Step 1. Given (¢" 1 w"~1), compute (¢™, u™) such that

6" = 5 V- MYV £7V - (@M ) =" i,
—u" — Cn?AP" 4+ &, (o) = —D_" (o™ 1) in Q.

Step 2. Given (¢™, u", v~ 1, p"~1 4"~1) compute v" such that

2
" +7C(v" ™) — R—ZV cg(v™)=v" !
T 3T
o V nfl_‘r_ n—1 S nV n an
ReCa (p v 2\/§ReCaCnM ¢
Step 3. Given v™, compute 1™ such that
A= _ReCag in Q.

Step 4. Given (v™,p"~1,9™), compute (w™,p"™) such that

-
no__no_ Vi
W=y ReCa v

pt=p" 4" — 0, CaV - v™.

for our numerical simulations

The parameter o, is equal to %; namely, we use o, =
=0 and ¥° =0. The functions

in three dimensions. To start time marching, we set p
¢% and w® =v° are given initial data.

SIS

Remark 3.1. The above scheme is a combination of the convex splitting approach
for the Cahn—Hilliard equation with the classical rotational pressure-correction algo-
rithm (see section 3.4 in [21]) for the Navier—Stokes equations. More precisely, Step
2 to Step 4 can be rewritten as follows:

1 . » 2 1 . 3
—(V"—w" )+ C(W" N, v") - —V  g(v") =— Vp" —u"Vo",
7'( )+ ) Re (v") ReCa * 7 QﬁReCaCnu ¢
1 1
~(w" — " Vi =0
T(w Y )+ReCa v ’ Yr=p" —p" ! +0,CaV 0"
V.w" =0,
We use w™ !, instead of v™ !, in the advection term in Step 1, since V - w" ! =0.

For the sake of simplicity, we only presented a first-order version of the scheme,
although a high-order version can be constructed accordingly. On the other hand, it
is also possible to construct energy dissipating schemes as in [38]. Since our focus in
this paper is in preserving bounds for a DG spacial discretization, we employ a simple
time-marching strategy.

3.3. Space discretization. Decoupled splitting algorithms combined with inte-
rior penalty DG spatial formations have been constructed to solve various CHNS mod-
els in large-scale complex-domain DRP simulations [15, 28, 30]. Also, see [29, 32, 33]
for solvability, stability, and optimal error estimates on using DG with decoupled split-
ting schemes for CHNS equations and viscous incompressible flow. Here, we briefly
review the fully discrete scheme.

Let Tp, = {F;} be a family of conforming nondegenerate (regular) meshes of the
domain  with maximum element diameter h. Let I'j, be the set of interior faces. For
each interior face e € I'j, shared by elements E;~ and E;+, with i~ <4, we define a
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unit normal vector n. that points from FE;- into E;+. For a boundary face, e C 0f2,
the normal vector n, is taken to be the unit outward vector to 9. Let P (F;) denote
the set of all polynomials of degree at most k on an element E;. Define the broken
polynomial spaces X and Xy, for any k> 1, as

Xn={xn € L*(Q): xn|p, €Pr(E)VE; €T},
X, ={0, € L*(Q)?: 0},|p, € Pu(F;)*VE; € Tp}.

The average and jump for any scalar quantity x on a boundary face coincide with its
trace; and on interior faces they are defined by

1 1
{IxHe = 5 XlEr + 5 X|EiJr ;o Ddle= XlEr - X|Ei+ Ve=0E;- NOE;+.

The related definitions for any vector quantity are similar. For more details see [36].

Let (-,+)o denote the L? inner product over . For instance, on any face e the
L? inner product is denoted by (,-).. We make use of the following compact notation
for the L? inner product on the interior and boundary faces

(o= _(~)e, where O =T}, 0Q, 9Q™, 9Q°™, .. ..
ecO

For convenience, we omit the subscript when O = ); namely we denote (-,-) = (-,")q.
We still use V and V - to denote the broken gradient and broken divergence.

For completeness, let us recall the DG forms below, and we skip their derivation.
Associated with the advection term V - (¢w) and the convection term v - Vz, we
define

tady (¢, w,x) = —(¢,w - VX) + (6" {w - ncl}, Xrs
Geony(V;2,0) = (v-Vz,0)+ 1(V ‘v,2-0)
%([[U ne] {z-0)r,uo0m + Y ({lvl}-nsl, (2™ — 274 - 67)op

EeTh

The superscript int (resp., ext) refers to the trace of a function on a face of E coming
from the interior (resp., exterior). The set IE? is the upwind part of OF, defined by
OFE® = {x € OF : {|v|} - ng < 0}, where ng is the unit outward normal vector to F
[18]. The upwind quantity ¢' on an interior face e is evaluated by

oep, = {%i i {wl - me 20,
¢‘Ei+ if{wl} - n. <O0.
Associated with the operator —V - (2V¢§), we define
agif (2:€,x) = (2VE, V) = ({2VE-nel}, [xXDr,
— ({=9x neb I, + 7 (L TN
Associated with the Laplace operator —A¢ (for terms —A¢ and —Aq)), we define
—A& + Dirichlet on 9™ ~»  agig in (£, X) = aaie (1;6,x) — (V§ - na X)oqmn
— (VX ne,&aain + 5 X)ogin,
—A¢ + Dirichlet on dQ°" ~  aqift out (€, X) = aair (1;€,x) — (V€ - nax)anout
— (VX ne,§ogom + (5 X)ogent
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Associated with the diffusion term —2V - e(v), we define

acnip(v,0) = 2(e(v),£(0)) — 2({le(v)ne}, [0])r,, — 2({e(0)ncl}, [v])r,
+ %([[’U]]’ [[BH)F;L - 2(6(’0)7’&5, 9)89‘“ - 2(6(0)'"*67'0)89‘“ + %(’070)89“‘-

The remaining forms in the right-hand sides of the discrete equations account for the
boundary conditions (see bgig and byer) and the pressure and potential (see bpres):

24/26 cos(V
bair (&, x) = —(¢p, VX Ne)gqin + %(¢DaX)BQ‘“_ %(9/(5% X) awall ugqont ,
bpres(%%g) = _(p7 \& 9) + ({|p‘}7 [[9 : ne]])FhUaﬂ + (Vw70)7

3 2 o
bel(0) = _§(UD “n,vp - 0)soin — ﬁ(é‘(e)neva)aQin + TRG(’UDﬁ)aQin-

In bgigr, the parameter ¢ is a scalar field that equals the constant one for smooth solid
boundaries only and that otherwise corrects the numerical impact of the jaggedness
of the solid boundaries obtained from micro-CT scanning. The derivation of this
boundary condition and the wettability model can be found in [16].

For any 1 < n < Ng, our fully discrete scheme for solving the CHNS equations
(3.1) is as follows.

Algorithm CHNS. At time t", given scalar functions ¢Z_1,p2_1, 2_1 in X

and vector functions vz_l,wz_l in Xj,.

Step 1. Compute ¢}, uj € Xp, such that for all x, € Xj,

n T n— n n n—
(¢h7Xh) + ﬁadiﬂ‘(M(th 1);:uh7Xh) + Taadv(¢h7wh 1aXh)

=( ZﬁlaXh) + T(¢Dw271 ‘e, Xh)oQin,
— (1t xn) + Cnagiin (67, Xn) + (24 (A1), Xn)
= Co’bai (8}, xn) — (2" (67 1), xn)-

Step 2. Compute v} € Xj,, such that for all 8;, € Xy,

_ T _
(vZaeh) +Taconv(UZ 17v270h) + %aellip(vZaeh) = (’UZ 1;0h)
31

_l’_
2v/2ReCaCn
Step 3. Compute ¥} € X}, such that for all x5, € Xp,

n—1 nfl7 h)

T o
B mbpres(ph »"h (LpVop,0p) + Tbyer (01).

ReCa
adiﬂ,out(wgl;Xh) = (V : vZaXh)'
Step 4. Compute wj € X, and pj € Xj,, such that for all @ € X}, and xp € Xp,
n . gy . — (T _ T n
(wh>0h)+0dlv<v whav Bh) (vh70h> Reca(v¢ha0h)7

(i, xn) = )" xn) + (U5 xn) — 05, Ca(V - v}, xa).

For the initial conditions, we set p% = 1/)2 =0, w?l = U?L; we compute ¢2 from the
L? projection of ¢° followed by the Zhang-Shu limiter, and we obtain v from the L?
projection of v°.

To obtain a bound-preserving discrete order parameter field, at each time step
after finishing computing Step 1 in Algorithm CHNS, we apply the two-stage lim-
iting strategy (see section 1.5) to postprocess discrete order parameter ¢f. For the
simulations in section 4, we choose m = —1 and M =1.
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4. Numerical experiments. In this section, we first verify the high order ac-
curacy of our cell average limiter (1.7) for a manufactured smooth solution. Then
we verify the efficiency of the limiter (1.7) when using the parameters (1.9) on some
representative physical simulations including spinodal decomposition, flows in micro
structure, and merging droplets.

We use the Py scheme, e.g., discontinuous piecewise quadratic polynomials for
space approximation, on cubic partitions of 3D domains. More details can be found
in [14].

The penalty parameters for all tests are as follows. We use 0 =8 on I'y, for agig;
o =16 on 9N for agig in and adiff,out; 0 =32 on I'y; and o =64 on 0™ for Qellip- In
addition, we set tolerance e = 1073 to terminate Douglas—Rachford iterations.

4.1. Accuracy test. We use the manufactured solution method on domain 2 =
(0,1)3 with end time T = 0.1 to test the spatial order of convergence for our cell
average limiter (1.7).

To trigger the cell average limiter (1.7), e.g., produce a fully discrete solution
with cell average out of [—1,1] at each time step, we use constant mobility with GL
polynomial potential and choose the prescribed order parameter field as an expression
of a cosine function to power eight, as follows: ¢ =1 — 2cos® (t + 2?”(33 +y+ z)) The
chemical potential p is an intermediate variable, the value of which is derived by
the order parameter ¢. The prescribed velocity and pressure fields are taken from
the Beltrami flow [32], which enjoys the property that the nonlinear convection is
balanced by the pressure gradient and the velocity is parallel to vorticity. We have

—e ™ sin (y + 2) — e " cos (x + y)
v=|—eMsin(z+2z) —e T cos (y + 2)
—e " sin(z +y) —e "V cos (z + 2)

and p= —e 2! (e* T sin (y + 2) cos (z + y)+e* ¥ sin (z + 2) cos (y + 2)+e¥* sin (z + )
cos (z+2) + 3€** + 262V + Le?* — p0), where p¥ = 7.63958172715414 guarantees zero
average pressure over ) for any ¢ > 0 up to round-off error. The initial conditions
and Dirichlet boundary condition for velocity are imposed by the above manufactured
solutions. For order parameter and chemical potential, we apply the Neumann bound-
ary condition. In addition, the right-hand side terms are evaluated by the prescribed
solution.

Let us estimate the spatial rates of convergence by computing solutions on a
sequence of uniformly refined meshes with fixed time step size 7 = 1074, In our
experiments, the time step size is small enough such that the spatial error dominates.
We choose Re = 1, Ca = 1, Pe = 1, Cn = 1, and the contact angle ¥ = 90° on
09). If erry, denotes the error on a mesh with resolution h, then the rate is given by
In(erry,/erry z)/In2.

We compare the L,Ql rate and the L7° rate of order parameter in three scenarios:
not applying any limiter, only applying the cell average limiter (1.7), and applying
both limiters (1.7) and (1.8). In those applied cell average limiter (1.7) cases, the
limiter is triggered at each time step; see Figure 1 for the ratio of the number of
trouble cells to the number of total elements. The convergence of our original DG
scheme without applying any limiter is optimal; see the top rows in Table 1. The
middle and bottom rows in Table 1 show optimal convergence of the cases that only
apply cell average limiter (1.7) and apply both cell average limiter (1.7) and Zhang—
Shu limiter (1.8). Our limiting strategy preserves high order accuracy. We emphasize
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F1G. 1. The performance of limiting strategy in the accuracy test of applying both limiters (1.7)
and (1.8) with mesh resolution h =1/25. Left: The percentage of trouble cells at each time step for
the cell average limiter (1.7). Right: The number of Douglas—Rachford iterations at each time step.
For each time step, at most 15 iterations are needed for (1.7a).

TABLE 1
Errors and spatial convergence rates of order parameter. Top: The original DG scheme without
applying any limiters. Middle: Only apply the cell average limiter (1.7) (DR). Bottom: Apply both
the cell average limiter (1.7) and the Zhang—Shu limiter (1.8).

h 67 = (D)l .2 rate l[67*t — ¢(T)|l Lo rate
no limiter 1/22 2.034 E-1 — 5.636 E—1 —
1/23 4.903 E—2 2.053 1.400 E—1 2.009
1/24 5.714 E-3 3.101 2.731 E-2 2.358
1/2% 4.833 E—4 3.564 4.699 E—3 2.548
DR 1/22 2.053 E—1 — 5.826 E—1 —
1/23 4.954 E—2 2.051 1.485 E—1 1.972
1/24 5.720 E-3 3.115 2.799 E—2 2.408
1/2° 4.834 E—4 3.565 4.734 E-3 2.564
DR+ZS 1/22 2.872 E—1 — 7.631 E—1 —
1/23 5.970 E—2 2.266 2.561 E—1 1.575
1/24 7.181 E-3 3.057 3.926 E—2 2.706
1/2° 4.833 E—4 3.893 4.734 E-3 3.052

that DG methods with only the Zhang—Shu limiter will produce cell averages outside
of the range [—1,1] for this particular test.

4.2. Spinodal decomposition. Spinodal decomposition is a phase separation
mechanism, by which an initially thermodynamically unstable homogeneous mixture
spontaneously decomposes into two separated phases that are more thermodynam-
ically favorable. The spinodal decomposition test is a widely used benchmark for
validating CHNS simulators. In this part, we employ the degenerate mobility with
GL polynomial potential.

We define a trefoil-shaped pipe, which is a set of points whose distance away
from the following parametric curve is less than 0.09. A trefoil knot z(t) = g (cost +
2c082t)+ 3, y(t) = §(sint —2sin2t) + 3, and z(z) = Lsin3t+ 5, where t € [0,27]. Let
us uniformly partition the unit cube (0,1)? into cubic cells with the mesh resolution
h =1/100. A cell is marked as fluid if its center is in the above pipe; otherwise is
marked as solid. The computational domain €2 is defined as the union of all fluid
cells. We consider a closed system, i.e., 9Q = 0Q"*. The initial order parameter
field is generated by sampling numbers from a discrete uniform distribution, ¢¥|g, ~
U{—1,1}, and the initial velocity field is taken to be zero. We take the time step size
7 =1 x 1073, For physical parameters, we choose Re =1, Ca=0.1, Pe=1, Cn = h,
and the contact angle ¢ =90° on 0f).

Figure 2 shows snapshots of the order parameter field. We employ a rainbow color
scale that maps the values in [—1,1] from transparent blue to nontransparent red for
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Fic. 2. Selected snapshots at time steps 2™, where n=3,5,...,11. 3D views of the evolution of
order parameter field.
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Fic. 3. Left: The average of order parameter at each time step, which shows the conservation
is preserved. Middle: The number of Douglas—Rachford iterations at each time step. Right: The
asymptotic linear convergence at time step 128. The predicted rate is the rate given in Theorem 2.5.

plotting the order parameter field. The center of the diffusive interface is colored
green. We observe that the homogeneous mixture decomposes into two separate
phases. With a neutral wall, i.e., the contact angle ¥ =90°, in the final stage of the
simulation, each of the two phases occupies several disjoint sections of the domain.
The interfaces are perpendicular to the solid surface. Our limiters remove overshoots
and undershoots. The global mass is conserved; see the left subfigure of Figure 3.

The middle subfigure of Figure 3 records the number of iterations of the Douglas—
Rachford algorithm on each time step. To measure the convergence rate, we run
the Douglas-Rachford algorithm for 10? iterations with a very small tolerance to
approximate y* and x* numerically. Then we plot ||y* — y*||2 and ||z* — x*||2. The
right subfigure of Figure 3 shows asymptotic linear convergence rates at the selected
time step 128. We see the convergence rates match our analysis in Theorem 2.5. In
addition, we check the convergence rates on all of the rest steps that match with our
analysis.

4.3. Microstructure simulations. This example involves large Péclet flows in
a microfluidic device, making it an interesting test for validating our bound-preserving
scheme in simulating advection-dominated CHNS problems. In this section, we use
the constant mobility with GL polynomial potential.

The microstructure image is a set of 334 x 210 x 10 cubic cells of resolution
h =1/350. Analogous to the lab experiment setup, we add a buffer of 16 x210x 70 cells
to the left side. The pore space together with the buffer region form our computational
domain €; see Figure 4. Phase A refers to the bulk phase with order parameter equal
to +1, and phase B refers to the bulk phase with order parameter equal to —1. The
buffer zone is initially filled with phase A and the microstructure is initially filled with
phase B, respectively. The initial velocity field is taken to be zero. The left boundary
of € is inflow, the right boundary of Q is outflow, and the remaining boundaries of 2
are fluid—solid interfaces. On the inflow boundary, we prescribe ¢p = 1, e.g., phase
A is injected, and vp = 1%%(y — 0.2)(y — 0.8)(z — 0.4)(z — 0.6). We take time step
size T =5 x 10~*. For physical parameters, we choose Re =1, Ca =1, Pe = 100, and
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Fi1Gc. 4. The computational domain of the microstructure simulation.
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~

%%%Q

i

%%%Qﬁ

F1G. 5. Selected snapshots at time steps 50, 100, 150, 200, and 250. The first and third rows:
3D wviews of the evolution of the order parameter field. The second and fourth rows: Plots of order
parameter warped along the plane {z=0.5}. The top two rows are without limiters, and the bottom
two rows are with our limiters.

Cn = h. The microstructure surface is hydrophobic with respect to phase A with a
contact angle ¥ = 135°. The buffer surface and outflow boundary are neutral, namely
¥ =90°.

Figure 5 shows snapshots of the order parameter field as well as its values along
the plane {(z,y,z) € Q:2z=0.5} in mountain views. Similar to the previous example,
we employ a rainbow color scale that maps the values in [—1, 1] from blue to red for
plotting the order parameter field. The center of the diffusive interface is colored green.
The values outside [—1,1] are marked in black. We observe that phase A invades
the microstructure while staying away from the solid surfaces due to the wettability
constraint. The top two rows correspond to the simulation without applying any
limiter whereas the bottom two rows correspond to the simulation applying our two-
stage limiting strategy. Our limiters remove overshoot and undershoot. The fluid
dynamics are similar for both cases.

Figure 6 shows the number of iterations of the Douglas—Rachford algorithm on
each time step as well as the asymptotic linear convergence rates of selected time
steps. Here, the errors ||y* — y*||2 and ||z* — z*||2 are measured in a similar way as
explained in the previous example. A numerical way of getting an exact value of r
is to run the Douglas—Rachford iterations sufficiently many times with small enough
tolerance and count the number of entries that stay out of the bounds in y*. Using
the exact r to compute the principal angle 65_,., we see that the numerical results
match our analysis; see Figure 6.
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Fic. 6. The left figure shows the number of Douglas—Rachford iterations at each time step. The
middle and right figures show the asymptotic linear convergence at time steps 150 and 250, where
the principal angle 0 _, is computed by using exact values of r.

4.4. Merging droplets. This example deals with droplets of fluid surrounded
by another fluid. In a capillary-forces-dominated merging process, the large drop-
let wobbles several times and eventually evolves into the most thermodynamically
favorable configuration, e.g., a single spherical droplet.

Let us consider four different scenarios. In the first scenario, we use constant
mobility with GL polynomial potential, and we do not apply any limiter. In the rest
of the scenarios, we apply our two-stage limiting strategy. In the second scenario, we
use constant mobility with GL polynomial potential. In the third scenario, we use
constant mobility with FH logarithmic potential (parameters « = 0.3 and 5 =1). And
in the fourth scenario, we use degenerate mobility with GL polynomial potential.

Let © = (0,1)® be a closed system, let 92 = 9Q"*! and set the initial velocity
field v° = 0. Four droplets of phase A are initially in a nonequilibrium configuration,
surrounded by phase B; i.e., the initial order parameter field is prescribed by

¢° :max{ —1, tanh (Tl\/;CnaO”), tanh (rlxﬂgcnaﬂ), tanh (W)

tanh <7T2 _\/;C_na?)” ) }7

where ag = [0.35,0.35,0.35}T and a; = [0.65,0.65,0.65]T are the centers of the two
initial larger droplets with radius r; = 0.25; and as = [0.75,0.25,0.25]T and a3z =
[0.25,0.75, 0.75]T are the centers of the two initial smaller droplets with radius ro =
0.16. For the FH logarithmic potential, we use 0.997¢° as the initial order parameter
field to make its value away from the singularity. We uniformly partition domain
Q by cubic elements with the mesh resolution h = 1/50 and take the time step size
7 = 10~*. For physical parameters, we choose Re = 1, Ca = 10~%, Pe = 1, Cn = h,
and the contact angle ¢ =90° on 0f).

Figure 7 shows snapshots of the order parameter field. The center of the dif-
fusive interface is colored green, and the bulk phases are transparent. We see the
merging of the four droplets, the intermediate wobbling stages, and the final equilib-
rium configuration of a spherical droplet. We observe from Figure 7 that the fluid
dynamics are visually similar in these scenarios. However, there are visible differences
in certain one dimensional profiles; see Figure 8 for the order parameters at the line
{(z,y,2) €Q:x=y=2z}.

Figure 8 shows values of the order parameter along the diagonal {(x,y,z) € Q:
x =y =z} of the computational domain. In scenario 1, we observe bulk shift at near
steady state, which is as expected since no limiters are applied. In scenarios 2 and 4,
our limiters remove overshoots and undershoots. In scenario 3, the FH logarithmic
potential ensures bounds without bulk shift. The cell average limiter (1.7) is not
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Fia. 7. 3D views of the evolution of the order parameter field. Selected snapshots at time steps
1, 3, 11, 23, 39, 56, 72, 90, 256, and 512. The dynamics are visually similar in these scenarios.
However, there are visible differences in certain 2D profiles; see Figure 8.

¢ e

degenerate mobility + GL potential

triggered, but the Zhang—Shu limiter is triggered. The global mass is conserved; see
the left subfigure in Figure 9.

We plot the number of iterations of the Douglas—Rachford algorithm on each
time step; see the right two subfigures in Figure 9. We check the asymptotic linear
convergence rates, and they match with our analysis. The errors ||y* — y*||2 and
|£* — x*||2 are measured in a similar way as in the previous example.

5. Conclusion. In this paper, we have analyzed the asymptotic linear conver-
gence rate for using Douglas—Rachford splitting methods of a simple nonsmooth con-
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F1G. 8. Plots of order parameter extracted along the line {(z,y,z) € Q:x =y = z}. Selected
snapshots at time steps 23, 56, 90, and 512. Scenario 1: Constant mobility with GL polynomial
potential and without any limiters applied. The rest of the scenarios apply limiters. Scenario 2:
Constant mobility with GL polynomial potential. Scenario 3: Constant mobility with FH logarithmic

potential. Scenario 4: Degenerate mobility with GL polynomial potential.
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F1G. 9. Left: The average of order parameter at each time step. Middle and right: The number
of Douglas—Rachford iterations for scenarios 2 and 4 at each time step. Scenario 1: Constant mobility
with GL polynomial potential and without any limiters applied. The rest of the scenarios apply
limiters. Scenario 2: Constant mobility with GL polynomial potential. Scenario 3: Constant mobility
with FH logarithmic potential. Scenario 4: Degenerate mobility with GL polynomial potential.

vex minimization, which forms a high order accurate cell average limiter. We obtain
an explicit dependence of the convergence rate on the parameters, which gives a prin-
ciple of parameter selection for accelerating the asymptotic convergence rate. Our
optimization scheme is efficient, and our two-stage limiting strategy is well suited for

high order accurate DG schemes for large-scale simulations.
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