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Abstract. For time-dependent PDEs, the numerical schemes can be rendered bound-preserving
without losing conservation and accuracy by a postprocessing procedure of solving a constrained
minimization in each time step. Such a constrained optimization can be formulated as a nonsmooth
convex minimization, which can be efficiently solved by first order optimization methods, if using the
optimal algorithm parameters. By analyzing the asymptotic linear convergence rate of the generalized
Douglas--Rachford splitting method, optimal algorithm parameters can be approximately expressed
as a simple function of the number of out-of-bounds cells. We demonstrate the efficiency of this simple
choice of algorithm parameters by applying such a limiter to cell averages of a discontinuous Galerkin
scheme solving phase field equations for 3D demanding problems. Numerical tests on a sophisticated
3D Cahn--Hilliard--Navier--Stokes system indicate that the limiter is high order accurate, very efficient,
and well suited for large-scale simulations. For each time step, it takes at most 20 iterations for the
Douglas--Rachford splitting to enforce bounds and conservation up to the round-off error, for which
the computational cost is at most 80N with N being the total number of cells.
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1. Introduction.

1.1. Objective and motivation. We are interested in a simple approach to
enforce the bound-preserving property of a high order accurate scheme for phase field
models, without destroying conservation and accuracy. Many numerical methods,
especially high order accurate schemes, do not preserve bounds. For the sake of both
physical meaningfulness and robustness of numerical computation, it is critical to
enforce both conservation and bounds.

Bound-preserving schemes have been well studied in the literature for equations
like hyperbolic and parabolic PDEs. One popular approach of constructing a bound-
preserving high order scheme was introduced in [44, 45] for conservation laws, which
can be extended to parabolic equations [40, 39] and Navier--Stokes equations [12, 43],
as well as implicit or semi-implicit time discretizations [35, 31]. However, this method,
and most of other popular bound-preserving schemes for conservation laws and para-
bolic equations such as exponential time differencing [10], are based on the fact that
the simplest low order scheme is bound-preserving, which is no longer true for a fourth
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A1924 C. LIU, B. RIVIERE, J. SHEN, AND X. ZHANG

order PDE like the Cahn--Hilliard equation, unless a very special implementation is
used such as implicit treatment of a logarithmic potential [6].

A simple cut-off without enforcing conservation does not destroy accuracy but
it is of little interest, because convergence might be lost due to loss of conservation.
A meaningful objective is to enforce bounds without destroying conservation. For
the Cahn--Hilliard equation, an exponential function transform approach was used in
[23], with conservation achieved up to some small time error. If the logarithmic energy
potential is used and treated implicitly, bounds can also be ensured [6]. A Lagrange
multiplier approach in [7, 8] provides a new interpretation for the cut-off method and
can preserve mass by solving a nonlinear algebraic equation for the additional space
independent Lagrange multiplier. Even though the flux limiting [25, 42, 22, 11] can be
formally extended to the Cahn--Hilliard equation [17, 30], it is not clear whether flux
limiters can preserve high order accuracy for a fourth order PDE. Recently a bound-
preserving finite volume scheme, which is first order accurate in time and second order
accurate in space, has been constructed for the Cahn--Hilliard equation [1].

In practice, the logarithmic potential causes additional difficulty in nonlinear
system solvers in many schemes; thus the double well polynomial potential with a
degenerate mobility is often used as an easier surrogate. With the double well poten-
tial, numerical schemes might violate the bounds much more since it does not enforce
bounds \phi \in [ - 1,1] like the log potential. In this paper, we will explore a simple and
efficient high order accurate postprocessing procedure for preserving bounds and con-
servation up to round-off errors, such that it can be easily applied to any numerical
method solving the Cahn--Hillard equation, especially for the polynomial potential.

1.2. A bound-preserving limiter via convex minimization. Consider a
scalar PDE as an example. Assume its solution u satisfies m \leq u \leq M for all time
and locations, where m and M are constant bounds. For simplicity, we only consider
enforcing cell averages in a high order accurate discontinuous Galerkin (DG) scheme
by convex minimization and then using the simple Zhang--Shu limiter in [44, 45] to
enforce bounds of point values of the DG solution. But this convex minimization
approach can be easily extended to enforcing bounds of point values for any other
numerical scheme such as finite difference and continuous finite element methods.

Let \=ui (i = 1, . . . ,N) be all the DG solution cell averages at time step n on a

uniform mesh. Given \bfitu =
\bigl[ 
\=u1 \=u2 \cdot \cdot \cdot \=uN

\bigr] T \in \BbbR 
N , we would like to postprocess it

to \bfitx =
\bigl[ 
x1 x2 \cdot \cdot \cdot xN

\bigr] T \in \BbbR 
N such that it is bound-preserving in that xi \in [m,M ],

conservative in that
\sum 

i xi =
\sum 

i \=ui, and accurate in the sense that \| \bfitx  - \bfitu \| should be
small. Namely, we consider minimizing \| \bfitx  - \bfitu \| under constraints xi \in [m,M ] and\sum N

i=1 xi =
\sum N

i=1 \=ui. To change as few cell averages as possible, the convex \ell 1-norm is
often used to approximate the NP-hard \ell 0-norm. The \ell 1-norm is nonsmooth without
any strong convexity; thus the minimization might still be too expensive to solve. For
the sake of efficiency, we propose the \ell 2-norm instead:

(1.1) min
\bfitx 

\| \bfitx  - \bfitu \| 22 s.t. xi \in [m,M ] and

N\sum 

i=1

xi =

N\sum 

i=1

\=ui.

Obviously, the minimizer to (1.1) is conservative and bound-preserving. The
justification of accuracy is also straightforward, as long as \bfitu is an accurate numerical
solution, which is a reasonable assumption and has been proved to hold for many DG
schemes of a variety of PDEs; e.g., see [29] for Cahn--Hilliard--Navier--Stokes (CHNS)
equations. Let \=u\ast i and \=u0i be the cell averages of the exact solution at time tn and initial
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A CONVEX OPTIMIZATION BOUND-PRESERVING LIMITER A1925

condition, respectively. Then
\sum 

i \=u
\ast 
i =
\sum 

i \=u
0
i =
\sum 

i \=ui and \=u\ast i \in [m,M ] imply that \bfitu \ast 

is a feasible point satisfying the constraints of (1.1). The minimizer \bfitx \ast to (1.1) then
satisfies \| \bfitx \ast  - \bfitu \| 2 \leq \| \bfitu \ast  - \bfitu \| 2; thus \| \bfitx \ast  - \bfitu \ast \| 2 \leq \| \bfitx \ast  - \bfitu \| 2+\| \bfitu  - \bfitu \ast \| 2 \leq 2\| \bfitu \ast  - \bfitu \| 2.
Therefore, the limiter (1.1) does not lose the order of accuracy.

1.3. Efficient convex optimization algorithms. The main catch of using
(1.1) in a large-scale computation is the possible huge cost of solving (1.1) to machine
accuracy, unless proven or shown otherwise, which is our main focus. It is a convention
use the indicator function

\iota \Omega (\bfitx ) =

\Biggl\{ 
0, \bfitx \in \Omega ,

+\infty , \bfitx /\in \Omega ,

for any set \Omega , to rewrite (1.1) as

(1.2) min
\bfitx 

\alpha 

2
\| \bfitx  - \bfitu \| 22 + \iota \Lambda 1

(\bfitx ) + \iota \Lambda 2
(\bfitx ),

where \alpha > 0 is a parameter and the sets \Lambda 1 and \Lambda 2 are \Lambda 1 = \{ \bfitx :
\sum 

i xi =
\sum 

i \=ui\} ,\Lambda 2 =
\{ \bfitx : xi \in [m,M ]\} . The two indicator functions in (1.2) are convex but nonsmooth,
and the \ell 2 term is strongly convex; thus (1.2) has a unique minimizer \bfitx \ast . Many
optimization algorithms, e.g., fast proximal gradient (FISTA) [34, 3] applied to (1.2),
can be proven to converge linearly. But a provable global linear rate is usually quite
pessimistic; it is much slower than the actual convergence rate. It is possible to obtain
sharp asymptotic rate for methods like the generalized Douglas--Rachford splitting
solving \ell 1 minimization [9], which can be used for designing best parameters. So we
consider the generalized Douglas--Rachford splitting [26], which is equivalent to some
other popular methods such as PDHG [5], ADMM [13], and dual split Bregman [20];
see also [9] and references therein for the equivalence.

1.4. The generalized Douglas--Rachford splitting method. Splitting al-
gorithms naturally arise for composite optimization of the form

(1.3a) min
\bfitx 

f(\bfitx ) + g(\bfitx ),

where functions f and g are convex and have simple subdifferentials and resolvents.
Let \partial f and \partial g denote the subdifferentials of f and g. Their resolvents are defined as

J\gamma \partial f = (I + \gamma \partial f) - 1 = argmin
\bfitz 
\gamma f(\bfitz ) +

1

2
\| \bfitz  - \bfitx \| 22, \gamma > 0,

J\gamma \partial g = (I + \gamma \partial g) - 1 = argmin
\bfitz 
\gamma g(\bfitz ) +

1

2
\| \bfitz  - \bfitx \| 22, \gamma > 0.

We rewrite (1.2) into min\bfitx f(\bfitx ) + g(\bfitx ) by defining

(1.3b) f(\bfitx ) =
\alpha 

2
\| \bfitx  - \bfitu \| 22 + \iota \Lambda 1

(\bfitx ) and g(\bfitx ) = \iota \Lambda 2
(\bfitx ),

where two sets are \Lambda 1 = \{ \bfitx :A\bfitx = b\} and \Lambda 2 = \{ \bfitx :m\leq \bfitx \leq M\} , with A=
\bigl[ 
1 \cdot \cdot \cdot 1

\bigr] 
,

b =
\sum 

i \=ui, and m \leq \bfitx \leq M denoting entrywise inequality. The subdifferentials and
resolvents can be explicitly given as

(1.4) \partial f(\bfitx ) = \alpha (\bfitx  - \bfitu )+\scrR (AT), J\gamma \partial f (\bfitx ) =
1

\gamma \alpha + 1

\bigl( 
A

+(b - A\bfitx )+\bfitx 
\bigr) 
+

\gamma \alpha 

\gamma \alpha + 1
\bfitu ,
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A1926 C. LIU, B. RIVIERE, J. SHEN, AND X. ZHANG

[\partial g(\bfitx )]i =

\left\{ 
  
  

[0,+\infty ] if xi =M,

0 if xi \in (m,M),

[ - \infty ,0] if xi =m,

[J\gamma \partial g(\bfitx )]i =min(max(xi,m),M),(1.5)

where \scrR (AT) denotes the range of the matrix A
T and A+ =A

T(AAT) - 1.
Define reflection operators as R\gamma \partial f = 2J\gamma \partial f  - I and R\gamma \partial g = 2J\gamma \partial g  - I, where I

denotes the identity operator. The generalized Douglas--Rachford splitting for (1.3a)
can be written as

\left\{ 
 
 
\bfity k+1 = \lambda 

R\gamma \partial fR\gamma \partial g + I

2
\bfity k + (1 - \lambda )\bfity k = \lambda J\gamma \partial f \circ (2J\gamma \partial g  - I)\bfity k + (I - \lambda J\gamma \partial g)\bfity 

k,

\bfitx k+1 = J\gamma \partial g(\bfity 
k+1),

(1.6)

where \bfity is an auxiliary variable, \gamma > 0 is step size, and \lambda \in (0,2) is a parameter.
For two convex functions f(\bfitx ) and g(\bfitx ), (1.6) converges for any \gamma > 0 and any fixed
\lambda \in (0,2); see [26]. If one function is strongly convex, then \lambda = 2 also converges.

1.5. The bound-preserving postprocessing procedure for DG schemes.

At time step n, let ui(x, y, z) be the DG polynomial on a uniform mesh in the ith cell
with cell average \=ui. We define the following bound-preserving limiter.

Step I. Solve (1.2) to postprocess the cell averages. Let c = 1
\alpha \gamma +1 ; then the

iteration (1.6) on (1.3) can be explicitly written as

(1.7a)

\left\{ 
  
  

\bfitx k =min(max(\bfity k,m),M),

\bfitz k = 2\bfitx k  - \bfity k,

\bfity k+1 = \lambda c(\bfitz k  - 1[ 1N (
\sum 

i z
k
i  - b)]) + \lambda (1 - c)\bfitu + \bfity k  - \lambda \bfitx k,

where 1 is the constant one vector of size N , and b =
\sum 

i \=ui is a constant, and
\lambda \in (0,2] is the fixed relaxation parameter. Each iterate \bfitx k is bound-preserving but is
not conservative until converging to the minimizer \bfitx \ast . We iterate (1.7a) until relative
change is small enough \| \bfity k+1  - \bfity k\| 2 \leq \epsilon to get an approximated minimizer \bfitx \ast to
(1.2), for which the conservation would be satisfied up to round-off errors. We then
modify DG polynomials by modifying the cell averages, i.e., shift them by a constant:

(1.7b) \widetilde ui(x, y, z) = ui(x, y, z) - \=ui + x\ast i , i= 1, . . . ,N.

Step II. Cell averages of modified DG polynomials \widetilde ui(x, y, z) are in the range
[m,M ], so we can apply the simple scaling limiter by Zhang and Shu in [44, 45] to
further enforce bounds at quadrature points, without losing conservation and accu-
racy. Let Si be the set of interested points in each cell; then the Zhang--Shu limiter
for the polynomial \widetilde ui(x, y, z) with cell average x\ast i \in [m,M ] is given as

(1.8) \widehat ui(x, y, z) = \theta (\widetilde ui(x, y, z) - x\ast i ) + x\ast i , \theta =min

\biggl\{ 
1,

| m - x\ast i | 
| mi  - x\ast i | 

,
| M  - x\ast i | 
| Mi  - x\ast i | 

\biggr\} 
,

where mi =min(x,y,z)\in Si
\widetilde ui(x, y, z) and Mi =max(x,y,z)\in Si

\widetilde ui(x, y, z). See the appen-
dix in [43] for a rigorous proof of the high order accuracy of (1.8).

We emphasize that the Zhang--Shu limiter (1.8) can preserve bounds or positiv-
ity provided that the cell averages are within bounds or are positive, which can be
proven for DG methods coupled with the limiter (1.8) for hyperbolic problems includ-
ing scalar conservation laws and compressible Euler and compressible Navier--Stokes
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A CONVEX OPTIMIZATION BOUND-PRESERVING LIMITER A1927

equations [44, 45, 43], because DG methods with suitable numerical fluxes satisfy a
weak monotonicity property for these problems [43]. However, such a weak mono-
tonicity property is simply not true for high order DG schemes solving fourth order
PDEs. Thus, if using only the limiter (1.8), the high order DG methods will not be
bound-preserving for Cahn--Hilliard equations. For all the numerical tests shown in
this paper, DG methods with only the Zhang--Shu limiter will produce cell averages
outside of the range [ - 1,1].

1.6. The main results. We will analyze the asymptotic convergence rate of
iteration (1.7a) and give a sharp convergence rate formula, by which it is possible
to pick up a nearly optimal combination of parameters c = 1

\alpha \gamma +1 and \lambda to achieve
fast convergence for the iteration (1.7a). The asymptotic linear convergence rate we
derive for (1.2) is similar to the one for \ell 1 minimization in [9]. These rate formulae
depend on the unknown \bfitx \ast , so usually it is impossible to use the formulae for tuning
algorithm parameters, unless \bfitx \ast can be easily estimated. For (1.2), it is possible to
pick up a nearly optimal combination of optimization algorithm parameters by only
calculating the number of bad cells \=ui /\in [m,M ], which is the first main result of this
paper.

Let \^r be the number of bad cells \=ui /\in [m,M ], and let \^\theta = cos - 1
\sqrt{} 

\^r
N ; then our

analysis suggests the following simple choice of nearly optimal parameters:

(1.9)

\left\{ 
   
   

c= 1
2 , \lambda =

4
2 - cos (2\^\theta )

if \^\theta \in ( 38\pi ,
1
2\pi ],

c= 1
(cos \^\theta +sin \^\theta )2

, \lambda = 2
1+ 1

1+\mathrm{c}\mathrm{o}\mathrm{t} \^\theta 
 - 1

(\mathrm{c}\mathrm{o}\mathrm{s} \^\theta +\mathrm{s}\mathrm{i}\mathrm{n} \^\theta )2
if \^\theta \in ( 14\pi ,

3
8\pi ],

c= 1
(cos \^\theta +sin \^\theta )2

, \lambda = 2 if \^\theta \in (0, 14\pi ].

We emphasize that both c and \lambda should be the constants w.r.t. iteration index k
in (1.7a), once they are chosen by (1.9). Notice that \lambda (1  - c)\bfitu is a constant for
the iteration (1.7a) and each entry of \bfitz k  - 1[ 1N (

\sum 
i z

k
i  - b)] can be computed by

zki  - [ 1N (
\sum 

i z
k
i  - b)]; thus if only counting number of computing multiplications, min,

and max, the computational complexity of each iteration in (1.7a) is 4N . By using
the parameters (1.9), it takes at most 20 iterations of (1.7a) to converge in all our
numerical tests; thus the cost of iterating (1.7a) until convergence would be at most
80N , which is highly efficient and well suited for large-scale simulations.

The numerical observation of at most 20 iterations can also be explained by the
asymptotic convergence rate analysis, which is another main result. Assuming the
number of bad cells \=ui /\in [m,M ] is much smaller than the number of total cells N , we
will show that the asymptotic convergence rate of (1.7a) using (1.9) is given by

(1.10)  - cos (2\theta )

2 - cos (2\theta )
\approx  - cos (2\^\theta )

2 - cos (2\^\theta )
=

1 - 2cos \^\theta 2

3 - 2cos \^\theta 2
=

1 - 2 \^r
N

3 - 2 \^r
N

\approx 1

3
if \^r\ll N,

with \theta (\bfitx \ast ) being an unknown angle, which can be approximated by \^\theta . If the ratio of
bad cells is very small, (1.7a) will have a local convergence rate almost like \| \bfity k - \bfity \ast \| \leq 
C
\bigl( 
1
3

\bigr) k
, which would take around 30 iterations to reach around 1E-15 if C = 1.

1.7. Organization of the paper. The rest of the paper is organized as fol-
lows. In section 2, we analyze the asymptotic linear convergence rate of the Douglas--
Rachford splitting (1.6) and (1.7a), and derive the parameter guideline (1.9). In
section 3, we discuss an application of our bound-preserving limiting strategy to an
important phase-field model, the CHNS system. The numerical tests are given in
section 4. Section 5 contains concluding remarks.
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A1928 C. LIU, B. RIVIERE, J. SHEN, AND X. ZHANG

2. Asymptotic linear convergence rate analysis. In this section, we de-
rive the asymptotic linear convergence rate of generalized Douglas--Rachford splitting
(1.6) for solving the minimization problem (1.3). The discussion in this section fol-
lows closely the analysis for \ell 1 minimization in [9]. Even though \ell 1 minimization is
harder than \ell 2 minimization, the analysis for (1.3) is not necessarily a straightforward
extension of those in [9] because (1.4) and (1.5) are different from operators in [9].

For convenience, let F = \partial f and G= \partial g denote the subdifferential operators. Let
S(\bfitx ) be the cut-off operator, i.e., [J\gamma G(\bfitx )]i = [S(\bfitx )]i =min(max(xi,m),M).

We keep the discussion a bit more general by considering a general linear con-
straint A\bfitx = b = A\bfitu in the function f(\bfitx ) in (1.3b) and assume that A has a
smaller number of rows than the number of columns, with full row rank such that
A+ = A

T(AAT) - 1 is well defined. When needed, we will plug in the special case
A=

\bigl[ 
1 1 \cdot \cdot \cdot 1

\bigr] 
.

2.1. The fixed point set. Let P(\bfitx ) = A+(b - A\bfitx ) + \bfitx denote the projection
operator. Then, the resolvents can be written as J\gamma F (\bfitx ) =

1
\gamma \alpha +1P(\bfitx ) +

\gamma \alpha 
\gamma \alpha +1\bfitu and

J\gamma G(\bfitx ) = S(\bfitx ). Let T\gamma denote the iteration operator for \bfity in (1.6); then it becomes

(2.1) T\gamma =
\lambda 

\gamma \alpha + 1
P \circ (2S - I) + (I - \lambda S) +

\lambda \gamma \alpha 

\gamma \alpha + 1
\bfitu .

The fixed point \bfity \ast of T\gamma is not the minimizer of (1.3), while \bfitx \ast = J\gamma G(\bfity 
\ast ) = S(\bfity \ast ) is

the minimizer. The fixed point set of the operator T\gamma has the following structure.

Theorem 2.1. The set of fixed point of operator T\gamma is

\Pi = \{ \bfity \ast : \bfity \ast =\bfitx \ast + \gamma \bfiteta , \bfiteta \in  - \partial f(\bfitx \ast )\cap \partial g(\bfitx \ast )\} .

Proof. We first show any \bfity \ast \in \Pi is a fixed point of the operator T\gamma . \forall \bfiteta \in \partial g(\bfitx \ast )
in (1.5), we have S(\bfity \ast ) =\bfitx \ast , since the ith entry of the vector \bfity \ast =\bfitx \ast + \gamma \bfiteta satisfies

[\bfity \ast ]i

\left\{ 
  
  

\in [M,+\infty ] if x\ast i =M,

= x\ast i if x\ast i \in (m,M),

\in [ - \infty ,m] if x\ast i =m.

Thus, we have P \circ (2S - I)\bfity \ast =P(2\bfitx \ast  - \bfity \ast ) = P(\bfitx \ast  - \gamma \bfiteta ) =\bfitx \ast  - \gamma \bfiteta + \gamma A+A\bfiteta , where
A\bfitx \ast = b is used. And \bfiteta \in  - \partial f(\bfitx \ast ) in (1.4) implies that there exists \bfitxi such that
\bfiteta =  - \alpha (\bfitx \ast  - \bfitu ) + A

T\bfitxi . Multiplying both sides by A, with A\bfitx \ast = b = A\bfitu , we get
A\bfiteta =AA

T\bfitxi ; thus \bfitxi = (AAT) - 1A\bfiteta and \gamma \bfiteta = - \gamma \alpha (\bfitx \ast  - \bfitu ) + \gamma A+A\bfiteta . Then, we have
P \circ (2S - I)\bfity \ast = (\gamma \alpha + 1)\bfitx \ast  - \gamma \alpha \bfitu . Therefore

T\gamma (\bfity 
\ast ) =

\lambda 

\gamma \alpha + 1

\Bigl( 
(\gamma \alpha + 1)\bfitx \ast  - \gamma \alpha \bfitu 

\Bigr) 
+ \bfity \ast  - \lambda \bfitx \ast +

\lambda \gamma \alpha 

\gamma \alpha + 1
\bfitu = \bfity \ast .

Next, we show any fixed point \bfity \ast belongs to set \Pi . Let \bfiteta = (\bfity \ast  - \bfitx \ast )/\gamma . Then, \bfity \ast 

being a fixed point implies J\gamma G(\bfity 
\ast ) =\bfitx \ast . Recalling that J\gamma G =S, we have

i. if x\ast i + \gamma \eta i \geq M , then x\ast i =S(x\ast i + \gamma \eta i) =M ; thus \eta i \in [0,+\infty ];
ii. if x\ast i + \gamma \eta i \in (m,M), then x\ast i =S(x\ast i + \gamma \eta i) = x\ast i + \gamma \eta i; thus \eta i = 0;
iii. if x\ast i + \gamma \eta i \leq m, then x\ast i =S(x\ast i + \gamma \eta i) =m; thus \eta i \in [ - \infty ,0].

So \bfiteta \in \partial g(\bfitx \ast ). And \bfity \ast =T\gamma (\bfity 
\ast ) is equivalent to \bfity \ast = \lambda 

2 (R\gamma FR\gamma G +I)\bfity \ast +(1 - \lambda )\bfity \ast ,
which implies \bfity \ast =R\gamma FR\gamma G(\bfity 

\ast ). Recalling J\gamma G(\bfity 
\ast ) =\bfitx \ast and \bfity \ast =\bfitx \ast + \gamma \bfiteta , we have

\bfity \ast =R\gamma F (2J\gamma G(\bfity 
\ast ) - \bfity \ast ) =R\gamma F (\bfitx 

\ast  - \gamma \bfiteta ) = 2J\gamma F (\bfitx 
\ast  - \gamma \bfiteta ) - (\bfitx \ast  - \gamma \bfiteta ).
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A CONVEX OPTIMIZATION BOUND-PRESERVING LIMITER A1929

So \bfitx \ast = J\gamma F (\bfitx 
\ast  - \gamma \bfiteta ), which implies \bfitx \ast = argmin

\bfitz 
\gamma f(\bfitz ) + 1

2\| \bfitz  - (\bfitx \ast  - \gamma \bfiteta )\| 22. By
the critical point equation, we have 0\in \gamma \partial f(\bfitx \ast ) + \gamma \bfiteta thus \bfiteta \in  - \partial f(\bfitx \ast ).

Let \scrB r(\bfitz ) denote a closed ball in \ell 2-norm centered at \bfitz with radius r. Define
set \scrQ :

\scrQ =Q1 \otimes Q2 \otimes \cdot \cdot \cdot \otimes Qn, where Qi =

\left\{ 
  
  

[M,+\infty ] if x\ast i =M,

(m,M) if x\ast i \in (m,M),

[ - \infty ,m] if x\ast i =m.

For any fixed point \bfity \ast , Theorem 2.1 implies there exists an \bfiteta = 1
\gamma (\bfity 

\ast  - \bfitx \ast )\in \partial g(\bfitx \ast )
and by (1.5) we have \bfitx \ast + \gamma \bfiteta \in \scrQ for any \gamma > 0, which gives \bfity \ast \in \scrQ . Let \epsilon \geq 0 be the
least upper bound such that \scrB \epsilon (\bfity 

\ast ) \subset \scrQ . If \epsilon > 0, then \bfity \ast is an interior fixed point
and we call this the standard case; otherwise, \bfity \ast is a boundary fixed point and we
call this the nonstandard case. In the standard case that the sequence \bfity k converges
to an interior fixed point \bfity \ast , there exists a large enough integer K > 0 such that
\| \bfity K  - \bfity \ast \| 2 < \epsilon holds. For any k\geq K, the operator T\gamma is nonexpansive [26], so

\| \bfity k  - \bfity \ast \| 2 = \| T\gamma (\bfity 
k - 1) - T\gamma (\bfity 

\ast )\| 2 \leq \| \bfity k - 1  - \bfity \ast \| 2 \leq \cdot \cdot \cdot \leq \| \bfity K  - \bfity \ast \| 2 < \epsilon .

Thus, after taking the generalized Douglas--Rachford iteration (1.6) sufficiently many
times, the iterates will always belong to the ball \scrB \epsilon (\bfity 

\ast ) \subset \scrQ ; namely the iteration
enters the asymptotic convergence regime, and the cut-off location does not change.

In the rest of this paper, we only focus on the standard case. The nonstandard
case can be analyzed by utilizing the same technique as in [9]. The nonstandard case
has not been observed in our numerical experiments.

2.2. The characterization of the operator T\bfitgamma . Assume the unique solution
\bfitx \ast of the minimization problem (1.3) has r components equal to m or M . We further
assume r <N , e.g., not all the cell averages will touch the boundary m orM , which is
a quite reasonable assumption. We emphasize that r is unknown, unless \bfitx \ast is given.

Let \bfite i (i= 1, . . . ,N) be the standard basis of \BbbR N . Let \bfite j (j = i1, . . . , ir) denote the
basis vectors corresponding to entries \bfitx \ast of beingm orM . Let B be the corresponding
r\times N selector matrix, i.e., B= [\bfite i1 , . . . ,\bfite ir ]

T
.

Recall that we only discuss the standard case, i.e., \bfity \ast is in the interior of \scrQ .
Then, in the asymptotic convergence regime, i.e., after sufficiently many iterations,
the iterate \bfity k will stay in the interior of \scrQ ; thus the operator S has an expression

(2.2) S(\bfity ) = \bfity  - B
+
B\bfity +

\sum 

j\in \{ i1,\cdot \cdot \cdot ,ir\} 
x\ast j\bfite j .

Note that the jth component of \bfitx \ast , namely the x\ast j in (2.2), takes value m or M for
any j \in \{ i1, . . . , ir\} . Let IN denote an N \times N identity matrix.

Lemma 2.2. For any \bfity in the interior of \scrQ , and a standard fixed point \bfity \ast in the
interior of \scrQ , we have T\gamma (\bfity ) - T\gamma (\bfity 

\ast ) =Tc,\lambda (\bfity  - \bfity \ast ), where the matrix Tc,\lambda is given
by

Tc,\lambda = \lambda 
\Bigl( 
c(IN  - A

+
A)(IN  - B

+
B) + cA+

AB
+
B+ (1 - c)B+

B

\Bigr) 
+ (1 - \lambda )IN .

Here, c= 1
\gamma \alpha +1 is a constant in (0,1).
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A1930 C. LIU, B. RIVIERE, J. SHEN, AND X. ZHANG

Proof. By (2.2), S(\bfity ) - S(\bfity \ast ) = (IN  - B+B)(\bfity  - \bfity \ast ). So by (2.1),

T\gamma (\bfity ) - T\gamma (\bfity 
\ast ) =

\lambda 

\gamma \alpha +1

\Bigl( 
P(2S(\bfity ) - \bfity ) - P(2S(\bfity \ast ) - \bfity \ast )

\Bigr) 
+(\bfity  - \bfity \ast ) - \lambda (S(\bfity ) - S(\bfity \ast ))

=
\lambda 

\gamma \alpha + 1
(IN  - A

+
A)(IN  - 2B+

B)(\bfity  - \bfity \ast ) + (\bfity  - \bfity \ast ) - \lambda (IN  - B
+
B)(\bfity  - \bfity \ast )

=
\lambda 

\gamma \alpha + 1
(IN  - A

+
A)(IN  - B

+
B)(\bfity  - \bfity \ast ) +

\lambda 

\gamma \alpha + 1
A

+
AB

+
B(\bfity  - \bfity \ast )

+
\lambda \gamma \alpha 

\gamma \alpha + 1
B

+
B(\bfity  - \bfity \ast ) + (1 - \lambda )(\bfity  - \bfity \ast ).

Therefore, the matrix Tc,\lambda can be expressed as follows:

Tc,\lambda =
\lambda 

\gamma \alpha + 1

\Bigl( 
(IN  - A

+
A)(IN  - B

+
B) +A

+
AB

+
B

\Bigr) 
+

\lambda \gamma \alpha 

\gamma \alpha + 1
B

+
B+ (1 - \lambda )IN .

Definition 2.3. Let \scrU and \scrV be two subspaces of \BbbR N with dim(\scrU ) = p\leq dim(\scrV ).
The principal angles \theta k \in [0, \pi 2 ] (k= 1, . . . , p) between \scrU and \scrV are recursively defined
by

cos\theta k =\bfitu T
k \bfitv k =max

\bfitu \in \scrU 
max
\bfitv \in \scrV 

\bfitu T\bfitv ,

such that \| \bfitu \| 2 = \| \bfitv \| 2 = 1, \bfitu T
j \bfitu = 0, \bfitv T

j \bfitv = 0, j = 1,2, . . . , k - 1.

The vectors (\bfitu 1, . . . ,\bfitu p) and (\bfitv 1, . . . ,\bfitv p) are principal vectors.

Our next goal is to decompose the matrix Tc,\lambda with principal angles between
subspaces \scrN (A) and \scrN (B). To simplify the writeup, we define matrix T = (IN  - 
A+A)(IN - B+B)+A+AB+B. Thus, we rewrite Tc,\lambda = \lambda (cT+(1 - c)B+B)+(1 - \lambda )IN .
Let A0 be an N \times (N  - 1) matrix whose columns are an orthogonal basis of \scrN (A),
and let A1 be an N \times 1 matrix whose columns are an orthogonal basis of \scrR (AT).
Similarly, let B0 be an N \times (N  - r) matrix whose columns are an orthogonal basis of
\scrN (B) and B1 be an N \times r matrix whose columns are an orthogonal basis of \scrR (BT).

Since both A+A and A1A
T
1 represent the projection to \scrR (AT), we have A+A =

A1A
T
1 . Similarly, IN  - A+A=A0A

T
0 . Thus we have T=A0A

T
0 B0B

T
0 +A1A

T
1 B1B

T
1 .

Define matrix E0 =A
T
0 B0 and matrix E1 =A

T
1 B0. Since A0A

T
0 +A1A

T
1 = IN , we

have B0 = (A0A
T
0 +A1A

T
1 )B0 =A0E0 +A1E1. Therefore, we rewrite

B0B
T
0 = (A0E0 +A1E1)(E

T
0 A

T
0 + E

T
1 A

T
1 ) =

\bigl[ 
A0 A1

\bigr] \biggl[ E0E
T
0 E0E

T
1

E1E
T
0 E1E

T
1

\biggr] \biggl[ 
A

T
0

A
T
1

\biggr] 
.(2.3)

The singular value decomposition (SVD) of the (N  - 1)\times (N  - r) matrix E0 is E0 =
U0 cos\Theta V

T with singular values cos\theta 1, . . ., cos\theta N - r in nonincreasing order. We know
that \theta i (i= 1, . . . ,N  - r) are the principal angles between \scrN (A) and \scrN (B).

Notice that ET
1 E1 =B

T
0 A1A

T
1 B0 and A1A

T
1 = IN - A0A

T
0 ; we have E

T
1 E1 =B

T
0 B0 - 

B
T
0 A0A

T
0 B0 = IN - r  - E

T
0 E0. Recalling the SVD of E0, we have E

T
1 E1 = V sin2\Theta V

T.
Thus E1 can be expressed as U1 sin\Theta V

T, which is however not the SVD of E1. To
this end, let matrix \widetilde A= [A0U0 A1U1]; then (2.3) becomes

(2.4) B0B
T
0 = \widetilde A

\biggl[ 
cos2\Theta sin\Theta cos\Theta 

sin\Theta cos\Theta sin2\Theta 

\biggr] 
\widetilde AT
.

Because of B1B
T
1 = IN  - B0B

T
0 and \widetilde A\widetilde AT

= IN , we have the decomposition

(2.5) B1B
T
1 = \widetilde A

\biggl[ 
sin2\Theta  - sin\Theta cos\Theta 

 - sin\Theta cos\Theta cos2\Theta 

\biggr] 
\widetilde AT
.
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A CONVEX OPTIMIZATION BOUND-PRESERVING LIMITER A1931

Notice that A0A
T
0
\widetilde A = [A0U0 ON\times (N - r)] and A1A

T
1
\widetilde A = [ON\times (N - r) A1U1]; by (2.4)

and (2.5), we obtain

(2.6) T= \widetilde A
\biggl[ 

cos2\Theta sin\Theta cos\Theta 
 - sin\Theta cos\Theta cos2\Theta 

\biggr] 
\widetilde AT
.

Therefore, use (2.6) and consider B+B=B1B
T
1 ; the matrix Tc,\lambda becomes

(2.7)

Tc,\lambda = \widetilde A
\biggl[ 
\lambda c cos2\Theta + \lambda (1 - c) sin2\Theta + (1 - \lambda )IN - r \lambda (2c - 1) sin\Theta cos\Theta 

 - \lambda sin\Theta cos\Theta \lambda cos2\Theta + (1 - \lambda )IN - r

\biggr] 
\widetilde AT
.

2.3. Asymptotic convergence rate. With the assumption r <N , there exists
a nonzero principal angle between subspaces \scrN (A) and \scrN (B). The following lemma
gives values of all the principal angles.

Lemma 2.4. The principal angles \theta i, i = 1, . . . ,N  - r, between subspaces \scrN (A)
and \scrN (B) satisfy

(2.8) cos\theta 1 = \cdot \cdot \cdot = cos\theta N - r - 1 = 1 and cos\theta N - r =

\sqrt{} 
r

N
.

Proof. Let \scrN (A)\bot denote the orthogonal complement of space \scrN (A). Since A=\bigl[ 
1 1 \cdot \cdot \cdot 1

\bigr] 
\in \BbbR 

1\times N , we have \scrN (A)\bot = span\{ 1\} . Recall that the columns of B0

are the orthogonal basis of \scrN (B). The principal angles between \scrN (A)\bot and \scrN (B)
can be computed via the SVD of 1\surd 

N
1T

B0. Each column of B0 is a standard basis
\bfite j , where j \not = i1, . . . , ir. Thus

\biggl( 
1\surd 
N

1T
B0

\biggr) T\biggl( 
1\surd 
N

1T
B0

\biggr) 
=

1

N

\left[ 
    

1 1 \cdot \cdot \cdot 1
1 1 \cdot \cdot \cdot 1
...

...
...

1 1 \cdot \cdot \cdot 1

\right] 
    
(N - r)\times (N - r)

.

The eigenvalues of the (N  - r)\times (N  - r) matrix consisting of all ones are N  - r and

0, . . . ,0. So the singular values of 1\surd 
N
1T

B0 are
\sqrt{} 

N - r
N and 0, . . . ,0. We conclude

cos\theta N - r =
\sqrt{} 

r
N , since the nontrivial principal angles between \scrN (A) and \scrN (B) and

the corresponding nontrivial principal angles between \scrN (A)\bot and \scrN (B) sum up to
\pi 
2 ; see the Theorem 2.7 in [24]. In addition, since the dimension of \scrN (A) is N - 1 and
the dimension of \scrN (B) is N  - r, as long as N  - r > 1, from the definition of principal
angles, it is straightforward to see that cos\theta 1 = \cdot \cdot \cdot = cos\theta N - r - 1 = 1.

By Lemma 2.4, there exists only one nonzero principal angle \theta N - r. By eliminating
zero columns in (2.7), (2.7) can be simplified as

Tc,\lambda = [A0U0 A1]

\cdot 

\left[ 
   

0r - 1

a

\lambda c cos2 \theta N - r + \lambda (1 - c) sin2 \theta N - r + (1 - \lambda ) \lambda (2c - 1) sin\theta N - r cos\theta N - r

 - \lambda sin\theta N - r cos\theta N - r \lambda cos2 \theta N - r + (1 - \lambda )

\right] 
   

\cdot 
\biggl[ 
U

T
0 A

T
0

A
T
1

\biggr] 
, where a= (1 - \lambda + \lambda c)IN - r - 1.
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A1932 C. LIU, B. RIVIERE, J. SHEN, AND X. ZHANG

From (2.7) we know the matrix Tc,\lambda is a nonnormal matrix; thus \| Tk
c,\lambda \| 2 is sig-

nificantly smaller than \| Tc,\lambda \| k2 for sufficiently large k. Therefore, the asymptotic

convergence rate is governed by limk\rightarrow \infty \| Tk
c,\lambda \| 

1
k

2 , which is equal to the norm of the
eigenvalue of Tc,\lambda with the largest magnitude. We have

det(Tc,\lambda  - \rho I) = (\rho  - 1 + \lambda  - \lambda c)N - r - 1(\rho  - 1 + \lambda c)r - 1

\times 
\bigl[ 
\rho 2  - (\lambda (c cos2\theta N - r  - 1) + 2)\rho + \lambda 2c sin2 \theta N - r + \lambda (c cos2\theta N - r  - 1) + 1

\bigr] 
.

By Lemma 2.4, the matrix Tc,\lambda has eigenvalues \rho 0 = 1  - \lambda c and \rho 1 = 1  - \lambda (1  - c)
corresponding to the principle angles \theta 1, . . . , \theta N - r - 1, Corresponding to the principle
angle \theta N - r, the matrix Tc,\lambda has another two eigenvalues, \rho 2 and \rho 3, satisfying the
following quadratic equation:

(2.9) \rho 2  - (\lambda (c cos2\theta N - r  - 1) + 2)\rho + \lambda 2c sin2 \theta N - r + \lambda (c cos2\theta N - r  - 1) + 1= 0.

The discriminant of above equation is \Delta = \lambda 2(c2 cos2 2\theta N - r - 2c+1). The two solutions
of \Delta = 0 are [1 \pm sin(2\theta N - r)]/ cos

2(2\theta N - r). Notice that [1 + sin(2\theta )]/ cos2(2\theta ) \geq 1
for any \theta \in [0, \pi 2 ] and c \in (0,1). Let c\ast = [1  - sin(2\theta N - r)]/ cos

2(2\theta N - r); then the
magnitudes of \rho 2 and \rho 3 are

if c\leq c\ast , then | \rho 2| =
1

2
| \lambda c cos(2\theta N - r) - \lambda + 2+ \lambda 

\sqrt{} 
cos2(2\theta N - r)c2  - 2c+ 1 | ,

| \rho 3| =
1

2
| \lambda c cos(2\theta N - r) - \lambda + 2 - \lambda 

\sqrt{} 
cos2(2\theta N - r)c2  - 2c+ 1 | ,

if c > c\ast , then | \rho 2| = | \rho 3| =
\sqrt{} 
c\lambda 2 sin2 \theta N - r  - (1 - c cos(2\theta N - r))\lambda + 1 .

Recall that the generalized Douglas--Rachford splitting (1.6) and (1.7a) converges due
to convexity [26]. When the iterations enter the asymptotic regime (after the cut-off
location of the operator S does not change), the convergence rate is governed by the
largest magnitude of eigenvalues \rho 0, \rho 1, \rho 2, and \rho 3.

Theorem 2.5. For a standard fixed point of generalized Douglas--Rachford split-
ting iteration as defined in section 2.1, the asymptotic convergence rate of (1.6) solving
(1.3) is linear. There exists a sufficiently large K > 0, such that for any integer k\geq K,
we have

\| \bfity k  - \bfity \ast \| 2 \leq \widetilde C
\Bigl( 
min
c,\lambda 

max\{ | \rho 0| ,| \rho 1| , | \rho 2| , | \rho 3| \} 
\Bigr) k
,

where K and \widetilde C may depend on A, b, and \bfity 0.

2.4. A simple strategy of choosing nearly optimal parameters. For solv-
ing problem (1.3), after the iteration of algorithm (1.6) enters the asymptotic linear
convergence regime, the rate of convergence is governed by the largest magnitude of
\rho 0, \rho 1, \rho 2, and \rho 3. For seeking optimal parameters, we can safely ignore \rho 0 because it
is straightforward to verify that \rho 0 \leq \rho 1 with the optimal parameters derived below.
It is highly preferred to construct a guideline for selecting parameters c and \lambda such
that for max\{ | \rho 1| , | \rho 2| , | \rho 3| \} is reasonably small.

We first consider the case \theta N - r \in (\pi 4 ,
\pi 
2 ]. It is easy to check c\ast = 1

(cos \theta N - r+sin \theta N - r)2

\in ( 12 ,1]. Define surfaces \Gamma i = \{ (c,\lambda , z) : 0 < c < c\ast , 0 < \lambda \leq 2, z = | \rho i| \} , where
i \in \{ 1,2,3\} . For any point (c,\lambda , z) \in \Gamma 2 \cap \Gamma 3, due to the fact that | a+ b| = | a - b| 
implies ab= 0 for any a, b\in \BbbR , we have (\lambda c cos(2\theta N - r) - \lambda + 2)

\surd 
\Delta = 0. When c < c\ast 
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A CONVEX OPTIMIZATION BOUND-PRESERVING LIMITER A1933

and the discriminant \Delta > 0, we get \lambda c cos(2\theta N - r) - \lambda + 2= 0. Thus, if there exists a
point belonging to \Gamma 1 \cap \Gamma 2 \cap \Gamma 3, then it satisfies

\Biggl\{ 
| 1 - \lambda (1 - c)| = \lambda 

2

\sqrt{} 
cos2(2\theta N - r)c2  - 2c+ 1 ,

\lambda c cos(2\theta N - r) - \lambda + 2= 0.

On surfaces \Gamma i, i \in \{ 1,2,3\} , the parameters c \in (0, c\ast ) and \lambda \in (0,2] imply the above
equations only have one solution c= 1

2 and \lambda = 4
2 - cos (2\theta N - r)

. Thus, we have

(2.10) \Gamma 1 \cap \Gamma 2 \cap \Gamma 3 =
\Bigl\{ \Bigl( 1

2
,

4

2 - cos (2\theta N - r)
, - cos (2\theta N - r)

2 - cos (2\theta N - r)

\Bigr) \Bigr\} 
.

Therefore, we know that when \theta N - r \in (\pi 4 ,
\pi 
2 ], the minimum of max\{ | \rho 1| , | \rho 2| ,

| \rho 3| \} for c \in (0, c\ast ) and \lambda \in (0,2] is not greater than  - cos (2\theta N - r)
2 - cos (2\theta N - r)

. To deal with

c\in [c\ast ,1), we need the following lemma.

Lemma 2.6. Assume \rho 1 and \rho 2 are functions of c and \lambda , for which the minimum
can be attained. Then, the following inequality holds:

min
c,\lambda 

max\{ | \rho 1| , | \rho 2| \} \geq max\{ min
c,\lambda 

| \rho 1| ,min
c,\lambda 

| \rho 2| \} .

Proof. Assume the minimum of max\{ | \rho 1| , | \rho 2| \} is achieved at (c0, \lambda 0). We have
the following:

i. If | \rho 1(c0, \lambda 0)| \geq | \rho 2(c0, \lambda 0)| , then minc,\lambda max\{ | \rho 1| , | \rho 2| \} = | \rho 1(c0, \lambda 0)| \geq 
minc,\lambda | \rho 1| .

ii. If | \rho 1(c0, \lambda 0)| < | \rho 2(c0, \lambda 0)| , then minc,\lambda max\{ | \rho 1| , | \rho 2| \} = | \rho 2(c0, \lambda 0)| > | \rho 1(c0,
\lambda 0)| . Proof by contradiction: assume minc,\lambda max\{ | \rho 1| , | \rho 2| \} <minc,\lambda | \rho 1| ; then
this implies | \rho 1(c0, \lambda 0)| <minc,\lambda | \rho 1| , which is impossible.

Thus, minc,\lambda max\{ | \rho 1| , | \rho 2| \} \geq minc,\lambda | \rho 1| . Similarly, minc,\lambda max\{ | \rho 1| , | \rho 2| \} \geq 
minc,\lambda | \rho 2| .

When c \in [c\ast ,1), the magnitudes of \rho 2 and \rho 3 are equal; namely we only need
to find suitable parameters c and \lambda such that the max\{ | \rho 1| , | \rho 2| \} is reasonably small.
It is easy to verify that, when c \in [c\ast ,1) and \lambda \in (0,2], the function \rho 1 is monoton-
ically increasing with respect to c and monotonically decreasing with respect to \lambda .
Thus, \rho 1(c

\ast ,2) = 2c\ast  - 1 > 0 gives | \rho 1| = \rho 1. Associated with \lambda greater or less than

 - cos (2\theta N - r)
sin2 \theta N - r

, we have two cases.

1. When \lambda \in (0, - cos (2\theta N - r)
sin2 \theta N - r

], recalling the monotonicity of \rho 1, we have

min
c\in [c\ast ,1), \lambda \in (0, - \mathrm{c}\mathrm{o}\mathrm{s} (2\theta N - r)

\mathrm{s}\mathrm{i}\mathrm{n}2 \theta N - r

]

| \rho 1| = \rho 1

\Bigl( 
c\ast , - cos (2\theta N - r)

sin2 \theta N - r

\Bigr) 

= 1+
cos (2\theta N - r)

sin2 \theta N - r

\Bigl( 
1 - 1

(cos\theta N - r + sin\theta N - r)2

\Bigr) 
>

1

2
> - cos (2\theta N - r)

2 - cos (2\theta N - r)
.

By Lemma 2.6, when the principal angle \theta N - r \in (\pi 4 ,
\pi 
2 ], we know

min
c\in [c\ast ,1), \lambda \in (0, - \mathrm{c}\mathrm{o}\mathrm{s} (2\theta N - r)

\mathrm{s}\mathrm{i}\mathrm{n}2 \theta N - r

]

max\{ | \rho 1| , | \rho 2| \} > - cos (2\theta N - r)

2 - cos (2\theta N - r)
.

Therefore, the common point of the three surfaces \Gamma 1, \Gamma 2, and \Gamma 3 in (2.10) is
still a good choice.
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A1934 C. LIU, B. RIVIERE, J. SHEN, AND X. ZHANG

2. When \lambda \in ( - cos (2\theta N - r)
sin2 \theta N - r

,2], define \kappa = c\lambda 2 sin2 \theta N - r  - (1 - c cos(2\theta N - r))\lambda +1.

We have \partial \kappa 
\partial c = \lambda (\lambda sin2 \theta N - r +cos (2\theta N - r))> 0, which implies \kappa is monotoni-

cally increasing with respect to c in the interval [c\ast ,1). Thus, for any c\geq c\ast ,
then | \rho 2(c,\lambda )| \geq | \rho 2(c\ast , \lambda )| holds. Again, recalling the monotonicity of \rho 1, we
obtain

min
c\in [c\ast ,1), \lambda \in ( - \mathrm{c}\mathrm{o}\mathrm{s} (2\theta N - r)

\mathrm{s}\mathrm{i}\mathrm{n}2 \theta N - r

,2]

max\{ | \rho 1| , | \rho 2| \} 

= min
\lambda \in ( - \mathrm{c}\mathrm{o}\mathrm{s} (2\theta N - r)

\mathrm{s}\mathrm{i}\mathrm{n}2 \theta N - r

,2]

max\{ | \rho 1(c\ast , \lambda )| , | \rho 2(c\ast , \lambda )| \} .

Since | \rho 1(c\ast , \lambda )| = 1 - \lambda (1 - c\ast ) and | \rho 2(c\ast , \lambda )| = | 1 - \lambda 
1+cot\theta N - r

| , when \theta N - r \in 
(\pi 4 ,

\pi 
2 ],

1
1+cot\theta N - r

> 1 - c\ast , then the equation | \rho 1(c\ast , \lambda )| = | \rho 2(c\ast , \lambda )| has one
and only one root

\lambda \ast =
2

1+ 1
1+cot\theta N - r

 - 1
(cos\theta N - r+sin \theta N - r)2

.

Therefore, we know that when \theta N - r \in (\pi 4 ,
\pi 
2 ], the minimum of max\{ | \rho 1| , | \rho 2| ,

| \rho 3| \} for c\in [c\ast ,1) and \lambda \in ( - cos (2\theta N - r)
sin2 \theta N - r

,2] is not larger than 1 - \lambda \ast (1 - c\ast ).
Next, let us consider the case \theta N - r \in (0, \pi 4 ]. When c \in (0, c\ast ) and \lambda \in (0,2], the

discriminant \Delta > 0, namely the quadratic equation (2.9) has two real roots. Moreover,
| \rho 2| > | \rho 3| obviously. Thus, we only need to minimize the max\{ | \rho 1| , | \rho 2| \} . Define

\~\kappa = \lambda c cos(2\theta N - r) - \lambda + 2+ \lambda 
\sqrt{} 
cos2(2\theta N - r)c2  - 2c+ 1.

Since for any \theta N - r \in (0, \pi 4 ], c \in (0, c\ast ), and \lambda \in (0,2] the \lambda c cos(2\theta N - r) - \lambda + 2 > 0,
we have | \rho 2| = 1

2 \~\kappa . From

\partial \~\kappa 

\partial c
= \lambda 
\Bigl( 
cos(2\theta N - r) +

c cos2(2\theta N - r) - 1\sqrt{} 
cos2(2\theta N - r)c2  - 2c+ 1

\Bigr) 
\leq 0,

\partial \~\kappa 

\partial \lambda 
= c cos(2\theta N - r) - 1 +

\sqrt{} 
cos2(2\theta N - r)c2  - 2c+ 1\leq 0,

we know that \~\kappa is monotonically decreasing with respect to both c and \lambda . Thus \~\kappa take
minimum at c= c\ast and \lambda = 2. By Lemma 2.6, when the principal angle \theta N - r \in (0, \pi 4 ],
we know

(2.11) min
c\in (0,c\ast ), \lambda \in (0,2]

max\{ | \rho 1| , | \rho 2| \} \geq min
c\in (0,c\ast ), \lambda \in (0,2]

| \rho 2| =
1

2
\~\kappa (c\ast ,2) = c\ast cos2\theta N - r.

Notice that when c = c\ast and \lambda = 2, the magnitude of \rho 1 and \rho 2 can be simplified as
| \rho 1| = | 2c\ast  - 1| and | \rho 2| = c\ast cos2\theta N - r, where c

\ast = 1
(cos \theta N - r+sin \theta N - r)2

. It is easy to

check that | \rho 2| > | \rho 1| holds for any \theta N - r \in (0, \pi 4 ]. We have

min
c\in (0,c\ast ), \lambda \in (0,2]

max\{ | \rho 1| , | \rho 2| \} \leq max\{ | \rho 1(c\ast ,2)| , | \rho 2(c\ast ,2)| \} = | \rho 2(c\ast ,2)| = c\ast cos2\theta N - r.
(2.12)

From above (2.11) and (2.12), we obtain the minimum of max\{ | \rho 1| , | \rho 2| , | \rho 3| \} equals
c\ast cos2\theta N - r, which is achieved at c = c\ast and \lambda = 2. When c \in [c\ast ,2), following an
argument similar to that above, we can show | \rho 1| = 1 - \lambda (1 - c), which is monoton-
ically increasing with respect to c and monotonically decreasing with respect to \lambda .
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A CONVEX OPTIMIZATION BOUND-PRESERVING LIMITER A1935

In addition, we also have | \rho 2| = | \rho 3| , which is monotonically increasing with respect
to c. Thus, we have

min
c\in [c\ast ,1), \lambda \in (0,2]

max\{ | \rho 1| , | \rho 2| , | \rho 3| \} = min
\lambda \in (0,2]

max\{ | \rho 1(c\ast , \lambda )| , | \rho 2(c\ast , \lambda )| \} 

= min
\lambda \in (0,2]

1

2
\lambda c\ast cos(2\theta N - r) - 

1

2
\lambda + 1.

The last equality above is due to the fact that | \rho 1(c\ast , \lambda )| \leq | \rho 2(c\ast , \lambda )| holds for any
\theta N - r \in (0, \pi 4 ]. From the fact that \lambda c\ast cos(2\theta N - r) - \lambda is monotonically decreasing with
respect to \lambda , we know, in this case, that the minimum equals c\ast cos(2\theta N - r), which is
taken at c= c\ast and \lambda = 2.

To this end, let us make a summary of the parameter selection principle as follows.
1. When \theta N - r \in ( 38\pi ,

1
2\pi ], a suitable choice of parameters is c = 1

2 , \lambda =
4

2 - cos (2\theta N - r)
. The associated asymptotic linear convergence rate is governed

by  - cos (2\theta N - r)
2 - cos (2\theta N - r)

.

2. When \theta N - r \in ( 14\pi ,
3
8\pi ], a suitable choice of parameters is c= c\ast , \lambda = \lambda \ast . The

associated asymptotic linear convergence rate is governed by 1 - \lambda \ast (1 - c\ast ).
3. When \theta N - r \in (0, 14\pi ], a suitable choice of parameters is c = c\ast , \lambda = 2. The

associated asymptotic linear convergence rate is governed by c\ast cos(2\theta N - r).

Remark 2.7. The exact value of the principal angle \theta N - r in (2.8) is unknown.
But it is simple to estimate \theta N - r by counting the number of bad cells; e.g., let \^r be
the number of ui /\in [m,M ] and use \^r instead of r in (2.8) to compute \theta N - r. This gives
a simple guideline (1.9) for choosing nearly optimal parameters, which is efficient in
all our numerical tests as shown in section 4.

Remark 2.8. In a large-scale 3D problem, usually the ratio of bad cells with cell
averages out of bound in the DG scheme is quite small. In such a case, we expect
r\ll N , with which \theta N - r is very close to zero. In this case, by the discussions above,

the convergence rate in Theorem 2.5 becomes  - cos (2\theta N - r)
2 - cos (2\theta N - r)

. If \^r is also a good

approximation to r, which is usually true in this context, then we get the rate (1.10).

With the guideline (1.9) for choosing nearly optimal parameters in (1.7a), we can
use the two-step limiter as explained in section 1.5 to enforce bounds of DG solutions.

3. Application to phase-field equations. One of the popular approaches for
modeling multiphase fluid flow in micro-to-millimeter pore structures is to use phase-
field equations [15]. Efficient and accurate pore-scale fluid dynamics simulators have
important applications in digital rock physics (DRP), which has been extensively used
in the petroleum industry for optimizing enhanced oil recovery schemes.

3.1. Mathematical model. In an open bounded domain \Omega \subset \BbbR 
d over a time

interval (0, T ], the dimensionless CHNS equations are given by

\partial t\phi  - 1

Pe
\bfnabla \cdot (\scrM (\phi )\bfnabla \mu ) +\bfnabla \cdot (\phi \bfitv ) = 0 in (0, T ]\times \Omega ,(3.1a)

\mu +Cn2\Delta \phi  - \Phi \prime (\phi ) = 0 in (0, T ]\times \Omega ,(3.1b)

\partial t\bfitv + \bfitv \cdot \bfnabla \bfitv  - 2

Re
\bfnabla \cdot \bfitvarepsilon (\bfitv ) + 1

ReCa
\bfnabla p - 3

2
\surd 
2ReCaCn

\mu \bfnabla \phi = 0 in (0, T ]\times \Omega ,

(3.1c)

\bfnabla \cdot \bfitv = 0 in (0, T ]\times \Omega ,(3.1d)

where \phi , \mu , \bfitv , and p are order parameter, chemical potential, velocity, and pressure.
The nondimensional quantities Pe, Cn, Re, and Ca denote the P\'eclet number, Cahn
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A1936 C. LIU, B. RIVIERE, J. SHEN, AND X. ZHANG

number, Reynolds number, and capillary number, respectively. The strain tensor is
given by \bfitvarepsilon (\bfitv ) = 1

2 (\bfnabla \bfitv + (\bfnabla \bfitv )
T
). The function \scrM denotes mobility. Typical choices

of \scrM include the constant mobility \scrM (\phi ) =\scrM 0 > 0, where \scrM 0 can be set to 1 after
nondimensionalization, and the degenerate mobility \scrM (\phi ) = 1 - \phi 2. The function \Phi 
is a scalar potential, which is also called chemical energy density. Classical and widely
used forms are the polynomial Ginzburg--Landau (GL) double well potential, \Phi (\phi ) =
1
4 (1 - \phi )2(1+\phi )2, and the Flory--Huggins (FH) logarithmic potential with parameters

\alpha and \beta , \Phi (\phi ) = \alpha 
2

\bigl( 
(1 + \phi ) ln

\bigl( 
1+\phi 
2

\bigr) 
+ (1 - \phi ) ln

\bigl( 
1 - \phi 
2

\bigr) \bigr) 
+ \beta 

2 (1 - \phi 2).
We supplement (3.1) with initials \phi = \phi 0 and \bfitv = \bfitv 0 on \{ 0\} \times \Omega . Let \bfitn denote

the unit outward normal to domain \Omega . We decompose the boundary \partial \Omega into three
disjoint subsets \partial \Omega = \partial \Omega wall\cup \partial \Omega in\cup \partial \Omega out, where \partial \Omega wall denotes fluid--solid interface
and \partial \Omega in and \partial \Omega out are inflow boundary and outflow boundary

\partial \Omega in = \{ \bfitx \in \partial \Omega : \bfitv \cdot \bfitn < 0\} and \partial \Omega out = \partial \Omega \setminus (\partial \Omega wall \cup \partial \Omega in).

We prescribe Dirichlet boundary conditions \phi = \phi D and \bfitv = \bfitv D on (0, T ] \times \partial \Omega in.
For velocity, the no-slip boundary condition \bfitv = 0 is used on (0, T ]\times \partial \Omega wall and ``do
nothing"" boundary condition (2\bfitvarepsilon (\bfitv ) - 1

CapI)\bfitn = 0 is applied on (0, T ]\times \partial \Omega out. Wet-

tability is modeled by a contact angle \vargamma that is enforced by \bfnabla \phi \cdot \bfitn = - 2
\surd 
2 cos(\vargamma )
3Cn g \prime (\phi )

on (0, T ]\times (\partial \Omega wall \cup \partial \Omega out), where the function g is a blending function. The closed-
form expression of g depends on the choice of chemical energy density [4]. For the
Ginzburg--Landau potential, we have g(\phi ) = 1

4 (\phi 
3  - 3\phi + 2). In addition, we employ

the homogeneous Neumann boundary condition \scrM (\phi )\bfnabla \mu \cdot \bfitn = 0 on (0, T ] \times \partial \Omega to
ensure the global mass conservation.

The order parameter \phi is the difference between the mass fraction \phi A and \phi B of
the phase A and phase B. With constraint \phi A+\phi B = 1 for a two-component mixture
as well as mass fractions belonging to [0,1], a physically meaningful range of the order
parameter field is [ - 1,1]. The Cahn--Hilliard equation with the degenerate mobility
or with the logarithmic potential enjoys bound-preserving property [41]. However,
for constant mobility with GL polynomial potential, the analytical solution of Cahn--
Hilliard equation is not bound-preserving [2]. For a given initial datum \phi 0 \in [ - 1,1], it
is an open question whether the solution of a fully coupled CHNS system should have
a bounded order parameter in [ - 1,1]. On the other hand, empirically we would expect
a reasonable solution, e.g., the discrete order parameter field, should be bounded by
 - 1 and 1 for any time t > 0.

3.2. Time discretization. The CHNS equations form a highly nonlinear cou-
pled system. One of the popular approaches to constructing efficient numerical algo-
rithms for large-scale simulations in complex computational domains is to use splitting
methods, e.g., to decouple the mass and momentum equations and to further split
the convection from the incompressibility constraint [37]. Also, see [21, 19] for an
overview of the splitting methods for time-dependent incompressible flows.

We uniformly partition the interval [0, T ] into Nst subintervals. Let \tau denote the
time step size. For the chemical energy density, we adopt a convex--concave decompo-
sition of the form \Phi =\Phi + +\Phi  - , where the convex part \Phi + is treated time implicitly
and the concave part \Phi  - is treated time explicitly. For the nonlinear convection \bfitv \cdot \bfnabla \bfitv ,
the form \scrC (\cdot , \cdot ) is a semidiscretization that satisfies a positivity property; see equa-
tion (12) in [27]. For any 1 \leq n \leq Nst, our first-order time discretization algorithm
consists of the following steps:
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A CONVEX OPTIMIZATION BOUND-PRESERVING LIMITER A1937

Step 1. Given (\phi n - 1,\bfitw n - 1), compute (\phi n, \mu n) such that

\phi n  - \tau 

Pe
\bfnabla \cdot (\scrM (\phi n - 1)\bfnabla \mu n) + \tau \bfnabla \cdot (\phi n\bfitw n - 1) = \phi n - 1 in \Omega ,

 - \mu n  - Cn2\Delta \phi n +\Phi +
\prime (\phi n) = - \Phi  - 

\prime (\phi n - 1) in \Omega .

Step 2. Given (\phi n, \mu n,\bfitv n - 1, pn - 1, \psi n - 1), compute \bfitv n such that

\bfitv n + \tau \scrC (\bfitv n - 1,\bfitv n) - 2\tau 

Re
\bfnabla \cdot \bfitvarepsilon (\bfitv n) = \bfitv n - 1

 - \tau 

ReCa
\bfnabla (pn - 1 +\psi n - 1) +

3\tau 

2
\surd 
2ReCaCn

\mu n
\bfnabla \phi n in \Omega .

Step 3. Given \bfitv n, compute \psi n such that

 - \Delta \psi n = - ReCa

\tau 
\bfnabla \cdot \bfitv n in \Omega .

Step 4. Given (\bfitv n, pn - 1, \psi n), compute (\bfitw n, pn) such that

\bfitw n = \bfitv n  - \tau 

ReCa
\bfnabla \psi n,

pn = pn - 1 +\psi n  - \sigma \chi Ca\bfnabla \cdot \bfitv n.

The parameter \sigma \chi is equal to 2
d ; namely, we use \sigma \chi = 2

3 for our numerical simulations
in three dimensions. To start time marching, we set p0 = 0 and \psi 0 = 0. The functions
\phi 0 and \bfitw 0 = \bfitv 0 are given initial data.

Remark 3.1. The above scheme is a combination of the convex splitting approach
for the Cahn--Hilliard equation with the classical rotational pressure-correction algo-
rithm (see section 3.4 in [21]) for the Navier--Stokes equations. More precisely, Step
2 to Step 4 can be rewritten as follows:

1

\tau 
(\bfitv n  - \bfitw n - 1)+ \scrC (\bfitv n - 1,\bfitv n) - 2

Re
\bfnabla \cdot \bfitvarepsilon (\bfitv n) = - 1

ReCa
\bfnabla pn - 1+

3

2
\surd 
2ReCaCn

\mu n
\bfnabla \phi n,

\left\{ 
 
 

1

\tau 
(\bfitw n  - \bfitv n) +

1

ReCa
\bfnabla \psi n = 0,

\bfnabla \cdot \bfitw n = 0,
\psi n = pn  - pn - 1 + \sigma \chi Ca\bfnabla \cdot \bfitv n.

We use \bfitw n - 1, instead of \bfitv n - 1, in the advection term in Step 1, since \bfnabla \cdot \bfitw n - 1 = 0.
For the sake of simplicity, we only presented a first-order version of the scheme,

although a high-order version can be constructed accordingly. On the other hand, it
is also possible to construct energy dissipating schemes as in [38]. Since our focus in
this paper is in preserving bounds for a DG spacial discretization, we employ a simple
time-marching strategy.

3.3. Space discretization. Decoupled splitting algorithms combined with inte-
rior penalty DG spatial formations have been constructed to solve various CHNS mod-
els in large-scale complex-domain DRP simulations [15, 28, 30]. Also, see [29, 32, 33]
for solvability, stability, and optimal error estimates on using DG with decoupled split-
ting schemes for CHNS equations and viscous incompressible flow. Here, we briefly
review the fully discrete scheme.

Let \scrT h = \{ Ei\} be a family of conforming nondegenerate (regular) meshes of the
domain \Omega with maximum element diameter h. Let \Gamma h be the set of interior faces. For
each interior face e \in \Gamma h shared by elements Ei - and Ei+ , with i

 - < i+, we define a
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A1938 C. LIU, B. RIVIERE, J. SHEN, AND X. ZHANG

unit normal vector \bfitn e that points from Ei - into Ei+ . For a boundary face, e \subset \partial \Omega ,
the normal vector \bfitn e is taken to be the unit outward vector to \partial \Omega . Let \BbbP k(Ei) denote
the set of all polynomials of degree at most k on an element Ei. Define the broken
polynomial spaces Xh and Xh, for any k\geq 1, as

Xh = \{ \chi h \in L2(\Omega ) : \chi h| Ei
\in \BbbP k(Ei) \forall Ei \in \scrT h\} ,

Xh = \{ \bfittheta h \in L2(\Omega )d : \bfittheta h| Ei
\in \BbbP k(Ei)

d \forall Ei \in \scrT h\} .
The average and jump for any scalar quantity \chi on a boundary face coincide with its
trace; and on interior faces they are defined by

\{ | \chi | \} | e =
1

2
\chi | E

i - 
+

1

2
\chi | E

i+
, [[\chi ]]| e = \chi | E

i - 
 - \chi | E

i+
\forall e= \partial Ei - \cap \partial Ei+ .

The related definitions for any vector quantity are similar. For more details see [36].
Let (\cdot , \cdot )\scrO denote the L2 inner product over \scrO . For instance, on any face e the

L2 inner product is denoted by (\cdot , \cdot )e. We make use of the following compact notation
for the L2 inner product on the interior and boundary faces

(\cdot , \cdot )\scrO =
\sum 

e\in \scrO 
(\cdot , \cdot )e, where \scrO =\Gamma h, \partial \Omega , \partial \Omega 

in, \partial \Omega out, . . . .

For convenience, we omit the subscript when \scrO =\Omega ; namely we denote (\cdot , \cdot ) = (\cdot , \cdot )\Omega .
We still use \bfnabla and \bfnabla \cdot to denote the broken gradient and broken divergence.

For completeness, let us recall the DG forms below, and we skip their derivation.
Associated with the advection term \bfnabla \cdot (\phi \bfitw ) and the convection term \bfitv \cdot \bfnabla \bfitz , we
define

aadv(\phi ,\bfitw , \chi ) = - (\phi ,\bfitw \cdot \bfnabla \chi ) + (\phi \uparrow \{ | \bfitw \cdot \bfitn e| \} , [[\chi ]])\Gamma h
,

aconv(\bfitv ;\bfitz ,\bfittheta ) = (\bfitv \cdot \bfnabla \bfitz ,\bfittheta ) +
1

2
(\bfnabla \cdot \bfitv ,\bfitz \cdot \bfittheta )

 - 1

2
([[\bfitv \cdot \bfitn e]],\{ | \bfitz \cdot \bfittheta | \} )\Gamma h\cup \partial \Omega \mathrm{i}\mathrm{n} +

\sum 

E\in \scrT h

(| \{ | \bfitv | \} \cdot \bfitn E | , (\bfitz int  - \bfitz ext) \cdot \bfittheta int)\partial E\bfitv 

 - 

.

The superscript int (resp., ext) refers to the trace of a function on a face of E coming
from the interior (resp., exterior). The set \partial E\bfitv 

 - is the upwind part of \partial E, defined by
\partial E\bfitv 

 - = \{ \bfitx \in \partial E : \{ | \bfitv | \} \cdot \bfitn E < 0\} , where \bfitn E is the unit outward normal vector to E
[18]. The upwind quantity \phi \uparrow on an interior face e is evaluated by

\phi \uparrow 
\bigm| \bigm| 
e\in \Gamma h

=

\Biggl\{ 
\phi | E

i - 
if \{ | \bfitw | \} \cdot \bfitn e \geq 0,

\phi | E
i+

if \{ | \bfitw | \} \cdot \bfitn e < 0.

Associated with the operator  - \bfnabla \cdot (z\bfnabla \xi ), we define

adiff(z; \xi ,\chi ) = (z\bfnabla \xi ,\bfnabla \chi ) - (\{ | z\bfnabla \xi \cdot \bfitn e| \} , [[\chi ]])\Gamma h

 - (\{ | z\bfnabla \chi \cdot \bfitn e| \} , [[\xi ]])\Gamma h
+
\sigma 

h
([[\xi ]], [[\chi ]])\Gamma h

.

Associated with the Laplace operator  - \Delta \xi (for terms  - \Delta \phi and  - \Delta \psi ), we define

 - \Delta \xi +Dirichlet on \partial \Omega in
\rightsquigarrow adiff,in(\xi ,\chi ) = adiff(1; \xi ,\chi ) - (\bfnabla \xi \cdot \bfitn e, \chi )\partial \Omega \mathrm{i}\mathrm{n}

 - (\bfnabla \chi \cdot \bfitn e, \xi )\partial \Omega \mathrm{i}\mathrm{n} +
\sigma 

h
(\xi ,\chi )\partial \Omega \mathrm{i}\mathrm{n} ,

 - \Delta \xi +Dirichlet on \partial \Omega out
\rightsquigarrow adiff,out(\xi ,\chi ) = adiff(1; \xi ,\chi ) - (\bfnabla \xi \cdot \bfitn e, \chi )\partial \Omega \mathrm{o}\mathrm{u}\mathrm{t}

 - (\bfnabla \chi \cdot \bfitn e, \xi )\partial \Omega \mathrm{o}\mathrm{u}\mathrm{t} +
\sigma 

h
(\xi ,\chi )\partial \Omega \mathrm{o}\mathrm{u}\mathrm{t} .
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A CONVEX OPTIMIZATION BOUND-PRESERVING LIMITER A1939

Associated with the diffusion term  - 2\bfnabla \cdot \bfitvarepsilon (\bfitv ), we define

aellip(\bfitv ,\bfittheta ) = 2(\bfitvarepsilon (\bfitv ),\bfitvarepsilon (\bfittheta )) - 2(\{ | \bfitvarepsilon (\bfitv )\bfitn e| \} , [[\bfittheta ]])\Gamma h
 - 2(\{ | \bfitvarepsilon (\bfittheta )\bfitn e| \} , [[\bfitv ]])\Gamma h

+
\sigma 

h
([[\bfitv ]], [[\bfittheta ]])\Gamma h

 - 2(\bfitvarepsilon (\bfitv )\bfitn e,\bfittheta )\partial \Omega \mathrm{i}\mathrm{n}  - 2(\bfitvarepsilon (\bfittheta )\bfitn e,\bfitv )\partial \Omega \mathrm{i}\mathrm{n} +
\sigma 

h
(\bfitv ,\bfittheta )\partial \Omega \mathrm{i}\mathrm{n} .

The remaining forms in the right-hand sides of the discrete equations account for the
boundary conditions (see bdiff and bvel) and the pressure and potential (see bpres):

bdiff(\xi ,\chi ) = - (\phi D,\bfnabla \chi \cdot \bfitn e)\partial \Omega \mathrm{i}\mathrm{n} +
\sigma 

h
(\phi D, \chi )\partial \Omega \mathrm{i}\mathrm{n} - 2

\surd 
2\delta cos(\vargamma )

3Cn
(g \prime (\xi ), \chi )\partial \Omega \mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\cup \partial \Omega \mathrm{o}\mathrm{u}\mathrm{t} ,

bpres(p,\psi ,\bfittheta ) = - (p,\bfnabla \cdot \bfittheta ) + (\{ | p| \} , [[\bfittheta \cdot \bfitn e]])\Gamma h\cup \partial \Omega + (\bfnabla \psi ,\bfittheta ),

bvel(\bfittheta ) = - 3

2
(\bfitv D \cdot \bfitn ,\bfitv D \cdot \bfittheta )\partial \Omega \mathrm{i}\mathrm{n}  - 2

Re
(\bfitvarepsilon (\bfittheta )\bfitn e,\bfitv D)\partial \Omega \mathrm{i}\mathrm{n} +

\sigma 

hRe
(\bfitv D,\bfittheta )\partial \Omega \mathrm{i}\mathrm{n} .

In bdiff , the parameter \delta is a scalar field that equals the constant one for smooth solid
boundaries only and that otherwise corrects the numerical impact of the jaggedness
of the solid boundaries obtained from micro-CT scanning. The derivation of this
boundary condition and the wettability model can be found in [16].

For any 1 \leq n \leq Nst, our fully discrete scheme for solving the CHNS equations
(3.1) is as follows.

Algorithm CHNS. At time tn, given scalar functions \phi n - 1
h , pn - 1

h , \psi n - 1
h in Xh

and vector functions \bfitv n - 1
h ,\bfitw n - 1

h in Xh.
Step 1. Compute \phi nh, \mu 

n
h \in Xh, such that for all \chi h \in Xh,

(\phi nh, \chi h) +
\tau 

Pe
adiff(\scrM (\phi n - 1

h );\mu n
h, \chi h) + \tau aadv(\phi 

n
h,\bfitw 

n - 1
h , \chi h)

= (\phi n - 1
h , \chi h) + \tau (\phi D\bfitw 

n - 1
h \cdot \bfitn e, \chi h)\partial \Omega \mathrm{i}\mathrm{n} ,

 - (\mu n
h, \chi h) + Cn2adiff,in(\phi 

n
h, \chi h) + (\Phi +

\prime (\phi nh), \chi h)

=Cn2bdiff(\phi 
n - 1
h , \chi h) - (\Phi  - 

\prime (\phi n - 1
h ), \chi h).

Step 2. Compute \bfitv n
h \in Xh, such that for all \bfittheta h \in Xh,

(\bfitv n
h,\bfittheta h) + \tau aconv(\bfitv 

n - 1
h ,\bfitv n

h,\bfittheta h) +
\tau 

Re
aellip(\bfitv 

n
h,\bfittheta h) = (\bfitv n - 1

h ,\bfittheta h)

 - \tau 

ReCa
bpres(p

n - 1
h , \psi n - 1

h ,\bfittheta h) +
3\tau 

2
\surd 
2ReCaCn

(\mu n
h\bfnabla \phi nh,\bfittheta h) + \tau bvel(\bfittheta h).

Step 3. Compute \psi n
h \in Xh, such that for all \chi h \in Xh,

adiff,out(\psi 
n
h , \chi h) = - ReCa

\tau 
(\bfnabla \cdot \bfitv n

h, \chi h).

Step 4. Compute \bfitw n
h \in Xh and pnh \in Xh, such that for all \bfittheta \in Xh and \chi h \in Xh,

(\bfitw n
h,\bfittheta h) + \sigma div(\bfnabla \cdot \bfitw n

h,\bfnabla \cdot \bfittheta h) = (\bfitv n
h,\bfittheta h) - 

\tau 

ReCa
(\bfnabla \psi n

h ,\bfittheta h),

(pnh, \chi h) = (pn - 1
h , \chi h) + (\psi n

h , \chi h) - \sigma \chi Ca(\bfnabla \cdot \bfitv n
h, \chi h).

For the initial conditions, we set p0h = \psi 0
h = 0, \bfitw 0

h = \bfitv 0
h; we compute \phi 0h from the

L2 projection of \phi 0 followed by the Zhang--Shu limiter, and we obtain \bfitv 0
h from the L2

projection of \bfitv 0.
To obtain a bound-preserving discrete order parameter field, at each time step

after finishing computing Step 1 in Algorithm CHNS, we apply the two-stage lim-
iting strategy (see section 1.5) to postprocess discrete order parameter \phi nh. For the
simulations in section 4, we choose m= - 1 and M = 1.
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A1940 C. LIU, B. RIVIERE, J. SHEN, AND X. ZHANG

4. Numerical experiments. In this section, we first verify the high order ac-
curacy of our cell average limiter (1.7) for a manufactured smooth solution. Then
we verify the efficiency of the limiter (1.7) when using the parameters (1.9) on some
representative physical simulations including spinodal decomposition, flows in micro
structure, and merging droplets.

We use the \BbbP 2 scheme, e.g., discontinuous piecewise quadratic polynomials for
space approximation, on cubic partitions of 3D domains. More details can be found
in [14].

The penalty parameters for all tests are as follows. We use \sigma = 8 on \Gamma h for adiff ;
\sigma = 16 on \partial \Omega for adiff,in and adiff,out; \sigma = 32 on \Gamma h; and \sigma = 64 on \partial \Omega in for aellip. In
addition, we set tolerance \epsilon = 10 - 13 to terminate Douglas--Rachford iterations.

4.1. Accuracy test. We use the manufactured solution method on domain \Omega =
(0,1)3 with end time T = 0.1 to test the spatial order of convergence for our cell
average limiter (1.7).

To trigger the cell average limiter (1.7), e.g., produce a fully discrete solution
with cell average out of [ - 1,1] at each time step, we use constant mobility with GL
polynomial potential and choose the prescribed order parameter field as an expression
of a cosine function to power eight, as follows: \phi = 1 - 2cos8

\bigl( 
t+ 2\pi 

3 (x+ y+ z)
\bigr) 
. The

chemical potential \mu is an intermediate variable, the value of which is derived by
the order parameter \phi . The prescribed velocity and pressure fields are taken from
the Beltrami flow [32], which enjoys the property that the nonlinear convection is
balanced by the pressure gradient and the velocity is parallel to vorticity. We have

\bfitv =

\left[ 
 
 - e - t+x sin (y+ z) - e - t+z cos (x+ y)
 - e - t+y sin (x+ z) - e - t+x cos (y+ z)
 - e - t+z sin (x+ y) - e - t+y cos (x+ z)

\right] 
 

and p= - e - 2t(ex+z sin (y+ z) cos (x+ y)+ex+y sin (x+ z) cos (y+ z)+ey+z sin (x+ y)
cos (x+ z) + 1

2e
2x + 1

2e
2y + 1

2e
2z  - p0), where p0 = 7.63958172715414 guarantees zero

average pressure over \Omega for any t > 0 up to round-off error. The initial conditions
and Dirichlet boundary condition for velocity are imposed by the above manufactured
solutions. For order parameter and chemical potential, we apply the Neumann bound-
ary condition. In addition, the right-hand side terms are evaluated by the prescribed
solution.

Let us estimate the spatial rates of convergence by computing solutions on a
sequence of uniformly refined meshes with fixed time step size \tau = 10 - 4. In our
experiments, the time step size is small enough such that the spatial error dominates.
We choose Re = 1, Ca = 1, Pe = 1, Cn = 1, and the contact angle \vargamma = 90\circ on
\partial \Omega . If errh denotes the error on a mesh with resolution h, then the rate is given by
ln(errh/errh/2)/ ln 2.

We compare the L2
h rate and the L\infty 

h rate of order parameter in three scenarios:
not applying any limiter, only applying the cell average limiter (1.7), and applying
both limiters (1.7) and (1.8). In those applied cell average limiter (1.7) cases, the
limiter is triggered at each time step; see Figure 1 for the ratio of the number of
trouble cells to the number of total elements. The convergence of our original DG
scheme without applying any limiter is optimal; see the top rows in Table 1. The
middle and bottom rows in Table 1 show optimal convergence of the cases that only
apply cell average limiter (1.7) and apply both cell average limiter (1.7) and Zhang--
Shu limiter (1.8). Our limiting strategy preserves high order accuracy. We emphasize
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A CONVEX OPTIMIZATION BOUND-PRESERVING LIMITER A1941

Fig. 1. The performance of limiting strategy in the accuracy test of applying both limiters (1.7)
and (1.8) with mesh resolution h= 1/25. Left: The percentage of trouble cells at each time step for
the cell average limiter (1.7). Right: The number of Douglas--Rachford iterations at each time step.
For each time step, at most 15 iterations are needed for (1.7a).

Table 1

Errors and spatial convergence rates of order parameter. Top: The original DG scheme without
applying any limiters. Middle: Only apply the cell average limiter (1.7) (DR). Bottom: Apply both
the cell average limiter (1.7) and the Zhang--Shu limiter (1.8).

h \| \phi N\mathrm{s}\mathrm{t}
h

 - \phi (T )\| 
L2

h

rate \| \phi N\mathrm{s}\mathrm{t}
h

 - \phi (T )\| L\infty 

h
rate

no limiter 1/22 2.034 E - 1 --- 5.636 E - 1 ---

1/23 4.903 E - 2 2.053 1.400 E - 1 2.009
1/24 5.714 E - 3 3.101 2.731 E - 2 2.358

1/25 4.833 E - 4 3.564 4.699 E - 3 2.548

DR 1/22 2.053 E - 1 --- 5.826 E - 1 ---
1/23 4.954 E - 2 2.051 1.485 E - 1 1.972
1/24 5.720 E - 3 3.115 2.799 E - 2 2.408
1/25 4.834 E - 4 3.565 4.734 E - 3 2.564

DR+ZS 1/22 2.872 E - 1 --- 7.631 E - 1 ---

1/23 5.970 E - 2 2.266 2.561 E - 1 1.575
1/24 7.181 E - 3 3.057 3.926 E - 2 2.706

1/25 4.833 E - 4 3.893 4.734 E - 3 3.052

that DG methods with only the Zhang--Shu limiter will produce cell averages outside
of the range [ - 1,1] for this particular test.

4.2. Spinodal decomposition. Spinodal decomposition is a phase separation
mechanism, by which an initially thermodynamically unstable homogeneous mixture
spontaneously decomposes into two separated phases that are more thermodynam-
ically favorable. The spinodal decomposition test is a widely used benchmark for
validating CHNS simulators. In this part, we employ the degenerate mobility with
GL polynomial potential.

We define a trefoil-shaped pipe, which is a set of points whose distance away
from the following parametric curve is less than 0.09. A trefoil knot x(t) = 1

8 (cos t+
2cos2t)+ 1

2 , y(t) =
1
8 (sin t - 2 sin2t)+ 1

2 , and z(z) =
1
4 sin3t+

1
2 , where t\in [0,2\pi ]. Let

us uniformly partition the unit cube (0,1)3 into cubic cells with the mesh resolution
h = 1/100. A cell is marked as fluid if its center is in the above pipe; otherwise is
marked as solid. The computational domain \Omega is defined as the union of all fluid
cells. We consider a closed system, i.e., \partial \Omega = \partial \Omega wall. The initial order parameter
field is generated by sampling numbers from a discrete uniform distribution, c0| Ei

\sim 
U\{  - 1,1\} , and the initial velocity field is taken to be zero. We take the time step size
\tau = 1\times 10 - 3. For physical parameters, we choose Re = 1, Ca = 0.1, Pe = 1, Cn = h,
and the contact angle \vargamma = 90\circ on \partial \Omega .

Figure 2 shows snapshots of the order parameter field. We employ a rainbow color
scale that maps the values in [ - 1,1] from transparent blue to nontransparent red for
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A1942 C. LIU, B. RIVIERE, J. SHEN, AND X. ZHANG

Fig. 2. Selected snapshots at time steps 2n, where n= 3,5, . . . ,11. 3D views of the evolution of
order parameter field.

Fig. 3. Left: The average of order parameter at each time step, which shows the conservation
is preserved. Middle: The number of Douglas--Rachford iterations at each time step. Right: The
asymptotic linear convergence at time step 128. The predicted rate is the rate given in Theorem 2.5.

plotting the order parameter field. The center of the diffusive interface is colored
green. We observe that the homogeneous mixture decomposes into two separate
phases. With a neutral wall, i.e., the contact angle \vargamma = 90\circ , in the final stage of the
simulation, each of the two phases occupies several disjoint sections of the domain.
The interfaces are perpendicular to the solid surface. Our limiters remove overshoots
and undershoots. The global mass is conserved; see the left subfigure of Figure 3.

The middle subfigure of Figure 3 records the number of iterations of the Douglas--
Rachford algorithm on each time step. To measure the convergence rate, we run
the Douglas--Rachford algorithm for 103 iterations with a very small tolerance to
approximate \bfity \ast and \bfitx \ast numerically. Then we plot \| \bfity k  - \bfity \ast \| 2 and \| \bfitx k  - \bfitx \ast \| 2. The
right subfigure of Figure 3 shows asymptotic linear convergence rates at the selected
time step 128. We see the convergence rates match our analysis in Theorem 2.5. In
addition, we check the convergence rates on all of the rest steps that match with our
analysis.

4.3. Microstructure simulations. This example involves large P\'eclet flows in
a microfluidic device, making it an interesting test for validating our bound-preserving
scheme in simulating advection-dominated CHNS problems. In this section, we use
the constant mobility with GL polynomial potential.

The microstructure image is a set of 334 \times 210 \times 10 cubic cells of resolution
h= 1/350. Analogous to the lab experiment setup, we add a buffer of 16\times 210\times 70 cells
to the left side. The pore space together with the buffer region form our computational
domain \Omega ; see Figure 4. Phase A refers to the bulk phase with order parameter equal
to +1, and phase B refers to the bulk phase with order parameter equal to  - 1. The
buffer zone is initially filled with phase A and the microstructure is initially filled with
phase B, respectively. The initial velocity field is taken to be zero. The left boundary
of \Omega is inflow, the right boundary of \Omega is outflow, and the remaining boundaries of \Omega 
are fluid--solid interfaces. On the inflow boundary, we prescribe \phi D = 1, e.g., phase
A is injected, and \bfitv D = 10000

9 (y  - 0.2)(y  - 0.8)(z  - 0.4)(z  - 0.6). We take time step
size \tau = 5\times 10 - 4. For physical parameters, we choose Re = 1, Ca = 1, Pe = 100, and
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A CONVEX OPTIMIZATION BOUND-PRESERVING LIMITER A1943

Fig. 4. The computational domain of the microstructure simulation.

Fig. 5. Selected snapshots at time steps 50, 100, 150, 200, and 250. The first and third rows:
3D views of the evolution of the order parameter field. The second and fourth rows: Plots of order
parameter warped along the plane \{ z = 0.5\} . The top two rows are without limiters, and the bottom
two rows are with our limiters.

Cn = h. The microstructure surface is hydrophobic with respect to phase A with a
contact angle \vargamma = 135\circ . The buffer surface and outflow boundary are neutral, namely
\vargamma = 90\circ .

Figure 5 shows snapshots of the order parameter field as well as its values along
the plane \{ (x, y, z)\in \Omega : z = 0.5\} in mountain views. Similar to the previous example,
we employ a rainbow color scale that maps the values in [ - 1,1] from blue to red for
plotting the order parameter field. The center of the diffusive interface is colored green.
The values outside [ - 1,1] are marked in black. We observe that phase A invades
the microstructure while staying away from the solid surfaces due to the wettability
constraint. The top two rows correspond to the simulation without applying any
limiter whereas the bottom two rows correspond to the simulation applying our two-
stage limiting strategy. Our limiters remove overshoot and undershoot. The fluid
dynamics are similar for both cases.

Figure 6 shows the number of iterations of the Douglas--Rachford algorithm on
each time step as well as the asymptotic linear convergence rates of selected time
steps. Here, the errors \| \bfity k  - \bfity \ast \| 2 and \| \bfitx k  - \bfitx \ast \| 2 are measured in a similar way as
explained in the previous example. A numerical way of getting an exact value of r
is to run the Douglas--Rachford iterations sufficiently many times with small enough
tolerance and count the number of entries that stay out of the bounds in \bfity \ast . Using
the exact r to compute the principal angle \theta N - r, we see that the numerical results
match our analysis; see Figure 6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
5
/0

3
/2

5
 t

o
 1

2
8
.2

1
0
.1

0
7
.2

5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



A1944 C. LIU, B. RIVIERE, J. SHEN, AND X. ZHANG

Fig. 6. The left figure shows the number of Douglas--Rachford iterations at each time step. The
middle and right figures show the asymptotic linear convergence at time steps 150 and 250, where
the principal angle \theta N - r is computed by using exact values of r.

4.4. Merging droplets. This example deals with droplets of fluid surrounded
by another fluid. In a capillary-forces-dominated merging process, the large drop-
let wobbles several times and eventually evolves into the most thermodynamically
favorable configuration, e.g., a single spherical droplet.

Let us consider four different scenarios. In the first scenario, we use constant
mobility with GL polynomial potential, and we do not apply any limiter. In the rest
of the scenarios, we apply our two-stage limiting strategy. In the second scenario, we
use constant mobility with GL polynomial potential. In the third scenario, we use
constant mobility with FH logarithmic potential (parameters \alpha = 0.3 and \beta = 1). And
in the fourth scenario, we use degenerate mobility with GL polynomial potential.

Let \Omega = (0,1)3 be a closed system, let \partial \Omega = \partial \Omega wall, and set the initial velocity
field \bfitv 0 = 0. Four droplets of phase A are initially in a nonequilibrium configuration,
surrounded by phase B; i.e., the initial order parameter field is prescribed by

\phi 0 =max
\Bigl\{ 
 - 1, tanh

\Bigl( r1  - \| \bfitx  - \bfita 0\| \surd 
2Cn

\Bigr) 
, tanh

\Bigl( r1  - \| \bfitx  - \bfita 1\| \surd 
2Cn

\Bigr) 
, tanh

\Bigl( r2  - \| \bfitx  - \bfita 2\| \surd 
2Cn

\Bigr) 
,

tanh
\Bigl( r2  - \| \bfitx  - \bfita 3\| \surd 

2Cn

\Bigr) \Bigr\} 
,

where \bfita 0 = [0.35,0.35,0.35]
T

and \bfita 1 = [0.65,0.65,0.65]
T

are the centers of the two
initial larger droplets with radius r1 = 0.25; and \bfita 2 = [0.75,0.25,0.25]

T
and \bfita 3 =

[0.25,0.75,0.75]
T
are the centers of the two initial smaller droplets with radius r2 =

0.16. For the FH logarithmic potential, we use 0.997\phi 0 as the initial order parameter
field to make its value away from the singularity. We uniformly partition domain
\Omega by cubic elements with the mesh resolution h = 1/50 and take the time step size
\tau = 10 - 4. For physical parameters, we choose Re = 1, Ca = 10 - 4, Pe = 1, Cn = h,
and the contact angle \vargamma = 90\circ on \partial \Omega .

Figure 7 shows snapshots of the order parameter field. The center of the dif-
fusive interface is colored green, and the bulk phases are transparent. We see the
merging of the four droplets, the intermediate wobbling stages, and the final equilib-
rium configuration of a spherical droplet. We observe from Figure 7 that the fluid
dynamics are visually similar in these scenarios. However, there are visible differences
in certain one dimensional profiles; see Figure 8 for the order parameters at the line
\{ (x, y, z)\in \Omega : x= y= z\} .

Figure 8 shows values of the order parameter along the diagonal \{ (x, y, z) \in \Omega :
x= y= z\} of the computational domain. In scenario 1, we observe bulk shift at near
steady state, which is as expected since no limiters are applied. In scenarios 2 and 4,
our limiters remove overshoots and undershoots. In scenario 3, the FH logarithmic
potential ensures bounds without bulk shift. The cell average limiter (1.7) is not
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Fig. 7. 3D views of the evolution of the order parameter field. Selected snapshots at time steps
1, 3, 11, 23, 39, 56, 72, 90, 256, and 512. The dynamics are visually similar in these scenarios.
However, there are visible differences in certain 2D profiles; see Figure 8.

triggered, but the Zhang--Shu limiter is triggered. The global mass is conserved; see
the left subfigure in Figure 9.

We plot the number of iterations of the Douglas--Rachford algorithm on each
time step; see the right two subfigures in Figure 9. We check the asymptotic linear
convergence rates, and they match with our analysis. The errors \| \bfity k  - \bfity \ast \| 2 and
\| \bfitx k  - \bfitx \ast \| 2 are measured in a similar way as in the previous example.

5. Conclusion. In this paper, we have analyzed the asymptotic linear conver-
gence rate for using Douglas--Rachford splitting methods of a simple nonsmooth con-
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Fig. 8. Plots of order parameter extracted along the line \{ (x, y, z) \in \Omega : x = y = z\} . Selected
snapshots at time steps 23, 56, 90, and 512. Scenario 1: Constant mobility with GL polynomial
potential and without any limiters applied. The rest of the scenarios apply limiters. Scenario 2:
Constant mobility with GL polynomial potential. Scenario 3: Constant mobility with FH logarithmic
potential. Scenario 4: Degenerate mobility with GL polynomial potential.

Fig. 9. Left: The average of order parameter at each time step. Middle and right: The number
of Douglas--Rachford iterations for scenarios 2 and 4 at each time step. Scenario 1: Constant mobility
with GL polynomial potential and without any limiters applied. The rest of the scenarios apply
limiters. Scenario 2: Constant mobility with GL polynomial potential. Scenario 3: Constant mobility
with FH logarithmic potential. Scenario 4: Degenerate mobility with GL polynomial potential.

vex minimization, which forms a high order accurate cell average limiter. We obtain
an explicit dependence of the convergence rate on the parameters, which gives a prin-
ciple of parameter selection for accelerating the asymptotic convergence rate. Our
optimization scheme is efficient, and our two-stage limiting strategy is well suited for
high order accurate DG schemes for large-scale simulations.
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