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an optimization-based limiter for the total energy variable to post-process DG polynomial cell
averages. The optimization-based limiter can be efficiently implemented by the popular first order
convex optimization algorithms such as the Douglas-Rachford splitting method by using nearly
optimal algorithm parameters. Numerical tests suggest that the DG method with Q¥ basis and

Douglas-Rachford splitting the optimization-based limiter is robust for demanding low-pressure problems such as high-speed
Optimization based limiter flows

1. Introduction
1.1. Motivation and objective

For studying viscous gas dynamics, the dimensionless compressible Navier-Stokes (NS) equations without external forces in con-
servative form on a bounded spatial domain Q c R? over time interval [0,T] are

pu 0
U+V-F*=V.-FY Fi=|pu®u+pl| and FdzRi T , 1)
(E+pu ¢ u-t1—q

where the conservative variables are density p, momentum m, and total energy E, Re denotes the Reynolds number and I € R%*¢
denotes an identity matrix, u = % is velocity and p is pressure. With the Stokes hypothesis, the shear stress tensor is given by

2
T(u) =2¢(u) — %(V -u)l, where £(u) = %(Vu + (Vu)T). The total energy can be expressed as E = pe + %, where e denotes the
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internal energy and || - || is the vector 2-norm. With Fourier’s heat conduction law, the heat diffusion flux g = —AVe with parameters
A= L >0, where the positive constant y is the ratio of specific heats and Pr denotes the Prandtl number. For air, we have y = 1.4
and Pr = 0.72. For simplicity, we only consider the ideal gas equation of state

p=(r - Dpe. (2)

The system (1) can be written as

o,p+V-(pu)=0 in [0,T] X Q, (3a)
0 (pu)+V - (pu@u)+Vp— 2V -7(u)=0 in[0,TIXQ, (3b)
QE+V-((E+pu)— 2-Ae— V- (c@u)=0 in [0,T] x Q. (30)

When vacuums occur, the solutions of compressible NS equations may lose continuous dependency with respect to the initial data,
see [1, Theorem 2] and [2, Remark 3.3]. On the other hand, the density and internal energy of a physically meaningful solution in
most applications should both be positive. For problems without any vacuum, define the set of admissible states as

l|ml|>

G={U=[p,m E\": p>0, pe(U)=E — >0}.
mI?
2p
[p°, m°, EO]T € G, a numerical solution preserving the positivity is preferred for the sake of not only physical meaningfulness but
also numerical robustness. For the equation of state (2), negative internal energy means negative pressure, with which the linearized
compressible Euler equation loses hyperbolicity and its initial value problem is ill-posed [3]. On the other hand, a conservative and

positivity-preserving scheme in the sense of preserving the invariant domain G is numerically robust [4,5,2,6,7].

For solving a convection-diffusion system (3), fully explicit time stepping results in a time step constraint At = O(ReAx?), thus is
suitable only for high Reynolds number flows in practice. In order to achieve larger time steps such as a hyperbolic CFL At = O(Ax),
a semi-implicit scheme can be used [2,7].

The objective of this paper is to construct a high order accurate in space, conservative, and positivity-preserving scheme for
solving the compressible NS equations (3). In particular, we will use the Strang splitting approach in [2,7] with arbitrarily high order
discontinuous Galerkin (DG) method for spatial discretization, which gives a scheme of at most second order accuracy in time. In
general, a scheme that is high order in both time and space is preferred. On the other hand, for many fluid problems including gas
dynamics problems, the solutions are often smoother with respect to the time variable, thus the spatial resolution of a numerical
scheme is often more crucial for capturing fine structures in solutions than its temporal accuracy. Higher order spatial discretizations
often produce better numerical solutions even if the time accuracy is only first order for various convection-diffusion problems
[8-10,7].

The function pe(U) = E — is a concave function of U, which implies the set G is convex [3]. For an initial condition U’ =

1.2. Existing positivity-preserving schemes for compressible NS equations

In the literature, there are many positivity-preserving schemes for compressible Euler equations, which have been well studied
since 1990s. For compressible Navier-Stokes equations, most of the practical positivity-preserving schemes were developed only in
the past decade.

Grapas et al. in [4] constructed a fully implicit pressure correction scheme on staggered grids, which is at most second order
in space, conservative, and unconditionally positivity-preserving. Nonlinear systems must be solved for time marching. As a fully
implicit scheme on a staggered grid, it seems difficult to extend it to a higher order accurate scheme.

Zhang in [5] proposed a simple nonlinear diffusion numerical flux, with which arbitrarily high order Runge-Kutta DG schemes
solving (3) can be rendered positivity-preserving without losing conservation and accuracy by a simple positivity-preserving limiter
in [3]. The advantages of such a fully explicit approach includes easy extensions to general shear stress models and heat fluxes, and
possible extensions to other types of schemes, such as high order finite volume schemes [11] and the high order finite difference
WENO (weighted essentially nonoscillatory) schemes [6]. However, like many fully explicit schemes for convection-diffusion systems
[12-15], the time step constraint is At = O(Re sz).

Guermond et al. in [2] introduced a semi-implicit continuous finite element scheme via Strang splitting, which preserves positivity
under standard hyperbolic CFL condition At = @(Ax). By the same operator splitting approach, in [7] we constructed a semi-implicit
conservative DG scheme, with the continuous finite element method for solving (3), and the scheme with Q* (k=1,2,3) basis can
be proven positivity-preserving with At = O(Ax).

The early pioneering work on DG methods for solving compressible NS equations was conducted by Bassi and Rebay [16,17] as
well as Baumann and Oden [18]. Advantages of DG methods include high order accuracy, flexibility in handling complex meshes
and hp-adaptivity, and highly parallelizable characteristics. See [19-21] for an overview of DG methods. In this paper, we focus on
constructing DG schemes within the Strang splitting approach, by which the compressible NS system (3) is splitted into a hyperbolic
subproblem (H) and a parabolic subproblem (P), representing two asymptotic regimes: the vanishing viscosity limit (the compressible
Euler equations) and the dominance of diffusive terms:
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0,p+V-(pu)=0, d,p=0,
(H)4 0,(pu) + V- (pu @ u+ pI) =0, (P)} 0,(pu) — 2=V - T(w) =0, 4
0,E+V - ((E+pu)=0, 0,E — RieAe— RLev-(r(u)u)zo.

The equation d,p =0 in the parabolic subproblem implies the variable p in (P) is time independent. Multiplying the second equation
in (P) by u and using the identity V- (t(w)u) = (V- t(u))-u+ v(u) : Vu, we obtain the following equivalent system in non-conservative
form:

0,p=0, (a)
(P){ pou — éV ~T(w) =0, (b) ®
poe— RieAe = Rier(u) SVu. (0)

We use the positivity-preserving Runge-Kutta DG method [3] for subproblem (H), i.e., the Zhang—-Shu method for constructing
positivity-preserving schemes [22,3,23-25] applied to solving compressible Euler equations, which is arbitrarily high order accurate,
conservative, and positivity-preserving. For the parabolic subproblem, many different types of DG methods have been developed for
solving diffusion equations in literature, which include interior penalty DG [26-29], local DG [30,31], direct DG [32-34], hybridizable
DG [35-37], compact DG [38,39], and so on. In this paper, we utilize the interior penalty DG method to discretize subproblem (P).
The first challenge of using DG methods for subproblem (P) is how to ensure conservation of conserved variables. In [7], we have
proven that conservation can be preserved via choosing appropriate interior penalty DG forms of V - 7(u) and 7(u) : Vu. The next
major challenge is how to ensure positivity when discretizing (5c¢). It is very difficult to prove any positivity-preserving result for
arbitrarily high order schemes solving (5c¢) for implicit time stepping, even if the temporal accuracy is only first order.

Consider a heat equation d;e — Ae =0 as a simplification of (5c). When using backward Euler time discretization, a systematic
approach to obtaining a sufficient condition for the discrete maximum principle or positivity is to show the monotonicity of the linear
system matrix. A matrix is called monotone if all entries of its inverse are nonnegative. The monotonicity of Q! interior penalty DG
on multi-dimensional structured meshes has been established in [7], also see [40,41] for related results; and the monotonicity of
continuous finite element method with Q? and Q> elements has been proven in [42-44]. However, for arbitrary high order schemes
on unstructured meshes, the monotonicity does not hold [45]. Furthermore, for higher order implicit time marching strategy, such
as the Crank-Nicolson method, the monotonicity of the linear system matrix is not enough to ensure positivity using a time step like
O(Ax). The Crank-Nicolson method with a monotone spatial discretization preserves positivity only if the time step is as small as
O(Ax?), see [46, Appendix B] and [2, Section 5.3].

1.3. A constraint optimization approach for enforcing positivity and global conservation

To preserve positivity of internal energy, we will introduce a constraint optimization postprocessing approach. For enforcing
bounds or positivity in numerical schemes solving PDEs, various optimization based approaches have been considered in the literature.
We list a few such methods. Guba et al. in [47] introduced a bound-preserving limiter for spectral element method, implemented
by standard quadratic programming solvers. Van der Vegt et al. in [48] considered a positivity-preserving limiter for DG scheme
with implicit time integration and formulated the positivity constraints in the KKT system, implemented by an active set semismooth
Newton method. Cheng and Shen in [49] introduced a Lagrange multiplier approach to preserve bounds for semilinear and quasi-
linear parabolic equations, which provides a new interpretation for the cut-off method and achieves the preservation of mass by
solving a nonlinear algebraic equation for the additional space independent Lagrange multiplier. Ruppenthal and Kuzmin in [50]
utilized optimization-based flux correction to ensure the positivity of finite element discretization of conservation laws. The primal-
dual Newton method was employed to calculate the optimal flux potentials.

— -

Next, we describe the main idea of our approach. Let U}) = [p}), m}), EI,P] be a vector denoting the cell average of the DG polynomial
Uy(x)= [p} (x), m} (x), Ef(x)]T on the i-th cell K; after solving subproblem (P). The density cell averages are positive, which can be
ensured if using a positivity-preserving scheme for subproblem (H). The main challenge here is that in general U,P may not be in the

convex invariant domain set G. We emphasize that the Zhang-Shu limiter [3] can be used only if UF € G, which can be proven for
one time step or time stage for fully explicit finite volume and DG schemes with a positivity-preserving flux [3,5], or very special
semi-implicit schemes like [7], thus these schemes can be rendered positivity-preserving by using the Zhang—Shu limiter [3] in each
time step or time stage.

With a prescribed small positive number ¢, which serves as the desired lower bound for density and internal energy, the numerical
admissible state set G¢ is defined as follows.

2
G =(U=[p,mE|": p>e, pe(U)=E—|’;—HZe}-
p

— —— —T
Define E;’ = [Ef’ s E; , e ,Eﬁ,] as the vector of all cell averages for the total energy. We propose to modify the total energy only.

— — — — T —
And we would like to modify it to another vector E, =[E{, E,, -, Ex] such that it minimizes the ¢ 2 distance to EE, subject to

J— J— — T —
the constraints of preserving global conservation and positivity. Specifically, given UZ =[U", -, U};V] with positive density p}) >e,
find the minimizer for
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2 N N _ o T
subjects to ) E;|K;|= ) EP|K,| and [of,m},E] €G°, Vi, (6a)
i=1 i=1

_min ||E, — EE
EpeRN

— — —x T
where |K;| is the area or volume of each cell K;. Let E ; =[E 1* L, E :,] be the minimizer. Then we correct the DG polynomial cell
averages for the total energy variable. Namely, let E,,P(x) be the DG polynomial in each cell K;, and we correct it by a constant

E/x)= EP(x)— E’+E, . (6b)

The updated or postprocessed DG polynomials U‘;(x) = [pi(x), mZ(x), E h(x)]T now have cell averages in the numerical admissible
state set G¢, and the simple Zhang-Shu positivity-preserving limiter in [3,23] can be used to further ensure the full scheme is
positivity-preserving.

Since #2 distance is minimized, the accuracy of (6a) can also be justified under suitable assumptions, which will be discussed in
Section 3.2.

1.4. Efficient implementation of the constraint optimization defined postprocessing

The simple postprocessing approach (6) was considered in [51] for preserving bounds of a scalar variable in complex phase field
equations. Thanks to the constraints in (6a), global conservation and positivity of the internal energy are easily achieved, and the
accuracy is also easy to justify for scalar variables [51], which are the advantages of such a simple approach. On the other hand, in
any optimization based approach, it is often quite straightforward to have these desired properties such as positivity, conservation,
and high order accuracy. From this perspective, the critical issue in all optimization based approaches is computational efficiency,
especially for a time-dependent, demanding nonlinear system like (3).

In large-scale high-resolution fluid dynamic simulations, degree of freedoms to be processed at each time step can be quite large.
Thus in general it is preferred to solve (6a) by first order optimization methods since they scale well with problem size, i.e., the
complexity is O(N) for each iteration, with N being the total number of cells.

In [51], it is demonstrated that the minimizer to a constraint minimization like (6a) can be efficiently computed by using the
Douglas-Rachford splitting method [52] if using the nearly optimal algorithm parameters obtained from a sharp asymptotic conver-
gence rate analysis. The Douglas-Rachford splitting method is a very popular first order splitting method, because it is equivalent to
ADMM [53] and dual split Bregman method [54] with special parameters, see also [55] and references therein for the equivalence.
For special convex optimization problems, it is also equivalent to PDHG [56].

There are other efficient alternative methods to solve the minimization (6a), such as the breakpoint searching algorithms [57] with
an O(N) computational complexity. For the #2-norm minimization (6a), the Douglas-Rachford splitting with the optimal parameters
also has a provable computational complexity O(N) as shown in [51], but with more flexibilities and advantages. First, the Douglas—
Rachford splitting method is simple to describe and easy to implement since only three steps are needed in each iteration, which
allows easy implementation, especially for efficient parallel computing. Second, it is straightforward to extend the Douglas—Rachford
splitting method to other postprocessing models such as the #'-norm minimization and directly enforcing invariant domain G¢,
see Remark 3 and Remark 4 in Section 3.3. Though the Douglas—Rachford splitting method may no longer have a provable O(N)
computational complexity for #!-norm minimization, it is nontrivial or impossible to generalize other alternative methods for (6a)
to #!-norm minimization. In Appendix A, we show a comparison to one simple and efficient alternative solving (6a) by the method
of Lagrange multiplier, to demonstrate the practical efficiency of the Douglas—Rachford splitting for large problems.

Given the DG polynomial after solving the subproblem (P), we define the i-th cell as a bad cell if its cell average has negative

internal energyj, i.e., U_}) = [E, m_f, E_,P] & G°. Let r be the number of bad cells, then r/ N is the bad cell ratio. It is proven in [51] that
the sharp asymptotic linear convergence rate of the Douglas—Rachford splitting with the nearly optimal parameters is approximately

125 1
322 73
which is usually the case for a good scheme solving (3) such as Strang splitting with DG methods [7].

when r <« N. In other words, such a minimization solver is provably extremely efficient when the bad cell ratio is small,

1.5. The main result and organization of this paper

Our full scheme in this paper is a very high order accurate in space, conservative, and positivity-preserving semi-implicit DG
scheme to solve the compressible NS equations (3), with a standard hyperbolic CFL At = @(Ax). For the implicit part, the scheme is
fully decoupled with two linear systems to solve sequentially for each time step. We emphasize that the spatial discretization in this
paper is done by only DG methods, which is not exactly the same as the spatial scheme in [7], where the internal energy equation
is discretized by continuous finite element method. The main novelties of this paper include the optimization-based postprocessing
approach (6) to preserve conservation and positivity for solving the parabolic subproblem as well as a proper semi-implicit DG scheme
with high order basis, which is carefully designed so that the DG scheme combined with the optimization-based positivity-preserving
limiter can produce stable and solid results for challenging benchmark gas dynamics problems. The minimizer to (6a) can be efficiently
computed by using the generalized Douglas—Rachford splitting method with nearly optimal parameters.

The postprocessing step (6a) only preserves the global conservation and does not preserve any local conservation property. We
remark that the local conservation in the Strang splitting approach for solving (3) is already lost since the non-conservative variables
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are computed in (5). Nonetheless, the global conservation can be ensured [7]. Thus from this perspective, the postprocessing step
(6a) is acceptable whenever the non-conservative form (5) is solved.
One can also consider a more general version of (6a) by also modifying the density and momentum variables to enforce the

positivity of the internal energy U:) = [pf, mf, E,.P]T € G*. Such a more complicated limiter is certainly more difficult to implement
efficiently. On the other hand, for the Strang splitting approach in [2,7], the momentum variable is robustly computed, which allows
us to consider a simpler limiter like (6a). Most importantly, numerical tests suggest that the simple postprocessing (6) is sufficient to
enforce the positivity thus the robustness for the subproblem (P) in the Strang splitting with very high order DG methods.

We emphasize that the postprocessing (6) is too simple to make a bad scheme more useful, e.g., it does not eliminate any oscil-
lations. It is most useful for a good scheme that is stable for most testing cases yet might lose positivity thus robustness for solving
challenging low pressure problems, e.g., the Strang splitting method in [2,7]. For instance, as will be shown by numerical tests in this
paper, for computing the Mach 2000 astrophysical jet problem, Strang splitting with very high order DG methods produces blow-up
due to loss of positivity, but will be stable when combined with the postprocessing (6), i.e., an optimization based positivity-preserving
limiter. On the other hand, there are many different kinds of DG methods for diffusion operators. With a proper choice of the interior
penalty DG method, we demonstrate that global conservation can be ensured when solving the diffusion subproblem implicitly in
the Strang splitting of compressible Navier-Stokes system, and only two linear systems need to be solved in the Crank-Nicolson time
discretization of the diffusion subproblem. Moreover, the numerical tests suggest that such a high order DG scheme is a practical
scheme producing solid results for some challenging benchmark problems.

The rest of this paper is organized as follows. In Section 2, we introduce the fully discrete numerical scheme. In Section 3, we
discuss a high order accurate constraint optimization based postprecessing procedure, which preserves the conservation and positivity.
Numerical tests are shown in Section 4. Concluding remarks are given in Section 5.

2. Numerical scheme

In this section, we describe the fully discretized numerical scheme for solving the compressible NS equations (3). Our scheme
incorporates the DG spatial discretization within the Strang splitting framework.

2.1. Time discretization

Given the conserved variables U” at time " (n > 0) and the step size Az, the Strang splitting for evolving to time #"+! =" + At
for the system (3) is to solve subproblems (H) and (P) separately [2,7]. A schematic flowchart for time marching is as follows:

solve (H) solve (P) solve (H)
n U}-[ : UP Un+] . )
step size % step size At step size %

We utilize the strong stability preserving (SSP) Runge-Kutta method to solve (H) and the #-method with a parameter 6 € (0, 1] to
solve (P). For any n > 0, the time discretization in one time step consists of the following steps.
Step 1. Given U" = [p",m", E"|T, we use the third order SSP Runge-Kutta method with step size %At to compute U =
[pH, mt, EH]T:

At

v =y - S V- FU, (8a)
U® = %U" + 411 v - %V P, (8b)
Ut = %U" + % [u®- %V FU®). (80)

Step 2. Given vt = [pH,mH, EH]T, compute (M, eH) by solving

H_ HH n_owp, Imt?
m'=p'u’ and E"=p e + ———
2pH
Step 3. Given M, eM), set pP = pH due to (5a). We employ the Crank-Nicolson method to discretize (5b) and apply the §-method,
where 0 € (0, 1], to discretize (5c¢). For the second step in Strang splitting (7), we have

u*=%uP+%uH and e¢* =0e’ + (1 - 0)el,
P_H
Pu_Lv.T(u*)=0,
At Re
P_ _H
pe —e A * 1 ®Y . *
— —Ae*= — : Vu*.
At Re ¢ Rer(u) “

The scheme above can be implemented as first to compute (u*, e*) by sequentially solving two decoupled linear systems
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prut = 2LV o) = pul, (9a)
pPer — OALA o = pHet 4 @r(u*) : Vu*, (9b)
Re Re

then set u® =2u* —uM! and f = ée* +(1- é)e“.
Step 4. Given (p®,u’, e”), compute (m®, E?) by
lmP|?
2pF

mt =p"u® and EF=p"F +

Step 5. Given U = [P, mP, EP1", to obtain U™ = [p”“,m”“,E”“]T

another %At by the third order SSP Runge-Kutta method.

in the third step in Strang splitting (7), solve (H) for

We have the first order backward Euler schemes with 8 = 1, for which e” = ¢* and it is possible to design positivity-preserving schemes
if the discrete Laplacian is monotone, e.g., Q2 and Q? spectral element methods on uniform meshes, as shown in [7]. Unfortunately,
forany § <1, e’ = ée* +(1- é)eH is not a convex combination thus it is difficult to have e” > 0 even if ¢* > 0 can be ensured by a

monotone discrete Laplacian. For 6 = 1 we have the second order Crank-Nicolson scheme. It is important to note that in each time
step, only two decoupled linear systems need to be sequentially solved in (9).

2.2. Preliminary aspects of space discretization

We use the Runge-Kutta DG method to discretize subproblem (H) and the interior penalty DG method to discretize subproblem (P).
For completeness, we briefly review these methods without delving into their derivation. See [3,5,7] for more details. For simplicity,
we only consider Q¥ polynomial basis on uniform rectangular meshes, and there is no essential difficulty to extend the main results
in this paper to unstructured meshes. For example, for preserving conservation and positivity, the constraint optimization-based
postprocessing approach discussed in Section 2.3 is also applicable to P¥ polynomials on unstructured meshes.

Mesh, approximation spaces, and quadratures Let T, = { K;} be a uniform partition of the computational domain 2 by square elements
(cells) with the element diameter . The unit outward normal of a cell K is denoted by ny. Let I', be the set of interior faces. For
each interior face e € I';, shared by cells K;- and K+, with i~ < i*, we define a unit normal vector n, that points from K;- into K.
For a boundary face e = 0K;- N 0Q, the normal n, is taken to be the unit outward vector to 0Q.

Let Q(K) be the space of polynomials of order at most k for each variable defined on a cell K. Define the following piecewise
polynomial spaces:

M) ={z € LXQ) : YK €Ty 1yl €Q4K)}.
Xk = {0, € LX(@" : VK €T, 6|, € Q“(K)*}.

On a reference element K = [— % %]d , we use (k + 1) Gauss-Lobatto points to construct Lagrange interpolation polynomials ¢ ;- The
basis functions on each cell K; € 7), are defined by ¢;; = ;oF [_l, where F; : K — K is an invertible mapping from the reference
element to K;. This basis is numerically orthogonal with respect to the (k + 1)¢-point Gauss-Lobatto quadrature rule.

We summarize the quadrature rules employed in solving the hyperbolic and parabolic subproblems as well as the points to be
used in the positivity-preserving limiter as follows:

1. For face and volume integrals in (H), we utilize a quadrature rule that is constructed by the tensor product of (k + 1)-point Gauss
quadrature. Denote the set of associated quadrature points here by SE"m on a cell K.

2. For face and volume integrals in (P), we utilize a quadrature rule that is constructed by the tensor product of (k + 1)-point
Gauss-Lobatto quadrature. Denote the set of associated quadrature points here by SIIZ on a cell K.

3. The points for weak positivity of (H) are constructed by (k + 1)-point Gauss quadrature tensor product with L-point Gauss—
Lobatto quadrature in both x and y directions and we need 2L — 3 > k so that the L-point Gauss-Lobatto quadrature is exact for
integrating DG polynomials of degree k [5]. Denote the set of associated quadrature points here by SHaux o0 4 cell K. Though
these points form a quadrature, we do not use them for computing any integrals. Instead, they are the points to be used in the
positivity-preserving limiter [3,23,5].

See Fig. 1 for an illustration the location of these quadrature points in the Q* scheme.

Hyperbolic subproblem One of the most popular high order accurate positivity-preserving approaches for solving compressible Euler
equations 0,U + V - F*(U) = 0 was introduced by Zhang and Shu in [3], also see [5]. We utilize the same scheme to solve (H), which
is defined as follows. For any piecewise polynomial test function ¥,,, find the piecewise polynomial solution U, such that

d T -
a(Uh,?’h)=(F‘"'(Uh),V9”h)—/F“'nK(Uh,UZ)Th, (10)
oK
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Fig. 1. An illustration of the quadratures used in the Q* scheme. From left to right: the quadrature points for face integrals in (H), volume integrals in (H), face
integrals in (P), volume integrals in (P), and the quadrature points for weak positivity. The black points are used only in defining the positivity-preserving limiter, and
they are not used in calculating any numerical integration. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where FT;K is any monotone flux for F?, e.g., a Lax-Friedrichs type flux. On a face e C 0K, the local Lax-Friedrichs flux is defined
by
- +
FYU,)+ FU;) .
2

where the U; (resp. UZ) denotes the trace of U, on the face 0K coming from the interior (resp. exterior) of K. The factor a, denotes
the maximum wave speed with maximum taken over all U, and U;l' along the face e, namely the largest magnitude of the eigenvalues

o _ a _
F“-n,((Uh,UZ)z K_EG(UZ_Uh)’

a
of the Jacobian matrix %, which equals to the wave speed |u - ng| + 4 /y% for ideal gas equation of state.

By convention, we replace U Z by an appropriate boundary function which realizes the boundary conditions when 0K N 0Q # @.
For instance, if purely inflow condition U = Uy, is imposed on dK, then U; is replaced by Up; if purely outflow condition is
imposed on dK, then set U; =U,; and if reflective boundary condition for fluid-solid interfaces is imposed on dK, then set U;l' =

[p,-m; —2(m; -ng)ng., E; 1"

Parabolic subproblem We use the interior penalty DG method for discretizing (P). For convenience of introducing discrete forms in
parabolic subproblem, we partition the boundary of the domain Q into the union of two disjoint sets, namely 0Q = 0Qp, U 0€2y, where
the Dirichlet boundary conditions (u = up and e = ep) are applied on 0Qp and the Neumann-type boundary conditions (z(u) -n=0
and Ve - n=0) are applied on 0Qy. Here, n denotes the unit outer normal of domain Q.

The average and jump operators of any vector quantity u on a boundary face coincide with its trace; and on interior faces they
are defined by

{lul}l, = u|K + = u|K+, [[u]]|e=u|Ki_—u|Ki+, e=0K;- N0K;+

The related deﬁnltlons of any scalar quantity are similar. For more details see [58]. We employ the non-symmetric interior penalty
DG (NIPG) method to discretize the terms —2V - (u) and V - ((V - w)I). The associated bilinear forms a, and a, are defined as follows:

aw0)=2y / £w) : £(0) ~2 / le@n,|) - [6]

KEeT, X eerhanD
+2 ¥ [re@ny wa+f ¥ [,
e€lRUIQp *, eel“huz)QD
wwo=- 3 [@ww-or ¥ [ivuenl- ¥ [1v-0)unl.
KeT, ¥ e€luiQp °, e€luIQp °,

And the linear form b, associated with term —V - 7(u) for the Dirichlet boundary 0Qp, in (92) is defined by
b (0)=2 Z /(e(@)n) up, + 2 /uD / -0 (up - n).
eedQ

eEdQD
We employ the incomplete interior penalty DG (IIPG) method to discretize the term —Ae in (9b). The bilinear form ap and the linear
form by, for term —Ae are defined as follows:

aple, )=y, / Ve -Vy- / {IVe - n,l} m+§ / el L]
eel“hquD

KeT)

bD()()=% > /eD)(-

e€0Qp °,

eedQD

e€luIQp °,

For the sake of global conservation of total energy, to discrete term 7(u) : Vu =2¢e(u) : Vu — g((V -w)I) : Vu in (9b), by using the
tensor identity £(u) : Vu = £(u) : £(u), the DG forms b, and b, are designed for terms 2¢e(u) : Vu and —((V - w)I) : Vu, respectively.
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bwn=2 3 [ewiewy+ 2 ¥ [wl-wlum+d ¥ [a-u)w-up,

KeTy % eel",, e€IQp °,
bw=- / (V-u)(V-u)y.
KeTy, e

The DG forms above employ penalty parameters ¢ and 6. For any ¢ > 0, the NIPG bilinear form is coercive. In particular, NIPGO
refers to the choice o =0, e.g., the penalty term is removed. The NIPGO method is convergent for polynomial degrees greater than
or equal to two in two dimension [58]. And more importantly, the NIPGO method eliminates the face penalties, thereby reducing the
numerical viscosity. For IIPG method, the penalty  needs to be large enough to achieve coercivity.

2.3. The simple positivity-preserving limiter
The Zhang-Shu limiter [22,3] is a simple limiter for enforcing positivity of the approximation polynomial on a finite set .S when

the polynomial cell average is positive. Let U g (x) = [pg,mg, E K]T be the DG polynomial on cell K. A simplified version of the
limiter [5] modifies the DG polynomial U g (x) with the following steps under the assumption that U y = ﬁ /; Uk €G-

1. First enforce positivity of density by

~ - - . PK —
Pk =0,(px —Px) + Pk 0, =mm{ 1, _—}
Pk~ mlg Pk (xy)

where py denotes the cell average of px on cell K. Notice that px and pg have the same cell average, and px = pg if
min x,) > €.
xqu K pK( q) =€

2. Define ﬁh =[Py, my, E h]T and enforce positivity of internal energy by

~ A~ — J— . EK —€
Ug=0,Ux—-Ug)+Ug, 6,=mins 1, — - R
peg — min peg(x,)
X, ESK
where pey = E ”'";‘ [ and peg (x4) = Eg(x ) - % Notice that U k has the same cell average, the positivity is implied
PKXq

by the Jensen’s inequality satisfied by the concave internal energy function [5].
We refer to [3,5,59] on the justification of its high order accuracy.
2.4. The fully discrete scheme
Let (-,-) denote the L? inner product over domain Q evaluated by Gauss quadrature in (H) and (-, -) denote the L? inner product
over domain Q evaluated by Gauss-Lobatto quadrature in (P).

Given the DG solution U’ at time " (n > 0), a schematic flowchart for evolving to time "1 =" 4+ At is given as:

Un

solve (H) L? proj. solve (P) 1L? proj. solve (H)
UH ( H H\ ( P P\ UP

h en)
step size %

n+l1
step size At Ar Uh ’
step size -

where the optimization-based postprocessing will be applied to UY, as will be described in Step 4 below. For any n > 0, our fully
discrete scheme for solving (3) in one step consists of the following steps.

Step 1. Given U} € M, }’: X X’,‘l XM }/l‘, compute UE eM }‘l‘ X XI;; XM }’; by the DG method (10) with the positivity-preserving SSP
Runge-Kutta (8) [3,5] using step size %. After each Runge-Kutta stage, apply the Zhang-Shu positivity-preserving limiter to
ensure that all point values at S;{’i'" and Sg’a“x have positive density and internal energy.

Step 2. Use the Zhang-Shu positivity-preserving limiter to ensure that all point values at S,P( have positive density and internal
energy. Given U} € M¥ x Xk x MF, compute (u!l, el) € Xk x M¥ by L? projection

H
m!!
(m)},60,) = (p)u,,60,), V6, €X}; and (E,. x,)=(p) e}, xn)+ <2p mi ). Vo, € My an
h
Step 3. Given (pZ‘,uH) € M} x X, set pf = pll and solve (u},ub) € X} x X}, such that for all 6, € Xk
At

(ppu h’0h>+ o2 (“h’eh“’ aﬂ(uhvoh)—@h h’6h>+ b +(04), (12a)
h_2"h_ }; (12b)
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Then given (p}, pf,u,el!) € M x M} x Xk x M, solve for (¢}, eP) € M} x M, such that for all y, € M}

OAtA 20 At OAtA
(Phess an) + —=— Re ap(€f. xn) = (o}e}). xn) 4 8 Re o1, e (Ups Xn) + S5 Re by, xn) + —— Re bp () (120
1
elh)—aeh (1——)eh (12d)
Step 4. Given (o}, ub. eP) e M¥ x Xk x Mf, compute (m?, EF) € Xk x M} by L? projection

m,
<mh»9h> = <ﬂh h»9h> Vo, € Xk and (E SXp) = (Piei,)ﬁﬁ + <§sm£1h>s Vi € M,’f (13)

h

Postprocess Ui by the constraint optimization-based limiting strategy, see Section 3. Then the cell averages have positive states,
and we can apply the Zhang-Shu positivity-preserving limiter to ensure that all point values at S?’im and Sg’aux have positive
density and internal energy.

Step 5. Given UE eEM h" X X’;l XM ;l‘, compute U;’;" eEM hk X X’;l XM ﬁ by the DG method (10) with the positivity-preserving SSP
Runge-Kutta (8) [3,5] using step size %. After each Runge—Kutta stage, apply the Zhang-Shu positivity-preserving limiter to

ensure that all point values at Sg’im and Sg’a”x have positive density and internal energy.

The U(;l is obtained through the L? projection of the initial data U, followed by postprocessing it with the Zhang-Shu limiter [3].

Thus, U(;, belongs to the set of admissible states. In addition, we highlight in each time step only two decoupled linear systems (12a)
and (12c) need to be solved sequentially.

Remark 1. For QX scheme, the Q¥ Lagrangian basis functions defined at Gauss-Lobatto points are orthogonal at the (k + 1)¢-point
Gauss-Lobatto quadrature points. Thus, in Step 2 and Step 4, no linear systems need to be solved for computing the L? projection.

2.5. Global conservation of the fully discrete scheme

We first discuss the global conservation of momentum and total energy. Notice that the local conservation for mass is naturally
inherited from the Runge-Kutta DG method solving compressible Euler equations. For simplicity, we only discuss conservation in the
context of periodic boundary conditions. It is straightforward to extend the discussion to many other types of boundary conditions,
such as the ones implemented in the numerical tests in this paper.

The following result is essentially the same as [7, Theorem 1]. However, the time discretization used in this paper is the 8-scheme
for the internal energy equation, whereas the time discretization in [7, Theorem 1] is the backward Euler scheme. In addition, the
spatial discretization in this paper is a DG scheme, while the spatial discretization in [7] is a combination of DG and continuous finite
element method. Thus, for completeness, we include the proof of the global conservation.

Theorem 1. Assume UZ(xq) belongs to the set of admissible states for all x, € S, then the fully discrete scheme conserves density, momentum,
and total energy. We have

h D=0, (my, =m0, (E;,1)=(E;*, D).

Proof. Both the explicit Runge-Kutta DG method for hyperbolic subproblem (H) and the Zhang-Shu limiter conserve mass, momen-
tum, and total energy [3,5]. We have

@} D= D, m).D)=ml1, (E.1D=ELD.

It is easy to verify the discrete mass conservation, since (p"Jrl = (pi, 1) and we set pg = pl; in Step 3.

For the discrete momentum conservation, we have (m 1) = (m ,1) and (m”Jrl 1= (mP 1). For Q¥ scheme, the quadrature
rules in subproblems (H) and (P) are both exact for integrating polynomlals of degree k. Thus, we also have (m )= (m ,1) and
(m 1) = (m 1) Take 0, =1 in (11) and (13), we get (mh,l) = (ph h,l) and (m 1) (ph h,l) The above identities indicate

(m},1) = (ph 1) and (m"Jrl 1= (phuh, 1). By selecting 0, =1 in (12a), we obtain (ph )= (ph 5o 1), namely (m}, 1) = (m"Jrl 1)
holds.
For the discrete energy conservation, notice the basis is numerically orthogonal and similar to above, we have (E”, 1) = ( pgeg, 1)+

%(pgug, ull) and (EJ*' 1) = (pPeP 1) + %(p;ui, u}). Recall that b, (6) = 0 and bp(y) =0 for periodic boundary conditions, thus by
(12b) and p;‘ = pi, the (12a) can be written as

<ﬂh h’6h>+ a (uhaeh)+ a/l(uh70h)_<ph ha6h>

Plugging in 6), = (u}, +ul!)/2 = u}, we have
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2At

—<p£ " P>+ e a (uhuy) + Setay i) = <pgu;1,ug>4 as

Taking y, =11in (12c), we have
OALA « 20At %

(pheh,1)+ Re aD(eh,l)—(pheh,1)+ b( h,1)+ b,{(uh,l)

Recall that e* = 9ef + (1 — 0)eH, we have
At
(ph h,1)+—aD(eh,l)—(ph h,1)+ ebf( 1)+ b,l(u 1). (15)

Adding two equations (14) and (15), with the fact that aD(eh, 1) =0 and the identities aE(uZ, u’;l) = bE(u;:, 1) and al(u;:, "2) = bA(uZ, 1),
we obtain

(ﬂgeh» )+ 5 (phuh,uh)—(pheh,l)+ <phuh,uh>.

Therefore, we obtain (E”, 1) = (EZ“, . O
3. A globally conservative and positivity-preserving postprocessing procedure

For Runge-Kutta DG method solving the hyperbolic subproblem (H), i.e., compressible Euler equations, it is well understood that
the simple Zhang-Shu limiter can preserve the positivity without destroying conservation and high order accuracy [3,5]. Let S,
be the union of sets S?’im and Sllj’aux for all K € 7j,. By the results in [3,5], for Step 1 and Step 5 in the fully discrete scheme in
Section 2.4, we have

1. The DG polynomial UZ(xq) € G for all x, €Sy gives Ug(xq) € G for all X, €Sy
2. If Ui(xq) € G for all X, €Sp, then the DG polynomial UZ“(xq) € G for all X, €Sy

Moreover, by [7, Lemma 1], the L? projection step (11) in Step 2 does not affect the positivity, i.e., the positivity of eIh{ is ensured
if conserved variables are in the invariant domain. Therefore, in order to construct a conservative and positivity-preserving scheme,
we only need to enforce U;(xq) € G° for all x, € S, in Step 4 without affecting the global conservation in the fully discrete scheme
in Section 2.4.

When using the backward Euler time discretization (e.g., # = 1) in Step 3, positivity can be achieved if the discrete Laplacian is
monotone [7]. For example, the discrete Laplacian from Q! 1IPG forms an M-matrix unconditionally. Moreover, the monotonicity of
QX spectral element method (continuous finite element with Gauss-Lobatto quadrature) for k = 1,2, 3 is proven in [42-44], see also
[9,8,10], and such a result was used in [7] for solving (3).

To improve the time accuracy, the Crank-Nicolson scheme with 6 = % can be used in Step 3. However, in this case, a monotone
system matrix no longer implies the positivity of internal energy, which poses a significant challenge, though positivity might still be
ensured under a small time step A7 = O(ReAx?2). Instead, we consider a postprocessing procedure based on constraint optimization to
ensure global conservation and positivity. The constraint optimization-based cell average limiter can be formulated as a nonsmooth
convex minimization problem and efficiently solved by utilizing the generalized Douglas—Rachford splitting method [51].

3.1. A cell average postprocessing approach

By Theorem 1, the DG polynomial Ul; preserves the global conservation. But it may violate the positivity of internal energy. The

following two-stage limiting strategy can be employed to enforce UZ(xq) in the set of admissible states for any quadrature points
x, € S}, without losing high order accuracy and conservation.

Step 1. Given U?, if any cell average has negative internal energy, then post process all cell averages of the total energy variable

without losing global conservation such that each cell average of the DG polynomial U‘; stays in the admissible state set G€.
Step 2. Apply the Zhang-Shu limiter to the postpocessed DG polynomial to ensure internal energy at any quadrature points in
S, is positive.

For a postprocessing procedure, minimal modifications to the original DG polynomial are often preferred. In our scheme, the
density pfl = pE is already positive, ensured by a high order accurate positivity-preserving compressible Euler solver. Consider the
scheme for solving the subproblem (P), which is fully decoupled. The momentum ml; or velocity ul; is stably approximated. With the
given pi and ulh), when solving (5c), which is a heat equation in the parabolic subproblem, a high order scheme may not preserve
positivity in general. To this end, we consider a simple approach by only post processing the total energy variable E}? to enforce the

positivity of internal energy, without losing conservation for EP

Let K; (i=1,---,N) be all the cells and UP [p m EP] be a vector denoting the cell average of the DG polynomial UP on the
i-th cell K;, namely UP IK I /K UP

10
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Then we apply the globally conservative postprocessing procedure (6) only to the total energy DG polynomial such that the
modified DG polynomials have good cell averages, which have positive internal energy.

3.2. The accuracy of the postprocessing

It is obvious that the minimizer to (6a) preserves the global conservation of total energy and the positivity of internal energy,
since these two are the constraints. Next, we discuss the accuracy of the postprocessing step (6a).

To understand how (6a) affects accuracy, consider evolving (5c¢) with given p(x,?) = pg(x) and u(x,t) = u,*l(x), Vt by one time step
in the Strang splitting (7), i.e., we consider the initial value problem

{ PO — L Ae=twy): VU, re@. "+ A, 16

e(x, 1) = el (x).

Due to the inequality £(u) : (u) > i(V -u)?, which can be easily verified by calculations (e.g., for d =2, e(u) : e(u) > %(V ‘u)? e
%(u)C —u)? + %(ux +u,)? > 0), we know t(u}) : Vui =2(e(u}) : e(uy) — %(V -u})?) = 0. We mention that a similar property also
holds for the interior penalty DG scheme at the discrete level, i.e., the right hand side of (12c) is also positive, see [7, Lemma 3].
Let e denote the exact solution to (16). Since the right-hand side of (16) is non-negative, the exact solution to (16) with an initial
condition eg > 0 is positive, thus we assume e(x, ) > e, > 0.

Noticing that pZ is time independent, we have pZd,e = (),(pﬁe). Integrating (16) over the spatial domain Q and using boundary
condition Ve - n =0, we get

d p 1 .
& /phedx =R—e/r(uh).Vude.

Q Q

Integrating the equation above over the time interval [¢"," + At], we have

/ pr(x)e(x, 1" + Adx = / p;‘e‘;dx+§—; / T(u)) : Vujdx. @a7)
Q Q Q

Consider the NIPGO method for velocity, i.e., the NIPG method with zero penalty, which is the scheme (12c) we utilized in our
numerical experiments. Recall (k + 1)? Gauss-Lobatto quadrature is accurate for (2k — 1)-order polynomial. Taking ¥, =1in (120),
with (17) and the quadrature error for integrals, we have

/ph(x)e(x " + Ar)dx = </’h e 1)+ Ch?*,

Q
Let ¢;(x) be the piecewise Q¥ interpolation polynomial of the exact solution e(x,#” + Ar) at (k + 1)? Gauss-Lobatto points at each
cell. We have

(phe; 1y = /pg(x)e(x, "+ Andx + Ch* = (pPeP 1) + Cn?*.

Leté,(x)=e;(x)— h%, then &,(x) = e(x)+ O(h**!) and (pyen 1) = (piei, 1). Define (mfl, Eimerp) e X];. X M;': as an L? projection

c
(o1
of(pi,ui,éh)eM}fo;‘lxM;l‘:

mP
(m}0,) = o} 00). 90, €X and (BT 1) = (a2 1) + (). Vo € M as)
h

Interp .

Notice that m in (18) is exactly the same as m in (13), and only E is different.

Let El.Imerp be the cell average of E;lmerp at the i-th cell and Elnterp [Elnterp Elmerp --~,E;‘;terp] Next, we verify that Elnterp

satisfies both constraints in (6a), when the mesh size A is small.

« First, by taking y;, =1 in (13) and (18), we obtain the global conservation of total energy:

N N
Int Int P
Y EMPIK | = (BT ) = (B 1) = ZE}’IK,-I.

i=1
el
b1y

Il o\ po Ll p
€ ———h p, > =€p, 2€
< (o0, 1) hT 2

+ Second, for small enough £ such that h* < - €2, we can take € < 5 e2 ph to have

11
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Then following the proof of Lemma 2 in [7, Section 3.2], we have

- P
1 llm; |

E:ntcrp _ 1 _1
2 P

i

>e€.
p;

I

—T
s —
Since E, is the minimizer to (6a) and [pP;, mP;, Eimerp] satisfies the constraints of (6a), we have

*

= Interp =* Tp P Interp P Interp
Eh_Eh < Eh_Eh + Eh_Eh <2 Eh_Eh . (19)

To summarize the discussion for accuracy, we conclude that the accuracy of the postprocessing (6a) can be understood in the
sense of (19). In other words, if considering the error approximating the exact solution of (16) in Strang splitting, then the minimizer
to (6a) is not significantly worse than the DG solution E:.

3.3. An efficient solver by Douglas—Rachford splitting with nearly optimal parameters

The key computational issue here is how to solve (6a) efficiently, and the same approach in [51] can be used. For completeness, we
briefly describe the main algorithm and result in [51]. For convenience, we rewrite the minimization problem (6a) in matrix-vector
form using different names for variables.

For simplicity, we only consider a uniform mesh with |K;| = h“. Extensions to non-uniform meshes are straightforward. Thus
we define a matrix A =[1,1,---,1] € R™", where N is the total number of cells. A vector w € R" is introduced to store the cell

averages of DG polynomial E?, namely the iM entry of w equals E,P. Define the constant b = Aw, which is the summation of all cell
averages. The indicator function in constraint optimization is defined as 1, for a set A: 15(x) =0 if x € A and 1, (x) = +o0 if x & A.
Then (6a) is equivalent to the following minimization:

. g _ 2
xrélg}lvzllx wll5 + 14, () + 15, (), (20)

where a > 0 is a constant, and the conservation constraint and the positivity-preserving constraint give two sets

;1> ,
>e Vi=1, -, N}

Pi

A={x:Ax=b} and Ay={x:x;—

Splitting algorithms naturally arise when solving minimization problem of the form min, f(x)+ g(x), where functions f and g are
convex, lower semi-continuous (but not otherwise smooth), and have simple subdifferentials and resolvents. Let F =df and G = dg
denote the subdifferentials of f and g. Then, a sufficient and necessary condition for x being a minimizer is 0 € F(x) + G(x). The
resolvents L r=U0+rF )~ and J,6 =1+ yG)~! are also called proximal operators, as J,F maps x to argmin,y f(z) + %Hz — x||§ and
J, is defined similarly. The reflection operators are defined as R, =2J,p —I and R, =2J,; — I, where I is the identity operator.

The generalized Douglas-Rachford splitting method for solving the minimization problem min, f(x)+ g(x) can be written as:

R, zR,-+1
k+1 rFyG k k
= 1= A)y",
y Y+ =y 1)
xk+1 =JyG(yk+l)’

where y is an auxiliary variable, A belongs to (0,2] is a parameter, and y > 0 is step size. We get the Douglas—Rachford splitting when
A=11in (21). In the limiting case, A = 2 is the Peaceman—-Rachford splitting. For two convex functions f(x) and g(x), the sequence in
(21) converges for any positive step size y and any fixed 4 € (0,2), see [52]. If one function is strongly convex, then A =2 also leads
to convergence. Using the definition of reflection operators, (21) can be expressed as follows:

{ yktl = /lJyF(Zxk — yK) + yk — axk,

(22)
xk+1 — J}/G(yk+1)’

We split the objective function in (20) into

f@)=Zlx=wl’ +15,x) and g(x) =1y, (x).

Linearity implies that the set A is convex. With ideal gas equation of state, the function pe is concave, see [3,5] and references
therein. Thus, by Jensen’s inequality, the set A, is also convex. Therefore, the function f is strongly convex and the function g is
convex, given that (22) converges to the unique minimizer. After applying (22) to solve the minimization to machine precision, the
positivity constraint is strictly satisfied and the conservation constraint is enforced up to round-off error. The subdifferentials and the
associated resolvents are given as follows:

+ The subdifferential of function f is
0f (x) = a(x —w) + R(A"),

12



C. Liu, G.T. Buzzard and X. Zhang Journal of Computational Physics 519 (2024) 113440

where R(AT) denotes the range of the matrix AT.
+ The subdifferential of function g is

| 2

0, if x; > H':—il + €,
[0g(x)); = 2o
[—O0,0], ifx,-= 2—%‘+€.

« For the function f(x)= %llx - wllg 15, (x), the associated resolvent is

1 yo
I r(x)=———(AT(b—Ax)+x) + w, 23
yF() ya+l( ( ) ) ya+1 (23)
where A* = AT(AAT)~! denotes the pseudo inverse of the matrix A.
« For the function g(x) =1 Ay (x), the associated resolvent is J, ;(x) = S(x), where S is a cut-off operator defined by
(lm, |2 )
[S(x)]; = max (xl-, = +e>, Vi=1,-,N. (24)
Pi

Define parameter ¢ = ya%, which gives y;% =1 — c. Using the expressions of resolvents in (23) and (24), we obtain the generalized
Douglas—Rachford splitting method for solving the minimization problem (20) in matrix-vector form:

2K = 2xk — K,
YU = e (A*(b = Az + 28) + A1 — yw + yk — dxk, (25
xk+1 — S(yk+l).

As a brief summary, after obtaining the DG polynomial E}?, compute cell averages to generate vector w, where the i entry of w

equals E}jl k;» then our cell average limiter can be implemented as follows.

Algorithm DR. To start the generalized Douglas—Rachford iteration, set y° = w, x° = S(w), and k = 0. Compute parameters ¢
and A by using formula in Remark 2, and select a small ¢ for numerical tolerance of the conservation error.

Step 1. Compute intermediate variable z¥ = 2x* — y*.

Step 2. Compute auxiliary variable y*+! = Ac(A+(b - Az + z") + A1 — Ow + y* — axk.

Step 3. Compute x**1 = S(y*+1).

Step 4. It is convenient to employ the norm || - ||, = h9/2|| - || to measure the conservation error, which is an approximation to
the L2-norm. If stopping criterion ||y**! — y¥||, < € is satisfied, then terminate and output x* = x**!, otherwise set k < k + 1
and go to Step 1.

In the algorithm above, 2x* can be regarded as x* + x*; the A(1 — ¢)w remains unchanged during iteration; and each entry of
A*(b — Az") + z¥ can be computed by zl'.C + %(b - zf.‘), thus if only counting number of computing multiplications and taking
maximum, the computational complexity of each iteration is 3N + 1.

Remark 2. The analysis in [51] proves the asymptotic linear convergence and suggests a simple choice of nearly optimal parameters

¢ and A in (25). Let 7 be the number of bad cells defined by U_f ¢ G¢ and let § = cos™! 1/ %, then we have:

1 o4 NV YRE|
=3 A= , lfee(x’r’%”]’
= 1 = if & 1 =
€= (cosO+sind2” 7 4L 1 7 ifoe (4”’ 8”]’ (26)
. l+cotd  (cosO-+sin0)2 .
c= (cosO+sin0)’ =2, lfGE(O,Zﬁ]

Remark 3. By splitting the Navier-Stokes system into the Euler system and a parabolic system, to preserve positivity, we may
postprocess only a scalar variable, i.e., the total energy, which is the main advantage of the splitting approach. It is also possible to
postprocess the DG solutions to the convection-diffusion Navier-Stokes system, by a similar Douglas—Rachford cell average limiter to
preserve the invariant domain G¢, for which the operator J,; in (21) becomes the projection to admissible set G°.

Remark 4. Compared to other alternative methods for solving (20) such as breakpoint searching algorithms [57] and the method of
Lagrangian multipliers in the Appendix, the Douglas—Rachford algorithm (21) is more flexible for other minimization models such as
replacing the #2-norm in (20) by the #!-norm, for which the Shrinkage operator would appear in I F-
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3.4. Implementation

We provide details on implementing our scheme. The time-stepping strategy employed to solve subproblem (H) is identical to the
one described in Section 3.2 of [60]. For the sake of completeness, we include a list of the steps below.

Algorithm H. At time ", select a trial hyperbolic step size AtH. The parameter ¢ is a prescribed small positive number for
numerical admissible state set G¢. The input DG polynomial U, satisfies U} (x,) € G¢, for all x, € .

Step H1. Given DG polynomial U, compute the first stage to obtain U;l).
—1 ~(1
« If the cell averages UL) € G¢, for all K € Ty, then apply Zhang—Shu limiter described in Section 2.3 to obtain Uy and go to

Step H2.
« Otherwise, recompute the first stage with halved step size Arf « %AIH. Notice, when Ar satisfies the positivity-preserving

—
hyperbolic CFL proven in [3] (see also [5]), the U(K) € G° is guaranteed.
~(1
Step H2. Given DG polynomial U ; ), compute the second stage to obtain U ;2).

—(2) .. . =2
« If the cell averages U, € G°, for all K € 7, then apply Zhang—Shu limiter to obtain U;) and go to Step H3.
« Otherwise, return to Step H1 and restart the computation with halved step size AtH « %At“. Notice that the results proven in
[3] ensure that there is not an infinite restarting loop, see [5].

~2
Step H3. Given DG polynomial U; ), compute the third stage to obtain U;?).

« If the cell averages ﬁ(;) € G¢, for all K € 7, then apply Zhang-Shu limiter to obtain UI;. We finish the current SSP Runge—
Kutta.

« Otherwise, return to Step H1 and restart the computation with halved step size ArH « %AIH. Notice that the results proven in
[3] ensure that there is not an infinite restarting loop, see [5].

The time-stepping strategy for solving the compressible NS equations is as follows. The initial condition U2 is constructed by L2
projection of U° with Zhang-Shu limiter on S, e.g., we have U?,(xq) €G¢, forall x, € S,

Algorithm CNS. At time ¢, select a desired time step size At. The parameter ¢ is a prescribed small positive number for numerical
admissible state set G°. The input DG polynomial U’ satisfies U} (x,) € G¢, for all x, € .

Step CNS1. Given DG polynomial U”, solve subproblem (H) form time " to " + %.

. Set m=0. Let "0 =" and UZ’O =U;.

* Given U™ at time ", solve (H) to compute U;’l’"’H by the Algorithm H. Let "+ = ¢m 4 AfH_ If grom+l =47 4 %, then apply
Zhang—Shu limiter for U;’l‘"’“ on all Gauss-Lobatto points in SE, for all K € T}, we obtain U l; Go to Step CNS2. Otherwise,
set m < m+ 1 and repeat solving (H) by Algorithm H until reaching " + % . Let L be the smallest integer satisfying 2L —3 > k

for Q basis, when using QX DG method to compute UZ""H , we can take

AM = min {a; ;Ax, "+ Ar_ I"”"}
max, a, L(L—1) 2
as a trial hyperbolic step size to start Algorithm H. We refer to [5] for choosing the value of parameter a on above.
Step CNS2. Given DG polynomial U;I, take L2 projection to compute (uI;, el;ll).
Step CNS3. Given DG polynomials (ps, ug, elh{), solve subproblem (P) form time 7" to " + At.
Step CNS4. Given DG polynomials (pi, ui, eIZ), take L? projection to compute UZ.

« Notice that the postprocessing (6) can be applied to either the whole computational domain or a large enough local region
containing negative cells. When possible, first define a local region of trouble cells defined by U:) ¢Ge.LetT C{1,2,---,N}

be the indices of the local region containing all cells with negative averages U_}) & G°, and let |T'| be the number of cells in the
local region marked by indices in the set T'. Then the postprocessing on the local region is given by

min )

2 _ — — — _ T
subjects to Z E|K;|= Z EflKil and [pf,mf,Ei] eG, vieT. (27a)
E; ieT

i€eT ieT

-

—x  — —s T
Let E, =[E 1* -, Ey] be the minimizer. Then we correct the DG polynomial cell averages for the total energy variable by a
constant

E(x)= EF(x)- E’+E,, VieT. (27b)

Notice that T' cannot contain only the negative cells, which will cause the feasible set in (27a) to be empty, i.e., it is impossible
to modify only negative cells to achieve positivity, without affecting conservation. If it is difficult to define such a set T, we

14
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Fig. 2. DG with Q? basis for 2D Sedov blast wave test. The middle figure is the zoom view of the left figure: the shock is marked black; the negative cells are
highlighted by the red marks; by the definition (28), T does not include cells in the gray region in which the exact solution is supposed to be a constant. Right: the
actual convergence rate of the Douglas—Rachford splitting algorithm (25) with nearly optimal parameters (26) for solving (27a) for the 2D Sedov problem (at one
particular time step for the left figure) matches well the predicated rate from analysis (asymptotic linear convergence from analysis using the estimated principle angle

6 =cos™! \/ %), see [51] for more details on such a provable convergence rate.

can simply take T = {1,2,---, N}, i.e., the whole computational domain. For certain problems, it is straightforward to define
a proper T, see the remark below.
« Solve (27a) for the region defined by indices in 7' by the Douglas-Rachford splitting algorithm (25) with nearly optimal

parameters (26) using § = cos™! A/ ﬁ Then update or postprocess the cell averages of the DG polynomial Ui by (27b).

. s P P P P

« With positive cell averages U; € G° ensured by the postprocessing step (6), we can apply the Zhang-Shu limiter to U, to
ensure positivity on all points in .§},.

Step CNS5. Given DG polynomial U;, use adaptive time-stepping strategy to solve subproblem (H) form time " + % to " + At.

Remark 5. For the sake of robustness and efficiency, whenever possible, one should apply the postprocessing (27) to a subset of cells
(i.e., T is a strict subset of {1,2,---, N}) containing all trouble cells and also some good cells, rather than the whole computational
domain (i.e., T = {1,2, -+, N }). For example, in the 2D Sedov blast wave test in Section 4.5, the initial total energy is 10-12 everywhere
except in the cell at the lower left corner, and we can define T as

T={i:either UT @G or E_f—%llm_fll/EZIO_lo}. (28)

By such a definition of T for each time step, the gray region in the Fig. 2 will not be modified by the postprocessing. Note, the number
of cells contained in 7" may various at each time step.

4. Numerical experiments

In this section, we validate our full numerical scheme through representative two-dimensional benchmark tests, including the Lax
shock tube, double rarefaction, Sedov blast wave, shock diffraction, shock reflection-diffraction, and high Mach number astrophysical
jet problems.

For penalty parameters in interior penalty DG method for solving (P), in the Q! scheme, we set 6 =2 on I';, 6 =4 on 9Q, and
& =2; in the Q¥ (k > 2) schemes, we set 6 = 0 on all faces, namely using NIPGO method for the velocity, and 6 = 2k for the internal
energy. We take ¢ = 10~!3 as the lower bound for the numerical admissible state set in all tests except the astrophysical jet simulations,
where ¢ = 1078 is used. The ideal gas constant is y = 1.4 and the Prandt]l number is Pr = 0.72. The Reynolds number for all tests is
Re = 1000 unless otherwise specified.

In all physical simulations, we use 6 = Lin (9), namely utilizing the second order Crank-Nicolson method to solve (P). The
postprocessing step for total energy variable after solving (P) is only triggered in the accuracy test in Section 4.2, the Sedov blast
wave test, and astrophysical jets test.

4.1. Accuracy tests

We verify the order of accuracy of our numerical scheme by utilizing the method of manufactured smooth solutions. Let the
computational domain Q = [0, 1]* and select the end time T = 0.1024. The prescribed non-polynomial solutions are as follows:

p=exp(—1)sin2z(x +y)+2,

_ |exp(=t)cos (2rx)sin (2zy) + 2
~ |exp(=t)sin(2zx)cos 2xy) + 2|’

e= % exp(—1)cos 2x(x + y)) + 1.
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Table 1
Test of accuracy. The temporal error and convergence rates. § = 1 backward Euler scheme for internal energy in subproblem
P). o= % Crank-Nicolson scheme for internal energy in subproblem (P).

0 At Noyr - UMl A oy - UMl rate At o - UMl rate

1 4-10*  1.599-1072 2.107*  7.988-1073 1.001  1-10*  3.997-1073 0.999

L4010 1393-107° 2-10*  3.601-107* 1.952  1-10%  9.140-10-5 1.978
Table 2

Test of accuracy. The spatial error and convergence rates. From top to bottom: the Q!,Q?,---,Q’ schemes using a
very small time step for a smooth solution.

kK Ax o - UMl  Ax Ny - UMl  rate Ax oy - UMl  rate

1 1/2* 1.209-107! /25 3.071-1072 1.977  1/2°  7.728.1073 1.991
2 1/2*  5116-1072 1/2°  1.413.1072 1.856 1726  3.718-1073 1.926
3 1/2°  4945-107 /24 2974-107* 4.056 1/2° 1.813-107° 4.036
4 1/ 3221-107* /24 1.677-107° 4264 1/2°  1.012-107° 4,051
5 1/22  7374-107* 1/23  1.387-107° 5733 1/2*  2.087-1077 6.054

Taking Reynolds number Re = 1 and parameter A =1 in (3), the boundary conditions and the right-hand side of the compressible NS
equations are computed by above manufactured solutions. Define the discrete Li error of density by

H,vol
N Ng Nioe 3
o = pGMI2, =AY Y w,| Y ol #;(@,) — p"eF (@),
h i=1 v=1 j=1

where w, and g, are the Gauss quadrature weights and points used in evaluating volume integrals in (H). The discrete Lfl errors for
momentum and total energy are measured similarly. In addition, the discrete Li for U}, is defined by

105 = UG, = l10h = )7, + lmy —m@)I3, + || Ef = EGI,-
h h h h

If err,, denotes the error on a mesh with resolution Ax, then the rate is given by In(err,, /erT s, /p)/In2.

For temporal convergence rate tests, we use Q> scheme and fix the mesh resolution Ax = 1/64 small enough such that the time
error dominates. We choose NIPG method with ¢ = 0 to solve the second equation in subproblem (P) and choose IIPG method with
6 = 8 to solve the third equation in subproblem (P). We observe the optimal temporal convergence rates, see Table 1.

For spatial convergence rate tests, we use 6 = % and fix time step size At = 3.125 x 10~® small enough such that the spatial error
dominates and the hyperbolic CFL is satisfied. We choose NIPG method with 6 =2 on I', and ¢ = 4 on 9dQ for Q' scheme; and
o =0 for QX (k >2) scheme to solve the second equation in subproblem (P). We choose IIPG method with 6 = 2k to solve the third
equation in subproblem (P). For Q', Q?, and Q’ schemes, we obtain the optimal spatial convergence rates, see Table 2. For Q* and
Q* schemes, the convergence is suboptimal, which is as expected, since the NIPG and IIPG methods are suboptimal for even order
spaces.

4.2. Convergence study for testing of preserving positivity

In this part, we verify our numerical algorithm preserves positivity. Let the computational domain Q = [0, 1]> and the end time
T =0.1024. The prescribed manufactured solutions are as follows:

p=1, u= [0] , e= L(s,in8 Qr(x + ) +10712).
0 y—1

Taking Reynolds number Re = 1 and Prandtl number Pr = 1.4, namely with y = 1.4 we have 1 = 1. The boundary conditions and the
system right-hand side are defined by the prescribed solutions. We utilize the same Li norm to measure error.

We use the second order Crank—Nicolson time discretization for internal energy in parabolic sub-problem. Fix the time step size
At =3.125x 1076 small enough such that the spatial error dominates. We choose NIPG method with ¢ =2 on ', and ¢ = 4 on 9Q for
Ql scheme; and ¢ =0 for Q" (k >2) scheme to solve the second equation in subproblem (P). We choose IIPG method with & = 2k to
solve the third equation in subproblem (P). We obtain the expected convergence rates, see Table 3.

4.3. Lax shock tube problem
We choose the computational domain Q = [-5,5] X [0, 2] and set the simulation end time 7" = 1.3. We uniformly partition domain
Q by square cells with mesh resolution Ax =1/100. The initial conditions for density o, velocity u = [u?(, ug]T, and pressure 0 are

prescribed as follows:
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Table 3
Test of accuracy. The spatial error and convergence rates. From top to bottom: the Q!, Q?,---, @’ schemes using a very small time step
for a smooth solution. In last column, “Yes” indicates the postprocessing (6) is triggered, otherwise “No”.

kK Ax ||U,Z’T—U<T)||Li Ax ||UQ’T—U(T)||Li rate Ax ||UQ’T—U(T)||Li rate Postprocessing
1 1/2°  2858-1072 1/26  6.804-1073 2,071  1/27  1.692-1073 2.008  Yes
2 1/2°  6.301-1073 /2 1.518-1073 2.054 1/27  3.749.107* 2.018  Yes
3 1/2*  2018-1072 /25 2.063-107* 6.612 1/2°  9.680-107° 4.414  No
4 1/2*  2320-107* 1/25  1.121-107° 4.372  1/2° 62451077 4.166  Yes
5 1/2%  4.614-1072 /24 5.697-107* 6.340 1/2°  7.187-1077 9.631 No
1.3e+00
l:vz
-1
—08
— 06
' |-
3.0e-01
Q' scheme 2 scheme 3 scheme
1.3e+00
l:vz
-1
—08
— 06
lOA
3.0e-01
4 scheme 5 scheme 6 scheme

Fig. 3. Lax shock tube. The density field snapshots at time T'= 1.3 are displayed in the mountain view.

040,40 [0.445, 0.698, 0, 3.528]T if x €[-5,0),
" uy.u,,p ] T
[0.5,0, 0, 0.571] if x€[0,5].

The top and bottom boundaries are set to be reflective when solving subproblem (H) and to be Neumann-type when solving subprob-
lem (P). Dirichlet boundary conditions are applied to the left and right boundaries for both subproblems (H) and (P), with values
equal to the initials before the wave reaches the boundary. The Fig. 3 shows snapshots of the density field at the simulation final time
T = 1.3 in mountain view.

4.4. Double rarefaction

We choose the computational domain Q = [—1, 1] X [0, 1] and set the simulation end time 7 = 0.6. We uniformly partition domain
Q by square cells with mesh resolution Ax = 1/640 for Q' and Q2 schemes, Ax = 1/480 for Q> and Q* schemes, and Ax = 1/400

for Q> and Q° schemes. The initial conditions for density p°, velocity u® = [u?c, u°

T .
y] , and pressure p® are prescribed as follows:

0 0,,] [7,-1,0,02]" if xe[-1,0),
’ [7,1,0,02]T if xe[0,1].

When solving subproblem (H), reflective boundary conditions are set for the top and bottom boundaries, while outflow conditions are
set for the left and right boundaries. When solving subproblem (P), Neumann-type boundary conditions are applied to all boundaries.
The Fig. 4 shows snapshots of density field at the simulation final time 7' = 0.6 in mountain view.

4.5. Sedov blast wave

The Sedov blast wave test is a standard benchmark in hyperbolic conservation law. It involves a blast wave generated by a strong
explosion, which involves low density, low pressure, and a strong shock. This test holds great value in validating a positivity-preserving
scheme.

Let the computational domain Q = [0, 1.1]?> and the simulation end time T = 1. We uniformly partition domain Q by square cells
with mesh resolution Ax = 1.1/320. The initials are prescribed as piecewise constants: density p° = 1 and velocity u® = 0, for all
points in Q; the total energy E° equals to 10~'2 everywhere except the cell at the lower left corner, where 0.244816/Ax? is used.
When solving subproblem (H), reflective boundary conditions are set for the left and bottom boundaries, while outflow conditions are
set for the top and right boundaries. When solving subproblem (P), Neumann-type boundary conditions are applied to all boundaries.

The Fig. 5 shows snapshots of density field at the simulation final time 7" = 1. The postprocessing (27) with (28) is used and
necessary in all these tests. See Fig. 6. Our numerical algorithm preserves conservation and the shock location is correct.
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Fig. 4. Double rarefaction. The density field snapshots at time T'= 0.6 are displayed in the mountain view.
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Fig. 5. Sedov blast wave. The snapshots of density profile are taken at 7" = 1. Plot of density: 50 exponentially distributed contour lines of density from 0.001 to 6.
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Fig. 6. From left to right Q2, Q*, Q° DG schemes. Top: the number of bad cells after solving (P) at each time step (the DG polynomial cell averages are not in the
admissible set). Bottom: the number of Douglas—Rachford iterations need to reach round-off convergence for solving (27a) with (28).

4.6. Shock diffraction

In this test, we consider a right-moving high-speed shock, which is perpendicular to solid surface at initial and moves towards
undisturbed air ahead. As the shock crosses the right corner, a region of low density and low pressure emerges, making this a
challenging benchmark for conservation law.

Let the computational domain Q be the union of [0, 1] X [6,11] and [1, 13] X [0, 11]. We set the simulation end time 7" =2.3. The
initial condition is a pure right-moving shock of Mach number 5.09, initially located at {x = 0.5,6 < y < 12}, moving into undisturbed
air ahead of the shock with a density of 1.4 and a pressure of 1. When solving subproblem (H), the left boundary is inflow, while
the right and bottom boundaries are outflow. The fluid-solid boundaries {y = 6,0 < x <1} and {x =1,0 <y <6} are reflective.
In addition, the flow values on the top boundary are set to accurately depict the motion of the Mach 5.09 shock. When solving
subproblem (P), Neumann-type boundary conditions are applied to the fluid—solid surfaces, while Dirichlet boundary conditions are
applied to the remaining boundaries. The Dirichlet data on the left and top boundaries are determined by the inflow data and the
exact motion of the Mach 5.09 shock. Additionally, the Dirichlet data on the right and bottom boundaries remain unchanged from
their initial values before the shock wave reaches the boundary.

The Fig. 7 displays snapshots of density field at the simulation final time 7" =2.3. The results are comparable to those in [5].

4.7. Mach 10 shock reflection and diffraction

The high-speed shock reflection and diffraction test is a widely used benchmark [6]. We consider a Mach 10 shock that moves to
the right with a sixty-degree incident angle to the solid surface. As the shock across the sharp corner, areas of low density and low
pressure appear. In the region of shock reflection, vortices are formed due to Kelvin-Helmholtz instabilities.

Let the computational domain Q be the union of [0,4] X [0, 1] and [1,4] X [—1,0]. We set the simulation end time 7 = 0.2. The
initial condition is a right-moving shock of Mach number 10 positioned at (é, 0) with a sixty-degree angle to the x-axis. The shock is
moving into undisturbed air ahead of it, which has a density of 1.4 and a pressure of 1. In the post-shock region, the density is 8, the

velocity is [4.125 \/5 —4.125]T, and the pressure is 116.5.

When solving subproblem (H), the left boundary is inflow, while the right and bottom boundaries are outflow. Part of the fluid-
solid boundaries {y =0, é <x<1}and {x=1,-1 <y <0} are reflective, and the post-shock condition is imposed at {y = 0,0 <
x < é}. On the boundary with post-shock condition, the density, velocity, and pressure are fixed in time with the initial values to
make the reflected shock stick to the solid wall. In addition, the flow values on the top boundary are set to accurately depict the
motion of the Mach 10 shock. When solving subproblem (P), Neumann-type boundary conditions are applied to part of the fluid—solid
surfaces associated with the reflective boundary in subproblem (H), while Dirichlet boundary conditions are applied to the remaining
boundaries. The Dirichlet data on the left and top boundaries are determined by the inflow data and the exact motion of the Mach
10 shock. Additionally, the Dirichlet data on the right and bottom boundaries remain unchanged from their initial values before the
shock wave reaches the boundary.

From Fig. 8, we see our scheme produces satisfactory non-oscillatory solutions with correct shock location and well-captured
rollups. These test results are consistent with the observations for fully explicit high order accurate schemes in [5].
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Fig. 7. Shock diffraction. The snapshots of density profile are taken at 7 = 2.3. The gray colored region denotes solid. Plot of density: 20 equally spaced contour lines
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Fig. 8. Mach 10 shock reflection and diffraction. The snapshots of density profile are taken at 7' = 0.2. The gray colored region denotes solid. Plot of density: 50 equally
space contour lines from 0 to 25. Only contour lines are plotted. We can observe that the scheme with higher order spatial accuracy indeed induces less artificial
viscosity, despite that the temporal accuracy is at most second order.

4.8. High Mach number astrophysical jet

To replicate the gas flows and shock wave patterns observed in the Hubble Space Telescope images, one can utilize theoretical
models within a gas dynamics simulator, see [61-63]. We consider the Mach 2000 astrophysical jets without radiative cooling to
demonstrate the robustness of our scheme.
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Fig. 9. Astrophysical jets. The snapshots of the density field at 7= 0.001. Scales are logarithmic. We can observe that the scheme with higher order spatial accuracy
indeed induces less artificial viscosity, despite that the temporal accuracy is at most second order.
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Fig. 10. From left to right Q?, Q*, Q° DG schemes. Top: the number of bad cells after solving (P) at each time step (the DG polynomial cell averages are not in the
admissible set). Bottom: the number of Douglas—Rachford iterations need to reach round-off convergence for solving (27a) with (29).

Let the computational domain Q = [0, 1] X [—0.5,0.5]. We set the simulation end time 7" = 0.001. In this example, we use the
ideal gas constant y = 5/3. The initial density p° = 0.5, velocity u® = 0, and pressure p° = 10~°. When solving subproblem (H), the
following inflow boundary conditions are set for the left boundary

[5, 800, 0, 0.4127]" if x=0 and |y| < 0.05,

T
b Uy s Uy =
Lo itz 1y, ] [0.5,0,0,106]"  ifx=0and |y| > 0.05,

while the outflow boundary conditions are set for the top, right, and bottom boundaries. When solving subproblem (P), Dirichlet
boundary condition is applied to the left boundary, while Neumann-type boundary conditions are applied to the remaining boundaries.
The Dirichlet data on the left boundary are determined by the inflow data of the Mach 2000 astrophysical jet.

We take ¢ = 1078 in defining G¢ and the Zhang-Shu limiter in Section 2.3. The postprocessing of DG cell averages is necessary

in these simulations. For the sake of robustness and efficiency in the postprocessing step, we define the local region T as the set of
indices

T={i:cither UPgG or E_}’—%nm_fn/fzz*w*}. (29)

The Fig. 9 shows snapshots of density field at the simulation final time T' = 0.001. See the performance of Douglas-Rachford
splitting for solving (27a) in Fig. 10.
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5. Concluding remarks

In this paper, we have constructed a semi-implicit DG scheme that is high order accurate in space, conservative, and positivity-
preserving for solving the compressible NS equations. The time step constraint follows the standard hyperbolic CFL condition At =
O(Ax). Our scheme is fully decoupled, requiring only the sequential solving of two linear systems at each time step to achieve second
order accuracy in time. Conservation and positivity are ensured through a postprocessing of the cell averages of total energy variable.
A high order accurate cell average limiter can be formulated as a constraint minimization, which can be efficiently computed by
using the generalized Douglas—Rachford splitting method with nearly optimal parameters. Numerical tests suggest that such a simple
and efficient postprocessing of the total energy variable indeed renders the semi-implicit high order DG method with Strang splitting
much more robust. Ongoing and future work consists of extensions from the #?-norm minimization postprocessing to the #!-norm
minimization, and also generalizations to directly enforcing the convex invariant domain.
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Appendix A. The method of Lagrange multiplier

Given a matrix A=[1,1,---,1] € R™¥ and a vector w € RN . Define a constant b = Aw and assume 2,111 w; > 0. Let us consider
the following constrained minimization problem

min l||x—w||§ subjectto Ax=»> and x; >0 forall ie{l,---,N}. (A.1)
xeRN 2

Consider the Lagrangian function with multipliers 4; and y

N N
1
L=Zlx-wl}+ y( 3 x - b) + Y (=A%),
i=1

i=1
and its Karush-Kuhn-Tucker (KKT) conditions, which are given as

oL

a—zx,»—w,-+y—/l,-=0, (A.2a)
X

—4;x; =0, (A.2b)

4,20, (A.20)

-x; <0, (A.2d)

i

(A.2e)

M=
Ry
Il
=

]
—_

1

For the constrained minimization problem (A.1), the KKT condition (A.2) is both sufficient and necessary. In the rest of this part,
let us assume there exists at least one entry in w that is strictly less than 0. Otherwise, the minimizer of the constraint optimization
problem (A.1) is w, which is trivial.

Lemma 1. If there exists an entry in w less than 0, then y # 0.
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Proof. Assume y =0. Then (A.2a) becomes x; — w; — 4; =0, namely we have 4, = x; — w;. Summing over i from 1 to N, we get

N N
A=Y %= Y w=b=b=0.

N
=1 i=1 i=1

1

Notice (A.2c) gives 4; > 0, we have A; =0 for all i. Thus x; = w); for all i, which contradicts the existence of a negative entry inw. []

Let B={j:x ;= 0} denote the set of all indexes, as represented in the minimizer x of (A.1), touching the boundary of the feasible
region. Let #B be the number of elements in set B. The next lemma shows that if an entry of the vector w is less than 0, then the
minimizer plugs that entry back to the boundary of the feasible region.

Lemma 2. Assume there exists at least one entry in vector w that is strictly less than 0. Then for any index i so that w; <0, we have i € B
and hence x; = 0.

Proof. From (A.2b), we only need to show 4; > 0. By (A.2a), we have x; — w; + y = 4;. Summing over i from 1 to N, we get

N N 1 N
x,»—Zw,-+Ny:Z/1,- => yzﬁZ/I,-.
i=1 i=1 i=1 i=1
—_———
=b-b=0

Thus, by (A.2c), we know y > 0. Furthermore, by Lemma 1, we get y > 0. Notice (A.2d) gives x; > 0. Therefore, under the condition
w; <0, the (A.2a) implies 4, =x; —w; +y >0. []

Lemma 3. The solution of the constrained minimization problem (A.1) satisfies:

* If x; =0, then we have
1 .
b= Y Aj=-w, Vi€B. (A.3)
jEB

« If x; > 0, then we have

1
x,»=w,-+N_#B ij. (A.4)
JEB

Proof. From (A.2a), we have y = 4; + w; — x;. Summing over i from 1 to N, we get

N N N
Ny=ZAi+Zw[—2xi=ZAi+ZAi.

i=1 i=1 i=1 i€B i¢B

———
=b-b=0
Recall that the set B={j : x; =0}. By (A.2d), i € B gives x; > 0. By (A.2b), we have 4; =0 for all i ¢ B. Thus, we get
1

r=v 2 A (A.5)

ieB
If x; =0, then i € B and (A.2a) becomes A; —y = —w);, so replacing y with (A.5), we obtain (A.3). Summing over i € B of (A.3), we
have

B N

i€B JEB i€B JEB

If x; > 0, then by (A.2b) we have A; =0. Again, (A.2a) and (A.5) gives

1 1
xl=w,—y=w,—ﬁzB/lj=wl+N_—#BZBwj
JjE JjE

Therefore, we conclude the proof. []
Lemma 4. If w; > w;, >0, then x; =0 implies x; =0, namely i; € B implies i, € B.

Proof. Let us first deal with the case w; > w; . If the vector x is a solution of the minimization problem (A.1) with x; =0 and
x;, > 0, then we will construct a solution vector % such that %; = x; forall i & {i},i,} and X; =x;, and X, =0.
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* Check constraint: since %; = x; for all i & {i},i,}, we only need to check %; +X; =x; +x;,. This holds since %; +%;, =x;, +0
and x; +x;, =0+x;,.

+ Compare 2-norm: we have (w; — x; )* + (w;, = x;,)* > (w; —%; )* + (w;, — %;,)*, which can be easily verified as follows

2 2 ~ \2 ~ \2
(wil—xil) +(wi2—xi2) >(wi1 —xil) +(w,~2—xiz)

2 2 2, 2
= w; +(wi2—x,~2) >(w[] —xiz) +wi2
2 2 2 2 2 2
& w; +wp = 2w;, x;, + xp, > wp = 2w; x;, + X +wy
= (w;, —w;))x;, >0,

which holds when w; > w;, and x;, > 0.

Hence we have constructed a vector X that satisfies the constraint but has smaller objective value, which contradicts that x is the
unique minimizer of (A.1).
In case of w; = w;,, we use contradiction argument to show the vector x with x; =0 and x;, > 0 is not a solution of the

minimization problem (A.1). We construct a vector % such that X; = x; forall i & {i},i,} and X; = %x,-z and %;, = %x,-z.
* Check constraint: since X; = x; for all i & {i;,i,}, we only need to check %; + %;, =x; +x;,. This holds since %; +%;, =x;, and
x; + X, =X,
» Compare 2-norm: we have (w; — x; )* + (w;, — x;,)* > w; — %; )* + (w;, — %;,)*, which can be easily verified as follows

(w;, = x; )+ (wy, = x> (w;, = %) + (wy, —X;))
1 1

s w; + Wy, = x;,)° > (w;, = Ex,.z)2 +(w;, — le-z)z

2 1 [N 2
& w; = (w;, - Ex,-z) > (w;, — Exiz) —(w;, —x;,)

1 3
& x;, Quw; - Exiz) > x;,Qu;, — Exi2)
1

& w; —w;, > —Ex,-z

This hold when w; =uw;, and x;, > 0.

The proof is now concluded. []

The Lemma 2 indicates the following: if the i-th entry of the vector w is non-positive, w; <0, then we need to set x; = 0. Lemma 3
gives the structure of the exact solution to the minimization problem (A.1). Lemma 4 helps us to construct the following algorithm
to find the set B and obtain the solution to (A.1).

+ Step 1. If w; <0, then set x; =0 and push i in set B.
+ Step 2. Sort all entries w; > 0 in w in ascending order.
« Step 3. Compute the “total out-of-bound mass” of set B by the following formula:

-2
jEB

« Step 4. Check whether the smallest w; where i & B, satisfies

1
P S >0 A
w,s+N_#Bj;w,> (A.6)

If (A.6) holds, then uniformly allocate the “total out-of-bound mass” of set B to all other “good entries” by formula

1 .
x,-:w,-+N_—#B ij for all i ¢ B.
JEB
Otherwise, push i, into set B and go to Step 3. Note: if there are multiple entries with the same smallest value, then push all of
them into set B.

The complexity of sorting algorithm std :: sort() in C++ is O(NN log(N)) on the best and average case scenarios. Additionally,
sophisticated coding skills are required for implementing sorting algorithms on a distributed memory system. In comparison, the

complexity of the DR algorithm is (V) and DR is very amenable to parallelization.
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Table A.4

The CPU time for applying the method of Lagrange multiplier and the DR algorithm to
solve the minimization (A.1) for a problem of size 10° for problems with different ratios
of negative points (bad cells). The time unit is second. The “LM” refers to the method of
Lagrange multiplier and the “DR” refers to the Douglas—Rachford splitting algorithm.

bad cells % 1% 2% 5% 10% 20%
LM 1.426s 1.500s 1.509s 1.418s 1.130s
DR 0.378s 0.467 s 0.565s 0.656s 0.846s

Comparison of optimization algorithms We create synthetic data to let w in (A.1) be defined as point values of the following function
on a uniform grid of size 10002 on the domain [0, 1]?:

-0.25, —g +025<x< g +0.25
Fx,y) =12 —0.25, —g +075<x < g +0.75,

cos® (27zx)+ 10713, otherwise

where 6 > 0 is a parameter. A different value of § gives a different ratio of negative point values, and we consider values of § such
that the ratio of negative point values is 1%, 2%, 5%, 10% and 20%.

We then solve (A.1) with b = Aw by both the method of Lagrange multiplier and the Douglas—-Rachford method. For each opti-
mization method, we solve (A.1) to machine precision 100 times and compare the average CPU time for solving it once on a single
Intel Xeon CPU E5-2660 v3 2.60 GHz. The Table A.4 shows the computational time of finding the minimizer up to machine precision.

The time cost of the DR algorithm increases as the ratio of negative points increases, which is however still faster than the
Lagrange multiplier approach for large data set, due to the O(N log(IN)) sorting operation. Notice that as the number of negative
points increases, the data set requiring sorting becomes smaller, resulting in a decrease in the time cost of the Lagrange multiplier
method. However, in large-scale simulations with a good base scheme such as a proper DG scheme in this paper, the percentage
of negative points is typically small. Such a comparison suggests that the DR algorithm is a preferable option from the efficiency
perspective.
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