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We consider an optimization-based limiter for enforcing positivity of internal energy in a semi-
implicit scheme for solving gas dynamics equations. With Strang splitting, the compressible 
Navier–Stokes system is split into the compressible Euler equations, which are solved by 
the positivity-preserving Runge–Kutta discontinuous Galerkin (DG) method, and the parabolic 
subproblem, which is solved by Crank–Nicolson in time with interior penalty DG method. Such 
a scheme is at most second order accurate in time, high order accurate in space, conservative, 
and preserves positivity of density. To further enforce the positivity of internal energy, we impose 
an optimization-based limiter for the total energy variable to post-process DG polynomial cell 
averages. The optimization-based limiter can be efficiently implemented by the popular first order 
convex optimization algorithms such as the Douglas–Rachford splitting method by using nearly 
optimal algorithm parameters. Numerical tests suggest that the DG method with Qý basis and 
the optimization-based limiter is robust for demanding low-pressure problems such as high-speed 
flows.

1. Introduction

1.1. Motivation and objective

For studying viscous gas dynamics, the dimensionless compressible Navier–Stokes (NS) equations without external forces in con-
servative form on a bounded spatial domain Ω ⊂Rý over time interval [0, ÿ ] are

ÿýý +ÿ ⋅ ý a = ÿ ⋅ ý d, ý a =

»¼¼½

ÿÿ
ÿÿ⊗ ÿ+ ýý
(ý + ý)ÿ

¾¿¿À
and ý d =

1

Re

»¼¼½

ÿ

ÿ

ÿ ⋅ ÿ − ÿ

¾¿¿À
, (1)

where the conservative variables are density ÿ, momentum ÿ, and total energy ý, Re denotes the Reynolds number and ý ∈Rý×ý

denotes an identity matrix, ÿ =
ÿ

ÿ
is velocity and ý is pressure. With the Stokes hypothesis, the shear stress tensor is given by 

ÿ(ÿ) = 2ÿ(ÿ) −
2

3
(ÿ ⋅ ÿ)ý, where ÿ(ÿ) = 1

2
(ÿÿ + (ÿÿ)T). The total energy can be expressed as ý = ÿÿ +

‖ÿ‖2
2ÿ

, where ÿ denotes the 
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internal energy and ‖ ⋅ ‖ is the vector 2-norm. With Fourier’s heat conduction law, the heat diffusion flux ÿ = −ÿÿÿ with parameters 
ÿ = ÿ

Pr
> 0, where the positive constant ÿ is the ratio of specific heats and Pr denotes the Prandtl number. For air, we have ÿ = 1.4

and Pr = 0.72. For simplicity, we only consider the ideal gas equation of state

ý = (ÿ − 1)ÿÿ. (2)

The system (1) can be written as

ÿýÿ+ÿ ⋅ (ÿÿ) = 0 in [0, ÿ ] × Ω, (3a)

ÿý(ÿÿ) +ÿ ⋅ (ÿÿ⊗ ÿ) +ÿý− 1

Re
ÿ ⋅ ÿ(ÿ) = ÿ in [0, ÿ ] × Ω, (3b)

ÿýý +ÿ ⋅ ((ý + ý)ÿ) − ÿ
Re
Δÿ− 1

Re
ÿ ⋅ (ÿ(ÿ)ÿ) = 0 in [0, ÿ ] × Ω. (3c)

When vacuums occur, the solutions of compressible NS equations may lose continuous dependency with respect to the initial data, 
see [1, Theorem 2] and [2, Remark 3.3]. On the other hand, the density and internal energy of a physically meaningful solution in 
most applications should both be positive. For problems without any vacuum, define the set of admissible states as

ÿ = {ý = [ÿ,ÿ,ý]T∶ ÿ > 0, ÿÿ(ý ) =ý −
‖ÿ‖2
2ÿ

> 0}.

The function ÿÿ(ý ) = ý −
‖ÿ‖2
2ÿ

is a concave function of ý , which implies the set ÿ is convex [3]. For an initial condition ý 0 =

[ÿ0,ÿ0,ý0]
T
∈ ÿ, a numerical solution preserving the positivity is preferred for the sake of not only physical meaningfulness but 

also numerical robustness. For the equation of state (2), negative internal energy means negative pressure, with which the linearized 
compressible Euler equation loses hyperbolicity and its initial value problem is ill-posed [3]. On the other hand, a conservative and 
positivity-preserving scheme in the sense of preserving the invariant domain ÿ is numerically robust [4,5,2,6,7].

For solving a convection-diffusion system (3), fully explicit time stepping results in a time step constraint Δý =(ReΔý2), thus is 
suitable only for high Reynolds number flows in practice. In order to achieve larger time steps such as a hyperbolic CFL Δý =(Δý), 
a semi-implicit scheme can be used [2,7].

The objective of this paper is to construct a high order accurate in space, conservative, and positivity-preserving scheme for 
solving the compressible NS equations (3). In particular, we will use the Strang splitting approach in [2,7] with arbitrarily high order 
discontinuous Galerkin (DG) method for spatial discretization, which gives a scheme of at most second order accuracy in time. In 
general, a scheme that is high order in both time and space is preferred. On the other hand, for many fluid problems including gas 
dynamics problems, the solutions are often smoother with respect to the time variable, thus the spatial resolution of a numerical 
scheme is often more crucial for capturing fine structures in solutions than its temporal accuracy. Higher order spatial discretizations 
often produce better numerical solutions even if the time accuracy is only first order for various convection-diffusion problems 
[8–10,7].

1.2. Existing positivity-preserving schemes for compressible NS equations

In the literature, there are many positivity-preserving schemes for compressible Euler equations, which have been well studied 
since 1990s. For compressible Navier–Stokes equations, most of the practical positivity-preserving schemes were developed only in 
the past decade.

Grapas et al. in [4] constructed a fully implicit pressure correction scheme on staggered grids, which is at most second order 
in space, conservative, and unconditionally positivity-preserving. Nonlinear systems must be solved for time marching. As a fully 
implicit scheme on a staggered grid, it seems difficult to extend it to a higher order accurate scheme.

Zhang in [5] proposed a simple nonlinear diffusion numerical flux, with which arbitrarily high order Runge–Kutta DG schemes 
solving (3) can be rendered positivity-preserving without losing conservation and accuracy by a simple positivity-preserving limiter 
in [3]. The advantages of such a fully explicit approach includes easy extensions to general shear stress models and heat fluxes, and 
possible extensions to other types of schemes, such as high order finite volume schemes [11] and the high order finite difference 
WENO (weighted essentially nonoscillatory) schemes [6]. However, like many fully explicit schemes for convection-diffusion systems 
[12–15], the time step constraint is Δý =(ReΔý2).

Guermond et al. in [2] introduced a semi-implicit continuous finite element scheme via Strang splitting, which preserves positivity 
under standard hyperbolic CFL condition Δý =(Δý). By the same operator splitting approach, in [7] we constructed a semi-implicit 
conservative DG scheme, with the continuous finite element method for solving (3), and the scheme with Qý (ý = 1, 2, 3) basis can 
be proven positivity-preserving with Δý =(Δý).

The early pioneering work on DG methods for solving compressible NS equations was conducted by Bassi and Rebay [16,17] as 
well as Baumann and Oden [18]. Advantages of DG methods include high order accuracy, flexibility in handling complex meshes 
and hp-adaptivity, and highly parallelizable characteristics. See [19–21] for an overview of DG methods. In this paper, we focus on 
constructing DG schemes within the Strang splitting approach, by which the compressible NS system (3) is splitted into a hyperbolic 
subproblem (H) and a parabolic subproblem (P), representing two asymptotic regimes: the vanishing viscosity limit (the compressible 
Euler equations) and the dominance of diffusive terms:
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(H)

⎧⎪«⎪¬

ÿýÿ+ÿ ⋅ (ÿÿ) = 0,

ÿý(ÿÿ) +ÿ ⋅ (ÿÿ⊗ ÿ+ ýý) = ÿ,

ÿýý +ÿ ⋅ ((ý + ý)ÿ) = 0,

(P)

⎧⎪«⎪¬

ÿýÿ = 0,

ÿý(ÿÿ) −
1

Re
ÿ ⋅ ÿ(ÿ) = ÿ,

ÿýý −
ÿ
Re
Δÿ− 1

Re
ÿ ⋅ (ÿ(ÿ)ÿ) = 0.

(4)

The equation ÿýÿ = 0 in the parabolic subproblem implies the variable ÿ in (P) is time independent. Multiplying the second equation 
in (P) by ÿ and using the identity ÿ ⋅ (ÿ(ÿ)ÿ) = (ÿ ⋅ÿ(ÿ)) ⋅ÿ+ÿ(ÿ) ∶ ÿÿ, we obtain the following equivalent system in non-conservative 
form:

(P)

⎧⎪«⎪¬

ÿýÿ = 0, (a)

ÿÿýÿ−
1

Re
ÿ ⋅ ÿ(ÿ) = ÿ, (b)

ÿÿýÿ−
ÿ
Re
Δÿ = 1

Re
ÿ(ÿ) ∶ ÿÿ. (c)

(5)

We use the positivity-preserving Runge–Kutta DG method [3] for subproblem (H), i.e., the Zhang–Shu method for constructing 
positivity-preserving schemes [22,3,23–25] applied to solving compressible Euler equations, which is arbitrarily high order accurate, 
conservative, and positivity-preserving. For the parabolic subproblem, many different types of DG methods have been developed for 
solving diffusion equations in literature, which include interior penalty DG [26–29], local DG [30,31], direct DG [32–34], hybridizable 
DG [35–37], compact DG [38,39], and so on. In this paper, we utilize the interior penalty DG method to discretize subproblem (P). 
The first challenge of using DG methods for subproblem (P) is how to ensure conservation of conserved variables. In [7], we have 
proven that conservation can be preserved via choosing appropriate interior penalty DG forms of ÿ ⋅ ÿ(ÿ) and ÿ(ÿ) ∶ ÿÿ. The next 
major challenge is how to ensure positivity when discretizing (5c). It is very difficult to prove any positivity-preserving result for 
arbitrarily high order schemes solving (5c) for implicit time stepping, even if the temporal accuracy is only first order.

Consider a heat equation ÿýÿ − Δÿ = 0 as a simplification of (5c). When using backward Euler time discretization, a systematic 
approach to obtaining a sufficient condition for the discrete maximum principle or positivity is to show the monotonicity of the linear 
system matrix. A matrix is called monotone if all entries of its inverse are nonnegative. The monotonicity of Q1 interior penalty DG 
on multi-dimensional structured meshes has been established in [7], also see [40,41] for related results; and the monotonicity of 
continuous finite element method with Q2 and Q3 elements has been proven in [42–44]. However, for arbitrary high order schemes 
on unstructured meshes, the monotonicity does not hold [45]. Furthermore, for higher order implicit time marching strategy, such 
as the Crank–Nicolson method, the monotonicity of the linear system matrix is not enough to ensure positivity using a time step like 
(Δý). The Crank–Nicolson method with a monotone spatial discretization preserves positivity only if the time step is as small as 
(Δý2), see [46, Appendix B] and [2, Section 5.3].

1.3. A constraint optimization approach for enforcing positivity and global conservation

To preserve positivity of internal energy, we will introduce a constraint optimization postprocessing approach. For enforcing 
bounds or positivity in numerical schemes solving PDEs, various optimization based approaches have been considered in the literature. 
We list a few such methods. Guba et al. in [47] introduced a bound-preserving limiter for spectral element method, implemented 
by standard quadratic programming solvers. Van der Vegt et al. in [48] considered a positivity-preserving limiter for DG scheme 
with implicit time integration and formulated the positivity constraints in the KKT system, implemented by an active set semismooth 
Newton method. Cheng and Shen in [49] introduced a Lagrange multiplier approach to preserve bounds for semilinear and quasi-
linear parabolic equations, which provides a new interpretation for the cut-off method and achieves the preservation of mass by 
solving a nonlinear algebraic equation for the additional space independent Lagrange multiplier. Ruppenthal and Kuzmin in [50]
utilized optimization-based flux correction to ensure the positivity of finite element discretization of conservation laws. The primal-
dual Newton method was employed to calculate the optimal flux potentials.

Next, we describe the main idea of our approach. Let ýP
ÿ = [ÿPÿ ,ÿ

P
ÿ ,ý

P
ÿ ]

T

be a vector denoting the cell average of the DG polynomial 

ýP
ℎ(ý) = [ÿP

ℎ
(ý),ÿP

ℎ
(ý),ýP

ℎ
(ý)]

T
on the ÿ-th cell ÿÿ after solving subproblem (P). The density cell averages are positive, which can be 

ensured if using a positivity-preserving scheme for subproblem (H). The main challenge here is that in general ýP
ÿ may not be in the 

convex invariant domain set ÿ. We emphasize that the Zhang–Shu limiter [3] can be used only if ýP
ÿ ∈ÿ, which can be proven for 

one time step or time stage for fully explicit finite volume and DG schemes with a positivity-preserving flux [3,5], or very special 
semi-implicit schemes like [7], thus these schemes can be rendered positivity-preserving by using the Zhang–Shu limiter [3] in each 
time step or time stage.

With a prescribed small positive number ÿ, which serves as the desired lower bound for density and internal energy, the numerical 
admissible state set ÿÿ is defined as follows.

ÿÿ = {ý = [ÿ,ÿ,ý]T∶ ÿ ≥ ÿ, ÿÿ(ý ) =ý −
‖ÿ‖2
2ÿ

≥ ÿ}.

Define ýP
ℎ
= [ýP

1
,ýP

2
,⋯ ,ýP

ý
]
T

as the vector of all cell averages for the total energy. We propose to modify the total energy only. 

And we would like to modify it to another vector ýℎ = [ý1,ý2,⋯ ,ýý ]
T
such that it minimizes the ý2 distance to ýP

ℎ
, subject to 

the constraints of preserving global conservation and positivity. Specifically, given ýP
ℎ = [ýP

1
,⋯ ,ýP

ý ]
T

with positive density ÿPÿ ≥ ÿ, 
find the minimizer for
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min
ýℎ∈R

ý

‖‖‖‖ýℎ −ýP
ℎ

‖‖‖‖
2

subjects to
ý∑
ÿ=1

ýÿ|ÿÿ| =
ý∑
ÿ=1

ýP
ÿ |ÿÿ| and [ÿPÿ ,ÿ

P
ÿ ,ýÿ]

T

∈ÿÿ , ∀ÿ, (6a)

where |ÿÿ| is the area or volume of each cell ÿÿ. Let ý
∗

ℎ = [ý
∗

1 ,⋯ ,ý
∗

ý ]
T
be the minimizer. Then we correct the DG polynomial cell 

averages for the total energy variable. Namely, let ýP
ÿ (ý) be the DG polynomial in each cell ÿÿ, and we correct it by a constant

ýÿ(ý) =ýP
ÿ (ý) −ýP

ÿ +ý
∗

ÿ . (6b)

The updated or postprocessed DG polynomials ýP
ℎ(ý) = [ÿP

ℎ
(ý),ÿP

ℎ
(ý),ýℎ(ý)]

T
now have cell averages in the numerical admissible 

state set ÿÿ , and the simple Zhang–Shu positivity-preserving limiter in [3,23] can be used to further ensure the full scheme is 
positivity-preserving.

Since ý2 distance is minimized, the accuracy of (6a) can also be justified under suitable assumptions, which will be discussed in 
Section 3.2.

1.4. Efficient implementation of the constraint optimization defined postprocessing

The simple postprocessing approach (6) was considered in [51] for preserving bounds of a scalar variable in complex phase field 
equations. Thanks to the constraints in (6a), global conservation and positivity of the internal energy are easily achieved, and the 
accuracy is also easy to justify for scalar variables [51], which are the advantages of such a simple approach. On the other hand, in 
any optimization based approach, it is often quite straightforward to have these desired properties such as positivity, conservation, 
and high order accuracy. From this perspective, the critical issue in all optimization based approaches is computational efficiency, 
especially for a time-dependent, demanding nonlinear system like (3).

In large-scale high-resolution fluid dynamic simulations, degree of freedoms to be processed at each time step can be quite large. 
Thus in general it is preferred to solve (6a) by first order optimization methods since they scale well with problem size, i.e., the 
complexity is (ý) for each iteration, with ý being the total number of cells.

In [51], it is demonstrated that the minimizer to a constraint minimization like (6a) can be efficiently computed by using the 
Douglas–Rachford splitting method [52] if using the nearly optimal algorithm parameters obtained from a sharp asymptotic conver-
gence rate analysis. The Douglas–Rachford splitting method is a very popular first order splitting method, because it is equivalent to 
ADMM [53] and dual split Bregman method [54] with special parameters, see also [55] and references therein for the equivalence. 
For special convex optimization problems, it is also equivalent to PDHG [56].

There are other efficient alternative methods to solve the minimization (6a), such as the breakpoint searching algorithms [57] with 
an (ý) computational complexity. For the ý2-norm minimization (6a), the Douglas–Rachford splitting with the optimal parameters 
also has a provable computational complexity (ý) as shown in [51], but with more flexibilities and advantages. First, the Douglas–
Rachford splitting method is simple to describe and easy to implement since only three steps are needed in each iteration, which 
allows easy implementation, especially for efficient parallel computing. Second, it is straightforward to extend the Douglas–Rachford 
splitting method to other postprocessing models such as the ý1-norm minimization and directly enforcing invariant domain ÿÿ , 
see Remark 3 and Remark 4 in Section 3.3. Though the Douglas–Rachford splitting method may no longer have a provable (ý)

computational complexity for ý1-norm minimization, it is nontrivial or impossible to generalize other alternative methods for (6a)
to ý1-norm minimization. In Appendix A, we show a comparison to one simple and efficient alternative solving (6a) by the method 
of Lagrange multiplier, to demonstrate the practical efficiency of the Douglas–Rachford splitting for large problems.

Given the DG polynomial after solving the subproblem (P), we define the ÿ-th cell as a bad cell if its cell average has negative 

internal energy, i.e., ýP
ÿ = [ÿPÿ ,ÿ

P
ÿ ,ý

P
ÿ ]

T

∉ÿÿ . Let ÿ be the number of bad cells, then ÿ∕ý is the bad cell ratio. It is proven in [51] that 
the sharp asymptotic linear convergence rate of the Douglas–Rachford splitting with the nearly optimal parameters is approximately 
1−2

ÿ
ý

3−2
ÿ
ý

≈
1

3
when ÿ ≪ ý . In other words, such a minimization solver is provably extremely efficient when the bad cell ratio is small, 

which is usually the case for a good scheme solving (3) such as Strang splitting with DG methods [7].

1.5. The main result and organization of this paper

Our full scheme in this paper is a very high order accurate in space, conservative, and positivity-preserving semi-implicit DG 
scheme to solve the compressible NS equations (3), with a standard hyperbolic CFL Δý =(Δý). For the implicit part, the scheme is 
fully decoupled with two linear systems to solve sequentially for each time step. We emphasize that the spatial discretization in this 
paper is done by only DG methods, which is not exactly the same as the spatial scheme in [7], where the internal energy equation 
is discretized by continuous finite element method. The main novelties of this paper include the optimization-based postprocessing 
approach (6) to preserve conservation and positivity for solving the parabolic subproblem as well as a proper semi-implicit DG scheme 
with high order basis, which is carefully designed so that the DG scheme combined with the optimization-based positivity-preserving 
limiter can produce stable and solid results for challenging benchmark gas dynamics problems. The minimizer to (6a) can be efficiently 
computed by using the generalized Douglas–Rachford splitting method with nearly optimal parameters.

The postprocessing step (6a) only preserves the global conservation and does not preserve any local conservation property. We 
remark that the local conservation in the Strang splitting approach for solving (3) is already lost since the non-conservative variables 
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are computed in (5). Nonetheless, the global conservation can be ensured [7]. Thus from this perspective, the postprocessing step 
(6a) is acceptable whenever the non-conservative form (5) is solved.

One can also consider a more general version of (6a) by also modifying the density and momentum variables to enforce the 

positivity of the internal energy ýP
ÿ = [ÿPÿ ,ÿ

P
ÿ ,ý

P
ÿ ]

T

∈ ÿÿ . Such a more complicated limiter is certainly more difficult to implement 
efficiently. On the other hand, for the Strang splitting approach in [2,7], the momentum variable is robustly computed, which allows 
us to consider a simpler limiter like (6a). Most importantly, numerical tests suggest that the simple postprocessing (6) is sufficient to 
enforce the positivity thus the robustness for the subproblem (P) in the Strang splitting with very high order DG methods.

We emphasize that the postprocessing (6) is too simple to make a bad scheme more useful, e.g., it does not eliminate any oscil-
lations. It is most useful for a good scheme that is stable for most testing cases yet might lose positivity thus robustness for solving 
challenging low pressure problems, e.g., the Strang splitting method in [2,7]. For instance, as will be shown by numerical tests in this 
paper, for computing the Mach 2000 astrophysical jet problem, Strang splitting with very high order DG methods produces blow-up 
due to loss of positivity, but will be stable when combined with the postprocessing (6), i.e., an optimization based positivity-preserving 
limiter. On the other hand, there are many different kinds of DG methods for diffusion operators. With a proper choice of the interior 
penalty DG method, we demonstrate that global conservation can be ensured when solving the diffusion subproblem implicitly in 
the Strang splitting of compressible Navier-Stokes system, and only two linear systems need to be solved in the Crank–Nicolson time 
discretization of the diffusion subproblem. Moreover, the numerical tests suggest that such a high order DG scheme is a practical 
scheme producing solid results for some challenging benchmark problems.

The rest of this paper is organized as follows. In Section 2, we introduce the fully discrete numerical scheme. In Section 3, we 
discuss a high order accurate constraint optimization based postprecessing procedure, which preserves the conservation and positivity. 
Numerical tests are shown in Section 4. Concluding remarks are given in Section 5.

2. Numerical scheme

In this section, we describe the fully discretized numerical scheme for solving the compressible NS equations (3). Our scheme 
incorporates the DG spatial discretization within the Strang splitting framework.

2.1. Time discretization

Given the conserved variables ý ÿ at time ýÿ (ÿ ≥ 0) and the step size Δý, the Strang splitting for evolving to time ýÿ+1 = ýÿ + Δý
for the system (3) is to solve subproblems (H) and (P) separately [2,7]. A schematic flowchart for time marching is as follows:

ý ÿ solve (H)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

step size Δý
2

ýH solve (P)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
step size Δý

ýP solve (H)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

step size Δý
2

ý ÿ+1. (7)

We utilize the strong stability preserving (SSP) Runge–Kutta method to solve (H) and the ÿ-method with a parameter ÿ ∈ (0, 1] to 
solve (P). For any ÿ ≥ 0, the time discretization in one time step consists of the following steps.

Step 1. Given ý ÿ = [ÿÿ,ÿÿ,ýÿ]T, we use the third order SSP Runge–Kutta method with step size 1

2
Δý to compute ýH =

[ÿH,ÿH,ýH]
T
:

ý (1) =ý ÿ −
Δý
2
ÿ ⋅ ý a(ý ÿ), (8a)

ý (2) =
3

4
ý ÿ +

1

4

[
ý (1) −

Δý
2
ÿ ⋅ ý a(ý (1))

]
, (8b)

ýH =
1

3
ý ÿ +

2

3

[
ý (2) −

Δý
2
ÿ ⋅ ý a(ý (2))

]
. (8c)

Step 2. Given ýH = [ÿH,ÿH,ýH]
T
, compute (ÿH, ÿH) by solving

ÿH = ÿHÿH and ýH = ÿHÿH +
‖ÿH‖2
2ÿH

.

Step 3. Given (ÿH, ÿH), set ÿP = ÿH due to (5a). We employ the Crank–Nicolson method to discretize (5b) and apply the ÿ-method, 
where ÿ ∈ (0, 1], to discretize (5c). For the second step in Strang splitting (7), we have

ÿ∗ =
1

2
ÿP +

1

2
ÿH and ÿ∗ = ÿÿP + (1 − ÿ)ÿH,

ÿP
ÿP − ÿH

Δý
−

1

Re
ÿ ⋅ ÿ(ÿ∗) = ÿ,

ÿP
ÿP − ÿH

Δý
−

ÿ
Re

Δÿ∗ =
1

Re
ÿ(ÿ∗) ∶ ÿÿ∗.

The scheme above can be implemented as first to compute (ÿ∗, ÿ∗) by sequentially solving two decoupled linear systems
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ÿPÿ∗ −
Δý
2Re

ÿ ⋅ ÿ(ÿ∗) = ÿHÿH, (9a)

ÿPÿ∗ −
ÿΔý ÿ
Re

Δÿ∗ = ÿHÿH +
ÿΔý
Re

ÿ(ÿ∗) ∶ÿÿ∗, (9b)

then set ÿP = 2ÿ∗ − ÿH and ÿP = 1

ÿ
ÿ∗ + (1 − 1

ÿ
)ÿH.

Step 4. Given (ÿP, ÿP, ÿP), compute (ÿP, ýP) by

ÿP = ÿPÿP and ýP = ÿPÿP +
‖ÿP‖2
2ÿP

.

Step 5. Given ýP = [ÿP,ÿP,ýP]
T
, to obtain ý ÿ+1 = [ÿÿ+1,ÿÿ+1,ýÿ+1]

T
in the third step in Strang splitting (7), solve (H) for 

another 1
2
Δý by the third order SSP Runge–Kutta method.

We have the first order backward Euler schemes with ÿ = 1, for which ÿP = ÿ∗ and it is possible to design positivity-preserving schemes 
if the discrete Laplacian is monotone, e.g., Q2 and Q3 spectral element methods on uniform meshes, as shown in [7]. Unfortunately, 
for any ÿ < 1, ÿP = 1

ÿ
ÿ∗ + (1 − 1

ÿ
)ÿH is not a convex combination thus it is difficult to have ÿÿ > 0 even if ÿ∗ > 0 can be ensured by a 

monotone discrete Laplacian. For ÿ =
1

2
, we have the second order Crank–Nicolson scheme. It is important to note that in each time 

step, only two decoupled linear systems need to be sequentially solved in (9).

2.2. Preliminary aspects of space discretization

We use the Runge–Kutta DG method to discretize subproblem (H) and the interior penalty DG method to discretize subproblem (P). 
For completeness, we briefly review these methods without delving into their derivation. See [3,5,7] for more details. For simplicity, 
we only consider Qý polynomial basis on uniform rectangular meshes, and there is no essential difficulty to extend the main results 
in this paper to unstructured meshes. For example, for preserving conservation and positivity, the constraint optimization-based 
postprocessing approach discussed in Section 2.3 is also applicable to Pý polynomials on unstructured meshes.

Mesh, approximation spaces, and quadratures Let ℎ = {ÿÿ} be a uniform partition of the computational domain Ω by square elements 
(cells) with the element diameter ℎ. The unit outward normal of a cell ÿ is denoted by ÿÿ . Let Γℎ be the set of interior faces. For 
each interior face ÿ ∈ Γℎ shared by cells ÿÿ− and ÿÿ+ , with ÿ

− < ÿ+, we define a unit normal vector ÿÿ that points from ÿÿ− into ÿÿ+ . 
For a boundary face ÿ = ÿÿÿ− ∩ ÿΩ, the normal ÿÿ is taken to be the unit outward vector to ÿΩ.

Let Qý(ÿ) be the space of polynomials of order at most ý for each variable defined on a cell ÿ . Define the following piecewise 
polynomial spaces:

ýý
ℎ =

{
ÿℎ ∈ÿ2(Ω) ∶ ∀ÿ ∈ ℎ, ÿℎ

||ÿ ∈Qý(ÿ)
}
,

ÿ
ý
ℎ =

{
ÿℎ ∈ÿ2(Ω)ý ∶ ∀ÿ ∈ ℎ, ÿℎ

||ÿ ∈Qý(ÿ)ý
}
.

On a reference element ÿ̂ = [−
1

2
, 1
2
]ý , we use (ý +1)ý Gauss–Lobatto points to construct Lagrange interpolation polynomials ÿ̂ÿ . The 

basis functions on each cell ÿÿ ∈ ℎ are defined by ÿÿÿ = ÿ̂ÿ◦ý
−1
ÿ , where ý ÿ ∶ ÿ̂ → ÿ is an invertible mapping from the reference 

element to ÿÿ. This basis is numerically orthogonal with respect to the (ý + 1)ý -point Gauss–Lobatto quadrature rule.
We summarize the quadrature rules employed in solving the hyperbolic and parabolic subproblems as well as the points to be 

used in the positivity-preserving limiter as follows:

1. For face and volume integrals in (H), we utilize a quadrature rule that is constructed by the tensor product of (ý +1)-point Gauss 
quadrature. Denote the set of associated quadrature points here by ÿH,int

ÿ
on a cell ÿ .

2. For face and volume integrals in (P), we utilize a quadrature rule that is constructed by the tensor product of (ý + 1)-point 
Gauss–Lobatto quadrature. Denote the set of associated quadrature points here by ÿP

ÿ
on a cell ÿ .

3. The points for weak positivity of (H) are constructed by (ý + 1)-point Gauss quadrature tensor product with ÿ-point Gauss–
Lobatto quadrature in both ý and ÿ directions and we need 2ÿ −3 ≥ ý so that the ÿ-point Gauss–Lobatto quadrature is exact for 
integrating DG polynomials of degree ý [5]. Denote the set of associated quadrature points here by ÿH,aux

ÿ
on a cell ÿ . Though 

these points form a quadrature, we do not use them for computing any integrals. Instead, they are the points to be used in the 
positivity-preserving limiter [3,23,5].

See Fig. 1 for an illustration the location of these quadrature points in the Q4 scheme.

Hyperbolic subproblem One of the most popular high order accurate positivity-preserving approaches for solving compressible Euler 
equations ÿýý +ÿ ⋅ý a(ý ) = ÿ was introduced by Zhang and Shu in [3], also see [5]. We utilize the same scheme to solve (H), which 
is defined as follows. For any piecewise polynomial test function ÿℎ, find the piecewise polynomial solution ýℎ, such that

d

dý
(ýℎ,ÿℎ) = (ý a(ýℎ),ÿÿℎ) − ∫

ÿÿ

ý̂ a ⋅ ÿÿ (ý
−
ℎ ,ý+

ℎ )ÿℎ, (10)
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Fig. 1. An illustration of the quadratures used in the Q4 scheme. From left to right: the quadrature points for face integrals in (H), volume integrals in (H), face 
integrals in (P), volume integrals in (P), and the quadrature points for weak positivity. The black points are used only in defining the positivity-preserving limiter, and 
they are not used in calculating any numerical integration. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where ý̂ a ⋅ ÿÿ is any monotone flux for ý a, e.g., a Lax–Friedrichs type flux. On a face ÿ ⊂ ÿÿ , the local Lax–Friedrichs flux is defined 
by

ý̂ a ⋅ ÿÿ (ý
−
ℎ ,ý+

ℎ ) =
ý a(ý−

ℎ ) + ý a(ý+
ℎ )

2
⋅ ÿÿ −

ÿÿ

2
(ý+

ℎ −ý−
ℎ ),

where the ý−
ℎ (resp. ý

+
ℎ ) denotes the trace of ýℎ on the face ÿÿ coming from the interior (resp. exterior) of ÿ . The factor ÿÿ denotes 

the maximum wave speed with maximum taken over all ý−
ℎ and ý

+
ℎ along the face ÿ, namely the largest magnitude of the eigenvalues 

of the Jacobian matrix ÿý
a

ÿý
, which equals to the wave speed |ÿ ⋅ ÿÿ | +

√
ÿ ý

ÿ
for ideal gas equation of state.

By convention, we replace ý+
ℎ by an appropriate boundary function which realizes the boundary conditions when ÿÿ ∩ ÿΩ ≠ ∅. 

For instance, if purely inflow condition ý = ýD is imposed on ÿÿ , then ý+
ℎ is replaced by ýD; if purely outflow condition is 

imposed on ÿÿ , then set ý+
ℎ =ý−

ℎ ; and if reflective boundary condition for fluid–solid interfaces is imposed on ÿÿ , then set ý
+
ℎ =

[ÿ−
ℎ
,ÿ−

ℎ
− 2(ÿ−

ℎ
⋅ ÿÿ )ÿÿ ,ý−

ℎ
]T.

Parabolic subproblem We use the interior penalty DG method for discretizing (P). For convenience of introducing discrete forms in 
parabolic subproblem, we partition the boundary of the domain Ω into the union of two disjoint sets, namely ÿΩ = ÿΩD ∪ÿΩN, where 
the Dirichlet boundary conditions (ÿ = ÿD and ÿ = ÿD) are applied on ÿΩD and the Neumann-type boundary conditions (ÿ(ÿ) ⋅ ÿ = ÿ

and ÿÿ ⋅ ÿ = 0) are applied on ÿΩN. Here, ÿ denotes the unit outer normal of domain Ω.
The average and jump operators of any vector quantity ÿ on a boundary face coincide with its trace; and on interior faces they 

are defined by

{|ÿ|}|ÿ = 1

2
ÿ|ÿÿ−

+
1

2
ÿ|ÿÿ+

, �ÿ�|ÿ = ÿ|ÿÿ−
− ÿ|ÿÿ+

, ÿ = ÿÿÿ− ∩ ÿÿÿ+ .

The related definitions of any scalar quantity are similar. For more details see [58]. We employ the non-symmetric interior penalty 
DG (NIPG) method to discretize the terms −2ÿ ⋅ ÿ(ÿ) and ÿ ⋅ ((ÿ ⋅ ÿ)ý). The associated bilinear forms ÿÿ and ÿÿ are defined as follows:

ÿÿ(ÿ,ÿ) = 2
∑

ÿ∈ℎ ∫ÿ
ÿ(ÿ) ∶ ÿ(ÿ) − 2

∑
ÿ∈Γℎ∪ÿΩD

∫
ÿ

{|ÿ(ÿ)ÿÿ|} ⋅ �ÿ�

+ 2
∑

ÿ∈Γℎ∪ÿΩD
∫
ÿ

{|ÿ(ÿ)ÿÿ|} ⋅ �ÿ�+
ÿ
ℎ

∑
ÿ∈Γℎ∪ÿΩD

∫
ÿ

�ÿ� ⋅ �ÿ� ,

ÿÿ(ÿ,ÿ) = −
∑

ÿ∈ℎ ∫ÿ
(ÿ ⋅ ÿ)(ÿ ⋅ ÿ) +

∑
ÿ∈Γℎ∪ÿΩD

∫
ÿ

{|ÿ ⋅ ÿ|} �ÿ ⋅ ÿÿ�−
∑

ÿ∈Γℎ∪ÿΩD
∫
ÿ

{|ÿ ⋅ ÿ|} �ÿ ⋅ ÿÿ� .

And the linear form ÿÿ associated with term −ÿ ⋅ ÿ(ÿ) for the Dirichlet boundary ÿΩD in (9a) is defined by

ÿÿ (ÿ) = 2
∑

ÿ∈ÿΩD
∫
ÿ

(ÿ(ÿ)ÿ) ⋅ ÿD +
ÿ
ℎ

∑
ÿ∈ÿΩD

∫
ÿ

ÿD ⋅ ÿ−
2

3

∑
ÿ∈ÿΩD

∫
ÿ

ÿ ⋅ ÿ (ÿD ⋅ ÿ).

We employ the incomplete interior penalty DG (IIPG) method to discretize the term −Δÿ in (9b). The bilinear form ÿ and the linear 
form ÿ for term −Δÿ are defined as follows:

ÿ(ÿ,ÿ) =
∑

ÿ∈ℎ ∫ÿ
ÿÿ ⋅ÿÿ −

∑
ÿ∈Γℎ∪ÿΩD

∫
ÿ

{|ÿÿ ⋅ ÿÿ|} �ÿ�+
ÿ̃
ℎ

∑
ÿ∈Γℎ∪ÿΩD

∫
ÿ

�ÿ� �ÿ� ,

ÿ(ÿ) = ÿ̃
ℎ

∑
ÿ∈ÿΩD

∫
ÿ

ÿDÿ.

For the sake of global conservation of total energy, to discrete term ÿ (ÿ) ∶ ÿÿ = 2ÿ(ÿ) ∶ ÿÿ −
2

3
((ÿ ⋅ ÿ)ý) ∶ ÿÿ in (9b), by using the 

tensor identity ÿ(ÿ) ∶ ÿÿ = ÿ(ÿ) ∶ ÿ(ÿ), the DG forms ÿÿ and ÿÿ are designed for terms 2ÿ(ÿ) ∶ ÿÿ and −((ÿ ⋅ ÿ)ý) ∶ÿÿ, respectively.
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ÿÿ(ÿ, ÿ) = 2
∑

ÿ∈ℎ ∫ÿ
ÿ(ÿ) ∶ ÿ(ÿ)ÿ +

ÿ
ℎ

∑
ÿ∈Γℎ

∫
ÿ

�ÿ� ⋅ �ÿ�{|ÿ|} + ÿ
ℎ

∑
ÿ∈ÿΩD

∫
ÿ

(ÿ− ÿD) ⋅ (ÿ− ÿD)ÿ,

ÿÿ(ÿ, ÿ) = −
∑

ÿ∈ℎ ∫ÿ
(ÿ ⋅ ÿ)(ÿ ⋅ ÿ)ÿ.

The DG forms above employ penalty parameters ÿ and ÿ̃. For any ÿ ≥ 0, the NIPG bilinear form is coercive. In particular, NIPG0 
refers to the choice ÿ = 0, e.g., the penalty term is removed. The NIPG0 method is convergent for polynomial degrees greater than 
or equal to two in two dimension [58]. And more importantly, the NIPG0 method eliminates the face penalties, thereby reducing the 
numerical viscosity. For IIPG method, the penalty ÿ̃ needs to be large enough to achieve coercivity.

2.3. The simple positivity-preserving limiter

The Zhang–Shu limiter [22,3] is a simple limiter for enforcing positivity of the approximation polynomial on a finite set ÿ when 
the polynomial cell average is positive. Let ýÿ (ý) = [ÿÿ ,ÿÿ ,ýÿ ]

T be the DG polynomial on cell ÿ . A simplified version of the 
limiter [5] modifies the DG polynomial ýÿ (ý) with the following steps under the assumption that ýÿ =

1

|ÿ| ∫ÿ ýÿ ∈ÿÿ .

1. First enforce positivity of density by

ÿ̂ÿ = ÿÿ(ÿÿ − ÿÿ ) + ÿÿ , ÿÿ =min

{
1,

ÿÿ − ÿ

ÿÿ − min
ýÿ∈ÿÿ

ÿÿ (ýÿ)

}
,

where ÿÿ denotes the cell average of ÿÿ on cell ÿ . Notice that ÿ̂ÿ and ÿÿ have the same cell average, and ÿ̂ÿ = ÿÿ if 
min

ýÿ∈ÿÿ
ÿÿ (ýÿ) ≥ ÿ.

2. Define ý̂ℎ = [ÿ̂ℎ,ÿℎ,ýℎ]
T and enforce positivity of internal energy by

ý̃ÿ = ÿÿ(ý̂ÿ −ýÿ ) +ýÿ , ÿÿ =min

{
1,

ÿÿÿ − ÿ

ÿÿÿ − min
ýÿ∈ÿÿ

ÿÿÿ (ýÿ)

}
,

where ÿÿÿ =ýÿ −
‖ÿÿ‖2
2ÿÿ

and ÿÿÿ (ýÿ) =ýÿ (ýÿ) −
‖ÿÿ (ýÿ )‖2
2ÿÿ (ýÿ )

. Notice that ý̃ÿ has the same cell average, the positivity is implied 

by the Jensen’s inequality satisfied by the concave internal energy function [5].

We refer to [3,5,59] on the justification of its high order accuracy.

2.4. The fully discrete scheme

Let (⋅, ⋅) denote the ÿ2 inner product over domain Ω evaluated by Gauss quadrature in (H) and ï⋅, ⋅ð denote the ÿ2 inner product 
over domain Ω evaluated by Gauss–Lobatto quadrature in (P).

Given the DG solution ý ÿ
ℎ at time ý

ÿ (ÿ ≥ 0), a schematic flowchart for evolving to time ýÿ+1 = ýÿ +Δý is given as:

ý ÿ
ℎ

solve (H)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

step size Δý
2

ýH
ℎ

ÿ2 proj.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (ÿHℎ , ÿHℎ )

solve (P)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
step size Δý

(ÿPℎ, ÿ
P
ℎ)

ÿ2 proj.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ýP

ℎ

solve (H)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

step size Δý
2

ý ÿ+1
ℎ ,

where the optimization-based postprocessing will be applied to ý P
ℎ, as will be described in Step 4 below. For any ÿ ≥ 0, our fully 

discrete scheme for solving (3) in one step consists of the following steps.

Step 1. Given ý ÿ
ℎ ∈ ýý

ℎ
×ÿ

ý
ℎ
×ýý

ℎ
, compute ýH

ℎ ∈ ýý
ℎ
×ÿ

ý
ℎ
×ýý

ℎ
by the DG method (10) with the positivity-preserving SSP 

Runge–Kutta (8) [3,5] using step size Δý
2
. After each Runge–Kutta stage, apply the Zhang–Shu positivity-preserving limiter to 

ensure that all point values at ÿH,int
ÿ

and ÿH,aux
ÿ

have positive density and internal energy.
Step 2. Use the Zhang–Shu positivity-preserving limiter to ensure that all point values at ÿP

ÿ
have positive density and internal 

energy. Given ýH
ℎ ∈ýý

ℎ
×ÿ

ý
ℎ
×ýý

ℎ
, compute (ÿH

ℎ
, ÿH

ℎ
) ∈ÿ

ý
ℎ
×ýý

ℎ
by ÿ2 projection

ïÿH
ℎ ,ÿℎð = ïÿHℎ ÿHℎ ,ÿℎð, ∀ÿℎ ∈ÿ

ý
ℎ and ïýH

ℎ , ÿℎð = ïÿHℎ ÿHℎ , ÿℎð+ ï
ÿH

ℎ

2ÿH
ℎ

,ÿH
ℎÿℎð, ∀ÿℎ ∈ýý

ℎ . (11)

Step 3. Given (ÿH
ℎ
, ÿH

ℎ
) ∈ýý

ℎ
×ÿ

ý
ℎ
, set ÿP

ℎ
= ÿH

ℎ
and solve (ÿ∗

ℎ
, ÿP

ℎ
) ∈ÿ

ý
ℎ
×ÿ

ý
ℎ
, such that for all ÿℎ ∈ÿ

ý
ℎ

ïÿPℎÿ∗ℎ,ÿℎð+ Δý
2Re

ÿÿ(ÿ
∗
ℎ,ÿℎ) +

Δý
3Re

ÿÿ(ÿ
∗
ℎ,ÿℎ) = ïÿHℎ ÿHℎ ,ÿℎð+ Δý

2Re
ÿÿ (ÿℎ), (12a)

ÿPℎ = 2ÿ∗ℎ − ÿHℎ . (12b)
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Then given (ÿH
ℎ
, ÿP

ℎ
, ÿ∗

ℎ
, ÿH

ℎ
) ∈ýý

ℎ
×ýý

ℎ
×ÿ

ý
ℎ
×ýý

ℎ
, solve for (ÿ∗

ℎ
, ÿP

ℎ
) ∈ýý

ℎ
×ýý

ℎ
, such that for all ÿℎ ∈ýý

ℎ

ïÿPℎÿ∗ℎ, ÿℎð+ ÿΔýÿ
Re

ÿ(ÿ∗ℎ, ÿℎ) = ïÿHℎ ÿHℎ , ÿℎð+ ÿΔý
Re

ÿÿ(ÿ
∗
ℎ, ÿℎ) +

2ÿΔý
3Re

ÿÿ(ÿ
∗
ℎ, ÿℎ) +

ÿΔýÿ
Re

ÿ(ÿℎ), (12c)

ÿPℎ =
1

ÿ
ÿ∗ℎ + (1 −

1

ÿ
)ÿHℎ . (12d)

Step 4. Given (ÿP
ℎ
, ÿP

ℎ
, ÿP

ℎ
) ∈ýý

ℎ
×ÿ

ý
ℎ
×ýý

ℎ
, compute (ÿP

ℎ
, ýP

ℎ
) ∈ÿ

ý
ℎ
×ýý

ℎ
by ÿ2 projection

ïÿP
ℎ,ÿℎð = ïÿPℎÿPℎ,ÿℎð, ∀ÿℎ ∈ÿ

ý
ℎ and ïýP

ℎ , ÿℎð = ïÿPℎÿPℎ, ÿℎð+ ï
ÿP

ℎ

2ÿP
ℎ

,ÿP
ℎÿℎð, ∀ÿℎ ∈ýý

ℎ . (13)

Postprocess ýP
ℎ by the constraint optimization-based limiting strategy, see Section 3. Then the cell averages have positive states, 

and we can apply the Zhang–Shu positivity-preserving limiter to ensure that all point values at ÿH,int
ÿ

and ÿH,aux
ÿ

have positive 
density and internal energy.
Step 5. Given ýP

ℎ ∈ýý
ℎ
×ÿ

ý
ℎ
×ýý

ℎ
, compute ý ÿ+1

ℎ ∈ýý
ℎ
×ÿ

ý
ℎ
×ýý

ℎ
by the DG method (10) with the positivity-preserving SSP 

Runge–Kutta (8) [3,5] using step size Δý
2
. After each Runge–Kutta stage, apply the Zhang–Shu positivity-preserving limiter to 

ensure that all point values at ÿH,int
ÿ

and ÿH,aux
ÿ

have positive density and internal energy.

The ý 0
ℎ is obtained through the ÿ

2 projection of the initial data ý 0, followed by postprocessing it with the Zhang–Shu limiter [3]. 
Thus, ý 0

ℎ belongs to the set of admissible states. In addition, we highlight in each time step only two decoupled linear systems (12a)
and (12c) need to be solved sequentially.

Remark 1. For Qý scheme, the Qý Lagrangian basis functions defined at Gauss–Lobatto points are orthogonal at the (ý + 1)ý -point 
Gauss–Lobatto quadrature points. Thus, in Step 2 and Step 4, no linear systems need to be solved for computing the ÿ2 projection.

2.5. Global conservation of the fully discrete scheme

We first discuss the global conservation of momentum and total energy. Notice that the local conservation for mass is naturally 
inherited from the Runge–Kutta DG method solving compressible Euler equations. For simplicity, we only discuss conservation in the 
context of periodic boundary conditions. It is straightforward to extend the discussion to many other types of boundary conditions, 
such as the ones implemented in the numerical tests in this paper.

The following result is essentially the same as [7, Theorem 1]. However, the time discretization used in this paper is the ÿ-scheme 
for the internal energy equation, whereas the time discretization in [7, Theorem 1] is the backward Euler scheme. In addition, the 
spatial discretization in this paper is a DG scheme, while the spatial discretization in [7] is a combination of DG and continuous finite 
element method. Thus, for completeness, we include the proof of the global conservation.

Theorem 1. Assume ýP
ℎ(ýÿ) belongs to the set of admissible states for all ýÿ ∈ ÿℎ, then the fully discrete scheme conserves density, momentum, 

and total energy. We have

(ÿÿ
ℎ,1) = (ÿÿ+1

ℎ ,1), (ÿÿ
ℎ,ÿ) = (ÿÿ+1

ℎ ,ÿ), (ýÿ
ℎ,1) = (ýÿ+1

ℎ ,1).

Proof. Both the explicit Runge–Kutta DG method for hyperbolic subproblem (H) and the Zhang–Shu limiter conserve mass, momen-
tum, and total energy [3,5]. We have

(ÿÿ
ℎ,1) = (ÿHℎ ,1), (ÿÿ

ℎ,ÿ) = (ÿH
ℎ ,ÿ), (ýÿ

ℎ,1) = (ýH
ℎ ,1).

It is easy to verify the discrete mass conservation, since (ÿÿ+1
ℎ

, 1) = (ÿP
ℎ
, 1) and we set ÿH

ℎ
= ÿP

ℎ
in Step 3.

For the discrete momentum conservation, we have (ÿÿ
ℎ
, ÿ) = (ÿH

ℎ
, ÿ) and (ÿÿ+1

ℎ
, ÿ) = (ÿP

ℎ
, ÿ). For Qý scheme, the quadrature 

rules in subproblems (H) and (P) are both exact for integrating polynomials of degree ý. Thus, we also have (ÿH
ℎ
, ÿ) = ïÿH

ℎ
, ÿð and 

(ÿP
ℎ
, ÿ) = ïÿP

ℎ
, ÿð. Take ÿℎ = ÿ in (11) and (13), we get ïÿH

ℎ
, ÿð = ïÿH

ℎ
ÿH
ℎ
, ÿð and ïÿP

ℎ
, ÿð = ïÿP

ℎ
ÿP
ℎ
, ÿð. The above identities indicate 

(ÿÿ
ℎ
, ÿ) = ïÿH

ℎ
ÿH
ℎ
, ÿð and (ÿÿ+1

ℎ
, ÿ) = ïÿP

ℎ
ÿP
ℎ
, ÿð. By selecting ÿℎ = ÿ in (12a), we obtain ïÿH

ℎ
ÿH
ℎ
, ÿð = ïÿP

ℎ
ÿP
ℎ
, ÿð, namely (ÿÿ

ℎ
, ÿ) = (ÿÿ+1

ℎ
, ÿ)

holds.
For the discrete energy conservation, notice the basis is numerically orthogonal and similar to above, we have (ýÿ

ℎ
, 1) = ïÿH

ℎ
ÿH
ℎ
, 1ð +

1

2
ïÿH

ℎ
ÿH
ℎ
, ÿH

ℎ
ð and (ýÿ+1

ℎ
, 1) = ïÿP

ℎ
ÿP
ℎ
, 1ð + 1

2
ïÿP

ℎ
ÿP
ℎ
, ÿP

ℎ
ð. Recall that ÿÿ (ÿ) = 0 and ÿ(ÿ) = 0 for periodic boundary conditions, thus by 

(12b) and ÿH
ℎ
= ÿP

ℎ
, the (12a) can be written as

ïÿPℎÿPℎ,ÿℎð+ Δý
Re

ÿÿ(ÿ
∗
ℎ,ÿℎ) +

2Δý
3Re

ÿÿ(ÿ
∗
ℎ,ÿℎ) = ïÿHℎ ÿHℎ ,ÿℎð.

Plugging in ÿℎ = (ÿP
ℎ
+ ÿH

ℎ
)∕2 = ÿ∗

ℎ
, we have
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1

2
ïÿPℎÿPℎ,ÿPℎð+ Δý

Re
ÿÿ(ÿ

∗
ℎ,ÿ

∗
ℎ) +

2Δý
3Re

ÿÿ(ÿ
∗
ℎ,ÿ

∗
ℎ) =

1

2
ïÿHℎ ÿHℎ ,ÿHℎ ð. (14)

Taking ÿℎ = 1 in (12c), we have

ïÿPℎÿ∗ℎ,1ð+ ÿΔýÿ
Re

ÿ(ÿ∗ℎ,1) = ïÿHℎ ÿHℎ ,1ð+ ÿΔý
Re

ÿÿ(ÿ
∗
ℎ,1) +

2ÿΔý
3Re

ÿÿ(ÿ
∗
ℎ,1).

Recall that ÿ∗ = ÿÿP + (1 − ÿ)ÿH, we have

ïÿPℎÿPℎ,1ð+ Δýÿ
Re

ÿ(ÿ∗ℎ,1) = ïÿHℎ ÿHℎ ,1ð+ Δý
Re

ÿÿ(ÿ
∗
ℎ,1) +

2Δý
3Re

ÿÿ(ÿ
∗
ℎ,1). (15)

Adding two equations (14) and (15), with the fact that ÿ(ÿ∗ℎ, 1) = 0 and the identities ÿÿ(ÿ
∗
ℎ
, ÿ∗

ℎ
) = ÿÿ(ÿ

∗
ℎ
, 1) and ÿÿ(ÿ

∗
ℎ
, ÿ∗

ℎ
) = ÿÿ(ÿ

∗
ℎ
, 1), 

we obtain

ïÿHℎ ÿHℎ ,1ð+ 1

2
ïÿHℎ ÿHℎ ,ÿHℎ ð = ïÿPℎÿPℎ,1ð+ 1

2
ïÿPℎÿPℎ,ÿPℎð.

Therefore, we obtain (ýÿ
ℎ
, 1) = (ýÿ+1

ℎ
, 1). □

3. A globally conservative and positivity-preserving postprocessing procedure

For Runge–Kutta DG method solving the hyperbolic subproblem (H), i.e., compressible Euler equations, it is well understood that 
the simple Zhang–Shu limiter can preserve the positivity without destroying conservation and high order accuracy [3,5]. Let ÿℎ

be the union of sets ÿH,int
ÿ

and ÿH,aux
ÿ

for all ÿ ∈ ℎ. By the results in [3,5], for Step 1 and Step 5 in the fully discrete scheme in 
Section 2.4, we have

1. The DG polynomial ý ÿ
ℎ(ýÿ) ∈ÿ for all ýÿ ∈ ÿℎ gives ý

H
ℎ (ýÿ) ∈ÿ for all ýÿ ∈ ÿℎ.

2. If ýP
ℎ(ýÿ) ∈ÿ for all ýÿ ∈ ÿℎ, then the DG polynomial ý ÿ+1

ℎ (ýÿ) ∈ÿ for all ýÿ ∈ ÿℎ.

Moreover, by [7, Lemma 1], the ÿ2 projection step (11) in Step 2 does not affect the positivity, i.e., the positivity of ÿH
ℎ
is ensured 

if conserved variables are in the invariant domain. Therefore, in order to construct a conservative and positivity-preserving scheme, 
we only need to enforce ýP

ℎ(ýÿ) ∈ÿÿ for all ýÿ ∈ ÿℎ in Step 4 without affecting the global conservation in the fully discrete scheme 
in Section 2.4.

When using the backward Euler time discretization (e.g., ÿ = 1) in Step 3, positivity can be achieved if the discrete Laplacian is 
monotone [7]. For example, the discrete Laplacian from Q1 IIPG forms an M-matrix unconditionally. Moreover, the monotonicity of 
Qý spectral element method (continuous finite element with Gauss–Lobatto quadrature) for ý = 1, 2, 3 is proven in [42–44], see also 
[9,8,10], and such a result was used in [7] for solving (3).

To improve the time accuracy, the Crank–Nicolson scheme with ÿ =
1

2
can be used in Step 3. However, in this case, a monotone 

system matrix no longer implies the positivity of internal energy, which poses a significant challenge, though positivity might still be 
ensured under a small time step Δý =(ReΔý2). Instead, we consider a postprocessing procedure based on constraint optimization to 
ensure global conservation and positivity. The constraint optimization-based cell average limiter can be formulated as a nonsmooth 
convex minimization problem and efficiently solved by utilizing the generalized Douglas–Rachford splitting method [51].

3.1. A cell average postprocessing approach

By Theorem 1, the DG polynomial ýP
ℎ preserves the global conservation. But it may violate the positivity of internal energy. The 

following two-stage limiting strategy can be employed to enforce ý P
ℎ(ýÿ) in the set of admissible states for any quadrature points 

ýÿ ∈ ÿℎ without losing high order accuracy and conservation.

Step 1. Given ýP
ℎ, if any cell average has negative internal energy, then post process all cell averages of the total energy variable 

without losing global conservation such that each cell average of the DG polynomial ý P
ℎ stays in the admissible state set ÿ

ÿ .
Step 2. Apply the Zhang–Shu limiter to the postpocessed DG polynomial to ensure internal energy at any quadrature points in 
ÿℎ is positive.

For a postprocessing procedure, minimal modifications to the original DG polynomial are often preferred. In our scheme, the 
density ÿP

ℎ
= ÿH

ℎ
is already positive, ensured by a high order accurate positivity-preserving compressible Euler solver. Consider the 

scheme for solving the subproblem (P), which is fully decoupled. The momentum ÿP
ℎ
or velocity ÿP

ℎ
is stably approximated. With the 

given ÿP
ℎ
and ÿP

ℎ
, when solving (5c), which is a heat equation in the parabolic subproblem, a high order scheme may not preserve 

positivity in general. To this end, we consider a simple approach by only post processing the total energy variable ýP
ℎ
to enforce the 

positivity of internal energy, without losing conservation for ýP
ℎ
.

Let ÿÿ (ÿ = 1, ⋯ , ý) be all the cells and ýP
ÿ = [ÿPÿ ,ÿ

P
ÿ ,ý

P
ÿ ]

T

be a vector denoting the cell average of the DG polynomial ýP
ℎ on the 

ÿ-th cell ÿÿ, namely ý
P
ÿ =

1

|ÿÿ| ∫ÿÿ
ýP

ℎ.
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Then we apply the globally conservative postprocessing procedure (6) only to the total energy DG polynomial such that the 
modified DG polynomials have good cell averages, which have positive internal energy.

3.2. The accuracy of the postprocessing

It is obvious that the minimizer to (6a) preserves the global conservation of total energy and the positivity of internal energy, 
since these two are the constraints. Next, we discuss the accuracy of the postprocessing step (6a).

To understand how (6a) affects accuracy, consider evolving (5c) with given ÿ(ý, ý) = ÿP
ℎ
(ý) and ÿ(ý, ý) = ÿ∗

ℎ
(ý), ∀ý by one time step 

in the Strang splitting (7), i.e., we consider the initial value problem
{

ÿP
ℎ
ÿýÿ−

ÿ
Re
Δÿ = 1

Re
ÿ(ÿ∗

ℎ
) ∶ ÿÿ∗

ℎ
, ý ∈ (ýÿ, ýÿ +Δý),

ÿ(ý, ýÿ) = ÿH
ℎ
(ý).

(16)

Due to the inequality ÿ(ÿ) ∶ ÿ(ÿ) ≥ 1

ý
(ÿ ⋅ ÿ)2, which can be easily verified by calculations (e.g., for ý = 2, ÿ(ÿ) ∶ ÿ(ÿ) ≥ 1

2
(ÿ ⋅ ÿ)2 ⇔

1

4
(ÿý − ÿÿ)

2 +
1

2
(ÿý + ÿÿ)

2 ≥ 0), we know ÿ(ÿ∗
ℎ
) ∶ ÿÿ∗

ℎ
= 2

(
ÿ(ÿ∗

ℎ
) ∶ ÿ(ÿ∗

ℎ
) − 1

3
(ÿ ⋅ ÿ∗

ℎ
)2
) ≥ 0. We mention that a similar property also 

holds for the interior penalty DG scheme at the discrete level, i.e., the right hand side of (12c) is also positive, see [7, Lemma 3]. 
Let ÿ denote the exact solution to (16). Since the right-hand side of (16) is non-negative, the exact solution to (16) with an initial 
condition ÿH

ℎ
> 0 is positive, thus we assume ÿ(ý, ý) ≥ ÿ2 > 0.

Noticing that ÿP
ℎ
is time independent, we have ÿP

ℎ
ÿýÿ = ÿý(ÿ

P
ℎ
ÿ). Integrating (16) over the spatial domain Ω and using boundary 

condition ÿÿ ⋅ ÿ = 0, we get

d

dý

»¼¼½∫Ω
ÿPℎÿdý

¾¿¿À
=

1

Re ∫
Ω

ÿ(ÿ∗ℎ) ∶ÿÿ
∗
ℎdý.

Integrating the equation above over the time interval [ýÿ, ýÿ +Δý], we have

∫
Ω

ÿPℎ(ý)ÿ(ý, ý
ÿ +Δý)dý = ∫

Ω

ÿHℎ ÿHℎ dý+
Δý
Re ∫

Ω

ÿ(ÿ∗ℎ) ∶ÿÿ
∗
ℎdý. (17)

Consider the NIPG0 method for velocity, i.e., the NIPG method with zero penalty, which is the scheme (12c) we utilized in our 
numerical experiments. Recall (ý + 1)ý Gauss–Lobatto quadrature is accurate for (2ý − 1)-order polynomial. Taking ÿℎ = 1 in (12c), 
with (17) and the quadrature error for integrals, we have

∫
Ω

ÿPℎ(ý)ÿ(ý, ý
ÿ +Δý)dý = ïÿPℎÿPℎ,1ð+ÿℎ2ý.

Let ÿý (ý) be the piecewise Q
ý interpolation polynomial of the exact solution ÿ(ý, ýÿ + Δý) at (ý + 1)ý Gauss–Lobatto points at each 

cell. We have

ïÿPℎÿý ,1ð = ∫
Ω

ÿPℎ(ý)ÿ(ý, ý
ÿ +Δý)dý+ÿℎ2ý = ïÿPℎÿPℎ,1ð+ÿℎ2ý.

Let ÿ̃ℎ(ý) = ÿý (ý) −
ÿ

ïÿP
ℎ
,1ðℎ

2ý, then ÿ̃ℎ(ý) = ÿ(ý) +(ℎý+1) and ïÿP
ℎ
ÿ̃ℎ, 1ð = ïÿP

ℎ
ÿP
ℎ
, 1ð. Define (ÿP

ℎ
, ýInterp

ℎ
) ∈ÿ

ý
ℎ
×ýý

ℎ
as an ÿ2 projection 

of (ÿP
ℎ
, ÿP

ℎ
, ̃ÿℎ) ∈ýý

ℎ
×ÿ

ý
ℎ
×ýý

ℎ
:

ïÿP
ℎ,ÿℎð = ïÿPℎÿPℎ,ÿℎð, ∀ÿℎ ∈ÿ

ý
ℎ and ïýInterp

ℎ
, ÿℎð = ïÿPℎÿ̃ℎ, ÿℎð+ ï

ÿP
ℎ

2ÿP
ℎ

,ÿP
ℎÿℎð, ∀ÿℎ ∈ýý

ℎ . (18)

Notice that ÿP
ℎ
in (18) is exactly the same as ÿP

ℎ
in (13), and only ýInterp

ℎ
is different.

Let ýInterp
ÿ be the cell average of ýInterp

ℎ
at the ÿ-th cell and ýInterp

ℎ
= [ýInterp

1
,ýInterp

2
,⋯ ,ýInterp

ý
]
T

. Next, we verify that ýInterp

ℎ
satisfies both constraints in (6a), when the mesh size ℎ is small.

• First, by taking ÿℎ = 1 in (13) and (18), we obtain the global conservation of total energy:

ý∑
ÿ=1

ýInterp
ÿ |ÿÿ| = ïýInterp

ℎ
,1ð = ïýP

ℎ ,1ð =
ý∑
ÿ=1

ýP
ÿ |ÿÿ|.

• Second, for small enough ℎ such that |ÿ|
ïÿP

ℎ
,1ðℎ

2ý ≤ 1

2
ÿ2, we can take ÿ ≤ 1

2
ÿ2ÿ

P
ℎ
to have

(
ÿ2 −

|ÿ|
ïÿP

ℎ
,1ðℎ

2ý

)
ÿPℎ ≥ 1

2
ÿ2ÿ

P
ℎ ≥ ÿ.
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Then following the proof of Lemma 2 in [7, Section 3.2], we have

ýInterp
ÿ −

1

2

‖ÿP
ÿ ‖

ÿPÿ

≥ ÿ.

Since ý
∗

ℎ is the minimizer to (6a) and [ÿ
P
ÿ,ÿP

ÿ,ý
Interp
ÿ ]

T

satisfies the constraints of (6a), we have

‖‖‖‖ý
∗

ℎ −ýInterp

ℎ

‖‖‖‖ ≤
‖‖‖‖ý

∗

ℎ −ýP
ℎ

‖‖‖‖+
‖‖‖‖ý

P
ℎ
−ýInterp

ℎ

‖‖‖‖ ≤ 2
‖‖‖‖ý

P
ℎ
−ýInterp

ℎ

‖‖‖‖ . (19)

To summarize the discussion for accuracy, we conclude that the accuracy of the postprocessing (6a) can be understood in the 
sense of (19). In other words, if considering the error approximating the exact solution of (16) in Strang splitting, then the minimizer 
to (6a) is not significantly worse than the DG solution ýP

ℎ
.

3.3. An efficient solver by Douglas–Rachford splitting with nearly optimal parameters

The key computational issue here is how to solve (6a) efficiently, and the same approach in [51] can be used. For completeness, we 
briefly describe the main algorithm and result in [51]. For convenience, we rewrite the minimization problem (6a) in matrix-vector 
form using different names for variables.

For simplicity, we only consider a uniform mesh with |ÿÿ| = ℎý . Extensions to non-uniform meshes are straightforward. Thus 
we define a matrix ý = [1, 1, ⋯ , 1] ∈ R1×ý , where ý is the total number of cells. A vector ý ∈Rý is introduced to store the cell 
averages of DG polynomial ýP

ℎ
, namely the ÿth entry of ý equals ýP

ÿ . Define the constant ÿ = ýý, which is the summation of all cell 
averages. The indicator function in constraint optimization is defined as ÿΛ for a set Λ: ÿΛ(ý) = 0 if ý ∈ Λ and ÿΛ(ý) = +∞ if ý ∉ Λ. 
Then (6a) is equivalent to the following minimization:

min
ý∈Rý

ÿ
2
‖ý−ý‖2

2
+ ÿΛ1

(ý) + ÿΛ2
(ý), (20)

where ÿ > 0 is a constant, and the conservation constraint and the positivity-preserving constraint give two sets

Λ1 = {ý ∶ ýý = ÿ} and Λ2 = {ý ∶ ýÿ −
‖ÿÿ‖2
2ÿÿ

≥ ÿ, ∀ÿ = 1, ⋯ , ý}.

Splitting algorithms naturally arise when solving minimization problem of the form miný ÿ (ý) +ý(ý), where functions ÿ and ý are 
convex, lower semi-continuous (but not otherwise smooth), and have simple subdifferentials and resolvents. Let ý = ÿÿ and ÿ = ÿý
denote the subdifferentials of ÿ and ý. Then, a sufficient and necessary condition for ý being a minimizer is ÿ ∈ ý (ý) +ÿ(ý). The 
resolvents Jÿý = (I + ÿý )−1 and Jÿÿ = (I + ÿÿ)−1 are also called proximal operators, as Jÿý maps ý to argminÿÿÿ (ÿ) +

1

2
‖ÿ− ý‖2

2
and 

Jÿÿ is defined similarly. The reflection operators are defined as Rÿý = 2Jÿý − I and Rÿÿ = 2Jÿÿ − I, where I is the identity operator.
The generalized Douglas–Rachford splitting method for solving the minimization problem miný ÿ (ý) + ý(ý) can be written as:

⎧⎪«⎪¬
ÿý+1 = ÿ

RÿýRÿÿ + I

2
ÿý + (1 − ÿ)ÿý,

ýý+1 = Jÿÿ(ÿ
ý+1),

(21)

where ÿ is an auxiliary variable, ÿ belongs to (0, 2] is a parameter, and ÿ > 0 is step size. We get the Douglas–Rachford splitting when 
ÿ = 1 in (21). In the limiting case, ÿ = 2 is the Peaceman–Rachford splitting. For two convex functions ÿ (ý) and ý(ý), the sequence in 
(21) converges for any positive step size ÿ and any fixed ÿ ∈ (0, 2), see [52]. If one function is strongly convex, then ÿ = 2 also leads 
to convergence. Using the definition of reflection operators, (21) can be expressed as follows:

{
ÿý+1 = ÿJÿý (2ý

ý − ÿý) + ÿý − ÿýý,

ýý+1 = Jÿÿ(ÿ
ý+1).

(22)

We split the objective function in (20) into

ÿ (ý) =
ÿ
2
‖ý−ý‖2 + ÿΛ1

(ý) and ý(ý) = ÿΛ2
(ý).

Linearity implies that the set Λ1 is convex. With ideal gas equation of state, the function ÿÿ is concave, see [3,5] and references 
therein. Thus, by Jensen’s inequality, the set Λ2 is also convex. Therefore, the function ÿ is strongly convex and the function ý is 
convex, given that (22) converges to the unique minimizer. After applying (22) to solve the minimization to machine precision, the 
positivity constraint is strictly satisfied and the conservation constraint is enforced up to round-off error. The subdifferentials and the 
associated resolvents are given as follows:

• The subdifferential of function ÿ is

ÿÿ (ý) = ÿ(ý−ý) +(ýT),
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where (ýT) denotes the range of the matrix ýT.
• The subdifferential of function ý is

[ÿý(ý)]ÿ =

⎧⎪«⎪¬

0, if ýÿ >
‖ÿÿ‖2
2ÿÿ

+ ÿ,

[−∞,0], if ýÿ =
‖ÿÿ‖2
2ÿÿ

+ ÿ.

• For the function ÿ (ý) = ÿ
2
‖ý−ý‖2

2
+ ÿΛ1

(ý), the associated resolvent is

Jÿý (ý) =
1

ÿÿ + 1

(
ý
+(ÿ−ýý) + ý

)
+

ÿÿ

ÿÿ + 1
ý, (23)

where ý+ = ý
T(ýýT)−1 denotes the pseudo inverse of the matrix ý.

• For the function ý(ý) = ÿΛ2
(ý), the associated resolvent is Jÿÿ(ý) = S(ý), where S is a cut-off operator defined by

[S(ý)]ÿ =max
(
ýÿ,

‖ÿÿ‖2
2ÿÿ

+ ÿ
)
, ∀ÿ = 1,⋯ ,ý. (24)

Define parameter ý = 1

ÿÿ+1
, which gives ÿÿ

ÿÿ+1
= 1 − ý. Using the expressions of resolvents in (23) and (24), we obtain the generalized 

Douglas–Rachford splitting method for solving the minimization problem (20) in matrix-vector form:

⎧⎪«⎪¬

ÿý = 2ýý − ÿý,

ÿý+1 = ÿý
(
ý
+(ÿ−ýÿý) + ÿý

)
+ ÿ(1 − ý)ý+ ÿý − ÿýý,

ýý+1 = S(ÿý+1).

(25)

As a brief summary, after obtaining the DG polynomial ýP
ℎ
, compute cell averages to generate vector ý, where the ÿth entry of ý

equals ýP
ℎ
|ÿÿ
, then our cell average limiter can be implemented as follows.

Algorithm DR. To start the generalized Douglas–Rachford iteration, set ÿ0 =ý, ý0 = S(ý), and ý = 0. Compute parameters ý
and ÿ by using formula in Remark 2, and select a small ÿ for numerical tolerance of the conservation error.
Step 1. Compute intermediate variable ÿý = 2ýý − ÿý.
Step 2. Compute auxiliary variable ÿý+1 = ÿý

(
ý
+(ÿ −ýÿý) + ÿý

)
+ ÿ(1 − ý)ý+ ÿý − ÿýý.

Step 3. Compute ýý+1 = S(ÿý+1).
Step 4. It is convenient to employ the norm ‖ ⋅ ‖ℎ = ℎý∕2‖ ⋅ ‖ to measure the conservation error, which is an approximation to 
the ÿ2-norm. If stopping criterion ‖ÿý+1 − ÿý‖ℎ < ÿ is satisfied, then terminate and output ý∗ = ýý+1, otherwise set ý ← ý + 1

and go to Step 1.

In the algorithm above, 2ýý can be regarded as ýý + ýý; the ÿ(1 − ý)ý remains unchanged during iteration; and each entry of 
ý
+(ÿ − ýÿý) + ÿý can be computed by ÿý

ÿ +
1

ý
(ÿ −

∑
ÿ ÿ

ý
ÿ ), thus if only counting number of computing multiplications and taking 

maximum, the computational complexity of each iteration is 3ý + 1.

Remark 2. The analysis in [51] proves the asymptotic linear convergence and suggests a simple choice of nearly optimal parameters 

ý and ÿ in (25). Let ÿ̂ be the number of bad cells defined by ýP
ÿ ∉ÿÿ and let ÿ̂ = cos−1

√
ÿ̂
ý
, then we have:

⎧⎪⎪«⎪⎪¬

ý = 1

2
, ÿ =

4

2−cos (2ÿ̂)
, if ÿ̂ ∈ (

3

8
ÿ, 1

2
ÿ],

ý = 1

(cos ÿ̂+sin ÿ̂)2
, ÿ =

2

1+
1

1+cot ÿ̂
−

1

(cos ÿ̂+sin ÿ̂)2

, if ÿ̂ ∈ (
1

4
ÿ, 3

8
ÿ],

ý = 1

(cos ÿ̂+sin ÿ̂)2
, ÿ = 2, if ÿ̂ ∈ (0, 1

4
ÿ].

(26)

Remark 3. By splitting the Navier–Stokes system into the Euler system and a parabolic system, to preserve positivity, we may 
postprocess only a scalar variable, i.e., the total energy, which is the main advantage of the splitting approach. It is also possible to 
postprocess the DG solutions to the convection-diffusion Navier-Stokes system, by a similar Douglas–Rachford cell average limiter to 
preserve the invariant domain ÿÿ , for which the operator Jÿÿ in (21) becomes the projection to admissible set ÿÿ .

Remark 4. Compared to other alternative methods for solving (20) such as breakpoint searching algorithms [57] and the method of 
Lagrangian multipliers in the Appendix, the Douglas–Rachford algorithm (21) is more flexible for other minimization models such as 
replacing the ý2-norm in (20) by the ý1-norm, for which the Shrinkage operator would appear in Jÿý .
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3.4. Implementation

We provide details on implementing our scheme. The time-stepping strategy employed to solve subproblem (H) is identical to the 
one described in Section 3.2 of [60]. For the sake of completeness, we include a list of the steps below.

Algorithm H. At time ýÿ, select a trial hyperbolic step size ΔýH. The parameter ÿ is a prescribed small positive number for 
numerical admissible state set ÿÿ . The input DG polynomial ý ÿ

ℎ satisfies ý
ÿ
ℎ(ýÿ) ∈ÿÿ , for all ýÿ ∈ ÿℎ.

Step H1. Given DG polynomial ý ÿ
ℎ, compute the first stage to obtain ý

(1)

ℎ
.

∙ If the cell averages ý
(1)

ÿ ∈ÿÿ , for all ÿ ∈ ℎ, then apply Zhang–Shu limiter described in Section 2.3 to obtain ý̃
(1)

ℎ and go to 
Step H2.

∙ Otherwise, recompute the first stage with halved step size ΔýH ←
1

2
ΔýH. Notice, when ΔýH satisfies the positivity-preserving 

hyperbolic CFL proven in [3] (see also [5]), the ý
(1)

ÿ ∈ÿÿ is guaranteed.

Step H2. Given DG polynomial ý̃
(1)

ℎ , compute the second stage to obtain ý (2)

ℎ
.

∙ If the cell averages ý
(2)

ÿ ∈ÿÿ , for all ÿ ∈ ℎ, then apply Zhang–Shu limiter to obtain ý̃
(2)

ℎ and go to Step H3.

∙ Otherwise, return to Step H1 and restart the computation with halved step size ΔýH ←
1

2
ΔýH. Notice that the results proven in 

[3] ensure that there is not an infinite restarting loop, see [5].

Step H3. Given DG polynomial ý̃
(2)

ℎ , compute the third stage to obtain ý (3)

ℎ
.

∙ If the cell averages ý
(3)

ÿ ∈ ÿÿ , for all ÿ ∈ ℎ, then apply Zhang–Shu limiter to obtain ý
H
ℎ . We finish the current SSP Runge–

Kutta.
∙ Otherwise, return to Step H1 and restart the computation with halved step size ΔýH ←

1

2
ΔýH. Notice that the results proven in 

[3] ensure that there is not an infinite restarting loop, see [5].

The time-stepping strategy for solving the compressible NS equations is as follows. The initial condition ý 0
ℎ is constructed by ÿ

2

projection of ý 0 with Zhang–Shu limiter on ÿℎ, e.g., we have ý
0
ℎ(ýÿ) ∈ÿÿ , for all ýÿ ∈ ÿℎ.

Algorithm CNS. At time ýÿ, select a desired time step size Δý. The parameter ÿ is a prescribed small positive number for numerical 
admissible state set ÿÿ . The input DG polynomial ý ÿ

ℎ satisfies ý
ÿ
ℎ(ýÿ) ∈ÿÿ , for all ýÿ ∈ ÿℎ.

Step CNS1. Given DG polynomial ý ÿ
ℎ, solve subproblem (H) form time ýÿ to ýÿ + Δý

2
.

∙ Set ÿ = 0. Let ýÿ,0 = ýÿ and ý ÿ,0
ℎ

=ý ÿ
ℎ.

∙ Given ý ÿ,ÿ
ℎ

at time ýÿ,ÿ, solve (H) to compute ý ÿ,ÿ+1
ℎ

by the Algorithm H. Let ýÿ,ÿ+1 = ýÿ,ÿ +ΔýH. If ýÿ,ÿ+1 = ýÿ + Δý
2
, then apply 

Zhang–Shu limiter for ý ÿ,ÿ+1
ℎ

on all Gauss–Lobatto points in ÿP
ÿ
, for all ÿ ∈ ℎ, we obtain ý

H
ℎ . Go to Step CNS2. Otherwise, 

set ÿ ←ÿ +1 and repeat solving (H) by Algorithm H until reaching ýÿ + Δý
2
. Let ÿ be the smallest integer satisfying 2ÿ −3 ≥ ý

for Qý basis, when using Qý DG method to compute ý ÿ,ÿ+1
ℎ

, we can take

ΔýH =min

{
ÿ

1

maxÿ ÿÿ

1

ÿ(ÿ− 1)
Δý, ýÿ +

Δý
2

− ýÿ,ÿ
}

as a trial hyperbolic step size to start Algorithm H. We refer to [5] for choosing the value of parameter ÿ on above.
Step CNS2. Given DG polynomial ýH

ℎ , take ÿ
2 projection to compute (ÿH

ℎ
, ÿH

ℎ
).

Step CNS3. Given DG polynomials (ÿH
ℎ
, ÿH

ℎ
, ÿH

ℎ
), solve subproblem (P) form time ýÿ to ýÿ +Δý.

Step CNS4. Given DG polynomials (ÿP
ℎ
, ÿP

ℎ
, ÿP

ℎ
), take ÿ2 projection to compute ýP

ℎ.
∙ Notice that the postprocessing (6) can be applied to either the whole computational domain or a large enough local region 

containing negative cells. When possible, first define a local region of trouble cells defined by ýP
ÿ ∉ÿÿ . Let ÿ ⊆ {1, 2, ⋯ , ý}

be the indices of the local region containing all cells with negative averages ýP
ÿ ∉ÿÿ , and let |ÿ | be the number of cells in the 

local region marked by indices in the set ÿ . Then the postprocessing on the local region is given by

min
ýÿ

∑
ÿ∈ÿ

||||ýÿ −ýP
ÿ

||||
2

subjects to
∑
ÿ∈ÿ

ýÿ|ÿÿ| =
∑
ÿ∈ÿ

ýP
ÿ |ÿÿ| and [ÿPÿ ,ÿ

P
ÿ ,ýÿ]

T

∈ÿÿ , ∀ÿ ∈ ÿ . (27a)

Let ý
∗

ℎ = [ý
∗

1 ,⋯ ,ý
∗

ý ]
T
be the minimizer. Then we correct the DG polynomial cell averages for the total energy variable by a 

constant

ýÿ(ý) =ýP
ÿ (ý) −ýP

ÿ +ý
∗

ÿ , ∀ÿ ∈ ÿ . (27b)

Notice that ÿ cannot contain only the negative cells, which will cause the feasible set in (27a) to be empty, i.e., it is impossible 
to modify only negative cells to achieve positivity, without affecting conservation. If it is difficult to define such a set ÿ , we 
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Fig. 2. DG with Q2 basis for 2D Sedov blast wave test. The middle figure is the zoom view of the left figure: the shock is marked black; the negative cells are 
highlighted by the red marks; by the definition (28), ÿ does not include cells in the gray region in which the exact solution is supposed to be a constant. Right: the 
actual convergence rate of the Douglas–Rachford splitting algorithm (25) with nearly optimal parameters (26) for solving (27a) for the 2D Sedov problem (at one 
particular time step for the left figure) matches well the predicated rate from analysis (asymptotic linear convergence from analysis using the estimated principle angle 
ÿ̂ = cos−1

√
ÿ̂

|ÿ | ), see [51] for more details on such a provable convergence rate.

can simply take ÿ = {1, 2, ⋯ , ý}, i.e., the whole computational domain. For certain problems, it is straightforward to define 
a proper ÿ , see the remark below.

∙ Solve (27a) for the region defined by indices in ÿ by the Douglas–Rachford splitting algorithm (25) with nearly optimal 

parameters (26) using ÿ̂ = cos−1
√

ÿ̂
|ÿ | . Then update or postprocess the cell averages of the DG polynomial ýP

ℎ by (27b).

∙ With positive cell averages ýP
ÿ ∈ ÿÿ ensured by the postprocessing step (6), we can apply the Zhang–Shu limiter to ýP

ℎ to 
ensure positivity on all points in ÿℎ.

Step CNS5. Given DG polynomial ýP
ℎ, use adaptive time-stepping strategy to solve subproblem (H) form time ýÿ + Δý

2
to ýÿ +Δý.

Remark 5. For the sake of robustness and efficiency, whenever possible, one should apply the postprocessing (27) to a subset of cells 
(i.e., ÿ is a strict subset of {1, 2, ⋯ , ý}) containing all trouble cells and also some good cells, rather than the whole computational 
domain (i.e., ÿ = {1, 2, ⋯ , ý}). For example, in the 2D Sedov blast wave test in Section 4.5, the initial total energy is 10−12 everywhere 
except in the cell at the lower left corner, and we can define ÿ as

ÿ =
{
ÿ ∶ either ýP

ÿ ∉ÿÿ or ýP
ÿ −

1

2
‖ÿP

ÿ ‖∕ÿPÿ ≥ 10−10
}

. (28)

By such a definition of ÿ for each time step, the gray region in the Fig. 2 will not be modified by the postprocessing. Note, the number 
of cells contained in ÿ may various at each time step.

4. Numerical experiments

In this section, we validate our full numerical scheme through representative two-dimensional benchmark tests, including the Lax 
shock tube, double rarefaction, Sedov blast wave, shock diffraction, shock reflection-diffraction, and high Mach number astrophysical 
jet problems.

For penalty parameters in interior penalty DG method for solving (P), in the Q1 scheme, we set ÿ = 2 on Γℎ, ÿ = 4 on ÿΩ, and 
ÿ̃ = 2; in the Qý (ý ≥ 2) schemes, we set ÿ = 0 on all faces, namely using NIPG0 method for the velocity, and ÿ̃ = 2ý for the internal 
energy. We take ÿ = 10−13 as the lower bound for the numerical admissible state set in all tests except the astrophysical jet simulations, 
where ÿ = 10−8 is used. The ideal gas constant is ÿ = 1.4 and the Prandtl number is Pr = 0.72. The Reynolds number for all tests is 
Re = 1000 unless otherwise specified.

In all physical simulations, we use ÿ =
1

2
in (9), namely utilizing the second order Crank–Nicolson method to solve (P). The 

postprocessing step for total energy variable after solving (P) is only triggered in the accuracy test in Section 4.2, the Sedov blast 
wave test, and astrophysical jets test.

4.1. Accuracy tests

We verify the order of accuracy of our numerical scheme by utilizing the method of manufactured smooth solutions. Let the 
computational domain Ω = [0, 1]2 and select the end time ÿ = 0.1024. The prescribed non-polynomial solutions are as follows:

ÿ = exp (−ý) sin 2ÿ(ý+ ÿ) + 2,

ÿ =

[
exp (−ý) cos (2ÿý) sin (2ÿÿ) + 2

exp (−ý) sin (2ÿý) cos (2ÿÿ) + 2

]
,

ÿ =
1

2
exp (−ý) cos (2ÿ(ý+ ÿ)) + 1.
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Table 1
Test of accuracy. The temporal error and convergence rates. ÿ = 1 backward Euler scheme for internal energy in subproblem 
(P). ÿ =

1

2
Crank–Nicolson scheme for internal energy in subproblem (P).

ÿ Δý ‖ýýÿ

ℎ −ý (ÿ )‖ÿ2
ℎ

Δý ‖ýýÿ

ℎ −ý (ÿ )‖ÿ2
ℎ

rate Δý ‖ýýÿ

ℎ −ý (ÿ )‖ÿ2
ℎ

rate

1 4 ⋅ 10−4 1.599 ⋅ 10−2 2 ⋅ 10−4 7.988 ⋅ 10−3 1.001 1 ⋅ 10−4 3.997 ⋅ 10−3 0.999
1

2
4 ⋅ 10−4 1.393 ⋅ 10−3 2 ⋅ 10−4 3.601 ⋅ 10−4 1.952 1 ⋅ 10−4 9.140 ⋅ 10−5 1.978

Table 2
Test of accuracy. The spatial error and convergence rates. From top to bottom: the Q1, Q2, ⋯ , Q5 schemes using a 
very small time step for a smooth solution.

ý Δý ‖ýýÿ

ℎ −ý (ÿ )‖ÿ2
ℎ

Δý ‖ýýÿ

ℎ −ý (ÿ )‖ÿ2
ℎ

rate Δý ‖ýýÿ

ℎ −ý (ÿ )‖ÿ2
ℎ

rate

1 1∕24 1.209 ⋅ 10−1 1∕25 3.071 ⋅ 10−2 1.977 1∕26 7.728 ⋅ 10−3 1.991
2 1∕24 5.116 ⋅ 10−2 1∕25 1.413 ⋅ 10−2 1.856 1∕26 3.718 ⋅ 10−3 1.926
3 1∕23 4.945 ⋅ 10−3 1∕24 2.974 ⋅ 10−4 4.056 1∕25 1.813 ⋅ 10−5 4.036
4 1∕23 3.221 ⋅ 10−4 1∕24 1.677 ⋅ 10−5 4.264 1∕25 1.012 ⋅ 10−6 4.051
5 1∕22 7.374 ⋅ 10−4 1∕23 1.387 ⋅ 10−5 5.733 1∕24 2.087 ⋅ 10−7 6.054

Taking Reynolds number Re = 1 and parameter ÿ = 1 in (3), the boundary conditions and the right-hand side of the compressible NS 
equations are computed by above manufactured solutions. Define the discrete ÿ2

ℎ
error of density by

‖ÿÿ
ℎ − ÿ(ýÿ)‖2

ÿ2
ℎ

=Δý2
ý∑
ÿ=1

ýH,vol
q∑
ÿ=1

ÿÿ
|||
ýloc∑
ÿ=1

ÿÿ
ÿÿ ÿ̂ÿ (ÿ̂ÿ) − ÿ(ýÿ)◦ý ÿ(ÿ̂ÿ)

|||
2
,

where ÿÿ and ÿ̂ÿ are the Gauss quadrature weights and points used in evaluating volume integrals in (H). The discrete ÿ
2
ℎ
errors for 

momentum and total energy are measured similarly. In addition, the discrete ÿ2
ℎ
for ý ÿ

ℎ is defined by

‖ý ÿ
ℎ −ý (ýÿ)‖2

ÿ2
ℎ

= ‖ÿÿ
ℎ − ÿ(ýÿ)‖2

ÿ2
ℎ

+ ‖ÿÿ
ℎ −ÿ(ýÿ)‖2

ÿ2
ℎ

+ ‖ýÿ
ℎ −ý(ýÿ)‖2

ÿ2
ℎ

.

If ÿÿÿΔý denotes the error on a mesh with resolution Δý, then the rate is given by ln(ÿÿÿΔý∕ÿÿÿΔý∕2)∕ ln 2.
For temporal convergence rate tests, we use Q3 scheme and fix the mesh resolution Δý = 1∕64 small enough such that the time 

error dominates. We choose NIPG method with ÿ = 0 to solve the second equation in subproblem (P) and choose IIPG method with 
ÿ̃ = 8 to solve the third equation in subproblem (P). We observe the optimal temporal convergence rates, see Table 1.

For spatial convergence rate tests, we use ÿ =
1

2
and fix time step size Δý = 3.125 × 10−6 small enough such that the spatial error 

dominates and the hyperbolic CFL is satisfied. We choose NIPG method with ÿ = 2 on Γℎ and ÿ = 4 on ÿΩ for Q1 scheme; and 
ÿ = 0 for Qý (ý ≥ 2) scheme to solve the second equation in subproblem (P). We choose IIPG method with ÿ̃ = 2ý to solve the third 
equation in subproblem (P). For Q1, Q3, and Q5 schemes, we obtain the optimal spatial convergence rates, see Table 2. For Q2 and 
Q4 schemes, the convergence is suboptimal, which is as expected, since the NIPG and IIPG methods are suboptimal for even order 
spaces.

4.2. Convergence study for testing of preserving positivity

In this part, we verify our numerical algorithm preserves positivity. Let the computational domain Ω = [0, 1]2 and the end time 
ÿ = 0.1024. The prescribed manufactured solutions are as follows:

ÿ = 1, ÿ =

[
0

0

]
, ÿ =

1

ÿ − 1
(sin8 (2ÿ(ý+ ÿ)) + 10−12).

Taking Reynolds number Re = 1 and Prandtl number Pr = 1.4, namely with ÿ = 1.4 we have ÿ = 1. The boundary conditions and the 
system right-hand side are defined by the prescribed solutions. We utilize the same ÿ2

ℎ
norm to measure error.

We use the second order Crank–Nicolson time discretization for internal energy in parabolic sub-problem. Fix the time step size 
Δý = 3.125 ×10−6 small enough such that the spatial error dominates. We choose NIPG method with ÿ = 2 on Γℎ and ÿ = 4 on ÿΩ for 
Q1 scheme; and ÿ = 0 for Qý (ý ≥ 2) scheme to solve the second equation in subproblem (P). We choose IIPG method with ÿ̃ = 2ý to 
solve the third equation in subproblem (P). We obtain the expected convergence rates, see Table 3.

4.3. Lax shock tube problem

We choose the computational domain Ω = [−5, 5] × [0, 2] and set the simulation end time ÿ = 1.3. We uniformly partition domain 
Ω by square cells with mesh resolution Δý = 1∕100. The initial conditions for density ÿ0, velocity ÿ0 = [ÿ0ý, ÿ

0
ÿ]

T
, and pressure ý0 are 

prescribed as follows:
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Table 3
Test of accuracy. The spatial error and convergence rates. From top to bottom: the Q1, Q2, ⋯ , Q5 schemes using a very small time step 
for a smooth solution. In last column, “Yes” indicates the postprocessing (6) is triggered, otherwise “No”.

ý Δý ‖ýýÿ

ℎ −ý (ÿ )‖ÿ2
ℎ

Δý ‖ýýÿ

ℎ −ý (ÿ )‖ÿ2
ℎ

rate Δý ‖ýýÿ

ℎ −ý (ÿ )‖ÿ2
ℎ

rate Postprocessing

1 1∕25 2.858 ⋅ 10−2 1∕26 6.804 ⋅ 10−3 2.071 1∕27 1.692 ⋅ 10−3 2.008 Yes
2 1∕25 6.301 ⋅ 10−3 1∕26 1.518 ⋅ 10−3 2.054 1∕27 3.749 ⋅ 10−4 2.018 Yes
3 1∕24 2.018 ⋅ 10−2 1∕25 2.063 ⋅ 10−4 6.612 1∕26 9.680 ⋅ 10−6 4.414 No
4 1∕24 2.320 ⋅ 10−4 1∕25 1.121 ⋅ 10−5 4.372 1∕26 6.245 ⋅ 10−7 4.166 Yes
5 1∕23 4.614 ⋅ 10−2 1∕24 5.697 ⋅ 10−4 6.340 1∕25 7.187 ⋅ 10−7 9.631 No

Fig. 3. Lax shock tube. The density field snapshots at time ÿ = 1.3 are displayed in the mountain view.

[ÿ0, ÿ0ý, ÿ
0
ÿ, ý

0]
T
=

{
[0.445, 0.698, 0, 3.528]T if ý ∈ [−5,0),

[0.5, 0, 0, 0.571]T if ý ∈ [0,5].

The top and bottom boundaries are set to be reflective when solving subproblem (H) and to be Neumann-type when solving subprob-
lem (P). Dirichlet boundary conditions are applied to the left and right boundaries for both subproblems (H) and (P), with values 
equal to the initials before the wave reaches the boundary. The Fig. 3 shows snapshots of the density field at the simulation final time 
ÿ = 1.3 in mountain view.

4.4. Double rarefaction

We choose the computational domain Ω = [−1, 1] × [0, 1] and set the simulation end time ÿ = 0.6. We uniformly partition domain 
Ω by square cells with mesh resolution Δý = 1∕640 for Q1 and Q2 schemes, Δý = 1∕480 for Q3 and Q4 schemes, and Δý = 1∕400

for Q5 and Q6 schemes. The initial conditions for density ÿ0, velocity ÿ0 = [ÿ0ý, ÿ
0
ÿ]

T
, and pressure ý0 are prescribed as follows:

[ÿ0, ÿ0ý, ÿ
0
ÿ, ý

0]
T
=

{
[7, −1, 0, 0.2]T if ý ∈ [−1,0),

[7, 1, 0, 0.2]T if ý ∈ [0,1].

When solving subproblem (H), reflective boundary conditions are set for the top and bottom boundaries, while outflow conditions are 
set for the left and right boundaries. When solving subproblem (P), Neumann-type boundary conditions are applied to all boundaries. 
The Fig. 4 shows snapshots of density field at the simulation final time ÿ = 0.6 in mountain view.

4.5. Sedov blast wave

The Sedov blast wave test is a standard benchmark in hyperbolic conservation law. It involves a blast wave generated by a strong 
explosion, which involves low density, low pressure, and a strong shock. This test holds great value in validating a positivity-preserving 
scheme.

Let the computational domain Ω = [0, 1.1]2 and the simulation end time ÿ = 1. We uniformly partition domain Ω by square cells 
with mesh resolution Δý = 1.1∕320. The initials are prescribed as piecewise constants: density ÿ0 = 1 and velocity ÿ0 = ÿ, for all 
points in Ω; the total energy ý0 equals to 10−12 everywhere except the cell at the lower left corner, where 0.244816∕Δý2 is used. 
When solving subproblem (H), reflective boundary conditions are set for the left and bottom boundaries, while outflow conditions are 
set for the top and right boundaries. When solving subproblem (P), Neumann-type boundary conditions are applied to all boundaries.

The Fig. 5 shows snapshots of density field at the simulation final time ÿ = 1. The postprocessing (27) with (28) is used and 
necessary in all these tests. See Fig. 6. Our numerical algorithm preserves conservation and the shock location is correct.
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Fig. 4. Double rarefaction. The density field snapshots at time ÿ = 0.6 are displayed in the mountain view.

Fig. 5. Sedov blast wave. The snapshots of density profile are taken at ÿ = 1. Plot of density: 50 exponentially distributed contour lines of density from 0.001 to 6.
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Fig. 6. From left to right Q2 , Q4 , Q6 DG schemes. Top: the number of bad cells after solving (P) at each time step (the DG polynomial cell averages are not in the 
admissible set). Bottom: the number of Douglas–Rachford iterations need to reach round-off convergence for solving (27a) with (28).

4.6. Shock diffraction

In this test, we consider a right-moving high-speed shock, which is perpendicular to solid surface at initial and moves towards 
undisturbed air ahead. As the shock crosses the right corner, a region of low density and low pressure emerges, making this a 
challenging benchmark for conservation law.

Let the computational domain Ω be the union of [0, 1] × [6, 11] and [1, 13] × [0, 11]. We set the simulation end time ÿ = 2.3. The 
initial condition is a pure right-moving shock of Mach number 5.09, initially located at {ý = 0.5, 6 ≤ ÿ ≤ 12}, moving into undisturbed 
air ahead of the shock with a density of 1.4 and a pressure of 1. When solving subproblem (H), the left boundary is inflow, while 
the right and bottom boundaries are outflow. The fluid–solid boundaries {ÿ = 6, 0 ≤ ý ≤ 1} and {ý = 1, 0 ≤ ÿ ≤ 6} are reflective. 
In addition, the flow values on the top boundary are set to accurately depict the motion of the Mach 5.09 shock. When solving 
subproblem (P), Neumann-type boundary conditions are applied to the fluid–solid surfaces, while Dirichlet boundary conditions are 
applied to the remaining boundaries. The Dirichlet data on the left and top boundaries are determined by the inflow data and the 
exact motion of the Mach 5.09 shock. Additionally, the Dirichlet data on the right and bottom boundaries remain unchanged from 
their initial values before the shock wave reaches the boundary.

The Fig. 7 displays snapshots of density field at the simulation final time ÿ = 2.3. The results are comparable to those in [5].

4.7. Mach 10 shock reflection and diffraction

The high-speed shock reflection and diffraction test is a widely used benchmark [6]. We consider a Mach 10 shock that moves to 
the right with a sixty-degree incident angle to the solid surface. As the shock across the sharp corner, areas of low density and low 
pressure appear. In the region of shock reflection, vortices are formed due to Kelvin–Helmholtz instabilities.

Let the computational domain Ω be the union of [0, 4] × [0, 1] and [1, 4] × [−1, 0]. We set the simulation end time ÿ = 0.2. The 
initial condition is a right-moving shock of Mach number 10 positioned at ( 1

6
, 0) with a sixty-degree angle to the ý-axis. The shock is 

moving into undisturbed air ahead of it, which has a density of 1.4 and a pressure of 1. In the post-shock region, the density is 8, the 

velocity is [4.125
√
3,−4.125]

T
, and the pressure is 116.5.

When solving subproblem (H), the left boundary is inflow, while the right and bottom boundaries are outflow. Part of the fluid–
solid boundaries {ÿ = 0, 1

6
≤ ý ≤ 1} and {ý = 1, −1 ≤ ÿ ≤ 0} are reflective, and the post-shock condition is imposed at {ÿ = 0, 0 ≤

ý ≤ 1

6
}. On the boundary with post-shock condition, the density, velocity, and pressure are fixed in time with the initial values to 

make the reflected shock stick to the solid wall. In addition, the flow values on the top boundary are set to accurately depict the 
motion of the Mach 10 shock. When solving subproblem (P), Neumann-type boundary conditions are applied to part of the fluid–solid 
surfaces associated with the reflective boundary in subproblem (H), while Dirichlet boundary conditions are applied to the remaining 
boundaries. The Dirichlet data on the left and top boundaries are determined by the inflow data and the exact motion of the Mach 
10 shock. Additionally, the Dirichlet data on the right and bottom boundaries remain unchanged from their initial values before the 
shock wave reaches the boundary.

From Fig. 8, we see our scheme produces satisfactory non-oscillatory solutions with correct shock location and well-captured 
rollups. These test results are consistent with the observations for fully explicit high order accurate schemes in [5].
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Fig. 7. Shock diffraction. The snapshots of density profile are taken at ÿ = 2.3. The gray colored region denotes solid. Plot of density: 20 equally spaced contour lines 
from 0.066227 to 7.0668.

Fig. 8.Mach 10 shock reflection and diffraction. The snapshots of density profile are taken at ÿ = 0.2. The gray colored region denotes solid. Plot of density: 50 equally 
space contour lines from 0 to 25. Only contour lines are plotted. We can observe that the scheme with higher order spatial accuracy indeed induces less artificial 
viscosity, despite that the temporal accuracy is at most second order.

4.8. High Mach number astrophysical jet

To replicate the gas flows and shock wave patterns observed in the Hubble Space Telescope images, one can utilize theoretical 
models within a gas dynamics simulator, see [61–63]. We consider the Mach 2000 astrophysical jets without radiative cooling to 
demonstrate the robustness of our scheme.
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Fig. 9. Astrophysical jets. The snapshots of the density field at ÿ = 0.001. Scales are logarithmic. We can observe that the scheme with higher order spatial accuracy 
indeed induces less artificial viscosity, despite that the temporal accuracy is at most second order.

Fig. 10. From left to right Q2 , Q4 , Q6 DG schemes. Top: the number of bad cells after solving (P) at each time step (the DG polynomial cell averages are not in the 
admissible set). Bottom: the number of Douglas–Rachford iterations need to reach round-off convergence for solving (27a) with (29).

Let the computational domain Ω = [0, 1] × [−0.5, 0.5]. We set the simulation end time ÿ = 0.001. In this example, we use the 
ideal gas constant ÿ = 5∕3. The initial density ÿ0 = 0.5, velocity ÿ0 = ÿ, and pressure ý0 = 10−6. When solving subproblem (H), the 
following inflow boundary conditions are set for the left boundary

[ÿ, ÿý, ÿÿ, ý]
T =

{
[5, 800, 0, 0.4127]T if ý = 0 and |ÿ| ≤ 0.05,

[0.5, 0, 0, 10−6]
T

if ý = 0 and |ÿ| > 0.05,

while the outflow boundary conditions are set for the top, right, and bottom boundaries. When solving subproblem (P), Dirichlet 
boundary condition is applied to the left boundary, while Neumann-type boundary conditions are applied to the remaining boundaries. 
The Dirichlet data on the left boundary are determined by the inflow data of the Mach 2000 astrophysical jet.

We take ÿ = 10−8 in defining ÿÿ and the Zhang–Shu limiter in Section 2.3. The postprocessing of DG cell averages is necessary 
in these simulations. For the sake of robustness and efficiency in the postprocessing step, we define the local region ÿ as the set of 
indices

ÿ =
{
ÿ ∶ either ýP

ÿ ∉ÿÿ or ýP
ÿ −

1

2
‖ÿP

ÿ ‖∕ÿPÿ ≥ 2 ∗ 10−6
}

. (29)

The Fig. 9 shows snapshots of density field at the simulation final time ÿ = 0.001. See the performance of Douglas–Rachford 
splitting for solving (27a) in Fig. 10.
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5. Concluding remarks

In this paper, we have constructed a semi-implicit DG scheme that is high order accurate in space, conservative, and positivity-
preserving for solving the compressible NS equations. The time step constraint follows the standard hyperbolic CFL condition Δý =
(Δý). Our scheme is fully decoupled, requiring only the sequential solving of two linear systems at each time step to achieve second 
order accuracy in time. Conservation and positivity are ensured through a postprocessing of the cell averages of total energy variable. 
A high order accurate cell average limiter can be formulated as a constraint minimization, which can be efficiently computed by 
using the generalized Douglas–Rachford splitting method with nearly optimal parameters. Numerical tests suggest that such a simple 
and efficient postprocessing of the total energy variable indeed renders the semi-implicit high order DG method with Strang splitting 
much more robust. Ongoing and future work consists of extensions from the ý2-norm minimization postprocessing to the ý1-norm 
minimization, and also generalizations to directly enforcing the convex invariant domain.

CRediT authorship contribution statement

Chen Liu: Writing – original draft, Visualization, Validation, Software, Investigation. Gregery T. Buzzard: Methodology, Soft-
ware, Validation, Writing – review & editing. Xiangxiong Zhang: Writing – review & editing, Supervision, Project administration, 
Methodology, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

Research is supported by NSF DMS-2208515.

Appendix A. The method of Lagrange multiplier

Given a matrix ý = [1, 1, ⋯ , 1] ∈R1×ý and a vector ý ∈Rý . Define a constant ÿ = ýý and assume 
∑ý

ÿ=1 ýÿ > 0. Let us consider 
the following constrained minimization problem

min
ý∈Rý

1

2
‖ý−ý‖2

2
subject to ýý = ÿ and ýÿ ≥ 0 for all ÿ ∈ {1,⋯ ,ý}. (A.1)

Consider the Lagrangian function with multipliers ÿÿ and ÿ

ÿ =
1

2
‖ý−ý‖2

2
+ ÿ

( ý∑
ÿ=1

ýÿ − ÿ
)
+

ý∑
ÿ=1

(−ÿÿýÿ),

and its Karush–Kuhn–Tucker (KKT) conditions, which are given as

ÿÿ
ÿýÿ

= ýÿ −ýÿ + ÿ − ÿÿ = 0, (A.2a)

−ÿÿýÿ = 0, (A.2b)

ÿÿ ≥ 0, (A.2c)

−ýÿ ≤ 0, (A.2d)

ý∑
ÿ=1

ýÿ = ÿ. (A.2e)

For the constrained minimization problem (A.1), the KKT condition (A.2) is both sufficient and necessary. In the rest of this part, 
let us assume there exists at least one entry in ý that is strictly less than 0. Otherwise, the minimizer of the constraint optimization 
problem (A.1) is ý, which is trivial.

Lemma 1. If there exists an entry in ý less than 0, then ÿ ≠ 0.
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Proof. Assume ÿ = 0. Then (A.2a) becomes ýÿ −ýÿ − ÿÿ = 0, namely we have ÿÿ = ýÿ −ýÿ. Summing over ÿ from 1 to ý , we get

ý∑
ÿ=1

ÿÿ =

ý∑
ÿ=1

ýÿ −

ý∑
ÿ=1

ýÿ = ÿ− ÿ = 0.

Notice (A.2c) gives ÿÿ ≥ 0, we have ÿÿ = 0 for all ÿ. Thus ýÿ =ýÿ for all ÿ, which contradicts the existence of a negative entry in ý. □

Let ý = {ÿ ∶ ýÿ = 0} denote the set of all indexes, as represented in the minimizer ý of (A.1), touching the boundary of the feasible 
region. Let #ý be the number of elements in set ý. The next lemma shows that if an entry of the vector ý is less than 0, then the 
minimizer plugs that entry back to the boundary of the feasible region.

Lemma 2. Assume there exists at least one entry in vector ý that is strictly less than 0. Then for any index ÿ so that ýÿ ≤ 0, we have ÿ ∈ ý
and hence ýÿ = 0.

Proof. From (A.2b), we only need to show ÿÿ > 0. By (A.2a), we have ýÿ −ýÿ + ÿ = ÿÿ. Summing over ÿ from 1 to ý , we get

ý∑
ÿ=1

ýÿ −

ý∑
ÿ=1

ýÿ

⏟ÿÿÿÿÿÿĀÿÿÿÿÿÿ⏟
= ÿ−ÿ = 0

+ýÿ =
ý∑
ÿ=1

ÿÿ ⇒ ÿ =
1

ý

ý∑
ÿ=1

ÿÿ.

Thus, by (A.2c), we know ÿ ≥ 0. Furthermore, by Lemma 1, we get ÿ > 0. Notice (A.2d) gives ýÿ ≥ 0. Therefore, under the condition 
ýÿ ≤ 0, the (A.2a) implies ÿÿ = ýÿ −ýÿ + ÿ > 0. □

Lemma 3. The solution of the constrained minimization problem (A.1) satisfies:

• If ýÿ = 0, then we have

ÿÿ −
1

ý

∑
ÿ∈ý

ÿÿ = −ýÿ, ∀ÿ ∈ ý. (A.3)

• If ýÿ > 0, then we have

ýÿ =ýÿ +
1

ý − #ý

∑
ÿ∈ý

ýÿ . (A.4)

Proof. From (A.2a), we have ÿ = ÿÿ +ýÿ − ýÿ. Summing over ÿ from 1 to ý , we get

ýÿ =
ý∑
ÿ=1

ÿÿ +

ý∑
ÿ=1

ýÿ −

ý∑
ÿ=1

ýÿ

⏟ÿÿÿÿÿÿĀÿÿÿÿÿÿ⏟
= ÿ−ÿ = 0

=
∑
ÿ∈ý

ÿÿ +
∑
ÿ∉ý

ÿÿ.

Recall that the set ý = {ÿ ∶ ýÿ = 0}. By (A.2d), ÿ ∉ý gives ýÿ > 0. By (A.2b), we have ÿÿ = 0 for all ÿ ∉ ý. Thus, we get

ÿ =
1

ý

∑
ÿ∈ý

ÿÿ. (A.5)

If ýÿ = 0, then ÿ ∈ ý and (A.2a) becomes ÿÿ − ÿ = −ýÿ, so replacing ÿ with (A.5), we obtain (A.3). Summing over ÿ ∈ ý of (A.3), we 
have

∑
ÿ∈ý

ÿÿ −
#ý
ý

∑
ÿ∈ý

ÿÿ = −
∑
ÿ∈ý

ýÿ ⇒

∑
ÿ∈ý

ÿÿ = −
ý

ý − #ý

∑
ÿ∈ý

ýÿ .

If ýÿ > 0, then by (A.2b) we have ÿÿ = 0. Again, (A.2a) and (A.5) gives

ýÿ =ýÿ − ÿ =ýÿ −
1

ý

∑
ÿ∈ý

ÿÿ =ýÿ +
1

ý − #ý

∑
ÿ∈ý

ýÿ .

Therefore, we conclude the proof. □

Lemma 4. If ýÿ1
≥ýÿ2

> 0, then ýÿ1
= 0 implies ýÿ2

= 0, namely ÿ1 ∈ý implies ÿ2 ∈ý.

Proof. Let us first deal with the case ýÿ1
> ýÿ2

. If the vector ý is a solution of the minimization problem (A.1) with ýÿ1
= 0 and 

ýÿ2
> 0, then we will construct a solution vector ý̃ such that ý̃ÿ = ýÿ for all ÿ ∉ {ÿ1, ÿ2} and ý̃ÿ1

= ýÿ2
and ý̃ÿ2

= 0.
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• Check constraint: since ý̃ÿ = ýÿ for all ÿ ∉ {ÿ1, ÿ2}, we only need to check ý̃ÿ1
+ ý̃ÿ2

= ýÿ1
+ ýÿ2

. This holds since ý̃ÿ1
+ ý̃ÿ2

= ýÿ2
+ 0

and ýÿ1
+ ýÿ2

= 0 + ýÿ2
.

• Compare 2-norm: we have (ýÿ1
− ýÿ1

)2 + (ýÿ2
− ýÿ2

)2 > (ýÿ1
− ý̃ÿ1

)2 + (ýÿ2
− ý̃ÿ2

)2, which can be easily verified as follows

(ýÿ1
− ýÿ1

)2 + (ýÿ2
− ýÿ2

)2 > (ýÿ1
− ý̃ÿ1

)2 + (ýÿ2
− ý̃ÿ2

)2

⇔ ý2
ÿ1
+ (ýÿ2

− ýÿ2
)2 > (ýÿ1

− ýÿ2
)2 +ý2

ÿ2

⇔ ý2
ÿ1
+ý2

ÿ2
− 2ýÿ2

ýÿ2
+ ý2ÿ2 > ý2

ÿ1
− 2ýÿ1

ýÿ2
+ ý2ÿ2 +ý2

ÿ2

⇔ (ýÿ1
−ýÿ2

)ýÿ2
> 0,

which holds when ýÿ1
> ýÿ2

and ýÿ2
> 0.

Hence we have constructed a vector ý̃ that satisfies the constraint but has smaller objective value, which contradicts that ý is the 
unique minimizer of (A.1).

In case of ýÿ1
= ýÿ2

, we use contradiction argument to show the vector ý with ýÿ1
= 0 and ýÿ2

> 0 is not a solution of the 

minimization problem (A.1). We construct a vector ý̃ such that ý̃ÿ = ýÿ for all ÿ ∉ {ÿ1, ÿ2} and ý̃ÿ1
=

1

2
ýÿ2

and ý̃ÿ2
=

1

2
ýÿ2
.

• Check constraint: since ý̃ÿ = ýÿ for all ÿ ∉ {ÿ1, ÿ2}, we only need to check ý̃ÿ1
+ ý̃ÿ2

= ýÿ1
+ ýÿ2

. This holds since ý̃ÿ1
+ ý̃ÿ2

= ýÿ2
and 

ýÿ1
+ ýÿ2

= ýÿ2
.

• Compare 2-norm: we have (ýÿ1
− ýÿ1

)2 + (ýÿ2
− ýÿ2

)2 > (ýÿ1
− ý̃ÿ1

)2 + (ýÿ2
− ý̃ÿ2

)2, which can be easily verified as follows

(ýÿ1
− ýÿ1

)2 + (ýÿ2
− ýÿ2

)2 > (ýÿ1
− ý̃ÿ1

)2 + (ýÿ2
− ý̃ÿ2

)2

⇔ ý2
ÿ1
+ (ýÿ2

− ýÿ2
)2 > (ýÿ1

−
1

2
ýÿ2

)2 + (ýÿ2
−

1

2
ýÿ2

)2

⇔ ý2
ÿ1
− (ýÿ1

−
1

2
ýÿ2

)2 > (ýÿ2
−

1

2
ýÿ2

)2 − (ýÿ2
− ýÿ2

)2

⇔ ýÿ2
(2ýÿ1

−
1

2
ýÿ2

) > ýÿ2
(2ýÿ2

−
3

2
ýÿ2

)

⇔ ýÿ1
−ýÿ2

> −
1

2
ýÿ2

This hold when ýÿ1
=ýÿ2

and ýÿ2
> 0.

The proof is now concluded. □

The Lemma 2 indicates the following: if the ÿ-th entry of the vector ý is non-positive, ýÿ ≤ 0, then we need to set ýÿ = 0. Lemma 3
gives the structure of the exact solution to the minimization problem (A.1). Lemma 4 helps us to construct the following algorithm 
to find the set ý and obtain the solution to (A.1).

• Step 1. If ýÿ ≤ 0, then set ýÿ = 0 and push ÿ in set ý.
• Step 2. Sort all entries ýÿ > 0 in ý in ascending order.
• Step 3. Compute the “total out-of-bound mass” of set ý by the following formula:

−
∑
ÿ∈ý

ýÿ .

• Step 4. Check whether the smallest ýÿý
, where ÿý ∉ ý, satisfies

ýÿý
+

1

ý − #ý

∑
ÿ∈ý

ýÿ > 0. (A.6)

If (A.6) holds, then uniformly allocate the “total out-of-bound mass” of set ý to all other “good entries” by formula

ýÿ =ýÿ +
1

ý − #ý

∑
ÿ∈ý

ýÿ for all ÿ ∉ý.

Otherwise, push ÿý into set ý and go to Step 3. Note: if there are multiple entries with the same smallest value, then push all of 
them into set ý.

The complexity of sorting algorithm ÿÿÿ ∶∶ ÿÿÿÿ() in C++ is (ý log(ý)) on the best and average case scenarios. Additionally, 
sophisticated coding skills are required for implementing sorting algorithms on a distributed memory system. In comparison, the 
complexity of the DR algorithm is (ý) and DR is very amenable to parallelization.
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Table A.4
The CPU time for applying the method of Lagrange multiplier and the DR algorithm to 
solve the minimization (A.1) for a problem of size 106 for problems with different ratios 
of negative points (bad cells). The time unit is second. The “LM” refers to the method of 
Lagrange multiplier and the “DR” refers to the Douglas–Rachford splitting algorithm.

bad cells % 1% 2% 5% 10% 20%

LM 1.426 s 1.500 s 1.509 s 1.418 s 1.130 s
DR 0.378 s 0.467 s 0.565 s 0.656 s 0.846 s

Comparison of optimization algorithms We create synthetic data to let ý in (A.1) be defined as point values of the following function 
on a uniform grid of size 10002 on the domain [0, 1]2:

ÿ (ý, ÿ) =

⎧⎪«⎪¬

−0.25, −
ÿ
4
+ 0.25 ≤ ý ≤ ÿ

4
+ 0.25

−0.25, −
ÿ
4
+ 0.75 ≤ ý ≤ ÿ

4
+ 0.75

cos8 (2ÿý) + 10−13, otherwise

,

where ÿ > 0 is a parameter. A different value of ÿ gives a different ratio of negative point values, and we consider values of ÿ such 
that the ratio of negative point values is 1%, 2%, 5%, 10% and 20%.

We then solve (A.1) with ÿ = ýý by both the method of Lagrange multiplier and the Douglas–Rachford method. For each opti-
mization method, we solve (A.1) to machine precision 100 times and compare the average CPU time for solving it once on a single 
Intel Xeon CPU E5-2660 v3 2.60 GHz. The Table A.4 shows the computational time of finding the minimizer up to machine precision.

The time cost of the DR algorithm increases as the ratio of negative points increases, which is however still faster than the 
Lagrange multiplier approach for large data set, due to the (ý log(ý)) sorting operation. Notice that as the number of negative 
points increases, the data set requiring sorting becomes smaller, resulting in a decrease in the time cost of the Lagrange multiplier 
method. However, in large-scale simulations with a good base scheme such as a proper DG scheme in this paper, the percentage 
of negative points is typically small. Such a comparison suggests that the DR algorithm is a preferable option from the efficiency 
perspective.
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