
©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1

Task and Motion Planning for Execution in the Real
Tianyang Pan, Rahul Shome, Lydia E. Kavraki

Abstract—Task and motion planning represents a powerful set
of hybrid planning methods that combine reasoning over discrete
task domains and continuous motion generation. Traditional rea-
soning necessitates task domain models and enough information
to ground actions to motion planning queries. Gaps in this
knowledge often arise from sources like occlusion or imprecise
modeling. This work generates task and motion plans that include
actions cannot be fully grounded at planning time. During
execution, such an action is handled by a provided human-
designed or learned closed-loop behavior. Execution combines
offline planned motions and online behaviors till reaching the
task goal. Failures of behaviors are fed back as constraints to find
new plans. Forty real-robot trials and motivating demonstrations
are performed to evaluate the proposed framework and compare
against state-of-the-art. Results show faster execution time, less
number of actions, and more success in problems where diverse
gaps arise. The experiment data is shared for researchers to
simulate these settings. The work shows promise in expanding
the applicable class of realistic partially grounded problems that
robots can address.

Index Terms—Task and Motion Planning. Robust Execution.

I. INTRODUCTION

Autonomous robots that operate in realistic environments
and accomplish complex task objectives need to be capable
of deciding sequences of actions to take and corresponding
motions to execute. Task and Motion Planning (TAMP) [1],
[2], [3] is a popular class of techniques that is applied to
such problems. Given a symbolic representation of a task
objective, task planning produces an action sequence called
a task plan. A grounding process is necessary to generate
motion planning queries for each discrete action. A motion
planner can report queries to be infeasible due to geometric
constraints such as collisions. A typical TAMP planner [1]
will feed back such failures as symbolic constraints to compute
an alternative task plan, until a valid task and motion plan
is discovered. While being a general and effective paradigm,
a prerequisite for this strategy is the existence of knowledge
about the symbolic and geometric representations of the world
that is sufficient to ground a symbolic action to a motion
planning query. This information is typically expected from
sensing or part of modeling. This work focuses on task and
motion planning problems where not enough information is
available to complete every grounding step at planning time.

A variety of realistic situations introduce partial knowledge
of the world for a given task, violating the assumptions of
the state-of-the-art TAMP solvers. For example, as in Fig. 1,
we may know that two objects are on the table and one

The authors are with the Department of Computer Science, Rice Univer-
sity; (tianyang.pan@rice.edu, kavraki@rice.edu). RS is cur-
rently with the School of Computing, the Australian National University
(rahul.shome@anu.edu.au). The work was supported in part by NSF
1830549, NSF CCF-2336612 and Rice University Funds.

Fig. 1. The task is to move three objects to the goal tray. The full states of
the dotted objects are not known precisely. A task and motion plan will have
gaps which can only be filled in during execution, e.g., the blue object’s pose
can only be known after opening the drawer. The problem imposes constraints
visualized in a block-world-like diagram at the lower part of the figure.

object is in the drawer, but we do not know the geometric
poses of some of the objects due to occlusions, inaccurate
sensors, etc. The object pose is necessary to generate robot
grasping configurations and motions that achieve there. Tra-
ditional TAMP approaches struggle to address problems that
might need to ground a Pick action that needs to interact
with an unknown object. Therefore, a discrete plan from
the task planner may consist of actions that can be fully
grounded to continuous motions through motion planning,
as well as actions that cannot be grounded due to lack of
enough knowledge of the world. Partial grounding creates
gaps in the resulting task and motion plan. The gaps may
arise due to various reasons including perception uncertainties,
imprecise simulations, modeling gaps, etc., as illustrated in
Fig. 2. We observe that actions that could not be grounded
at planning time might be necessary for the task and could
be reasoned during execution time. This work focuses on how
to address scenarios where only partial grounding is possible,
and proposes to extend TAMP with closed-loop behaviors that
are deployed during execution.

Recent advances [4] focus on TAMP with sensing un-
certainties, and have proposed a framework that integrates
a TAMP solver more closely into the typical Sense-Plan-
Act loop, leveraging sensing and execution to gain more
information. The motion planning difficulty is deferred till
execution. Recent work [5] tackles TAMP problems where un-
derlying models of the problem are incomplete, by repeatedly
executing one or more steps of the current task and motion
plan, gathering new information, re-formulating a new TAMP
problem, and replanning. Other types of gaps such as stochas-

ar
X

iv
:2

40
6.

03
64

1v
2

 [c
s.R

O
]

13
 Ju

n
20

24

2

Object not seen Push simulation incorrect Bag contents unknown

Fig. 2. The source of gaps can be diverse, including (from left to right)
occlusions, imprecise simulations, and object modeling gaps (two paper bags
look the same but contain different groceries).

tic execution outcomes are not considered. The sources of gaps
are diverse and might only be known for parts of the TAMP
domain. We focus on such real-world problems in which we
are aware that some types of knowledge gaps may exist. This
propels our study into maintaining the benefits of coupled task
and motion reasoning, while addressing incomplete TAMP
domains with gaps that can be filled in during execution.

We note that TAMP solvers are very powerful for problems
where enough information is at hand. In motivating scenarios
like Fig. 1, most of the problem might be known and possible
to ground (e.g., the position of the table and the robot).
We propose to build a framework that can leverage existing
TAMP solvers for the part of the task where we have good
enough information, and leave gaps in the plan for actions
that cannot be fully grounded during planning (Fig. 1). The
output of the planning phase is a partially grounded task and
motion plan with gaps. This is sent to the execution layer,
where we leverage provided closed-loop behaviors, as shown
in Fig. 3. These behaviors can be human-designed modules,
learning-based local policies, etc., that can be triggered during
execution to ground individual actions where gaps exist. Even
if a behavior is carefully designed, its execution may still
fail. Our framework allows feedback from such failures as
execution-layer constraints. Overall, the framework proceeds
in an incremental fashion computing task plans till a partially
grounded sequence of feasible motions plans and behaviors
is generated. Behavior failures during execution trigger gen-
eration of alternative task plans, till the robot successfully
accomplishes the task in execution using some combination
of precomputed motion plans and behaviors.

The primary contribution of the current work is to design a
general and extensible framework for Task and Motion Plan-
ning for Execution in the Real (TAMPER) that can address
(a) dealing with symbolic states and actions which might only
be partially grounded (creating gaps), (b) bridging the gaps
using closed-loop behaviors comprising human-designed steps
or learned controllers, and (c) recovering task-level constraints
from the execution feedback from behaviors. We evaluate our
proposed framework extensively on real-world benchmarks to
demonstrate the efficacy of combining model-based TAMP
reasoning with closed-loop behaviors. Our method succeeds
more often, and takes fewer actions in real world settings with
partial groundings, compared against a baseline implemented
based on [5]. We also share a dataset showcasing real-robot
TAMP problems that include problem definitions, recorded
online data, and instructions to replicate experimental settings.

Fig. 3. This work introduces behaviors to bridge gaps in the task and motion
plan during execution time, and recovers constraints from the task, motion,
and execution domains.

II. RELATED WORK

A. Task and Motion Planning

There are a variety of approaches proposed for integrated
TAMP [6]. A typical approach [1] is to handle task planning
using a general-purpose satisfiability modulo theories (SMT)
solver [7] that supports incremental solving to efficiently con-
sider motion constraints as feedback from motion grounding
failures. Some works leverage black-box samplers encoded
as streams to efficiently compute feasible plans [2]. TAMP
has also been formulated as an optimization problem in [3].
Multi-modal motion planning (MMMP) methods represent the
underlying discrete structure of TAMP problems as mode
families, and compute the mode transitions as well as the
single-mode motions [8], [9], [10]. The above methods usually
assume perfect sensing and deterministic execution outcomes,
and focus on planning with complete knowledge of the world.
If these assumptions do not hold, such strategies exhaust all
possible discrete plans without finding a feasible one.

TAMP in stochastic domains is gaining more and more
interest recently. Some works formulate the stochastic TAMP
problem as a Markov Decision Process (MDP) [11], [12],
assuming a known transition model. In [13], the problem
of TAMP with failing executions is modeled as an MDP
with unknown transition probabilities, where a Beta-Binomial
model is leveraged to maintain the belief of the unknown
probabilities to minimize the expected number of actions
executed to finish tasks. These works focus on stochastic
execution outcomes and assume perfect sensing.

There are approaches that address underlying uncertainty by
formulating partially-observable TAMP domains and planning
in a belief space. The general formalism of Partially Observ-
able Markov Decision Processes (POMDPs) [14] provides a
way to compute optimal policies, but is typically computa-
tionally expensive. Efficient online, approximate variants [15],
[16] have been proposed. Despite this, careful modeling of
state and action spaces is necessary to both reasonably model
the problem and maintain reasonable performance. The fully
defined robotic task and motion domain presents tractability
issues since the dimensionality of the belief space grows with
the cardinality (or size) of the state space.

There have been works that leverage or extend these online
POMDP solvers and apply them to robotics manipulation do-
mains [17], [18]. They focus on reasoning over discrete actions
choices, while computing continuous motions for high-DoF
manipulators is not addressed, in contrast to TAMP literature
whose forte is the coupled discrete-continuous problem. In
order to tackle TAMP problems with uncertainty, different
representations and approximations have been proposed for
the belief over the partially observable object poses or robot

3

joint values, including Kalman filtering, particle filtering, or
Nonparametric Belief Propagation [4], [19], [20]. These are
mostly closed-loop TAMP methods with the focus on policy
computation that needs to react on the fly to new observations
with bounded horizon reasoning. Partially observable TAMP
has also been integrated with trajectory-optimization-based
techniques [21]. Strong assumptions are often necessary to
simplify problem modeling [4], [19], [20], [21], which allows
the resulting POMDP to be solved more efficiently. For exam-
ple, the probabilistic model of transitions can be determinized
to compute plans in a tractable way [4], [19]. Moreover, all
the above works typically focus on a single type of gap at a
time in terms of the observation model, for instance occlusion
or noise in object pose estimation [4], [19], [20], [17], [18], or
partially observable attributes of objects [21] (e.g., the color
of the opposite side of a cube cannot be seen).

It is important to point out that many types of partial
groundings (gaps) could exist in TAMP problems. This again
raises open problems in modeling and scalability. Moreover,
it remains to be explored, how long-horizon task-level logical
constraints can be enforced in manipulation tasks using a
POMDP model, and it is unclear how to represent and use
geometric constraints coming from continuous motion compu-
tation and execution within in a POMDP framework. Notably,
TAMP on its own cannot address many of these complexities,
and the proposed work pushes the traditional constraint-based
TAMP strategy that handles long-horizon, discrete-continuous,
high-dimensional search spaces into more realistic partially-
grounded scenarios. We address such a new class of problems
by using provided behaviors that deal with various types of
local gaps to efficiently reason about planning and execution.

A recent related work [5] plans with an incomplete model of
the world (e.g., unmodeled objects and occlusion). It proposes
to estimate and reason over the properties and affordances of
the objects. It keeps replanning with the detected objects in
the now until it reaches the goal or a dead end. Our work
can deal with not only gaps coming from perception, but
also other general types of gaps (e.g., stochastic execution
outcomes), as long as specialized execution-level behaviors
are provided. Our main contribution is a general formulation
and framework for TAMP with partial groundings, while the
necessary engineering effort for each particular problem is left
modularized and flexible as input behaviors.

B. Reactive Manipulation

Substantial research effort has been devoted to developing
methods that are reactive and adaptive to external interventions
in real-world robotic tasks. Reactive synthesis approaches [22],
[12] aim at fully computing a policy over the abstraction
represented by some formal language such as Linear Temporal
Logic (LTL) [23] to handle human intervention or environ-
mental stochasticity during execution time. Although these
methods have been used for high-DoF robot manipulation
tasks, searching for the abstract policy is already highly
complex; so they usually simplify the computation of low-level
motions. Synthesizing such a policy requires full knowledge
of the task and motion domain, and when the domain changes

the policy must be recomputed. To more efficiently react
to environmental model changes, another approach partially
constructs the search graph of the task domain and exploits
the modularity of Behavior Trees (BTs) [24] as the execution
layer to manage the given low-level control policies [25].
In [26], TAMP is formulated as an optimization problem over
relative object poses, and reactive controllers can be leveraged
to adapt to real-world changes. It is assumed that the con-
trollers can always react to the disturbances during execution.
Hence recomputing a new task plan is not necessary. All the
above synthesis methods mostly compute a policy for the full
task given, which becomes computationally prohibitive when
considering execution-level constraints or solving long-horizon
tasks. We focus on problems where, despite the problem
not being fully grounded during planning, we can efficiently
reason over motion constraints and execution failures.

Plan execution monitoring methods [27] specifically focus
on detecting the difference between world states and expected
states, and recovering from the discrepancies. There have been
works that consider execution failures by diagnosing broken
parts of the robotic system with either fully observable [28]
or partially observable state spaces [29]. Another work reacts
to temporal or resource constraints that emerge at execution
time [30]. These methods usually do not focus on the com-
bined task and motion planning problem for high-DoF robots,
and mostly only consider cases where the gap of grounding
comes from imperfect simulation model (malfunctioning robot
or unmodeled physics) of the real world. In this work, we focus
on the general problem of partial groundings in TAMP, where
diverse types of gaps can arise.

Another line of research leverages suitable execution-level
architectures to achieve reactive and robust behaviors. BTs
have become popular as a control structure for complex
robot systems because they allow modularity, hierarchy, and
feedback control [24], [25], [31]. Back chaining from the goal
condition for planning has been used to create and update
BTs to react to external disturbances [32]. Another work
proposes Robust Logical-Dynamical Systems (RLDS) as an
alternate structure that has equivalent expressiveness as BTs
and algorithms to compose and execute an RLDS [33]. These
works usually defer motion planning to execution time. In
constrast, we leverage the power of TAMP planners that can
discover some motion or geometric constraints (e.g., infeasible
motions from certain states) at the initial planning stage, before
even entering the expensive real-world execution stage. As
pointed out in Sec. I, we consider cases where even the input
behaviors are not guaranteed to complete an action, making
feedback of constraints from execution layer and replanning
inevitable and necessary — something that is typically not
addressed in many of the above methods.

In another work [34], active inference approaches are in-
tegrated with BTs to enhance the robustness of the given
nominal plan (in the form of BT) to unexpected disturbances
and partial observability. The primary focus is to enhance the
given offline nominal plan during runtime, while our approach
can efficiently leverage such behaviors with the proposed task
and motion planning and execution framework.

Many of the works in this section are complementary to

4

our proposed framework. TAMPER can efficiently reason over
long-horizon task and motion planning problems where partial
groundings exist due to lack of full knowledge of the real-
world domain. We leverage provided behaviors (see definition
in Sec III-B), which can be in the form of these powerful
online local recovery policies, to ground individual actions
where grounding gaps exist.

C. Learning-based Methods

Machine learning techniques have been leveraged to
learn abstract hierarchical policies for various robotic tasks
from human-designed reward functions or expert demonstra-
tions [35], in the form of Finite State Machines or BTs [36].
However, they usually consider motion planning as an online
module that does not fail. Since the completeness of planning
for high-DoF robotic arms in complex scenes cannot be
guaranteed, we inherently reason over motion planning failures
as constraints in line with other typical TAMP methods.

Some learning-based methods aim at learning the grounding
itself, applied to recover symbols that permit planning using
skills [37] or LTL expressions [38]. Our focus is on problems
where grounding functions might exist but cannot be applied
due to uncertainty or insufficient information.

Some works combine Reinforcement Learning with TAMP
planners to adapt to unseen environmental dynamics with
mobile robots [39], or use unsupervised learning to collect
data and predict feasibility of task plans in domains where
execution may fail [40]. To address problems where the
mapping between symbolic abstraction and real-world sensor
data is hard to define, the approach in [41] learns both the
high-level model to predict the symbolic state, and the low-
level control policies for execution. Some work looks into
the problem of aquiring neuro-symbolic skills given symbolic
predicates through learning from demonstration [42]. To help
with gaps in grounding unseen objects, another work aims at
learning object-centric representations from RGB images for
specific manipulation tasks, where the execution is composed
with given primitive skills [43]. There also exist several
deep Reinforcement Learning approaches that let the robot
learn skills for manipulation [44] like screwing the cap of a
bottle [45], etc. Acquiring such skills is not the focus of this
paper. Our framework can readily Learning-based methods are
hard to scale to general longer-horizon manipulation tasks that
TAMP planners excel at solving [44]. Also, simulation data
is necessary because acquiring a large amount of real-world
data for robotic manipulation tasks is difficult and expensive.
But a simulator might not be a perfect model of the real
world, presenting challenges in applying the policies learned in
simulation to real robots, known as the sim-to-real gap [46].
Some methods address this problem, but mostly only focus
on recovery from failures caused by unmodeled dynamics,
physical interactions, or system errors [13], [29].

Again, many of the powerful learning-based local policies
in this subsection can be leveraged as input behaviors for
TAMPER to ground individual actions where grounding gaps
exist.

III. PROBLEM FORMULATION

We introduce the typical formulation of TAMP in sec. III-A,
and then extend the formulation to the problem we aim to solve
in sec. III-B.

A. Task and Motion Planning

Task Planning: Task planning is defined over a domain DTP

that consists of
• a finite set of states S , where each state s ∈ S is defined

over a set of boolean state variables P = {p0, p1, ..., pn},
i.e., s ∈ 2P .

• a finite set of actions A that allow transition from one
state that satisfies the action’s pre-conditions (denoted as
pre(a) ⊆ S) to another state that satisfies the action’s
end-effect (denoted as eff(a) ⊆ S).

• a finite set of constraints Φ, where each constraint ϕ is
a logical assertion indicating an action cannot be taken
from a set of states, i.e., {s1, s2, ...} ⇒ ¬a. Please refer
to [1] for details.

• an initial state sinit ∈ S ,
• and a finite set of goal states Sgoal ⊆ S .
The solution to a task planning problem is a task plan T

which is a sequence of actions a0, a1, ..., al. Each action ai
transitions from its state si ∈ pre(ai) to si+1 ∈ eff(ai),
where s0 = sinit and sl+1 ∈ Sgoal. The task plan must also
satisfy all the constraints. Formally, ∀i, ∀ϕ ∈ Φ, ai ⊨ ϕ.
Motion Planning: The motion domain DMP describes a d
degree of freedom (DoF) robot defining a configuration space
X , a subset of which is valid Xfree ⊆ X ⊂ Rd. A trajectory
is a time parameterized curve π : [0, 1] → Xfree, which is
called a solution to a motion planning problem between a
start x0 ∈ X and a goal x1 ∈ X if π(0) = x0, π(1) = x1. It
is typically assumed that it suffices to find a geometric path
πi for the robot to ground an action ai into robotic motions.
The validity of these motions, the corresponding Xfree depend
on the geometric components of the workspace like static
obstacles and poses of movable objects.
Task and Motion Planning (TAMP): An instance of a TAMP
problem includes an initial state s0 and a set of goal states
Sgoal. TAMP is the problem of finding a feasible n-step task
and motion plan T = (⟨a0, π0⟩, ..., ⟨an, πn⟩), where a0, ..., an
is the task plan that satisfies the task planning domain and
successfully transitions to a goal state sn ∈ Sgoal. Each
discrete action ai transitions from state si to the result state
si+1 and corresponds to a feasible motion plan πi.

Notably, the geometric feasibility depends on not only
the static geometric parts of the environment but also task-
dependent aspects like object or environment interactions or
task-specific properties or constraints.
Execution after Planning: Once a feasible task and motion
plan is computed, in open-loop execution the motion plan can
then be sent to controllers which move the robot in the real
world. This executes the computed plan.

Such open-loop execution succeeds on the real robot when
the computation and planning used models of the world that
closely matches the real world and the robot controller is
accurate. A successful open-loop execution is expected to

5

show little deviating from the computation of the planner, as
illustrated in Fig. 4a.

The focus is shifted to scenarios where the computation
and open-loop execution of task and motion plans can prove
insufficient to successfully complete the task during robot
execution. In contrast to open-loop execution, interleaving
planning and execution alongside combined reasoning across
both presents a more powerful paradigm. We formulate the
problem where both planning and execution for task and
motion goals are under consideration.

We are interested in TAMP problems where we do not
have enough information of the world, or in other words,
the assumption of a perfect model of the world does not
hold. In such cases, some of the symbolic states and actions
may remain partially grounded, and real-world execution is
necessary to obtain more information to fully ground and
execute such actions.

B. TAMP for Execution

In this section we define what partial grounding means in
our context, and proceed to expand on the formulation of
TAMP to involve executions.
World State Space: A world state is a vector of all the
attributes that models the world inside planning. This goes
beyond the degrees of freedom of the robot configuration
and can include other properties of the world relevant to
the problem. The world state space W can include different
continuous or discrete state spaces W = Xrobot × Xobject1 ×
...× Xproperty1 × ..., where Xrobot is the configuration space
of the robot, Xobject1 typically describes the SE(3) pose of an
object, and Xproperty1

can describe a property of the world
that is relevant to the task (e.g., whether the table is clean or
dirty, or whether the drawer is open or closed).
Grounding Symbolic States and Actions: Grounding is
the value assignment of all the symbolic variables in an
expression. In the context of TAMP, each symbolic state s
can be fully grounded to a set of attributes describing the
world state. This grounding operation can create a one-to-
many mapping to a set of (usually infinitely many) possible
world states, G(si) ⊂ W . Fully grounding a symbolic state
si means the state is mapped to a single world state wi.

In a task plan, from a state si that is grounded to wi,
grounding a symbolic action ai describes how the robot
reaches the state si+1 that follows.

To compute a trajectory for the transition ⟨si, ai, si+1⟩ using
a typical motion planner, the grounding process first constructs
a motion planning query. The start configuration of the query
has been determined by the configuration x that is part of wi.
Specifically, x is the configuration where the robot starts the
task (i.e., i = 0), or is the end of the preceding trajectory,
πi−1(1), i > 0. The goal configuration can be computed from
the definition of action ai, the configuration space constraints
(e.g., opening a drawer can require a specific range of orien-
tation of the gripper), and the set of world states G(si+1) that
the system must to transition into, constrained by the symbolic
transition itself. When such a query can be constructed, a
sampling-based motion planner can generate πi. As the robot

Fig. 4. The figure is a visual representation of grounding task and motion
plans during planning and execution. The top row shows the task and
motion plans. The middle visualizes the corresponding trajectories πi in each
configuration space. The bottom shows the corresponding trajectories in the
real-world during execution. The colored spaces (yellow and green) represent
individual symbolic states. a) In the fully grounded case, the real world closely
matches the planning model, which is known. The is typical to classical TAMP
methods. b) In the partially grounded case, the light gray regions indicate that
we do not have good enough knowledge to ground action a0. With a typical
TAMP formulation, we cannot even plan the motion for a0 due to the gap.
With our work, we propose to leave a gap in the task and motion plan (⟨a0, ∅⟩,
which is filled by a behavior b during execution (represented by the orange
circle and dotted line).

moves along πi, the corresponding world state also evolves. In
the presence of inaccurate or incomplete modeling of the world
used during planning, the motion planning query might not be
possible to construct. When computed and executed in the real
world, such a motion plan πi can be unsafe or may achieve
an end world state that is different from the planned wi+1. If
precomputed plans continue execution undeterred, differences
between what was planned and what is executed will propagate
along πj , j > i.

For instance, the typical process of grounding a Pick action
involves computing a grasp pose of the target object, then
computing the goal configuration that achieves the grasp pose,
and finally performing motion planning to this goal. When this
process is part of a task and motion plan, the end world state
after the trajectory πi should satisfy wi+1 ∈ G(si+1). If the
exact pose of the object is not known at the beginning of the
query, si, or it is hard to predict where the object ends up at
the end of the query, si+1, this is liable to cause grounding
failure. Another example involves pushing an object on an
unknown surface. This may result in a stochastic end pose of
the object that is different from what was planned.
Partial Grounding: A symbolic transition ⟨si, ai, si+1⟩ in a
task plan is partially grounded if either, a) a motion planning
query cannot be constructed and computed, or b) the end world
state of executing πi can differ substantially from the wi+1

that was planned. Such a grounding failure corresponds to
a grounding gap in the task and motion domain causing an
empty trajectory (πi = ∅) in a task and motion plan.
Behavior: A behavior b is a closed-loop module that controls
the robot joints and perception systems and is capable of
reasoning during execution. Each behavior corresponds to
some symbolic action and if successful can execute real-robot

6

TABLE I
GLOSSARY OF TERMS

Terms Definition
DTP Task domain
S, s Set of states and a state in task domain
A, a Set of actions and an action in task domain
Φ, ϕ Set of constraints and a constraint in task domain
DMP Motion domain
X , x Configuration space and a configuration
π Motion plan in configuration space
T Task & motion plan
W , w World state space and a world state
G Mapping from a symbolic state to set of world states
B,b A set of behaviors and a behavior
T Partially grounded task & motion plan

motions for a symbolic transition ⟨si, ai, si+1⟩. A successful
behavior must satisfy: wi ∈ G(si) and the end world state in
execution should satisfy wi+1 ∈ G(si+1), i.e., the grounding
gap is bridged, and the symbolic pre-condition and end-effect
of ai are satisfied. A set of behaviors is B.

The behavior can be thought of as a local policy designed
for a corresponding action. The general framework uses what-
ever behaviors are available and can be attempted during exe-
cution. The implementation can take the form of handcrafted
subroutines, local policy modules, or general architectures
like BTs [47]. They can also be learned controllers [48].
Some design choices are shown in Sec V. Note that the
design of such behaviors is usually domain-specific, and is
not the focus of this paper. The framework is formulated and
presented to admit any of these design choices as long as the
behavior is capable of using online information to compute and
execute a motion for the action. We focus on how we leverage
such behaviors with powerful TAMP solvers to overcome the
grounding gaps, as elaborated in Sec. IV. An example on how
a behavior might fill in a gap is shown in Fig. 4b.
Partially Grounded Task and Motion Plan: Given a task
plan (a0, ..., an), where each ai transitions from symbolic state
si to si+1, and the task plan transitions from the initial state
s0 to a goal state sn ∈ Sgoal, a partially grounded task and
motion plan is

T = (⟨a0, π0⟩, ..., ⟨an, πn⟩)

where actions that can be not grounded are allowed (i.e., πi =
∅ is allowed). In order to be executed, a partially grounded
plan requires

∀πi = ∅, ∃b ∈ B for ai

where a behavior is available for each action that is not
grounded.
Task and Motion Planning for Execution in the Real
(TAMPER): Given a task planning domain DTP, a motion
planning domain DMP, a set of given behaviors B, and a set
of goal states Sgoal, TAMPER is the problem of interleaved
computation and execution of partially grounded task and
motion plans (T) consisting of a sequence of valid actions,
motion, and closed-loop online behaviors that enable the robot
to reach a goal state s ∈ Sgoal in the real world.

IV. METHOD

We propose a framework for TAMPER capable of reasoning
over partial groundings and real-world execution feedback
to solve long-horizon tasks. The framework consists of a
planning layer and an execution layer (Fig. 5). In planning,
we use an existing TAMP planner to plan as much as we can
using the current, incomplete model of the world to discover
motion constraints and find a partially grounded plan with
gaps. During execution, we leverage online behaviors to fill in
gaps in the partial plan and feed back failures from execution
as new constraints, completing only upon real-world success.

A. Foundations: Task and Motion Planning

Consider a standard incremental constraint-based task and
motion planner in Alg. 1, introduced in previous work [1] It
assumes a perfect model of the world is given. The input to
the algorithm is the task planning domain, the initial state, the
goal described as some symbolic expression, and the model
of the world for motion planning.

Algorithm 1: TAMP [1]
Input: DTP, DMP, sinit,Sgoal, world

1 s← sinit; Φ← NoConstraint; T← NoPlan;
// Planning Loop

2 while T = NoPlan do
// Task Planning

3 if T ← TP(s,Sgoal,Φ, DTP) fails then
4 if Φ = NoConstraint then
5 return NoSolution;

6 Φ← NoConstraint;

// Motion Planning

7 foreach ai ∈ T do
8 if πi ← MP(ai, DMP) succeeds then
9 T← T⊕ ⟨ai, πi⟩;

10 else
11 Φ← Φ ∪ CONSTRAINT(ai);
12 T← NoPlan;
13 break;

// Open-loop Execution

14 foreach ⟨ai, πi⟩ ∈ T do
15 EXECUTE(πi)

16 return Success;

An SMT-solver as the task planner supports the incremental-
solving feature, leveraged by many existing planners [1], [49],
[50]. A candidate task plan is a sequence of symbolic actions
(Alg. 1 line 3) which needs to be grounded. The grounding
of action ai creates a motion planning query from the current
world state wi, and computes a trajectory πi using a sampling-
based motion planner (Alg. 1 line 8). Motion planning can
fail for some actions. These are then added as a symbolic
motion constraint (Alg. 1 line 11) to the constraint stack of
the SMT-based task planner, and a new task plan queried. The
incremental solving feature maintains the guarantee of finding

7

a feasible plan with the minimum number of actions. If the
task planner cannot find any alternate plans, it reports that
the problem is either infeasible, or the constraints should be
cleared to start over again with increased motion planning time
budget (Alg. 1 line 12). When the planner successfully finds
a task and motion plan T, it is typically sent to the robot for
open-loop execution (Alg. 1 line 15). This planner serves as a
module in our proposed method, including necessary changes
enabling it to work for grounding steps with knowledge gaps.
The details are reflected in Alg. 2 and explained in Sec. IV-B.

B. TAMPER Framework

We now present our new algorithm (Alg. 2) for task and
motion planning and execution reasoning (TAMPER).

Fig. 5. The TAMPER framework.

We make the assumption
that a set of behaviors cor-
responding to a subset of
actions in the task domain
is assumed to be available
as input. Hence, the input to
Alg. 2 is the task planning
domain, the initial symbolic
state sinit, the set of goal
states that can be encoded
as a symbolic expression,
the model of the world, and
a set of pre-defined behav-
iors. Our framework (Fig. 5)
solves such a problem by in-
terleaving planning and exe-
cution described as follows.

1) Planning: The task planner computes a candidate task
plan from sinit (Alg. 2 line 4). For each action in the plan,
we first check if we can ground it using CANGROUND (Alg. 2
line 10), which is a typical TAMP process that creates motion
planning queries. In manipulation problems, it usually involves
first computing grasp poses of the objects, or placing poses
of the objects, and then computing the robot configurations
achieving these poses as the motion planning goal. Some
examples of the grounding process of the actions that we
use in the experiments are introduced in details in Sec. V.
When CANGROUND outputs false, it is considered that this
action cannot be grounded. For example, if the action is to
pick up some object from the table, but the object is occluded
from the sensor and its pose is unknown, CANGROUND
should output false. Note that here we allow planning with
incomplete models, so we consider that CANGROUND encodes
the confidence on the model of the world. For instance, if the
friction of a surface is inaccurately modeled, the consequence
of a push might not be reliably planned.

If CANGROUND decides that the action can be grounded,
the motion planning query is sent to a sampling-based motion
planner (Alg. 2 line 11). If the motion planner fails to compute
a trajectory, similar to TAMP, the failure is encoded as
a symbolic constraint (Alg. 2, line 16), and pushed to the
constraint stack to compute a new alternate task plan that does
not include the particular action.

Algorithm 2: TAMPER
Input: DTP, DMP, sinit,Sgoal,B, world

1 s← sinit; Φ← NoConstraint; T← NoPlan;
// Planning and Execution Loop

2 while not ISSATISFIED(s,Sgoal) do
// Partially-grounded TAMP

3 while T = NoPlan do
// Task Planning

4 if T ← TP(s,Sgoal,Φ, DTP) fails then
5 if Φ = NoConstraint then
6 return NoSolution;

7 Φ← NoConstraint;

// Grounding and Motion Planning

8 foreach ai ∈ T do
9 ⟨a, π⟩ ← ⟨∅, ∅⟩;

10 if CANGROUND(ai, world) then
11 if πi ← MP(ai, DMP) succeeds then
12 ⟨a, π⟩ ← ⟨ai, πi⟩;

13 else if HASBEHAVIOR(ai,B) then
// Behaviors for Failed Grounding

14 ⟨a, π⟩ ← ⟨ai, ∅⟩;
15 if ⟨a, π⟩ = ⟨∅, ∅⟩ then
16 Φ← Φ ∪ CONSTRAINT(ai);
17 T← NoPlan;
18 break;

19 T← T⊕ ⟨a, π⟩;

// Execution with Behaviors and Feedback

20 foreach ⟨ai, πi⟩ ∈ T do
21 if πi ̸= ∅ then
22 EXECUTE(πi)

23 else if b← BEHAVIOR(ai,B) fails or
T← REPAIR(T) fails then

24 Φ← Φ ∪ CONSTRAINT(ai);
25 break;

26 s← GETCURRENTSTATE(world); T← NoPlan;

27 return Success;

If CANGROUND determines an action ai cannot be grounded
with the current model of the world, we check if any one of
the given behaviors is applicable for ai (Alg. 2 line 13). If
a behavior is available, we add an empty trajectory to the
task and motion plan (Alg. 2 line 14), indicating that the
grounding of this action is deferred to the execution level. To
continue grounding the next action ai+1, we use an optimistic
robot configuration to construct a safe world state heuristically
in the planner as the start state of the next action. In our
implementation, we design a repair strategy to rejoin to any
of the configurations along πi+1 during execution (see the
Sec. V-B for details). If there is no associated behavior, it is
considered a grounding failure, and also encoded as a symbolic
constraint (Alg. 2 line 16), to find a new task plan. The output
of the planning part is a partially-grounded task and motion
plan T, which allows gaps (empty trajectories πi = ∅) to be

8

grounded by the behaviors in execution. Note that if the input
B = ∅, i.e., no behaviors are given, our planner reduces to a
typical TAMP planner [1].

2) Execution: After a partially-grounded task and motion
plan is computed, the execution layer executes the trajectories
in sequence (Alg. 2 line 22). If πi is empty, we execute the
associated behavior for this action ai. A behavior module may
involve online sensing, planning, and execution. We assume a
set of behaviors B are available as input. These can be simple
sequential steps, BTs [47] designed by human experts, local
policies that can be learned controllers [48], etc. The details
of the behaviors that we use are discussed in Sec. V-B.

When the behavior succeeds, online trajectory repair is
performed to join to the next pre-computed trajectory πi+1

using REPAIR (Alg. 2 line 23). Different repairing strategies
exist for various replanning frameworks, and any strategy can
be used here, as long as it joins to one of the configurations
πi+1(τ), τ ∈ [0, 1]. REPAIR returns the updated πi+1 to be
executed next. If πi+1 was also empty, it will be handled by
the next behavior, and REPAIR does not need to update it.

In this work, we do not assume that behavior execution and
the REPAIR module always succeed. The behavior execution
for ai might fail because the necessary information to allow
its successful execution may still not have been discovered
after executing pre-computed trajectories or behaviors of all
the actions from a0 to ai−1. This suggests that we might not be
able to ground ai from the current state, requiring to recompute
a new task and motion plan. The REPAIR following executing
the behavior of ai may fail due to not finding a motion plan to
the initial state of πi+1 (or other waypoints in πi+1, defined
by the actual implementation of REPAIR detailed in Sec. V-B)
within the time limit. This indicates that the execution of the
behavior of ai succeeded in the real world, but the resulting
state of the world might make the next action ai+1 not feasible.
When any of such execution failures happen, similar in spirit
to incremental TAMP, we can encode them as symbolic
constraints (Alg. 2 line 24) for replanning — as opposed to
typical TAMP which replans within the planning loop, we are
replanning within a planning and execution loop. We infer the
current state by combining the previous knowledge as well
as new information from sensing (Alg. 2 line 26). Then, we
return to the planner layer, and replan from the current state
(Alg. 2 line 4). Replanning uses all the constraints we have
discovered from the planning and execution so far, improving
the efficiency of solution discovery and execution.

It is worth noting that in the algorithm we use a symbolic
state s to track the world state, only to keep it concise. All the
state variables (e.g., object poses) are essentially kept track of
throughout the framework for both planning and execution.

Note on Planning vs. Execution Trade-off: For a typical
TAMP planner [1], it always calls the task planner to find an
alternate candidate plan if it fails to ground an action. In our
proposed algorithm, we prioritize using given behaviors when
an action cannot be grounded, rather than relying on the task
planner to compute another candidate plan (Alg. 2 line 13).
Similar to TAMP methods [1], [2], [11], a model of the world
(domain) is available to plan over within TAMP as well as in
the behaviors. If the execution is inconsistent with the domain

and errors in the pipeline induce unrecoverable dead-end states
(where the goal becomes unreachable), such execution will
trigger task failures. Note the proposed method still operates
within an available and accurate task domain, while expanding
the class of problems we can address using an enhanced
paradigm built on classical TAMP. This trade-off is discussed
in details in Sec. VII. A discussion on theoretical guarantees
such as probabilistic completeness in the domain combining
planning and execution is also presented in Sec. VII.

C. Necessary Assumptions and Modules

We present the considerations that our proposed framework
relies on to extend the applicability of traditional TAMP
(Alg. 1), where TAMP typically assumes open-loop exe-
cution [1], [2], [51]. Notably, many of these assumptions
are not unique to the proposed approach and are known to
come up when typical TAMP methods such as Alg. 1 have
been implemented in practice [6], [52]. We argue that these
assumptions are reasonable and necessary because without our
framework, the class of problems we study in this paper either
cannot be addressed at all, lead to infeasibility, or yield poor
empirical performance (as demonstrated in Sec. VI).
• We assume the set of behaviors is provided as input accom-

panying the specific problem domain. How the behaviors
can be more efficiently designed or learnt based on the
execution results of the proposed framework is left for future
work with some discussion in Sec. VII.

• Each symbolic action is associated with provided domain
knowledge on an evaluation of the CANGROUND function.
This knowledge is encoded as a part of CANGROUND. The
availability (and success) of such a module is a common
assumption in typical TAMP methods, which rely on robust
or well-modeled perception and execution modules. It is
either the case that the world state is known and actions are
assumed to be deterministic [1], [51], [2], or it is assumed
the robot knows that stochasticity exists in the domain
and the TAMP problems are solved based on some known
models of uncertainty [11], [13], [4]. In this work, we can
address problems where the perception fails or when models
of uncertainty are unknown or inaccurate. This is possible
using execution-level behaviors that are available and perfor-
mant across these grounding failures. The flexibility of the
proposed framework comes at the behest of having access
to the CANGROUND function that knows what is not known
or cannot be grounded. Typically such information might
already be readily available in TAMP implementations —
consider the case where a pose estimator is invoked for an
object in the planning domain and reports no detection, or
the case where no robust simulator exists for grounding a
symbolic action. Such failures occur but are not addressable
by a standard TAMP framework.

• The framework needs a REPAIR module during execution
to be deployed after the completion of a behavior to rejoin
the precomputed task and motion plan. Our experiments
show that this module typically managed to use motion
planning to rejoin the subsequent trajectory. When it fails,
the framework reverts to TAMP replanning [5] within the
high-level loop of Alg. 2.

9

Fig. 6. Horizontal Stacking Benchmark: The task is to move the objects to
the goal positions. The initial poses of the objects are designed to have some
occlusion. Strict ordering constraints exist because smaller objects cannot be
grasped in the presence of a nearby larger object.

V. REAL-WORLD BENCHMARKS AND DESIGN CHOICES

We focus on the evaluation of our method on real-world
scenarios. In this section we introduce two scenarios and our
necessary design choices dictated by the target scenarios.

A. Benchmarks

Our real-world experiments are performed on a Fetch robot
with an RGBD sensor mounted on its head and objects from
the YCB dataset [53] and the HOPE dataset [54]. Vicon
Cameras are used for pose estimation of the obstacles such
as the table and the drawer. A deep learning-based perception
module (DOPE [55]) is used to detect the objects. The task
planner is implemented using Z3 planner [7], and the motion
planner is RRT-Connect [56] via Robowflex [57].

1) Horizontal Stacking: As shown in Fig. 6, there are three
objects on the table with known geometric models. The initial
object poses are designed to create occlusions for the camera.
The goal is to move all the objects to the goal positions, which
are explicitly specified to allow only one order of placement. If
a large object is placed to its goal position first, the geometry
blocks the robot arm from placing a smaller object to its goal
position. The available actions are Pick and Place.

2) Kitchen Arrangement: We add a drawer and a shelf to
the scene (as in Fig. 7). Initially, one object is in a closed
drawer, and two objects are on the table. When the small object
is on the shelf, it can only be picked from its side. When the
large object is close to the shelf, it cannot be picked from any
direction. To address this challenge we define a Push-Pick
action. Grounding it involves first computing the motion to
push an object away with a distance, and then computing the
motion of picking. We also define an Open action that opens
a drawer, where grounding requires computing trajectories to
approach and pull the drawer handle. The goal is similar to
the Horizontal Stacking, but on the shelf. The available actions
are Pick, Place, Open and Push-Pick.

B. Framework Design

Here, we particularly focus on how we design the execution
layer of the framework. Note that the following design choices
are modular and can be replaced by other options. Such design
efforts help to address realistic problems.

1) Symbolic Encoding: Some previous works assume a
discretization over the workspace into grid locations [1], [49],
where each location is associated with a different symbol,
which makes the state space unnecessarily large. We choose

Fig. 7. Kitchen Arrangement Benchmark: Move the objects to the goal
positions. The starting position of one of the objects is inside the drawer. In
this case, there is both occlusion and uncertainty in execution outcomes.

to only explicitly encode the regions/locations of interest
into different symbols, which is a common choice in TAMP
literature [51], [11], [2]. For a large support surface like the
table, we do not discretize it but instead only assign a single
symbol to it. Such an encoding is also helpful to gain efficiency
dealing with partial models. For example, even the pose of an
object is unknown, its symbolic state can be captured by a
single predicate ONTABLE(). We encode the essential ma-
nipulations such as Pick, Place, Push, and OpenDrawer
as symbolic actions. Sensing is not explicitly encoded as an
action, even though it is critical for the benchmark problems
that have partial groundings due to occlusions. Instead, sensing
is performed online in the behaviors, which avoids inflating
the state and action space. Our framework balances the trade-
off of designing a more complicated abstraction model versus
designing a more powerful local behavior. Which one is better
depends on the actual problem to be solved.

2) Occlusion Model: Since we purely rely on point cloud
sensors to get geometric information of the real world, we
address having access to partial observations due to occlusions,
etc. To perform motion planning in such real-world manipu-
lation problems, naive strategies can either assume there is
nothing to avoid in the occluded area (most optimistic), or
to perform collision-checking assuming the occluded area is
fully occupied by something (most conservative).

In our experiments, we use a parametric model of the
occlusion inspired by [58]. Given an input point cloud C, we
perform ray-casting of the points from the camera viewpoint
to get a new cloud Cr where the occluded parts are also filled
with points. Then, we crop out the points that correspond
to the known objects (the objects that are recognized by the
perception modules), and get the clusters that correspond to
each object o ∈ O. Then, the occluded geometry caused
by an object o1 can be represented by the set of clusters
{C1

o1 , ...,C
m
o1}. We compute the centroid of each cluster, and

shrink the cluster with ratio ϵo1 ∈ [0, 1]. When the ratio
ϵo1 = 0, it is the most optimistic representation, as it means
there is nothing in the occluded area. When ϵo1 = 1, it is
the most conservative representation, assuming the area is
fully occupied. We use the same ϵ = 0.6 for all occlusions.
Fig. 8 (top) shows the side view of our occlusion model with
three different ϵ. Fig. 8 (bottom) shows a visualization of our
occlusion model in occupancy grids [59]. Such an occlusion
model is used in both the planning and the execution layer.

3) Grounding Modules: There are often cases that a task
plan requires placing objects at intermediate locations. Choos-

10

ing the placement poses effectively and feasibly is important
in highly symbolically constrained problems. We encode the
whole table surface as a region with a single symbol as-
sociated. Therefore, we need a placement location sampler
to ground the Place action. We perform uniform sampling
within the robot’s reachability area with certain constraints that
take into account our occlusion model—avoiding intersections
between the placement pose’s occlusion model and the point
cloud’s occlusion model. To get configuration space goals, we
sample valid inverse kinematic (IK) solutions, where we use
the standard IK solver in MoveIt [60]. The grasping problem is
not the focus of the work. Where the object mesh is available,
predefined axis-aligned grasps of objects are used. When any
of grounding modules cannot find a feasible value with a given
time limit, it is considered as grounding failure and should be
encoded as a symbolic constraint.

4) Behaviors: All of the following behaviors are expert-
designed, but they can also be learned policies, etc. Each
behavior is executed step by step. If the execution of any
step fails, it stops execution, and the failure is encoded as
a constraint to trigger task-level replanning (Alg. 2 line 24).

We use the following behavior for Pick in all benchmarks.

Pick Behavior

1. Invoke DOPE [55] to detect the pose of the object.
2. If the object that we want to pick is detected compute
a grasp, otherwise return failure.
3. Perform motion planning online and proceed to
execution to grasp object.

We use the following behavior for the Push-Pick action
in the Kitchen Arrangement benchmark, which first pushes the
object and then picks it up.

Push-Pick Behavior

1. Perform online constrained motion planning and
execution to horizontally push the object along one
of its axes with a fixed distance.
2. Use DOPE to detect the pose of the pushed object.
3. Compute axis-aligned grasp from its updated pose.
4. Perform motion planning online and proceed to
execution to grasp object.

For the behavior of OpenDrawer, we design a sequence of
key configurations parameterized by the pose of the drawer and
plan and execute it online. The behaviors can be implemented
in several ways. For the above behaviors, we use sequential
scripts. We use Behavior Trees [47] to implement the behavior
in the demo described in Sec. VI-C. If the behavior fails, a
constraint is fed back to the framework to compute a new
partially grounded task and motion plan (Alg. 2 line 4).

5) Repairing Strategy: As discussed in Section IV, after the
execution of a behavior b(ai) of action ai, we try to join to the
pre-computed trajectory πi+1 of the next action. Any repairing
strategy [61] can be used as long as it plans for a path to one of
the configurations in πi+1, i.e., πi+1(τ), τ ∈ [0, 1]. Note that

Fig. 8. (Top) Our parameterized occlusion model when it is (top-left) most
optimistic, with ϵ = 0, (top-middle) parameterized by ϵ ∈ [0, 1], and (top-
right) the most conservative ϵ = 1. (Bottom) shows the real RGBD sensor.
a) RGB camera input. b) The side view of the scene (not available to robot).
c) Point cloud detected by the camera (rotated to illustrate the occlusion). d)
An example of our occlusion model shown in octomap with ϵ = 1.

back in the task and motion planning stage, an initial state
must be constructed to plan for πi+1. Typically, any feasible
state can be used since we only need to rejoin to one of the
configurations in πi+1, not necessarily only to πi+1(0). We
choose to build the state from a robot configuration where the
links are away from the domain-specified task space region,
which is effective in practice. Fig. 14a shows an instance
where the arm is raised away from the drawer and the table.

Our REPAIR strategy is to always try to join the first config-
uration πi+1(0). If this fails, then plan to rejoin πi+1(1). It is
possible that the geometries of the world change sufficiently
and repair fails (or subsequent trajectories become infeasible).
Failure here triggers replanning with the updated state.

VI. RESULTS

In this section we report our empirical performance using
data which has been exclusively collected from real-robot
experiments. More than 40 real-world physical trials have been
used to compare our method with a replanning baseline. It has
to be stressed that the each experiment involves many-step
planning and execution attempts, as well as multiple replan-
ning tries upon sensed environment updates. Real-robot trials
prove the most accurate, albeit more challenging and time-
consuming, reflection of performance, where we demonstrate
clear performance benefits of our approach.

To promote replicability in other real-world setups as well
as simulated ones, we share the experiment setup information
from our benchmark trials 1, including object poses, point
clouds, RGB images, and domain models. This is included
in an open-source dataset directed towards real-robot TAMP
applications, which we believe is one of the first of its kind.

A. Evaluated Methods

1) (Base) Closed-loop TAMP Algorithm: This baseline is
implemented based on the method in [5]. The overall goal is
given, which may involve objects that are not observed yet.
It extracts a subgoal that only involves the observed objects,

1Videos of all experiments are at: https://kavrakilab.org/2023-pan-tamper/

https://kavrakilab.org/2023-pan-tamper/

11

and greedily plans for this subgoal. Each time a TAMP plan
is executed, it calls the perception module again, and plans
for a new subgoal given new observations, until the task is
completed. To ensure a fair comparison the baseline shares
the same modules as the proposed method wherever it is used,
like the task planner, motion planner, sampler, etc.

2) (Ours) TAMPER: The proposed framework and design
choices described in Sec. IV and V.

B. Benchmark Results

Fig. 11 summarizes the start and end of the 10 problems
in Horizontal Stacking, and Table II shows the planning time
and real-world execution time. The first row (Plan-BE) shows
how much time is spent in task and motion planning prior
to the execution stage (i.e., the planning loop presented in
Alg. 2 from line 3 to 19 encountered the first time). The
second row shows how much time is devoted to planning
after execution starts. It consists of both a) task and motion
replanning, if triggered, and b) motion planning within the
behaviors and the REPAIR module (Alg 2 line 23). The third
row shows how much time is devoted to sensing modules after
the execution begins. The fourth row exhibits the total time
spent on executing trajectories (both the pre-computed ones
and the online-computed ones in the behaviors) on the robot
controllers. The fifth row is the sum of the numbers shown
in the four rows above. The last two rows show the number
of object interactions during solving the problem instance
and whether it successfully accomplished the goal. In this
problem, the placement of the objects introduces ordering
constraints since the robot cannot interact with the smaller ob-
jects while the larger objects are nearby. The relative size and
position of the objects also introduce gaps due to occlusion. In
the 10 scenarios, the proposed method executed 9.2 (± 0.98
one standard deviation) symbolic actions on average with 1.1
(± 0.3) behaviors to complete the task. For all the problem
scenarios, the proposed method takes much less computation
during execution, and has fewer object interactions, with the
overhead of slightly higher planning time before the execution
starts. Counting sensing, planning and execution, the total time
to finish each task is much less compared to the baseline.

This demonstrates our advantage of leveraging TAMP with
even an incomplete model of the real world, which discovers
motion constraints during planning instead of executing ex-
pensive real-world motions to find the same set of constraints.

The start and end states reached by the proposed method
over 10 problems in Kitchen Arrangement are shown in Fig. 12
and the performance is recorded in Table III. Here, one of
the object poses is unknown because it is inside the drawer,
creating a gap. Another object is close to the edge of the
shelf making it not possible to pick it directly. A Push-Pick
action is also made available, that first pushes the object away
from the shelf and then attempts to pick it up. Note that the
baseline encounters catastrophic failure for all the scenarios.
The reason is that the end state of pushing the object cannot
be simulated perfectly in the planning stage. Any gaps here
introduce undesirable interactions along subsequent actions.
Since the baseline only executes the computed motion plans

sequentially, when the pose of the object is different than what
was computed, the trajectory may be in collision (see Fig. 9).

The proposed method leverages an online Push-Pick
behavior to achieve robustness of the execution of this ac-
tion. The proposed method succeeds in all the problems. In
the 10 scenarios, the proposed method executed on average
8.4 (± 0.91) symbolic actions with 2.3 (± 0.46) behaviors.

Fig. 9. An example of failure the
baseline encounters with the Kitchen
Arrangement benchmark. For safety,
this trajectory was not executed. Left:
The moment before the failure, side
view. Right: The catastrophic failure
of gripper-object collision that would
have happened, replicated in RViz from
the plan and object pose detection.

Note: The initial poses
of the objects (Fig 11
and 12) are manually de-
signed to create challenging
task-motion interactions and
gaps. To ensure fair compar-
isons the poses are recorded
and if the same setup is
evaluated again, the poses
are manually lined up by
overlaying the point cloud
and the recorded poses. This
process is similar to the
replication steps alluded to
in the dataset discussion.

Example real-robot run-
throughs of our proposed
method on the Horizontal Stacking and the Kitchen Arrange-
ment benchmarks are shown in Fig. 13 and 14.

C. Grocery Demo

Fig. 10. The robot doing groceries.
The objects must be placed into the
large bag on the right, with the eggs
stacked on the apples. Which paper
bag contains which object cannot be
identified from the initial state. The
robot has to search for and scan the
barcode on one surface of the bag.

In this demo, we show
that our framework can deal
with yet another kind of par-
tial grounding in task and
motion planning problems.
Initially, we have two pa-
per bags containing differ-
ent kind of groceries (see
Fig. 10). The goal is to
move them into the large
paper bag. To avoid crushing the eggs, the bag of apples cannot
be dropped on top of the eggs. Since the two bags look the
same, the robot cannot distinguish between them. We devise
a barcode which can be scanned to deduce whether it is eggs
or apples. We used the following behavior, implemented as a
BT, to enable the robot to check and grasp a bag.

Pick-Point-Cloud Behavior

1. Segment out the point cloud of one paper bag.
2. Compute grasp from point cloud using GPD [62].
3. Move the bag closer to the camera, and keep rotating
it until the barcode (AprilTag [63]) is detected.
4. If the barcode matches the target object, the grasp
action succeeds, otherwise put this bag back and repeat
the above for the next point cloud cluster.

This behavior serves as a local policy that fully grounds
Pick during execution. The proposed framework successfully
completes the task by using the behavior.

12

TABLE II
HORIZONTAL STACKING BENCHMARK (BE IS BEFORE EXECUTION COMMENCES, AE IS AFTER EXECUTION COMMENCES)

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem 7 Problem 8 Problem 9 Problem 10 Mean

Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base

Plan-BE (s) 0.83 0.14 0.69 0.14 7.50 3.24 9.42 0.24 0.76 0.12 0.74 0.09 6.91 3.27 7.28 3.21 7.42 0.23 0.74 0.12 4.23 1.08

Plan-AE (s) 9.22 21.83 9.15 17.62 5.01 18.61 0.18 2.30 9.07 17.18 8.93 23.15 5.06 18.08 0.12 19.59 0.16 2.34 6.91 7.86 5.38 14.86

Sense-AE (s) 5.38 7.06 6.41 3.54 2.36 3.42 0.82 3.75 6.41 6.68 6.17 3.64 2.29 2.71 0.77 3.18 1.02 3.04 4.88 4.20 3.65 4.12

Exec (s) 94.23 172.68 95.19 110.94 94.37 144.19 75.19 99.34 106.65 166.67 95.39 112.74 98.32 151.05 82.46 134.49 76.77 92.87 81.37 94.65 89.99 127.96

Total (s) 109.66 201.71 111.44 132.24 109.24 169.46 85.61 105.63 122.89 190.65 111.23 139.62 112.58 175.11 90.63 160.47 85.37 98.48 93.9 106.83 103.25 148.02

#Grasps 5.00 9.00 5.00 6.00 5.00 8.00 4.00 5.00 5.00 9.00 5.00 6.00 5.00 8.00 4.00 8.00 4.00 5.00 4.00 5.00 4.6 6.9

Success ✓

Fig. 11. The 10 problems in Horizontal Stacking. Each column shows the start (top) and the end (bottom) of TAMPER’s execution in each problem.

TABLE III
KITCHEN ARRANGEMENT BENCHMARK (BE IS BEFORE EXECUTION COMMENCES, AE IS AFTER EXECUTION COMMENCES)

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem 7 Problem 8 Problem 9 Problem 10 Mean

Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base

Plan-BE (s) 7.97 11.60 6.37 10.37 8.08 12.80 9.59 11.67 11.11 9.00 41.37 14.63 35.91 12.49 34.18 23.01 12.56 7.61 12.52 8.08 17.97 12.13

Plan-AE (s) 26.71 0.00 23.46 0.08 32.41 0.08 0.30 0.00 0.27 0.00 1.40 0.08 0.35 0.10 0.32 0.08 0.29 0.00 1.63 0.00 8.71 0.04

Sense-AE (s) 6.56 0.00 5.28 0.00 5.64 0.00 2.66 0.00 1.98 0.00 2.55 0.00 2.61 0.00 2.37 0.00 2.83 0.00 2.41 0.00 3.49 0.00

Exec (s) 91.09 23.68 96.61 30.92 95.92 29.46 102.41 13.63 106.99 22.30 96.51 59.05 95.48 57.81 95.19 69.87 114.84 13.58 108.40 13.79 100.34 33.41

Total (s) 132.33 35.28 131.72 41.37 142.05 42.34 114.96 25.3 120.35 31.3 141.83 73.76 134.35 70.4 132.06 92.96 130.52 21.19 124.96 21.87 130.51 45.58

#Grasps 5.00 1.00 5.00 1.00 5.00 1.00 5.00 1.00 5.00 1.00 4.00 2.00 4.00 2.00 4.00 2.00 5.00 1.00 5.00 1.00 4.7 1.3

Success ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

Fig. 12. The 10 problems in Kitchen Arrangement. Each column shows the start (top) and the end (bottom) of the execution of TAMPER in each problem.
Since the execution outcome of the push is stochastic, we run each scenario multiple times. From left to right, columns 1-3, 4-5, 6-8, and 9-10 show four
different starting poses with either 3 runs or 2 runs each. Note that in all scenarios, one object is initially inside the drawer.

D. Real-Robot TAMP and Execution Dataset

We provide our real world benchmarking pipeline as well
as a dataset of our runs of all the benchmarking problems 2.
The Robot Operating System (ROS) [64] is required to run
our pipeline. We built a pipeline to record the poses of all the
involved objects and obstacles that are relative to the robot
frame. To replicate a problem with the real robot, we can
visualize the initial poses of the objects in RViz [65] in the
robot frame. For any object without an accurate model, a
bounding box is necessary to replicate its pose. Finally, we
need to manually move around the real-world objects and/or
the robot to match the published objects. We recorded the
real time running data of our method on the benchmarking
problems discussed in this section. The data are ROS-bags
that can be replayed in simulation.

2Available at: https://github.com/KavrakiLab/tamper-data

VII. DISCUSSION

This work introduces a task and motion planning for execu-
tion in the real (TAMPER) framework that addresses realistic
scenarios where the symbolic domain might be known but
the geometric knowledge of the world has gaps which often
cannot be resolved before execution begins. This work has
pushed the notion of the TAMP paradigm into the execution
layer by addressing the incomplete TAMP domain during
planning. The power of traditional task planning and motion
planning is applied wherever information is known, and a
partially grounded task and motion plan is constructed with
gaps. These gaps are bridged during execution using closed-
loop behaviors, which are assumed to be input and can be
implemented using hand-crafted subroutines, behavior trees,
or learned controllers. Information can then be fed back as
execution constraints to the framework to potentially replan.

https://github.com/KavrakiLab/tamper-data

13

Fig. 13. An example run of the proposed method on the Horizontal Stacking benchmark. A successful use of an online behavior is highlighted in green. a)
The robot plans with only sensing the front object, discovers the geometric constraints of the goal (i.e., planning with the object models, the task and motion
planner finds that a smaller object cannot be placed to its goal after a bigger object is already placed there), and finds out that the behavior of picking up the
other two objects fails from this state because they cannot be observed by the head camera. b) The robot replans with the constraints and executes the first
action of moving the front object. c) The behavior of picking up the small object fails again in execution because it is still occluded by the middle object
and cannot be observed by the head camera. d) The robot replans again, and moves the middle object away. e) The start state of the behavior for picking up
the small object. Here the small object can be observed by the head camera. f) The online execution of the behavior for picking up the small object succeeds
and the behavior finishes with the robot grasping the object. g) The robot successfully rejoins to the pre-computed trajectory of the next Place action. Then
it proceeds to the open-loop execution of pre-computed trajectories to move the other objects to the goal.

Fig. 14. An example run of the proposed method on the Kitchen Arrangement benchmark. The successful uses of an online behavior are highlighted in green.
a) The robot plans with only sensing the front object, discovers the geometric constraints of the goal, and finds out that the behavior of picking up the small
object fails from this state. b) The robot opens the drawer. c) The behavior of picking up the small object fails again in execution, as it is still not revealed.
The robot then replans and executes the online behavior of pushing and picking up the front object. d) The robot executes the pre-computed trajectory of
placing it at an intermediate location. e) Online execution of the behavior for picking up the small object which is now revealed. f) Open-loop execution of
placing the small object on the shelf. g) Online execution of the behavior of picking up the object from the drawer. h-i) Open-loop execution of pre-computed
trajectories to move the objects to the goal.

The TAMPER framework overcomes the limitations of
traditional TAMP solvers, which need all the information
about the TAMP domain to be known during planning, as
well as more recent techniques which either decouple the
task-motion problem, or only address fully defined but partial
TAMP domains incrementally using replanning. The real-
world data is accumulated during our experiments is also being
shared in the form of a dataset to allow broader accessibility
to realistic problems and operational sensing data, and enable
researchers to recreate or evaluate the studied problems.

The current work also opens up a lot of interesting points of
discussion. The proposed framework has been presented from
the point of view of expanding the domain of applicability
of traditional TAMP methods, which have grown popular as
a powerful and general long-horizon planning paradigm. To
endow the power of execution robustness, the availability of
specialized behaviors is assumed as input. Although this has
been demonstrated to be reasonable for a suite of benchmarks
and demonstrations, it is definitely an open problem— how
can behaviors be generated automatically; how can we actively
discover the needs of generating the behaviors during real-
world execution; how can behaviors be evaluated; what is
the best way to model behaviors; how many behaviors are
sufficient? The current work opens the door to addressing these
questions in the future towards more complex compositional,
extensible, and targeted robotic frameworks that are designed
to be effective in the real world.

Our framework shows a trade-off between re-computing a
new task plan upon grounding failure and leaving it as a gap
in the task and motion plan to be filled by a behavior. We
choose to prioritize using a behavior to fill the grounding gap
rather than finding a new task plan. Note that although the
execution of the behaviors is not guaranteed to succeed, such
constraints can only be discovered after real-world executions,
and discovering them may be crucial to eventually solving the
problem. However, there can be cases where computing and
grounding an alternate task plan is more efficient than always
committing to the behavior. For example, if grasping any of
the two objects fulfills the goal, where one is occluded and one
is not, grounding the alternate task plan of grasping the visible
object is much more efficient than trying to use a behavior to
grasp the occluded object and failing. Whether to prioritize
planning or execution effort depends on the specific problem
setting. If the behaviors are expected to be reliable or that
specific action is critical to the feasibility, it might be better
to always try executing a behavior. If there are several feasible
task plans, alternative solutions that do not involve behaviors
can be searched. However, this can be expensive in itself and
is liable to lead to suboptimal task plans. This trade-off is
subject to the needs of the problem.

Another question is the modeling of uncertainty. Gaps
can be seen from the lens of instances of belief uncertainty
modeled in the world. It is of definite interest to explore how
more informed modeling of the underlying uncertainty can

14

be better utilized while preserving performance. For example,
even though it still remains an open problem how to efficiently
model long-horizon manipulation tasks as POMDPs, it would
be interesting to explore how can we combine the proposed
framework which focuses on long-horizon tasks, with the
general POMDP formulation to deal with uncertainty in the
real world in an informed and structured way.

The present work serves as an augmentation of traditional
algorithmic planning approaches into realistic domains, which
have been recently dominated by learning-based techniques,
due to their robustness to real sensing data. Through the
behaviors used in the current work, hooks for incorporating
powerful learning-based grounding mechanisms as well as
local controllers are provided within a high-level framework.
This opens up investigations into the role of learning-based
methods when designed specifically for the proposed paradigm
of robots that reason about tasks, motions, and execution.

An important aspect of traditional TAMP methods has been
their theoretical soundness and guarantees. Typical asymptotic
guarantees which practically demonstrate convergence proper-
ties to either feasibility or optimality become ill-posed when
execution in real-time is introduced. As an example, typi-
cal TAMP methods can achieve probabilistic completeness,
avoiding unrecoverable states by e.g., backtracking [1], [2],
[11], [51]. Such states have to be modeled in the problem
domain to allow reasoning over them. If execution failures
happen leading to unmodeled dead-end states (e.g., glass cup
fallen and broken to pieces), the typical TAMP methods cannot
recover and have to report failure. In this sense, we hold
similar assumptions that our framework avoids the modeled
catastrophic failures by leveraging the provided behaviors
(e.g., the Kitchen Arrangement benchmark in Fig. 9). If dead-
end states exist that are not modeled by our TAMP module
or by the behaviors, we can also only report failure, similarly
to typical TAMP methods. On the other hand, if we assume
that the execution of all behaviors do not lead to irreversible
states in the real-world, the proposed framework achieves
probabilistic completeness if all the planning modules used
are probabilistic complete. For the planning and execution
problem as a whole to express reasonable guarantees, there
is a need to rethink the kind of finite-time properties we can
leverage out of traditional techniques.

The wealth of exciting directions the present work opens up
is testament to the promise held by pushing the applicability
of robotic long-horizon reasoning to completing tasks within
real world execution. The proposed TAMPER framework is a
significant stepping stone towards achieving this goal.

REFERENCES

[1] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An
incremental constraint-based framework for task and motion planning,”
The International Journal of Robotics Research, vol. 37, no. 10, pp.
1134–1151, 2018.

[2] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “PDDLStream:
integrating symbolic planners and Blackbox samplers via optimistic
adaptive planning,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 30, 2020, pp. 440–448.

[3] M. Toussaint, “Logic-geometric programming: an optimization-based
approach to combined task and motion planning,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[4] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox,
“Online replanning in belief space for partially observable task and
motion problems,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 5678–5684.

[5] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett,
“Long-horizon manipulation of unknown objects via task and motion
planning with estimated Affordances,” in 2022 International Conference
on Robotics and Automation (ICRA), 2022, pp. 1940–1946.

[6] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver,
L. P. Kaelbling, and T. Lozano-Pérez, “Integrated task and motion
planning,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 4, no. 1, pp. 265–293, 2021. [Online]. Available:
https://doi.org/10.1146/annurev-control-091420-084139

[7] L. d. Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[8] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” The International
Journal of Robotics Research, vol. 30, no. 6, pp. 678–698, 2011.

[9] Z. Kingston, A. M. Wells, M. Moll, and L. E. Kavraki, “Informing
multi-modal planning with synergistic discrete leads,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 3199–3205.

[10] Z. Kingston and L. E. Kavraki, “Scaling multimodal planning: using ex-
perience and informing discrete search,” IEEE Transactions on Robotics,
vol. 39, no. 1, pp. 128–146, feb 2023.

[11] N. Shah, D. K. Vasudevan, K. Kumar, P. Kamojjhala, and S. Sri-
vastava, “Anytime integrated task and motion policies for stochastic
environments,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 9285–9291.

[12] M. Wells, Z. Kingston, M. Lahijanian, L. E. Kavraki, and M. Y.
Vardi, “Finite-horizon synthesis for probabilistic manipulation domains,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 6336–6342.

[13] T. Pan, A. M. Wells, R. Shome, and L. E. Kavraki, “Failure is an option:
task and motion planning with failing executions,” in 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 2022, pp.
1947–1953.

[14] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelligence,
vol. 101, no. 1-2, pp. 99–134, 1998.

[15] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: online POMDP
planning with regularization,” in Advances in Neural Information Pro-
cessing Systems, C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Weinberger, Eds., vol. 26. Curran Associates, Inc., 2013.

[16] H. Kurniawati and V. Yadav, “An online POMDP solver for uncertainty
planning in dynamic environment,” in Robotics Research: the 16Th
International Symposium ISRR. Springer, 2016, pp. 611–629.

[17] J. K. Li, D. Hsu, and W. S. Lee, “Act to see and see to act: POMDP
planning for objects search in clutter,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016, pp. 5701–
5707.

[18] Y. Xiao, S. Katt, A. ten Pas, S. Chen, and C. Amato, “Online planning
for target object search in clutter under partial observability,” in 2019
International Conference on Robotics and Automation (ICRA), 2019, pp.
8241–8247.

[19] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion plan-
ning in belief space,” The International Journal of Robotics Research,
vol. 32, no. 9-10, pp. 1194–1227, 2013.

[20] A. Adu-Bredu, N. Devraj, P.-H. Lin, Z. Zeng, and O. C. Jenkins,
“Probabilistic inference in planning for partially observable long horizon
problems,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021, pp. 3154–3161.

[21] C. Phiquepal and M. Toussaint, “Combined task and motion planning
under partial observability: an optimization-based approach,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 9000–9006.

[22] K. He, A. M. Wells, L. E. Kavraki, and M. Y. Vardi, “Efficient symbolic
reactive synthesis for finite-horizon tasks,” in Proceedings of the IEEE
International Conference on Robotics and Automation, may 2019, pp.
8993–8999, (Best paper award in Cognitive Robotics).

[23] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in IJCAI’13 Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence. Asso-
ciation for Computing Machinery, 2013, pp. 854–860.

[24] M. Colledanchise and P. Ogren, Behavior trees in robotics and al: an
introduction, 1st ed. USA: CRC Press, Inc., 2018.

https://doi.org/10.1146/annurev-control-091420-084139

15

[25] S. Li, D. Park, Y. Sung, J. A. Shah, and N. Roy, “Reactive task and
motion planning under temporal logic specifications,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 12 618–12 624.

[26] T. Migimatsu and J. Bohg, “Object-centric task and motion planning in
dynamic environments,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 844–851, 2020.

[27] G. D. Giacomo, R. Reiter, and M. Soutchanski, “Execution monitoring
of high-level robot programs,” in Proceedings of the Sixth International
Conference on Principles of Knowledge Representation and Reasoning,
ser. KR’98. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1998, p. 453–465.

[28] M. Hanheide, M. Göbelbecker, G. S. Horn, A. Pronobis, K. Sjöö,
A. Aydemir, P. Jensfelt, C. Gretton, R. Dearden, M. Janicek, H. Zender,
G.-J. Kruijff, N. Hawes, and J. L. Wyatt, “Robot task planning
and explanation in open and uncertain worlds,” Artificial Intelligence,
vol. 247, pp. 119–150, 2017, special Issue on AI and Robotics.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S000437021500123X

[29] G. Coruhlu, E. Erdem, and V. Patoglu, “Explainable robotic plan
execution monitoring under partial observability,” IEEE Transactions on
Robotics, vol. 38, no. 4, pp. 2495–2515, 2022.

[30] S. Lemai and F. Ingrand, “Interleaving temporal planning and execution
in robotics domains,” in Proceedings of the 19th National Conference on
Artificial Intelligence, ser. AAAI’04. AAAI Press, 2004, p. 617–622.

[31] P. Ögren and C. I. Sprague, “Behavior trees in robot control systems,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 5,
pp. 81–107, 2022.

[32] M. Colledanchise, D. Almeida, and P. Ögren, “Towards blended reac-
tive planning and acting using behavior trees,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 8839–8845.

[33] C. Paxton, N. D. Ratliff, C. Eppner, and D. Fox, “Representing robot
task plans as robust logical-dynamical systems,” 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pp.
5588–5595, 2019.

[34] C. Pezzato, C. H. Corbato, S. Bonhof, and M. Wisse, “Active infer-
ence and behavior trees for reactive action planning and execution in
robotics,” IEEE Transactions on Robotics, pp. 1–20, 2022.

[35] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese,
“Neural task programming: learning to generalize across hierarchical
tasks,” in 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2018, pp. 3795–3802.

[36] K. French, S. Wu, T. Pan, Z. Zhou, and O. C. Jenkins, “Learning
behavior trees from demonstration,” in 2019 International Conference
on Robotics and Automation (ICRA), 2019, pp. 7791–7797.

[37] N. Gopalan, E. Rosen, G. Konidaris, and S. Tellex, “Simultaneously
learning transferable symbols and language Groundings from perceptual
data for instruction following,” Robotics: Science and Systems XVI,
2020.

[38] R. Patel, E. Pavlick, and S. Tellex, “Grounding language to non-
Markovian tasks with no supervision of task specifications,” in Pro-
ceedings of Robotics: Science and Systems, 2020.

[39] Y. Jiang, F. Yang, S. Zhang, and P. Stone, “Task-motion planning with
reinforcement learning for adaptable mobile service robots,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019, pp. 7529–7534.

[40] M. Noseworthy, I. Brand, C. Moses, S. Castro, L. Kaelbling, T. Lozano-
Perez, and N. Roy, “Active learning of abstract plan feasibility,” in
Proceedings of Robotics: Science and Systems, Virtual, July 2021.

[41] K. Kase, C. Paxton, H. Mazhar, T. Ogata, and D. Fox, “Transferable task
execution from pixels through deep planning domain learning,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
2020, pp. 10 459–10 465.

[42] T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-Perez, and L. P.
Kaelbling, “Learning Neuro-symbolic skills for Bilevel planning,” in
Conference on Robot Learning (CoRL), 2022.

[43] W. Yuan, C. Paxton, K. Desingh, and D. Fox, “SORNet: spatial
object-centric representations for sequential manipulation,” in 5th
Annual Conference on Robot Learning, 2021. [Online]. Available:
https://openreview.net/forum?id=mOLu2rODIJF

[44] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning:
lessons we have learned,” The International Journal of Robotics
Research, vol. 40, no. 4-5, pp. 698–721, 2021. [Online]. Available:
https://doi.org/10.1177/0278364920987859

[45] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep Visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[46] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep
reinforcement learning for robotics: a survey,” in 2020 IEEE Symposium
Series on Computational Intelligence (SSCI), 2020, pp. 737–744.

[47] M. Colledanchise and P. Ögren, “How behavior trees modularize hybrid
control systems and generalize sequential behavior compositions, the
subsumption architecture, and decision trees,” IEEE Transactions on
Robotics, vol. 33, no. 2, pp. 372–389, 2016.

[48] L. Wang, X. Meng, Y. Xiang, and D. Fox, “Hierarchical policies
for cluttered-scene grasping with latent plans,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 2883–2890, 2022.

[49] T. Pan, A. M. Wells, R. Shome, and L. E. Kavraki, “A general task and
motion planning framework for multiple manipulators,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2021, pp.
3168–3174.

[50] W. Thomason, M. P. Strub, and J. D. Gammell, “Task and motion
informed trees (TMIT*): almost-surely asymptotically optimal integrated
task and motion planning,” IEEE Robotics and Automation Letters,
vol. 7, no. 4, pp. 11 370–11 377, 2022.

[51] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), 2014, pp. 639–646.

[52] M. Toussaint, J. Harris, J.-S. Ha, D. Driess, and W. Hönig, “Sequence-
of-constraints MPC: reactive timing-optimal control of sequential ma-
nipulation,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2022, pp. 13 753–13 760.

[53] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dol-
lar, “The YCB object and model set: towards common benchmarks for
manipulation research,” in 2015 International Conference on Advanced
Robotics (ICAR), 2015, pp. 510–517.

[54] S. Tyree, J. Tremblay, T. To, J. Cheng, T. Mosier, J. Smith, and
S. Birchfield, “6-DoF pose estimation of household objects for robotic
manipulation: an accessible dataset and benchmark,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2022, pp. 13 081–13 088.

[55] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birch-
field, “Deep object pose estimation for semantic robotic grasping of
household objects,” in CoRL, 2018.

[56] J. J. Kuffner and S. M. LaValle, “RRT-connect: an efficient approach
to single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE, 2000,
pp. 995–1001.

[57] Z. Kingston and L. E. Kavraki, “Robowflex: robot motion planning with
MoveIt made easy,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, oct 2022, pp. 3108–3114.

[58] L. Shimanuki and B. Axelrod, “Hardness of motion planning with
obstacle uncertainty in two dimensions,” The International Journal of
Robotics Research, vol. 40, no. 10-11, pp. 1151–1166, 2021. [Online].
Available: https://doi.org/10.1177/0278364921992787

[59] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: an efficient probabilistic 3d mapping framework based
on Octrees,” Autonomous Robots, 2013, software available at
https://octomap.github.io. [Online]. Available: https://octomap.github.io

[60] I. A. Sucan and S. Chitta, “Moveit!” 2013. [Online]. Available:
http://moveit.ros.org

[61] S. Koenig and M. Likhachev, “D*lite,” in Eighteenth National Con-
ference on Artificial Intelligence. USA: American Association for
Artificial Intelligence, 2002, p. 476–483.

[62] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose detection
in point clouds,” The International Journal of Robotics Research, vol. 36,
06 2017.

[63] E. Olson, “AprilTag: a robust and flexible visual fiducial system,” in 2011
IEEE International Conference on Robotics and Automation. IEEE,
2011, pp. 3400–3407.

[64] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
in Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA)
Workshop on Open Source Robotics, Kobe, Japan, may 2009.

[65] H. R. Kam, S.-H. Lee, T. Park, and C.-H. Kim, “RViz: a
toolkit for real domain data visualization,” Telecommunications
Systems, vol. 60, no. 2, p. 337–345, oct 2015. [Online]. Available:
https://doi.org/10.1007/s11235-015-0034-5

https://www.sciencedirect.com/science/article/pii/S000437021500123X
https://www.sciencedirect.com/science/article/pii/S000437021500123X
https://openreview.net/forum?id=mOLu2rODIJF
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364921992787
https://octomap.github.io
https://octomap.github.io
http://moveit.ros.org
https://doi.org/10.1007/s11235-015-0034-5

	Introduction
	Related Work
	Task and Motion Planning
	Reactive Manipulation
	Learning-based Methods

	Problem Formulation
	Task and Motion Planning
	TAMP for Execution

	Method
	Foundations: Task and Motion Planning
	TAMPER Framework
	Planning
	Execution

	Necessary Assumptions and Modules

	Real-World Benchmarks and Design Choices
	Benchmarks
	Horizontal Stacking
	Kitchen Arrangement

	Framework Design
	Symbolic Encoding
	Occlusion Model
	Grounding Modules
	Behaviors
	Repairing Strategy

	Results
	Evaluated Methods
	(Base) Closed-loop TAMP Algorithm
	(Ours) TAMPER

	Benchmark Results
	Grocery Demo
	Real-Robot TAMP and Execution Dataset

	Discussion
	References

