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WebAssembly (Wasm for short) brings a new, powerful capability to the web as well as Edge, IoT, and embedded
systems. Wasm is a portable, compact binary code format with high performance and robust sandboxing
properties. As Wasm applications grow in size and importance, the complex performance characteristics of
diverse Wasm engines demand robust, representative benchmarks for proper tuning. Stopgap benchmark
suites, such as PolyBenchC and libsodium, continue to be used in the literature, though they are known
to be unrepresentative. Porting of more complex suites remains difficult because Wasm lacks many system
APIs and extracting real-world Wasm benchmarks from the web is difficult due to complex host interactions.
To address this challenge, we introduce Wasm-R3, the first record and replay technique for Wasm. Wasm-
R3 transparently injects instrumentation into Wasm modules to record an execution trace from inside the
module, then reduces the execution trace via several optimizations, and finally produces a replay module that
is executable standalone without any host environment—on any engine. The benchmarks created by our
approach are (i) realistic, because the approach records real-world web applications, (ii) faithful to the original
execution, because the replay benchmark includes the unmodified original code, only adding emulation of
host interactions, and (iii) standalone, because the replay benchmarks run on any engine. Applying Wasm-R3
to web-based Wasm applications in the wild demonstrates the correctness of our approach as well as the
effectiveness of our optimizations, which reduce the recorded traces by 99.53% and the size of the replay
benchmark by 9.98%. We release the resulting benchmark suite of 27 applications, called Wasm-R3-Bench, to
the community, to inspire a new generation of realistic and standalone Wasm benchmarks.
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Table 1. A comparison of record and replay frameworks.

PinPlay [43] JSBench [45] Jalangi[50] Wasm-R3 (this work)
Cross-architecture replay v v v
Cross-language replay v v
Accurate replay v v v
Code format native binaries JavaScript JavaScript WebAssembly

1 Introduction

WebAssembly (Wasm) is a portable, low-level code format designed for compact representation
and efficient sandboxed execution. It is primarily used as a compilation target for various source
languages, including C/C++, Rust, and Kotlin, enabling new classes of software to be run in the
browser. Its low-level instructions closely map to hardware instructions, achieving near-native
performance with straightforward compilation techniques. Wasm augments the web platform,
promising to speed up specific components of broader applications [27], as Wasm code often runs
faster than JavaScript for numeric and memory-intensive tasks.

The complexity and diversity of Wasm engines demand robust, representative benchmarks for
proper tuning. On the web, Wasm code is loaded dynamically from URLs or can be dynamically
generated. Thus, code processing time, interpretation overhead, and JIT compilation to native
code contribute to the overall application run time. To deliver fast startup time and high peak
performance, all of today’s web browsers employ multi-tier Wasm engines. For example, V8 and
SpiderMonkey, the engines used in Chrome and Firefox respectively, use two compiler tiers [1, 10],
while JavaScriptCore in Safari uses an interpreter and two compiler tiers. Non-web Wasm engines
often also use multiple tiers, such as the Wizard Research Engine [52] which employs a new in-place
interpreter design and a baseline compiler [53]. Multi-tier engines have complex performance
characteristics and their tiering heuristics need to be tuned on realistic applications to ensure
both startup speed and peak performance are maximized. Tuning these systems requires large,
complex workloads that are representative of real-world applications. In the past, unrepresentative
benchmarks, such as SunSpider for JavaScript [46], have misdirected engineering effort. In one
instance, bad benchmarks led engineers into believing that their performance optimization resulted
in a 13x improvement, when a representative benchmark showed only a 3x improvement [45].

Unfortunately, creating a sufficiently large set of representative Wasm workloads is challenging.
One possible approach might be to port existing native applications to Wasm. However, the lack of
standardized system APIs has made porting or recompiling large native applications difficult, as
efforts like WASI [14] still lack basic facilities, such as signals, sockets, permissions, shared memory,
and device APIs. Moreover, beyond the three major web engines, there are now several non-web
production Wasm engines, which support disparate APIs or only subsets of WASI, making it
difficult to have complex benchmarks with non-trivial system interaction. This deficiency in Wasm
benchmarks compels researchers to either write their own benchmarks or use commonly used
standard benchmark suites with few dependencies, such as PolyBenchC [44] and libsodium [17],
which have already been shown to be unrepresentative of real-world applications [30]. Another
approach might be to extract benchmarks from real-world web applications. However, Wasm-based
web applications consist not only of Wasm modules, but also of a host environment that runs
JavaScript code, interacts with the network, and interacts with the user. These properties make the
web host environment difficult to emulate, which poses a problem for creating benchmark suites
from representative web applications.

Outside of the Wasm context, creating good benchmarks is a long-standing challenge in many
areas of systems. Efforts span virtual machines, operating systems, architecture, vision, and machine
learning [7, 12, 26, 34, 41]. Key considerations are the size and runtime of benchmarks, ease of
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compiling and running them, licensing of the underlying source or binaries, diversity of the
suite, representativeness of chosen benchmarks, and standardized measurement and reporting
methodologies. For nascent and developing domains, writing new benchmarks makes sense, but
for established domains with real-world usage, benchmarks should reflect actual applications to
direct tuning efforts to benefit real-world usage. One such benchmark for Wasm is PSPDFKit [25],
which measures the runtime of different actions of a PDF library. Yet, despite being well-crafted,
this benchmark still depends on web APIs and requires significant effort to disentangle it to run
on other engines. Moreover, creating and maintaining benchmarks like this requires significant
manual engineering effort, so few examples exist so far.

If creating and curating benchmarks requires so much manual effort, why not automate the
process? A promising approach is to automatically record and replay executions of real-world
applications. Indeed, record and replay techniques for several systems and languages have been
proposed, as shown in Table 1. However, each of these techniques lacks in a different dimension.
PinPlay [43] supports recording of execution across multiple architectures, but cannot replay across
different architectures. Language-specific efforts like JSBench [45] and Jalangi [50] are portable
across CPUs and OSes, but only serve one language. Recording JavaScript is challenging; JSBench
cannot record all memory loads, which means the execution at replay might diverge from the
original execution [50]. Moreover, these techniques are not directly applicable to Wasm, and to the
best of our knowledge, there currently is no record and replay technique for Wasm.

To address the lack of realistic benchmarks for Wasm, we present Wasm-R3, the first record and
replay technique for Wasm that enables the creation of benchmarks from executions of real-world
applications. Our key insight is that the design of Wasm modules enforces a clear separation
between imported host functionality and the state and behavior inside a Wasm module, and that
this is a natural boundary for encapsulating a benchmark. Our Wasm-R3 approach consists of
three phases: record, reduce, and replay. To record an execution, the approach transparently injects
instrumentation into Wasm modules and records all interactions with the environment. Because
naively recording all interactions would result in an impractically large trace, Wasm-R3 reduces the
trace via several optimizations. Finally, Wasm-R3 produces a replay benchmark that contains the
unmodified code of the original Wasm module, but factors out the host environment and replaces
it with a replay mechanism included directly in the replay benchmark.

Recording and replaying at the module boundary is akin to techniques for replaying native
binaries at the system-call layer. Yet unlike native binary replay techniques [13, 42, 43], which
often use memory-checkpointing techniques, the diverse host environments and engine offerings
for Wasm demand a more general technique that works with an uncooperative host environment.
The term “uncooperative” here means that the host environment does not provide any support for
record and replay. Instead, Wasm-R3 works without any modifications of the host environment or
the underlying Wasm engine, but instruments a Wasm module so that it records its own trace.

The benchmarks created with Wasm-R3 are portable, i.e., they work wherever Wasm runs.
Since Wasm is gaining adoption across a broad range of contexts, such as Cloud [38], Edge [22],
and IoT [35], Wasm-R3 must work across architectures, operating systems, runtimes, and host
environments. While some record and replay techniques rely on support by the hardware [56], the
operating system [18], or the language runtime system [49], the vast diversity of Wasm means
that no one of these techniques can apply to all Wasm environments. Instead, Wasm-R3 produces
self-contained, standalone Wasm modules that replay their execution faithfully not only on the
engine used to create the benchmark, but on any engine. Moreover, the produced modules include
the unmodified functions from the original Wasm module, only adding replay functions. Since the
technique is primarily additive, the performance characteristics of the original functions are similar.
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module ==  function® global* start’ table’ memory’ import, export  :=  "name"
function == typegn. (import | code) export™ code == (local type,)* instr*
global == type,y (import | init) export* init == instr*
start == idxfyne typeyq == i32 | i64 | f32 | f64
table ==  import’ idxfync" export” typefune = typeya” — typeya”
memory = import’ byte* export* idXfunc) global | local € N
instr == type,q.const value | type,y.load | type,,.store | memory.grow

| call idxgy | call_indirect typefy,. | return | ---

Fig. 1. Excerpt from the abstract syntax of a simplified form of Wasm [32].

We show in experiments that nearly all benchmarks produced with Wasm-R3 spend the majority
of their execution time in the original functions, not in replay code.

Our evaluation applies Wasm-R3 to real-world web-based Wasm applications, demonstrating
that the approach is effective in creating 27 realistic and standalone benchmarks. We show that our
optimizations effectively reduce the size of the recorded trace (by 99.53%, on average) and the size
of the replay benchmark (by 9.98%, on average). The generated replay code accounts only for 0.20%
of the total execution time, and hence, the extracted benchmarks accurately represent the original
application. We release the benchmark suite created by Wasm-R3 during our evaluation, called
Wasm-R3-Bench, to the community, and envision them to serve as a new standard for realistic and
standalone Wasm benchmarks.

In summary, this paper contributes the following:

e We introduce the first record and replay technique for Wasm. It does not require support
from or modification of the Wasm host environment, hardware, operating system, language
runtime, or source compiler.

e We demonstrate the technique via a system which records execution traces of web applications
in any browser and produces replay benchmarks that execute without any host environment—
on any engine.

e We present optimization techniques that reduce trace size and improve replay performance.
For several applications, these optimizations are vital to making our approach feasible at all,
avoiding out-of-memory errors and excessive slowdowns that make benchmarks unrepresen-
tative of the original application’s performance.

o We demonstrate that Wasm-R3 is effective in real-world scenarios by using the approach to
create benchmarks from 27 real-world web applications.

e We make Wasm-R3, associated tools, and the created benchmarks available as open source
https://github.com/sola-st/wasm-r3.

2 Background

In this section, we provide necessary information to describe Wasm-R3. Figure 1 shows an excerpt
of a simplified abstract syntax of Wasm. A Wasm module denotes a single binary file and consists of
functions, global variables, an optional start function, and one table and memory. A function takes
parameters, declares local variables, executes body instructions, and returns a sequence of results.
A global variable stores a single value and can be accessed from all functions and can be either
mutable or immutable. A start function is automatically executed when the module is loaded. A
table maps function indices to opaque references to either extern (host) objects or Wasm functions.
Tables can be used for indirect function calls via the call_indirect instruction. A memory represents
a contiguous, byte-addressable, page-sized mutable array of memory. All of these entities can either
be imported from a host execution environment, specifying a module and name pair, or exported
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Fig. 2. Overview of the Wasm-R3 main phases and components.

under one or more names, allowing them to be accessed externally. Apart from these entities,
modules can include initialization data for tables and memories.

One concept that plays a key role in Wasm-R3 is embedding of Wasm modules into a host
environment. Host environments load Wasm modules, resolve imports and exports between mod-
ules, and provide host functions as imports to Wasm functions. Host functions can access state
outside modules and perform I/O. While the web was the main motivation for Wasm initially, it was
designed to be embedded in multiple environments [27]. Thus, although the web and JavaScript
embedding was the primary one at launch, WASI [14] has emerged as a set of standard system
APIs in non-web use cases. In principle, unlimited embedders are possible due to the environment-
agnostic design of Wasm. After an embedder loads, verifies, and processes Wasm code, it provides
bindings to a module’s imports and creates the module’s storage. The result is an instance, a run-
time representation that contains the state of the module. A Wasm instance interacts with host
environments by calling imported host functions and being called by exported Wasm functions.

Consideration of host functions introduces another important aspect of Wasm for Wasm-R3:
nondeterminism. Since its inception, one of Wasm’s explicit goals [27] has been to provide deter-
ministic semantics across different hardware. However, there are three exceptions: NaN payloads,
resource exhaustion, and host functions. Some Wasm instructions output non-deterministic NaN
bit patterns in the presence of non-canonical input NaNs, as hardware may behave differently and
canonicalizing all NaNs is deemed too expensive. Resources like memory obviously vary from host
to host and computer to computer, so deep recursion or memory.grow might fail at different points,
and of course a host function can perform I/O or even arbitrary updates to a Wasm instance’s
exported state. In this work, we focus on nondeterminism arising from the interaction with host
functions.

3 Approach
3.1 Overview
Figure 2 gives an overview of Wasm-R3. Given a Wasm-based web application, Wasm-R3 executes
the application, possibly with user input, and produces a benchmark that replays that execution
without any user input. Wasm-R3 consists of three phases: record, reduce, and replay.

The record phase can be considered the frontend of Wasm-R3. It takes a Wasm web application
as an input and produces a trace as a result. We assume that the application consists of Wasm
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modules and host code, e.g., in JavaScript. As the first step, Wasm-R3 intercepts the Wasm modules
before they are loaded into the application and instruments the modules with recording logic. Our
instrumentation tracks all function calls and returns as well as all loads and stores to mutable state.
Then, the instrumented Wasm web application is run within the record runtime. While the user
interacts with the web application, each instrumented Wasm module records its own execution
trace. Note that if the input Wasm web application loads multiple Wasm modules, then the record
phase produces one trace for each module.

For complex applications, the traces can grow prohibitively large. Thus, for efficiency, the reduce
phase filters out unnecessary events from the output trace of the record phase. Specifically, it
applies the shadow memory optimization and call stack optimization on the trace. By applying these
optimizations, we only keep the parts of traces that are directly related to the nondeterminism that
occured during execution. Eventually, the reduce phase yields optimized traces as outputs.

The replay phase is the backend of Wasm-R3. It takes the original, uninstrumented Wasm module
and the corresponding optimized trace as inputs and produces a self-contained, executable replay
benchmark. The replay phase does not modify the original module’s functions. Instead, it simply
merges them with generated replay functions to complete the executable replay benchmark. It first
translates the input trace to an intermediate representation, the replay IR. Then, it applies replay
IR optimizations to reduce the size of the IR and ultimately the generated code, ensuring that the
resulting binaries satisfy the size restrictions commonly imposed by engines. Finally, it generates
the replay benchmark from the optimized replay IR. As we discuss in Section 3.4.4, our replay
binary generator supports three different output formats. This approach allows replay benchmarks
to be executed in diverse environments, including web browsers and standalone Wasm runtimes.

The next sections dive into the details of the record phase (Section 3.2), trace reduction techniques
(Section 3.3), and the replay phase (Section 3.4).

3.2 Record Phase

The record phase is responsible for recording the necessary information into a trace for recon-
structing the benchmark that deterministically replays the Wasm web application’s behavior. As
described earlier, non-determinism gets introduced to Wasm applications by functions imported
from the host environment. The record phase thus needs to capture information about function calls
across the boundary between the host environment and the target Wasm module. This includes
side effects to the Wasm module’s mutable state, e.g., the memory section of the Wasm module,
caused by host functions.

The following describes the format of traces (Section 3.2.1) and how these traces are recorded
via instrumentation (Section 3.2.2).

3.2.1 Trace Structure. We define a trace data format that stores all necessary information about
host function execution and their side effects. By defining traces, we effectively decouple the record
phase and replay phase and relay any required data by the fixed format of traces.

Listing 3 provides type definitions of the trace structure. A Trace is a linear sequence of events.
Events correspond to units of behavior that happen during the Wasm app execution and that
possibly involve interaction with host code. There are six types of possible trace events: FuncEntry,
FuncReturn, Call, CallReturn, Load, and Store. The funcidx field in events corresponds to the
function index of the Wasm function. ValType corresponds to Wasm’s four primitive types. A
FuncEntry event corresponds to the start of the function body. This event represents the entrance
to a Wasm-side function, with params storing the arguments given to the function call. Conversely,
a FuncReturn event corresponds to the end of the function body. This event represents the exit from
a Wasm-side function, with values storing the return values of the function. Call and CallReturn
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Trace = Seq<Event>

Event = FuncEntry | FuncReturn | Call | CallReturn | Load | Store
FuncEntry = { funcidx: I32, params: Seq<ValType> }

FuncReturn = { funcidx: I32, values: Seq<ValType> }

Call = { funcidx: I32 }

CallReturn = { funcidx: I32, results: Seq<ValType> }

Load = { memidx: I32,

address: 132,

value: ValType | I8 | I16 }
Store = { memidx: I32,

address: 132,

value: ValType | I8 | I16 }
ValType = I32 | 164 | F32 | F64

W N = ® O N U WN =

Fig. 3. Type definitions of the trace structure.

events are produced by calling and returning from functions imported by a Wasm module. Both
events store the function index of the callee function, with the CallReturn event additionally
storing the returned values. A Load event corresponds to Wasm load instructions. It stores the
memory index in the memidx field, the address in the address field, and the loaded value in the value
field. Similarly, a Store event stores the memory index, address and stored value of Wasm store
instructions.

In practice, we encode the trace in two formats: a textual format and a binary format. The textual
format is a JSON-like representation of the trace, where each trace event is encoded as an object, and
the whole trace is encoded as a list of such objects. For instance, a Load event may be represented
as Load { memidx: I32(Q), address: I32(1000), value: I16(300) }. We use the textual format
for human-reading purposes, such as debugging. In the binary format, each entry starts with a byte
indicating the entry type, so the byte length of the entry is known. We use the binary format in
our implementation to reduce memory usage and for efficient parsing of traces.

3.2.2 Instrumentation. We use an instrumentation-based approach to record interactions between
the Wasm module and the host environment and to store them into traces. To this end, we add
instructions to the Wasm binaries to capture runtime information, such as operand stack values.
Using instrumentation allows us to record traces from arbitrary Wasm-based web applications,
without changing the web browser implementation or depending on features specific to certain
platforms or libraries.

An important property of our instrumentation is that it should not change the original Wasm
module’s semantics. Instead, the instrumented Wasm module serves as a drop-in replacement for
the original Wasm module during recording, with the only behavioral change being the recording
of a trace. To preserve the Wasm module’s semantics during instrumentation, our instrumentation
strategy uses special recorder functions, which take runtime information as input parameters,
records the event into the trace, and return. We define recorder functions for each trace event. For
instance, the recorder function for a load instruction gets memidx, address, value as input arguments
and records the corresponding Load event. Our instrumentation copies the runtime information on
the stack, calls the imported recorder function, and then returns to the original execution flow. By
Wasm’s function call semantics, calling the recorder function will consume only the copied values
from the stack and will not divert the original control flow.
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Event Actual Memory Shadow Memory Action
Address Address
1000 1001 1002 1003 1000 1001 1002 1003
Initialization |LoxAA | oxAA | 0x00 | 0x00 | [o0xAA | 0xAA | 0x00 | 0x00 | Initialize
Store { addr: 1002, value: I8(0x01) } [[oxaa [ oxaa Joxo1 ] oxo0 | [oxaa [oxaa Joxe1 ] oxoo ] Change & discard
call { ...} ['oxaa [ oxaa [ oxo1 Joxo0 | [oxaa [oxaa ] oxo1 Joxoo] Keep
CallReturn { ... } ['oxaa [ oxaa [ oxo1 JoxBB] [oxaa [oxaa ] oxo1 Joxo0] Keep
Load { addr: 1000, value: I8(0xAA) } [oxAA] oxaa T oxoo [ oxoo | [exAAT oxaa [ ox00 Joxo0 |  Discard
Load { addr: 1002, value: 18(0x01) } [[oxaa [ oxAA Joxe1 | oxeB | [oxAA [ oxAa Jox01 | oxoo |  Discard
Load { addr: 1003, value: I8(0xBB) } [[oxaA [ oxAA [ oxo1 JoxBB] [oxAA [ oxAA [ oxo1 JoxBB| Change & keep

Fig. 4. Example of the shadow memory optimization.

3.3 Reduce Phase

The execution of a Wasm web application can produce millions of host interaction events. A naive
approach would quickly run out of time and memory before a replay binary is generated. An
essential component to make Wasm-R3 practical is to reduce the size of traces by filtering out
events that contain redundant or unnecessary information. We call this process trace reduction. A
key insight is that we only need to keep trace events related to non-determinism. For instance,
many of the Store events can be deterministically replayed by the original Wasm module itself.
Thus, we can conclude that Store events are not necessary to replay host-side non-determinism.

In this section, we describe two trace reduction techniques: shadow memory optimization (Sec-
tion 3.3.1), which filters out redundant Store and Load events, and call stack optimization (Sec-
tion 3.3.2), which filters out unnecessary Call and CallReturn events.

3.3.1  Shadow Memory Optimization. Most of the Store and Load events in traces are not related to
non-determinism and can thus be removed. It is not necessary to record all Wasm stores for accurate
replay, as the original code performs the exact same sequence of stores as long as the current state
of the program is the same. Thus, it is only necessary to keep stores related to non-deterministic
behavior, i.e., stores that come from the host. Unfortunately, we cannot directly hook into host-side
stores (e.g., when JavaScript writes into WebAssembly memory), since we only instrument the
application’s Wasm code. However, Load events on the Wasm side can observe when values in
linear memory diverge from what was last recorded, which means they were modified by the host.

Inspired by memory optimization techniques in prior work [43, 50], we apply the shadow
optimization technique to remove unnecessary Store and Load events and keep only Load events
that observes the host-side side effect. The technique maintains a data structure called shadow
memory, which keeps track of the written values to the original Wasm module’s linear memory. By
comparing the loaded value of a Load event and the value stored in the shadow memory, we can
determine if the Load event observes the host-side side effect or not, and discard the unnecessary
events.

Figure 4 illustrates how the shadow memory optimization works. For each step of a Wasm
module’s execution, we illustrate the corresponding trace event, the state of the module’s actual
memory, and the state of the shadow memory. For presentation brevity, we omit the irrelevant
fields in the trace events. In the actual memory states, we represent the parts that are read or
written as gray cells. In the shadow memory states, we represent the parts that are modified or
compared with the loaded values as gray cells.
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Event Call Kind Stack Call Kind Action
Initialization EXT Initialize with EXT
FuncEntry { 1 } Export call Push INT & keep
Call {0} INT Import call Push EXT & keep
FuncEntry { 2 } [[ext T inT ] ext T anT ] Export call Push INT & keep
Call {3} [ext TNt J ext T inT ] Internal call Discard
FuncEntry { 3 } [Ext TNt J ext T InT [ INT | Internal call Push INT & discard
FuncReturn { 3 } [[ext T inT T ext T inT PANT7]  Internal return Pop & discard
CallReturn { 3 } [ext T Nt [ ext T InT | Internal return Discard
FuncReturn { 2 } [[ext T int [ ext ANt Export return Pop & discard
CallReturn { 0 } INT Import return Pop & keep
FuncReturn { 1 } Export return Pop & discard

Fig. 5. Example of the call stack optimization.

We first initialize the shadow memory to contain the same values as the original Wasm module,
by following the Wasm module’s data section definition. The first trace event is a Store of a single-
byte value 0x01 to address 1002. The shadow memory optimization applies the same write to the
shadow memory and discards the event. Then, as a result of the call of an imported function in the
second and third events, the content at address 1003 is mutated. The fourth event is a Load of value
oxAA from address 1000. The optimization first compares the loaded value with the value at the
same address in the shadow memory. Because the values are equal, the optimization discards the
Load event. Similarly, the optimization discards the fifth event. The sixth event is a Load of value
0xBB from address 1003. The optimization compares the loaded value and the shadow memory
value. Here, the values are different, i.e., the value has been mutated as a side effect of interacting
with the host. Our optimization updates the shadow memory value as the loaded value and keeps
the Load event. As a result of shadow memory optimization, only the second, third, and sixth trace
events are remaining, whereas the other, unnecessary Store and Load events are discarded.

3.3.2 Call Stack Optimization. While we record every trace event related to function execution, a
significant portion of them are unrelated to non-determinism. During the execution of a Wasm
module, there are three possible kinds of function calls: export calls, import calls, and internal
calls. Export calls are function calls from the host-side code to functions exported by the Wasm
module. Import calls are function calls from the Wasm module to functions imported from the
host environment. Internal calls are function calls from a function in the Wasm module to another
internal function. Among these three kinds of calls, we do not need to keep track of internal calls
as those can be deterministically replayed by the original Wasm code. Thus, we can safely remove
FuncEntry, FuncReturn, Call, and CallReturn events produced by internal calls. In addition, we can
remove FuncReturn events produced by returning from export calls. This is because the same return
values can be deterministically replayed by the functions defined in the original Wasm module.
We apply call stack optimization to remove trace events produced by internal calls. To distinguish
if an event was produced by an internal call or not, we track function calls in our own call kind
stack. The call kind stack stores INT and EXT objects, which correspond to Wasm-internal contexts
and host-side code contexts, respectively. Similar to conventional function call stacks, our call kind
stack keeps track of calling contexts of trace events. By observing the stack top element and the
next trace event, we can determine if the event was produced by an internal call and discard it.
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Figure 5 illustrates our call stack optimization process. In this example, we assume that the
function at index 0 is the only function imported from the host environment, and any other
functions are internal functions of the original Wasm module. We represent trace events by omitting
unnecesary fields and only annotating the kind of an event and the funcidx field as a number. The
call kind stack column represents the state of the call kind stack at each step. Gray-colored cells
represent objects pushed in the current step, and gray-hatched cells represent objects popped in
the current step. The call kind column represents the kind of the function call produced by the
corresponding trace event and whether the function is being called or returning. The rightmost
column shows which action the call stack optimization performs at each step. The underlined
actions are always performed regardless of the event’s funcidx or the call kind stack top content.
Note that we omitted Store or Load events from the trace for simplicity.

The call stack optimization rules are as follows. We first initialize the call kind stack with a single
EXT object. This represents the outermost host execution context, e.g., JavaScript code which might
call into exported Wasm functions. Then, we iterate over trace events. On a FuncEntry event, we
first observe the stack top. If the top is EXT, then the event was produced by an export call; we keep
the event. If the top is INT, then the event was produced by an internal call; we discard the event.
Finally, we always push INT on the stack. On a Call event, we first check the funcidx field. If the
index corresponds to an imported function, then the event was produced by an import call; we
push EXT on the stack and keep the event. If the index corresponds to an internal function, then
the event was produced by an internal call; we discard the event. On FuncReturn event, we first
pop an object from call kind stack and discard the event. On a CallReturn event, we first check the
funcidx field. If the index corresponds to an imported function, then the event was produced by
returning from an import call; we pop an object from the stack and keep the event. If the index
corresponds to an internal function, then the event was produced by returning from an internal
call; we discard the event.

As illustrated in Figure 5, the call stack optimization discards all events produced by internal
calls. In addition, it discards all FuncReturn events produced by returning from export calls. In the
example, this filters out 6 out of 10 events. The effect on real-world traces is evaluated in Section 5.

3.4 Replay Phase

In the replay phase, Wasm-R3 gets an input trace and generates an excutable, standalone replay
benchmark. In this process, Wasm-R3 uses a replay intermediate representation, or replay IR. We
describe the definition of the replay IR in Section 3.4.1. By first generating a replay IR (Section 3.4.2)
from a trace, we can apply the replay IR optimizations (Section 3.4.3) to reduce the size of the
replay IR. Finally, Wasm-R3 translates this replay IR into one of three different output formats
(Section 3.4.4) and generates a replay binary (Section 3.4.5).

3.4.1 Replay IR. Replay IR is a format designed to represent behaviors of replay functions. Replay
functions are functions that implement the replay mechanism by replaying the return values and
side-effects of host-side functions recorded during the record phase. The goal of the replay phase
is to generate a replay function for each function imported from the original Wasm module. We
utilize the replay IR as a general format that describes the behaviors of replay functions without
depending on specific output formats. Thus, introducing the replay IR effectively divides the problem
of generating replay binaries for multiple output formats into three problems: 1) translating a trace
into a replay IR, 2) optimizing the replay IR, and 3) translating the replay IR to each output format.

We present the definition of the replay IR in Figure 6. An Action corresponds to a single instruction
in the host: ExportCall or MutateMem. An ExportCall represents a function call from the host to an
exported Wasm function. A MutateMem represents a host-side effect of mutating the Wasm module’s
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Action := ExportCall | MutateMem
ExportCall := { idx: I32, vals: Seq<ValType> }
MutateMem := { idx: I32, addr: I32, val: I8 }
ValType ;= I32 | 164 | f32 | f64

Context := Seq<Action>

Function := Seg<Context>

Replay := Map<I32, Function>

~ o gaA w N =

Fig. 6. Type definitions of the replay IR.

function translate(optimized_trace: Trace) -> (Replay, Function):
let GLOBAL_CONTEXT: Context = new Context()
let ENTRY_FUNC: Function = new Seq(GLOBAL_CONTEXT)
let last_context: Ref<Context> = &GLOBAL_CONTEXT
let context_stack: Stack<Ref<Context>> = Stack().push(&GLOBAL_CONTEXT)
let replay: Replay = Map()
foreach event in optimized_trace:
switch event:
case FuncEntry:
context_stack.top().push(new ExportCall(event))
case Call:
let new_context = new Context ()
replay.get(event. funcidx).append(&new_context)
context_stack.push(&new_context)
last_context = &new_context
case CallReturn:
last_context = context_stack.pop()
case Load:
let new_action = new MutateMem(event)
if typeof last_context.last() == ExportCall:
last_context.splice(last_context.length - 1, new_action)
else:
last_context.append(new_action)

0 N O A W N =

NN NN NN 8 a4
O & W N = © © ® N O U & WN = © ©

return (replay, ENTRY_FUNC)

Fig. 7. Trace to replay IR translation algorithm.

linear memory content. A Context is a sequence of actions, which represents the actions executed
during the context of a single function call. Then, we define a Function, which is a sequence of
contexts. Each Context corresponds to the instructions executed by i-th invocation of a host-side
function, where i is the index of the Context in the Function sequence. Finally, we define Replay
as a mapping from I32 numbers to Functions; the I32 numbers represent the function indices of
the functions imported by the original Wasm module, and the mapped Functions represent the
corresponding replay functions.

3.4.2  From Trace to Replay IR. We present the algorithm to translate a trace into a replay IR in
Figure 7. The algorithm gets an input trace and returns a Replay and a Function. The Replay value
corresponds to the map from the imported function indices to the replay functions. The Function
value corresponds to the entry function to the Wasm module; as it does not correspond to a function
index of the original Wasm module, we return it separately from the Replay value.
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We use five variables in the algorithm: GLOBAL_CONTEXT, ENTRY_FUNC, last_context, context_stack,
and replay. The variable ENTRY_FUNC denotes the entry Function. Because the entry function is
executed exactly once, it has only one Context, which is the variable GLOBAL_CONTEXT. The variable
last_context is a reference to a context; it points to the latest context that new MutateMem actions
should be appended to. The variable context_stack is a stack of references to contexts. We maintain
context_stack to keep track of the current host-side function call and push actions into correct
contexts. We initialize last_context and context_stack with GLOBAL_CONTEXT as the entry function
is the first function executed in the whole Wasm web application execution. Finally, the variable
replay stores the Replay object which will be returned. We assume that each Function object inside
the replay is properly initialized with an empty sequence when we access it.

The goal of the algorithm is to fill the Functions in the replay with Contexts and fill the Contexts,
including GLOBAL_CONTEXT, with Actions, so that the return values correctly mirror the host-side
behaviors recorded in the input trace. To correctly mirror the input trace, 1) a correct Action must be
created for each event and 2) the created Action must be inserted to a correct Context. To do this, the
algorithm uses case analysis on each event and properly updates last_context and context_stack.
For a FuncEntry event, it creates an ExportCall action and pushes it to the Context of the current
function. We find the Context of the current function by referring to the top of context_stack in
this case. For a Call event, it creates a new Context object, namely new_context, for this import
call. This new Context object is appended to the Function at the event. funcidx index of replay.
Then, it pushes the reference to new_context onto context_stack and updates last_context. For
a CallReturn event, the current function call is returned, so it pops from context_stack. Then,
by updating last_context to the popped Context object, when we append MutateMem objects to
last_context, it correctly mirrors the fact that the side effect observed by the Wasm-side execution
is caused by the most recently returned host-side execution. Lastly, for a Load event, it creates a
new MutateMem action reflecting the side effect on the memory. Then, to insert this action into the
correct position, it inspects the last element of last_context. In most of the cases, it appends the
new MutateMenm at the last position of last_context. However, if the last action on the last_context
is an ExportCall action, this means that the mutation happened before the corresponding export
call and the side effect was later observed. Thus, it inserts the new MutateMem action right before
the ExportCall action.

3.4.3 Replay IR Optimizations. We apply optimizations on replay IRs to reduce their size. Before
we generate an output replay benchmark, we reduce the replay IR size so that the size of the replay
binary is also reduced. By reducing the size of the replay binary, we address three practical issues.

o First, we produce valid replay binaries that are accepted by web browser engines. Production
web engines impose a common restriction on the size of functions inside the Wasm binary?.
By naively translating Function objects in a replay IR into Wasm functions, the size of
replay functions may exceed the function size limit. To solve this issue, we employ replay
IR optimizations to reduce the number of instructions of each replay function and produce
smaller Wasm replay functions.

e Second, we shorten the compilation time of the replay binaries, which correlates with the
runtime performance of the replay benchmark. A previous study [52] has found out that
the compilation time of Wasm modules significantly impacts the performance evaluation of
a Wasm engine. Since our replay IR optimization techniques reduce the overall size of the
replay binary, we can reduce the impact of compilation time on the performance evaluation
of Wasm engines.

1See, e.g., https://github.com/v8/v8/blob/master/src/wasm/wasm-limits.h.
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1 MutateMem {idx: @, addr: @, val: \08}
2  MutateMem {idx: @, addr: 1, val: \@7}
3  MutateMem {idx: @, addr: 2, val: \06}
4 MutateMem {idx: @, addr: 3, val: \05}
5 MutateMem {idx: @, addr: 4, val: \04} 1 BulkMutateMem {
6 MutateMem {idx: @, addr: 5, val: \03} 2 idx: o,
7 MutateMem {idx: @, addr: 6, val: \02} 3 addr: o,
8 MutateMem {idx: @, addr: 7, val: \@1} 4 val: "\08\07\06\05\04\03\02\01\00"
9 MutateMem {idx: @, addr: 8, val: \00} 5 3}
(a) Replay IR before the optimization. (b) Replay IR after the optimization.

Fig. 8. Memory write merge optimization example.

e Third, we reduce the execution time of the replay benchmarks by reducing the number of
instructions in the final replay function bodies. We achieve this effect by merging mulitple
instructions into a single instruction while preserving the function behavior.

We describe our two replay IR optimization techniques: memory write merge and function split.

Memory Write Merge Optimization. By inspecting replay IRs, we found that Wasm often involves
writing data to consecutive bytes in the Wasm linear memory. Inspired by the memory.init instruc-
tion, which executes bulk writes on multiple bytes, we design the memory write merge optimization
that merges multiple MutateMem actions on consecutive addresses in a single action. To represent
the bulk write, we introduce a new action BulkMutateMem. The BulkMutateMem action has the same
syntax as MutateMem, except that the val field is a number type with no size limit. In theory, the
memory write merge optimization can merge an unlimited number of MutateMem actions into a
single BulkMutateMem action. We translate the BulkMutateMem action into the memory.init Wasm
instruction.

Figure 8 illustrates an example of applying the memory write merge optimization. The left-side
figure is a part of the replay IR before applying the optimization. It is a sequence of eight MutateMem
actions on consecutive bytes. The optimization merges the eight seperate writes in eight MutateMem
actions into a single, 8-byte value in the BulkMutateMem action.

Function Split Optimization. As mentioned earlier, production web browser engines impose a
common restriction on the size of a single Wasm function. We observed that some Function objects
in replay IR exceed that maximum size limit. These Function objects represent functions frequently
called in the Wasm web application execution. For instance, we observed a utility function that
performs a conversion of float64 values to integers corresponding to millions of actions.

To prevent our output replay binaries from being invalid, we employ function split optimizations
on such large Function objects. In the function split optimization, we outline some parts of a
Function object into other Function objects and replace them with calls to the new Function objects.
By setting an appropriate threshold of the Function object size, we maintain each Function object
size below the maximum Wasm function size limit imposed by the web engines.

3.4.4 Output Formats. The replay benchmarks generated by Wasm-R3 in the replay phase consist
of three parts. First, the original Wasm module of the application. Second, the replay code, which
replicates the behavior of the host environment during the record phase. Third, the setup and
instantiation code, which links the first two parts together. The setup and instantiation code fulfills
the imports of the original Wasm module with functions from the replay code and starts the replay
benchmark. The last two parts are generated from the replay IR.
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While the original application code is always in Wasm, we can make different choices for the
replay code and the setup and instantiation code. If the replay code is in JavaScript, the setup and
instantiation code should also be in JavaScript (option “JS"). When the replay code is in Wasm, we
can either statically link the replay code with the original Wasm module into a single, self-contained
binary (option “self-contained Wasm"), or generate JavaScript setup and instantiation code that
loads the replay code and the original Wams module separately (option “dynamic linking"). In the
dynamic linking option, the actual linking between the original Wasm module and the replay code
happens during the instantiation at runtime.

All three output formats are sensible choices. A self-contained Wasm replay is the easiest option
for downstream consumers of the benchmark, as it can be executed in any Wasm engine, including
Wasm standalone runtimes that do not have a JavaScript host environment. We also expect a self-
contained Wasm is the most performant way for replay because it does not involve function calls
across the Wasm module and JavaScript host environments. Hence, we choose the self-contained
Wasm format by default and use it for evaluation in Section 5. However, when the replay code is
kept in a separate Wasm module or in JavaScript, this can be useful to benchmark cross-language
or multi-module interactions. In Wasm-R3, we provide options to select from three output formats,
so users can generate replay benchmarks according to their use cases.

3.4.5 From Replay IR to Output Formats. Once we have a replay IR, the generation of an executable,
standalone replay benchmark is carried out in a straightforward, single-pass manner. For each
Function in the replay IR, we generate a replay function according to the output mode. For JavaScript,
this would be a JavaScript function, and for Wasm, this would be a Wasm function. We then define
a global counter variable for each function to keep track of the current Context. The body of the
generated function consists of a switch statement in the respective language that maps different
counter values to different sequences of instructions, followed by a part that increments the counter
for each invocation. Each sequence of instructions that are translated from a Context is a series of
simple line-by-line translations of Actions in the replay IR to their corresponding instructions in
the langauge. For example, MutateMems are translated to their corresponding store instructions.

4 Implementation

In this section, we describe notable implementation details of Wasm-R3.

Implementation Summary. The implementation of Wasm-R3 amounts to roughly 2,200 lines of
TypeScript and 2,200 lines of Rust, divided into the frontend (the record and reduce phases) and the
backend (the replay phase). The code is released under the MIT License and is publicly available
at https://github.com/sola-st/wasm-r3. Wasm-R3 utilizes two third-party libraries: Wasabi [32],
an instrumentation framework for Wasm, which we use to inject calls to recorder functions and
to store corresponding trace events, and Binaryen [21], a compiler toolchain and infrastructure,
which we use to optimize replay binaries.

Proxy. Rather than intrusively modify web browsers (or Wasm engines in the web browsers),
we employ a proxy to intercept Wasm and JavaScript code. Modern web browsers expose the
capability to intercept and modify network requests and responses. For instance, Chromium pro-
vides the DevTools Protocol [23] for this purpose. The proxy component leverages this capability
to intercept JavaScript files and patch? the function definitions of Wasm module instantiation
APIs: WebAssembly.Instance, WebAssembly.instantiate, and WebAssembly.instantiateStreaming.
The new instantiation functions intercept the Wasm binary before instantiation and inject in-
strumentation before forwarding them to the underlying Wasm engine. We utilize the Playwright

20f course, monkey-patching JavaScript has robustness issues, and some modules can be missed.
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library [40] to implement the proxy across all major web browsers. This proxy approach allows
Wasm-R3 to instrument every Wasm module on-the-fly without modifying the browser implemen-
tation.

Mutable State in Wasm. In Wasm, there are three kinds of mutable states in instances: globals,
tables, and memories. Globals are mutable or immutable, single-value storage that can be imported
and exported from Wasm modules. Tables store opaque references to host objects and Wasm
functions. Since the call_indirect instruction indirects through a table, mutable tables can be used
to implement dynamic linking via indirect calls. Like Wasm linear memory, globals and tables can
be modified by the host environment if exported from an instance. Thus, in order to replay all
nondeterminism from the host, we also need to record mutation of globals and tables. Although
not described in detail here, Wasm-R3 also records and replays global and table mutations by
instrumenting global.get and table.get instructions, respectively. Similarly, it also employs shadow
memory optimizations for globals and tables to distinguish mutations from the host environment
and the module itself.

Simultaneous Record and Reduce. In our implementation of Wasm-R3, the reduce phase is partially
overlapped with the recording phase; the reduce phase filters out most redundant trace events
even before they are stored in a trace. This is done primarily by the shadow memory optimization
and the call stack optimization algorithms, which are applied online in the recorder functions.
For example, a load instruction simply reads both the shadow and real memories and suppresses
generating a load event if the two values are the same, which implies that the program either
writes the value or has already observed a host-written value. Similarly, the call stack optimization
algorithm is included directly in the recorder function. Filtering events requires more checks, but
is less expensive than generating events and then later filtering them out, which naturally saves
space but also reduces the overall recording overhead.

5 Evaluation

We evaluate Wasm-R3 by addressing the following four research questions.

e RQ1. Applicability: To what extent does Wasm-R3 apply to real-world web applications and
different Wasm engines?

e RQ2. Performance: How much overhead does Wasm-R3’s record phase introduce? What are
the performance characteristic of the replay benchmarks?

¢ ROQ3. Effectiveness of trace reduction: To what extent do our trace reduction techniques
reduce the size of the recorded traces?

e ROQ4. Effectiveness of replay optimization: By how much do our replay optimization
techniques reduce the size of replay binaries? How do the optimizations impact the performance
characteristics of the replay benchmarks?

5.1 Experimental Setup

We collect URLs of real-world Wasm web applications, which we define to be interactive webpages
that load at least one Wasm module, to serve as our evaluation targets. To find such applications, we
use two websites as starting points: Made with WebAssembly [55], which is an open-source website
that showcases projects created with Wasm, and Awesome-Wasm [20], an open-source repository
that lists Wasm-related webpages. We gathered URLs for Wasm web applications from these
webpages by first manually crawling them and their subpages and filter out inaccessible websites, e.g.
404 or that require authentication, non-interactive webpages, and pages where the relevant Wasm
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APIs, e.g. WebAssembly. Instance, WebAssembly.instantiate or WebAssembly.instantiateStreaming,
are not used in any script.

For repeatability, we use test scripts that automatically interact with each website using the
Playwright library [40] by mimicking common use cases. Each script executes multiple user actions,
such as clicking a button or typing text into an input form. For websites that use multiple Wasm
modules, we write multiple test scripts, each focusing on a different module. These scripts run
against live sites, which of course evolve over time and automation breaks. In fact, the difficulties of
reliably and reproducibly automating the execution of Wasm web applications is a key motivation
of Wasm-R3, which ultimately produces completely self-contained Wasm benchmarks.

While writing test automation scripts, we exclude some applications from our evaluation targets
that have one or more of the following problems:

(1) Throw errors even when used without Wasm-R3.

(2) Require external files or privileged information. For example, we remove a GameBoy emulator
[8] because it requires a GameBoy ROM file that we could not supply.

(3) Take unreasonably long time to download required data from the network. This affects several
video game ports, such as Arxwasm [15] and D3wasm [16].

(4) Though statically appear to use Wasm, don’t dynamically load any Wasm modules. For
example, we exclude Wasmboy [19] because we could not automate it to load Wasm.

(5) Require automation scripts that would interact with the HTML canvas element. As the
Playwright library does not provide APIs to recognize images inside a canvas element, we
cannot perform any meaningful interactions with such applications beyond randomly clicking
inside the canvas.

(6) Exhibit flakiness in the automation scripts without any meaningful errors. For example, we
exclude the application a tic-tac-toe game [37], because it sometimes fails to load the game.

As a result, we compiled 43 URLs to Wasm web applications. Table 2 summarizes our evaluation
targets. Our evaluation targets are composed of 9 programming language applications, 8 Wasm
benchmarks, 6 video games, 4 graphics applications, 3 media applications, 2 mathematical computa-
tion applications, 2 simulator applications, and 1 ML(machine learning) application. We claim these
represent real-world Wasm web applications as we gathered them from well-known, open-source
compilations of Wasm web applications and include applications from various domains.

We evaluate the benchmarks created with Wasm-R3 on three web browser engines (Spider-
Monkey [3] version 125.0b7, V8 [4] version 12.5.149, and JavaScriptCore [2] version 277039) and
three standalone Wasm engines (Wizard [51] version 24¢.1998, Wasmtime [6] version 19.0.1, and
Wasmer [5] version 4.2). We use the standalone-Wasm output format of the benchmarks for the
entire evaluation (Section 3.4.4), as they can be executed across both web browser engines and
standalone Wasm engines. To run a standalone-Wasm benchmark in a browser, we use a simple
JavaScript wrapper that loads the replay benchmark and calls its entry function.

Our experiments are conducted on a machine running Ubuntu 22.04.1, equipped with an Intel
Core i9-13900k CPU and 192GB of DRAM. With the Intel Core i9-13900k, we disable E-cores and
use only P-cores, and set the Linux CPU frequency governor to performance mode for consistent
results. We use Chromium 123.0.6312.4 as the browser for the proxy component in the record phase.
For the experiments in RQ2 and RQ4, we repeat each measurement ten times for each target.

5.2 RQ1. Applicability
We evaluate the applicability of Wasm-R3 in two ways. First, we evaluate its ability to produce

accurate benchmarks from various real-world Wasm web applications, which we call the accuracy
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Table 2. List of evaluation target Wasm web applications.
Name URL Domain Success
BOA https://boajs.dev/boa/playground Progr. lang. v
BULLET https://magnum.graphics/showcase/bullet Simulator 4
COMMANDERKEEN https://www.jamesfmackenzie.com/chocolatekeen Video game v
FACTORIAL https://www.hellorust.com/demos/factorial/index.html Mathematics 4
FFMPEG https://w3reality.github.io/async-thread-worker/examples/wasm-ffmpeg/index html | Media v
FIB https://takahirox.github.io/WebAssembly-benchmark/tests/fib.html Benchmark v
FIGMA-STARTPAGE | https://www.figma.com Graphics v
FRACTALS https://raw-wasm.pages.dev Graphics
FUNKY-KART https://www.funkykarts.rocks/demo.html Video game v
GAME-OF-LIFE https://playgameoflife.com Video game v
GOTEMPLATE https://gotemplate.io Progr. lang.
GUIICONS https://raylibtech.itch.io/rguiicons Utility 4
HNSET-BENCH https://raw.githack.com/gorhill/uBlock/master/docs/tests/hnset-benchmark.html Benchmark
HYDRO https://cselab.github.io/aphros/wasm/hydro.html Simulator v
IMAGE-CONVOLUTE | https://takahirox.github.io/WebAssembly-benchmark/tests/imageConvolute. html Benchmark
JQKUNGFU http://jgkungfu.com Progr. lang. v
Jsc https://mbbill.github.io/JSC.js/demo/index.html Progr. lang. 4
LICHESS https://lichess.org/analysis Video game
LIVESPLIT https://one livesplit.org Utility
MANDELBROT http://whealy.com/Rust/mandelbrot.html Graphics v
MULTIPLYDOUBLE https://takahirox.github.io/WebAssembly-benchmark/tests/multiplyDouble.html Benchmark v
MULTIPLYINT https://takahirox.github.io/WebAssembly-benchmark/tests/multiplyInt.html Benchmark v
oGV https://brionv.com/misc/ogv.js/demo Media
ONNXJS https://microsoft.github.io/onnxjs-demo/# ML
PACALC http://whealy.com/acoustics/PA_Calculator/index.html Mathematics v
PARQUET https://google.github.io/filament/webgl/parquet.html Graphics v
PATHFINDING https://jacobdeichert.github.io/wasm-astar Benchmark v
PLAYNOX https://playnox.xyz Video game
RFXGEN https://raylibtech.itch.io/rfxgen Utility v
RGUILAYOUT https://raylibtech.itch.io/rguilayout Utility v
RGUISTYLER https://raylibtech.itch.io/rguistyler Utility v
RICONPACKER https://raylibtech.itch.io/riconpacker Utility 4
ROSLYN http://roslynquoter-wasm.platform.uno Progr. lang.
RTEXPACKER https://raylibtech.itch.io/rtexpacker Utility v
RTEXVIEWER https://raylibtech.itch.io/rtexviewer Utility v
RUSTPYTHON https://rustpython.github.io/demo Progr. lang.
SANDSPIEL https://sandspiel.club Video game v
SQLGUI http://kripken.github.io/sql.js/examples/GUI Progr. lang. v
SQLPRACTICE https://www.sql-practice.com Progr. lang.
TAKAHIROX https://takahirox.github.io/WebAssembly-benchmark Benchmark
TIMESTRETCH https://superpowered.com/js-wasm-sdk/example_timestretching Media
WAFORTH https://el-tramo.be/waforth Progr. lang.
WHEEL https://boyan.io/wasm-wheel Benchmark

experiment (Section 5.2.1). Second, we evaluate to what extent the produced benchmarks execute
successfully across different Wasm engines, which we call the portability experiment (Section 5.2.2).

5.2.1 Accuracy Experiment. We evaluate how accurately Wasm-R3’s replay benchmarks match
their execution in Wasm web applications. The term “accurate” here means that the original web
application and the corresponding replay benchmarks show the same behavior. We assess accuracy
by recording traces of both executions and test if both traces are exactly the same.

Table 2 shows for each application whether we could successfully produce accurate replay
benchmarks. In total, Wasm-R3 produces accurate replay benchmarks for 27 out of 43 applications.
These applications cover a wide range of domains, including programming language applications,
graphics applications, and video games. To the best of our knowledge, the resulting set of bench-
marks is the first executable benchmark suite of real-world Wasm web applications. We refer to
these benchmarks as Wasm-R3-Bench and, unless mentioned otherwise, use them throughout the
rest of the evaluation.
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Due to the complexity of the web and limitations of the libraries that Wasm-R3 uses, the approach
fails to produce accurate benchmarks for the remaining 16 applications. We categorize the failures
into three groups:

o Implementation limitations (5 cases). Some failures are due to the known limitations of our
implementation. For IMAGE-CONVOLUTE, the trace contains over a million calls to a single host
function. The current function split optimization works only inside a single context in the replay
IR, which prevents the application of the optimization in this case; PLaAYNOX fails for the same
reason. We believe this would be resolved with a more advanced function split optimization
that works across multiple contexts. For TIMESTRETCH, HNSET-BENCH, and WHEEL, OUI proxy
logic does not seem to work the use cases of the applications.

e Dependency limitations (4 cases). Some failures are caused by the limitations of the libraries that
Wasm-R3 uses. Wasabi fails to instrument FRACTALS and LICHESS, because they use the SIMD
proposal, and LIVESPLIT, because it uses the threads proposal, which are not yet supported by
Wasabi. Binaryen fails on wAFORTH because the library does not support block-type parameters.’

e Unknown problems (7 cases). For the remaining 7 applications, we could not determine the cause
of the failure. We are currently investigating their cause.

5.2.2  Portability Experiment. The following experiment evaluates to what extent the replay bench-
marks generated by Wasm-R3 execute successfully across different Wasm engines. We run the
portability experiment with all 27 accurate replay benchmarks, trying to run them on three web
browser engines and three Wasm standalone engines (Section 5.1). When running the portability
experiment with web browser engines, we experiment with different optimization tiers of each
engine. We count the experiment as successful if the replay benchmark runs successfully on all
optimization tiers of the engine. Likewise, as the Wizard and Wasmer engines also provide different
optimization tiers, we also experiment with them. All replay benchmarks successfully run across
all execution tiers of the three web browser engines and three Wasm standalone engines. In sum-
mary, our experiments show that Wasm-R3 is applicable in various usage scenarios. In particular,
we produce a suite of 27 replay benchmarks from real-world Wasm web applications, and these
benchmarks run successfully on various Wasm engines.

5.3 RQ2. Performance

We evaluate the performance of Wasm-R3 from two perspectives. First, we assess the amount of
overhead introduced during the recording phase (Section 5.3.1). Keeping the overhead low is crucial
to minimize disruption to user interactions during the recording phase. Second, we examine the
performance characteristics of the replay benchmarks by measuring the time spent in code of the
original Wasm module and in code added by Wasm-R3 to enable replay (Section 5.3.2). For a replay
binary to be useful for evaluating the performance of Wasm engines, the majority of time should
be spent in the original Wasm code.

5.3.1  Record Overhead Experiment. The following experiment evaluates the overhead of Wasm-
R3’s record phase. We measure the total CPU cycles spent by the Chromium renderer process of
the target application using the Linux perf tool. Among the 27 replay binaries in Wasm-R3-Bench,
we exclude PARQUET in this experiment as our record overhead measurement infrastructure does
not support its use of the WebGL library. To compute the recording overhead, we compare the
performance of the application when running with an uninstrumented and an instrumented Wasm
module. As in RQ1, we use our Ul-level test scripts to simulate user interactions. Because the test
scripts are at the Ul level, there is a risk of having slightly different workloads in different runs.

Shttps://github.com/WebAssembly/binaryen/issues/6407
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Fig. 9. Relative increase in CPU cycles spent by the Chromium renderer process over uninstrumented
application (2.0 = twice as many cycles, 1.0 = same).

To mitigate this risk, and also to account for the inherent noise of performance measurements,
we repeat each measurement across ten runs and compute the arithmetic mean of the spent
CPU cycles.* Then, we compute the ratio of the arithmetic mean of the CPU cycles spent by the
instrumented application to the arithmetic mean of the CPU cycles spent by the uninstrumented
application.

Figure 9 shows the overhead introduced by the record phase of Wasm-R3. We measured the
CPU cycles spent executing JavaScript and Wasm code with and without instrumentation. While
the overhead varies across applications, the slowdown is generally modest, with a median of
approximately 3.79%, a geometric mean of 3.40%, and all but one application exhibiting less than
8.18% overhead. In practice, this overhead is acceptable; applications are still interactive and users
can record realistic usage scenarios with Wasm-R3.

5.3.2  Replay Characteristics Experiment. We now evaluate the performance characteristics of the
replay benchmarks created by Wasm-R3. Wasm-R3 repackages the functions of the original Wasm
module with replay functions, creating a standalone executable. While any Wasm workload can
serve as a benchmark, the overall goal is to capture the performance characteristics of the original
Wasm code. A key metric is then the proportion of the work spent in the original functions versus
the replay functions. To answer this question, we first measure the CPU cycles per function using
the fprofile monitor of Wizard. Then, we distinguish whether the function belongs to the original
Wasm module or the replay functions. Summing the CPU cycles spent in each group, we can
calculate the total cycles spent in the original Wasm module and the replay functions. We repeat
the experiment ten times to get the arithmetic mean value of the CPU cycles to reduce variance in
the measurements.

Figure 10 displays the results of this experiment. The upper portions of the bars in light gray color
represent the percentage of the cycles spent in the functions from the original Wasm module, while
the lower portions in red color represent the percentage of the cycles spent in replay functions.
Ideally, a benchmark would spend 100% of the cycles in the original Wasm code and 0% in replay. For
the benchmarks we gathered, we find the geometric mean of the cycles spent in the replay binary to
be 0.20%. Half of the benchmarks spend less than 1.53%, all but one less than 24%, and the maximum

“For F1B, we compute the arithmetic mean of nine runs only, because one recording run failed due to flakiness.
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Fig. 10. Proportion of the execution spent in the original Wasm modules (light gray) and replay functions
(red), in CPU cycles.

cycles spent in the replay part is 39%. The proportion varies according to the frequency and nature
of the application’s interactions with the host. Yet, recall that our technique only requires the replay
return values and observed side-effects (e.g. memory modifications) from host calls. Side-effects
from the host that are never observed by the application, as well as host functions that only read
application memory, do not generate trace events. This leads to the somewhat counter-intuitive
result that applications that produce a lot of data for the host (e.g. rendering frames for a game)
actually do not generate many trace events; they generate (relatively small) trace events when the
user interacts with the game.

Thus, in summary, our results show that the modules in Wasm-R3-Bench mostly exercise the
behavior of the original, real-world applications, making these executions suitable for evaluating
the performance of Wasm engines.

5.4 RQ3. Effectiveness of Trace Reduction

We evaluate how effective Wasm-R3’s trace reduction techniques (Section 3.3) are in reducing
the size of the recorded traces. We record traces with four variants of the approach: 1) without
any trace reductions, 2) only with the shadow memory optimization, 3) only with the call stack
optimization, and 4) with both optimization techniques. The fourth variant corresponds to the full
Wasm-R3 approach. We target all 27 modules in Wasm-R3-Bench, measure the size of the traces
produced by the four variants, and report the differences in them. By “the size of a trace,” we here
mean the number of trace events recorded by Wasm-R3.

Table 3 shows the results. Both trace reduction techniques are effective in reducing the trace
size. On average, the shadow memory optimization and the call stack optimization reduce traces to
27.20% and 38.17% of the original trace size, respectively. Together, the two optimizations reduce
the traces to only 0.47% of the original size, i.e. a more than 200X reduction. In the development
process, before optimization, Wasm-R3 initially failed to produce traces for most applications due to
the lack of memory or timeouts. However, after applying our trace reduction techniques, Wasm-R3
filters out a large portion of trace events and succeeds to produce traces for real-world applications.
Hence, we believe that our trace reduction techniques are essential to produce replay benchmarks
from real-world Wasm web applications.

From the table, three interesting cases emerge: MULTIPLYDOUBLE, MULTIPLYINT, and FIB. For
MULTIPLYDOUBLE and MULTIPLYINT, the optimizations do not remove any trace events. This is
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Table 3. Trace reduction experiment results.

Trace (# Events)

Name

No-opt [ Shadow-opt [ Call-stack-opt [ All-opt
BOA 1422316 41.36% 58.65% 0.01%
BULLET 60731762 14.27% 85.75% 0.01%
COMMANDERKEEN 190191109 21.12% 79.12% 0.23%
FACTORIAL 1483 35.87% 66.01% 1.89%
FFMPEG 83 36.14% 87.95% 24.10%
FIB 4912039416 100.00% 0.00% 0.00%
FIGMA-STARTPAGE 3065 61.01% 54.71% 15.73%
FUNKY-KART 170064681 29.63% 71.86% 1.48%
GAME-OF-LIFE 2178 16.71% 85.31% 2.02%
GUIICONS 87593617 8.48% 91.53% 0.01%
HYDRO 4494 37.96% 62.35% 0.31%
JQKUNGFU 83 48.19% 80.72% 28.92%
Jsc 1829171 69.12% 35.63% 4.75%
MANDELBROT 151019238 0.90% 99.21% 0.11%
MULTIPLYDOUBLE 24 100.00% 100.00% | 100.00%
MULTIPLYINT 24 100.00% 100.00% | 100.00%
PACALC 194039 43.05% 58.95% 2.00%
PARQUET 16736 54.92% 60.40% 15.32%
PATHFINDING 30798960 35.64% 64.44% 0.08%
RFXGEN 143104877 6.79% 93.21% 0.00%
RGUILAYOUT 50654126 8.77% 91.25% 0.02%
RGUISTYLER 63933807 8.62% 91.40% 0.02%
RICONPACKER 1078843 10.12% 90.10% 0.22%
RTEXPACKER 10 60.00% 100.00% 60.00%
RTEXVIEWER 10 60.00% 100.00% 60.00%
SANDSPIEL 300347531 18.65% 81.38% 0.03%
SQLGUI 250114 39.27% 63.05% 2.32%
Geomean [ [ 27.20% | 38.17% | 0.47%

because MULTIPLYDOUBLE and MULTIPLYINT do not perform any loads or calls during their execution,
i.e., there is nothing for our techniques to optimize. Instead, all the events in the traces are FuncEntry
events directly followed by FuncExit events. These functions use a loop internally within an exported
function to repeat the multiplications. In contrast, the results for F1B show that almost all trace
events are filtered out, with only 24 out of 4.9 billion events remaining. This is because FIB contains
a recursive function that calls itself many times. Most of the events are Call events that get filtered
out by the call stack optimization.

5.5 RQA4. Effectiveness of Replay Optimization

In this section, we evaluate the effectiveness of replay optimization techniques introduced in
Section 3.4.3. We first conduct a simple comparison of the replay binary size of replay benchmarks
1) without any replay optimizations, 2) only with the memory write merge optimization, 3) only
with the function split optimization, and 4) with both optimization techniques. We found that
the function split optimization does not affect the binary size, while the memory write merge
optimization reduces the replay binary size by 9.98%. Then, for the 27 replay benchmarks in Wasm-
R3-Bench, we carried out an ablation study to evaluate the effectiveness of the two optimizations.
We call this the replay optimization experiment. In the replay optimization experiment, we measure
two kinds of times: load and validation time and execution time. The load and validation time is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 347. Publication date: October 2024.



347:22 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

Table 4. Replay optimization experiment results.

Name Load+Validation time (us) Execution time (us)
No [ Split [ Merge [ All No [ Split [ Merge [ All

BOA 242742.4 102.87% | 108.98% | 106.05% 47262.4 | 101.87% | 104.92% | 101.62%
BULLET 27313.8 97.06% | 100.47% | 104.62% 358420.8 | 101.55% | 113.76% | 127.99%
COMMANDERKEEN | 270972.2 116.73% 92.19% | 111.92% 18778942.4 | 100.96% 97.95% 97.81%
FACTORIAL 2517.3 94.14% 96.90% 99.63% 64.7 97.84% 97.30% 99.85%
FFMPEG 264556.5 100.81% | 113.45% | 120.35% 22.8 | 101.32% | 106.80% | 107.68%
FIB 5927.2 121.98% | 118.52% | 119.83% 58289332.4 99.99% 99.13% 98.15%
FIGMA-STARTPAGE 10758.8 98.93% | 101.38% 99.37% 63.8 99.22% | 103.61% 98.75%
GAME-OF-LIFE 88.4 96.28% 94.02% 98.14% 37.6 98.88% 94.85% | 100.52%
GUIICONS 17627.2 130.33% | 113.69% | 111.37% 522202.34 | 119.45% | 120.20% | 115.28%
HYDRO 31932.9 97.84% 99.85% 98.65% 84.6 89.24% 94.32% 90.54%
JQKUNGFU 29246.2 94.42% 90.05% 79.93% 23.6 98.09% 94.49% 88.77%
Jsc 218154.5 102.24% 84.84% 87.97% 19046.9 97.36% 93.34% 96.51%
MANDELBROT 60570.8 131.97% 7.26% 7.33% 44074249.6 99.55% 99.32% 98.91%
MULTIPLYDOUBLE 6533.8 101.58% | 106.38% | 107.45% 43857353.6 | 100.05% 99.26% | 100.11%
MULTIPLYINT 5861.4 120.96% | 113.67% | 120.45% 42531426.8 | 100.22% 99.16% 98.55%
PACALC 10414.5 90.26% 92.22% | 103.58% 3453.8 92.95% 93.85% | 102.23%
PARQUET 78150.8 90.79% 90.32% 90.08% 188.5 96.45% 96.07% 96.29%
PATHFINDING 21315.8 129.43% | 123.20% | 166.98% 3368370.8 | 101.60% 96.35% 85.21%
RFXGEN 27742.7 98.81% 96.84% 94.44% 1146599.5 99.65% 98.32% 92.56%
RGUILAYOUT 262224 100.21% 98.27% 97.52% 440909.2 96.04% 98.48% 95.24%
RGUISTYLER 21885.1 110.35% | 114.29% | 120.18% 4694779 | 107.37% | 120.39% | 119.56%
RICONPACKER 25251.2 95.74% 84.12% 87.78% 16982.4 95.36% 87.32% 88.26%
RTEXPACKER 25133.0 87.92% 79.43% 78.43% 15.2 86.18% 86.18% 83.22%
RTEXVIEWER 16457.3 97.52% 96.57% 88.02% 12.4 97.58% 94.76% 96.77%
SANDSPIEL 22352.0 152.33% | 141.32% | 155.21% 3135717.0 | 105.89% | 107.45% 92.61%
SQLGUI 41837.3 103.06% 98.04% 98.30% 6790.0 | 100.99% 97.27% 97.28%
Geomean [ [ 105.30% | 91.35% | 94.05% || | 99.28% | 99.48% | 98.40%

the time spent loading, parsing, and validating the replay Wasm benchmark, while execution time
represents time to execute the main (i.e. top-level replay) function. We measure these with the
--metrics option of the Wizard engine, which reports load, validation, compilation, and execution
time, and average over 10 runs.

Table 4 reports the results of the replay optimization experiment. On average, applying both
replay optimizations reduces the time spent in load and validation by about 6%. In detail, applying
the function split optimization increases the load and validation time by about 5%. Considering
that some replay benchmarks require the function split optimization to run, we think this is an
acceptable increase. Applying only the memory write merge optimization decreases the load time
about 9%. Individually, MANDELBROT seems to enjoy the greatest benefit, with the load and validation
time reduced to just 7.33% of the original time. RTEXPACKER, JQKUNGFU, and RICONPACKER are
other beneficiaries, with the load and validation time reduced to 78.43%, 79.93%, and 87.78% of the
original load and validation time, respectively. On average, applying both replay optimizations
decreases the execution time to 98.40%. We believe that although the replay optimizations do not
significantly affect the execution time, it gives a slight performance improvement. We are currently
investigating the reasons behind.

Note that FUNKY-KART, despite successfully completing the experiment, is excluded from the
table. This is because its replay benchmarks without replay optimizations exceeded the maximum
size limit for function bodies imposed by the production Wasm engines, which prevented them from
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running on any engines. Thus, we discuss the performance characteristics of FUNKY-KART here.
While the function split optimization makes the replay benchmark executable, it does not affect its
binary size. Applying the memory write merge optimization on top of the function split optimization
reduces the load and validate time to 7.80% and the execution time to 86.31% compared to the
replay benchmark with only the function split optimization applied. Thus, alongside MANDELBROT,
FUNKY-KART is another example where the memory write merge optimization significantly reduces
the load time and validation time of the replay benchmark, with an added benefit of reducing the
execution time.

In summary, we show that the replay optimization techniques play a crucial role in reducing the
load time and validation time of performance outliers in Wasm-R3-Bench, while having a modest
effect on the execution time.

6 Limitations

Currently, our Wasabi-based instrumentation supports Wasm version 2.0, with the exception of the
SIMD proposal. This limitation can be easily overcome by using a more up-to-date instrumentation
library. Among the proposals in phase 4, which are planned to be standardized soon, the multi-
memory proposal is already supported by Wasm-R3. We also believe our approach can support
Wasm GC with some help from the host environment. Our technique relies on making shadow
copies of all mutable state and detecting modifications by comparing the shared state with the
shadow state which necessitates host support, since Wasm funcref and externref do not have
native Wasm comparison operators. The most challenging proposal to support would be threads,
which remains an open research question, as deterministic replay of racy programs lacks satisfactory
and robust solutions.

7 Related work

Record and replay is a mature area of research that has been explored in various contexts, including
architectural support for record and replay [56], operating system-level record and replay [18, 24],
and language runtime-level record and replay [49]. Typically, such systems require intrusive modifi-
cation to the respective CPU design, kernel, libraries, or language runtime to record events, but can
also be done by bytecode rewriting [29]. In any case, potentially non-deterministic operations and
side-effects must be identified and recorded as events. Enumerating these operations can represent
significant manual work. Our approach has a different requirement in that we aim to run Wasm-R3
on any architecture, operating system, or language runtime without modification. This requirement
led us to using bytecode-level instrumentation.

Among previous instrumentation of this kind in the literature, Wasm-R3 is most similar to
JSBench [45], a record and replay technique for the automated construction of JavaScript bench-
marks. The major difference between JSBench and Wasm-R3 stems from the design differences
in the languages they target: JavaScript and Wasm, respectively. In Wasm, instances and their
host environment are cleanly separated by the import/export boundary. Thus, efficiently tracking
non-determinism caused by the host environment boils down to making shadow copies of the
shared mutable states and comparing them. In contrast, nearly any JavaScript operator could
have unbounded side-effects. For instance, JSBench notes that a JavaScript for...in loop can
be a potential source of non-determinism. This leads the authors of JSBench to describe their
catalogue of non-determinism in JavaScript applications as "necessarily incomplete." We believe
that the simplicity of Wasm-R3’s record phase, in comparison to JSBench, is not a drawback but an
advantage, demonstrating Wasm’s suitability as a target for automatic benchmark generation for
the web.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 347. Publication date: October 2024.



347:24 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and Michael Pradel

Jalangi [50] is another record and replay framework for JavaScript, designed for heavy-weight
dynamic analysis. While Jalangi facilitates record and replay across different environments (e.g.,
recording on a mobile environment and replaying on a desktop environment), it operates within the
confines of JavaScript engines, which accept the same inputs and produce identical outputs. This
means that, despite the convenience offered by Jalangi’s record and replay functionality, it does not
enable something fundamentally impossible; it is possible to have the same execution in different
environments by simply running the same JavaScript code. In contrast, Wasm-R3 enables the
capability to replay a Wasm instance interacting with JavaScript code in non-web Wasm engines,
which is impossible without Wasm-R3. Moreover, the basic technique of Wasm-R3 could allow
recording in non-web Wasm engines and replaying in web Wasm engines. Another important
difference is that, unlike Wasm-R3, Jalangi applies code instrumentation in both the record and
replay phases to implement the replay of the recorded trace. Although this eliminates the need
to precisely determine at which point in the host code an interaction occurred, which Wasm-R3
meets, it has the disadvantage of mixing up the original code and replay code. We instead aim to
preserve the original binary and its exact instruction-by-instruction behavior and only replace
calls to the host with replays. Lastly, Jalangi explicitly states that they did not make any effort
to optimize their implementation. In contrast, we applied numerous optimizations to the trace to
enable Wasm-R3 to scale to real-world applications, and to the replay IR, to ensure the resulting
replay is representative of the recorded execution.

Other record and replay frameworks for JavaScript include Mugshot [39] and WebRR [36].
Mugshot [39] records browser events and shares our goal of recording on unmodified browsers.
Unlike Wasm-R3, Mugshot is tightly coupled with the web browser implementations and adopts
different strategies depending on the browser. In contrast, Wasm-R3 exploits the host-agnostic
nature of Wasm to record the execution of Wasm applications across all browsers. WebRR [36]
proposes a record and replay technique that enhances the robustness of fragile end-to-end tests.
Their primary focus is on avoiding test failures that occur without a bug or misbehavior in the
application under test. In contrast, benchmarks generated from Wasm-R3 do not suffer from any
kind of fragility that plagues end-to-end tests. We refer to a comprehensive survey for a more
detailed discussion of dynamic analysis for JavaScript [9].

Beyond record and replay, a lot of research has gone into Wasm. Hilbig et al. [28] proposed
benchmarks of real-world binaries. Unlike the benchmarks created with Wasm-R3, their benchmarks
are not executable, making them unusable for performance benchmarking. Several general-purpose
techniques to dynamically analyze Wasm have been proposed, e.g., based on source-to-source
instrumentation [32] or via dynamic instrumentation inside a Wasm engine [54]. Other work
supports reverse engineering by inferring types [33] and the purpose of functions [48] in Wasm
binaries, studies security issues in Wasm [31], and shows how to use Wasm for obfuscation [47].
Our work contributes to the field by providing the first record and replay technique for Wasm and
a benchmark suite of executable Wasm binaries.

8 Conclusion

We present Wasm-R3, the first record and replay framework for Wasm. The approach works with
no modifications to the source compiler, virtual machine, host environment, operating system, or
hardware. During arbitrary execution of a Wasm module within a host environment, Wasm-R3
records all interactions with the host environment, detecting updates to shared mutable memory
via a shadow memory. The resulting trace is optimized to produce a precise replay binary that
reproduces the original program’s behavior by replaying all interactions with the host. Wasm-R3 is
broadly applicable to numerous real-world Wasm applications, and the replay files it generates
can be run across both web and non-web Wasm engines. Several optimizations applied at both
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recording and replay make infeasibly long traces tractable and reduce the overhead of trace replay
for more faithful execution characteristics. We have made Wasm-R3 available as open source and
hope it will be beneficial to Wasm application developers to create repeatable replays of specific
executions for benchmarking and other purposes. In particular, we hope the technique can unlock a
new era of Wasm benchmarking that better represents real-world use cases by routinely generating
replays from real applications in their respective host environments.

Data-Availability Statement

The artifact is available on Zenodo at [11]. It includes Wasm-R3 and the Wasm-R3-Bench benchmark
suite.
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