
Empowering WebAssembly with
Thin Kernel Interfaces

Arjun Ramesh
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
arjunr2@andrew.cmu.edu

Tianshu Huang
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
tianshu2@andrew.cmu.edu

Ben L. Titzer
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
btitzer@andrew.cmu.edu

Anthony Rowe
Carnegie Mellon University, Bosch Research

Pittsburgh, Pennsylvania, USA
agr@andrew.cmu.edu

Abstract
Wasm is gaining popularity outside theWeb as awell-speci�ed
low-level binary format with ISA portability, low memory
footprint and polyglot targetability, enabling e�cient in-
process sandboxing of untrusted code. Despite these advan-
tages, Wasm adoption for new domains is often hindered by
the lack of many standard system interfaces which precludes
reusability of existing software and slows ecosystem growth.

This paper proposes thin kernel interfaces forWasm, which
directly expose OS userspace syscalls without breaking intra-
process sandboxing, enabling a new class of virtualization
with Wasm as a universal binary format. By virtualizing the
bottom layer of userspace, kernel interfaces enable e�ortless
application ISA portability, compiler backend reusability, and
armor programs with Wasm’s built-in control �ow integrity
and arbitrary code execution protection. Furthermore, ex-
isting capability-based APIs for Wasm, such as WASI, can
be implemented as a Wasm module over kernel interfaces,
improving reuse, robustness, and portability through better
layering. We present an implementation of this concept for
two kernels – Linux and Zephyr – by extending a modern
Wasm engine and evaluate our system’s performance on a
number of sophisticated applications which can run for the
�rst time on Wasm.

CCS Concepts: • Software and its engineering!Virtual
machines; Operating systems; Software safety; Runtime
environments; • Computer systems organization! Em-
bedded and cyber-physical systems.

Keywords: virtualization, operating systems, WebAssembly,
Linux, Zephyr, compilers, interpreters, edge computing

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1196-1/2025/03
h�ps://doi.org/10.1145/3689031.3717470

ACM Reference Format:
Arjun Ramesh, Tianshu Huang, Ben L. Titzer, and Anthony Rowe.
2025. Empowering WebAssembly with Thin Kernel Interfaces. In
Twentieth European Conference on Computer Systems (EuroSys ’25),
March 30-April 3, 2025, Rotterdam, Netherlands. ACM, New York,
NY, USA, 20 pages. h�ps://doi.org/10.1145/3689031.3717470

1 Introduction
WebAssembly (Wasm) [52] has emerged as a lightweight,
e�cient virtualization solution applicable to many domains.
As a portable low-level bytecode format with a strict for-
mal speci�cation [12], type system with machine-checked
proofs [108], and high-performance implementations [13]
with ever-increasing levels of veri�cation [32], Wasm pro-
vides an e�cient sandboxed execution environment which
can run untrusted code at near-native speeds1. Primarily de-
ployed in the Web today, it serves as a polyglot compilation
target powering many applications such as Photoshop [80],
Unity [7], and high performance libraries [2].
Following its success in browsers, Wasm has also gained

broad adoption in cloud and edge contexts [4, 79, 102]. To op-
erate in these contexts, Wasm requires a system interface, as
its core speci�cation de�nes a portable bytecode ISA without
any system interfaces. Outside Web APIs, the WebAssembly
System Interface (WASI) [27] is the only proposed standard-
ized platform interface. WASI is a secure, cross-platform
(OS-agnostic) Wasm interface speci�cation that couples a
system interface with a new capability-based security model,
enforcing �lesystem isolation with pre-opened directories,
network isolation with constrained sockets, and explicitly-
enumerated environment variables.
Recent years have seen growing interest in extending

Wasm beyond controlled cloud environments to modern
cyber-physical deployments at the edge, incorporating highly-
capable mobile and internet-connected embedded devices
such as IoT [69–71, 78], automotive [40, 90], and industrial

1The Wasm language speci�cation is continually advancing, incorporating
various enhancements for SIMD vectorization [11, 21], larger address spaces
(memory64 [20]), and �ner-grained memory control (multi memory [14]
and custom page sizes [18]).

1

1

https://orcid.org/0009-0007-7390-0295
https://orcid.org/0009-0005-6788-1302
https://orcid.org/0000-0002-9690-2089
https://orcid.org/0000-0003-2332-9450
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3689031.3717470
https://doi.org/10.1145/3689031.3717470
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689031.3717470&domain=pdf&date_stamp=2025-03-30

systems [112]. Unlike the cloud, these domains have sev-
eral uniquely challenging requirements. Software in these
domains often demands high performance and memory ef-
�ciency, operates in safety-critical physical environments,
and combines components distributed by many vendors in
their preferred choice of languages. Applications are also
often deployed across a wide gamut of system con�gurations
for long deployment periods. Many critical software stacks
are hence presently frozen in time on legacy hardware and
software ecosystems that are rapidly falling behind the state
of the art for safety, e�ciency, and performance.

Wasm is a compelling solution for these problems, address-
ing e�ciency, safety, and polyglot concerns. However, the
additional requirements of high portability across software
platforms, long deployments, and critical legacy software
are system interface concerns which Wasm explicitly does
not address. To date, no existing standard system interface
for Wasm adequately addresses these challenges. In par-
ticular, WASI’s goals are somewhat misaligned with these
challenges:
(1) As a new portable API across many operating systems,

it must be reimplemented many times;
(2) Its design exploration and evolution make it unstable

and therefore unsuitable for long deployments; and
(3) Its divergence from longstanding standards like POSIX

means it cannot run existing software.
Furthermore, despite many years of standardization e�orts,
WASI remains an extremely simpli�ed OS interface, lacking
support for prevalent OS features like memory-mapping,
processes, asynchronous I/O, and signals. Many applications
require these features and simply cannot run on WASI (see
Table. 1). Given the many bene�ts of Wasm as an execution
format, we believe the lack of an e�ective system interface
is a key limiting factor to Wasm adoption in many domains.

In this paper, we propose thin kernel interfaces for Wasm
to enable a new virtualization solution for userspace applica-
tions. Our key insight is that operating systems’ userspace
syscall interfaces are a stable, de facto standard upon which
thousands of desktop, server, and embedded applications
have been and continue to be built. By creating a thin Wasm
interface for existing operating systems, we can easily virtu-
alize entire software stacks from the bottom-up with little
modi�cation and run them on a diverse set of host ISAs.
In contrast to existing system interfaces for Wasm, thin

kernel interfaces do not de�ne an entirely new API surface
against which applications need to be refactored, but rather
faithfully model the existing underlying operating system.
The bottom-up approach means that porting applications
only requires recompilation with a Wasm-enabled toolchain,
which can be done quite trivially as standard libraries and
ABIs are already written against the OS syscall API. Further-
more, kernel interfaces are both complementary and advan-
tageous to higher-level APIs like WASI as a complete syscall

WASM Engine

Kernel / Hypervisor

WASI library
WASI

wasm

WALI API

x86 Linux

wasm

WASI

WALI

WALI

Linux

Linuxx86

x86

wasm

wasm

WALI

x86

x86

x86

WALI App

WASI App

Native App

Native Stack WASI StackWALI Stack

Figure 1. Linux Virtualization stack with WALI as a foundation.

speci�cation allows them to be implemented as individually-
sandboxed layers over the kernel interface (Fig. 1) as Wasm
modules. Such layering makes high-level Wasm API imple-
mentations more portable, safe, and reusable, allowing
them to work on any Wasm engine that exposes the same
kernel interface. Furthermore, the complex trusted computed
base (TCB) of the Wasm engine is now greatly simpli�ed,
as high-level APIs once necessarily embedded within the
engine are now decoupled from it.

We demonstrate the feasibility of this concept with two dis-
tinct OS interfaces — a Linux interface WALI, and a Zephyr
RTOS interfaceWAZI. Beyond these two implementations,
we also present a recipe for Wasm kernel interface design
applicable to any kernel, which addresses important architec-
tural decisions in safely supporting common OS features like
signals, processes, threads, and memory mapping to bridge
the mismatch between Wasm and a typical OS execution
model.

1.1 Motivation
Virtualization Requirements at the Edge Modern edge
systems are complex pieces of software deployed on highly-
customized hardware platforms. Software virtualization in
this setting has the following requirements:
(1) High ecosystem portability: Applications in man-

ufacturing equipment or automotive systems are de-
ployed across a wide array of systems and engines. A
simple interface implementation must be able to easily
port complex software stacks across many engines.

(2) Long deployments: Many applications are deployed
for decades without modi�cation. Supporting such de-
ployments requires a target with a stable set of features
that is complete with low churn.

(3) Critical legacy software stacks: Many industries have
large actively-deployed legacy codebases that cannot
easily be rewritten. Applications should be virtualizable

2

"as-is", with simple update mechanisms allowing for
incremental software improvements.

(4) E�ciency: E�cient CPU/memory usage and package
size is critical in resource-constrained devices deployed
in the wild. Highly reactive environments may also
depend on fast application startup times.

(5) Safety and Security: Safety-critical physical environ-
ments such as control systems and factories demand
safe execution and resource control. Applications must
be statically-typed, veri�able, and isolated from other
co-located applications.

(6) Polyglot: Applications should be easy to develop and
port from a variety of programming languages and sup-
port the vast set of software libraries currently available
to these languages.

Why Wasm? Given the stakes, safety should be paramount
for a virtualization solution, especially in actively-deployed
systems susceptible to remote code injection attacks. Con-
tainerization (e.g. Docker [8]) is too memory ine�cient, and
is still vulnerable to control-�ow redirection and remote
code execution (RCE) attacks. Bytecode VMs often meet the
aforementioned virtualization requirements, but targeting
most managed runtimes (e.g. Java and CLR) restricts appli-
cation development to speci�c families of languages, often
with builtin non-determinism and garbage-collection, mak-
ing them unsuitable in embedded and real-time contexts.
In contrast to the above solutions, Wasm o�ers a secure

and e�cient compilation target for numerous high-level
languages. Armed with kernel interfaces, Wasm binaries
inherently provide the following core properties by design:
(1) Type Safety: Wasm binaries are type-safe and statically

validated prior to execution;
(2) Memory Safety: All Wasm memory accesses, includ-

ing NULL and type unsafe pointer indirection, are in-
memory sandboxed and runtime-enforced. Default mem-
ory initialization also prevents unde�ned behavior;

(3) Non-Addressable Execution State: Wasm’s static
code segments and its dynamic call/value stack are nei-
ther directly addressable nor aliasable from within the
module, ruling out arbitrary code injection/execution
attacks;

(4) Control Flow Integrity (CFI): Wasm’s structured con-
trol �ow paradigm along with typed function calls and
a virtualized call stack provides implicit CFI [23].

(5) ISA Portability: The Wasm bytecode format and se-
mantics are de�ned independently of hardware ISAs,
allowing universal compatibility with any underlying
host;

Protecting System So�ware Real-world edge deployments
often include a large exploitable attack surface of not just
applications but dozens or even hundreds of susceptible back-
ground system services (e.g. remote logins, authentication,

daemons) and libraries. By using Wasm to secure system
daemons (see Table. 1), thin kernel interfaces could have
immediately thwarted numerous OpenSSH [15] vulnerabil-
ity exploits, including the critical regreSSHion bug [16] that
a�ected millions of Linux devices worldwide. Securing a
large swath of the system software stack with Wasm in this
manner, however, requires an ideal interface that supports a
diverse set of OS features.

The Need for Complete Wasm OS Interfaces Wasm as a
virtualization solution for edge systems is clearly promising,
but high portability, long deployments, and legacy software
support require the right system interface compatible with
these goals. Standardized e�orts towards this end include:

• WASI [27]: a W3C standardization e�ort that aims to
design a completely portable Wasm API with a strict
capability security model, �ne-grained access controls,
a simpli�ed �lesystem, and socket virtualization.

• WASIX [28]: a rogue superset of WASI, proposed by the
Wasmer [9] team that adds missing POSIX functionality
to jumpstart WASI development.

As API speci�cations intent on integrating both OS porta-
bility and a capability-based security model, both WASI and
WASIX face major design di�culties in maintaining com-
patibility with existing application APIs like POSIX. For
one, essential features like signals, memory-mapping, or
users/groups have been eschewed due to design di�culty;
as a result, applications that use these just don’t work. Yet
despiteWASI’s limited feature set, implementingWASI is sur-
prisingly complex2 with concomitant engine requirements,
and many implementations are riddled with bugs [58]. Fur-
ther exacerbating the problem, WASI is growing with new
features for machine learning, HTTP, key-value stores, etc.,
as all engines engine are forced to implement these internally,
in the trusted computing base. Bugs in these implementa-
tions can compromise the inherent memory sandboxing, CFI,
and RCE defense, e�ectively breaking Wasm.
Our approach instead adopts a layering approach to API

design, targeting historically stable OS-speci�c syscall in-
terfaces, and hence decoupling the security model from the
feature-completeness of Wasm as an ISA. By deprioritizing
OS-portability as a primary goal, kernel interface implemen-
tations remain remarkably tiny (WALI⇡ 2000 LoC) compared
to their higher-level API counterparts, and o�er feature-
completeness for running complex legacy applications, in-
cluding layered WASI implementations over it. These kernel
interfaces implementations are also easily adaptable to sup-
port the handful of popular OSes by following our recipe
in Sec. 5. Engines can now support a plethora of arbitrary
high-level APIs for an OS in a portable, sandboxed manner
above a single implementation of a stable syscall interface.

2libuvwasi [5] for preview1 is over 6,000 lines of engine code, excluding
libuv itself or the component model which is several thousand more!

3

This is especially valuable for kernels such as Zephyr that to
date have no engine with a complete WASI implementation.

1.2 Positioning Kernel Interfaces in the Ecosystem
Kernel interfaces hold a unique position in the Wasm ecosys-
tem without diminishing the use-cases of existing capability-
based security APIs. They enable a new ecosystem providing
traditionally native binary software stacks (e.g. managed
edge systems, OS packages, consumer mobile/desktop ap-
plications, and WASI implementations) with both a viable
virtualization target for safety and portability, and an oppor-
tunity to run alternative security models. Allowing a full set
of OS system calls (e.g. Linux) raises some obvious questions:

Q: Do Kernel Interfaces Break Wasm? No, Wasm actively
facilitates support for arbitrary custom system interfaces
via import sections in its language standards. This paper
demonstrates how kernel interfaces can be exposed safely
while preserving themost essentialWasm properties listed in
Sec. 1.1. Importantly, kernel interfaces do not directly tamper
with the execution stack and instructions in WALI/WAZI
modules still operate within their own isolated memories
(Sec. 3.6). So-called “risky” features like setjmp/longjmp
in C/C++ would be compiled to safe, non-local control �ow
with exception-handling akin to the browser, making them
a toolchain concern rather than a system interface issue.

Q: Do Kernel Interfaces RuinWASI/Browser Ecosystems?
No, kernel interfaces are not meant to replace WASI or be
directly exposed to untrusted cloud software or as browser
APIs. WASI and browser ecosystems will continue to operate
with their capability-based security models. In fact, we pro-
pose no changes to their APIs or security models, which are
undoubtedly bene�cial for their intended cloud or Web de-
ployment scenarios. We contend however that engines will
be more secure if they move their WASI implementations
up to Wasm and layering it over kernel interfaces (Sec. 4.1)
without exposing the latter directly to user applications.

1.3 Contributions
(1) We identify thin kernel interfaces for Wasm as the key

layeringmechanism that simultaneously decouples high-
level APIs (e.g. WASI) and engine evolution, improves
safety by sandboxing their implementations, and allows
numerous legacy applications to run for the �rst time
on Wasm across multiple hardware ISAs.

(2) We design and implement WALI, an interface for Linux,
where we support a critical mass of syscalls, explore
several process and signal models, and evaluate the im-
plementation on sophisticated real-world applications.

(3) We propose a recipe for de�ning ISA-agnostic virtual-
ization for OS kernels usingWasm and apply this recipe
to design WAZI, an interface for Zephyr RTOS.

���������

����

���������

� �� �� 	�
� ���

�
��
���
��
��
��
��
��
��

�������

Figure 2. Log-normalized Linux syscall pro�le sorted by aggregate
frequency; the top row shows the distribution of all invoked syscalls
across all benchmarks sorted by frequency; lower rows show the
syscall frequency for each benchmark using the same ordering.

� ��� ��� ��� 	��
��

�����	

���	

������	 � ������
�������������
������
�������������

Figure 3. Similarity of Linux Syscalls across ISAs.

(4) We showcase decoupling WASI from engines by com-
piling libuvwasi, a popular implementation of WASI,
unmodi�ed over WALI with full feature-completeness.

TheWALI andWAZI implementations are fully open sourced
and available at h�ps://github.com/arjunr2/WALI.

2 Scoping Existing System Call Interfaces
Operating systems feature a daunting array of hundreds of
system calls, sometimes slightly di�erent across ISAs, includ-
ing some platform-speci�c calls. While virtualizing every
call across all platforms seems like a gargantuan task, our
study of real-world applications found Linux syscalls have
enough commonality in actual use that WALI can cover the
vast majority of OS functionality in a lightweight, portable
way.
Practical Prevalence of Syscalls We �rst evaluated the
feasibility of syscall-based virtualization to scope our work
on WALI/WAZI by studying the number and frequency of
syscalls across a variety of applications. Linux API usage
literature reports ⇡ 200 (out of 300-400) required syscalls
as the critical point with static analysis [101]; more recent
work with dynamic analysis [66] however reports a mere 148
syscalls which is consistent with our �ndings (Fig. 2). This is
consistent with our �ndings (Fig. 2) where many applications
use fewer than 100 unique syscalls, and the union of all
applications is around 140-150 syscalls. Similarly, Zephyr
has ⇡ 500 syscalls, but many of them target domain-speci�c
subsystems (GNSS, SiP SVC, Auxdisplay, etc.) or toolchains.

4

https://github.com/arjunr2/WALI

Kernel

Native 1

Wasm 1

Lightweight Process / "Threads" (N-to-1)Conventional Process (1-to-1) "Threadless"

Kernel Kernel

Wasm

Native 2

Wasm 2

Mem
Alloc

WALI
Engine

Context Switch

Loopback WALI IPC

Wasm 1 Wasm 2

Syscall Interface

Native

Loopback WALI IPC

Wasm 1 Wasm 2

Syscall Interface

Native

Cgroups

Syscall Interface Syscall Interface

Signal
Table

Mem
Alloc

Signal
Table

Mem
Alloc

Signal
Table

FD
Table

FS
Info

I/O
Ctx

Signal
Table FD TableMem

Alloc FS Info

Figure 4. Process Model Spectrum for varying con�gurations of Native andWasm processes; WALI must implement the bolded components.

Thus, WALI/WAZI only need to support a fraction of the
total system call interface to run most applications faithfully.
We also identify that this subset of syscalls encompasses the
core features o�ered by an operating system – we postulate
that most remaining syscalls can easily be auto-generated
as kernel passthrough methods in the future (see Sec. 5, 6).

DiversityAcross ISAs Linux o�cially supports⇡ 500 syscalls
but not all syscalls are available on all ISAs [59]. We found
there is a large common core, as both Arm and RISC-V are
nearly identical and largely a subset of x86-64 with a handful
of di�erences (Fig. 3). These syscalls persist for backward
compatibility but can often be emulated using newer, more
secure alternatives (e.g., access with faccessat, all stat
variants with newfstatat). Meanwhile, Zephyr is conve-
niently designed to be ISA-portable across all its diverse
target platforms/boards. Thus, WALI/WAZI can feasibly at-
tain interface-level ISA portability will minimal e�ort.

3 An Interface for Linux: WALI
As a ubiquitous, robust, powerful, and stable OS, we choose
Linux as the primary target to demonstrate the feasibility of
thin kernel interfaces. WALI speci�es a set of approximately
150 WebAssembly host functions that can be imported into a
Wasmmodule. SincemostWasm runtimes support extensible
host functions, WALI implementations are relatively easy to
add to engines.
WALI is comprised primarily of syscalls, with a small

number of support methods for environment/command-line
parameters. WALI syscalls correspond nearly 1-to-1 with
native Linux syscalls and need only translate data between
the virtualized syscall interface and the native Linux syscall
interface and vice versa. By design, most WALI calls are
"passthrough", with low-overhead zero-copy operations with
appropriate translation between the Wasm and Linux mem-
ory spaces. WALI maintains fundamental Wasm guarantees
(ISA portability, memory sandboxing, CFI, Harvard architec-
ture) and thus disallows register accesses, stack access, and
non-local gotos (setjmp/longjmp).

Considering all these components, WALI must make fun-
damental important design decisions to bridge the Linux and
WebAssembly execution environments — primarily for the
process/thread model, memory management model, signal
handling, security model, and cross-platform support.

3.1 Process and Thread Model
While most operating systems support concurrency using
a process/thread model, core Wasm provides no notion of
processes or threads. This requires WALI to present a pro-
cess/thread model to Wasm applications that faithfully rep-
resents the behavior of native Linux processes in order to
seamlessly interact with each other and with native pro-
cesses. Conventional Linux processes commonly interact
with each other using pipes, sharedmemory, or signals, while
threads/light-weight-processes (LWP) often share a common
memory space and communicate using synchronized mem-
ory operations. Many syscalls additionally use process ids
(PIDs) to target processes for calls that involve signals, usage
statistics, scheduling characteristics, and status updates. To
faithfully replicate these behaviors, we explore three models
for WALI along the spectrum of possible models (Fig. 4):

1-to-1 model In this (simplest) model, each WALI process
is assigned a unique native Linux process with its own PID.
A key advantage of this model is the ease of implementa-
tion and veri�cation: most process/thread-oriented WALI
syscalls, including fork, can be implemented as pass-through
syscalls directly to the kernel. This design also relieves the
engine from maintaining any WALI native process/thread
state, but places the engine at the mercy of the Linux kernel
for further optimizations in performance or inter-process
communication. To work around Wasm’s lack of a thread
model, both the web and WASI support threads via repli-
cating Wasm module instances. This “instance-per-thread”
model preserves distinct execution state, including separate
value and call stacks3, globals, and tables. We adopt the 1-to-1

3The design around Wasm thread support may be standardized in future
with the Shared-Everything Threads proposal [22]

5

design with an instance-per-thread for our WALI implemen-
tation for simplicity, and it incurs zero bookkeeping memory
overhead of processes/threads within the engine.

N-to-1 model The N-to-1 model runs multiple WALI pro-
cesses as LWPs within a single Linux process. Thread-based
LWPs require virtualization of all unshared native process
state, signi�cantly increasing implementation complexity.
Luckily, the native Linux clone call supports a precise spec-
i�cation for �ne-grained resource sharing with the child
process, allowing WALI implementations to optimize trade-
o�s on the spectrum between conventional "processes" and
"threads", e.g.:

• Setting CLONE_VM allows the child LWPs to share the
parent’s virtual address space, enabling potential mem-
ory usage optimizations.

• Disabling CLONE_THREAD makes interactions with vir-
tual LWPs identical to conventional processes: they
obtain a unique thread-group ID (TGID) and possess
their own scheduling properties.

Co-locating multiple WALI processes in one native process
also allows sharing �lesystem information and signals, which
can allow fast inter-process communication without syscalls
which may even outperform native Linux IPC.

"Threadless" model Mode switch overheads for kernel calls
are becoming more signi�cant with recent exponential im-
provements in CPU and memory performance [117]. Lever-
aging Wasm’s sandboxing, further reduction in overhead
could be achieved by avoiding an LWP-backed process model
in favor of a hyper-optimized process model that runs Ring-
0 delegated tasks in user-space [110]. We imagine that a
threadless model could support context switches as fast inter-
instance function calls within theWasm engine in user-space,
eliminating mode switch overheads. TGID-based process
identi�cation can be emulated with a dummy native pro-
cess that forwards process-based interaction to the WALI
engine, or with basic kernel support for providing raw TGID
identi�ers.

3.2 Memory Model
Wasmmodule memory is a 32-bit 4 byte-addressable, bounds-
checked linear address-space instantiated as subset of the
host process’s memory space. Module memory declarations
statically specify an initial andmaximum number of (64KiB 5)
pages that are shareable by multiple parallel computations
(i.e, threads onWASI andWALI), and accessible by the Wasm
program using load/store instructions that generate a 33-bit
index into memory. These memory model details necessitate
design choices to support WALI syscalls that operate on data

4With the recent standardization of the memory64 proposal [20], Wasm
memories can be optionally extended to 64 bits.
5A recentWasm proposal would allow custom power-of-two page sizes [18].

in memory or perform memory management. We transpar-
ently support all memory-oriented syscall operations with
the following techniques:

Address-Space Translation For many native syscalls that
accept arguments representing pointers to process memory
regions, WebAssembly memory "pointers" cannot be directly
forwarded to native syscalls as pointer types. For such WALI
syscalls, the engine must perform an address-space transla-
tion of memory references betweenWasm and native process
memory. This fast linear translation with minimal bounds-
checking overhead allowsmostWALI syscalls to be zero-copy,
enabling high-performance I/O directly from the sandboxed
intra-process Wasm memory.

Layout (ABI) Conversion Some native syscalls accept point-
ers to complex structured-typed arguments, whose byte-level
layout and size of may vary across ISAs, making it impossible
for WebAssembly to provide these as platform-independent
zero-copy syscalls. In such situations, WALI must explic-
itly perform Wasm-to-native struct copies for input argu-
ments and native-to-Wasm copies for output arguments. Few
syscalls (<10%) use such arguments and their sizes are usually
small and �xed, imposing minimal overhead.

Memory Management WALI allows nearly all use cases
of mmap, mremap, and munmap, including mapping �les and
other resources with unconstrained address ranges. All al-
locations are fully sandboxed and mapped by the WALI im-
plementation within the Wasm memory address space. Our
implementation automatically growsWasmmemory for new
mappings, up to the memory declaration’s self-imposed limit,
failing if the size grows beyond the maximum. 6 Subsequent
unmapping with munmap is performed as a passthrough na-
tive syscall with normal bounds-checking.
Prior to WALI, source-level language memory manage-

ment libraries (e.g. malloc or garbage collection) were re-
liant on the memory.grow instruction, which required non-
trivial porting e�ort to run on Wasm. With WALI’s faithful
memory-mapping support, sophisticated mapping strategies
work unmodi�ed using kernel interfaces, allowing these li-
braries to immediately target Wasm. Such support obligates
the WALI engine to internally manage the state for allocated
mapped and free memory segments. Our implementation
allows mapping a region in the engine at most once (which
only requires a single bookkeeping variable) for tracking the
base address of the allocation pool. Future implementations
however may avoid fragmentation with more elaborate al-
locators – these can implemented as Wasm modules over
WALI to reduce engine complexity and improve portability.

6We utilize the MAP_FIXED/MREMAP_FIXED �ag to native mmap/mremap
syscall to map pages at speci�c addresses in Wasm memory.

6

WASM Engine
Execution Inst

wali_rt_sigaction
(SIGINT, wint_hdl)

Sigtable Kernel

SYS_rt_sigaction
(na_hdl)

set_handler
(V_SIGINT, wint_hdl)

return

old_wint_hdl

old_wint_hdl

sig_poll get_handler
(V_SIGINT)

wint_hdnl
call(wint_hdl)

exit_handler

resume execution

SIGINT

set(V_SIGINT)

KernelSigTable

2

4

3

1

WALI
Frontend

Figure 5.WALI Asynchronous Signal Handling Sequence Diagram

3.3 Signal Model
Both synchronous and asynchronous signal handling are
critical features used by many Linux programs. Synchro-
nous signals are generated and delivered immediately to
processes in reaction to most hardware faults, e.g. memory
access faults, illegal instructions, or arithmetic exceptions.
These are easy to catch and trigger traps in the Wasm en-
gine for safe exception handling (e.g. SIGFPE for integer
division-by-zero). Asynchronous signals however are more
challenging: they may be generated and delivered at any
point in a process’s lifespan, even while the target process is
suspended, and are frequently used for software interrupts,
job control, termination, or I/O. WebAssembly, at the time of
writing, has no standardized instructions for asynchronous
callback operations. As a result, the WALI engine must ex-
plicitly support both delivering asynchronous native signals
at Wasm bytecode safepoints [43] and executing user signal
handlers faithfully.

Asynchronous Signal Handling WALI engines must be ca-
pable of supporting asynchronous signal delivery, masking,
and execution of application Wasm functions that handle
signals, similar to that of native processes. To fully support
asynchronous signal handling, the Wasm engine must sup-
port reentrancy where a host function calls back into the
sameWasm module from which it was invoked. WALI imple-
mentations leverage this capability to e�ectively virtualize
the main stages in a Linux signal’s lifecycle: signal registra-
tion, generation, delivery, and handler execution (Fig. 5).

(1) Signal Registration: Wasm modules must be able to
con�gure asynchronous signal callback functions, akin to na-
tive process, with rt_sigaction. To support this, the WALI
engine internally maintains a virtual sigtable of registered
signals, mapping every Linux signal to a target callback func-
tion in the Wasmmodule. WhenWasmmodules invoke their
virtual wali_rt_sigaction syscall, two things occur:

• The Wasm function pointer (index into a Wasm table)
is dereferenced and registered in the sigtable; and

• The native rt_sigaction is called within the engine
to register a native handler for the signal that performs
virtual signal generation.

The Wasm function pointer is also saved in the sigtable to
return back the old action (old_wint_hdl) to the module
for future invocations of wali_rt_sigaction. The virtual
sigtable incurs a minimal bookkeeping overhead of < 1:⌫.

(2) Generation: The engine stores a bit-vector and a queue
of pending signals per WALI process to serve as the virtual
signal generation mechanism. Since we use rt_sigaction,
native signal generation is performed by the underlying
kernel which WALI, as a user-space interface, uses to set the
signal’s bit-vector element and add it to the pending queue.

(3) Delivery: Generated signals remain pending and are de-
livered shortly after to the native process. However, signals
may be blocked using a signal mask (with rt_sigprocmask)
to prevent delivery until explicitly unblocked. WALI sup-
ports virtual signal blocking by maintaining a signal mask
per WALI process. Since signal masks are recorded for each
thread and initial masks are inherited from the parent thread,
for any process-model that uses the underlying clone syscall,
WALI can just use the Linux LWP’s signal mask. Delivered
signals are then picked up during execution by any WALI
thread in the thread group as a result of native Linux’s pro-
cess model.

(4) Handler Execution: Finally, the WALI engine must trig-
ger the execution of the registered virtual signal handler in
Wasm post-delivery. Since asynchronous signals do not im-
pede execution, WALI engines can choose to delay the signal
delivery and handling to a later time. However, arbitrary
invocations of signal handlers during critical sections in the
engine that modify module instance state (memory, tables,
globals), execution environment state during call/return
instructions, or internal WALI state can break consistency
guarantees of the WebAssembly execution model. There-
fore, WALI implementations must deliver signals at safe-
points (sig_poll in Fig. 5), inserted by the compiler, where
the state consistency is preserved. WebAssembly instruc-
tion boundaries are a natural location for safepoints, but
frequent polling for signals impacts performance and com-
piler optimization opportunities. Given reactivity is often

7

non-critical, polling at loop headers and/or function entry-
points are shown to be e�ective solutions [30, 55] – our
implementation performs the former.

The WALI engine must also be careful to avoid violations
to basic signal delivery guarantees. Pending virtual signals
blocked by rt_sigprocmask must not be delivered until
the same is unblocked. This is avoided with an additional
safepoint immediately after the native rt_sigprocmask in-
vocation within the engine, which handles outstanding gen-
erated signals before entering the Wasm critical section. Ad-
ditionally, when SA_NODEFER �ag is unset and two identical
pending signals occur, a stack-based structure containing
signal state can be used to defer new handler execution until
the current handler execution completes. Reserved handler
types like SIG_IGN, SIG_DFL, and SIG_ERR require special-
ized support. The engine can allow these to bypass virtual
signal handling entirely with direct calls to the kernel and
special trap handlers to provide safe handling.

3.4 External Parameters
The WALI speci�cation includes methods for supporting
external host parameters like command-line arguments and
environment variables within the application sandbox.

Command-line Arguments WALI transparently supports
transfer of command-line arguments from the host to the
application. To minimize state and increase safety in the en-
gine, WALI delegates the ownership of these variables to the
standard library. On startup, the standard library allocates an
appropriately sized argument vector using two API methods
– get_argc and get_argv_len. Safe copying of each argu-
ment into the WALI process is performed post-allocation
using a copy_argv method. As a result, any security vulner-
abilities exposed through bu�er over�ows during parsing
remain entirely contained within the sandbox.

Environment Variables Initialization of environment vari-
ables works similarly to command-line arguments in WALI,
where values are not inherited from the parent shell for se-
curity reasons but rather explicitly speci�ed when invoking
the engine. However, a subtle edge-case arises when exe-
cuting programs internally invoke execve, which must pass
virtual environment variables to the child WALI process as
opposed to the host engine. One solution for engines is to
forward the current virtual environment as command-line
arguments when invoking a WALI binary. An alternative el-
egant engine-agnostic technique we adopt is to use a unique
shared-memory segment encoded with the WALI process ID
to store the virtual environment state before invocation of
execve, which is picked up by the child process on startup.

3.5 Cross-Platform Support
Architecture-agnostic packaging ofWasm binaries is of prime
importance forWALI. Syscalls, however, are often non-portable
and vary across architectures both in their syscall numbers

Kernel

Wasm Sandbox

Wasm Engine

 WALI Mem Alloc

 WASI

 User App App State

Sigtable

Addr Pool

FD Table

Kernel

Wasm Sandbox

Wasm Engine

 WASI

 User App App State

Addr Pool

FD Table

Figure 6.Minimal WALI implementation virtualizes the WASI API.

and their functionality. WALI addresses these challenges
with the following techniques:

Name-bound syscalls WALI enables cross-ISA portability
using name-bound syscalls with statically de�ned type signa-
tures. This creates a clear distinction between the capabilities
of the platform and the WALI implementation, allowing the
latter to trap if it cannot faithfully attempt the execution of
a call. The set of virtual syscalls in WALI are thus a union
of all syscalls across supported architectures, which serve
as the single, complete WALI syscall speci�cation. Luckily,
Linux syscalls show high commonality between platforms
(Sec. 2), simplifying cross-ISA portability e�orts.

ISA-Speci�cKernel Interfaces Syscall arguments like kstat
and �le status �ags, used by all stat-related syscalls and �le
control syscalls respectively, have di�erent byte-level repre-
sentations across ISAs. WALI uses a dedicated representation
for these arguments, and requires the host engine to perform
layout conversion to-and-from ISA-speci�c representations
to maintain execution consistency. ioctl operations also
may di�er across ISAs; currently we only implement WALI
on x86-64, aarch64, and riscv64, which use identical op-
eration values. Fortunately, such disparities across ISAs are
rare and require only a few lines of code to translate.

3.6 Security Model
While novel security policies are at the forefront in all Wasm
APIs today, this limits the engine’s ability to port many ex-
isting applications and �exibility to implement new security
policies. WALI adopts a di�erent design philosophy to secu-
rity enforcement: it maintainsWasm’s inherent intra-process
properties (Sec. 1.1) coupled with a purely descriptive transla-
tion to the underlying kernel (i.e. Linux). This design pushes
complex security policies to higher layers (Fig. 6), giving
them full control in a safer and ISA portable manner. As a
result, WALI is exceptionally thin (⇡2000 LoC) compared to

8

other APIs likeWASI (⇡6000 LoC prior to preview2), minimiz-
ing the TCB’s attack surface and allowing engine developers
to support numerous security policies over a single interface.
With Wasm multi-memory [14], security models can also be
provided an independent privileged memory space disjoint
from the application and each other.

Syscall Integrity WALI binaries possess syscall integrity,
explored by works such as BASTION [56], intrinsically with
name-bound invocation, intrinsic CFI, and parameter type-
checking guarantees from Wasm. Syscalls in WALI do not
break the Wasm intra-process sandbox guarantees since:

• All syscalls require only rw- permissions to linear mem-
ory to handle data pointers, and only r-- access to table
for function pointer callback arguments.

• No syscall manipulates the execution stack directly.
• All instructions in WALI binaries still only index into
their private linear memories.

WALI binaries can also quickly be statically validated since
the import section enumerates all syscalls the binary can
potentially use up front, easing certi�cation e�orts.

Dynamic Policies seccomp [38] policies are commonly used
to restrict applications’ syscall access capabilities for soft-
ware virtualization. WALI does not implement seccomp, but
rather relies on layering to implement seccomp-like poli-
cies completely in user-space in the engine or as Wasm
modules, making existing syscall-based security work (e.g.
Draco [92]) complimentary to WALI. In the long run, secu-
rity policies with a constrained set of WALI’s features can
serve as a simple, veri�able environment, following tech-
niques used in security-oriented containers like Nabla [111]
or gVisor [116].

Addressing Common Pitfalls Intra-process sandboxing
techniques over OS abstractions are susceptible to numerous
subtle security vulnerabilities [37]. We address these issues,
with potential restrictions, in the context of WALI:
(1) Filesystem Sandboxing: Certain �lesystem interfaces,

notably /proc/self/mem, grant callers access the host
process’s virtual address space. WALI explicitly pre-
vents this by interposing on all open-like syscalls with
a explicit check for the aforementioned endpoint.

(2) Memory Mapping: Memory-mapping calls including
mmap, mremap, and process_vm_{read,write}v are of-
ten exploited to generate custom executable code seg-
ments. In WALI, these attacks are impossible since mem-
ory is non-executable in Wasm and all mappings are
sandboxed within linear memory.

(3) Non-LocalGotos:C/C++ features like setjmp/longjmp
would violate traditional Wasm CFI, performing irrev-
ocable changes to the system stack, and are thus not
supported in WALI. Eventually, these features can be
implemented safely transparently in toolchains as the

Wasm exception-handling proposal [3] is now part of
the standard.

(4) Signal Trampoline: The sigreturn syscall is often
exploited as a gadget for attacks without injecting new
code [33]. InWALI, however, signal handler execution is
fully managedwithin the engine, allowing us to prohibit
sigreturn from being directly invoked fromwithin the
WALI module user programs with a trap.

(5) Engine Restrictions: WALI inherently provides max-
imum �exibility, but some limitations may arise from
the engine’s internal implementation strategies. For
example, engines that use signals to trigger traps (e.g.
SIGSEGV, SIGFPE) might restrict the ability of WALI ap-
plications to override their respective handlers, or must
implement chaining.

(6) Processor-Speci�c Functionality: Direct hardware
access and the use of ucontext/mcontext are not sup-
ported in favor of ISA portability and security.

4 Evaluation of WALI
We evaluated WALI by compiling and executing several real-
world applications, build systems, and libraries. We �nd that
this enables Wasm binaries to more easily plug into existing
ecosystems with both minimal code changes and minimal
API-intrinsic overhead.

Implementation Choices We evaluate WALI with a refer-
ence implementation in the WebAssembly Micro Runtime
(WAMR) [13], a popular Wasm engine written in C that sup-
ports many architectures, has extensive functionality, and
has a high-performance AoT compiler in addition to an in-
terpreter. For simplicity and completeness, we implement
the 1-to-1 process model and support asynchronous signals
by inserting safepoints for signal polling at loop headers
for low overhead. Our WALI implementation in WAMR cur-
rently supports x86-64, aarch64, and riscv-64 host ISAs
and was deployed successfully across a cluster of 24 diverse
edge devices, including 10 resource-constrained single-board
computers. All evaluations on WALI below, unless otherwise
speci�ed, are collected using a fully-featured runtime on AoT
compiled code.

Coverage Using our diagnostic analysis (Fig. 2), we imple-
mented the 137 most common syscalls that cover a wide
range of applications compiled against WALI to date. The
WALI implementation is ⇡ 2000 lines of C code, with < 100
lines of platform-speci�c code. We created a lightly-modi�ed
version of musl-libc [6] to serve as the WALI C standard
library with these notable features:

• full support for threads and TLS;
• portable versions of architecture-speci�c structures and
�ags (kstat, �le-creation �ags, ksigaction, etc);

• static linking only, since dynamic linking is not cur-
rently supported by the Wasm ecosystem.

9

API portability Missing
Codebase Description WALI WASIX WASI Features
bash Shell 3 3 7 signals
lua Interpreter 3 3 7 dup
virgil Compiler 3 7 7 chmod
wizard WASM Engine 3 7 7 self-host
memcached System Daemon 3 7 7 mmap
openssh System Services 3 7 7 users
sqlite Database 3 7 7 mremap
paho-mqtt MQTT App 3 3 7 sockopt
make CLI Tool 3 7 7 wait4
vim CLI Tool 3 7 7 mmap
wasm-inst CLI Tool 3 7 7 sysconf
libuvwasi WASI Lib 3 7 7 ioctl
zlib Compression Lib 3 3 3 —
libevent System Lib 3 7 7 socketpair
libncurses System Lib 3 7 7 pgroups
openssl Security Lib 3 7 7 ioctl
LTP Test Harness 3 7 7 linux

Table 1. Porting e�ort of Wasm APIs for some popular applications

We also build LLVM’s libc++ over musl-libc to target C++
applications and a new Rust target toolchain to support the
Rust ecosystem (wasm32-wali-linux-musl).

4.1 Porting E�ort
We collected a suite of popular Linux applications across var-
ious domains that compile using a customWALI clang target
which is similar to the existing WASI target (Table 1). Every
application compiles successfully and nearly every one of
them executes faithfully without any source code modi�-
cation. The notable exception to faithful execution arises
from runtime traps caused by failed Wasm call_indirect
signature checks, which occur in C applications that per-
form function invocation with incompatible function pointer
types (e.g. bash), which is actually unde�ned behavior. Inter-
estingly, this outcome re�ects a positive aspect of WALI ’s
porting process, as it can help expose type safety bugs that
may be latent in low-level system software.

Surprisingly, ourWALI-enabled LLVM toolchain also seam-
lessly integrates into complex build systems. For example,
Linux allows registering interpreters for custom binary for-
mats, enabling WALI .wasm �les to be directly executable.
This allows many build scripts to be used directly without
modi�cation7. The custom interpreter mechanism allowed
building the entire libuvwasi implementation unmodi�ed
(passing all tests) andmany of the currently supported syscall
tests in Linux Test Project (LTP) [1] along with their test har-
nesses, which uses complex signalling and shared memory
for job control.

7Amusingly, the bash build executes intermediate WALI binaries to con�g-
ure certain parameters (e.g. pipe size capacity), which run transparently
without modi�cation. This is quite common in many complex builds.

��� 	��
 ������� ��
��	��

 ���
�

��

��
��

��
��

���
�

�
���
��	�
	��� �
��� �
�	�

��
� �	��� ���
� ���� ���	�

���� ���� ���� ���� ��
�

�������� ������ ����

Figure 7. Runtime breakdown of WALI across system stack.

4.2 Intrinsic Costs
The performance of a WALI implementation is highly depen-
dent on the underlying Wasm engine, which can vary drasti-
cally in performance based on how quickly it executes Wasm
bytecode via interpretation or compilation [99]. While byte-
code execution speed is important, it is independent of the
intrinsic cost of using WALI that does not scale proportion-
ally with improvements in Wasm runtimes. Our experiments
with our prototype implementation on WAMR shed light on
this overhead, which is mostly independent of Wasm engine.
Experiments were run on a 11th Gen Intel Core i7-1185G7
machine (x86-64). However, since architecture-speci�c code
is minimal and infrequently executed, the intrinsic cost mea-
sured here is fairly consistent across ISAs on macrobench-
marks.

Syscall Interface Most WALI syscalls require under 10 lines
of code to implement – mostly performing basic address-
space translation 8 – and have an absolute overhead vs native
syscalls in the order of a few hundred nanoseconds (Table 2).
To put these overheads into context, less than 1% of the exe-
cution time is typically spent in the WALI interface, which is
negligible compared to the inherent overheads of the Wasm
app or kernel time (Fig. 7). The memcached benchmark incurs
a slightly higher overhead of 2.4% from WALI– we attribute
this to extensive multithreading employed by the benchmark.
The clone syscall for spawning threads is a clear outlier,

which adds about 500`B of overhead. This is however not an
API-intrinsic cost of WALI, but rather that of the internal im-
plementation of WAMR’s thread manager which creates an
entirely new copy of the Wasm module’s execution environ-
ment for each new thread. This cost for WALI can be made
signi�cantly cheaper with various runtime optimizations –
e.g, the Wasmtime [10] engine has optimized instance cre-
ation heavily through lazy loading and copy-on-write paging
optimizations, resulting in overheads as low as at 5`B . De-
spite this, our experience shows that most applications for
our intended use-cases are not critically a�ected by this over-
head since clone often occur mostly during initialization
and is relatively infrequent.

8Calls like rt_sigaction and mmap typically need extra instructions to man-
age internal state for signal handling and memory allocation respectively,
incurring a higher cost. These calls are the exception, not the norm.

10

Syscall Overhead LOC State
read 167 ns 4 N
write 151 ns 5 N
mmap 512 ns 30 Y
open 156 ns 4 N
close 187 ns 3 N
fstat 171 ns 4 N
mprotect 120 ns 4 N
pread64 671 ns 4 N
lseek 178 ns 3 N
rt_sigaction 711 ns 40 Y

Syscall Overhead LOC State
stat 112 ns 8 N
futex 141 ns 6 N
rt_sigprocmask 114 ns 5 N
getpid 168 ns 1 N
writev 387 ns 10 N
munmap 246 ns 12 Y
fcntl 160 ns 10 N
access 202 ns 8 N
recvfrom 116 ns 8 N
getuid 151 ns 1 N

Syscall Overhead LOC State
geteuid 123 ns 1 N
poll 128 ns 12 N
getrusage 151 ns 5 N
getegid 164 ns 1 N
getgid 165 ns 1 N
lstat 142 ns 6 N
ioctl 127 ns 4 N
clone 554873 ns 100+ Y
prlimit64 139 ns 5 N
fork 345 ns 1 N

Table 2. WALI implementation statistics for 30 representative syscalls guided by heuristics from Fig 2, indicating the overhead (measured
with VDSO-based clock_gettime of CLOCK_MONOTONIC_RAW), implementation size (LOC — Lines of Code), and whether the syscall is
stateful. The high overhead of clone is notably a by-product of the engine rather than WALI itself.

� � �� �� ��
��"�#������ $��!������
�

��

��

��

��

	�

	�

�

�

��
��

��
��

�
$�

�!
��

��
��

�

����
�����
����

(a) Memory – Combined

��� ��� ��� ���
��"�$���%��#"����������!�

�

�

	

�

�%
��

#"
��

��
��

�
��

�!
�

�
��
�����
����
��"�$�

(b) Runtime – Lua

��� ��� ��� ���
�������
�����������������

�

�

	

�

�
��

��
��
��
��
�
��
��
�

(c) Runtime – Bash

���� ��	� ���� ��
� ����
�������������������������

�

�

	

�

��
��

��
��
��
��
�
��
��
�

(d) Runtime – Sqlite

Figure 8. Peak memory (8a) and execution time (including startup time) (8b-8d) comparison for Lua, Bash, and Sqlite benchmarks showing
each virtualization method’s e�ciency versus its native counterpart; all three benchmarks are combined into a single plot for peak memory.

App Loop (%) Function (%) All (%)
bash 7.1 10.0 187.0
lua 4.1 2.8 100.3
sqlite3 11.3 5.2 164.2
paho-bench 0.5 1.1 17.8

Table 3. Cost of polling for asynchronous signal handling in WALI
with di�erent safe-point insertion schemes – Loop: after loop byte-
code, Func: start of every function, All: after every instruction

Asynchronous Signal Polling The number of executed
safepoints plays a critical role in execution overhead. Un-
surprisingly, we �nd that polling after every instruction is
prohibitively expensive–at least 10x slower than polling at
loops or functions (Table 3). The latter two are comparable,
typically incurring under 10% slowdown over WALI without
signal polling. Both are also reasonable choices in practice –
the function scheme may favor compiler optimizations bet-
ter while the loop scheme may enable more reactive signal
handling for large functions.

4.3 Extrinsic Costs: Virtualization Overhead
To put WALI into perspective with some existing virtualiza-
tion technologies, we evaluate the performance and mem-
ory usage of our WALI implementation against two other

systems — Docker [76] for OS interface virtualization and
QEMU [31], speci�cally without KVM [62], for ISA virtual-
ization. We exclude KVM-based solutions (including Fire-
cracker [24]) since KVM utilizes hardware-assisted virtual-
ization, diverging from pure ISA virtualization that we aim to
evaluate. We select three popular Linux applications in edge
systems – bash, lua, and sqlite – to compare and contrast
the optimal use cases for WALI with the above virtualization
mechanisms.

WebAssembly Runtime Overhead For CPU-bound appli-
cations, the overhead of WALI versus native applications is
dominated by the Wasm engine. A plethora of works have
studied both execution and memory overheads of Wasm [93,
100, 106, 107], including complex optimization techniques
for startup [94] and bounds-checking [97, 114], which is or-
thogonal to this work. To provide a baseline, an analysis
in 2023 of Wasm runtime performance [42] shows a me-
dian slowdown (on performance-focused Wasm engines) of
2.32 times over native execution without SIMD [11] and Tail
Call [17] language extensions.

Memory While peak memory utilization scales similarly for
all virtualization solutions, base memory utilization can vary
drastically (Fig. 8a). Unlike WALI, which only virtualizes the

11

target application, Docker containers incur a high base over-
head (⇡30 MB) to support intermediate layers for storage
drivers and isolated software libraries. On the other hand,
QEMU maintains a low overhead using a several optimiza-
tions – lazy allocation, balloon drivers, and KVM virtual-
ization – leading to comparable results to WALI for small
applications.

Execution Time Fig. 8b-8d compares the composite execu-
tion time of WALI, Docker, and QEMU. As expected of emu-
lators, QEMU is an order of magnitude slower than Docker,
which executes at near-native speed directly on the CPU.
While our WALI implementation’s runtime performance
(slope of the line) is nearly 2G slower than native code and
Docker on average, the startup time is only a few millisec-
onds as opposed to nearly half a second for containers, which
requires instantiation of internal layers and namespace iso-
lation. We observe a cross-over point for each application
based on start-up time and relative overheads, before which
WALI is faster than Docker. Applications with short-lived
execution or those like lua, which execute up to 60% slower
than native in Docker due to frequent memory allocation
requests, are hence good candidates for using WALI as a
virtualization solution.

Summary WALI strikes a middle ground in memory and ex-
ecution overhead between emulation and container technolo-
gies, providing the best of both worlds: rapid startup times
comparable to emulation and faster runtime performance
comparable to containers. Furthermore, non-addressable ex-
ecution state, ISA-portability, and CFI are guaranteed by
Wasm’s execution model, providing security bene�ts beyond
default containerization techniques. While Wasm, as a rel-
atively new execution platform, still incurs high runtime
overheads (consistent with state-of-the-art analysis), we en-
vision that increased proposal standardization [11, 17, 19, 21]
and compiler/engine enhancements [100, 114] will soon close
its performance gap with native execution. This will further
expand WALI’s reach as a feasible virtualization technique
for compute-intensive workloads.

5 Kernel Interfaces Beyond Linux
Our initial design work to �t WALI into the Wasm execution
model faced core challenges such as memory-mapping, pro-
cess/threads, �lesystems, networking etc. that are applicable
to most other kernels on modern hardware. In particular, we
formulate a recipe for designing thin kernel interfaces for
beyond Linux, which entails the following:
(1) Enumerate and name-bind all OS calls that perform

hardware-aided privilege escalation (e.g. syscalls).
(2) Sandbox (address-space translation + bounds-check) all

memory addresses passed between application and OS.
(3) Encode ISA-portable struct layouts and translate to/from

hardware ISA struct layouts at syscall boundaries.

(4) Map the native process model onto Wasm with sand-
boxed processes and/or multiple threads.

(5) Map kernel memorymanagement primitives safely onto
Wasm’s linear memory model.

(6) Map asynchronous OS interactions (e.g. signal deliv-
ery/handling, RPCs) onto synchronous Wasm interac-
tions at safepoints.

This concrete recipe allowed us to easily auto-generate a
majority (>85%) of the WALI implementation since most
calls are passthrough, only requiring steps (1)-(3). Our brief
investigation shows this design methodology is applicable
to syscall interfaces in most operating systems.

5.1 Applying our Recipe to Zephyr RTOS: WAZI
To validate our recipe, we perform a small prototype im-
plementation of our recipe for a specialized RTOS, Zephyr,
used extensively for IoT [65, 88], automotive [41], and indus-
trial automation [53] domains, in WAMR. Zephyr’s syscall
interface (⇡ 520 syscalls) is already ISA-portable (Sec. 2), and
the compiler parses and creates an encoding of all syscalls
at compile-time. We extract this encoding and use it for
auto-generating the implementation in WAMR, much like
in WALI. Our WAZI implementation is ⇡ 4200 LOC.

We develop a toolchain around picolibc, an OS indepen-
dent libc for embedded systems, and utilize WAZI to create
hooks around the required I/O and �lesystem calls. In addi-
tion to simple tests, we successfully compile a Lua binary
toolchain and deploy it on a Nucleo-F767ZI ARM microcon-
troller board (384 kB SRAM) running Zephyr. Given WAMR
is yet to fully support WASI in Zephyr, we see this as a major
step towards allowing engines to target an OS like Zephyr.

5.2 Exploration of Other Mainstream Kernels
Unix-Like Kernels Most Unix-like kernels such as FreeBSD,
HP-UX, and Illumos show striking similarities to Linux in
their syscall set, and can follow the same design strategy
as WALI. MacOS X, based on the Darwin kernel, marries a
UNIX-style syscall set based on BSD with the Mach kernel
syscalls, and implements POSIX compatibility via con�gura-
bility in libc. While enabling a modular approach with IPC
for �ner-grained safety and sharing, Mach still uses WALI’s
core foundations albeit needing careful delineation for a
kernel interface – an orthogonal program to that of WALI.

Windows TheWindows kernel’s syscalls evolvemore rapidly
than those of other systems, often being completely renum-
bered from one release to the next, with portability typically
handled at the DLL level. While a dedicated Windows inter-
face would likely require a stable, restricted, and portable
feature subset such as the Drawbridge [84] ABI, Windows
systems can presently leverage WSL2 [91] to run WALI ap-
plications unmodi�ed.

12

6 Discussion and Future Outlook
Thin-kernel interfaces unlock a number of fruitful future
directions by augmenting unmodi�ed existing software with
portability and sandboxing. We consider a number of future
directions.
Accelerating WASI development and adoption The pro-
liferation of WASI (especially preview2) is critically bottle-
necked by engine implementation e�ort, with fully-featured
support on only one engine (Wasmtime) and via a poly�ll to
JavaScript (jco). Prior to kernel interfaces, WASI’s complex
security model was necessarily part of the engine imple-
mentation. Now, with WASI decoupled from from engine
development, a new standardized reference implementation
could be deployed as a Wasm module that uses WALI and
run on any engine. This portability greatly accelerates the
evolution and adoption of WASI on new platforms.
Robustness by ecosystem modularization Typical WASI
implementations themselves contain many thousands of
lines of code. Vulnerabilities in any of this code could com-
promise the memory safety of Wasm and indeed, of the en-
tire process. In contrast, WALI’s thin syscall interface layer
pushes more responsibility outside the trusted runtime sys-
tem, reducing engine implementation complexity, increasing
API stability, and sandboxing higher level APIs above the
engine.
Portable Packaging of Linux Distributions Linux distri-
butions o�er pre-compiled packages for speci�c ISAs, which
are compact, stable, and negate the need for complex build
environments. To achieve ISA-level portability, fat binaries
and multi-arch Docker images have fallen short due to un-
wieldy disk space overhead. In contrast, WALI executables
are both compact and portable across CPU architectures; this
raises the exciting prospect that Linux distributions could
ultimately achieve full ISA portability with Wasm.
Full-Stack So�ware Veri�cation Veri�cation of native bi-
naries [50] underpinned by formally-speci�ed instruction
sets [26, 89] and syscall semantics [98] have recently show
great promise. Similar e�orts directed towards Wasm with
machine-checked proofs of modules [87], fully-veri�ed ker-
nels [63], compilers [68], and libraries [118] show promise
to achieve the holy grail of veri�cation: a tower of proofs to
certify a program’s entire software stack.
Improving Language Targetability Wemaintain thatWasm
is an abstraction over hardware, rather than a speci�c secu-
rity model for systems. Programming languages that target
Wasm should enjoy memory safety but allow full feature-
completeness, which often include low-level system calls.
As more languages target Wasm, they cannot remain at the
mercy of only what Web APIs or WASI allow; there must
be �exibility to allow custom security layers higher in the
stack to de�ne abstractions that make the low-level interface
usable, convenient, and safer.

Expansion and Interposition of Syscalls WALI already
implements most “high-importance” Linux syscalls [66] in-
cluding core OS features that require a custom bridge to
Wasm. Our analysis of the remaining Linux API suggests
that most can be added as simple pass-through calls (Sec. 5).
Additionally, calls throughWasm can easily be interposed on
by libraries that log, restrict, pro�le, or fault-inject. Unlike
native syscalls which are speci�ed by a runtime syscall num-
ber, Wasm syscalls are bound by name, allowing uniform
ISA-agnostic static and dynamic policies in the future. Many
tools aimed at enhancing security at the syscall layer, e.g.
Nabla [111], gVisor [116], seccomp [38] and Draco [92], are
hence complementary to this work to enable a restricted
subset of secure interfaces.

7 Related Work
We organize our discussion of virtualization technologies
into four broad areas: (1) Emulators, (2) Hypervisors, (3) OS
interface virtualization, and (4) Language virtualization.

Emulators ISA emulators provide a mechanism for virtual-
izing an entire system stack including hardware, operating
system, and application. Popular solutions like QEMU [31]
and Bochs [64] have sparked further research into emulator
performance optimizations [54] for niche use-cases [109],
which is currently an obstacle to widespread adoption. These
aremostly used as prototyping tools, unless KVM [62] is used
when ISA emulation is unnecessary, since most binaries can
run anywhere as-is, but unlike WALI, is challenging to ex-
tend to high-performance resource-constrained systems.

Hypervisors Hypervisor technology virtualizes the guest
operating system kernel with bare-metal (type-1) hypervi-
sors (e.g. vSphere [51], Xen [36]) used in cloud settings and
hosted (type-2) hypervisors (e.g. Fusion [45]) are used by end
users. Hyper-V [77] and KVM are common in-built type-1
hypervisors commonly leveraged in modern OSes for high
performance virtualization (e.g. WSL2 [91], Firecracker [24]).
In embedded domains, real-time hypervisors [57, 81, 82] are
promising for cost reduction and improved resource utiliza-
tion, with bolstered security from using ARMTrustZone [83].
Similar approaches that leverage hardware techniques for
lightweight sandboxing [48] can also enable WebAssembly
performance improvements.

OS Interface Virtualization Wine [25] o�ers a system
compatibility layer forWindows applications to run on Linux
but lacks any security advantages. Containers technologies
like LXC [73] and Docker [76] are popular in cloud ecosys-
tems for high-performance isolation that uses namespace
and cgroups to control resources and isolate applications.
[35] studiedDocker performance in detail, reporting between
10% and 30% overhead for disk I/O and 5-10% overhead when
enforcing CPU quotas. Optimizing resource isolation [105],
startup time [47, 74], and heterogeneous platforms [46] has

13

also been a large focus of the container ecosystem for niche
use-cases. Security oriented container such as Nabla contain-
ers [111] and gVisor [116] can also be mimiced via security
models over WALI/WAZI. Wasm-based virtualization, how-
ever, provides CFI and RCE protection, along with ISA porta-
bility; advantages not currently available with containers.

Application Virtualization In the same vein as Wasm,
numerous languages like Java, Javascript, Python, and .NET
o�er application-level virtualization. Browsix [85] was the
�rst POSIX-like API for in-browser Javascript applications,
emulating �lesystem and sockets but pays a high perfor-
mance ine�ciency penalty. [95] proposed a Java OSEK in-
terface for embedded devices and [113] a Java-based device
driver virtualization, but both possess non-determinism and
high memory overheads for the edge. .NET is e�ective in the
cloud [103] but unsuitable in edge contexts [72] for similar
reasons. In the Wasm ecosystem, research e�orts beyond
WASI(X) [49, 69, 69, 79] are directed towards designing e�ec-
tive edge platforms and techniques to improve security for
the Wasm ecosystem [60, 67, 96], which are complementary
to kernel interfaces. Native Client (and PNaCL) [44, 115] pre-
ceded Wasm for browser sandboxing, but LLVM IR is unsta-
ble, lacks full ISA portability, and contains non-deterministic
behavior. With growing interest in deeply embedded [75,
104] Wasm runtimes, imminent domain-speci�c APIs will
bene�t from being virtualized over WALI.

8 Conclusion
This paper introduced the �rst thin kernel interfaces for
Wasm which allow high-level API evolution to be decoupled
from engine and bytecode evolution, improving security, ro-
bustness, and feature-completeness through layering. We
show a repeatable recipe across diverse kernels, with ex-
amples WALI/WAZI, that o�ers a strategy for developing
complete, simple, and e�cient thin kernel interfaces. Wasm
engines can now more easily focus on their strengths: run-
ning bytecode fast and safely exposing thin kernel interfaces,
while higher-level software layers abstract over them with
new security models. We believe this will unlock Wasm’s
portable software-de�ned ISA to expand beyond the Web
or Cloud, supporting new low-level ecosystems while im-
proving the development, distribution, and adoption of both
WASI and new high-level APIs as Wasm code.

9 Acknowledgements
This work is supported by Bosch Research, theWebAssembly
Research Center, and the National Science Foundation (NSF)
grant awards: CNS-2148301, CNS-2148367, and TI-2229731.
We also thank our shepherd, Tianyin Xu, and the anonymous
reviewers for their valuable feedback and suggestions in
improving the positioning and presentation of the paper.

References
[1] 2012. Linux Test Project. https://github.com/linux-test-project/ltp.

h�ps://github.com/linux-test-project/ltp
[2] 2018. WasmCrypto: A WebAssembly set of cryptographic primi-

tives. h�ps://github.com/jedisct1/wasm-crypto. h�ps://github.com/
jedisct1/wasm-crypto (Accessed 2025-02-21).

[3] 2019. WebAssembly Exception Handling Proposal. h�ps://
github.com/webassembly/exception-handling. h�ps://github.com/
webassembly/exception-handling (Accessed 2025-02-20).

[4] 2020. The edge of the multi-cloud. h�ps://www.fastly.
com/cassets/6pk8mg3yh2ee/79dsHLTEfYIMgUwVVllaa4/
5e5330572b8f317f72e16696256d8138/WhitePaper-Multi-
Cloud.pdf. h�ps://www.fastly.com/cassets/6pk8mg3yh2ee/
79dsHLTEfYIMgUwVVllaa4/5e5330572b8f317f72e16696256d8138/
WhitePaper-Multi-Cloud.pdf (Accessed 2021-07-06).

[5] 2020. libuvwasi. https://github.com/nodejs/uvwasi.git. h�ps://github.
com/nodejs/uvwasi.git (Access 2023-8-01).

[6] 2020. musl-libc. h�ps://www.musl-libc.org. h�ps://www.musl-
libc.org (Accessed 2023-8-08).

[7] 2020. Unity: Getting startedwithWebGL development. h�ps://h�ps://
docs.unity3d.com/Manual/webgl-ge�ingstarted.html. h�ps://h�ps:
//docs.unity3d.com/Manual/webgl-ge�ingstarted.html (Accessed
2025-02-12).

[8] 2021. Docker. h�ps://www.docker.com/. Accessed: 2025-02-21.
[9] 2021. Wasmer: A Fast and Secure WebAssembly Runtime. h�ps:

//github.com/wasmerio/wasmer. h�ps://github.com/wasmerio/
wasmer (Accessed 2025-02-18).

[10] 2021. Wasmtime: a standalone runtime for WebAssembly. h�ps:
//github.com/bytecodealliance/wasmtime. h�ps://github.com/
bytecodealliance/wasmtime (Accessed 2025-02-20).

[11] 2021. WebAssembly 128-bit packed SIMD Extension. h�ps://github.
com/WebAssembly/simd/blob/main/proposals/simd/SIMD.md.
h�ps://github.com/WebAssembly/simd/blob/main/proposals/simd/
SIMD.md (Accessed 2025-2-21).

[12] 2021. WebAssembly speci�cations. h�ps://webassembly.github.io/
spec/. h�ps://webassembly.github.io/spec/ (Accessed 2025-02-16).

[13] 2022. WebAssembly Micro Runtime (WAMR). h�ps://github.
com/bytecodealliance/wasm-micro-runtime. h�ps://github.com/
bytecodealliance/wasm-micro-runtime (Accessed 2025-02-19).

[14] 2022. WebAssembly Multi Memory Proposal. h�ps://github.com/
WebAssembly/multi-memory. h�ps://github.com/WebAssembly/
multi-memory (Accessed 2023-7-13).

[15] 2023. CVE-2023-38408. h�ps://www.cve.org/CVERecord?id=CVE-
2023-38408. h�ps://www.cve.org/CVERecord?id=CVE-2023-38408
(Accessed 2023-08-9).

[16] 2023. regreSSHion: CVE-2024-6387. h�ps://www.cve.org/
CVERecord?id=CVE-2024-6387. h�ps://www.cve.org/CVERecord?
id=CVE-2024-6387 (Accessed 2024-09-16).

[17] 2023. WebAssembly Tail Call Proposal. h�ps://github.com/
WebAssembly/tail-call. h�ps://github.com/WebAssembly/tail-call
(Accessed 2025-2-18).

[18] 2024. WebAssembly Custom Page Sizes Proposal. h�ps://
github.com/WebAssembly/custom-page-sizes. h�ps://github.com/
WebAssembly/custom-page-sizes (Accessed 2025-2-20).

[19] 2024. WebAssembly Garbage Collection Proposal. h�ps://github.com/
WebAssembly/gc. h�ps://github.com/WebAssembly/gc (Accessed
2025-2-20).

[20] 2024. WebAssembly Memory-64 Proposal. h�ps://github.
com/WebAssembly/memory64. h�ps://github.com/WebAssembly/
memory64 (Accessed 2025-2-21).

[21] 2024. WebAssembly Relaxed SIMD Proposal. h�ps://github.com/
WebAssembly/relaxed-simd. h�ps://github.com/WebAssembly/
relaxed-simd (Accessed 2025-2-21).

14

https://github.com/linux-test-project/ltp
https://github.com/jedisct1/wasm-crypto
https://github.com/jedisct1/wasm-crypto
https://github.com/jedisct1/wasm-crypto
https://github.com/webassembly/exception-handling
https://github.com/webassembly/exception-handling
https://github.com/webassembly/exception-handling
https://github.com/webassembly/exception-handling
https://www.fastly.com/cassets/6pk8mg3yh2ee/79dsHLTEfYIMgUwVVllaa4/5e5330572b8f317f72e16696256d8138/WhitePaper-Multi-Cloud.pdf
https://www.fastly.com/cassets/6pk8mg3yh2ee/79dsHLTEfYIMgUwVVllaa4/5e5330572b8f317f72e16696256d8138/WhitePaper-Multi-Cloud.pdf
https://www.fastly.com/cassets/6pk8mg3yh2ee/79dsHLTEfYIMgUwVVllaa4/5e5330572b8f317f72e16696256d8138/WhitePaper-Multi-Cloud.pdf
https://www.fastly.com/cassets/6pk8mg3yh2ee/79dsHLTEfYIMgUwVVllaa4/5e5330572b8f317f72e16696256d8138/WhitePaper-Multi-Cloud.pdf
https://www.fastly.com/cassets/6pk8mg3yh2ee/79dsHLTEfYIMgUwVVllaa4/5e5330572b8f317f72e16696256d8138/WhitePaper-Multi-Cloud.pdf
https://www.fastly.com/cassets/6pk8mg3yh2ee/79dsHLTEfYIMgUwVVllaa4/5e5330572b8f317f72e16696256d8138/WhitePaper-Multi-Cloud.pdf
https://www.fastly.com/cassets/6pk8mg3yh2ee/79dsHLTEfYIMgUwVVllaa4/5e5330572b8f317f72e16696256d8138/WhitePaper-Multi-Cloud.pdf
https://github.com/nodejs/uvwasi.git
https://github.com/nodejs/uvwasi.git
https://www.musl-libc.org
https://www.musl-libc.org
https://www.musl-libc.org
https://https://docs.unity3d.com/Manual/webgl-gettingstarted.html
https://https://docs.unity3d.com/Manual/webgl-gettingstarted.html
https://https://docs.unity3d.com/Manual/webgl-gettingstarted.html
https://https://docs.unity3d.com/Manual/webgl-gettingstarted.html
https://www.docker.com/
https://github.com/wasmerio/wasmer
https://github.com/wasmerio/wasmer
https://github.com/wasmerio/wasmer
https://github.com/wasmerio/wasmer
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://github.com/WebAssembly/simd/blob/main/proposals/simd/SIMD.md
https://github.com/WebAssembly/simd/blob/main/proposals/simd/SIMD.md
https://github.com/WebAssembly/simd/blob/main/proposals/simd/SIMD.md
https://github.com/WebAssembly/simd/blob/main/proposals/simd/SIMD.md
https://webassembly.github.io/spec/
https://webassembly.github.io/spec/
https://webassembly.github.io/spec/
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/WebAssembly/multi-memory
https://github.com/WebAssembly/multi-memory
https://github.com/WebAssembly/multi-memory
https://github.com/WebAssembly/multi-memory
https://www.cve.org/CVERecord?id=CVE-2023-38408
https://www.cve.org/CVERecord?id=CVE-2023-38408
https://www.cve.org/CVERecord?id=CVE-2023-38408
https://www.cve.org/CVERecord?id=CVE-2024-6387
https://www.cve.org/CVERecord?id=CVE-2024-6387
https://www.cve.org/CVERecord?id=CVE-2024-6387
https://www.cve.org/CVERecord?id=CVE-2024-6387
https://github.com/WebAssembly/tail-call
https://github.com/WebAssembly/tail-call
https://github.com/WebAssembly/tail-call
https://github.com/WebAssembly/custom-page-sizes
https://github.com/WebAssembly/custom-page-sizes
https://github.com/WebAssembly/custom-page-sizes
https://github.com/WebAssembly/custom-page-sizes
https://github.com/WebAssembly/gc
https://github.com/WebAssembly/gc
https://github.com/WebAssembly/gc
https://github.com/WebAssembly/memory64
https://github.com/WebAssembly/memory64
https://github.com/WebAssembly/memory64
https://github.com/WebAssembly/memory64
https://github.com/WebAssembly/relaxed-simd
https://github.com/WebAssembly/relaxed-simd
https://github.com/WebAssembly/relaxed-simd
https://github.com/WebAssembly/relaxed-simd

[22] 2025. WebAssembly Shared-Everything Threads Pro-
posal. h�ps://github.com/WebAssembly/shared-everything-
threads/tree/main. h�ps://github.com/WebAssembly/shared-
everything-threads/tree/main (Accessed 2025-2-21).

[23] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009.
Control-Flow Integrity Principles, Implementations, and Applications.
13, 1, Article 4 (nov 2009), 40 pages. h�ps://doi.org/10.1145/1609956.
1609960

[24] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight virtualization for serverless applications. In
17th USENIX symposium on networked systems design and implemen-
tation (NSDI 20). 419–434.

[25] Bob Amstadt and Michael K Johnson. 1994. Wine. Linux Journal
1994, 4es (1994), 3–es.

[26] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair
Reid, Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark
Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel
Krishnaswami, and Peter Sewell. 2019. ISA Semantics for ARMv8-a,
RISC-v, and CHERI-MIPS. Proc. ACM Program. Lang. 3, POPL, Article
71 (jan 2019), 31 pages. h�ps://doi.org/10.1145/3290384

[27] WASI authors. 2023. WASI: The WebAssembly System Interface.
wasi.dev. h�ps://wasi.dev/ (Accessed 2023-8-08).

[28] Wasmer authors. 2023. WASIX: The Superset of WASI. wasix.org.
h�p://wasix.org (Accessed 2023-8-08).

[29] Awais Aziz Shah, Giuseppe Piro, Luigi Alfredo Grieco, and Gennaro
Boggia. 2021. A quantitative cross-comparison of container net-
working technologies for virtualized service infrastructures in local
computing environments. Transactions on Emerging Telecommunica-
tions Technologies 32, 4 (2021), e4234. h�ps://doi.org/10.1002/e�.4234
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.4234

[30] Nilanjana Basu, Claudio Montanari, and Jakob Eriksson. 2021. Fre-
quent background polling on a shared thread, using light-weight
compiler interrupts. In Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implemen-
tation. 1249–1263.

[31] Fabrice Bellard. 2020. QEMU: A generic and open source machine
emulator and virtualizer. h�p://qemu.org. h�p://qemu.org (Accessed
2023-8-07).

[32] Jay Bosamiya, Wen Shih Lim, and Bryan Parno. 2022. Provably-Safe
Multilingual Software Sandboxing using WebAssembly. In Proceed-
ings of the USENIX Security Symposium.

[33] Erik Bosman and Herbert Bos. 2014. Framing signals-a return to
portable shellcode. In 2014 IEEE Symposium on Security and Privacy.
IEEE, 243–258.

[34] Emiliano Casalicchio and Stefano Iannucci. 2020. The state-
of-the-art in container technologies: Application, orchestration
and security. Concurrency and Computation: Practice and Ex-
perience 32, 17 (2020), e5668. h�ps://doi.org/10.1002/cpe.5668
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5668 e5668
cpe.5668.

[35] Emiliano Casalicchio and Vanessa Perciballi. 2017. Measuring Docker
Performance: What a Mess!!!. In Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering Companion
(L’Aquila, Italy) (ICPE ’17 Companion). Association for Computing
Machinery, New York, NY, USA, 11–16. h�ps://doi.org/10.1145/
3053600.3053605

[36] David Chisnall. 2008. The de�nitive guide to the xen hypervisor. Pear-
son Education.

[37] Emma Connor, Tyler McDaniel, Jared M Smith, and Max Schuchard.
2020. {PKU} pitfalls: Attacks on {PKU-based} memory isolation
systems. In 29th USENIX Security Symposium (USENIX Security 20).
1409–1426.

[38] Jonathan Corbet. 2009. Seccomp and sandboxing. LWN (13 May
2009).

[39] Benoit Daloze, Chris Seaton, Daniele Bonetta, and Hanspeter Mössen-
böck. 2015. Techniques and Applications for Guest-Language Safe-
points. In Proceedings of the 10th Workshop on Implementation, Com-
pilation, Optimization of Object-Oriented Languages, Programs and
Systems (Prague, Czech Republic) (ICOOOLPS ’15). Association for
Computing Machinery, New York, NY, USA, Article 8, 10 pages.
h�ps://doi.org/10.1145/2843915.2843921

[40] Mathias Danzeisen. 2023. Truly portable Vehicle Ap-
plications using Webassembly & WASI. (27 April 2023).
h�ps://wiki.covesa.global/display/WIK4/COVESA+All+Member+
Meeting+~+April+25-27%2C+2023 COVESA All Member Meeting.

[41] Pedro Miguel Veiga de Almeida et al. 2023. Study and Implementa-
tion of Modular Software Architectures based on Hypervisors for
Automotive Electronic Control Units. (2023).

[42] Frank Denis. 2023. Performance of WebAssembly runtimes in 2023.
h�ps://00f.net/2023/01/04/webassembly-benchmark-2023/

[43] Amer Diwan, Eliot Moss, and Richard Hudson. 1992. Compiler Sup-
port for Garbage Collection in a Statically Typed Language. In Proceed-
ings of the ACM SIGPLAN 1992 Conference on Programming Language
Design and Implementation (San Francisco, California, USA) (PLDI ’92).
Association for Computing Machinery, New York, NY, USA, 273–282.
h�ps://doi.org/10.1145/143095.143140

[44] Alan Donovan, Robert Muth, Brad Chen, and David Sehr. 2010. PNaCl:
Portable native client executables. Google White Paper (2010).

[45] Micah Dowty and Jeremy Sugerman. 2009. GPU virtualization on
VMware’s hosted I/O architecture. ACM SIGOPS Operating Systems
Review 43, 3 (2009), 73–82.

[46] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang,
and Haibo Chen. 2022. Serverless Computing on Heterogeneous
Computers. In Proceedings of the 27th ACM International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems (Lausanne, Switzerland) (ASPLOS ’22). Association
for Computing Machinery, New York, NY, USA, 797–813. h�ps:
//doi.org/10.1145/3503222.3507732

[47] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Cheng-
gang Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-
Millisecond Startup for Serverless Computing with Initialization-
Less Booting. In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Associ-
ation for Computing Machinery, New York, NY, USA, 467–481.
h�ps://doi.org/10.1145/3373376.3378512

[48] Bryan Ford and Russ Cox. 2008. Vx32: Lightweight user-level sandbox-
ing on the x86. In 2008 USENIX Annual Technical Conference (USENIX
ATC 08).

[49] Phani Kishore Gadepalli, Sean McBride, Gregor Peach, Ludmila
Cherkasova, and Gabriel Parmer. 2020. Sledge: A Serverless-First,
Light-Weight Wasm Runtime for the Edge. In Proceedings of the 21st
International Middleware Conference (Delft, Netherlands) (Middleware
’20). Association for Computing Machinery, New York, NY, USA,
265–279. h�ps://doi.org/10.1145/3423211.3425680

[50] Shilpi Goel, Warren A. Hunt, Matt Kaufmann, and Soumava Ghosh.
2014. Simulation and formal veri�cation of x86 machine-code pro-
grams that make system calls. In 2014 Formal Methods in Computer-
Aided Design (FMCAD). 91–98. h�ps://doi.org/10.1109/FMCAD.2014.
6987600

[51] Forbes Guthrie, Scott Lowe, and Kendrick Coleman. 2013. VMware
vSphere design. John Wiley & Sons.

[52] Andreas Haas, Andreas Rossberg, Derek L. Schu�, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF
Bastien. 2017. Bringing the Web up to Speed with WebAssembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming

15

https://github.com/WebAssembly/shared-everything-threads/tree/main
https://github.com/WebAssembly/shared-everything-threads/tree/main
https://github.com/WebAssembly/shared-everything-threads/tree/main
https://github.com/WebAssembly/shared-everything-threads/tree/main
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/3290384
wasi.dev
https://wasi.dev/
wasix.org
http://wasix.org
https://doi.org/10.1002/ett.4234
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.4234
http://qemu.org
http://qemu.org
https://doi.org/10.1002/cpe.5668
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5668
https://doi.org/10.1145/3053600.3053605
https://doi.org/10.1145/3053600.3053605
https://doi.org/10.1145/2843915.2843921
https://wiki.covesa.global/display/WIK4/COVESA+All+Member+Meeting+~+April+25-27%2C+2023
https://wiki.covesa.global/display/WIK4/COVESA+All+Member+Meeting+~+April+25-27%2C+2023
https://00f.net/2023/01/04/webassembly-benchmark-2023/
https://doi.org/10.1145/143095.143140
https://doi.org/10.1145/3503222.3507732
https://doi.org/10.1145/3503222.3507732
https://doi.org/10.1145/3373376.3378512
https://doi.org/10.1145/3423211.3425680
https://doi.org/10.1109/FMCAD.2014.6987600
https://doi.org/10.1109/FMCAD.2014.6987600

Language Design and Implementation (Barcelona, Spain) (PLDI 2017).
Association for Computing Machinery, New York, NY, USA, 185–200.
h�ps://doi.org/10.1145/3062341.3062363

[53] Yew Ho Hee, Mohamad Khairi Ishak, Mohd Shahrimie Mohd Asaari,
andMohamad Tarmizi Abu Seman. 2021. Embedded operating system
and industrial applications: a review. Bulletin of Electrical Engineering
and Informatics 10, 3 (2021), 1687–1700.

[54] Yabin Hu, Hai Jin, Zhibin Yu, and Hongyang Zheng. 2009. An
Optimization Approach for QEMU. In 2009 First International Con-
ference on Information Science and Engineering. 129–132. h�ps:
//doi.org/10.1109/ICISE.2009.289

[55] Rishabh Iyer, Musa Unal, Marios Kogias, and George Candea. 2023.
Achievingmicrosecond-scale tail latency e�ciently with approximate
optimal scheduling. In Proceedings of the 29th Symposium onOperating
Systems Principles. 466–481.

[56] Christopher Jelesnianski, Mohannad Ismail, Yeongjin Jang, Dan
Williams, and Changwoo Min. 2023. Protect the system call, protect
(most of) the world with bastion. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 528–541.

[57] Zhe Jiang, Neil C Audsley, and Pan Dong. 2018. Bluevisor: A scalable
real-time hardware hypervisor for many-core embedded systems.
In 2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 75–84.

[58] Evan Johnson, Evan Laufer, Zijie Zhao, Dan Gohman, Shravan
Narayan, Stefan Savage, Deian Stefan, and Fraser Brown. 2023.
WaVe: a veri�ably secure WebAssembly sandboxing runtime. In 2023
IEEE Symposium on Security and Privacy (SP). 2940–2955. h�ps:
//doi.org/10.1109/SP46215.2023.10179357

[59] Marcin Juszkiewicz. 2023. Linux system calls tables for several archi-
tectures. h�ps://marcin.juszkiewicz.com.pl/download/tables/syscalls.
html. h�ps://marcin.juszkiewicz.com.pl/download/tables/syscalls.
html (Accessed 2023-08-09).

[60] Minseo Kim, Hyerean Jang, and Youngjoo Shin. 2022. Avengers,
Assemble! Survey of WebAssembly Security Solutions. In 2022 IEEE
15th International Conference on Cloud Computing (CLOUD). 543–553.
h�ps://doi.org/10.1109/CLOUD55607.2022.00077

[61] W. M. C. J. T. Kithulwatta, K. P. N. Jayasena, Banage T. G. S. Kumara,
and R. M. K. T. Rathnayaka. 2022. Integration With Docker Container
Technologies for Distributed and Microservices Applications: A State-
of-the-Art Review. Int. J. Syst. Serv.-Oriented Eng. 12, 1 (apr 2022),
1–22. h�ps://doi.org/10.4018/IJSSOE.297136

[62] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
2007. kvm: the Linux virtual machine monitor. In Proceedings of the
Linux symposium, Vol. 1. Dttawa, Dntorio, Canada, 225–230.

[63] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2010. SeL4: Formal Veri�cation of an Operating-
System Kernel. Commun. ACM 53, 6 (jun 2010), 107–115. h�ps:
//doi.org/10.1145/1743546.1743574

[64] Kevin P Lawton. 1996. Bochs: A portable pc emulator for unix/x.
Linux Journal 1996, 29es (1996), 7–es.

[65] Yun-kyung Lee et al. 2018. Implementation of TLS and DTLS on
Zephyr OS for IoT devices. In 2018 International Conference on In-
formation and Communication Technology Convergence (ICTC). IEEE,
1292–1294.

[66] Hugo Lefeuvre, Gaulthier Gain, Vlad-Andrei Bădoiu, Daniel Dinca,
Vlad-Radu Schiller, Costin Raiciu, Felipe Huici, and Pierre Olivier.
2024. Loupe: Driving the Development of OS Compatibility Lay-
ers. In Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 1 (La Jolla, CA, USA) (ASPLOS ’24). Association
for Computing Machinery, New York, NY, USA, 249–267. h�ps:

//doi.org/10.1145/3617232.3624861
[67] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Every-

thing old is new again: Binary security of {WebAssembly}. In 29th
USENIX Security Symposium (USENIX Security 20). 217–234.

[68] Xavier Leroy. 2009. Formal Veri�cation of a Realistic Compiler. Com-
mun. ACM 52, 7 (jul 2009), 107–115. h�ps://doi.org/10.1145/1538788.
1538814

[69] Borui Li, Hongchang Fan, Yi Gao, and Wei Dong. 2021. ThingSpire
OS: A WebAssembly-Based IoT Operating System for Cloud-Edge
Integration. In Proceedings of the 19th Annual International Conference
on Mobile Systems, Applications, and Services (Virtual Event, Wiscon-
sin) (MobiSys ’21). Association for Computing Machinery, New York,
NY, USA, 487–488. h�ps://doi.org/10.1145/3458864.3466910

[70] Borui Li, Hongchang Fan, Yi Gao, and Wei Dong. 2022. Bringing
webassembly to resource-constrained iot devices for seamless device-
cloud integration. In Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Services. 261–272.

[71] Renju Liu, Luis Garcia, and Mani Srivastava. 2021. Aerogel: Light-
weight Access Control Framework for WebAssembly-Based Bare-
Metal IoT Devices. In 2021 IEEE/ACM Symposium on Edge Computing
(SEC). 94–105. h�ps://doi.org/10.1145/3453142.3491282

[72] Michael H Lutz and Phillip A Laplante. 2003. C# and the. NET frame-
work: Ready for real time? IEEE software 20, 1 (2003), 74–80.

[73] LXC. 2023. LXC Introduction. h�ps://linuxcontainers.org/lxc/
introduction/. h�ps://linuxcontainers.org/lxc/introduction/ (Ac-
cessed 2023-8-08).

[74] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe
Huici. 2017. My VM is Lighter (and Safer) than your Container. In
Proceedings of the 26th Symposium on Operating Systems Principles.
218–233.

[75] J. Menetrey, M. Pasin, P. Felber, and V. Schiavoni. 2021. Twine: An
Embedded Trusted Runtime for WebAssembly. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE Computer
Society, Los Alamitos, CA, USA, 205–216. h�ps://doi.org/10.1109/
ICDE51399.2021.00025

[76] DirkMerkel. 2014. Docker: lightweight linux containers for consistent
development and deployment. Linux journal 2014, 239 (2014), 2.

[77] Microsoft. 2021. Hyper-V Technology Overview. h�ps:
//learn.microso�.com/en-us/windows-server/virtualization/hyper-
v/hyper-v-technology-overview. h�ps://learn.microso�.com/en-
us/windows-server/virtualization/hyper-v/hyper-v-technology-
overview (Accessed 2023-8-08).

[78] Konrad Moron and Stefan Wallentowitz. 2023. Support for Just-in-
Time Compilation of WebAssembly for Embedded Systems. In 2023
12th Mediterranean Conference on Embedded Computing (MECO). 1–4.
h�ps://doi.org/10.1109/MECO58584.2023.10155088

[79] Manuel Nieke, Lennart Almstedt, and Rüdiger Kapitza. 2021.
Edgedancer: Secure Mobile WebAssembly Services on the Edge. In
Proceedings of the 4th International Workshop on Edge Systems, An-
alytics and Networking (Online, United Kingdom) (EdgeSys ’21). As-
sociation for Computing Machinery, New York, NY, USA, 13–18.
h�ps://doi.org/10.1145/3434770.3459731

[80] Vili-Petteri Niemelä. 2021. WebAssembly, Fourth Language in the
Web. (2021).

[81] Runyu Pan, Gregor Peach, Yuxin Ren, and Gabriel Parmer. 2018.
Predictable virtualization on memory protection unit-based micro-
controllers. In 2018 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 62–74.

[82] Anup Patel, Mai Daftedar, Mohamed Shalan, and M Watheq El-
Kharashi. 2015. Embedded hypervisor xvisor: A comparative analysis.
In 2015 23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. IEEE, 682–691.

16

https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1109/ICISE.2009.289
https://doi.org/10.1109/ICISE.2009.289
https://doi.org/10.1109/SP46215.2023.10179357
https://doi.org/10.1109/SP46215.2023.10179357
https://marcin.juszkiewicz.com.pl/download/tables/syscalls.html
https://marcin.juszkiewicz.com.pl/download/tables/syscalls.html
https://marcin.juszkiewicz.com.pl/download/tables/syscalls.html
https://marcin.juszkiewicz.com.pl/download/tables/syscalls.html
https://doi.org/10.1109/CLOUD55607.2022.00077
https://doi.org/10.4018/IJSSOE.297136
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/3617232.3624861
https://doi.org/10.1145/3617232.3624861
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3458864.3466910
https://doi.org/10.1145/3453142.3491282
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://doi.org/10.1109/ICDE51399.2021.00025
https://doi.org/10.1109/ICDE51399.2021.00025
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview%20
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview%20
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview%20
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://doi.org/10.1109/MECO58584.2023.10155088
https://doi.org/10.1145/3434770.3459731

[83] Sandro Pinto, Jorge Pereira, Tiago Gomes, Mongkol Ekpanyapong,
and Adriano Tavares. 2016. Towards a TrustZone-assisted hypervisor
for real-time embedded systems. IEEE computer architecture letters
16, 2 (2016), 158–161.

[84] Donald E Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,
and Galen CHunt. 2011. Rethinking the library OS from the top down.
In Proceedings of the sixteenth international conference on Architectural
support for programming languages and operating systems. 291–304.

[85] Bobby Powers, John Vilk, and Emery D. Berger. 2017. Browsix: Bridg-
ing the Gap Between Unix and the Browser. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems (Xi’an, China) (ASP-
LOS ’17). Association for Computing Machinery, New York, NY, USA,
253–266. h�ps://doi.org/10.1145/3037697.3037727

[86] Daniel Price and Andrew Tucker. 2004. Solaris Zones: Operating
System Support for Consolidating Commercial Workloads. In Pro-
ceedings of the 18th USENIX Conference on System Administration
(Atlanta, GA) (LISA ’04). USENIX Association, USA, 241–254.

[87] Xiaojia Rao, Aïna Linn Georges, Maxime Legoupil, ConradWatt, Jean
Pichon-Pharabod, Philippa Gardner, and Lars Birkedal. 2023. Iris-
Wasm: Robust and Modular Veri�cation of WebAssembly Programs.
Proc. ACM Program. Lang. 7, PLDI, Article 151 (jun 2023), 25 pages.
h�ps://doi.org/10.1145/3591265

[88] Rafael Raymundo Belleza and Edison de Freitas Pignaton. 2018. Per-
formance study of real-time operating systems for internet of things
devices. IET Software 12, 3 (2018), 176–182.

[89] Alastair Reid. 2016. Trustworthy speci�cations of ARM® v8-A and
v8-M system level architecture. In 2016 Formal Methods in Computer-
Aided Design (FMCAD). 161–168. h�ps://doi.org/10.1109/FMCAD.
2016.7886675

[90] Fabian Scheidl. 2020. WebAssembly: Paving the Way Towards a Uni-
�ed and Distributed Intra-Vehicle Computing-and Data-Acquisition-
Platform?. In 2020 AEIT International Conference of Electrical and
Electronic Technologies for Automotive (AEIT AUTOMOTIVE). IEEE,
1–6.

[91] Prateek Singh and Prateek Singh. 2020. Exploring WSL2. Learn
Windows Subsystem for Linux: A Practical Guide for Developers and IT
Professionals (2020), 75–98.

[92] Dimitrios Skarlatos, Qingrong Chen, Jianyan Chen, Tianyin Xu, and
Josep Torrellas. 2020. Draco: Architectural and Operating System
Support for System Call Security. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 42–57. h�ps:
//doi.org/10.1109/MICRO50266.2020.00017

[93] Benedikt Spies and Markus Mock. 2021. An Evaluation of WebAssem-
bly in Non-Web Environments. In 2021 XLVII Latin American Com-
puting Conference (CLEI). 1–10. h�ps://doi.org/10.1109/CLEI53233.
2021.9640153

[94] William Stackenäs. 2023. An Evaluation of WebAssembly Pre-
Initialization for Faster Startup Times. Master’s thesis. KTH, School
of Electrical Engineering and Computer Science (EECS).

[95] Michael Stilkerich, Christian Wawersich, Andreas Gal, Wolfgang
Schröder-Preikschat, and Michael Franz. 2006. OSEK/VDX API for
Java. In Proceedings of the 3rd workshop on Programming languages
and operating systems: linguistic support for modern operating systems.
4–es.

[96] Jian Sun, DingYuan Cao, Ximing Liu, ZiYi Zhao, WenWen Wang,
XiaoLi Gong, and Jin Zhang. 2019. Selwasm: A code protection mech-
anism for webassembly. In 2019 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing, Sustain-
able Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). IEEE, 1099–1106.

[97] Raven Szewczyk, Kimberley Stonehouse, Antonio Barbalace, and
Tom Spink. 2022. Leaps and bounds: Analyzing WebAssembly’s

performance with a focus on bounds checking. In 2022 IEEE Inter-
national Symposium on Workload Characterization (IISWC). 256–268.
h�ps://doi.org/10.1109/IISWC55918.2022.00030

[98] Amer Tahat, Sarang Joshi, Pronnoy Goswami, and Binoy Ravindran.
2019. Scalable Translation Validation of Unveri�ed Legacy OS Code.
In 2019 Formal Methods in Computer Aided Design (FMCAD). 1–9.
h�ps://doi.org/10.23919/FMCAD.2019.8894252

[99] Ben L. Titzer. 2022. A Fast In-Place Interpreter forWebAssembly. Proc.
ACM Program. Lang. 6, OOPSLA2, Article 148 (oct 2022), 27 pages.
h�ps://doi.org/10.1145/3563311

[100] Ben L Titzer. 2024. Whose baseline compiler is it anyway?. In 2024
IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO). IEEE, 207–220.

[101] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E
Porter. 2016. A study of modern linux api usage and compatibil-
ity: What to support when you’re supporting. In Proceedings of the
Eleventh European Conference on Computer Systems. 1–16.

[102] Kenton Varda. [n. d.]. WebAssembly on Cloud�are Workers. h�ps:
//blog.cloudflare.com/webassembly-on-cloudflare-workers/. h�ps://
blog.cloudflare.com/webassembly-on-cloudflare-workers/ (Accessed
2025-02-21).

[103] Christian Vecchiola, Xingchen Chu, Rajkumar Buyya, et al. 2009.
Aneka: a software platform for .NET-based cloud computing. High
speed and large scale scienti�c computing 18, 3 (2009), 267–295.

[104] Stefan Wallentowitz, Bastian Kersting, and Dan Mihai Dumitriu.
2022. Potential of WebAssembly for Embedded Systems. In 2022 11th
Mediterranean Conference on Embedded Computing (MECO). IEEE,
1–4.

[105] Kun Wang, Song Wu, Kun Suo, Yijie Liu, Hang Huang, Zhuo Huang,
and Hai Jin. 2023. Characterizing and optimizing Kernel resource
isolation for containers. Future Generation Computer Systems 141
(2023), 218–229. h�ps://doi.org/10.1016/j.future.2022.11.018

[106] Weihang Wang. 2021. Empowering Web Applications with We-
bAssembly: Are We There Yet?. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 1301–1305.
h�ps://doi.org/10.1109/ASE51524.2021.9678831

[107] Wenwen Wang. 2022. How Far We’ve Come – A Characterization
Study of Standalone WebAssembly Runtimes. In 2022 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). 228–241.
h�ps://doi.org/10.1109/IISWC55918.2022.00028

[108] Conrad Watt. 2018. Mechanising and Verifying the WebAssembly
Speci�cation. In Proceedings of the 7th ACM SIGPLAN International
Conference on Certi�ed Programs and Proofs (Los Angeles, CA, USA)
(CPP 2018). Association for Computing Machinery, New York, NY,
USA, 53–65. h�ps://doi.org/10.1145/3167082

[109] Ming-ting Wei, Yu-Shiang Lin, and Che-Rung Lee. 2019. Performance
Optimization for In�niBand Virtualization on QEMU/KVM. In 2019
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom). 19–26. h�ps://doi.org/10.1109/CloudCom.2019.
00016

[110] Elliott Wen and Gerald Weber. 2020. Wasmachine: Bring IoT up to
Speed with AWebAssembly OS. In 2020 IEEE International Conference
on Pervasive Computing and Communications Workshops (PerCom
Workshops). 1–4. h�ps://doi.org/10.1109/PerComWorkshops48775.
2020.9156135

[111] Dan Williams and Ricardo Koller. 2016. Unikernel Monitors: Extend-
ing Minimalism Outside of the Box. In 8th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 16). USENIX Association, Den-
ver, CO. h�ps://www.usenix.org/conference/hotcloud16/workshop-
program/presentation/williams

[112] Chris Woods and Ajay Chhokra. 2022. An end-to-end toolchain
for evaluating WebAssembly runtimes for CPS-IoT Use cases. (25
October 2022). h�ps://www.cs.cmu.edu/~wasm/wasm-research-
day-2022.html WebAssembly Research Day 2022.

17

https://doi.org/10.1145/3037697.3037727
https://doi.org/10.1145/3591265
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1109/MICRO50266.2020.00017
https://doi.org/10.1109/MICRO50266.2020.00017
https://doi.org/10.1109/CLEI53233.2021.9640153
https://doi.org/10.1109/CLEI53233.2021.9640153
https://doi.org/10.1109/IISWC55918.2022.00030
https://doi.org/10.23919/FMCAD.2019.8894252
https://doi.org/10.1145/3563311
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://doi.org/10.1016/j.future.2022.11.018
https://doi.org/10.1109/ASE51524.2021.9678831
https://doi.org/10.1109/IISWC55918.2022.00028
https://doi.org/10.1145/3167082
https://doi.org/10.1109/CloudCom.2019.00016
https://doi.org/10.1109/CloudCom.2019.00016
https://doi.org/10.1109/PerComWorkshops48775.2020.9156135
https://doi.org/10.1109/PerComWorkshops48775.2020.9156135
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.cs.cmu.edu/~wasm/wasm-research-day-2022.html
https://www.cs.cmu.edu/~wasm/wasm-research-day-2022.html

[113] Hiroshi Yamauchi and Mario Wolczko. 2006. Writing Solaris device
drivers in Java. In Proceedings of the 3rd workshop on Programming lan-
guages and operating systems: linguistic support for modern operating
systems. 3–es.

[114] Zachary Yedidia. 2024. Lightweight fault isolation: Practical, e�cient,
and secure software sandboxing. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 649–665. h�ps://doi.
org/10.1145/3620665.3640408

[115] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert
Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas
Fullagar. 2010. Native client: A sandbox for portable, untrusted x86
native code. Commun. ACM 53, 1 (2010), 91–99.

[116] Ethan G Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. 2019. The true cost of con-
taining: A {gVisor} case study. In 11th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 19).

[117] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Je�rey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, et al. 2022. {XRP}:{In-Kernel} Storage Functions with
{eBPF}. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). 375–393.

[118] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. 2017. HACL*: A Veri�ed Mod-
ern Cryptographic Library. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas,
USA) (CCS ’17). Association for Computing Machinery, New York,
NY, USA, 1789–1806. h�ps://doi.org/10.1145/3133956.3134043

18

https://doi.org/10.1145/3620665.3640408
https://doi.org/10.1145/3620665.3640408
https://doi.org/10.1145/3133956.3134043

A Artifact Appendix
A.1 Abstract
The artifact accompanying this paper provides public reposi-
tories for an Ubuntu 22.04 Virtual Machine and relevant code
for a full WALI ecosystem. This serves both as a means of re-
producing claims made in the paper as well as a playground
to further explore the capabilities of WALI. This artifact ex-
cludes WAZI in the image, due to strict hardware requirements
for reproducibility – however, code artifact for WAZI is made
available on GitHub.

A.2 Description & Requirements
A.2.1 How to access The experimental setup for the arti-
facts is contained within a Ubuntu 22.04 VM, which is made
available as a public repository on Zenodo (see Table. 4 for
URLs). The repositories for WALI code and the WALI ex-
periments listed in Table. 4 are also publicly available on
Github and already cloned/setup on the VM for ease of
reuse. The VM disk image is shipped in QCOW2 format its
XML de�nition. The login information is below:

• Username: evaluator (has sudo access)
• Password: webassembly

A.2.2 Hardware dependencies The VM should run on
e�ectively any hardware that can support virtualization. We
recommend a system with hardware-assisted virtualization
for performance reasons, with at least 8-16 cores of CPU and
8-16 GB of RAM for the VM. The image itself consumes 26
GB of physical disk.

A.2.3 Software dependencies We recommend a Linux
distribution with QEMU/KVM support to run the VM, man-
aged with virsh tools. VirtualBox may alternatively also be
used, but requires converting the QCOW2 image to VDI (see
h�ps://gist.github.com/mamonu/671038b09f5ae9e034e8). The
numerous software dependencies for the project have all
been already added in the VM.

A.2.4 Benchmarks The benchmarks in Table. 1 are all
available in the WALI codebase, mostly as submodules, un-
der applications. Note, the binary mqtt-app is sometimes
aliased as paho-bench in the paper.

A.3 Set-up
The software environment should be mostly ready to go by
default on the VM + XML de�nition on Zenodo. The XML
�le de�nes 8 CPUs and 8 GB of RAM – modify it as needed
based on physical system constraints. You can extract and
create the VM using these commands in Linux:
1. tar –sparse -xvf vm-ubuntu22.04-wali-eurosys25.tar.gz
2. sudo mv u22.04-eurosys.qcow2 /var/lib/libvirt/images
3. virsh de�ne u22.04-eurosys.xml

A.3.1 VMOperation The following are helpful commands
to operate the VM with virsh:

• Start VM: virsh start u22.04-eurosys

• Shuto� VM: virsh destroy u22.04-eurosys

• Connecting to VM: This can be done in 3 ways:
– Console: virsh console u22.04-eurosys
– GUI: virt-viewer u22.04-eurosys
– SSH to IP address of VM, obtained from console

A.3.2 VM Directories The VM should contain three di-
rectories (including repos from Table. 4):

• WALI: The cloned repo of WALI source code
• wali-eurosys25-data: The cloned experiments repo
of WALI, with packaged data used in evaluation

• artifacts: Compressed directory containing a vari-
ety of builds, described in Table. 5 for quick setup and
reducing large build size/times.

Many �les have been compressed to minimize VM image
size, so some setup steps below are required to perform.

WALI The README.md in the WALI code repo has a setup
and information guide if you intend to rebuild everything
or need details. We have however provided everything built
— the WALI runtime iwasm, the sysroot in wali-musl, and
llvm-project/build.
The llvm-build.tar.gz is prepackaged under artifacts

and can be extracted with tar -xvf artifacts/llvm-build.tar.gz
-C WALI/llvm-project/. Note in case you decide to manually
build – be prepared for LLVM to take up 130GB of disk and
requires 8+ CPUS and 16+ GB of RAM.

We have also already registered Wasm as a miscellaneous
binary format as speci�ed in the README.md — you can
just run .wasm �les like ELF �les (e.g. ./bash.wasm –norc)

wali-eurosys25-data The README.md in the WALI experi-
ment repo has a detailed setup guide as well. The only step
required for setup is to move the needed virt.tar.gz bi-
naries under artifacts with tar -xvf artifacts/virt.tar.gz -C
wali-eurosys25-data/ for experiments.

A.4 Evaluation work�ow
Below we highlight list the claims and required experiments
needed to verify them.

A.4.1 Major Claims
• (C1): WALI allows porting most complex Linux appli-
cations unmodi�ed over Wasm, unlike WASI/X. This is
shown by E1 described in Sec. 4.1 and Table. 1

• (C2): WALI allows layering complex security policies like
WASI over it. This is shown by E2 described in Sec. 4.1 and
Table. 1.

• (C3): WALI strikes a middle-ground between container
virtualization (Docker) and ISA virtualization (QEMU),
with a reasonably fast startup overhead like QEMU, and
a reasonably fast execution overhead like Docker. This is
shown by E3 described in Sec. 4.3 and Fig. 8.

19

https://gist.github.com/mamonu/671038b09f5ae9e034e8

Artifact URL DOI/Hash
Zenodo Virtual Machine Distribution h�ps://doi.org/10.5281/zenodo.14790613 10.5281/zenodo.14790613
WALI Code Repo h�ps://github.com/arjunr2/WALI 1e22d2e
WALI Experiments Repo h�ps://github.com/arjunr2/wali-eurosys25-data ac83120

Table 4. List of relevant URLs for artifacts along with their commit hashes

Tar File Description
applications-artifact A wide suite of applications

that have been ported over
WALI, including those in Ta-
ble. 1

llvm-build A compressed build of LLVM
to reduce disk size and save on
time to build LLVM

virt Miscellaneous binaries for
WALI/QEMU (iwasm, qemu,
wamrc) for experiments

sysroot (Optional) A build of
wali-musl libc

Table 5. List of packaged software under artifacts directory in
the VM

A.4.2 Experiments

Experiment (E1) [Portability] [20 human-minutes + 5 com-
puteminutes]:All portedWALIWasm apps are in applications-
artifact.tar.gz, which can be run directly. No preparation is
necessary, and the ecosystem is already setup.
[Execution]: You can run all WALI binaries like ELF bina-

ries! Command line arguments are passed akin to normal
binaries, and additionally a WALI_VERBOSE environment vari-
able can be con�gured to show dynamically executed syscalls
(e.g. WALI_VERBOSE=5 ./bash.wasm –norc).

[Results]: As stated in Sec. 4.1 and Table. 1, we can observe
the dynamic syscalls executed that are missing fromWASI/X
in verbose mode – the latter’s spec doesn’t support these so
they wouldn’t compile in the �rst place.

Experiment (E2) [WASI Layering] [5 human-minutes + 5
compute-minutes]: We compile a popular implementation of
WASI, libuvwasi to run over WALI completely, passing all
unit tests.

[Execution]: Run the following commands:
1. cd WALI/applications
2. ./run_libuvwasi_tests.sh
[Results]: The ctest harness should execute 22 tests, pass-

ing all of them as stated in Sec. 4.1, hence realizing Fig. 1.

Experiment (E3) [Comparison to Docker/QEMU] [15 human-
minutes + 30 compute-minutes]:CompareWALI against Docker
for container virtualization and QEMU for ISA virtualization
for memory and runtime overheads.
[Execution]: Follow the instructions under Rerun Bench-

marks in the README for WALI Experiments Repo for the

relevant comparison. After executing, run ./gen_plots.sh
to generate all the �gures

[Results]: Since these tests are very sensitive to hardware
platforms, the exact ratios may di�er substantially between
platforms. However, it should be consistent thatWALI strikes
the middle ground, with faster startup time and memory
usage than Docker and faster execution time than QEMU
(Sec. 4.3) – see �gures memory.pdf and runtime_*.pdf,
which are similar to Fig. 8)

Filename Description
memory.pdf Memory overhead plot

(Fig. 8a)
runtime_*.pdf Runtime overhead plots

(Fig. 8b, 8c, 8d)
syscall_profile.pdf Syscall Pro�le across applica-

tions (Fig. 2)
wali_macrobench.pdf Macrobenchmark overhead

split between WALI, kernel
and application space (Fig. 7)

syscall_archs.pdf Common syscalls between ar-
chitectures (Fig. 3)

sigpoll.txt Sigpoll overhead results (Ta-
ble. 3)

syscall_overheads.txt Intrinsic WALI overhead (Ta-
ble. 2)

Table 6. List of generated plots from data.tar.gz. Generate all of
these by running ./gen_plots.sh

A.5 Notes on Reusability
Generating all of the �gures based on collected data (i.e those
in Table. 6) is easy, and detailed in the README in WALI Ex-
periments Repo. Setting up the entire WALI toolchain locally
is also straight-forward, following the README in WALI
Code Repo. We hope this encourages people to experiment
and further research into Wasm over WALI.

A.6 General Notes
WALI is fully open-source and actively under development
and improvement at the date of writing.

20

https://doi.org/10.5281/zenodo.14790613
https://github.com/arjunr2/WALI
https://github.com/arjunr2/wali-eurosys25-data

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Positioning Kernel Interfaces in the Ecosystem
	1.3 Contributions

	2 Scoping Existing System Call Interfaces
	3 An Interface for Linux: WALI
	3.1 Process and Thread Model
	3.2 Memory Model
	3.3 Signal Model
	3.4 External Parameters
	3.5 Cross-Platform Support
	3.6 Security Model

	4 Evaluation of WALI
	4.1 Porting Effort
	4.2 Intrinsic Costs
	4.3 Extrinsic Costs: Virtualization Overhead

	5 Kernel Interfaces Beyond Linux
	5.1 Applying our Recipe to Zephyr RTOS: WAZI
	5.2 Exploration of Other Mainstream Kernels

	6 Discussion and Future Outlook
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow
	A.5 Notes on Reusability
	A.6 General Notes

