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Summary
Background Longitudinal digital health studies combine passively collected information from digital devices, such as 
commercial wearable devices, and actively contributed data, such as surveys, from participants. Although the use of 
smartphones and access to the internet supports the development of these studies, challenges exist in collecting 
representative data due to low adherence and retention. We aimed to identify key factors related to adherence and 
retention in digital health studies and develop a methodology to identify factors that are associated with and might 
affect study participant engagement.

Methods In this exploratory secondary analysis, we used data from two separate prospective longitudinal digital 
health studies, conducted among adult participants (age ≥18 years) during the COVID-19 pandemic by the BIG 
IDEAs Laboratory (BIL) at Duke University (Durham, NC, USA; April 2, 2020 to May 25, 2021) and Evidation 
Health (San Mateo, CA, USA; April 4 to Aug 31, 2020). Prospective daily or weekly surveys were administered for 
up to 15 months in the BIL study and daily surveys were administered for 5 months in the Evidation Health study. 
We defined metrics related to adherence to assess how participants engage with longitudinal digital health studies 
and developed models to infer how demographic factors and the day of survey delivery might be associated with 
these metrics. We defined retention as the time until a participant drops out of the study. For the purpose of 
clustering analysis, we defined three metrics of survey adherence: (1) total number of surveys completed, 
(2) participation regularity (ie, frequency of filling out surveys consecutively), and (3) time of activity (ie, 
engagement pattern relative to enrolment time). We assessed these metrics and explored differences by age, sex, 
race, and day of survey delivery. We analysed the data by unsupervised clustering, survival analysis, and recurrent 
event analysis with multistate modelling, with analyses restricted to individuals who provided data on age, sex, 
and race.

Findings In the BIL study, 5784 unique participants with the required demographic data completed 388 600 unique 
daily surveys (mean 67 [SD 90] surveys per participant). In the Evidation Health study, 89 479 unique participants with 
the required demographic data completed 2 080 992 unique daily surveys (23 [32] surveys per participant). Participants 
were grouped into adherence clusters based on the three metrics of adherence, and we identified statistically 
discernible differences in age, race, and sex between clusters. Most of the individuals aged 18–29 years were observed 
in the clusters with low or medium adherence, whereas the oldest age group (≥60 years) was generally more 
represented in clusters with high adherence than younger age groups. For retention, survival analysis indicated that 
18–29 years was the age group with the highest risk of exiting the study at any given point in time (BIL study, hazard 
ratio [HR] for 18–29 years vs ≥60 years, 1·69 [95% CI 1·53–1·86; p<0·0001]; Evidation Health study, HR 1·50 
[1·47–1·53; p<0·0001]). Sex and race were not discernible predictors of retention in the BIL study. In the Evidation 
Health study, male participants (vs female participants; HR 0·96 [0·94–0·98]; p<0·0001) and White participants (vs 
Asian participants; HR 0·96 [0·93–0·98; p=0·0004) had a lower risk of study exit, and Other race participants (vs 
Asian participants) had a higher risk of study exit (HR 1·10 [1·06–1·14; p<0·0001]). Recurrent event analysis 
confirmed age as the factor most associated with adherence; for the 18–29 years age group (vs ≥60 years group), the 
transition intensity from an active to inactive state per day in the BIL study was 1·661 (95% CI 1·606–1·718) and in 
the Evidation Health study was 1·108 (1·094–1·121). Participation patterns were variable by race and sex between the 
studies.

Interpretation Our analyses revealed that age was consistently associated with adherence and retention, with younger 
participants having lower adherence and higher dropout rates than older participants. Unsupervised clustering and 
survival analyses are established methods in this field, whereas the use of recurrent event analysis, was, to our 
knowledge, the first instance of the application of this method to remote digital health data. These methods can help to 
understand participant engagement in digital health studies, supporting targeted measures to improve adherence and 
retention.

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(24)00219-X&domain=pdf
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Introduction
Smartphones, smartwatches, and activity trackers are 
ubiquitous in the USA, with 85% of the US population 
owning smartphones and 31% owning smartwatches 
in 2021.1–3 These technologies provide an opportunity to 
capture continuous information regarding physiology 
and behaviour in real-world settings and have specific 
health-tracking benefits.4–6 Given their low cost and high 
accessibility, many digital health technologies can 
address health-care inequities by reaching traditionally 
underserved populations. However, not all people will 
benefit equally unless challenges in equitable technology, 
study design, and implementation are addressed.

A substantial challenge is the under-representation of 
underserved groups in digital health research, including 
older adults, minoritised racial and ethnic groups (such as 
Black, Hispanic, and Indigenous populations), individuals 
with limited English proficiency, and those with lower 
socioeconomic status. These groups often have low access 
to digital health tools, low rates of technology adoption, 
and unique health challenges that might not be well 
represented in current digital health datasets.7,8 This lack 
of representation limits the generalisability of learnings 

from these studies and might widen existing disparities.9,10 
Such unbalanced study populations are particularly 
problematic for machine learning-based technologies, 
which require representative data to ensure equitable 
functionality to avoid biased or incorrect results for 
particular groups.10 For example, underserved groups have 
had low adherence in remote longitudinal digital health 
studies that aim to validate new technologies.11 In the 
QUASAR and Cloudy with a Chance of Pain studies, there 
were challenges in maintaining engagement among older 
adults, Black and Hispanic populations, and those with 
chronic conditions, with factors such as usability of the 
technology, participant burden, and limited familiarity 
with digital platforms contributing to this disengagment.12,13 
Studies can also be limited by low adherence when 
participants take a break from filling out surveys or from 
wearing a smartwatch or other wearable devices regularly. 
The source of the low adherence is particularly challenging 
to identify when adherence characteristics vary 
substantially between specific demographic factors.14

Another challenge related to adherence is the retention 
rate of study participants. To tackle the issue of enrolment 
and retention, a growing body of literature is providing 

Research in context

Evidence before this study
Primary methods of characterising study participant retention 
and adherence in digital health studies have focused on survival 
analysis and exploratory data analysis. We searched PubMed 
from Jan 1, 1990 (the year when “digital health” was first cited), 
to March 1, 2023, for studies in English, using combinations of 
words or terms that included “adherence”, “retention”, 
“recurrent event analysis”, OR “digital health”. The search 
identified a range of studies exploring participant retention and 
adherence in digital health. Most of these studies used survival 
analysis to estimate time-to-dropout and exploratory data 
analysis to describe adherence trends. Previous studies identified 
key factors associated with adherence and retention, including 
participant age, gender or sex, socioeconomic status, study 
incentives, and digital literacy. However, there has been limited 
focus on modelling the recurrent nature of engagement 
behaviours in digital health, which our study aimed to address 
by applying recurrent event analysis. In addition, previous 
studies have not assessed both retention and adherence.

Added value of this study
The overall aim of this work was to identify factors in digital 
health study design via a repurposed methodology that could 
be targeted to improve representation of study data. We found 

that age was inversely related to survey adherence and study 
retention, which is consistent with the literature. Furthermore, 
this study is the first to apply recurrent event analysis to model 
study engagement in digital health studies.

Implications of all the available evidence
Designers of prospective digital health studies need to 
understand how participants engage to improve data collection 
methods. Modelling methods that are appropriate for 
longitudinal data with varying amounts of missingness can 
guide the development of strategies to improve study 
engagement and garner representative datasets. The evidence 
suggests that demographic factors, including age, 
socioeconomic status, and digital literacy, can affect retention 
and adherence rates. Young adults often exhibit higher initial 
engagement in digital health studies than older adults, but 
might have lower adherence over time. To address this pattern, 
studies might benefit from tailored engagement strategies that 
resonate with specific age groups and demographic 
characteristics, such as age-appropriate incentives for young 
adults or technical support for older participants. Recognising 
these differences can help in designing inclusive digital health 
studies that maintain high retention and adherence across 
diverse participant groups. 
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guidance on how to increase diversity among participants 
in digital health studies. Strategies include forming 
partnerships with community organisations (eg, faith-
based organisations and cultural centres) for recruitment 
and offering complimentary wearable devices or internet 
services to have participants remain in studies.7,15

Low adherence and retention can adversely affect the 
external validity of research results. Statistical approaches 
have characterised retention and adherence,16,17 but 
innovation is needed for longitudinal studies. For 
example, in survival analysis, an event only occurs once, 
and although digital health studies often employ such 
methods to evaluate time-to-event for adherence, in 
reality, these methods fail to involve multiple recurring 
events (eg, not responding to a survey more than once), 
elaborated on previously in the literature18 and in a 
preprint paper.19 Standard survival analysis methods 
(eg, Kaplan–Meier curves and Cox regression models) 
describe hazard rates for the occurrence of single final 
events, but cannot model competing events and 
transitions.19,20 Thus, traditional methods of survival 
analysis are not best suited to conceptualising or 
analysing adherence in digital health studies.

To address these limitations, we sought to develop and 
apply alternative methods that could better capture the 
nuances of recurring participation behaviours in digital 
health studies, and identify factors that affect these 
behaviours (figure 1). In the current study, we 
characterised participant retention and survey adherence 
patterns in two large-scale, longitudinal digital health 
studies, specifically in the context of influenza-like illness 
surveillance (which is commonly studied at a population 
level for long periods of time),21–23 and explored whether 
and how demographic factors and the day of survey 
delivery contribute to survey adherence.

Methods
Data collection and preprocessing
The data utilised for this study were derived from a 
partnership between Evidation Health, a technology 
company located in San Mateo, CA, USA, which generates 
insights from real-world behavioural data via intensive 
longitudinal methods, and the BIG IDEAs  Laboratory 
(BIL) at Duke University in Durham, NC, USA. Evidation 
Health and the BIL each did a separate prospective 
longitudinal digital health study during the COVID-19 
pandemic, collecting wearable physiological and 
behavioural data and electronic patient-reported diagnoses 
and symptoms.  The studies have been reported on 
previously in the literature6,24 and a preprint paper.25

Evidation Health launched the Daily Surveillance of 
COVID-19 Symptoms and Experience, also referred to as 
the COVID2020 study, between April 4 and Aug 31, 2020, 
under institutional review board protocol number 
2020-0320 approved by Solutions IRB (San Mateo, CA, 
USA). The COVID2020 study was advertised to people 
who were users of the Evidation Health app. Adults (age 

≥18 years) living in the USA were recruited. For 5 months, 
COVID-19-related data were collected prospectively on a 
daily basis by wearable activity trackers, health apps, and 
surveys via the Evidation Health app. The rationale of the 
study was to improve understanding of the geographical 
disparities of self-reported respiratory disease, influenza-
like illness, and, primarily, COVID-19, and their effect on 
daily life.24 Additional information on the study design, 
eligibility criteria, and data collection is provided in 
appendix 1 (p 1). The enrolment and daily surveys are 
provided in appendix 2.

The BIL study, referred to as CovIdentify, was launched 
between April 2, 2020 and May 25, 2021, under institutional 
review board protocol number 2020-0412 approved by the 
Institutional Review Board of Duke University. The aim of 
the study was to collect commercial wearable device data 
before, during, and after COVID-19 infections and utilise 
the data to develop an intelligent testing allocation 
algorithm.6 The study recruited adult participants (age 
>18 years) through social media campaigns, flyers, and 
word-of-mouth via community centres. After enrolment, 
participants were given the option to donate 12 months of 
retrospective and 12 months of prospective wearable data 
and to fill out daily electronic surveys of symptoms. 
Initially, participants were sent daily surveys for 1 month 
and then weekly surveys for 2 months. The survey strategy 
evolved concomitantly with the pandemic based on an 
intermediate exploratory data analysis and was converted 
into daily surveys for 12 months (an additional 12 months 
for participants enrolled before the change) beginning on 
May 19, 2020. Additional information on the study design, 
eligibility criteria, and data collection is provided in 
appendix 1 (p 1). The enrolment and follow-up surveys are 
provided in appendix 3. In both studies, participants 
provided consent through remote methods to participate 
in the study and ethical approvals were accepted by the 
corresponding review boards.

Since the BIL study had different survey intervals (ie, 
weekly and daily), we downsampled the Evidation Health 
data to the weekly interval (single case approach: if the 
participant completed at least one survey within a given 
week, they were considered to have data for that week) so 
that we could have comparable datasets. We separated 
survey data into either weekly or daily intervals to identify 
patterns at differing frequencies. This binary aggregation 
generated the following four datasets: BIL daily, BIL 
weekly, Evidation Health daily, and Evidation Health 
weekly. To handle the different frequencies with which 
surveys were sent out from the BIL, we analysed at both 
daily and weekly intervals. We applied the same 
downsampling to the BIL daily data when conducting the 
weekly interval analysis. We excluded participants with 
only weekly data from the daily analysis. We focus on 
daily intervals in this paper and present weekly interval 
results from the clustering analysis in appendix 1 (p 3). 
Further details on the preprocessing of survey data are 
provided in appendix 1 (p 1).

See Online for appendix 1

See Online for appendix 2

For the Evidation Health app 
see https://evidation.com/blog/
what-is-evidation

See Online for appendix 3

https://evidation.com/blog/what-is-evidation
https://evidation.com/blog/what-is-evidation
https://evidation.com/blog/what-is-evidation
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Exploratory data analysis
For our analysis, participant retention was defined as the 
duration of time until the participant drops out of the 
study, and survey adherence was defined by how the 
participant engages with regular surveys (ie, survey 
filling patterns). Adherence is a crucial metric, 
particularly in longitudinal studies that seek to detect 
irregular events over long periods (eg, COVID-19 
infection).16,26 For the purpose of describing the clustering, 
we defined three dimensions or metrics for assessing 
adherence: (1) total number of surveys completed; 
(2) participation regularity (ie, frequency of filling out 
surveys consecutively); and (3) time of activity (ie, 
engagement pattern relative to enrolment time; 
appendix 1 p 7).

Unsupervised learning methods were used to provide 
an overview of survey adherence and visualise the survey 
filling patterns, via clustering of adherence based on the 
three dimensions. We identified clusters of participants 
by k-means clustering, using methods similar to those 
used in previous studies.16,17 We used the elbow method to 
identify the number of clusters (appendix 1 pp 2, 4). 
Missing observations (no survey was filled) were labelled 
“false” and valid observations (survey was filled) as “true”. 
We used heatmaps to visualise the survey filling patterns 
and clusters, and assessed the adherence patterns (high, 
medium, or low; and early or late) relative to each other.

To understand whether there were common factors 
that distinguished the adherence dimensions, we 
explored whether any identified clusters corresponded 

with specific demographic factors (age, sex, and race). 
We did χ² tests of independence to detect if variable 
distributions were statistically different between clusters, 
and estimated Cramér’s V, which is a measurement of 
association magnitude (ie, the categorical variable 
analogue to Pearson’s χ² statistic for continuous 
variables), to assess the strength of the relationship 
between cluster membership and each of the categorical 
variables27 (appendix 1 p 2). Cramér’s V values were 
interpreted as follows: 0–0·1, weak association; >0·1–0·3, 
moderate association; >0·3–0·5, strong association; and 
>0·5, very strong association.27 Post-hoc analysis was 
conducted by comparing each cluster against one another 
to identify which cluster contributed to the χ² tests.

We subsequently used time-to-event methods to analyse 
study retention and survey filling patterns. After an initial 
literature search and exploration of digital health studies 
that sought to assess adherence and retention (see 
Research in context panel and appendix 1 pp 6–7), we 
selected two common methods: survival analysis and 
recurrent event analysis. Survival analysis is a common 
tool applied to clinical data for estimating the average 
time to an event; in the health and clinical sciences, the 
event is usually death or disease progression.19,20 We used 
survival analysis to estimate the probability of participants 
exiting the study before its completion and to identify 
factors that might affect study participant retention. For 
our analyses, we relabelled completed and missing 
surveys to create three different states at any given survey 
timepoint: (1) the participant completes the survey, 
indicating they are active; this was labelled as “ACT”; 
(2) the participant misses (ie, does not complete) the 
survey, but completes at least one subsequent survey 
before the study ends, indicating that they are temporarily 
inactive; this was labelled as “INACT”; (3) the participant 
misses the survey and all subsequent surveys during the 
rest of the study period, indicating they exited the study; 
this was labelled as “EXIT”.

A participant can transition back and forth between 
ACT and INACT states, but cannot transition to an ACT 
state from an EXIT state. A missing survey response was 
initially labelled INACT/EXIT. If a subsequent ACT state 
was observed, then all preceding INACT/EXIT states 
between that ACT state and the preceding ACT state (or 
the first study date, whichever occurred later) were 
relabelled as INACT. Otherwise, if no subsequent ACT 
state was observed by the end of the study period, then all 
preceding INACT/EXIT states occurring after the 
preceding ACT state (or the first study date, whichever 
occurred later) were relabelled as EXIT. For the 
unsupervised clustering analysis, we did not consider 
transitions but used these labels to cluster information.

For the survival analysis, we defined the failure event as 
the EXIT state. This definition meant that a participant 
who had completed surveys until the end of the study was 
considered to have survived (ie, been retained) for the 
entire period. We thereby defined retention in terms of 

Figure 1: Proposed method to achieve target demographics from enrolment through to final data analysis
(A) Graphical representation of the demographics of participants enrolling in a conventional longitudinal digital 
health study and the subsequent study population generating the data for analysis. (B) By analysing participant 
engagement during the study, research teams can undertake proactive measures to mitigate challenges with 
participant adherence and retention.

Analyse study
retention and
adherence

Proactive measures to 
maintain participant
adherence

Representative population Non-representative
population remaining for
data analysis

State 1 State 2

Multistate modelling

Clustering
Improved representation of
previously under-represented 
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current
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health study

Participant loss
A
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survival as the proportion of participants surviving 
(retained) on any given day. Overall retention was 
estimated after enrolment, along with 95% CIs. The 
patterns of retention were summarised with Kaplan–
Meier curves28 across demographic factors of age, sex, and 
race as explanatory variables. We also analysed retention 
as a function of the demographic factors via survival 
analysis using a Cox regression.29 In the regression 
analysis, hazard ratios (HRs) were calculated to assess the 
effect of the explanatory variables on the hazard of the 
event (ie, study exit) occurring. 95% CIs for HRs were 
calculated assuming a normal distribution. 

The same Kaplan–Meier survival analysis was done 
with the failure event as the INACT state. For this 
analysis, we defined the failure event as the first instance 
of an INACT state within 30 days of enrolment. A 
participant with only ACT states was considered to have 
survived (been retained) for this entire 30-day period 
(ie, the participant completed the daily survey every day of 
the 30-day period).

To model survey filling behaviour, we did recurrent 
event analysis using multistate modelling, a statistical 
method commonly observed in clinical studies, whereby 
patients can transition between different health states.19,30 
We generated metrics from this model and differentiated 
transition states for participants based on time-
independent demographic factors (age, sex, and race, 
which were assumed not to change throughout the 
study). To meet the assumptions of multistate modelling, 
we assumed a two-state model, in which participants 
would be in either the ACT or INACT state. We did not 
include the EXIT state as it would require foreknowledge 
that a participant would not return to the study at a future 
point in time, and this knowledge violates the future-
state independence of a multistate model.

Adherence metrics similar to those generated from 
the unsupervised clustering were generated from the 
multistate modelling. The adherence metrics were: 
(1) mean sojourn time (ie, the estimated average amount 
of time in a state) and (2) total length of stay (ie, the 
estimated total time in a state given a start and end time 
for a 90-day period). We likened the mean sojourn time 
to the participation regularity metric. Both metrics were 
descriptive in nature and not predictive. The equations 
for these metrics are included in appendix 1 (p 7). 
Additionally, our models estimated transition inten
sities, which represented the conditional likelihoods of 
each transition per day given covariate values (ie, the 
probability of an individual moving from ACT to 
INACT). A transition intensity of 1 indicated no 
difference in the likelihood of transition versus a 
reference group given the presence of the covariate, 
whereas a value greater than or less than 1 indicated a 
higher or lower likelihood of transitioning, respectively. 
We first explored age given that we had identified 
relationships between age and retention in the survival 
analysis, and next explored sex, race, and day of survey 

delivery (ie, weekday vs weekend). For the BIL study, we 
also explored the performance of the models using the 
presence of symptom reports (ie, if the participant 
reported symptoms on a given date) as input variables. 
Prevalence plots to represent participants transitioning 
from the ACT to EXIT state (theoretically moving from 
ACT to INACT to EXIT) by age, sex, and race were 
generated similar to Kaplan–Meier curves but included 
the expected proportion of individuals at a specific point 
in time given the demographics, calculated from 
multistate modelling. We applied the multistate 
modelling package msm in R (version 4.1.2).30  The 
clustering and survival analyses were done in Python 
(version 3.8.5). For all of our models, we restricted the 
analyses to individuals who provided data on all 
three demographic factors of age, sex, and race.

In this paper, we report on statistical discernibility rather 
than statistical significance to address the significance 
fallacy, whereby statistical significance is often conflated 
with clinical or scientific importance.31 Statistical 
discernibility provides an alternative lexicon that better 
reflects the evidence and avoids over-interpreting p values 
as rigid thresholds for meaningfulness. Our reporting of 
statistical discernibility is explained fully in appendix 1 (p 2). 
We nonetheless report thresholds and levels of statistical 
significance because these metrics give statistical context 
and are necessary for constructing confidence intervals. 
The threshold for statistical significance was a p value of 
less than 0·05.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

BIL study Evidation Health study

Total participants* 5784 89 479

Sex

Female 3521 (60·9%) 73 891 (82·6%)

Male 2263 (39·1%) 15 588 (17·4%)

Race

White 5249 (90·8%) 75 048 (83·9%)

Black 270 (4·7%) 4943 (5·5%)

Asian 198 (3·4%) 4805 (5·4%)

Other 67 (1·2%) 4683 (5·2%)

Age, years

18–29 498 (8·6%) 22 635 (25·3%)

30–39 1029 (17·8%) 30 604 (34·2%)

40–49 1239 (21·4%) 17 573 (19·6%)

50–59 1443 (24·9%) 13 231 (14·8%)

≥60 1575 (27·2%) 5436 (6·1%)

Percentages do not always add to 100% due to rounding. Participants were placed 
into a specific age range to create a categorical feature. BIL=Duke University BIG 
IDEAs Laboratory. *Participants who completed enrolment surveys with 
demographic information on sex, age, and race.  

Table: Demographic information for the BIL and Evidation Health studies
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Results
In the BIL CovIdentify study, 7348 adults (age >18 years) 
electronically consented to the study. Demographic 
information (sex, age, and race) and enrolment survey 
data were available for 5784 participants (table). These 
5784 unique participants completed 388 600 unique daily 
surveys (mean 67 [SD 90] surveys per participant) 
throughout the study. In the Evidation Health COVID2020 
study, 96 804 adults (age ≥18 years) living in the USA 
electronically consented to the study. Demographic 
information (sex, age, and race) and enrolment survey 
data were available for 89 479 participants (table). These 

89 479 unique participants completed 2 080 992 unique 
daily surveys (mean 23 [32] surveys per participant) 
throughout the study. The overall data collection period in 
the BIL study was longer than that of the Evidation Health 
study (546 days vs 149 days, respectively).

We explored whether distinct patterns of daily survey 
adherence existed via unsupervised clustering. We 
identified three clusters of adherence for the Evidation 
Health study (E0–2) and four clusters of adherence for 
the BIL study (B0–3; figure 2; weekly patterns in 
appendix 1 p 3). Generally, the four BIL clusters ranged 
from low to high adherence based on the three metrics of 

Figure 2: Adherence to digitally delivered surveys
(A) An example participant’s survey filling patterns over the course of a study. ACT represents the days surveys were completed, INACT represents the days surveys 
were not completed, and EXIT represents the days after the participant left the study; grey dashes represent days. The network model on the right shows possible 
paths between states as represented by the arrowhead direction. Once a participant exits the study, there is no path to re-enter. (B) Heatmap showing clustering of 
daily survey filling patterns in the BIL study. Due to the study design changing from a weekly to daily survey method, the number of days extended beyond a 
12-month period. (C) Heatmap showing clustering of daily survey filling patterns in the Evidation Health study. In the heatmaps, each column represents one day and 
each row represents one participant. Unclustered maps are presented in appendix 1 (p 5). (D) Adherence characterisation of the different clusters for both studies 
(left, BIL study; right, Evidation Health study). Participants within each cluster were ordered by their study ID number. BIL=Duke University BIG IDEAs Laboratory.
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adherence (total number of surveys completed, 
participation regularity, and time of activity). Participants 
in group B0 (n=1977) had a low total number of surveys 
completed (mean 54 [SD 75]), low participation regularity, 
and early time of activity. Participants in B1 (n=3028) had 
a medium total number of surveys completed (123 [89]), 
low participation regularity, and early time of activity. 
Participants in B2 (n=540) had a high total number of 
surveys completed (509 [35]), high participation 
regularity, and early time of activity. Participants in 
B3 (n=239) had a high total number of surveys completed 
(319 [68]), high participation regularity, and late time of 
activity. The Evidation Health clusters could be 
characterised as: E0 (n=58 199), participants with a low 
total number of surveys completed (mean 5 [SD 5]), low 
participation regularity, and early time of activity; 
E1 (n=18 435), participants with a medium total number 
of surveys completed (35 [13]), high participation 
regularity, and early time of activity; and E2 (n=12 845), 
participants with a high total number of surveys 
completed (90 [19]), high participation regularity, and 
early time of activity.

In both studies, the highest numbers of participants 
were present in the clusters with a low or medium total 
number of surveys completed, low participation 
regularity, and early time of activity (B0, B1, and E0; 
figure 2).

To further test whether demographic factors were 
associated with the unsupervised clustering, we explored 
if the clusters varied by race, sex, and age (figure 3). Most 
of the individuals aged 18–29 years were observed in the 
clusters with low or medium adherence (245 [48·7%] 
of 503 individuals aged 18–29 years in cluster B0 and 
228 [45·3%] of 503 in cluster B1; 17 516 [77·6%] of 22 581 
in cluster E0; appendix 1 pp 7–9). We observed that the 
oldest age group (≥60 years) was generally more 
represented in clusters with high adherence (B2, B3, and 
E2) than younger age groups (figure 3). We explored 
whether any demographic differences were statistically 
discernible (ie, statistically significant). χ² tests of 
independence were done to assess the relationship 
between cluster labels and the demographic factors of 
sex, race, and age (appendix 1 pp 7–9). For both studies, 
we observed statistically discernible relationships 
between all demographic factors and cluster membership. 
This gave us a foundation to examine which associations 
were scientifically meaningful.

Since the p value only informs whether an association 
exists, but not its extent, we sought to quantify the 
magnitude of the associations by applying Cramér’s V. 
For the BIL study, the correlations were weak between 
cluster membership and race, sex, and age, with 
Cramér’s V values of 0·086, 0·072, and 0·099 respectively 
(appendix 1 pp 7–8). For the Evidation Health dataset, 
the correlations were weak between cluster membership 
and race and sex, with values of 0·037 and 0·024, 
respectively. However, the correlation between cluster 

membership and age was moderate, with a value of 
0·151 (appendix 1 p 8).

To identify whether there was a relationship between 
clusters and specific demographic factors, we did a 
post-hoc analysis which sought to establish the source of 
the difference present in the χ² tests. Results for the BIL 
study showed that the B0 cluster (low total number of 
surveys completed and low participation regularity, and 
early time of activity) was discernibly different from 
clusters B1, B2, and B3 for race. Specifically, the B0 cluster 
had a higher proportion of Black or Other race 
participants and a lower proportion of White participants 
than the other clusters (appendix 1 pp 7–8). Sex and age 
were discernibly different across all clusters except for B0 
versus B1 (which was not discernible on sex) and B1 
versus B3 (not discernible on age; appendix 1 pp 15–16). 
For the Evidation Health study, the demographic 
compositions of the clusters were discernibly different 
except for E1 versus E2 (which was not discernible on 
sex; appendix 1 p 16).

Retention is another key aspect of digital health studies 
as it measures the duration an individual remains within 
a study. We did a Kaplan–Meier analysis to estimate the 
probability of participants exiting the study before its 
completion and to identify factors that might affect study 
participant retention. We modelled the time to exit (the 
time between enrolment and exit; defining the failure 
event as the EXIT state) using a Kaplan–Meier curve with 
age, race, and sex as explanatory variables (figure 4). Both 
the BIL and Evidation Health studies showed a steady 
decline in the retention probability, with both studies 
having a higher dropout rate at the study’s outset versus 

Figure 3: Study participants clustered on daily survey filling patterns and stratified by demographic factors
Plots show the percentages of each survey filling pattern cluster for participants in each study separated by race, 
age, and sex. BIL=Duke University BIG IDEAs Laboratory.
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later timepoints. When counting a single missed survey 
(entering the INACT state) as the failure event, we 
observed sharp declines in the numbers of participants 
early in the studies (appendix 1 pp 5–6).

We characterised the association between retention 
probability and demographic factors using Cox 
regression (appendix 1 pp 16–17). We observed that as age 
increased, the retention probability also increased. For 
the BIL study, the retention probability was lowest for the 
18–29 years age group (vs ≥60 years group), with an HR 
of 1·69 (95% CI 1·53–1·86; p<0·0001) for study exit at 
any given point in time. The same trend was observed for 
the Evidation Health study with an HR of 1·50 (1·47–1·53; 
p<0·0001) for the 18–29 years age group. For other 
demographic factors, sex was not a statistically discernible 
predictor of study exit in the BIL study (HR for male 
participants vs female participants (0·98 [0·93–1·03]; 
p=0·50), but male participants (vs female participants) in 
the Evidation Health study had a lower risk for study exit 
(HR 0·96 [0·94–0·98]; p<0·0001). Comparisons of race 
showed no associations with study exit in the BIL study. 
In the Evidation Health study, participants identifying as 
Other race (vs Asian race) had a higher risk of study exit 
(HR 1·10 [1·06–1·14; p<0·0001]), and those identifying as 
White (vs Asian) had a lower risk of study exit (HR 0·96 
[0·93–0·98; p=0·0004]).

The previous methodology used in this study assessed 
adherence qualitatively and did not account for epochs of 
different behaviour types. Therefore, we did multistate 
modelling analysis in which we sought to identify how 
covariates (age, sex, and race) might relate to adherence 
based on maximum likelihood estimation. We also 
included the time-based covariate of day of survey 
delivery (weekday vs weekend) to model the difference in 
behaviour given demographic factors. We decided upon 
the two relevant states of ACT and INACT. In the 
multistate model, for the BIL study we observed a similar 
pattern of adherence concerning age to that in the 
survival analysis: as age increased, the likelihood of 
entering the INACT state from the ACT state generally 
decreased. However, this pattern was not apparent for 
the Evidation Health study (figure 5; appendix 1 pp 11–13). 
Although the two digital health studies we examined 
were separate, the transition intensities for age were 
generally similar for the ACT to INACT transition, but 
not for the INACT to ACT transition. Specifically, for the 
18–29 years age group (vs ≥60 years group), the transition 
intensity from ACT to INACT in the BIL study was 
1·661 (95% CI 1·606–1·718) and in the Evidation Health 
study was 1·108 (1·094–1·121), whereas the transition 
intensities from INACT to ACT were 1·220 (1·179–1·262) 
and 0·597 (0·590–0·605), respectively. Results were 

Figure 4: Kaplan–Meier curves by age, race, and sex
Kaplan–Meier curves showing the changing retention probability over time in demographic groups in each study, with the event defined as participants who had 
exited the study (EXIT state). Numbers at risk, numbers censored, and log-rank p values are provided in appendix 1 (pp 13–15). BIL=Duke University BIG IDEAs 
Laboratory.
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similar when comparing the race categories, with most 
transition intensities having overlapping 95% CIs for the 
BIL study. For the White racial group in both the BIL and 
Evidation Health studies, 95% CIs for transitions (ACT to 
INACT and INACT to ACT) did not overlap with those of 
other racial groups, indicating some separation in 
transition intensities. When comparing results by sex, 
male participants showed higher transition intensities 
for ACT to INACT transitions than INACT to ACT 
transitions in both studies (figure 5; appendix 1 pp 11–13). 
As for survey timing, our inclusion of weekends versus 
weekdays revealed some separation in transition 
intensities. For example, in the Evidation Health study, 
ACT to INACT transitions were lower on weekends than 
weekdays, while INACT to ACT transitions were higher 
on weekends than weekdays, indicated by 95% CIs that 
did not cross the null value of 1. Conversely, in the BIL 
study, ACT to INACT transitions were higher on 
weekends than weekdays, and INACT to ACT transitions 
were lower on weekends than weekdays (figure 5; 
appendix 1 pp 11, 13). Use of BIL symptom reports as 
input variables indicated that the presence of symptoms 
caused a lowering of transition intensities for both 
possible transitions versus the absence of symptoms 
(appendix 1 p 12). However, the role of symptom reports 
in modulating individual-level transitions warrants 
further investigation.  

To characterise adherence from the multistate model, 
we defined two separate descriptive metrics: 
(1) participation regularity (mean sojourn time); and 
(2) total length of stay, defined for a 90-day window. For 
the BIL and Evidation Health studies, younger 
participants (age 18–29 years vs ≥60 years) had a lower 
participation regularity in the ACT state, shorter total 
length of stay in the ACT state, and longer total length of 
stay in the INACT state (appendix 1 pp 9–11). There were 
some differences between the patterns observed in the 
BIL and Evidation Health studies with regard to race. In 
the BIL study, individuals who were White or Asian had 
higher participation regularity in the ACT state and a 
longer total length of stay in the ACT state than 
individuals who were Black or Other race. In the 
Evidation Health study, individuals who were White or 
Other race had higher participation regularity in the ACT 
state than individuals who were Black or Asian, with 
similar total lengths of stay between the racial groups 
(appendix 1 pp 9–10). In the BIL study, male participants 
had higher participation regularity in both the ACT and 
INACT states than female participants. In the Evidation 
Health study, female participants had higher participation 
regularity in the ACT state than male participants. In 
both studies, total lengths of stay in the ACT and INACT 
states were generally similar between male and female 
participants (appendix 1 pp 9–10). Weekdays in the BIL 
dataset were associated with longer ACT state adherence, 
whereas weekends were associated with more time in the 
INACT state. By contrast, the Evidation Health dataset 

showed higher adherence to the ACT state during 
weekends, with higher participation regularity in the 
ACT state than for weekdays (appendix 1 pp 10–11). 
Prevalence plots representing the percentage of 
participants transitioning from the ACT state to the EXIT 
state over time by age, sex, and race were similar to the 
Kaplan–Meier curves (appendix 1 p 6).

Discussion
The overall aim of this work was to identify factors in 
digital health study design that can influence data 
representation and to test a different methodological 
approach for identifying such factors. We found that age 
was inversely related to adherence and retention, which 
is consistent with the literature,16,17 indicating a need to 
improve engagement among young adults.

A major contribution of this work is the methodology 
used to analyse adherence and retention. Typical methods 
such as survival analysis or multivariate regression20,32 do 
not comprehensively represent participation in repeated 
tasks over time which are common in digital health 
studies.17 Although these methods explain variation in 
participant dropout across multiple factors, they might 
misrepresent how participants engaged with the study. To 
address this possibility, we applied multistate modelling 
to capture engagement dynamics over time. The two-state 

Figure 5: Multistate model transition intensities by race, age, sex, and day of survey delivery
Transition intensities ordered by INACT to ACT (INACT–ACT) and ACT to INACT (ACT–INACT) for different 
covariates in the multistate model for each study, where ACT represents an active state and INACT represents an 
inactive state. The BIL model also included symptom reports as input variables (appendix 1 p 12). The transition 
intensity value represents the rate at which individuals move from one state to another per day given the 
covariate. The selected covariates are shown in parentheses; the baseline model had the following covariates: 
Asian, female, age ≥60 years, and weekday (and no symptoms reported, BIL study only). Errors bars represent 
95% CIs. BIL=Duke University BIG IDEAs Laboratory.
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multistate model closely resembled conventional Cox 
regression in identifying factors, such as age, that 
influenced adherence and retention, with both methods 
showing similar effect sizes. For instance, HRs from the 
Cox regression for study exit (eg, BIL study, 1·69 for age 
18–29 years vs ≥60 years; Evidation Health study, 1·50) 
aligned with multistate modelling transition intensities 
for the ACT to INACT state (eg, BIL study, 1·661 for age 
18–29 years vs ≥60 years; Evidation Health study, 1·108).

Multistate modelling offers additional insights through 
metrics such as mean sojourn time and length of stay, 
indicating the duration that participants are in active or 
inactive states. These measures help to predict dropout 
points and identify low engagement periods. For 
example, knowing that younger participants have shorter 
mean sojourn times (ie, lower participation regularity) in 
the active state than older participants can guide proactive 
retention methods, such as personalised reminders, 
incentives, or flexible study protocols that can 
accommodate their schedules and preferences. The diff
erences in demographic characteristics across clusters 
indicate that study participants with particular demo
graphic characteristics might be at increased risk of low 
adherence, and study teams might address this issue by 
developing targeted solutions to aim to balance 
demographic characteristics across clusters of adherence 
types. Understanding the mean length of stay in an 
inactive state can help to time re-engagement efforts, 
such as follow-up communications, to bring participants 
back into the study. Recurrent event analysis offers a 
nuanced view of participant behaviour. Although 
recurrent event analysis has been applied in other fields, 
this is the first instance, to our knowledge, of applying 
this method to assess adherence in digital health studies.

Our work also highlights the need for a common 
lexicon to describe and measure adherence and 
retention.14,17,32 Terms such as compliance, adherence, and 
engagement are often used interchangeably and the 
definitions vary by study. Thus, we clearly and 
quantitatively defined adherence as a participant’s survey 
filling patterns and retention as the duration of time 
before a participant drops out of the study.

Our study should be contextualised within the broader 
landscape of digital health research, particularly with 
regard to past experiences in influenza-like illness 
surveillance. Studies such as those by Dalton and 
colleagues,21 Baltrusaitis and colleagues,22 and Bajardi 
and colleagues23 provide valuable insights into factors 
influencing follow-up participation and the represen
tativeness of participants in web-based participatory 
surveillance systems. From these studies, it is evident 
that addressing usability, motivation, trust, and 
demographic considerations can substantially enhance 
adherence and retention in digital health studies. 
Incorporating these strategies into study design can 
improve the representativeness and reliability of data 
collected from web-based surveillance systems.

We note that a major limitation in comparing the 
two datasets was the differing study designs. Although 
the two studies were similar in the resulting data, some 
differences were not captured by the surveys. These 
differences include the user experience of completing 
surveys via apps versus a website portal, the method with 
which participants found out about the study, and the 
public’s perception of the institution hosting the study. 
In addition, the BIL CovIdentify study was initially 
designed to be done for 3 months but was run for an 
additional year based on the evolution of the COVID-19 
pandemic. This change might be the source of the B3 
cluster and the return of many participants to renew 
their participation in the study.

Another important limitation of our study is the 
absence of continual monitoring of symptoms and 
diagnostic data, which prevented analysis of the effect of 
illness timing and severity on study engagement. For 
instance, people who feel unwell might be likely to cease 
participation. Due to the secondary nature of the study, 
although the surveys collected time-varying covariates 
such as illness and symptoms, we could not include 
them for both studies and for all analyses due to a high 
amount of missingness of these data. The ability to 
collect continuous information and to account for this 
potential source of bias in data missingness should be 
explored in future work, and we recommend considering 
all the potential factors that can affect adherence over 
time.

Furthermore, we note that neither of the digital health 
studies were originally designed to address the research 
questions posed in this paper, and we did secondary 
analyses to answer questions regarding participant 
survey adherence. We recommend that for future 
longitudinal studies, increased consideration be given to 
participant engagement patterns as part of the study 
design. This consideration will allow for analyses to 
isolate factors that directly contribute to how a participant 
interacts with a study. Furthermore, although studies 
might initially enrol representative populations, an 
improved understanding of the engagement patterns can 
aid in the resulting data quality. For example, for studies 
that collect data from devices, participants’ wear time can 
be affected by the device’s battery life and how com
fortable the device is to wear. Not considering such 
factors in the choice of the device could result in 
insufficient data collection.

Finally, although this study assessed participant 
engagement, it did not address the issue of which 
populations were reached. Communities most affected 
by COVID-19, including Black or African American and 
Hispanic or Latinx populations,33 had low representation 
in our study (Hispanic representation was <5% in the 
BIL study and about 8% in the Evidation Health study; 
data not shown), which is a common issue encountered 
in studies with a bring-your-own-devices strategy, in 
which participants can donate data for the research 
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studies from their personally owned devices.7 We 
recognise that the initial survey populations were not 
representative and encourage future researchers to 
improve the reach of their studies.

The generalisable methods developed in this study 
might help research groups to better understand the 
behaviour patterns of their study populations and guide 
the development of targeted strategies for improving 
representation. Future research could explore the 
interaction of different demographic factors and other 
individual characteristics, such as socioeconomic, geo
graphical, and biopsychosocial factors, and intersectional 
characteristics, in shaping engagement patterns in 
digital health studies.
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