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ABSTRACT

Statistical comparison of multiple time series in their underlying frequency patterns has many real appli-
cations. However, existing methods are only applicable to a small number of mutually independent time
series, and empirical results for dependent time series are only limited to comparing two time series. We
propose scalable methods based on a new algorithm that enables us to compare the spectral density of a
large number of time series. The new algorithm helps us efficiently obtain all pairwise feature differences in
frequency patterns between M time series, which plays an essential role in our methods. When all M time
series are independent of each other, we derive the joint asymptotic distribution of their pairwise feature
differences. The asymptotic dependence structure between the feature differences motivates our proposed
test for multiple mutually independent time series. We then adapt this test to the case of multiple dependent
time series by partially accounting for the underlying dependence structure. Additionally, we introduce a
global test to further enhance the approach. To examine the finite sample performance of our proposed
methods, we conduct simulation studies. The new approaches demonstrate the ability to compare a large
number of time series, whether independent or dependent, while exhibiting competitive power. Finally, we

ARTICLE HISTORY
Received May 2023
Accepted July 2024

KEYWORDS
Algorithm; Dynamics;
Pairwise differences;
Periodogram; Spectral
method; Vibration data

apply our methods to compare multiple mechanical vibrational time series.

1. Introduction

Mechanical systems, such as manufacturing machines, vehi-
cles and their components, have significantly simplified and
improved our lives. However, mechanical damage can occur
from a variety of sources, which often causes unexpected
mechanical breakdowns, financial losses, or even personnel
casualties. Early mechanical damage detection is critical for
preventing accidents and guaranteeing sufficient maintenance.
It is shown that mechanical damage always results in changes
in the frequency behaviors of vibration signals (Cempel and
Tabaszewski 2007). As a result, vibrational data have been used
as the basis for noninvasive damage detection. Mechanical dam-
age can be detected by comparing the current signals to the
reference vibrational signals obtained from a healthy system. To
form “the reference database” for comparison, multiple vibra-
tional time series from an undamaged system at various input
force levels are often recorded (Sohn and Farrar 2001). A reliable
reference database requires its participating vibrational time
series to share common frequency behaviors, even at different
input levels. However, this may not be true if the input levels
are overly diversified, especially some of them being beyond
the system’s linear operating range (Karniel and Inbar 1999).
Statistical methods are needed to evaluate if all members in a
reference database exhibit the same frequency pattern.

The frequency pattern, or equivalently, the autocovari-
ance structure, characterizes the second-order properties of a

stationary time series. The comparison of time series in second-
order dynamics has been widely studied under various con-
texts. Some of these methods were developed in the frequency
domain by comparing frequency patterns, while others were
developed in the time domain by comparing the autocovariance
structure. Most existing methods in the literature, regardless
of in frequency or time domain, were designed to compare
only two time series. These methods include Coates and Diggle
(1986), Diggle and Fisher (1991), Maharaj (2002), Alonso and
Maharaj (2006), Lund, Bassily, and Vidakovic (2009), Dette and
Paparoditis (2009), Decowski and Li (2015), Salcedo, Porto, and
Morettin (2012), Jin and Wang (2016), Grant and Quinn (2017),
Zhang and Tu (2018), Li and Lu (2018), Cirkovic and Fisher
(2021), Jin (2021) and many others.

Methods for comparing multiple time series, however, are
still scarce. Fokianos and Savvides (2008) proposed a likelihood
ratio test on log-linear periodogram models to evaluate the
equality of multiple spectral density functions. Their method
requires choosing a time series as a baseline time series, so the
results may rely on the choice of the baseline. Later, Jin (2015)
developed testing procedures to compare correlation structures
or the normalized spectral functions when these time series are
independent of each other. However, their test seems to struggle
with controlling the sizes when the number of time series, M,
is not very small, for example, M > 10. Another approach
to comparing the spectral densities of multiple time series can
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be seen in Jin (2018). All the above methods are developed for
multiple time series that are independent of each other. Instead
of comparing individual time series, Jin (2011) introduced a
pre-planned contrast method to compare a group of time series
to another group of time series. However, the method still
compares two aggregated spectral densities, and the outcomes
depend on the particular choice of these groups. Jentsch and
Pauly (2015) and Zhang and Tu (2018) proposed methods for
comparing multiple time series that may be dependent with
each other, but both of them only showed simulation results of
comparing two time series. Furthermore, results in Jentsch and
Pauly (2015) appear to be sensitive to a bandwidth parameter
involved in the method. Selecting multiple bandwidths to esti-
mate a larger number of multivariate spectral and cross-spectral
functions can be more challenging.

If the comparison procedure rejects the hypothesis that all
time series have equal dynamics, a natural follow-up question
to ask is which pairs of these time series are different. All
the aforementioned methods themselves do not directly answer
this question. Although Kalpakis, Gada, and Puttagunta (2001)
proposed a distance measure of ARIMA time series based on
the linear predictive coding cepstrum and Caiado, Crato, and
Pefla (2006) proposed an L, periodogram distance metric for
time series classification, these distance metrics cannot tell if
two time series are significantly different or not. In addition, it is
unclear how these distance metrics work when these time series
are not independent. For multiple independent time series,
Fokianos and Savvides (2008) suggested performing pairwise
comparisons among M time series with a Bonferroni correc-
tion. However, this would involve more than 1000 pairwise
comparisons even when M = 50, and thus result in extensive
computation. All these limitations call for new computationally
efficient methods that can compare a large number of time series
regardless of their inter-series dependency, and further provide
details of the difference, if any.

We propose scalable methods to compare the frequency pat-
terns of M time series for a large M such as M = 100. Our
methods can evaluate if all M time series share the same fre-
quency patterns, and meantime quantify all pairwise differences.
We develop a new algorithm for our methods to obtain all
pairwise feature differences between M time series that does not
involve likelihood estimation, smoothing, and matrix inverse
operations. The computation of the algorithm is only approx-
imately equivalent to conducting M times matrix-vector mul-
tiplications. When all these time series are independent of each
other, the joint asymptotic distribution for these pairwise feature
differences is obtained. The asymptotic dependence structure
between feature differences motivates our test for multiple inde-
pendent time series and then we adapt the test to multiple
dependent time series.

It is noteworthy that interests in multiple time series compar-
ison are also prevalent in the data mining community beyond
the statistical literature. Various data mining methods, such
as matrix profile (Mercer and Keogh 2022; Der et al. 2022),
and dynamic time warping (Chu et al. 2002; Alaee, Kamgar,
and Keogh 2020) have been proposed. The similarity measured
by those data mining methods is different from that of our
proposed techniques. Both matrix profiles and dynamic time
warping measure the distance between observations in the time

domain to capture repeated patterns or functional structure such
as motif, discord and joins in time series. In contrast, our meth-
ods evaluate differences in the second-order dynamics char-
acterized by spectral density (or equivalently, autocovariance
structures) between time series driven by random innovations.
In addition, our methods are inference-based methods that can
determine the significance of the differences in time series based
on probability distributions.

The article is organized as follows. Section 2 introduces the
proposed methods and develops the algorithm. A simulation
study is presented in Section 3. In Section 4, we apply the
proposed methods to compare multiple vibrational series of a
mechanical system. Finally, a concluding remark is provided in
Section 5.

2. Method
2.1. Hypotheses and Review of Periodogram

Consider multiple time series Xinj = 1L2,....M5t =
1,2,..., T}, where j is the index of time series and ¢ is the index
of time. Each of these time series is assumed to be from a zero
mean stationary random process. The autocovariance of the jth
time series at lag h is defined as

Vih = EXjt X t4h)-

The autocovariance structure characterizes a stationary time
series in the time domain. If the autocovariance yj;, h =
0,1,2,...,T — 1is absolutely summable, the spectral density of
Xjnt=12,...,Tis defined as

1 —ihw
]S(CU) = E ny’he h (1)

heZ

for any real number w, where i is the imaginary unit (see Brock-
well and Davis 1991). The spectral density function describes the
power distribution of a stationary time series in the frequency
domain. The second-order dynamics of a stationary time series
can be equivalently expressed either in its autocovariance struc-
ture or its spectral density.

Our main objective is to compare multiple time series in
terms of their underlying models. One hypothesis for achieving
this goal is to test whether the spectral densities of all M time
series are the same. We then have the following null hypothesis:

Hy: filw) = f(0) =+ = fu(w), 2)

almost everywhere for v € (0,7). Sometimes, real-world
problems such as damage detection of a mechanical system may
desire to evaluate if the multiple time series have the same fre-
quency pattern regardless of their magnitudes. In such cases, we
can test whether their spectral densities are proportional to each
other, or equivalently, whether their normalized spectral density
functions are the same. The corresponding null hypothesis can
be written as follows:

H; : afi(w) = aofi(®) = - - = cyfu(w), 3)

where c1, ¢, . .., cp are positive constants.
Many fundamental tools for spectral analysis are based on
the periodogram, which allows us to identify the periodicity of



a time series and the relative strengths of these periodic com-
ponents. The periodogram of the jth time series at the Fourier
frequency wy = 2wk/T, k= 1,2,...,K = | T/2] is defined as
2

>

T
ZX]'J exp(—itwyg)
t=1

Lilw) =T

where |x| denotes the modulus of x, and | x] is the floor function
of x. The lemma below describes some statistical properties of
the periodogram.

Lemma 1. Suppose that

oo
Xig= Y a1 (4)
I=—00

where {€;} is a sequence of identical and independent random
variables with mean 0 and variance 1, Y ;2 laj)l < oo, and
Eeﬁ1 < oo forallj = 1,2,...,M. For s distinct integers 1 <
ki <ky <--- < ks <K, all of which may depend on T,

{Iﬂwkl) g)  Iiwk)
fi@i) fiwi)” " filor)

as T — oo, where Ejk k = 1,2,...s, are independent and
identically distributed standard exponential random variables,

} 4 (Bl <k <),

d P TP
and “—” stands for convergence in distribution.

This lemma is part of Theorem (10.3.2) in Brockwell and
Davis (1991). The model in (4) is the general linear process of
an infinite-order moving average process, forming a wide class
of time series. Autoregressive moving average (ARMA) models,
including the seasonal ARMA models in Kalpakis, Gada, and
Puttagunta (2001), are all in this class. When data exhibit a
nonperiodic mean trend, we can first use data preprocessing
to remove the trend before applying methods like ours and
Kalpakis, Gada, and Puttagunta (2001).

2.2. Statistical Tests

Similar to many previous approaches including Fokianos and
Savvides (2008), our methods are developed based on the log
ratio of periodograms. We define the log ratio between the
periodograms of the ith and jth time series at the kth Fourier
frequency as

8ijk = log(Li(wk) /Ij(wk)),

where k = 1,2, ..., K. To simplify the technical arguments, we
assume that [3; ;x| is bounded by a large number Gy, such as
Go = 10,000, forall1 <i#j< Mandk =1,2,...,K. After
performing somewhat simple and not very strict calculations
based on the limiting distributions of §;;, we find if both
fi(w) and fj(w) are continuous and bounded away from zero,
any finite sample with |§;;x| > Go would provide extremely
strong evidence to support f;(w) # fj(w) for some interval of @
around wy. Therefore, there is no need for our methods to make
decisions for a very large [3; /.

The spectral function of a time series has infinite dimen-
sion, but its main feature can be quantified by a vector of
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dimension R + 1 for a small integer R via dimensional reduc-
tion. Consequently, the main feature of the difference between
two spectral functions can also be summarized in an R + 1
dimensional vector. Shang (2014) discussed multiple approaches
for functional dimensional reduction. One approach is to use
basis function expansion involving expressing a function or a
stochastic process as a linear combination of orthogonal basis
functions. Suppose that V = {vg, v1, v, ...} is an orthonormal
basis for the functional space of all continuous functions on
interval [0, 1], where vy = 1 and fol viz(t)dt =1,fori=1,2,....
Such basis functions can be obtained by appropriately centering
and scaling a sequence of Legendre polynomials, a sequence of
Fourier series, or other complete orthogonal systems.

For a positive integer r, let V, = {vo,v1,...,V,} wherev; =
i(Zh), vi(22), ..., vi(Z5))". For any positive integers i, j such
that 1 < i,j < M, we can model the first moment of the log
periodogram ratio between the ith and jth time series as

T
E@ij) = Vr4)s (5)
where 8i,j = (51"1')1, 3,‘,]',2, RN (Si,j)K)T, and q;; =
(qi,j,o,qi,j,l,...,q,-,j,R)T. When i = j, which is the case of
comparing the ith time series with itself, it is clear that §;; = Ox
and thus q; i = Or+1, where Ok represents a zero vector of

length K. Intuitively, if two time series {X;,} and {Xj/} have the
same underlying model, then asymptotically, E(8;;) converges
to Ok, and thus g;;x = 0 for k = 0,1,...,R Hence, Hy in
(2) implies the simultaneous occurrence of g;;; = 0 for all
1 <i,j < M;0 <1 < R. When spectral densities f;(w) and
fj(w)) are proportional to each other, using Lemma 1 and the
definition of §; jx, it is straightforward to derive that E(§;;) will
asymptotically converge to a constant. Consequently, g; ;o will
no longer be asymptotically 0. However, when the normalized
spectral densities of the two time series are the same, g;x will
still be asymptotically 0 for k = 1,...,R. Therefore, Hj in
(3) implies the simultaneous occurrence of g;;; = 0 for all
1<ij<M1<I<R

Let @i)j = (qij0> Gij1> - - -»ijR)" = Vgdij. This is shown in the
Supplementary Materials to be asymptotically equivalent to the
least squares estimate of g; - Compared to the latter, g; j enjoys
fast computation. We construct three tests based on f]l-)j: one for
multiple independent time series, one for multiple time series
that may not be independent of each other, and a global test
aimed at further improvement.

2.2.1. Test for Multiple Independent Time Series

To develop the test, we first study the asymptotic properties of
q;; for multiple independent time series. Let Ik be a k by k
identity matrix for an integer k. The following theorem describes
the asymptotic properties of g; j under the Hy defined in (2).

Theorem 2.1. Suppose we have M independent time series fol-
lowing (4). If their spectral densities are equal and bounded away
from zero, then for any positive integers i and j, we have

. d
q;; — Volei —¢€)),

as T — oo, where {€;,i = 1,2,...} is a sequence of identical
and independent multivariate Gaussian random vectors with
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E(€;) = Opy1, cov(€;) = Ipi1,ry1, and Vo = /var(log(x3)),

where X22 is a x2 random variable with 2 degrees of freedom.

The proof of Theorem 2.1 is deferred to the supplemental
materials. Theorem 2.1 reveals the asymptotic normality and
dependence structure of g; ; for different i and j, when all M time
series are independent of each other. It can be seen that

A A 2
cov(qil’jl,qiz’jz) — Vycov(e;, — €, €, — €j,), (6)

as T — oo, for any positive integers i1,ji, i» and j». If
i1,i2,j1 and j, are all different, the elements of covariance matrix
cov(q;, v q;, jp) are all zero. Hence, most of the pairs between
qil)jl and ‘Aliz,jz suchthat 1 < i} # j; < Mand1 < iy #
j2 < M are independent. Under H, that is, the spectral density
functions of M time series are equal, the asymptotic marginal
distributions of g; il foralll <i,j < Mand0 <! < Rare the
same and all have mean 0. Any g; ;; greatly deviating from 0 may
indicate rejection of the null hypothesis. We therefore propose
the following test statistic for Hy in (2):

SMax,0 = max
1<i<M;1<j<M;0<I<R

qij-
The null hypothesis is rejected if the test statistic is large.

We derive a slightly different test statistic for the H in (3) to
determine whether the normalized spectral densities are equal
or not. If f;(w) is proportional to f;(w), gi o in (5) is determined
solely by the ratio fi(w)/fi(w), while g;jx = 0for1 < k <
R. Intuitively, the value of the ratio fi(w)/fj(w) is irrelevant to
whether f;(w) is proportional to fj(w). Hence, é,’,j,o shall not be
included in the statistic to test the equality of the normalized
spectral densities. Let ?1:‘ and €] be the sub-vectors of g;; and
€ without the corresponding first element, respectively. In fact,
fﬁj = (Gij1>- - -»4ijR)"- Similar to Theorem 2.1, we have

s d
4;; — Vole — €,
when the normalized spectral densities of all time series are the

same. We propose the following test statistic for Hj based on f]f]

SMax, = max qijl-
1<i<M;1<j<M;1<I<R
Both Sazax,0 and Spax,1 can be expressed as Spzx r with k =0

and k = 1, respectively. By the continuous mapping theorem,

max

, A Vo(eir — €0),
1<i<M;1<j<M;k<I<R

SMaxk i
as T — oo, where ¢;; is the Ith entry of €; defined in Theo-
rem 2.1. The analytic form of this limiting distribution may not
be available. By the Borell-TIS inequality of Adler and Taylor
(2007) and Lemma 2.1 of Chernozhukov, Chetverikov, and Kato
(2013), an upper bound in the asymptotic probability of the test
statistic above its expected value can be derived. But such results
can only help obtain an upper limit of the p-value. Alternatively,
the asymptotic critical values for Sy, x may be obtained through
simulating many Gaussian random variables as indicated by
Theorem 2.1. However, for finite samples, the asymptotic critical
values based on normal distributions may not work well.

We derive the critical value for §Mux,k from the perspective of
multiple testing. Since each g;;; of Siaxk under Hy asymptoti-
cally converges to a normal distribution with mean zero and a
standard deviation of +/2Vj, the test using S Max.k 1S equivalent
to testing if g;;; = 0 via |g;j;| simultaneously forall 1 < i <
j < Mand k < | < R based on a common critical value.
We further found a t distribution with degrees of freedom of
K — R+ k works better than the asymptotic normal distribution
for giji1/ (+/2Vp). Hence, we will use ¢ distribution for each single
test. Theorem 2.1 suggests that most of the individual tests are
independent of each other, so a common critical value can be
obtained via the Bonferroni adjustment. Because gy = —gjii,
the total number of effective individual tests using g;; is (R +
1 —k)M(M — 1)/2 instead of M?(R + 1 — k). Let t, 31, x be the
1 —a/((M—1)M(R+ 1— k)) quantile of a ¢ distribution with
degrees of freedom K — R + k, where « is the significance level.
Via the Bonferroni adjustment, the corresponding critical value

for Syraxk is \/zVota)M,R)k.

2.2.2. Test for Multiple Dependent Time Series
When the M time series are dependent on each other and their
underlying processes remain the same, we still seem to have

@i,j 4 Vo(€; — €j) as T — o0o. However, it is important to
note that in this case, Vo should be denoted as Vo ;;, which
may vary for different i and j. Additionally, {€;,i = 1,2,...}
may not be a sequence of identical and independent multivari-
ate Gaussian random vectors. Both Vg ;; and the asymptotic
dependence of g; ; depend on the unknown dependence among
multiple time series. Effectively estimating and incorporating
such unknown dependence into the asymptotic distribution of
Smaxk is challenging due to the significantly higher number
of parameters involved, especially when M is large. Note that
the dependence between the ith and jth time series has no
effect on E(8;jx), though it can have a significant effect on
var(;;) and the asymptotic variance of g;;;. This is because
E(Sijx) = E(log(Ii(wx)) — E(loglj(wx))) does not involve the
dependence between I;(wy) and Ij(wg), while var(§; j ) relies on
their dependence. Fortunately, the sample standard deviation of
d;; can be calculated easily and remains a consistent estimate
for the standard error of §; ;, which automatically captures some
information about the dependence between the ith and jth time
series.

To partially compensate for the effects due to the unknown
dependence, we adjust S Max,k Dy using a standardized version of
qij1 in the test statistic. The new adjusted test statistic becomes

~

Sadik = max tiil,
YR <ieMa <j<Mik<I<R
where %; gl = @ and s;; is the sample standard deviation of ;.
ij

When these time series are independent, we have

A

Sadjk = — €1) (7)

max — (¢
1<i<M;1<j<M;k<I<R ﬁ( i
where ¢;; is still the Ith entry of €; defined in Theorem 2.1
under the corresponding null. It is not difficult to see that
%(Gi,l — €j)) is a standard normal random variable for any

1 <i# j < Mandk < I < R. However, when these



time series are not independent of each other, the result of (7)
may not hold due to unknown correlation among 7;;;, even
if their asymptotic marginal distribution under the null is a
standard normal. In this case, obtaining a critical value through
an asymptotic distribution seems very challenging. Following
the idea of obtaining the critical value for SMax,k, we can easily
obtain the Bonferroni critical value for Sadj,k as qo = tyM.Rk-
As seen in the simulation study in Section 3.1, the test using
Sadj,k and this critical value provides reasonable empirical Type
I error rates when all M time series are moderately dependent
with each other. Furthermore, we can determine if the ith and jth
time series are significantly different at the significance level « by
examining if

tijl > Ga>

for at least one [ subject to k < [ < R. Hence, our methods not
only test if all M time series share frequency patterns, but also
provide information about pairwise comparisons among these
M time series.

2.2.3. AGlobal Test

The above tests using the maximum statistics can be very fast in
computation and perform well for the time series with a large
T. However, their finite sample performance may be less satis-
factory and can be possibly improved. More importantly, these
tests essentially employ a Bonferroni correction and may be
conservative when the multiple tests are dependent. According
to Sarkar and Chang (1997), the global test in Simes (1986) is
more powerful than the classical Bonferroni adjustment while
having the Type I error rate under control, when multiple test
statistics are dependent but follow specific multivariate normal
distributions. Since g;;, for different integers 1 < i # j <
M and k < | < R approximately follows a multivariate
normal distribution, we can adopt the global test approach
in Simes (1986). The basic idea of the global test is still to
evaluate

Hoji : qij1 = 0,

simultaneously for all i, j, I. For each Hy jj;, we use the test statistic
1;j» because it partially accounts for the unknown dependence
between the ith and jth time series. To obtain the p-value p;;
for Hy i1, we use the same ¢ distribution with degrees of freedom
K — R+ k as the reference distribution as in Section 2.2.1. Recall
that K = | T/2]. The p-value is twice of the probability that the
reference distribution is above |; jll- We control the multiplicity
of the p-values in the global test as follows. As mentioned earlier,
due to the antisymmetric property g;j; = —gj,;> we only need
to consider Hyj for i < j and the total number of effective
individual tests is M(M — 1)(R — k+ 1) /2. We rank all p-values
Pijil> wherel <i<j<Mandl=kk+1,...,R, fromsmallest
to la;gest. Let the corresponding order of p; j; be L; ;. We reject
Hpi

- Li,j)lOl
= M- DMR+1-k),2

Pij,

for at least one i, j and k subject to 1 < i,j < M and
k<I<R
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2.3. AScalable Algorithm to Calculate g;

All our tests depend on §;; = (§i;,0> i1 - - -» i) "> Which is
typically obtained through matrix-vector multiplication accord-
ing to its definition and is our major computation demand.
Though this computation is manageable, we develop a scalable
algorithm to calculate g;; even faster, to ensure our tests to be
computationally efficient, especially when M is large. For M time
series, there will be M x M pairwise comparisons on M log spec-
tral functions, including M self-comparisons. We then introduce
an array Q of dimension M x M x (R + 1) to store pairwise
feature differences of M log spectral functions. We assign g;
to be the i, j, kth entry of the array Q. The theorem below states
that g; ; can be obtained via recursive vector additions instead of
matrix-vector multiplication under certain conditions.

Theorem 2.2. For any positive integers 1 < i < j < M, we have
211',]‘ = _‘Alj,i’ and

J
zli,j = Z ‘Alk—l,k-

k=i+1

The proof of Theorem 2.2 is given in the supplemental mate-
rials. According to Theorem 2.2, it is easy to see that ?]l-,j =

Z]k:liH A1k + 4j—1j = 4ij—1 T qj_1> for any integers 1 <
i,j < M.If we have q, 5, 4,3, - - 4y 5> We Will be able to
calculate any other g, j recursively by vector additions instead of
matrix-vector multiplications, for any integers 1 < i,j < M. We
develop Algorithm 1 to calculate Q. Instead of calculating g, j
foralll < i <j < Myvia VES,- j» our algorithm only requires
the calculation of M times matrix-vector multiplications plus
M(M — 1) times vector additions. Thus, our method is much
faster in computation, especially when M is large.

Input: Input M time series {X;;},i=1,2,...,M, and
integer R

Output: A three dimensional array Q
Set bound Gy = 10,000, R = 5 and calculate matrix Vy
Define a three dimensional M x M x (R + 1) array Q
Step 1: foreachi=1,2,...,M, do

| Calculate the log periodogram logI;(-)
Step 2: foreachi=1,2,...,M, do
Calculate the vector of log ratios d; j, where

j= @i+ 1)%M
Calculate g;; = V3,
Check if any elements of |3 | is above Gy or not; if
| TRUE then set a flag.
Step 3: foreachi =1,2,...,M, do
Qli,i,] = Or41
Qli, 1,] = q;;, where I = (i + )%M
foreachj=1i,...,M, do

LQ[I’,JL] =Qi,j— 1,1+ Qlj, L]

Qljsi,1 = —Qlijs |

return Q.

Algorithm 1: Calculation for the three dimensional array Q

Briefly, the computation complexity of our Algorithm is
O(MTlogT) + O(MT) + O(M?). The term O(MTlogT) arises
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from the fast Fourier transformation of M time series of length
T in Step 1, according to Winograd (1978). The term O(MT)
is primarily due to the M matrix-vector multiplications of Step
2, and the term O(M?) mainly accounts for the w - M
addition operations of two vectors in Step 3.

Batista et al. (2014) discussed the invariances for time series
distance measure. Since our methods are statistical inference-
based, the distribution of each feature difference in Q is naturally
invariant to different random errors in an asymptotic sense as
long as the errors satisfy assumptions in Lemma 1. Additionally,
due to the particular form of the statistics, our methods are
also invariant to linear transformations including amplitude and
offset. Specifically, our test statistics for evaluating the equality
of multiple spectral densities remain the same when a common
linear transformation is applied to all the time series in compar-
ison. Furthermore, our test statistics for assessing the equality
of normalized spectral densities remain the same even when
each time series in comparison is transformed by a different
linear transformation. Finally, our methods are based on the
Fourier transformation which decomposes a time series into
periodic components. Due to the orthogonality of Fourier basis,
the proposed methods are also invariant to phase changes in any
of these periodic components whose periodicity corresponds to
a Fourier frequency.

3. Simulation Study

We conduct simulation studies to assess the finite sample perfor-
mance of our proposed method under both null and alternative
hypotheses. We use the Legendre polynomials with R = 5 as
the orthogonal basis functions to construct (5). The choice of
R = 5 is discussed and suggested by others such as Fokianos
and Savvides (2008) and Jin (2021). The R function spec.pgram
with the default cosine bell and tapering rate of 25/T was used
to calculate the periodogram. We set the default level of signif-
icance to @ = 0.05 unless otherwise stated. For each scenario
considered in the simulation, 1000 replications are performed.

To account for situations where these time series may be
dependent with each other, we follow the below multivariate
time series model to generate M individual time series:

X =A1X; 1 +Bizi 1 + 2z, (8)
where
(a1 a;n 0 ... 0 aim |
a1 azp azs ... 0 0
Al = >
Lav1 0 O ...apmu-1) amm |
b1 b1y O ... 0 bim |
by by bys ... 0 0
B = . .|
_le 0 0 ...byw-1 bMM_

and z; is a M-dimensional Gaussian innovation vector with
E(z;) = (0,0,...,0)T and cov(z;) = X. Let ¢ = min(|i —
jl, (M + i — j)) represent the index distance between the ith
and the jth time series. This definition specifies that the index
distance between the first and the Mth time series is 1 instead of
M — 1, in a cyclic manner.

3.1. Size of the Tests

We examine the finite sample performance of the proposed tests
when all M time series have equivalent underlying models. To
simulate data under the null hypothesis, we impose constraints
on the model coefficients and correlation matrix X in (8) to
ensure that all individual models share the common model coef-
ficients and the dependence between time series only depends
on their index distance. Hence, we set that a1y = ay, = --- =

aMm, A12 = a3 = -+ = AM-DM = OM1, 21 = -+ =
amMM-1y = aiMm, bz = by = = by-vm = bm,
by =+ =bywm-1) = biy,and By = Xy ifj—i=j — i or

j—i=M—(G —i)fori<j,i <jandaliji,j=12,...,M,
where Zj; is the (i, j)th entry of matrix X. Basically, under these
restrictions, each individual time series have the same form with
a different time series index i.

We consider three groups of models (A, B, and C) for the null
hypothesis, each with different inter-series dependence settings.
Table 1 lists the specific model parameters for all models in
each group. Group A includes models A1-A5, and each model
generates M independent autoregressive-moving-average mod-
els with an autoregressive order of 1 and a moving-average
order of 1, that is, ARMA(1,1) time series. By sharing common
components for adjacent time series, the time series generated
by each of the models B1-B5 in group B are dependent. The
dependence between two time series decays as their index dis-
tance ¢ increases. Group C introduces dependency through
correlated innovations. Let X*(p;) be a correlation matrix such
that % (p1) = 1 and Z;'J‘.(pl) = p; if i # j. Each model in
group C generates multiple dependent time series with pairwise
correlation in their innovations as X*(0.5), a moderate corre-
lation strength. There are six models in group C. Models C1-
C5 have the same model coefficients as Model A1-A5, but with
different covariance matrices for innovations. We include Model
C6 to represent a different scenario that combines a similar
dependence structure employed in Group B with the innovation
correlations used in the other models of Group C.

For each model in Table 1, we generate a multivariate time
series with M = 10, 25,50, 100 individual time series, respec-
tively. Then we apply the proposed method to test if all M
time series have the same underlying dynamics. The results are

Table 1. Model parameters of three groups of models for simulating multiple time
series under the null hypothesis.

an ai an b1y b1z b21 X
Al 0.0 0.0 0.0 0.0 0.0 0.0 Iy
A2 0.5 0.0 0.0 0.0 0.0 0.0 Iy
Group A A3 0.0 0.0 0.0 0.5 0.0 0.0 Iy
A4 0.5 0.0 0.0 0.3 0.0 0.0 Iy
A5 0.7 0.0 0.0 2.0 0.0 0.0 Iy
B1 03 0.15 0.15 0.0 0.0 0.0 Iy
B2 0.5 0.15 0.15 0.5 0.0 0.0 Iy
Group B B3 0.0 0.25 0.25 0.5 0.0 0.0 Iy
B4 04 0.0 0.0 0.3 0.25 0.25 Iy
B5 0.6 0.1 0.1 2.0 0.25 0.25 Iy
C1 0.0 0.0 0.0 0.0 0.0 0.0 ¥*(0.5)
(@] 0.5 0.0 0.0 0.0 0.0 0.0 X*(0.5)
Group C a 0.0 0.0 0.0 0.5 0.0 0.0 X*(0.5)
c4 0.5 0.0 0.0 0.3 0.0 0.0 ¥*(0.5)
c5 0.7 0.0 0.0 20 0.0 0.0 X*(0.5)
c6 0.1 0.25 0.25 0.0 0.0 0.0 ¥*(0.5)
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Figure 1. Empirical sizes for comparing M time series of length T. All time series are generated following the model specified in Table 1. In each plot, the horizontal dashed

line indicates the nominal level of 0.05.

presented in Figure 1. When data are generated from groups
A and B, it appears that the empirical Type I error rates of
Smaxo tend to be higher than the nominal level, especially at
the combination of a small T and a large M, such as T = 256
and M = 100. The error rates for a small T deteriorate faster
as M increases. However, when T is getting larger, all error rates
become centered around or below the nominal level. For data
generated by group C models, all the empirical rates are well
controlled below the nominal level, though some cases seem to
be slightly too conservative. These results indicate that Smax,O
may be sensitive to the dependency pattern among time series.
The empirical Type I error rates of Sadj,o are well controlled
across all scenarios. Their error rates when M = 10 are centered
at the nominal level, but then tend to be below the nominal level,
that is, the test becomes more conservative when M becomes
larger. However, the error rates appear to approach the nominal
level as T increases. Interestingly, the empirical Type I error rates

are similar for all time series in different groups, regardless of
whether the multiple time series are independent or not. This
indicates that, as expected, Sadj,o is robust to the dependency
structure among time series. The error rates of global test seem
to be closer to the nominal level than those of Sadj,Oa though
the global test still appears to be slightly conservative when T
is small and M is large. Again, there is no clear distinction in the
results when using the global test for the three groups of models.

3.2. Power of the Tests

This section investigates the finite sample performance of the
proposed methods under the alternative hypothesis that the
spectral densities of M time series are not all the same. Many
previous studies, such as those by Lund, Bassily, and Vidakovic
(2009) and Decowski and Li (2015), have all demonstrated the
power of their methods by comparing a white-noise series to an
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autoregressive (AR) time series with order 1, that is, AR(1). We
modify their studies into two different settings for evaluating the
power of our tests for multiple dependent time series. All settings
described below are special cases of our general framework (8).
Let E;;(,ol) = p1ifli —jl < 2,and E;}(pl) = 0 otherwise. In
setting I, for a given AR parameter ¢, we generate the ith time
series by following

Xip=(G—1)/M—1)¢pX;s—1 + 2z,

where z;; is the ith entry of innovation vector z;, and cov(z;) =
% 7(—0.25). This setting generates M time series from different
AR models, with the innovations of two adjacent time series
being negatively correlated. The dynamics of two time series
apart from a smaller index distance ¢ are more similar because
their AR parameters are close. The spectral density of all these
M time series is the same when ¢ = 0. As ¢ increases, so does
the difference in the spectral densities of these M time series.
In setting II, we generate the first time series as X;; = z;,
and the rest M — 1 time series as X;; = ¢Xjs—1 + 2, for
1 < i < M. The covariance between z;; and z;; follows
¥*(0.5). This sets the model of the first time series different
from the models of the rest M — 1 time series. In this setting,
the innovations of all M time series at the same time ¢ have a
correlation 0.5.

We additionally consider settings III and IV to compare
multiple AR or MA time series, motivated by Lund, Bassily,
and Vidakovic (2009) who compared an AR time series with
a moving average (MA) time series. In these two settings, we
generate the first [M/2] time series by an AR(1) process Xj; =
¢Xir—1 + ziy when i < |M/2], and the rest time series by a
MA(1) model Y;; = 6z;:—1 + zjy wheni > |[M/2]. The MA

\/ %, where sign(¢) = 1if¢ > 0and
—1 otherwise. Setting III employs X = I which means the M
time series are mutually independent while setting IV employs
¥ = X*(0.5) which means the M time series are mutually
dependent.

For each of the four settings described above, we generate
M =10, 25,50, and 100 time series, respectively. We again apply
the test using Spay 0, the test using Sadj,o and the global test using
f‘,-,j,l alll <i<j<M,I=0,1,...,Rto all these time series.
The results for settings I- IV are reported in Figures 2(a) and
(b), 3(a) and (b), respectively. A common pattern for these plots
is that the empirical power of all procedures increases either as
¢ increases or as T increases given ¢ is not tiny. Regarding the
performance of different procedures, it appears that for setting I,
the empirical power of Spay o is the highest for most scenarios.
However, this is likely the spurious effect of its inflated size.
Between the two other tests that can control their sizes below
the nominal level, the global test seems to have a higher power
in general. For settings II, the global test is still a winner. Settings
III and IV reveals similar stories as setting I, and also conclude
that the global test is generally more competitive. Note that the

parameter 6 = sign(¢)

test using Sadj,O often performs very closely to the global test,
especially when T is large.

The effect of M on powers appears to be heterogeneous across
the four settings. When M increases, the power of all three tests
seems to increase for settings I, III, and IV, while decreasing
for setting II. Recall that setting II only sets the first time series

different from the rest regardless of M. Intuitively, the power
decrease for setting II makes sense because while many more
comparisons will be involved when M increases there is only
one different time series from the others. Still, the empirical
power of all three tests reaches 100% when ¢ = 0.3 and
T = 1024 in setting II. This demonstrates that our proposed
methods are capable of detecting a very small number of out-
lying time series hidden in a large number of background time
series.

The methods proposed in Jin (2015) are able to test whether
a small number of time series have the same normalized spectral
densities, with the requirement that the multiple time series
are mutually independent. We adopt a similar setup as in Jin
(2015) to generate independent time series. More specifically,
we generate time series X;; = z;; if i < |[M/2] and X;; =
¢Xir—1+2z;ifi > |[M/2],and £ = Ijs. Accordingto Jin (2015),
different test statistics were studied, and it appears that the
statistic Tpy,|a1/2) aligns with the current setting where [M /2]
time series are distinct from the remaining ones. However, when
T is not large and M > 10, Ty, p/2) may suffer from inflated
empirical Type I error rates. Therefore, we only compare our
procedures to Taz,|ar/2) when M = 3,5, and 7. The results are
presented in Figure 4(a). When ¢ = 0, these M time series
are from the same model, and thus its corresponding results
represent the Type I error rates. It appears that the empirical
Type I error rates for all tests across all scenarios are close
to the nominal level. When M = 3, Tag m/2) seems to be
more powerful than both gmax,l and the global test. However,
as M increases from 3 to 5 or 7, the performance of Ty, /2
deteriorates significantly. When M = 5 and M = 7, both
Smax1 and the global test for the equality of the normalized
spectral densities, that is, H{, are more powerful than Ty, m /2]
even under the settings restricted to meet the requirements
of TM, [M/2]-

We additionally assess the performance of our proposed
methods relative to two other approaches. Jin (2018) developed
a test to assess if multiple independent time series have the same
spectral densities. However, as noted by Jin (2018), the asymp-
totic null distribution of the test statistic is not sufficiently close
to the empirical null distribution in practice, and hence Monte
Carlo simulations were resorted to in order to obtain critical
values varying by sample size and the number of time series. This
leads to extensive computation even when M is small. On the
other hand, Zhang and Tu (2018) developed a test to compare
the spectra of two univariate time series that might be depen-
dent. Though they mentioned a possible extension to compare
multiple (M > 2) time series, both the procedure and the critical
values for the extension are unclear. Hence, we perform the test
by Zhang and Tu (2018) pairwise and then adjust the results by
the Bonferroni correction. All the tuning parameters required to
implement those two approaches follow the recommendations
in their original papers. For these additional comparisons, we
only consider the data generated by setting II with M = 3,5,
and 7. The simulation results are presented in Figure 4(b). The
results corresponding to ¢ = 0 represent the Type I error
rates. It appears that the empirical Type I error rates for all
tests are around the nominal level, but both proposed methods
exhibit much higher power than the other two tests under this
setting.
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3.3. Robustness to Nonstationary Time Series

In reality, time series data often exhibit nonstationary behav-
ior, so we now assess the effectiveness of our proposed meth-
ods when time series observations deviate from the stationary
assumption. We introduce a time-varying function

s(t) = 2 4+ a x cos(t/512), (9)

where a is a constant and t = 1,2,..., T. This function fluctu-
ates periodically with a period of 512. Given a stationary time
series Xy, a nonstationary time series Y; can be generated by

Y: = s()X;. (10)

The degree of non-stationarity increases as the constant a
becomes larger. In our simulation, we set a = 0.4 which intu-
itively induces approximately £20% fluctuation in the standard
deviation of the time series {Y;} over time.

To study the empirical size of different tests for nonstationary
time series, we generate Y; using (10) with X; following the
models from Group C specified in Table 1. All three tests of

Smax0s Sadj,O and the global test are applied to the simulated
nonstationary time series and the results are presented in Fig-
ure 5. It is seen that the empirical sizes of the proposed tests,
especially the global test, align with the nominal level, suggesting
robustness of our methods to nonstationary time series.

To study the empirical power of the proposed tests, we gener-
ate multivariate nonstationary time series with M = 10, 25, 50,
and 100 using (10), where X; follows setting I in Section 3.1 The
results given in Figure 6 closely resemble those in Figure 2(a) for
the stationary time series. This shows that our proposed tests are
also robust to non-stationarity in terms of power.

3.4. Computing Time of the Proposed Methods

To illustrate the computational efficiency of our proposed meth-
ods and compare the computing time between the three tests for
different M and T, we conduct a small experiment by generating
M Gaussian white noises of length T and then applying each
of the three tests to evaluate how M time series are different
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from each other. Table 2 presents the average running times of
different proposed procedures based on 100 simulation runs.
The current R codes do not incorporate parallel computing. The
computer for the simulation has a single 17-8565U CPU with
a maximum speed of 4.60 GHz, and 16 GB of memory. The
computation is very fast for all three procedures even when M =
100 and T = 1024. As T or M increases, the computational time
also increases but at a different rate. It seems the computational
cost is more sensitive to M. The running time of Spjay0 is much
lower than that of Sy50 and the global test, especially when M
is large, such as M = 100. We also ran simulations to compare
the computing time of our methods, Jin (2018) and Zhang and
Tu (2018) in evaluating the difference between M = 2 time
series. We found that the average running time of the proposed
methods is at least 20 times faster than that of Jin (2018) and
Zhang and Tu (2018). As M increases, the gap between the

proposed methods and the existing methods using pairwise
comparisons will become even wider.

4. Data Analysis

Damage in a mechanical system is generally detected by compar-
ing the current vibrational signals collected from the system to
the reference signals. We thus need to build a reference database
that may consist of multiple vibrational signals recorded from
the undamaged system at different input force levels/operation
conditions (Sohn and Farrar 2001). To ensure the reliability of
a reference database, it is necessary for the reference signals
obtained from different input levels to have consistent frequency
behaviors. We apply the proposed methods to evaluate if multi-
ple time series in a reference database have the same normalized
dynamics.
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Table 2. The average running time per run (in seconds) for different proposed procedures in 100 simulations when applied to compare M time series of length T.

EMGX,() gadj,O The global test
M T=256 T=512 T=1024 T=256 T=512 T=1024 T=256 T=512 T=1024
10 0.003 0.003 0.004 0.004 0.005 0.006 0.005 0.005 0.007
25 0.008 0.009 0.011 0.020 0.024 0.034 0.020 0.024 0.035
50 0.022 0.024 0.027 0.083 0.115 0.175 0.086 0.117 0.178
100 0.071 0.077 0.084 0.445 0.703 1.261 0.451 0.741 1.300

Twenty vibration signals were obtained from vibrational data
sets collected by attaching an electro-dynamic shaker to a three-
story frame structure in a laboratory experiment. The shaker was
propelled by a random waveform with a uniform energy distri-
bution within the frequency range of 0 to 200 Hz. See Fasel et al.
(2003) for more details. The vibration data, driven by exogenous
input, are often modeled via autoregressive-exogenous (ARX)
(p, q@) models, assuming that the current system output is a
linear combination of the preceding p system outputs and the
preceding g system inputs. As shown in Roy, Bhattacharya,
and Ray-Chaudhuri (2015), the coefficients of ARX models are
determined by system physical characteristics, such as structural
stiffness and mass. Regarding our data, the random waveform
input plays the role of the random innovations and the physical
characteristics of the structure determine the ARX coefficients.
The ARX coefficients, in turn, determine the temporal depen-
dency structure (auto-covariance structure) of the ARX time

series. Any change, such as damage in the physical character-
istics of the frame structure, will alter the ARX coefficients and
thus the temporal dependence structure. Various input voltage
values were applied to power the shaker. The specific input volt-
age was 0.075v for the first five time series (group 1), 0.128v for
the next five time series (group 2), then 0.25v for the following
five time series (group 3), and finally 1.0v for the last five time
series (group 4). Each signal has a length of 512, over 1 second at
arate of 512 Hz. Figure 7 displays these time series in a row order,
that is, each row represents a different group. All time series were
obtained when the system was healthy.

To compare these 20 time series, we calculate the proposed
test statistics Smaxo, Sad]0> Smaxl and Sud] 1, with R = 5. The
results are SmaXO = 81.10, Sadj,o = 44.92, Smax 1 = 843
and Sadj,l = 4.43. The critical values for these statistics at the
0.05 significance level are 7.54, 4.16, 7.46, and 4.11, respectively.
Recall that the statistics Smax,O and Sadj,o test whether the spectral
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densities of multiple time series are equal, while gmax,l and gadj,l
test if the normalized spectral densities are equal. We conclude
that the spectral densities of these signals are not all the same
because both Smax,O and Sad]’,o are much higher than their corre-
sponding critical values. For the normalized spectral densities,
both Sadj,l and Smax,l are slightly above their corresponding
critical values. These results indicate that the signals collected
at different inputs have different magnitudes. Their normalized
frequency patterns are similar but may not be identical, sug-
gesting that the dynamics of the system may vary slightly with
different input levels. Via the feature differences in the array Q,
it is easy to see how the signals differ from each other. Figure 8
presents the result of the pairwise comparison. There is a clear
pattern in Figure 8(a). It shows that the time series with the same
input level have identical frequency densities, while the time
series with different input levels have different spectral densities.
According to Figure 8(b), the normalized spectral densities of all
time series except the 14th are the same. By checking the values
of Q in detail, we found only three quantities in Q related to
the 14th time series slightly above the critical values, indicating
that the differences are not very significant. Still, we should be

cautious to use these reference signals collected at very different
voltage inputs for damage detection.

We applied the tests developed in Jin (2018) and Zhang
and Tu (2018) to assess whether the spectral densities of these
signals are identical. At a significance level of 0.05, both tests
reached the same conclusion that the spectral densities of all
these 20 time series are not identical, consistent with the findings
of the proposed methods. However, the test of Jin (2018) is
unable to further identify which specific time series differ from
one another. The pairwise comparison based on Zhang and Tu
(2018) reveals a pattern (omitted here) very different from the
expectation that the spectral densities of time series within the
same voltage input group are likely identical. Our results in
Figure 8(a), however, align well with this expectation by showing
a block pattern.

Some mechanical systems have inherent repeated pat-
tern/shape in vibrational signals. Those patterns can be altered
by damage. For such case, Mercer and Keogh (2022) intro-
duced the novelets method to detect possible damages by
identifying emerging patterns, which turns to be very use-
tul for industrial process monitoring. The dynamic wrapping
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Figure 7. Twenty vibration signals from a laboratory experiment under four different input levels.
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Figure 8. Results of pairwise comparison of 20 time series in terms of (a) spectral densities and (b) normalized spectral densities. Color indicates the value of max; ?],'j/, the
maximum feature difference between the ith and jth time series. Cells with “1”indicate that differences between the corresponding time series are significant. The indices
of the 20 time series are provided on both the right-hand and bottom sides of the plot. A histogram of the maximum feature difference is overlaid onto the legend on top

of each plot.

method is another effective approach for detecting differences
in repeated patterns between two signals when there is lit-
tle to no noise in the observations. However, in the presence
of non-negligible noise, it is challenging to use the dynamic
wrapping distance to decide whether two processes have the
same repeated pattern. In contrast to their applications, our
vibrational data were generated with a random waveform input,
which will not lead to repeated patterns in the vibrational sig-
nals as those in Mercer and Keogh (2022). Hence, under the
current or similar settings, our proposed methods are more
suitable.

5. Conclusion

We proposed computationally efficient methods to formally
evaluate the significance of the differences between a large

number of time series in terms of frequency patterns. According
to Cai and Sun (2011), the emerging large-scale hypothesis
testing that may consist of thousands or more simultaneous tests
poses many challenges not present in smaller-scale studies. Our
methods are constructed based on pairwise feature differences
between M time series, for which we developed a computa-
tionally efficient algorithm to ensure its scalability. Previous
literature only showed results comparing two dependent time
series or comparing a few independent time series. We have
demonstrated that our methods can be applied to a much larger
number of time series, such as M = 100. Our algorithm has
reduced the main computational complexity of obtaining feature
differences for pairwise comparisons from O(M?) to O(M). As
shown in Table 2, it takes only around 0.084 sec to complete
about 5000 times pairwise comparisons for M = 100 time series
of length T = 1024 using Syzax0. This shows that our methods,
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especially the one with Sy, can process well beyond 100 time
series within an acceptable amount of time. Without modeling
the unknown dependence structure among multiple time series,
our proposed approaches work well in comparing multiple time
series that may or may not be independent of each other. In
addition, our proposed methods allow us to identify which pairs
of time series are different without much additional effort. They
appear to be useful in addressing real-world problems.

The asymptotic distribution of the pairwise feature differ-
ences exhibits an interesting dependence structure. When the
time series are independent of each other, most g, 1 < i #
j < M,k = 0,1,...,R are independent which allows us to
easily obtain a working critical value for our test statistic Syax
via a t distribution with the Bonferroni correction. Since the test
statistic S Max,k can be computed very efficiently even for a large
T, we recommend this test when the multiple time series are
independent of each other and T is large. In contrast, both Sadj,k
and the global test are more suitable for dependent scenarios and
tend to yield better results. Among the three methods, the global
test often exhibits the highest power. We observe that some of
our tests may be slightly conservative, especially when M is large
and T is small. Possible solutions to address this issue are to
generate critical values through simulations of the procedures
or to apply finite sample adjustments.

Supplementary Materials

The supplementary materials contain (A) proof of theorems, (B) empirical
studies to compare the proposed method with dynamic time warping, and
(C) the R code for replicating Figures 1-8 in this article and Figures 1, 3-5
of the supplement.
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