
Technometrics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/utch20

Scalable Methods for Multiple Time Series
Comparison in Second Order Dynamics

Lei Jin & Bo Li

To cite this article: Lei Jin & Bo Li (20 Sep 2024): Scalable Methods for Multiple Time Series
Comparison in Second Order Dynamics, Technometrics, DOI: 10.1080/00401706.2024.2388547

To link to this article:  https://doi.org/10.1080/00401706.2024.2388547

View supplementary material 

Published online: 20 Sep 2024.

Submit your article to this journal 

Article views: 90

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=utch20

https://www.tandfonline.com/journals/utch20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00401706.2024.2388547
https://doi.org/10.1080/00401706.2024.2388547
https://www.tandfonline.com/doi/suppl/10.1080/00401706.2024.2388547
https://www.tandfonline.com/doi/suppl/10.1080/00401706.2024.2388547
https://www.tandfonline.com/action/authorSubmission?journalCode=utch20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=utch20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00401706.2024.2388547?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00401706.2024.2388547?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00401706.2024.2388547&domain=pdf&date_stamp=20%20Sep%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/00401706.2024.2388547&domain=pdf&date_stamp=20%20Sep%202024
https://www.tandfonline.com/action/journalInformation?journalCode=utch20


TECHNOMETRICS
2024, VOL. 00, NO. 0, 1–15
https://doi.org/10.1080/00401706.2024.2388547

Scalable Methods for Multiple Time Series Comparison in Second Order Dynamics

Lei Jina and Bo Lib

aDepartment of Mathematics and Statistics, Texas A&M University-Corpus Christi, Corpus Christi, TX; bDepartment of Statistics, University of Illinois
Urbana-Champaign, Champaign, IL

ABSTRACT
Statistical comparison of multiple time series in their underlying frequency patterns has many real appli-
cations. However, existing methods are only applicable to a small number of mutually independent time
series, and empirical results for dependent time series are only limited to comparing two time series. We
propose scalable methods based on a new algorithm that enables us to compare the spectral density of a
large number of time series. The new algorithm helps us e!ciently obtain all pairwise feature di"erences in
frequency patterns between M time series, which plays an essential role in our methods. When all M time
series are independent of each other, we derive the joint asymptotic distribution of their pairwise feature
di"erences. The asymptotic dependence structure between the feature di"erences motivates our proposed
test for multiple mutually independent time series. We then adapt this test to the case of multiple dependent
time series by partially accounting for the underlying dependence structure. Additionally, we introduce a
global test to further enhance the approach. To examine the #nite sample performance of our proposed
methods, we conduct simulation studies. The new approaches demonstrate the ability to compare a large
number of time series, whether independent or dependent, while exhibiting competitive power. Finally, we
apply our methods to compare multiple mechanical vibrational time series.

ARTICLE HISTORY
Received May 2023
Accepted July 2024

KEYWORDS
Algorithm; Dynamics;
Pairwise di!erences;
Periodogram; Spectral
method; Vibration data

1. Introduction

Mechanical systems, such as manufacturing machines, vehi-
cles and their components, have signi!cantly simpli!ed and
improved our lives. However, mechanical damage can occur
from a variety of sources, which o"en causes unexpected
mechanical breakdowns, !nancial losses, or even personnel
casualties. Early mechanical damage detection is critical for
preventing accidents and guaranteeing su#cient maintenance.
It is shown that mechanical damage always results in changes
in the frequency behaviors of vibration signals (Cempel and
Tabaszewski 2007). As a result, vibrational data have been used
as the basis for noninvasive damage detection. Mechanical dam-
age can be detected by comparing the current signals to the
reference vibrational signals obtained from a healthy system. To
form “the reference database” for comparison, multiple vibra-
tional time series from an undamaged system at various input
force levels are o"en recorded (Sohn and Farrar 2001). A reliable
reference database requires its participating vibrational time
series to share common frequency behaviors, even at di$erent
input levels. However, this may not be true if the input levels
are overly diversi!ed, especially some of them being beyond
the system’s linear operating range (Karniel and Inbar 1999).
Statistical methods are needed to evaluate if all members in a
reference database exhibit the same frequency pattern.

The frequency pattern, or equivalently, the autocovari-
ance structure, characterizes the second-order properties of a
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stationary time series. The comparison of time series in second-
order dynamics has been widely studied under various con-
texts. Some of these methods were developed in the frequency
domain by comparing frequency patterns, while others were
developed in the time domain by comparing the autocovariance
structure. Most existing methods in the literature, regardless
of in frequency or time domain, were designed to compare
only two time series. These methods include Coates and Diggle
(1986), Diggle and Fisher (1991), Maharaj (2002), Alonso and
Maharaj (2006), Lund, Bassily, and Vidakovic (2009), Dette and
Paparoditis (2009), Decowski and Li (2015), Salcedo, Porto, and
Morettin (2012), Jin and Wang (2016), Grant and Quinn (2017),
Zhang and Tu (2018), Li and Lu (2018), Cirkovic and Fisher
(2021), Jin (2021) and many others.

Methods for comparing multiple time series, however, are
still scarce. Fokianos and Savvides (2008) proposed a likelihood
ratio test on log-linear periodogram models to evaluate the
equality of multiple spectral density functions. Their method
requires choosing a time series as a baseline time series, so the
results may rely on the choice of the baseline. Later, Jin (2015)
developed testing procedures to compare correlation structures
or the normalized spectral functions when these time series are
independent of each other. However, their test seems to struggle
with controlling the sizes when the number of time series, M,
is not very small, for example, M > 10. Another approach
to comparing the spectral densities of multiple time series can

© 2024 American Statistical Association and the American Society for Quality
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be seen in Jin (2018). All the above methods are developed for
multiple time series that are independent of each other. Instead
of comparing individual time series, Jin (2011) introduced a
pre-planned contrast method to compare a group of time series
to another group of time series. However, the method still
compares two aggregated spectral densities, and the outcomes
depend on the particular choice of these groups. Jentsch and
Pauly (2015) and Zhang and Tu (2018) proposed methods for
comparing multiple time series that may be dependent with
each other, but both of them only showed simulation results of
comparing two time series. Furthermore, results in Jentsch and
Pauly (2015) appear to be sensitive to a bandwidth parameter
involved in the method. Selecting multiple bandwidths to esti-
mate a larger number of multivariate spectral and cross-spectral
functions can be more challenging.

If the comparison procedure rejects the hypothesis that all
time series have equal dynamics, a natural follow-up question
to ask is which pairs of these time series are di$erent. All
the aforementioned methods themselves do not directly answer
this question. Although Kalpakis, Gada, and Puttagunta (2001)
proposed a distance measure of ARIMA time series based on
the linear predictive coding cepstrum and Caiado, Crato, and
Peña (2006) proposed an L2 periodogram distance metric for
time series classi!cation, these distance metrics cannot tell if
two time series are signi!cantly di$erent or not. In addition, it is
unclear how these distance metrics work when these time series
are not independent. For multiple independent time series,
Fokianos and Savvides (2008) suggested performing pairwise
comparisons among M time series with a Bonferroni correc-
tion. However, this would involve more than 1000 pairwise
comparisons even when M = 50, and thus result in extensive
computation. All these limitations call for new computationally
e#cient methods that can compare a large number of time series
regardless of their inter-series dependency, and further provide
details of the di$erence, if any.

We propose scalable methods to compare the frequency pat-
terns of M time series for a large M such as M = 100. Our
methods can evaluate if all M time series share the same fre-
quency patterns, and meantime quantify all pairwise di$erences.
We develop a new algorithm for our methods to obtain all
pairwise feature di$erences between M time series that does not
involve likelihood estimation, smoothing, and matrix inverse
operations. The computation of the algorithm is only approx-
imately equivalent to conducting M times matrix-vector mul-
tiplications. When all these time series are independent of each
other, the joint asymptotic distribution for these pairwise feature
di$erences is obtained. The asymptotic dependence structure
between feature di$erences motivates our test for multiple inde-
pendent time series and then we adapt the test to multiple
dependent time series.

It is noteworthy that interests in multiple time series compar-
ison are also prevalent in the data mining community beyond
the statistical literature. Various data mining methods, such
as matrix pro!le (Mercer and Keogh 2022; Der et al. 2022),
and dynamic time warping (Chu et al. 2002; Alaee, Kamgar,
and Keogh 2020) have been proposed. The similarity measured
by those data mining methods is di$erent from that of our
proposed techniques. Both matrix pro!les and dynamic time
warping measure the distance between observations in the time

domain to capture repeated patterns or functional structure such
as motif, discord and joins in time series. In contrast, our meth-
ods evaluate di$erences in the second-order dynamics char-
acterized by spectral density (or equivalently, autocovariance
structures) between time series driven by random innovations.
In addition, our methods are inference-based methods that can
determine the signi!cance of the di$erences in time series based
on probability distributions.

The article is organized as follows. Section 2 introduces the
proposed methods and develops the algorithm. A simulation
study is presented in Section 3. In Section 4, we apply the
proposed methods to compare multiple vibrational series of a
mechanical system. Finally, a concluding remark is provided in
Section 5.

2. Method

2.1. Hypotheses and Review of Periodogram

Consider multiple time series {Xj,t , j = 1, 2, . . . , M; t =
1, 2, . . . , T}, where j is the index of time series and t is the index
of time. Each of these time series is assumed to be from a zero
mean stationary random process. The autocovariance of the jth
time series at lag h is de!ned as

γj,h = E(Xj,tXj,t+h).

The autocovariance structure characterizes a stationary time
series in the time domain. If the autocovariance γj,h, h =
0, 1, 2, . . . , T − 1 is absolutely summable, the spectral density of
Xj,t , t = 1, 2, . . . , T is de!ned as

fj(ω) = 1
2π

∑

h∈Z
γj,he−ihω (1)

for any real number ω, where i is the imaginary unit (see Brock-
well and Davis 1991). The spectral density function describes the
power distribution of a stationary time series in the frequency
domain. The second-order dynamics of a stationary time series
can be equivalently expressed either in its autocovariance struc-
ture or its spectral density.

Our main objective is to compare multiple time series in
terms of their underlying models. One hypothesis for achieving
this goal is to test whether the spectral densities of all M time
series are the same. We then have the following null hypothesis:

H0 : f1(ω) = f2(ω) = · · · = fM(ω), (2)

almost everywhere for ω ∈ (0, π). Sometimes, real-world
problems such as damage detection of a mechanical system may
desire to evaluate if the multiple time series have the same fre-
quency pattern regardless of their magnitudes. In such cases, we
can test whether their spectral densities are proportional to each
other, or equivalently, whether their normalized spectral density
functions are the same. The corresponding null hypothesis can
be written as follows:

H∗
0 : c1f1(ω) = c2f2(ω) = · · · = cMfM(ω), (3)

where c1, c2, . . . , cM are positive constants.
Many fundamental tools for spectral analysis are based on

the periodogram, which allows us to identify the periodicity of
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a time series and the relative strengths of these periodic com-
ponents. The periodogram of the jth time series at the Fourier
frequency ωk = 2πk/T, k = 1, 2, . . . , K = $T/2% is de!ned as

Ij(ωk) = T−1
∣∣∣∣∣

T∑

t=1
Xj,t exp(−itωk)

∣∣∣∣∣

2

,

where |x| denotes the modulus of x, and $x% is the %oor function
of x. The lemma below describes some statistical properties of
the periodogram.

Lemma 1. Suppose that

Xj,t =
∞∑

l=−∞
aj,lεj,t−l, (4)

where {εj,t} is a sequence of identical and independent random
variables with mean 0 and variance 1,

∑∞
l=−∞ |aj,l| < ∞, and

Eε4
j,1 < ∞ for all j = 1, 2, . . . , M. For s distinct integers 1 ≤

k1 < k2 < · · · < ks ≤ K, all of which may depend on T,
{ Ij(ωk1)

fj(ωk1)
,

Ij(ωk2)

fj(ωk2)
, . . . ,

Ij(ωks)

fj(ωks)

}
d−→ {Ej,k, 1 ≤ k ≤ s},

as T → ∞, where Ej,k, k = 1, 2, . . . s, are independent and
identically distributed standard exponential random variables,
and “ d−→” stands for convergence in distribution.

This lemma is part of Theorem (10.3.2) in Brockwell and
Davis (1991). The model in (4) is the general linear process of
an in!nite-order moving average process, forming a wide class
of time series. Autoregressive moving average (ARMA) models,
including the seasonal ARMA models in Kalpakis, Gada, and
Puttagunta (2001), are all in this class. When data exhibit a
nonperiodic mean trend, we can !rst use data preprocessing
to remove the trend before applying methods like ours and
Kalpakis, Gada, and Puttagunta (2001).

2.2. Statistical Tests

Similar to many previous approaches including Fokianos and
Savvides (2008), our methods are developed based on the log
ratio of periodograms. We de!ne the log ratio between the
periodograms of the ith and jth time series at the kth Fourier
frequency as

δi,j,k = log(Ii(ωk)/Ij(ωk)),

where k = 1, 2, . . . , K. To simplify the technical arguments, we
assume that |δi,j,k| is bounded by a large number G0, such as
G0 = 10,000, for all 1 ≤ i )= j ≤ M and k = 1, 2, . . . , K. A"er
performing somewhat simple and not very strict calculations
based on the limiting distributions of δi,j,k, we !nd if both
fi(ω) and fj(ω) are continuous and bounded away from zero,
any !nite sample with |δi,j,k| > G0 would provide extremely
strong evidence to support fi(ω) )= fj(ω) for some interval of ω

around ωk. Therefore, there is no need for our methods to make
decisions for a very large |δi,j,k|.

The spectral function of a time series has in!nite dimen-
sion, but its main feature can be quanti!ed by a vector of

dimension R + 1 for a small integer R via dimensional reduc-
tion. Consequently, the main feature of the di$erence between
two spectral functions can also be summarized in an R + 1
dimensional vector. Shang (2014) discussed multiple approaches
for functional dimensional reduction. One approach is to use
basis function expansion involving expressing a function or a
stochastic process as a linear combination of orthogonal basis
functions. Suppose that V = {v0, v1, v2, . . .} is an orthonormal
basis for the functional space of all continuous functions on
interval [0, 1], where v0 = 1 and

∫ 1
0 v2

i (t)dt = 1, for i = 1, 2, . . ..
Such basis functions can be obtained by appropriately centering
and scaling a sequence of Legendre polynomials, a sequence of
Fourier series, or other complete orthogonal systems.

For a positive integer r, let V r = {v0, v1, . . ., vr} where vi =
(vi(

ω1
π ), vi(

ω2
π ), . . . , vi(

ωK
π ))T. For any positive integers i, j such

that 1 ≤ i, j ≤ M, we can model the !rst moment of the log
periodogram ratio between the ith and jth time series as

E(δi,j) = VT
Rqi,j, (5)

where δi,j = (δi,j,1, δi,j,2, . . . , δi,j,K)T, and qi,j =
(qi,j,0, qi,j,1, . . . , qi,j,R)T. When i = j, which is the case of
comparing the ith time series with itself, it is clear that δi,i = 0K
and thus qi,j = 0R+1, where 0K represents a zero vector of
length K. Intuitively, if two time series {Xi,t} and {Xj,t} have the
same underlying model, then asymptotically, E(δi,j) converges
to 0K , and thus qi,j,k = 0 for k = 0, 1, . . ., R. Hence, H0 in
(2) implies the simultaneous occurrence of qi,j,l = 0 for all
1 ≤ i, j ≤ M; 0 ≤ l ≤ R. When spectral densities fi(ω) and
fj(ωj) are proportional to each other, using Lemma 1 and the
de!nition of δi,j,k, it is straightforward to derive that E(δi,j) will
asymptotically converge to a constant. Consequently, qi,j,0 will
no longer be asymptotically 0. However, when the normalized
spectral densities of the two time series are the same, qi,j,k will
still be asymptotically 0 for k = 1, . . ., R. Therefore, H∗

0 in
(3) implies the simultaneous occurrence of qi,j,l = 0 for all
1 ≤ i, j ≤ M; 1 ≤ l ≤ R.

Let q̂i,j = (q̂i,j,0, q̂i,j,1, . . . , q̂i,j,R)T = VT
Rδi,j. This is shown in the

Supplementary Materials to be asymptotically equivalent to the
least squares estimate of qi,j. Compared to the latter, q̂i,j enjoys
fast computation. We construct three tests based on q̂i,j: one for
multiple independent time series, one for multiple time series
that may not be independent of each other, and a global test
aimed at further improvement.

2.2.1. Test for Multiple Independent Time Series
To develop the test, we !rst study the asymptotic properties of
q̂i,j for multiple independent time series. Let Ik,k be a k by k
identity matrix for an integer k. The following theorem describes
the asymptotic properties of q̂i,j under the H0 de!ned in (2).

Theorem 2.1. Suppose we have M independent time series fol-
lowing (4). If their spectral densities are equal and bounded away
from zero, then for any positive integers i and j, we have

q̂i,j
d−→ V0(εi − εj),

as T → ∞, where {εi, i = 1, 2, . . .} is a sequence of identical
and independent multivariate Gaussian random vectors with
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E(εi) = 0R+1, cov(εi) = IR+1,R+1, and V0 =
√

var(log(χ2
2 )),

where χ2
2 is a χ2 random variable with 2 degrees of freedom.

The proof of Theorem 2.1 is deferred to the supplemental
materials. Theorem 2.1 reveals the asymptotic normality and
dependence structure of q̂i,j for di$erent i and j, when all M time
series are independent of each other. It can be seen that

cov(q̂i1,j1 , q̂i2,j2) → V2
0 cov(εi1 − εj1 , εi2 − εj2), (6)

as T → ∞, for any positive integers i1, j1, i2 and j2. If
i1, i2, j1 and j2 are all di$erent, the elements of covariance matrix
cov(q̂i1,j1 , q̂i2,j2) are all zero. Hence, most of the pairs between
q̂i1,j1 and q̂i2,j2 such that 1 ≤ i1 )= j1 ≤ M and 1 ≤ i2 )=
j2 ≤ M are independent. Under H0, that is, the spectral density
functions of M time series are equal, the asymptotic marginal
distributions of q̂i,j,l for all 1 ≤ i, j ≤ M and 0 ≤ l ≤ R are the
same and all have mean 0. Any q̂i,j,l greatly deviating from 0 may
indicate rejection of the null hypothesis. We therefore propose
the following test statistic for H0 in (2):

ŜMax,0 = max
1≤i≤M;1≤j≤M;0≤l≤R

q̂i,j,l.

The null hypothesis is rejected if the test statistic is large.
We derive a slightly di$erent test statistic for the H∗

0 in (3) to
determine whether the normalized spectral densities are equal
or not. If fi(ω) is proportional to fj(ω), qi,j,0 in (5) is determined
solely by the ratio fi(ω)/fj(ω), while qi,j,k = 0 for 1 ≤ k ≤
R. Intuitively, the value of the ratio fi(ω)/fj(ω) is irrelevant to
whether fi(ω) is proportional to fj(ω). Hence, q̂i,j,0 shall not be
included in the statistic to test the equality of the normalized
spectral densities. Let q̂∗

i,j and ε∗
i be the sub-vectors of q̂i,j and

ε without the corresponding !rst element, respectively. In fact,
q̂∗

i,j = (q̂i,j,1, . . . , q̂i,j,R)T. Similar to Theorem 2.1, we have

q̂∗
i,j

d−→ V0(ε
∗
i − ε∗

j ),

when the normalized spectral densities of all time series are the
same. We propose the following test statistic for H∗

0 based on q̂∗
i,j:

ŜMax,1 = max
1≤i≤M;1≤j≤M;1≤l≤R

q̂i,j,l.

Both ŜMax,0 and ŜMax,1 can be expressed as ŜMax,k with k = 0
and k = 1, respectively. By the continuous mapping theorem,

ŜMax,k
d−→ max

1≤i≤M;1≤j≤M;k≤l≤R
V0(εi,l − εj,l),

as T → ∞, where εi,l is the lth entry of εi de!ned in Theo-
rem 2.1. The analytic form of this limiting distribution may not
be available. By the Borell-TIS inequality of Adler and Taylor
(2007) and Lemma 2.1 of Chernozhukov, Chetverikov, and Kato
(2013), an upper bound in the asymptotic probability of the test
statistic above its expected value can be derived. But such results
can only help obtain an upper limit of the p-value. Alternatively,
the asymptotic critical values for ŜMax,k may be obtained through
simulating many Gaussian random variables as indicated by
Theorem 2.1. However, for !nite samples, the asymptotic critical
values based on normal distributions may not work well.

We derive the critical value for ŜMax,k from the perspective of
multiple testing. Since each q̂i,j,l of ŜMax,k under H0 asymptoti-
cally converges to a normal distribution with mean zero and a
standard deviation of

√
2V0, the test using ŜMax,k is equivalent

to testing if qi,j,l = 0 via |q̂i,j,l| simultaneously for all 1 ≤ i <

j ≤ M and k ≤ l ≤ R based on a common critical value.
We further found a t distribution with degrees of freedom of
K − R + k works better than the asymptotic normal distribution
for q̂i,j,l/(

√
2V0). Hence, we will use t distribution for each single

test. Theorem 2.1 suggests that most of the individual tests are
independent of each other, so a common critical value can be
obtained via the Bonferroni adjustment. Because q̂ijl = −q̂jil,
the total number of e$ective individual tests using q̂i,j,l is (R +
1 − k)M(M − 1)/2 instead of M2(R + 1 − k). Let tα,M,R,k be the
1 − α/((M − 1)M(R + 1 − k)) quantile of a t distribution with
degrees of freedom K − R + k, where α is the signi!cance level.
Via the Bonferroni adjustment, the corresponding critical value
for ŜMax,k is

√
2V0tα,M,R,k.

2.2.2. Test for Multiple Dependent Time Series
When the M time series are dependent on each other and their
underlying processes remain the same, we still seem to have
q̂i,j

d−→ V0(εi − εj) as T → ∞. However, it is important to
note that in this case, V0 should be denoted as V0,i,j, which
may vary for di$erent i and j. Additionally, {εi, i = 1, 2, . . .}
may not be a sequence of identical and independent multivari-
ate Gaussian random vectors. Both V0,i,j and the asymptotic
dependence of q̂i,j depend on the unknown dependence among
multiple time series. E$ectively estimating and incorporating
such unknown dependence into the asymptotic distribution of
ŜMax,k is challenging due to the signi!cantly higher number
of parameters involved, especially when M is large. Note that
the dependence between the ith and jth time series has no
e$ect on E(δi,j,k), though it can have a signi!cant e$ect on
var(δi,j) and the asymptotic variance of q̂i,j,l. This is because
E(δi,j,k) = E(log(Ii(ωk)) − E(logIj(ωk))) does not involve the
dependence between Ii(ωk) and Ij(ωk), while var(δi,j,k) relies on
their dependence. Fortunately, the sample standard deviation of
δi,j can be calculated easily and remains a consistent estimate
for the standard error of δi,j, which automatically captures some
information about the dependence between the ith and jth time
series.

To partially compensate for the e$ects due to the unknown
dependence, we adjust ŜMax,k by using a standardized version of
q̂i,j,l in the test statistic. The new adjusted test statistic becomes

Ŝadj,k = max
1≤i≤M;1≤j≤M;k≤l≤R

t̂i,j,l,

where t̂i,j,l = q̂i,j,l
si,j

and si,j is the sample standard deviation of δi,j.
When these time series are independent, we have

Ŝadj,k → max
1≤i≤M;1≤j≤M;k≤l≤R

1√
2
(εi,l − εj,l) (7)

where εi,l is still the lth entry of εi de!ned in Theorem 2.1
under the corresponding null. It is not di#cult to see that

1√
2 (εi,l − εj,l) is a standard normal random variable for any

1 ≤ i )= j ≤ M and k ≤ l ≤ R. However, when these
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time series are not independent of each other, the result of (7)
may not hold due to unknown correlation among t̂i,j,l, even
if their asymptotic marginal distribution under the null is a
standard normal. In this case, obtaining a critical value through
an asymptotic distribution seems very challenging. Following
the idea of obtaining the critical value for ŜMax,k, we can easily
obtain the Bonferroni critical value for Ŝadj,k as qα = tα,M,R,k.
As seen in the simulation study in Section 3.1, the test using
Ŝadj,k and this critical value provides reasonable empirical Type
I error rates when all M time series are moderately dependent
with each other. Furthermore, we can determine if the ith and jth
time series are signi!cantly di$erent at the signi!cance level α by
examining if

t̂i,j,l > qα ,

for at least one l subject to k ≤ l ≤ R. Hence, our methods not
only test if all M time series share frequency patterns, but also
provide information about pairwise comparisons among these
M time series.

2.2.3. A Global Test
The above tests using the maximum statistics can be very fast in
computation and perform well for the time series with a large
T. However, their !nite sample performance may be less satis-
factory and can be possibly improved. More importantly, these
tests essentially employ a Bonferroni correction and may be
conservative when the multiple tests are dependent. According
to Sarkar and Chang (1997), the global test in Simes (1986) is
more powerful than the classical Bonferroni adjustment while
having the Type I error rate under control, when multiple test
statistics are dependent but follow speci!c multivariate normal
distributions. Since q̂i,j,l for di$erent integers 1 ≤ i )= j ≤
M and k ≤ l ≤ R approximately follows a multivariate
normal distribution, we can adopt the global test approach
in Simes (1986). The basic idea of the global test is still to
evaluate

H0,ijl : qi,j,l = 0,

simultaneously for all i, j, l. For each H0,ijl, we use the test statistic
t̂i,j,l, because it partially accounts for the unknown dependence
between the ith and jth time series. To obtain the p-value pi,j,l
for H0,ijl, we use the same t distribution with degrees of freedom
K −R+k as the reference distribution as in Section 2.2.1. Recall
that K = $T/2%. The p-value is twice of the probability that the
reference distribution is above |t̂i,j,l|. We control the multiplicity
of the p-values in the global test as follows. As mentioned earlier,
due to the antisymmetric property q̂i,j,l = −q̂j,i,l, we only need
to consider H0,ijl for i < j and the total number of e$ective
individual tests is M(M − 1)(R − k + 1)/2. We rank all p-values
pi,j,l, where 1 ≤ i < j ≤ M and l = k, k+1, . . . , R, from smallest
to largest. Let the corresponding order of pi,j,l be Li,j,l. We reject
H0 if

pi,j,l ≤ Li,j,lα

(M − 1)M(R + 1 − k)/2

for at least one i, j and k subject to 1 ≤ i, j ≤ M and
k ≤ l ≤ R.

2.3. A Scalable Algorithm to Calculate q̂i,j

All our tests depend on q̂i,j = (q̂i,j,0, q̂i,j,1, . . . , q̂i,j,R)T, which is
typically obtained through matrix-vector multiplication accord-
ing to its de!nition and is our major computation demand.
Though this computation is manageable, we develop a scalable
algorithm to calculate q̂i,j even faster, to ensure our tests to be
computationally e#cient, especially when M is large. For M time
series, there will be M+M pairwise comparisons on M log spec-
tral functions, including M self-comparisons. We then introduce
an array Q of dimension M + M + (R + 1) to store pairwise
feature di$erences of M log spectral functions. We assign q̂i,j,k
to be the i, j, kth entry of the array Q. The theorem below states
that q̂i,j can be obtained via recursive vector additions instead of
matrix-vector multiplication under certain conditions.

Theorem 2.2. For any positive integers 1 ≤ i < j ≤ M, we have
q̂i,j = −q̂j,i, and

q̂i,j =
j∑

k=i+1
q̂k−1,k.

The proof of Theorem 2.2 is given in the supplemental mate-
rials. According to Theorem 2.2, it is easy to see that q̂i,j =
∑j−1

k=i+1 q̂k−1,k + q̂j−1,j = q̂i,j−1 + q̂j−1,j, for any integers 1 ≤
i, j ≤ M. If we have q̂1,2, q̂2,3, . . ., q̂M−1,M , we will be able to
calculate any other q̂i,j recursively by vector additions instead of
matrix-vector multiplications, for any integers 1 ≤ i, j ≤ M. We
develop Algorithm 1 to calculate Q. Instead of calculating q̂i,j
for all 1 ≤ i ≤ j ≤ M via VT

Rδi,j, our algorithm only requires
the calculation of M times matrix-vector multiplications plus
M(M − 1) times vector additions. Thus, our method is much
faster in computation, especially when M is large.

Input: Input M time series {Xi,t}, i = 1, 2, . . . , M, and
integer R

Output: A three dimensional array Q
Set bound G0 = 10,000, R = 5 and calculate matrix VR
De!ne a three dimensional M + M + (R + 1) array Q
Step 1: foreach i = 1, 2, . . . , M, do

Calculate the log periodogram logIi(·)
Step 2: foreach i = 1, 2, . . . , M, do

Calculate the vector of log ratios δi,j, where
j = (i + 1)%M

Calculate q̂i,j = VT
Rδi,j

Check if any elements of |δi,j,| is above G0 or not; if
TRUE then set a %ag.

Step 3: foreach i = 1, 2, . . . , M, do
Q[i, i, ] = 0R+1
Q[i, 1, ] = q̂i,l, where l = (i + 1)%M
foreach j = i, . . . , M, do

Q[i, j, ] = Q[i, j − 1, ] + Q[j, 1, ]
Q[j, i, ] = −Q[i, j, ]

return Q.
Algorithm 1: Calculation for the three dimensional array Q

Brie%y, the computation complexity of our Algorithm is
O(MTlogT) + O(MT) + O(M2). The term O(MTlogT) arises
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from the fast Fourier transformation of M time series of length
T in Step 1, according to Winograd (1978). The term O(MT)

is primarily due to the M matrix-vector multiplications of Step
2, and the term O(M2) mainly accounts for the M(M−1)

2 − M
addition operations of two vectors in Step 3.

Batista et al. (2014) discussed the invariances for time series
distance measure. Since our methods are statistical inference-
based, the distribution of each feature di$erence in Q is naturally
invariant to di$erent random errors in an asymptotic sense as
long as the errors satisfy assumptions in Lemma 1. Additionally,
due to the particular form of the statistics, our methods are
also invariant to linear transformations including amplitude and
o$set. Speci!cally, our test statistics for evaluating the equality
of multiple spectral densities remain the same when a common
linear transformation is applied to all the time series in compar-
ison. Furthermore, our test statistics for assessing the equality
of normalized spectral densities remain the same even when
each time series in comparison is transformed by a di$erent
linear transformation. Finally, our methods are based on the
Fourier transformation which decomposes a time series into
periodic components. Due to the orthogonality of Fourier basis,
the proposed methods are also invariant to phase changes in any
of these periodic components whose periodicity corresponds to
a Fourier frequency.

3. Simulation Study

We conduct simulation studies to assess the !nite sample perfor-
mance of our proposed method under both null and alternative
hypotheses. We use the Legendre polynomials with R = 5 as
the orthogonal basis functions to construct (5). The choice of
R = 5 is discussed and suggested by others such as Fokianos
and Savvides (2008) and Jin (2021). The R function spec.pgram
with the default cosine bell and tapering rate of 25/T was used
to calculate the periodogram. We set the default level of signif-
icance to α = 0.05 unless otherwise stated. For each scenario
considered in the simulation, 1000 replications are performed.

To account for situations where these time series may be
dependent with each other, we follow the below multivariate
time series model to generate M individual time series:

Xt = A1Xt−1 + B1zt−1 + zt , (8)
where

A1 =





a11 a12 0 . . . 0 a1M
a21 a22 a23 . . . 0 0

...
...

aM1 0 0 . . . aM(M−1) aMM




,

B1 =





b11 b12 0 . . . 0 b1M
b21 b22 b23 . . . 0 0

...
...

bM1 0 0 . . . bM(M−1) bMM




,

and zt is a M-dimensional Gaussian innovation vector with
E(zt) = (0, 0, . . . , 0)T and cov(zt) = #. Let ( = min(|i −
j|, (M + i − j)) represent the index distance between the ith
and the jth time series. This de!nition speci!es that the index
distance between the !rst and the Mth time series is 1 instead of
M − 1, in a cyclic manner.

3.1. Size of the Tests

We examine the !nite sample performance of the proposed tests
when all M time series have equivalent underlying models. To
simulate data under the null hypothesis, we impose constraints
on the model coe#cients and correlation matrix # in (8) to
ensure that all individual models share the common model coef-
!cients and the dependence between time series only depends
on their index distance. Hence, we set that a11 = a22 = · · · =
aMM , a12 = a23 = · · · = a(M−1)M = aM1, a21 = · · · =
aM(M−1) = a1M , b12 = b23 = · · · = b(M−1)M = bM1,
b21 = · · · = bM(M−1) = b1M , and )ij = )i′j′ if j − i = j′ − i′ or
j−i = M−(j′−i′) for i < j, i′ < j′ and all i, j, i′, j′ = 1, 2, . . . , M,
where )ij is the (i, j)th entry of matrix #. Basically, under these
restrictions, each individual time series have the same form with
a di$erent time series index i.

We consider three groups of models (A, B, and C) for the null
hypothesis, each with di$erent inter-series dependence settings.
Table 1 lists the speci!c model parameters for all models in
each group. Group A includes models A1–A5, and each model
generates M independent autoregressive–moving-average mod-
els with an autoregressive order of 1 and a moving-average
order of 1, that is, ARMA(1,1) time series. By sharing common
components for adjacent time series, the time series generated
by each of the models B1–B5 in group B are dependent. The
dependence between two time series decays as their index dis-
tance ( increases. Group C introduces dependency through
correlated innovations. Let #∗(ρ1) be a correlation matrix such
that )∗

ii(ρ1) = 1 and )∗
ij(ρ1) = ρ1 if i )= j. Each model in

group C generates multiple dependent time series with pairwise
correlation in their innovations as #∗(0.5), a moderate corre-
lation strength. There are six models in group C. Models C1–
C5 have the same model coe#cients as Model A1–A5, but with
di$erent covariance matrices for innovations. We include Model
C6 to represent a di$erent scenario that combines a similar
dependence structure employed in Group B with the innovation
correlations used in the other models of Group C.

For each model in Table 1, we generate a multivariate time
series with M = 10, 25, 50, 100 individual time series, respec-
tively. Then we apply the proposed method to test if all M
time series have the same underlying dynamics. The results are

Table 1. Model parameters of three groups of models for simulating multiple time
series under the null hypothesis.

a11 a12 a21 b11 b12 b21 #

A1 0.0 0.0 0.0 0.0 0.0 0.0 IM
A2 0.5 0.0 0.0 0.0 0.0 0.0 IM

Group A A3 0.0 0.0 0.0 0.5 0.0 0.0 IM
A4 0.5 0.0 0.0 0.3 0.0 0.0 IM
A5 0.7 0.0 0.0 2.0 0.0 0.0 IM

B1 0.3 0.15 0.15 0.0 0.0 0.0 IM
B2 0.5 0.15 0.15 0.5 0.0 0.0 IM

Group B B3 0.0 0.25 0.25 0.5 0.0 0.0 IM
B4 0.4 0.0 0.0 0.3 0.25 0.25 IM
B5 0.6 0.1 0.1 2.0 0.25 0.25 IM

C1 0.0 0.0 0.0 0.0 0.0 0.0 #∗(0.5)
C2 0.5 0.0 0.0 0.0 0.0 0.0 #∗(0.5)

Group C C3 0.0 0.0 0.0 0.5 0.0 0.0 #∗(0.5)
C4 0.5 0.0 0.0 0.3 0.0 0.0 #∗(0.5)
C5 0.7 0.0 0.0 2.0 0.0 0.0 #∗(0.5)
C6 0.1 0.25 0.25 0.0 0.0 0.0 #∗(0.5)
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Figure 1. Empirical sizes for comparing M time series of length T . All time series are generated following the model speci"ed in Table 1. In each plot, the horizontal dashed
line indicates the nominal level of 0.05.

presented in Figure 1. When data are generated from groups
A and B, it appears that the empirical Type I error rates of
Ŝmax,0 tend to be higher than the nominal level, especially at
the combination of a small T and a large M, such as T = 256
and M = 100. The error rates for a small T deteriorate faster
as M increases. However, when T is getting larger, all error rates
become centered around or below the nominal level. For data
generated by group C models, all the empirical rates are well
controlled below the nominal level, though some cases seem to
be slightly too conservative. These results indicate that Ŝmax,0
may be sensitive to the dependency pattern among time series.
The empirical Type I error rates of Ŝadj,0 are well controlled
across all scenarios. Their error rates when M = 10 are centered
at the nominal level, but then tend to be below the nominal level,
that is, the test becomes more conservative when M becomes
larger. However, the error rates appear to approach the nominal
level as T increases. Interestingly, the empirical Type I error rates

are similar for all time series in di$erent groups, regardless of
whether the multiple time series are independent or not. This
indicates that, as expected, Ŝadj,0 is robust to the dependency
structure among time series. The error rates of global test seem
to be closer to the nominal level than those of Ŝadj,0, though
the global test still appears to be slightly conservative when T
is small and M is large. Again, there is no clear distinction in the
results when using the global test for the three groups of models.

3.2. Power of the Tests

This section investigates the !nite sample performance of the
proposed methods under the alternative hypothesis that the
spectral densities of M time series are not all the same. Many
previous studies, such as those by Lund, Bassily, and Vidakovic
(2009) and Decowski and Li (2015), have all demonstrated the
power of their methods by comparing a white-noise series to an
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autoregressive (AR) time series with order 1, that is, AR(1). We
modify their studies into two di$erent settings for evaluating the
power of our tests for multiple dependent time series. All settings
described below are special cases of our general framework (8).
Let )†

ij(ρ1) = ρ1 if |i − j| < 2, and )†
ij(ρ1) = 0 otherwise. In

setting I, for a given AR parameter φ, we generate the ith time
series by following

Xi,t = (i − 1)/(M − 1)φXi,t−1 + zt,i

where zt,i is the ith entry of innovation vector zt , and cov(zt) =
#†(−0.25). This setting generates M time series from di$erent
AR models, with the innovations of two adjacent time series
being negatively correlated. The dynamics of two time series
apart from a smaller index distance ( are more similar because
their AR parameters are close. The spectral density of all these
M time series is the same when φ = 0. As φ increases, so does
the di$erence in the spectral densities of these M time series.
In setting II, we generate the !rst time series as X1,t = zt,i,
and the rest M − 1 time series as Xi,t = φXi,t−1 + zt,i, for
1 < i < M. The covariance between zt,i and zt,j follows
#∗(0.5). This sets the model of the !rst time series di$erent
from the models of the rest M − 1 time series. In this setting,
the innovations of all M time series at the same time t have a
correlation 0.5.

We additionally consider settings III and IV to compare
multiple AR or MA time series, motivated by Lund, Bassily,
and Vidakovic (2009) who compared an AR time series with
a moving average (MA) time series. In these two settings, we
generate the !rst $M/2% time series by an AR(1) process Xi,t =
φXi,t−1 + zi,t when i ≤ $M/2%, and the rest time series by a
MA(1) model Yi,t = θzi,t−1 + zi,t when i > $M/2%. The MA
parameter θ = sign(φ)

√
φ2

1−φ2 , where sign(φ) = 1 if φ ≥ 0 and
−1 otherwise. Setting III employs # = IM which means the M
time series are mutually independent while setting IV employs
# = #∗(0.5) which means the M time series are mutually
dependent.

For each of the four settings described above, we generate
M = 10, 25, 50, and 100 time series, respectively. We again apply
the test using Ŝmax,0, the test using Ŝadj,0 and the global test using
t̂i,j,l all 1 ≤ i ≤ j ≤ M, l = 0, 1, . . . , R to all these time series.
The results for settings I– IV are reported in Figures 2(a) and
(b), 3(a) and (b), respectively. A common pattern for these plots
is that the empirical power of all procedures increases either as
φ increases or as T increases given φ is not tiny. Regarding the
performance of di$erent procedures, it appears that for setting I,
the empirical power of Ŝmax,0 is the highest for most scenarios.
However, this is likely the spurious e$ect of its in%ated size.
Between the two other tests that can control their sizes below
the nominal level, the global test seems to have a higher power
in general. For settings II, the global test is still a winner. Settings
III and IV reveals similar stories as setting I, and also conclude
that the global test is generally more competitive. Note that the
test using Ŝadj,0 o"en performs very closely to the global test,
especially when T is large.

The e$ect of M on powers appears to be heterogeneous across
the four settings. When M increases, the power of all three tests
seems to increase for settings I, III, and IV, while decreasing
for setting II. Recall that setting II only sets the !rst time series

di$erent from the rest regardless of M. Intuitively, the power
decrease for setting II makes sense because while many more
comparisons will be involved when M increases there is only
one di$erent time series from the others. Still, the empirical
power of all three tests reaches 100% when φ = 0.3 and
T = 1024 in setting II. This demonstrates that our proposed
methods are capable of detecting a very small number of out-
lying time series hidden in a large number of background time
series.

The methods proposed in Jin (2015) are able to test whether
a small number of time series have the same normalized spectral
densities, with the requirement that the multiple time series
are mutually independent. We adopt a similar setup as in Jin
(2015) to generate independent time series. More speci!cally,
we generate time series Xi,t = zt,i if i ≤ $M/2% and Xi,t =
φXi,t−1+zt,i if i > $M/2%, and # = IM . According to Jin (2015),
di$erent test statistics were studied, and it appears that the
statistic TM,$M/2% aligns with the current setting where $M/2%
time series are distinct from the remaining ones. However, when
T is not large and M ≥ 10, TM,$M/2% may su$er from in%ated
empirical Type I error rates. Therefore, we only compare our
procedures to TM,$M/2% when M = 3, 5, and 7. The results are
presented in Figure 4(a). When φ = 0, these M time series
are from the same model, and thus its corresponding results
represent the Type I error rates. It appears that the empirical
Type I error rates for all tests across all scenarios are close
to the nominal level. When M = 3, TM,$M/2% seems to be
more powerful than both Ŝmax,1 and the global test. However,
as M increases from 3 to 5 or 7, the performance of TM,$M/2%
deteriorates signi!cantly. When M = 5 and M = 7, both
ŜMax,1 and the global test for the equality of the normalized
spectral densities, that is, H∗

0 , are more powerful than TM,$M/2%,
even under the settings restricted to meet the requirements
of TM,$M/2%.

We additionally assess the performance of our proposed
methods relative to two other approaches. Jin (2018) developed
a test to assess if multiple independent time series have the same
spectral densities. However, as noted by Jin (2018), the asymp-
totic null distribution of the test statistic is not su#ciently close
to the empirical null distribution in practice, and hence Monte
Carlo simulations were resorted to in order to obtain critical
values varying by sample size and the number of time series. This
leads to extensive computation even when M is small. On the
other hand, Zhang and Tu (2018) developed a test to compare
the spectra of two univariate time series that might be depen-
dent. Though they mentioned a possible extension to compare
multiple (M > 2) time series, both the procedure and the critical
values for the extension are unclear. Hence, we perform the test
by Zhang and Tu (2018) pairwise and then adjust the results by
the Bonferroni correction. All the tuning parameters required to
implement those two approaches follow the recommendations
in their original papers. For these additional comparisons, we
only consider the data generated by setting II with M = 3, 5,
and 7. The simulation results are presented in Figure 4(b). The
results corresponding to φ = 0 represent the Type I error
rates. It appears that the empirical Type I error rates for all
tests are around the nominal level, but both proposed methods
exhibit much higher power than the other two tests under this
setting.
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Figure 2. Empirical powers for comparing M time series of length T generated by the model speci"ed in (a) Settings I and (b) Setting II, using di!erent testing procedures.
In each plot, φ = 0 corresponds to the size and the horizontal dashed line indicates the nominal level of 0.05.

3.3. Robustness to Nonstationary Time Series

In reality, time series data o"en exhibit nonstationary behav-
ior, so we now assess the e$ectiveness of our proposed meth-
ods when time series observations deviate from the stationary
assumption. We introduce a time-varying function

s(t) = 2 + a + cos(t/512), (9)

where a is a constant and t = 1, 2, . . . , T. This function %uctu-
ates periodically with a period of 512. Given a stationary time
series Xt , a nonstationary time series Yt can be generated by

Yt = s(t)Xt . (10)

The degree of non-stationarity increases as the constant a
becomes larger. In our simulation, we set a = 0.4 which intu-
itively induces approximately ±20% %uctuation in the standard
deviation of the time series {Yt} over time.

To study the empirical size of di$erent tests for nonstationary
time series, we generate Yt using (10) with Xt following the
models from Group C speci!ed in Table 1. All three tests of

Ŝmax,0, Ŝadj,0 and the global test are applied to the simulated
nonstationary time series and the results are presented in Fig-
ure 5. It is seen that the empirical sizes of the proposed tests,
especially the global test, align with the nominal level, suggesting
robustness of our methods to nonstationary time series.

To study the empirical power of the proposed tests, we gener-
ate multivariate nonstationary time series with M = 10, 25, 50,
and 100 using (10), where Xt follows setting I in Section 3.1 The
results given in Figure 6 closely resemble those in Figure 2(a) for
the stationary time series. This shows that our proposed tests are
also robust to non-stationarity in terms of power.

3.4. Computing Time of the Proposed Methods

To illustrate the computational e#ciency of our proposed meth-
ods and compare the computing time between the three tests for
di$erent M and T, we conduct a small experiment by generating
M Gaussian white noises of length T and then applying each
of the three tests to evaluate how M time series are di$erent
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Figure 3. Empirical powers for comparing M time series of length T generated by the model speci"ed in (a) Settings III and (b) Setting IV, using di!erent testing procedures.
In each plot, φ = 0 corresponds to the size and the horizontal dashed line indicates the nominal level of 0.05.

from each other. Table 2 presents the average running times of
di$erent proposed procedures based on 100 simulation runs.
The current R codes do not incorporate parallel computing. The
computer for the simulation has a single I7-8565U CPU with
a maximum speed of 4.60 GHz, and 16 GB of memory. The
computation is very fast for all three procedures even when M =
100 and T = 1024. As T or M increases, the computational time
also increases but at a di$erent rate. It seems the computational
cost is more sensitive to M. The running time of SMax,0 is much
lower than that of Sadj,0 and the global test, especially when M
is large, such as M = 100. We also ran simulations to compare
the computing time of our methods, Jin (2018) and Zhang and
Tu (2018) in evaluating the di$erence between M = 2 time
series. We found that the average running time of the proposed
methods is at least 20 times faster than that of Jin (2018) and
Zhang and Tu (2018). As M increases, the gap between the

proposed methods and the existing methods using pairwise
comparisons will become even wider.

4. Data Analysis

Damage in a mechanical system is generally detected by compar-
ing the current vibrational signals collected from the system to
the reference signals. We thus need to build a reference database
that may consist of multiple vibrational signals recorded from
the undamaged system at di$erent input force levels/operation
conditions (Sohn and Farrar 2001). To ensure the reliability of
a reference database, it is necessary for the reference signals
obtained from di$erent input levels to have consistent frequency
behaviors. We apply the proposed methods to evaluate if multi-
ple time series in a reference database have the same normalized
dynamics.
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Figure 4. Comparing the empirical powers of the proposed methods and other tests at the signi"cance level of 0.05. (a) TM,$M/2% by Jin (2015) versus the proposed methods;
(b) Tests by Jin (2018) and Zhang and Tu (2018) versus the proposed methods. “Jin2015”, “Jin2018”, and “ZT2018”represent methods of Jin (2015), Jin (2018), and Zhang and
Tu (2018), respectively. In each plot, φ = 0 corresponds to the size, and a horizontal dashed line represents the nominal level of 0.05.

Table 2. The average running time per run (in seconds) for di!erent proposed procedures in 100 simulations when applied to compare M time series of length T .

ŜMax,0 Ŝadj,0 The global test

M T=256 T=512 T=1024 T=256 T=512 T=1024 T=256 T=512 T=1024

10 0.003 0.003 0.004 0.004 0.005 0.006 0.005 0.005 0.007
25 0.008 0.009 0.011 0.020 0.024 0.034 0.020 0.024 0.035
50 0.022 0.024 0.027 0.083 0.115 0.175 0.086 0.117 0.178
100 0.071 0.077 0.084 0.445 0.703 1.261 0.451 0.741 1.300

Twenty vibration signals were obtained from vibrational data
sets collected by attaching an electro-dynamic shaker to a three-
story frame structure in a laboratory experiment. The shaker was
propelled by a random waveform with a uniform energy distri-
bution within the frequency range of 0 to 200 Hz. See Fasel et al.
(2003) for more details. The vibration data, driven by exogenous
input, are o"en modeled via autoregressive-exogenous (ARX)
(p, q) models, assuming that the current system output is a
linear combination of the preceding p system outputs and the
preceding q system inputs. As shown in Roy, Bhattacharya,
and Ray-Chaudhuri (2015), the coe#cients of ARX models are
determined by system physical characteristics, such as structural
sti$ness and mass. Regarding our data, the random waveform
input plays the role of the random innovations and the physical
characteristics of the structure determine the ARX coe#cients.
The ARX coe#cients, in turn, determine the temporal depen-
dency structure (auto-covariance structure) of the ARX time

series. Any change, such as damage in the physical character-
istics of the frame structure, will alter the ARX coe#cients and
thus the temporal dependence structure. Various input voltage
values were applied to power the shaker. The speci!c input volt-
age was 0.075v for the !rst !ve time series (group 1), 0.128v for
the next !ve time series (group 2), then 0.25v for the following
!ve time series (group 3), and !nally 1.0v for the last !ve time
series (group 4). Each signal has a length of 512, over 1 second at
a rate of 512 Hz. Figure 7 displays these time series in a row order,
that is, each row represents a di$erent group. All time series were
obtained when the system was healthy.

To compare these 20 time series, we calculate the proposed
test statistics Ŝmax,0, Ŝadj,0, Ŝmax,1 and Ŝadj,1, with R = 5. The
results are Ŝmax,0 = 81.10, Ŝadj,0 = 44.92, Ŝmax,1 = 8.43
and Ŝadj,1 = 4.43. The critical values for these statistics at the
0.05 signi!cance level are 7.54, 4.16, 7.46, and 4.11, respectively.
Recall that the statistics Ŝmax,0 and Ŝadj,0 test whether the spectral
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Figure 5. Empirical sizes for comparing M nonstationary time series of length T . The horizontal dashed line indicates the nominal level of 0.05.

Figure 6. Empirical powers for comparing M nonstationary time series of length T using di!erent testing procedures. In each plot, φ = 0 corresponds to the size and the
horizontal dashed line indicates the nominal level of 0.05.

densities of multiple time series are equal, while Ŝmax,1 and Ŝadj,1
test if the normalized spectral densities are equal. We conclude
that the spectral densities of these signals are not all the same
because both Ŝmax,0 and Ŝadj,0 are much higher than their corre-
sponding critical values. For the normalized spectral densities,
both Ŝadj,1 and Ŝmax,1 are slightly above their corresponding
critical values. These results indicate that the signals collected
at di$erent inputs have di$erent magnitudes. Their normalized
frequency patterns are similar but may not be identical, sug-
gesting that the dynamics of the system may vary slightly with
di$erent input levels. Via the feature di$erences in the array Q,
it is easy to see how the signals di$er from each other. Figure 8
presents the result of the pairwise comparison. There is a clear
pattern in Figure 8(a). It shows that the time series with the same
input level have identical frequency densities, while the time
series with di$erent input levels have di$erent spectral densities.
According to Figure 8(b), the normalized spectral densities of all
time series except the 14th are the same. By checking the values
of Q in detail, we found only three quantities in Q related to
the 14th time series slightly above the critical values, indicating
that the di$erences are not very signi!cant. Still, we should be

cautious to use these reference signals collected at very di$erent
voltage inputs for damage detection.

We applied the tests developed in Jin (2018) and Zhang
and Tu (2018) to assess whether the spectral densities of these
signals are identical. At a signi!cance level of 0.05, both tests
reached the same conclusion that the spectral densities of all
these 20 time series are not identical, consistent with the !ndings
of the proposed methods. However, the test of Jin (2018) is
unable to further identify which speci!c time series di$er from
one another. The pairwise comparison based on Zhang and Tu
(2018) reveals a pattern (omitted here) very di$erent from the
expectation that the spectral densities of time series within the
same voltage input group are likely identical. Our results in
Figure 8(a), however, align well with this expectation by showing
a block pattern.

Some mechanical systems have inherent repeated pat-
tern/shape in vibrational signals. Those patterns can be altered
by damage. For such case, Mercer and Keogh (2022) intro-
duced the novelets method to detect possible damages by
identifying emerging patterns, which turns to be very use-
ful for industrial process monitoring. The dynamic wrapping
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Figure 7. Twenty vibration signals from a laboratory experiment under four di!erent input levels.

Figure 8. Results of pairwise comparison of 20 time series in terms of (a) spectral densities and (b) normalized spectral densities. Color indicates the value of maxl q̂ijl , the
maximum feature di!erence between the ith and jth time series. Cells with “1” indicate that di!erences between the corresponding time series are signi"cant. The indices
of the 20 time series are provided on both the right-hand and bottom sides of the plot. A histogram of the maximum feature di!erence is overlaid onto the legend on top
of each plot.

method is another e$ective approach for detecting di$erences
in repeated patterns between two signals when there is lit-
tle to no noise in the observations. However, in the presence
of non-negligible noise, it is challenging to use the dynamic
wrapping distance to decide whether two processes have the
same repeated pattern. In contrast to their applications, our
vibrational data were generated with a random waveform input,
which will not lead to repeated patterns in the vibrational sig-
nals as those in Mercer and Keogh (2022). Hence, under the
current or similar settings, our proposed methods are more
suitable.

5. Conclusion

We proposed computationally e#cient methods to formally
evaluate the signi!cance of the di$erences between a large

number of time series in terms of frequency patterns. According
to Cai and Sun (2011), the emerging large-scale hypothesis
testing that may consist of thousands or more simultaneous tests
poses many challenges not present in smaller-scale studies. Our
methods are constructed based on pairwise feature di$erences
between M time series, for which we developed a computa-
tionally e#cient algorithm to ensure its scalability. Previous
literature only showed results comparing two dependent time
series or comparing a few independent time series. We have
demonstrated that our methods can be applied to a much larger
number of time series, such as M = 100. Our algorithm has
reduced the main computational complexity of obtaining feature
di$erences for pairwise comparisons from O(M2) to O(M). As
shown in Table 2, it takes only around 0.084 sec to complete
about 5000 times pairwise comparisons for M = 100 time series
of length T = 1024 using ŜMax,0. This shows that our methods,
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especially the one with ŜMax,0, can process well beyond 100 time
series within an acceptable amount of time. Without modeling
the unknown dependence structure among multiple time series,
our proposed approaches work well in comparing multiple time
series that may or may not be independent of each other. In
addition, our proposed methods allow us to identify which pairs
of time series are di$erent without much additional e$ort. They
appear to be useful in addressing real-world problems.

The asymptotic distribution of the pairwise feature di$er-
ences exhibits an interesting dependence structure. When the
time series are independent of each other, most q̂ijk, 1 ≤ i )=
j ≤ M, k = 0, 1, . . . , R are independent which allows us to
easily obtain a working critical value for our test statistic ŜMax,k
via a t distribution with the Bonferroni correction. Since the test
statistic ŜMax,k can be computed very e#ciently even for a large
T, we recommend this test when the multiple time series are
independent of each other and T is large. In contrast, both Ŝadj,k
and the global test are more suitable for dependent scenarios and
tend to yield better results. Among the three methods, the global
test o"en exhibits the highest power. We observe that some of
our tests may be slightly conservative, especially when M is large
and T is small. Possible solutions to address this issue are to
generate critical values through simulations of the procedures
or to apply !nite sample adjustments.

Supplementary Materials

The supplementary materials contain (A) proof of theorems, (B) empirical
studies to compare the proposed method with dynamic time warping, and
(C) the R code for replicating Figures 1–8 in this article and Figures 1, 3–5
of the supplement.
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