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Abstract— Millimeter-size carbon dioxide (CO2)-sensitive lu-
minescence films emerge as practical sensors in miniaturized
biomedical devices for measuring transcutaneous CO2. The in-
tensity and lifetime of the excited luminophores in the film carry
critical information about the CO2 values in the surrounding
environment. It has been proven that lifetime-based measure-
ment is superior to intensity-based measurement because of its
robustness to confounding factors. Addressing the challenge of
accurately determining the rapid nanosecond-scale lifetime of
CO2-sensitive luminophores, we introduce a behavioral model
using a time-correlated single photon counting system equipped
with silicon photomultipliers. We included nonidealities such as
dark count rate, afterpulsing, and crosstalk to this model. To
recover the lifetime from photon counts, we applied denoising
and fitting techniques. With hyperparameter optimization to
determine various post-processing parameters, we improved
accuracy in recovery for lifetime values ranging from 3 ns to
7 ns. Our results demonstrate the applicability of the proposed
model and techniques in real-world scenarios.

I. INTRODUCTION

With respiratory diseases at the forefront of public health
concerns, particularly in the wake of the COVID-19 pan-
demic, the urgency for advanced diagnostic and monitoring
tools for outside clinic use has never been greater [1].

The partial pressure of arterial carbon dioxide (PaCO2)
plays a pivotal role in decision making when it comes
to chronic respiratory diseases [2]. Elevated PaCO2 levels
suggest inadequate ventilation, often seen in advanced respi-
ratory conditions, necessitating interventions including res-
piratory support. Conversely, low PaCO2 levels indicate ex-
cessive ventilation, guiding specific treatment strategies [3].
Thus, PaCO2 measurements are instrumental for tailoring
appropriate treatment in chronic respiratory illnesses. This
context emphasizes the need for an accurate, noninva-
sive surrogate measurement method for PaCO2 assessment,
i.e., monitoring of transcutaneous carbon dioxide (PtcCO2),
which is in direct correlation with the PaCO2 [4].

Transcutaneous monitoring is a noninvasive method of
assessing blood gases by measuring the concentration of oxy-
gen and carbon dioxide molecules diffusing through skin [5].
Transcutaneous blood gas monitors typically employ either
electrochemical [6] or optical technologies [7], [8], or a
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Fig. 1. Principle of time correlated single photon counting [5].

combination of these two [9]. Recent optical monitors uti-
lize luminescence sensors to detect CO2 by examining its
absorption effects [8], [10]. Measuring the intensity and
lifetime of the excited luminophores present in the sensor
film provides valuable insights into the molecule concen-
trations in the surrounding environment, formulated by the
Stern-Volmer equation [11]. Notably, the film’s luminescent
response decays, or ‘quenches’, in the presence of CO2,
enabling accurate measurement of CO2 concentrations [5].

Luminescent measurements fall into two main categories:
steady-state and time-resolved. This study focuses on time-
resolved luminescence measurement, owing to the advan-
tageous nature of being less susceptible to confounding
factors, making it a reliable metric for gauging the efficacy of
the measured phenomenon [12]. We specifically investigate
the rapid lifetime of CO2-sensitive luminophores, which is
∼ 1000 times faster, in the order of a few nanoseconds,
compared to oxygen-sensitive luminescence films [13]. This
rapid decay presents unique challenges, which our proposed
work aims to address by employing the time-correlated single
photon counting (TCSPC) technique for its efficiency in
quantifying fluorescence lifetime in the time domain. TCSPC
involves continuous measurement of fluorescence emissions’
timing in relation to synchronized pulsed optical excitation,
allowing us to construct a histogram representing the decay
of the fluorescence lifetime. The working principle of the
TCSPC system is illustrated in Fig. 1.

We investigated the application of a TCSPC system, paired
with silicon photomultiplier (SiPM) detectors, for accurately
measuring PtcCO2. To achieve this goal, we designed a
behavioral model of the system, incorporating various non-
idealities, e.g., the SiPM’s photon detection efficiency and
dark count rate. Then, we employed denoising methods
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Fig. 2. The block diagram for the behavioral model of the TCSPC setup.

and fitting techniques to extract the rapid lifetime of CO2-
sensitive luminophores. To validate our approach, we ana-
lyzed the system’s performance by calculating errors based
on percentage error and successfully determined the original
lifetime values with high accuracy.

The organization of this paper is as follows. Section II
introduces TCSPC technique, which serves as the foundation
for our behavioral model. Section III elaborates on the
methodology for the development of the behavioral model,
providing a step-by-step explanation of the approach. Fol-
lowing that, Section IV presents our findings, discussing
the results obtained from the behavioral model simulations.
Finally, in Section V, we provide concluding remarks.

II. TCSPC SYSTEM

In this study, the emphasis is placed on a TCSPC system,
depicted in Fig. 2, that employs a time-to-digital converter
(TDC). The system utilizes a pulsed laser for exciting the
sensing film, with silicon photomultipliers (SiPMs) capturing
the luminescence response. The full width at half maximum
(FWHM) is an important parameter for excitation sources,
representing the duration of the laser pulse when its intensity
is at half the maximum value. Considering that the FWHM
of the excitation source in TCSPC systems should be less
than 10% of the lifetime being measured [14], we assumed a
pulsed laser with an FWHM well below 300 ps for measuring
lifetimes down to 3 ns. This selection allows us to neglect
the convolution of the laser’s excitation profile with the
luminescence response. The system is designed with a 6
µs simulation period for each cycle, one iteration of the
excitation pulse, ensuring the capture of all luminophore
responses. In the following subsections, we elaborate on the
components of the read-out part of the proposed TSCPC
system.

A. Sensing Film

The proposed behavioral model incorporates a model
of CO2-sensitive luminescent film based on the physical
properties of commercial SPCD1T-D10-YAU-09NaCl sensor
(PreSens Precision Sensing). This film, 10 mm in diameter,
responds to CO2 levels up to 180 mmHg. When exposed to
blue light of 465 nm wavelength, it emits light at two dif-
ferent wavelengths. The CO2-sensitive luminophore peaks at
505 nm, with its emission lifetime decreasing as CO2 levels
rise. In contrast, the reference luminophore, which emits light
at the wavelength of 600 nm, exhibits an unchanged lifetime
despite any variations in the CO2 concentration [10].

To better understand the sensing film, we conducted mea-
surements using a commercial TCSPC device (PicoQuant
PicoHarp 300). This allowed us to discover that the reference
luminophore has a lifetime of 1 µs, while the CO2-sensitive
luminophore exhibits a lifetime of 4 ns under ambient
conditions [5]. Additionally, in the worst-case scenario, when
the CO2 level in the environment is high, the ratio of initial
intensities of the reference and CO2-sensitive luminophores
is ∼1. We constructed the behavioral model around this ratio
to cover the worst-case scenario. The luminescence response
characteristic of a single decay event is represented as I(t) =
I0 exp

(
− t

τ

)
[11], where I(t) denotes the luminescence

intensity, I0 signifies the initial intensity of the luminescent
response, τ shows the lifetime of the luminophore, and t is
the time variable.

B. Optical Detection - SiPMs

SiPMs, consisting of arrays of single-photon avalanche
diodes (SPADs), are gaining prominence as optical detection
units in TCSPC systems. SiPMs offer a compact size, low
voltage requirements, and robustness alongside high gain and
stability [15]. SPADs are highly sensitive and provide precise
photon arrival times, yet they have an inherent dead time
during which no detection can occur. This issue is elegantly
addressed in SiPMs where multiple SPADs are connected in
parallel, enhancing the dynamic range and photon counting
rates [16]. We have chosen the Hamamatsu MPPC S13360-
1375PE for the SiPM model.

We assumed operation at room temperature and utilized
values for key parameters from the datasheet to integrate
this detector into the proposed model. Among these pa-
rameters, the photon detection efficiency (PDE) is a critical
performance metric, reflecting the probability that an incident
photon will produce a detectable signal. PDE is inherently
wavelength-dependent, and the SiPM’s ability to detect pho-
tons varies across different wavelengths. For our sensing film,
which contains two luminophores with peak emission at 600
nm for the reference and 505 nm for CO2 sensitivity, it is
essential to consider these wavelength-specific PDE values.
According to the datasheet, the PDE at 600 nm is 33%, and
at 505 nm, it is 47%.

We also accounted for the dark count rate (DCR), which
represents the intrinsic noise signals in SiPMs caused by the
thermal generation of carriers within the silicon bandgap.
These spurious signals, which occur even in the absence of
photon excitation [17], can adversely affect the detector’s
performance by increasing the noise baseline [18]. If this
event occurs, it is indistinguishable from a real photon
event and is added to the photon histogram. According
to the datasheet, the typical DCR for the chosen SiPMs
is 90 kilo count per seconds (kcps). Following the same
approach in the literature [18], the DCR is modeled using a
Poisson distribution to represent the statistical occurrence of
dark counts over time, with the mean generation time, tcg ,
inversely proportional to the DCR.

The proposed model also considers crosstalk in SiPMs,
where photon emissions from one SPAD can trigger
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Fig. 3. Process flowchart illustrating the integration of system nonidealities.

avalanches in neighboring SPADs [19]. The chosen SiPM
has a 7% crosstalk probability at room temperature with
the recommended overdrive voltage. To accurately model
crosstalk, its timing is evaluated in relation to the SiPM
output pulse’s rise time. For crosstalk events within the
output pulse’s rise time, pulse timing adjustments are made to
accurately reflect the timing changes these events introduce.
This is simulated by applying a Gaussian time shift to each
detected photon event, with a standard deviation set to one-
third of the maximum shift of 1 ns, according to the datasheet
of the chosen model.

In SiPM-based TCSPC systems, afterpulsing occurs when
charge carriers, previously trapped within the SPADs, are
spontaneously released, leading to additional, false photon
detection events [20]. These afterpulses usually emerge
within 6 ns to 10 ns following the primary photon [19],
with the possibility of affecting the rise time of the signal by
picoseconds to nanoseconds. To capture this effect, we intro-
duce a mechanism for afterpulsing based on the probability
density function of afterpulse time point [19].

C. Constant Fraction Discriminator

The output pulses from SiPMs are quite unstable. Due to
the random amplification mechanism in the detectors, the
single-photon pulses exhibit significant amplitude jitter [21].
Consequently, a simple leading-edge discriminator is unsuit-
able for triggering such pulses, as the amplitude jitter would
result in a timing jitter comparable to the pulse’s rise time.
Therefore, we implement a constant-fraction discriminator
(CFD) at the detector output. CFDs trigger at a consistent
fraction of the pulse amplitude, effectively mitigating timing
jitter induced by pulse height variations. Additionally, CFDs
incorporate a discriminator that filters out input pulses below
a selectable threshold, allowing us to disregard environmental
noise or minor background pulses from the detector [21].

In TCSPC systems, passing the photon pulses from the
detector through a CFD after initial detection is common
practice. The output pulses from the CFD have a constant
width and timing that is independent of the amplitude of the
detector pulses [21]. Although CFDs introduce a constant
propagation delay and minimal timing jitter, we assume a
propagation delay of 1 ns for a 20% fraction according to
td ≈ (1− f), where f is the fraction of the peak amplitude,
and td is the total delay. Furthermore, based on the datasheet,
we have conservatively added a timing jitter of 20 ps.

D. Time-to-Digital Converter

In our TCSPC system, the TDC is pivotal for measuring
the interval between photon excitation and detection by

the SiPM, aiding in histogram construction. Our selected
TDC model, the TDC7201 from Texas Instruments, offers a
resolution of 55 ps, aligning with our precision requirements.
Moreover, to address the clock jitter from the ring oscillator,
we model it as a Gaussian jitter, aligning with methodologies
from [22], [23] on oscillator jitter. This method effectively
incorporates timing variability into our analysis.

III. METHODOLOGY

This section presents the behavioral model’s flow and
describes the post-processing stream that reconstructs the
decay of CO2-sensitive luminophores to determine lifetime
information.

A. Behavioral Model Development

Fig. 3 depicts a flowchart presenting a comprehensive
overview of the behavioral model’s process flow. The process
begins with the ‘Excitation’ phase, after which the sensing
film emits photons when exposed to light. The system eval-
uates the PDE of the SiPM, taking into account the specific
PDE values associated with each luminophore present in
the sensing film. Based on these probabilities, if a genuine
photon is detected, its timestamp is added to a ‘detected list’
of events, as noted in Fig. 3.

Irrespective of photon detection, the model determines the
likelihood of a dark count using the DCR specified in the
datasheet, simulating a Poisson distribution for the selected
SiPM [18]. Any identified dark counts are added to the list. If
no photon or dark count is detected, the sequence is restarted.

Then, the model checks for crosstalk. If crosstalk is
detected, it can slightly increase the output signal amplitude
of the SiPM, potentially causing changes to the signal’s rise
time. It is simulated as an individual event closely following
real photon or dark count events to model its impact. The
model also considers afterpulsing events, which can occur
following an avalanche caused by a photon or a dark count,
and includes them in the detected list if they occur.

Events on the detected list for each cycle are then pro-
cessed through the CFD, which effectively filters out most
afterpulses by eliminating lower amplitude events that do not
significantly alter the signal’s rising edge. The TDC further
refines the detected list, which now includes timestamps that
have passed the CFD, by imposing a Gaussian timing jitter
on the timestamps of the rising edge. Once each cycle is
complete, the TDC output array is set for post-processing.

B. Histogramming and Post-processing

Upon obtaining the TDC output array, which includes
timestamps with system-induced errors, the data is trans-
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formed into a histogram with a time bin width of 1 ns,
inline with the TDC’s modeled resolution of 55 ps. The
histogram, as illustrated in Fig. 4a, reveals two overlapping
luminescence decays; one associated with the reference lu-
minophores, and the other with CO2-sensitive luminophores,
where the reference decay exhibits a notably longer lifetime.
Fig. 4a inset highlights the transition from the combined
luminescent responses to the solely reference response.

Differentiation between these two responses is achieved
by identifying the transition point in the histogram. This
involves converting the histogram into a curve and applying a
Savitzky-Golay filter [24]. The window size for this smooth-
ing filter is determined through hyperparameter optimization,
systematically finding the most effective parameter values.
The comparison of unsmoothed and smoothed curves of the
natural logarithm of photon counts is depicted in Fig. 4b.

Subsequently, the derivative of the logarithmic curve is
calculated to identify the change point, as shown in Fig. 4c.
This point signifies a transition in the curve’s behavior,
indicating the completion of the CO2-sensitive luminophore’s
decay. Counts before this transition are influenced by both
reference and CO2-sensitive luminophores, whereas counts
after solely reflect the reference luminophore’s response.

Due to noise in the histogram, we faced challenges in
precisely identifying the change point in Fig. 4b. Therefore,
while dividing the data into 2 segments, we put a gap
interval around the change point that is not included in either
segment. This interval is determined by two parameters,
which are identified through hyperparameter optimization
and are on the ns scale, since we quantized the time of the
histogram bins to 1 ns. The first is the ref shift, the time shift
between the change point and the cut-off point of combined
photon counts. The second is the sens shift, the time shift
between the change point and the starting point of reference
photon counts.

Once the gap interval was set, we focused on the segment
representing only the reference luminophores, and additional
smoothing and linear fitting were applied to the logarithmi-

cally scaled data as seen in Fig. 4d. The y-intercept obtained
from this fitting provided us with the initial intensity of the
reference luminophores. With the known lifetime (τref ) of
the reference luminophores, we reconstructed their contribu-
tion and subtracted it. This subtraction yielded a histogram
that only showed CO2-sensitive luminophore photon counts
as illustrated in Fig. 4e.

To determine the lifetime, we applied exponential fitting,
with a focus on early-time photon counts, which were
weighted more significantly. The number of early sam-
ples that are weighted more heavily and the corresponding
weights are refined via hyperparameter optimization. Finally,
the accuracy of this fitting was evaluated using percentage
error analysis. The resulting fitting curve and extracted
lifetime for a lifetime of 4 ns are illustrated in Fig. 4f,
demonstrating the effectiveness of the proposed methodology
in capturing the decay characteristics of the luminophore.

IV. RESULTS AND DISCUSSION

After building the behavioral model and the lifetime
estimation algorithm for CO2-sensitive luminophores, we
tested it for a range of rapid lifetime values which vary
from 3 ns to 7 ns, imitating a real-case scenario. We
employed the hyperparameter optimization toolbox for a
detailed examination of several key parameters, as defined
in Section III: i) identifying the optimal window size for
both smoothing processes, ii) determining the most effective
ranges for change point detection to accurately capture
transition points, and iii) calibrating the weights and number
of weighted samples for the CO2-sensitive curve fitting for
varying cycle counts. Investigating these parameters’ optimal
values in post-processing significantly contributed to the
method’s accuracy in recovering lifetime values.

We generated five datasets per cycle count for each τ
value, focusing on minimizing the percentage error in esti-
mating the true lifetime values, maintaining accuracy above
85% across different scenarios. This hyperparameter opti-
mization process led to best-fit post-processing parameters,
effective across various cycle counts, showcased in Table I.
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TABLE I
HYPERPARAMETER OPTIMIZATION PARAMETERS

Cycle Count Window to
Signal Size
Ratio (%)

Ref shift /
Sens shift

(ns)

Weight/# of
Weighted
Samples

Accuracy
(%)

200,000 6.75 / 3.64 25 / 6 2 / 2 86.18
400,000 2.20 / 9.46 26 / 0 1 / 2 89.59
600,000 1.13 / 4.94 27 / 13 5 / 1 90.98
800,000 1.20 / 9.57 27 / 3 4 / 1 90.82

1,000,000 1.30 / 9.96 3 / 14 4 / 1 89.97

After the determination of post-processing parameters,
we reevaluated internal parameters, including cycle count,
one of the design parameters for future hardware system
implementation. In the TCSPC system, one iteration in the
process, corresponding to the duration between excitation
pulses, was established as 6µs. In each cycle, the system
captures a maximum of one photon due to pixel pitch and the
PDE of SiPMs, a limitation common to most TCSPC systems
requiring multiple successive excitations to construct a better
histogram [25]. To acquire the lifetime value of fast-decaying
CO2-sensitive luminophores through post-processing, we re-
quired a minimum of 200,000 cycles, corresponding to 1.2
seconds, to accumulate the necessary histogram counts be-
fore post-processing. While photobleaching is not a concern
with the TCSPC method for lifetime measurements [12],
prioritizing the reduction of the sensing film’s exposure to
excitation pulses and minimizing power consumption is a
key consideration which requires limiting the cycle count.

According to Table I, it was observed that higher cycle
counts could improve accuracy up to a certain point. Beyond
this point, increasing cycle count came with the cost of
increased DCR which eventually drove the accuracy down.
As a result, we identified a cycle count of 600,000 as the
highest accuracy while effectively managing DCR. At this
cycle count, the accuracy of retrieving the lifetime value
reached 90.98% as seen in Table I. A cycle count of 400,000
would provide slightly lower accuracy while reducing the
power consumption by one-third.

V. CONCLUSION

This paper presents a comprehensive behavioral model for
transcutaneous carbon dioxide measurement using a TCSPC
system with SiPM detectors, highlighting the potential for
future system miniaturization and efficiency improvements
through the integration of CMOS SPAD arrays and on-
chip histogramming. By optimizing post-processing param-
eters, we achieved an accuracy of 90.98% in the lifetime
measurement of CO2-sensitive luminophores at a 600,000
cycle count, while accounting for system nonidealities. Our
findings advocate for the preliminary behavioral modeling
of TCSPC systems to evaluate the performance of various
components to be selected for future design. This method-
ology not only advances our understanding of TCSPC in
luminescent sensing but also opens new doors for noninva-
sive medical monitoring technologies, promising innovative
applications in healthcare.
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