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Distributed Inductive Curvature Sensors
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Abstract—Soft robots, with their remarkable advantages
in various applications, face the critical challenge of em-
bodied perception, encompassing proprioceptive sensing
and perceiving unknown environments (exteroception). In
this article, we achieve simultaneous continuous shape re-
construction and external force estimation for soft bending
actuators using only a proprioceptive curvature sensor. We
introduce a novel distributed inductive curvature sensor
designed for capturing continuous shape through electro-
magnetic induction. In addition, we enhance an analytical
static model based on the Euler-Bernoulli curved beam
theory to predict the shape under pneumatic actuation and
external forces. Furthermore, a model-based optimization
algorithm is proposed to estimate external forces based
on the measured shape. Extensive experimental validation
supports the efficacy of the proposed sensor and algo-
rithms.

Index Terms—Curvature sensors, force estimation, in-
ductive coils, shape reconstruction, soft bending actuators.

[. INTRODUCTION

ance and safe human-robot interaction, soft robots have
been extensively studied in exploring unknown environments [ 1]
and grasping delicate objects [2]. To enable soft robots to possess
embodied intelligence, it is significant for them to acquire the
embodied perception necessary to obtain essential self-state
feedback and perceive unknown environments. However, unlike

D UE to their intriguing properties, such as intrinsic compli-
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traditional rigid robots that are typically equipped with reliable
sensors, soft robots face challenges in perception due to their infi-
nite degrees of freedom. For example, high-accuracy continuous
shape sensing is important for obstacle avoidance and position
control, but it is challenging, especially under the influence
of gravity and external forces [3]. Moreover, it is crucial for
soft robots to estimate external forces without exterior sensors
when interacting with the environment in applications such
as minimally invasive surgery [4]. Therefore, it is essential to
develop a sensory system for soft robots, enabling simultaneous
continuous shape sensing and external force estimation.

While advances in modeling have enabled open-loop control
for softrobots in limited cases [5], [6], proprioceptive feedback is
essential for closed-loop control in the presence of unknown ex-
ternal loads and complex nonlinear behaviors, such as hysteresis
and viscoelastic effects [3]. Curvature sensors, crucial for soft
robots with prevalent bending motion, have included resistive
and piezoresistive bend sensors [7], [8], [9], liquid metal-based
sensors [10], and IMU-based sensors [11]. Nevertheless, most
studies only address the measurement of single-point curva-
ture, primarily due to the complicated packaging process and
sensing techniques [12]. Recent efforts to measure multipoint
curvatures focused on distributed sensors and machine learning
to establish mapping from sensor signals to full shape defor-
mation [13], [14]. Despite notable shape sensing capabilities,
these methods often have complex sensor structures and tightly
coupled sensor data that are time-consuming to process. To
employ machine learning for shape reconstruction, they fre-
quently require extensive data and significant tuning of neural
network parameters. Optical sensors like fiber Bragg grating
(FBG) sensors can measure strains at multiple locations and
enable shape reconstruction [12]. However, they are limited by
high instrumentation costs and temperature dependence. Our
shape sensor is inspired by a recent study, known as ShArc,
which introduced a low-cost, scalable, and responsive geometric
technique for multibend shape sensing through the detection of
differential capacitance [15]. However, ShArc lacks high spatial
resolution, requiring two receiver pads for the measurement of
each sensor segment’s curvature.

Intrinsic force sensing refers to the inference of external forces
acting on the soft robot without the use of dedicated force
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sensors [4]. It is typically realized based on some configuration-
level information (such as shape measurement) and the actuation
input. This kind of exteroception is complicated due to strong
coupling between the kinematics and the statics of soft
robots [16]. Some past works focused on characterizing the
contact forces, for example, estimating the external load using
an augmented rigid body model [17], and predicting the contact
force through a long short-term memory network [16]. However,
most studies cannot achieve both accurate force estimation
(magnitude and orientation) and high-resolution shape sensing
simultaneously.

In this work, we present, to the best of the authors” knowl-
edge, the first multimodal perception system for soft robots,
encompassing not only continuous shape proprioception but
also accurate intrinsic force sensing. The most relevant work
we can find is a continuum robot with FBG-based torsion
sensing [18], which, while capable of estimating both shape
and tip force simultaneously, lacks complete proprioception due
to the need for an external pose sensor. Our first contribution
is designing a novel distributed inductive curvature sensor for
real-time monitoring of the shape of soft bending actuators.
Compared with previous induction-based proprioceptive sens-
ing approaches that require wrapping an actuator with conduc-
tive wires [19], [20], the fabrication of the proposed sensor is
easily implementable and scalable for various bending actuators.
In addition, a force estimation algorithm is developed to estimate
the external forces acting on soft bending actuators by enhancing
the Euler—Bernoulli curved beam theory.

The rest of this article is organized as follows. The design
and fabrication of the proposed proprioceptive curvature sensors
are presented in Section II, followed by the shape reconstruc-
tion algorithm based on piecewise-constant curvature (PCC) in
Section III. In Section IV, we describe the modeling of soft
bending actuators, considering both the presence and absence
of external forces, and develop a model-based force estimation
algorithm. The experimental results for evaluating the sensor
and algorithms are presented in Section V. Finally, Section VI
concludes this article and provides future work directions.

[I. DISTRIBUTED INDUCTIVE CURVATURE SENSORS
A. Design and Fabrication of the Curvature Sensors

A distributed inductive curvature sensor, shown in Fig. 1,
is developed for shape sensing in soft actuators. It measures
distributed curvatures by detecting relative shifts between the
receiver strip and transmitter strip through electromagnetic in-
duction, where the strips populated with inductive coils are made
with the flexible printed circuit board (FPCB) technology. The
spacer strips, made of blank FPCBs, are stacked to maintain a
specified distance d between the receiver and transmitter strips.
The receiver strip, spacer strips (eight used in this work), and
the transmitter strip are stacked together from top to bottom
and inserted into the silicone sleeve, as shown in Fig. 1(a). The
silicone sleeve (Exoflex-0030, Smooth-on) is flexible enough
to attach to soft bending actuators without compromising their
stiffness. A PVC membrane (Morepack) is attached to the inner
surface of the sleeve during its curing process. The membrane
tightly encases the strips to prevent loosening in the thickness
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Fig. 1. lllustration of the proposed curvature sensor. (a) Components
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Fig. 2. Design and concept of the distributed inductive curvature sen-
sor. (a) Side view of the sensor with NV reference points (top and bottom)
along the length, in both straight and bending states. (b) Top view of
each strip in the sensor. (c) lllustration of the curvature sensing principle
for each segment.

direction and reduce friction between the strips and silicone,
allowing for free sliding. Fig. 1(b) depicts the assembled sensor
prototype.

To fix the layers, 3-D-printed cylinder pins are passed through
the holes of strips on one side, as shown in Fig. 2(a). To
discuss the sensor design and sensing principle, consider virtual
reference points uniformly spaced on the top and bottom strips
along the sensor length, where the corresponding top and bottom
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Fig. 3. (a) lllustration of the assembled robot. (b) Cross-sectional view
with notation for geometric parameters.

reference points are aligned. Here the number of reference points
on each strip corresponds to the number of sensing segments.
When the sensor bends into a curved shape, a misalignment
occurs between the reference points on the top and bottom strips.
The receiver strip has NV coils whose centers are aligned with the
reference point. In the transmitter strip, /N 4+ 1 transmitter coils
are evenly arranged, and the middle points between adjacent
transmitter coils are aligned with the reference points, as shown
in Fig. 2(b). During operation, a sinusoidal voltage with a
constant amplitude is applied to each transmitter coil, generating
an alternating current (ac) magnetic field. The ac magnetic fields
produced by adjacent transmitter coils have opposite directions,
as distinguished by the red and blue coils in Fig. 2(b). With
this arrangement, each receiver coil can sense the combined
influence of the magnetic fields generated by the underlying
transmitter coils, and thus the spatial shift between the receiver
coil and the corresponding transmitter coils.

In this work, we focus on the receiver strips’ shape since it will
be closer to the soft actuator. For analysis, we divide the receiver
strip into N segments, with the length of the ¢th segment denoted
asl;,wherei = 1,2, ..., N, asshowninFig. 2(c). Each segment
has the center of a receiver coil on its end (toward the free end
of the sensor), with the exception of the last segment, where
the segment length extends to the tip of the sensor structure.
Due to the alternating pattern of transmitter coils, we distinguish
“even” and “odd” segments, as shown in Fig. 2(c), where one
can see the relationships between sensed differential magnetic
fields and receiver—transmitter spatial shifts for even and odd
segments, respectively. Using the signals detected from each
segment along the sensor, one can extract the relative shifts and
distributed curvatures using the algorithm detailed in Section III.

B. Integration With Soft Bending Actuator

While there are various ways to implement soft bending
actuators, we employ a soft fiber-reinforced pneumatic bending
actuator (SFPBA) as an example. The SFPBA is fabricated by
casting silicone (Dragon Skin 20, Smooth-On), as described
in [5]. The top surface of the sensor is attached to the bottom
surface of SFPBA using silicone glue (SIL-Poxy, Smooth-On),
as shown in Fig. 3(a), forming a soft bending actuator with
proprioceptive curvature sensing.

IIl. SHAPE RECONSTRUCTION ALGORITHM

A shape reconstruction algorithm for the proposed curvature
sensor is developed. The signal values of N receiver coils
represent the amplitudes of their induced ac voltages, and are
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Fig. 4. lllustration of geometric relationship for shape reconstruction.
(a) Relationship between the relative shift AS; and the bending geom-
etry in the ith segment. (b) PCC kinematic representation for the entire
receiver strip.

denoted as A € RY. As mentioned before, these signals are
determined by the receiver—transmitter spatial shifts S € R%.
The obtained signals from the measurement hardware have a
constant offset Ay € RY. We consider AA, with the offset
removed, in the reconstruction process as follows:

AA=A— A (1)

where the offset Ay is obtained as the sensor signals when the
sensor is flat. Due to the opposite direction of sensed differen-
tial magnetic fields, the relationships between the components
of AA and the corresponding spatial shifts in odd and even
segments exhibit opposite monotonic trends. Therefore, we use
separate polynomial functions, f,qq and feyen, to describe them;
in particular, for segment ¢ as follows:

g, = { foaa(AA) = Tk (DA, idsodd o)
' feven(AAi) = ZZ:O bk(AAi)k, 1 is even

forn > 1, where S; is the total relative shift of the reference point
in the ith segment, aj, and by, (k = 1,...,n) are coefficients of
the polynomial functions in odd and even segments, respectively.
These coefficients are identified by experiments.

After obtaining the total relative shift .S;, one can calculate
the curvatures of different segments through geometry. First,
the local relative shift AS; in the ith segment can be computed
as the difference between the total relative shifts in the (¢ — 1)th
and ith segment as follows:

AS; =8 —Sii, i=23,....N
{ASI s )

The continuous shape of the sensor with N segments can be
approximated by a set of arcs with constant curvatures, widely
known as the PCC model [21]. With the PCC model, the local
relative shift AS; in the ith segment [see Fig. 4(a)] is related to
the constant curvature «; of the ith segment as follows:

AS;
Ki =
! dl;
where d is the distance between the two strips. Note that x; can
be negative when AS; is negative.
The PCC kinematic representation for the sequential segments

of the entire receiver strip of the sensor is shown in Fig. 4(b).
For the ¢th segment, it has the length [;, the curvature x;, and the

“
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bending angle 6;. A coordinate frame ; is attached at the tip of
the ¢th segment, whereas an inertial frame 3y is located at the
origin. For each coordinate frame 3;, its x-axis points toward
the center of the arc, its y-axis is aligned with the tangential
direction, and the z-axis is defined according to the right hand
rule. The homogeneous transformation matrix mapping from
>i_1 to 2J; can be formulated as follows:

T (0) = {g@(—@i) pzill(ei)}

4 T
where  p7'(0;) = [é—(l —cos(6;)) é— sin(6;) O}
0; = lik; &)

R.(0) € SO(3) indicates arotation about the z-axis by the angle
0 and pﬁ" (0;) represents the position of the ith segment’s tip
with respect to the local base frame >;_;. If a point P with arc
length s is in the ¢th segment, as shown in Fig. 4(b), then the
coordinates of P with respect to the inertial frame >, denoted
as p°(s), can be computed as follows:

B’O(S) } =TY(0)) - T3 (02) - T3 (6:1) - [217“(8) ] (©)

where p’~!(s) is the position of P with respect to ¥;_1, which
can be computed as follows:

T
o (1 - cos(@isfl]‘ii" )) Lsin(6; 57{:"’1) 0}
s € (L1, Li (N

where L; is the sum of the length of the first 7 segments. Note
that Ly is defined as 0, and Ly equals the actuator length L.

In summary, given the signal values of A, the position p°(s)
of every point on the sensor can be determined.

IV. MODEL-BASED FORCE ESTIMATION ALGORITHM
A. Static Modeling in the Absence of External Forces

As the air pressure in the chamber increases, the SFPBA
integrated with the curvature sensor bends in an arc with a
constant curvature K, when there are no external forces and
the weight of the actuator is negligible [S]. Based on the static
modeling of SFPBA as discussed in [8], the relationship between
the internal air pressure P, and the bending angle 6y can be
obtained from the moment balance equation as follows:

Ma = M00 + Ms- (8)

Here M, represents the pressure-induced bending moment, M,
is the bending moment caused by the elasticity of SFPBA, and
M, represents the bending moment required to bend the sensor
layer. M, can be written as follows:

B 463 + 3ma’b
- 6

where a is the inner radius of SFPBA’s chamber, and b is the
bottom layer thickness, as shown in Fig. 3(b). Mp, can be

M, P C))
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M%:/ 55 -2(a+1)3dB
0

™

+2/Ot (/0 sr.0 ((a+7)2sin g +b(a+7)) dqb)dr

(10)
_ 1 Bbo
WhGI‘GSﬁ =u ()\.5 — > JAg = — +1
A’ L
_ 1 R+b+sing(a+T)
Sr,¢ = [i <M,¢ - ) shrp =
Arp® R
(11)

where ¢ is the wall thickness, (sg, Ag) and (s ¢, Ar o) are the
longitudinal stress and stretch of the flat rectangular wall and
the hemicylindrical top wall, respectively, and R is the radius
of the circular arc. i1 represents the effective shear modulus,
determined through calibration. M can be approximated as a
linear function of 6, [8] as follows:

M, = p 60 (12)

where p is the bending stiffness of the sensor determined by
calibration.

By substituting (9)—(12) into (8), we can numerically solve
for the bending angle 6 with a given input pressure P, and the
curvature K is obtained by Ko=6y/L.

B. Static Modeling With External Forces

With gravity and external forces, the actuator will not maintain
a shape with constant curvature, so the static modeling should
consider these forces, including the effects of the actuation
pressure, a point force, and a distributed force (gravity). Without
the loss of generality, assume that the point force is applied
at the tip, which commonly occurs when the actuator presses
against or grabs an external object [8], [22]. The tip force can be
decomposed into horizontal force I, and vertical force I}, as
shownin Fig. 5. In addition, the gravity is a uniformly distributed
force applied along the length, and the gravity ¢ of each length
unit can be calculated as ¢ = mg/ L, where m is the total weight
of the robot including the SFPBA and the sensor layer, and g is
the gravitational acceleration.
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As discussed in [22] and [23], the large deflection of the soft
actuator can be modeled using the Euler—Bernoulli beam theory
adapted for a curved cantilever beam. The shape of the actuator
can be obtained by solving the following ordinary differential
equation (ODE):

EI (dz(a(si))> + F, cos(6(st))

dStz
+ Fysin(6(s:)) + gsesin(0(s¢)) =0

where s; is the arc length measured from the tip (s; € [0, L]
and s, = L — s), and 6(s;) denotes the angle between the y-
axis and the tangential axis of the beam at s;, as illustrated in
Fig. 5. E represents the equivalent Young’s modulus, and [ is the
second moment of area. F/1 is referred to as a single parameter
describing the flexural rigidity. The boundary conditions for the
above ODE include the following:
d6(0)

(L) =0, &, Ko
where the initial curvature K| is determined by static modeling
for free motion with a given pressure P;;, (see Section IV-A).

The flexural rigidity /1 in the above static modeling is usually
considered to be constant, thus the previous studies utilize a few
pairs of pressures and loads to determine E'J [22], [23]. However,
the flexural rigidity of soft pneumatic robots typically increases
in proportion to higher actuation pressure [24], [25]. Therefore,
we introduce a stiffness-tunable model, expressing the relation-
ship between flexural rigidity £'1 and actuation pressure P;, as
a linear function:

(13)

(14)

EI(Pln) =% + ’Ylpin

where vy and 7y, are experimentally determined coefficients.
Substituting (15) into (13) yields the following ODE:

EI(Py) (d Ei(;t»
+ Fysin(6(s¢)) + gse sin(f(s;)) = 0.

After solving 6(s;) in (16) using the shooting method, we
integrate to obtain the coordinates of every point p(s;):

x(st) = fLS‘ sin(6(7))dr
y(s¢) = [, cos(O(r))dr .
p(se) = [»’U(St) y(st) 0]

15)

) + F, cos(0(s1))

(16)

a7

C. Force Estimation Algorithm

Utilizing sensor signals and actuation pressure as inputs, we
propose an estimation algorithm for the external force applied
on the robot, as depicted in Fig. 6. As discussed in Section III,
the coordinates of every point along the robot p°(s) can be
reconstructed with given A and Ay, where s € [0, L]. With
given P, the initial curvature K, can be calculated through
static modeling without external forces, and the flexural rigid-
ity is determined by the stiffness-tunable model in (15). Now
with any given horizontal force F, and vertical force F,, the
robot’s configuration P(st) can be predicted using (13)-(17).
The external forces (F, Fy) can be estimated by minimizing
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Fig. 6. Schematic of the proposed force estimation algorithm. In this
framework, the inputs consist of the signal values A and the background
signal values Ay, from the curvature sensor, along with the actuation
pressure P;, from a pressure sensor. The outputs are optimal force
Fy, Fy making the predicted shape p(s:) closest to the reconstructed
shape p°(s).

the difference between the predicted shape p(s;) and the recon-
structed shape p°(s). Furthermore, constraints on F, and F),
for practical applications, such as fixed directions in inertial or
body coordinates [22], can be incorporated in the estimation
process. In summary, this can be formulated as a least-square
optimization problem:

L
(B ) = angmin [ ([(5) ~ o))
F..F, Jo

st f(Fy,F)) =0 (18)

where s; = L — s, and the function f captures the constraints
on I, and F,.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

To validate the proposed curvature sensor and force estimation
framework, an experimental platform is developed, as shown
in Fig. 7(a). The SFPBA, weighing 25.86 g with structural
dimensions (a, b, t, L) = (6.35,2,2, 134) mm, is clamped at the
proximal end to the horizontal framing rail, and the distal end
is free to bend and interact with objects. A pneumatic control
board is utilized to control the air pressure F;,, via an underlying
PID controller.

The sensor weighs 13.41 g, making the total robot weight
be 39.27 g. The silicone sleeve thickness ¢ is 0.75 mm, and
the distance d between the top and bottom strips is 1 mm. The
receiver strip is segmented into 16 sections (N =16) with lengths
(L, 1o, 3, ..., 115, lie) = (10,8,8, ..., 8, 10) mm, as illustrated
in Fig. 2(b). Both receiver and transmitter coils, each with 6 mm
diameters and a total of 20 turns, are arranged in two FPCB
layers. The spacing between coils is § mm. The hardware system
for the curvature sensor includes a power supply, a waveform
generator, and a circuit board operating on a £5 V power supply
(KETHELEY 1103). A signal generator provides the excitation
voltage for the transmitter coil array, applying a 1 MHz sinu-
soidal signal with a 2 V amplitude. Using the designed circuit
board, the 16 receiver coil signals are sequentially processed via
a multiplexer chip (ADG1406). The selected signal is processed
by a lock-in amplifier (AD8333) to capture the induced ac
voltage’s amplitude and is then converted into a digital signal
using the embedded ADC in the MCU (STM32F407).
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Fig. 7. lllustration of the experimental setup and processes. (a) Overall
configuration for the SFPBA with the curvature sensor. (b) Calibration
process for shape reconstruction by pressing the robot against the cal-
ibration strip. (c) Validation experiment for static modeling with external
force by hanging a load on the tip. (d) Validation experiment for the force
estimation algorithm with applied contact force F. on the fingertip of a
hand model.

To capture the actual shape of the robot (as ground truth), a
high-resolution camera (RealSense D435, Intel) is mounted on
the side, as depicted in Fig. 7(a). Fourteen color dots, uniformly
distributed along the actuator’s bottom layer, capture the shape
of that layer, whose length remains unchanged during actuation
due to the strain-limiting material [5]. Each dot is detected by
analyzing RGB channel mean intensity using MATLAB’s Image
Processing Toolbox.

B. Results on Shape Reconstruction for the Curvature
Sensor

To establish the magnitude-shift mapping in (2), various 3-D-
printed arc calibration strips with different curvatures are used.
Considering the accessible workspace with respect to the length,
the radii of calibration strips, R.,j, are setto 40, 50, 60, 70, 80, 90,
100, 200, 300, and 400 mm. The corresponding curvatures, K¢al,
are determined as 25, 20, 16.67, 14.29, 12.5, 11.11, 10, 5, 3.33,
and 2.50 m~'. After mounting each calibration strip, we can
manually press the soft actuator onto the calibration strip and col-
lect the signal data, as shown in Fig. 7(b). The actual total relative
shift .S; can be determined as S; = Keq) - d - L;. Afterward, odd
and even segment data are curve-fitted in MATLAB to identify
coefficients a and by, in (2). We tested the calibrated coefficients
using validation strips with untested radii (R, = 45-150 mm).
With the proposed shape reconstruction algorithm, the recon-
structed shape p°(s) is obtained for each validation curvature.
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TABLE |
COMPARISON OF CONSTRUCTED RESULTS FOR DIFFERENT CURVATURES

150.75
21.86 17.94 1521 1320 11.66 1044 6.63

R:, (mm) 4575 5575 6575 7575 8575 9575 Al

Fval (m~1)

Krecon (m~1)  21.65  17.60 1499 1298 1150  10.20 6.74 -
n=1 oK (%) 0.94 1.88 1.43 1.71 1.39 229 1.63 1.61 £0.42
(6p)max (%) 3.98 2.61 1.67 1.42 1.77 2.62 1.21 2.1940.96

Krecon 2177 1773 1511  13.07 1158 10.26 6.69 -
n=2 0k (%) 0.38 1.13 0.65 0.99 0.74 1.80 0.87 0.94 4+ 0.45
(0p)max (%) 3.66 2.65 1.85 1.24 1.19 2.10 0.98 1.95+0.95

Krecon 21.69 1775 1520 1320 1171 1040 6.74 -
n=3 Ok (%) 0.76 1.04 0.08 0.08 0.46 0.41 1.69 0.65 £ 0.58
(0p)max (%) 3.01 2.05 1.50 1.22 1.19 1.27 0.89 1.59 +£0.72

* indicates the actual radii Ry, considered the silicone sleeve thickness c.
Red numbers represent the best results among n = 1,2, 3.
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Fig. 8. Shape reconstruction using third-order polynomials on valida-
tion strips. The solid and dotted lines represent reconstructed and actual
shapes, respectively.

Table I shows the comparison between the actual curvatures £)
and the reconstructed curvatures K econ for different polynomial
degrees (n = 1,2, 3). The reconstructed curvatures Kpecon are
determined by matching the reconstructed shape p°(s) with the
predicted one via the following least-squares optimization:

foccon = axgmin () = pron(a s

Peon (8, k) = [L(1 = cos(ks)) L sin(ks) O}T

where peon (S, %) represents the positions of the constructed
circular shape with curvature x along the arc length. While
the low relative error 0K=|Kyecon — Kval|/fKval 10 the curvature
measurement confirms the functionality of the proposed sensor,
accurate prediction of the position is crucial in the subsequent
force estimation framework. We can find the maximum position
error (6p)max between the reconstructed shape p°(s) and the
actual validation shape peon (s, kva1) along the arc length with
respect to the robot’s length as follows:

(D) ma = masx [ LP) = Peon(s: Kva|

Jnax 7 - 100.

(20)

As shown in Table I, all reconstructed curvature errors are be-
low 2%, and all maximum position errors are under 4%. For n =
3, the magnitude-shift mapping achieves the highest accuracy
in curvature (0.65% = 0.58%) and position (1.59% = 0.72%).
Fig. 8 shows the shape reconstruction results of validation strips
with n = 3 calibrated coefficients. Compared with ShArc [15],
the proposed inductive curvature sensor performs slightly better
in reconstructing shapes with small curvature, as it is more
sensitive to detect the differential inductance than differential
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capacitance within small displacement. However, curvature and
position errors increase with larger curvatures, possibly due to
unbalanced calibration data—total relative shift S;. As S; sums
up from 0 for each calibration strip, it includes more small
shift data. Another potential factor is the curved deformation of
coils during large bending motions, leading to complex changes
in magnetic fields and sensing, which may not be accurately
captured by sensor calibration. Future research can explore cali-
bration improvement. The proposed inductive curvature sensor,
with its compact alternating structure, theoretically has twice as
many PCC segments as ShArc within the same length, indicating
potential for higher resolution in capturing irregular shapes.
Additional experiments also confirm the sensor’s immunity to
the presence of metallic objects nearby and external dc magnetic
fields. Technically, its performance is only impacted by external
ac magnetic fields matching the excitation current frequency
(1 MHz in this work). Regarding computational efficiency, this
shape reconstruction can be implemented in real-time at a fre-
quency of at least 35 Hz on a laptop with an Intel i7-11800H pro-
cessor and 32.0 GB RAM, as demonstrated in the online video.!
We note that the inductive sensors have a sensing bandwidth of
over 50 kHz. The slowdown is mainly due to the configuration
and computation of the circuit board, which can be significantly
improved by optimizing embedded processing in the future.

C. Results on Static Modeling

To establish the connection between the air pressure and the
bending angle in the absence of external force, we need to
calibrate the material properties zi and 5. Using the same cali-
bration method in [5], effective shear modulus f for the SFPBA
without the sensor can be identified. The stiffness of sensor pi
is determined using the calibration procedure in [8]. Notably, an
initial bending angle should be added to the analytical bending
angle due to the prebending phenomenon.

To validate static modeling with external forces, experiments
are conducted with different actuation pressures and tip loads,
as shown in Fig. 7(c). The robot is only subject to vertical
downward force Fy. We collect a dataset for evaluating the
modeling accuracy across the accessible workspace. The dataset
includes actual shapes captured from the camera and sensor
signals at the steady state after actuation with various pressures,
ranging from 20 to 120 kPa in 10 kPa increments. Meantime,
tip loads increase progressively from O to 0.3 N in 0.1 N steps
for each pressure level. The force range is selected to generate
comparable moments relative to the actuation moment and to
prevent actuator buckling. Effective flexural rigidity ET in (13)
is determined for various pressure levels using randomly chosen
pressure-load combinations, following the calibration process
in [23]. Employing linear regression, we identify the coefficients
in (15) as o = 2.53 x 1073 and ~; = 1.25 x 107°. Predicting
the shape using (15)—(17) with known P, and F},, we evaluate
the maximum position errors based on the position of 14 colored
dots captured by the camera. The averaged maximum position

![Online]. Available: https://youtu.be/0Kpc-y5kq6U
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Fig. 9. Experimental results on static modeling. (a) Maximum position

errors in shape reconstruction based on analytical Euler—Bernoulli beam
theory and sensor measurements, averaged across tip loads at the
same pressure level. (b) Comparison of the predicted shapes based
on analytical modeling and on the sensor measurement with the ground
truth, under 40 kPa pressure with various loads.
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Fig. 10.  Force estimation errors for various tip loads F), under different
actuation pressures Pi,.

errors between the predicted shape based on analytical mod-
eling and the experimental data are below 6% across different
pressures, as shown in Fig. 9(a). At the same time, the sensor
measurement errors are below 6.32%. Fig. 9(b) illustrates exam-
ples of reconstructed shapes under 40 kPa pressure with various
loads, showing consistent patterns observed at other pressure
levels. Both sensor measurements and analytical modeling fit
the experimental data well, except for the 0.3 N case, which
exhibits nonnegligible deviations. The possible reason is that
the cross-section of the actuator deforms when the bending is
larger, leading to a deviation in the base orientation from the
straight upward direction. This factor was not considered in
either the sensor-based reconstruction and the analytical model.
The overall accuracy of both the analytical model and the sensor
allows for directly estimating the external force from the curva-
ture sensor measurement while simultaneously reconstructing
the shape.

D. Results on Force Estimation

Experiments have been conducted to validate the force esti-
mation algorithm in different scenarios.

1) Tip Load Estimation: We utilize the acquired dataset for
experiments on tip load estimation, covering various pressure-
load combinations. In this scenario, the constraint in (18) stip-
ulates that I, = 0. The tip load F), is estimated based on the
provided actuation pressure and the measured shape based on
the curvature sensor, following the framework in Fig. 6.
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TABLE Il
COMPARISON OF MEAN ERRORS (%) IN CONTACT FORCE ESTIMATION WITH
AND WITHOUT GEOMETRIC CONSTRAINT

Without Constraint ‘ With Constraint

Force Range (N)

\
| £ B R
0-0.1

| o B, F.

4.13 293 4.27 1.57 391 2.61

0.1-0.2 8.13 2.51 4.40 3.02 3.43 1.35
0.2—-0.3 1770 13.18 9.04 742 429 7.52
0.3-0.4 6.29 4295 1219 | 9.15 21.01 8.17

Mean of Full Range | 14.90 1291 721 | 515 677 486

Fig. 10 shows the force estimation error for each pressure-load
combination. The average estimation error is 11.9% + 14.4%
with respect to the maximum load (0.3 N). While the tip load
estimation error is significant when the load is 0.3 N, the force es-
timation error when the load is 0-0.2 N is only 5.49% + 4.99%.
The main reason is that both sensor measurement and analytical
static modeling have larger errors when the bending is signifi-
cant, causing the estimated force Fy to be optimized to approach
the deviated shape in (18).

2) Contact Force Estimation: The contact force is a type of
follower force, wherein the tip force maintains a fixed direction
in body coordinates. In this scenario, the robot’s tip is fixed
on the fingertip of a model hand, and the contact force F, will
occur in the orthogonal upward direction when the robot bends,
as illustrated in Fig. 7(d). We collect 12 random data points from
various robot configurations and hand postures, including pres-
sures, sensor signals, and actual contact forces recorded from
a 1-D force sensor (FSGOOSWNPB, Honeywell). To validate
the force estimation algorithm, we test it in two modes: The
first estimates horizontal and vertical forces without constraints,
and the second incorporates constraints with prior knowledge
that the contact force F, direction is perpendicular to the tip
orientation, introducing the following geometric constraint into
(18):

f(Fy, Fy) = Fysin(6y) + Fy cos(6y) =0 (21)
where the angle of the tip, 6y, is calculated from static modeling
for free motion. The functions fininsearch and fimincon in MAT-
LAB are employed to optimize F), and F}, without and with
the geometric constraint, respectively. If no feasible solution
satisfies the constraint, the best feasible point can be obtained
using fimincon. The errors between the estimated forces Fz, Fy,
and their resultant force F, ¢» and the actual forces F;, I, and F,
are calculated with respect to the maximum contact force. The
ground truth of F; and I}, are obtained by decomposing the force
measured by the force sensor into tangential and orthogonal
directions, as provided by the vision system. The comparison
of the mean errors for each force range between two modes are
documented in Table II. The geometric constraint reduces the
errors of estimated force Fz, Fy from 14.90% and 12.91% to
5.15% and 6.77%, respectively. The result also shows that the
error increases as the contact force increases, and the reason
is the same as in the tip load case. In terms of computational
efficiency, the constraint-free force estimation algorithm aver-
ages 0.42 s per estimation, whereas the constrained algorithm
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averages 1.38 s per estimation. The force estimation algorithm,
especially the case with constraints, introduces relatively large
latency in real-time operation compared with the speed of shape
reconstruction. Given that, one could potentially perform shape
sensing and force estimation at different time scales. The force
estimation implementation was carried out using App Designer
in MATLAB, as shown in the online video.

VI. CONCLUSION

In this study, we present a systematic approach to simultane-
ous shape reconstruction and force estimation in soft bending ac-
tuators, leveraging a novel distributed inductive curvature sensor
based on electromagnetic induction. In addition, a force estima-
tion framework was proposed, facilitated by both sensor data and
analytical static modeling, enabling the accurate estimation of
external forces at the tip. Rigorous experiments were conducted
to validate the sensor and the shape reconstruction performance,
static modeling, and the force estimation algorithm.

The future work aims to use real-time shape sensing as
feedback for developing control algorithms, with a focus on
extending the approach to 3-D shape sensing and speeding up
the force estimation algorithm.
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