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Abstract—Soft robots, with their remarkable advantages
in various applications, face the critical challenge of em-
bodied perception, encompassing proprioceptive sensing
and perceiving unknown environments (exteroception). In
this article, we achieve simultaneous continuous shape re-
construction and external force estimation for soft bending
actuators using only a proprioceptive curvature sensor. We
introduce a novel distributed inductive curvature sensor
designed for capturing continuous shape through electro-
magnetic induction. In addition, we enhance an analytical
static model based on the Euler–Bernoulli curved beam
theory to predict the shape under pneumatic actuation and
external forces. Furthermore, a model-based optimization
algorithm is proposed to estimate external forces based
on the measured shape. Extensive experimental validation
supports the efficacy of the proposed sensor and algo-
rithms.

Index Terms—Curvature sensors, force estimation, in-
ductive coils, shape reconstruction, soft bending actuators.

I. INTRODUCTION

D
UE to their intriguing properties, such as intrinsic compli-

ance and safe human–robot interaction, soft robots have

been extensively studied in exploring unknown environments [1]

and grasping delicate objects [2]. To enable soft robots to possess

embodied intelligence, it is significant for them to acquire the

embodied perception necessary to obtain essential self-state

feedback and perceive unknown environments. However, unlike

Manuscript received 20 January 2024; revised 25 March 2024; ac-
cepted 30 April 2024. Date of publication 21 May 2024; date of current
version 16 August 2024. Recommended by Technical Editor G. Berselli
and Senior Editor Q. Zou. This work was supported in part by the
National Science Foundation under Grant CMMI 1940950 and Grant
CNS 2237577. (Corresponding author: Yu Mei.)

Yu Mei, Lei Peng, Xinda Qi, Yiming Deng, Vaibhav Srivastava, and
Xiaobo Tan are with the Department of Electrical and Computer En-
gineering, Michigan State University, East Lansing, MI 48823 USA
(e-mail: meiyu1@msu.edu; penglei1@msu.edu; qixinda@msu.edu;
dengyimi@msu.edu; vaibhav@msu.edu; xbtan@egr.msu.edu).

Hongyang Shi is with the Department of Electrical and Computer En-
gineering, University of Texas at Austin, Austin, TX 78712 USA (e-mail:
hongyangshi@utexas.edu).

This article has supplementary material provided by the au-
thors and color versions of one or more figures available at
https://doi.org/10.1109/TMECH.2024.3397825.

Digital Object Identifier 10.1109/TMECH.2024.3397825

traditional rigid robots that are typically equipped with reliable

sensors, soft robots face challenges in perception due to their infi-

nite degrees of freedom. For example, high-accuracy continuous

shape sensing is important for obstacle avoidance and position

control, but it is challenging, especially under the influence

of gravity and external forces [3]. Moreover, it is crucial for

soft robots to estimate external forces without exterior sensors

when interacting with the environment in applications such

as minimally invasive surgery [4]. Therefore, it is essential to

develop a sensory system for soft robots, enabling simultaneous

continuous shape sensing and external force estimation.

While advances in modeling have enabled open-loop control

for soft robots in limited cases [5], [6], proprioceptive feedback is

essential for closed-loop control in the presence of unknown ex-

ternal loads and complex nonlinear behaviors, such as hysteresis

and viscoelastic effects [3]. Curvature sensors, crucial for soft

robots with prevalent bending motion, have included resistive

and piezoresistive bend sensors [7], [8], [9], liquid metal-based

sensors [10], and IMU-based sensors [11]. Nevertheless, most

studies only address the measurement of single-point curva-

ture, primarily due to the complicated packaging process and

sensing techniques [12]. Recent efforts to measure multipoint

curvatures focused on distributed sensors and machine learning

to establish mapping from sensor signals to full shape defor-

mation [13], [14]. Despite notable shape sensing capabilities,

these methods often have complex sensor structures and tightly

coupled sensor data that are time-consuming to process. To

employ machine learning for shape reconstruction, they fre-

quently require extensive data and significant tuning of neural

network parameters. Optical sensors like fiber Bragg grating

(FBG) sensors can measure strains at multiple locations and

enable shape reconstruction [12]. However, they are limited by

high instrumentation costs and temperature dependence. Our

shape sensor is inspired by a recent study, known as ShArc,

which introduced a low-cost, scalable, and responsive geometric

technique for multibend shape sensing through the detection of

differential capacitance [15]. However, ShArc lacks high spatial

resolution, requiring two receiver pads for the measurement of

each sensor segment’s curvature.

Intrinsic force sensing refers to the inference of external forces

acting on the soft robot without the use of dedicated force
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sensors [4]. It is typically realized based on some configuration-

level information (such as shape measurement) and the actuation

input. This kind of exteroception is complicated due to strong

coupling between the kinematics and the statics of soft

robots [16]. Some past works focused on characterizing the

contact forces, for example, estimating the external load using

an augmented rigid body model [17], and predicting the contact

force through a long short-term memory network [16]. However,

most studies cannot achieve both accurate force estimation

(magnitude and orientation) and high-resolution shape sensing

simultaneously.

In this work, we present, to the best of the authors’ knowl-

edge, the first multimodal perception system for soft robots,

encompassing not only continuous shape proprioception but

also accurate intrinsic force sensing. The most relevant work

we can find is a continuum robot with FBG-based torsion

sensing [18], which, while capable of estimating both shape

and tip force simultaneously, lacks complete proprioception due

to the need for an external pose sensor. Our first contribution

is designing a novel distributed inductive curvature sensor for

real-time monitoring of the shape of soft bending actuators.

Compared with previous induction-based proprioceptive sens-

ing approaches that require wrapping an actuator with conduc-

tive wires [19], [20], the fabrication of the proposed sensor is

easily implementable and scalable for various bending actuators.

In addition, a force estimation algorithm is developed to estimate

the external forces acting on soft bending actuators by enhancing

the Euler–Bernoulli curved beam theory.

The rest of this article is organized as follows. The design

and fabrication of the proposed proprioceptive curvature sensors

are presented in Section II, followed by the shape reconstruc-

tion algorithm based on piecewise-constant curvature (PCC) in

Section III. In Section IV, we describe the modeling of soft

bending actuators, considering both the presence and absence

of external forces, and develop a model-based force estimation

algorithm. The experimental results for evaluating the sensor

and algorithms are presented in Section V. Finally, Section VI

concludes this article and provides future work directions.

II. DISTRIBUTED INDUCTIVE CURVATURE SENSORS

A. Design and Fabrication of the Curvature Sensors

A distributed inductive curvature sensor, shown in Fig. 1,

is developed for shape sensing in soft actuators. It measures

distributed curvatures by detecting relative shifts between the

receiver strip and transmitter strip through electromagnetic in-

duction, where the strips populated with inductive coils are made

with the flexible printed circuit board (FPCB) technology. The

spacer strips, made of blank FPCBs, are stacked to maintain a

specified distance d between the receiver and transmitter strips.

The receiver strip, spacer strips (eight used in this work), and

the transmitter strip are stacked together from top to bottom

and inserted into the silicone sleeve, as shown in Fig. 1(a). The

silicone sleeve (Exoflex-0030, Smooth-on) is flexible enough

to attach to soft bending actuators without compromising their

stiffness. A PVC membrane (Morepack) is attached to the inner

surface of the sleeve during its curing process. The membrane

tightly encases the strips to prevent loosening in the thickness

Fig. 1. Illustration of the proposed curvature sensor. (a) Components
and assembly layout of the sensor. (b) Assembled prototype.

Fig. 2. Design and concept of the distributed inductive curvature sen-
sor. (a) Side view of the sensor with N reference points (top and bottom)
along the length, in both straight and bending states. (b) Top view of
each strip in the sensor. (c) Illustration of the curvature sensing principle
for each segment.

direction and reduce friction between the strips and silicone,

allowing for free sliding. Fig. 1(b) depicts the assembled sensor

prototype.

To fix the layers, 3-D-printed cylinder pins are passed through

the holes of strips on one side, as shown in Fig. 2(a). To

discuss the sensor design and sensing principle, consider virtual

reference points uniformly spaced on the top and bottom strips

along the sensor length, where the corresponding top and bottom
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Fig. 3. (a) Illustration of the assembled robot. (b) Cross-sectional view
with notation for geometric parameters.

reference points are aligned. Here the number of reference points

on each strip corresponds to the number of sensing segments.

When the sensor bends into a curved shape, a misalignment

occurs between the reference points on the top and bottom strips.

The receiver strip hasN coils whose centers are aligned with the

reference point. In the transmitter strip, N + 1 transmitter coils

are evenly arranged, and the middle points between adjacent

transmitter coils are aligned with the reference points, as shown

in Fig. 2(b). During operation, a sinusoidal voltage with a

constant amplitude is applied to each transmitter coil, generating

an alternating current (ac) magnetic field. The ac magnetic fields

produced by adjacent transmitter coils have opposite directions,

as distinguished by the red and blue coils in Fig. 2(b). With

this arrangement, each receiver coil can sense the combined

influence of the magnetic fields generated by the underlying

transmitter coils, and thus the spatial shift between the receiver

coil and the corresponding transmitter coils.

In this work, we focus on the receiver strips’ shape since it will

be closer to the soft actuator. For analysis, we divide the receiver

strip intoN segments, with the length of the ith segment denoted

as li, where i = 1, 2, . . . , N , as shown in Fig. 2(c). Each segment

has the center of a receiver coil on its end (toward the free end

of the sensor), with the exception of the last segment, where

the segment length extends to the tip of the sensor structure.

Due to the alternating pattern of transmitter coils, we distinguish

“even” and “odd” segments, as shown in Fig. 2(c), where one

can see the relationships between sensed differential magnetic

fields and receiver–transmitter spatial shifts for even and odd

segments, respectively. Using the signals detected from each

segment along the sensor, one can extract the relative shifts and

distributed curvatures using the algorithm detailed in Section III.

B. Integration With Soft Bending Actuator

While there are various ways to implement soft bending

actuators, we employ a soft fiber-reinforced pneumatic bending

actuator (SFPBA) as an example. The SFPBA is fabricated by

casting silicone (Dragon Skin 20, Smooth-On), as described

in [5]. The top surface of the sensor is attached to the bottom

surface of SFPBA using silicone glue (SIL-Poxy, Smooth-On),

as shown in Fig. 3(a), forming a soft bending actuator with

proprioceptive curvature sensing.

III. SHAPE RECONSTRUCTION ALGORITHM

A shape reconstruction algorithm for the proposed curvature

sensor is developed. The signal values of N receiver coils

represent the amplitudes of their induced ac voltages, and are

Fig. 4. Illustration of geometric relationship for shape reconstruction.
(a) Relationship between the relative shift ΔSi and the bending geom-
etry in the ith segment. (b) PCC kinematic representation for the entire
receiver strip.

denoted as A ∈ R
N . As mentioned before, these signals are

determined by the receiver–transmitter spatial shifts S ∈ R
N .

The obtained signals from the measurement hardware have a

constant offset A0 ∈ R
N . We consider ΔA, with the offset

removed, in the reconstruction process as follows:

ΔA = A−A0 (1)

where the offset A0 is obtained as the sensor signals when the

sensor is flat. Due to the opposite direction of sensed differen-

tial magnetic fields, the relationships between the components

of ΔA and the corresponding spatial shifts in odd and even

segments exhibit opposite monotonic trends. Therefore, we use

separate polynomial functions, fodd and feven, to describe them;

in particular, for segment i as follows:

Si =

{

fodd(ΔAi) =
∑n

k=0 ak(ΔAi)
k, i is odd

feven(ΔAi) =
∑n

k=0 bk(ΔAi)
k, i is even

(2)

forn ≥ 1, whereSi is the total relative shift of the reference point

in the ith segment, ak and bk (k = 1, . . . , n) are coefficients of

the polynomial functions in odd and even segments, respectively.

These coefficients are identified by experiments.

After obtaining the total relative shift Si, one can calculate

the curvatures of different segments through geometry. First,

the local relative shift ΔSi in the ith segment can be computed

as the difference between the total relative shifts in the (i− 1)th
and ith segment as follows:

{

ΔSi = Si − Si−1, i = 2, 3, . . . , N
ΔS1 = S1.

(3)

The continuous shape of the sensor with N segments can be

approximated by a set of arcs with constant curvatures, widely

known as the PCC model [21]. With the PCC model, the local

relative shift ΔSi in the ith segment [see Fig. 4(a)] is related to

the constant curvature κi of the ith segment as follows:

κi =
ΔSi

dli
(4)

where d is the distance between the two strips. Note that κi can

be negative when ΔSi is negative.

The PCC kinematic representation for the sequential segments

of the entire receiver strip of the sensor is shown in Fig. 4(b).

For the ith segment, it has the length li, the curvature κi, and the
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bending angle θi. A coordinate frame Σi is attached at the tip of

the ith segment, whereas an inertial frame Σ0 is located at the

origin. For each coordinate frame Σi, its x-axis points toward

the center of the arc, its y-axis is aligned with the tangential

direction, and the z-axis is defined according to the right hand

rule. The homogeneous transformation matrix mapping from

Σi−1 to Σi can be formulated as follows:

T i−1
i (θi) =

[

Rz(−θi) pi−1
i (θi)

0 1

]

where pi−1
i (θi) =

[

li
θi
(1 − cos(θi))

li
θi
sin(θi) 0

]T

θi = liκi (5)

Rz(θ) ∈ SO(3) indicates a rotation about the z-axis by the angle

θ and pi−1
i (θi) represents the position of the ith segment’s tip

with respect to the local base frame Σi−1. If a point P with arc

length s is in the ith segment, as shown in Fig. 4(b), then the

coordinates of P with respect to the inertial frame Σ0, denoted

as p0(s), can be computed as follows:

[

p0(s)
1

]

= T 0
1 (θ1) · T

1
2 (θ2) · · ·T

i−2
i−1 (θi−1) ·

[

pi−1(s)
1

]

(6)

where pi−1(s) is the position of P with respect to Σi−1, which

can be computed as follows:

pi−1(s) =
[

li
θi

(

1 − cos(θi
s−Li−1

li
)
)

li
θi
sin(θi

s−Li−1

li
) 0

]T

s ∈ (Li−1, Li] (7)

where Li is the sum of the length of the first i segments. Note

that L0 is defined as 0, and LN equals the actuator length L.

In summary, given the signal values of A, the position p0(s)
of every point on the sensor can be determined.

IV. MODEL-BASED FORCE ESTIMATION ALGORITHM

A. Static Modeling in the Absence of External Forces

As the air pressure in the chamber increases, the SFPBA

integrated with the curvature sensor bends in an arc with a

constant curvature K0 when there are no external forces and

the weight of the actuator is negligible [5]. Based on the static

modeling of SFPBA as discussed in [8], the relationship between

the internal air pressure Pin and the bending angle θ0 can be

obtained from the moment balance equation as follows:

Ma = Mθ0
+Ms. (8)

HereMa represents the pressure-induced bending moment,Mθ0

is the bending moment caused by the elasticity of SFPBA, and

Ms represents the bending moment required to bend the sensor

layer. Ma can be written as follows:

Ma =
4a3 + 3πa2b

6
Pin (9)

where a is the inner radius of SFPBA’s chamber, and b is the

bottom layer thickness, as shown in Fig. 3(b). Mθ0
can be

Fig. 5. Force analysis diagram under gravity and external force at the
tip.

formulated in terms of θ0 as follows:

Mθ0
=

∫ b

0

sβ · 2(a+ t)βdβ

+ 2

∫ t

0

(
∫ π

2

0

sτ,φ

(

(a+ τ)2 sinφ+ b(a+ τ)
)

dφ

)

dτ

(10)

where sβ = μ̄

(

λβ −
1

λβ
3

)

, λβ =
βθ0

L
+ 1

sτ,φ = μ̄

(

λτ,φ −
1

λτ,φ
3

)

, λτ,φ =
R+ b+ sinφ(a+ τ)

R

(11)

where t is the wall thickness, (sβ , λβ) and (sτ,φ, λτ,φ) are the

longitudinal stress and stretch of the flat rectangular wall and

the hemicylindrical top wall, respectively, and R is the radius

of the circular arc. μ̄ represents the effective shear modulus,

determined through calibration. Ms can be approximated as a

linear function of θ0 [8] as follows:

Ms = μsθ0 (12)

where μs is the bending stiffness of the sensor determined by

calibration.

By substituting (9)–(12) into (8), we can numerically solve

for the bending angle θ0 with a given input pressure Pin, and the

curvature K0 is obtained by K0=θ0/L.

B. Static Modeling With External Forces

With gravity and external forces, the actuator will not maintain

a shape with constant curvature, so the static modeling should

consider these forces, including the effects of the actuation

pressure, a point force, and a distributed force (gravity). Without

the loss of generality, assume that the point force is applied

at the tip, which commonly occurs when the actuator presses

against or grabs an external object [8], [22]. The tip force can be

decomposed into horizontal force Fx and vertical force Fy , as

shown in Fig. 5. In addition, the gravity is a uniformly distributed

force applied along the length, and the gravity q of each length

unit can be calculated as q = mg/L, where m is the total weight

of the robot including the SFPBA and the sensor layer, and g is

the gravitational acceleration.
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As discussed in [22] and [23], the large deflection of the soft

actuator can be modeled using the Euler–Bernoulli beam theory

adapted for a curved cantilever beam. The shape of the actuator

can be obtained by solving the following ordinary differential

equation (ODE):

EI

(

d2(θ(st))

dst2

)

+ Fx cos(θ(st))

+ Fy sin(θ(st)) + qst sin(θ(st)) = 0 (13)

where st is the arc length measured from the tip (st ∈ [0, L]
and st = L− s), and θ(st) denotes the angle between the y-

axis and the tangential axis of the beam at st, as illustrated in

Fig. 5.E represents the equivalent Young’s modulus, and I is the

second moment of area. EI is referred to as a single parameter

describing the flexural rigidity. The boundary conditions for the

above ODE include the following:

θ(L) = 0,
dθ(0)

dst
= −K0 (14)

where the initial curvature K0 is determined by static modeling

for free motion with a given pressure Pin (see Section IV-A).

The flexural rigidityEI in the above static modeling is usually

considered to be constant, thus the previous studies utilize a few

pairs of pressures and loads to determineEI [22], [23]. However,

the flexural rigidity of soft pneumatic robots typically increases

in proportion to higher actuation pressure [24], [25]. Therefore,

we introduce a stiffness-tunable model, expressing the relation-

ship between flexural rigidity EI and actuation pressure Pin as

a linear function:

EI(Pin) = γ0 + γ1Pin (15)

where γ0 and γ1 are experimentally determined coefficients.

Substituting (15) into (13) yields the following ODE:

EI(Pin)

(

d2(θ(st))

dst2

)

+ Fx cos(θ(st))

+ Fy sin(θ(st)) + qst sin(θ(st)) = 0. (16)

After solving θ(st) in (16) using the shooting method, we

integrate to obtain the coordinates of every point p(st):
⎧

⎨

⎩

x(st) =
∫ st
L

sin(θ(τ))dτ
y(st) =

∫ st
L

cos(θ(τ))dτ

p(st) =
[

x(st) y(st) 0
]T

.

(17)

C. Force Estimation Algorithm

Utilizing sensor signals and actuation pressure as inputs, we

propose an estimation algorithm for the external force applied

on the robot, as depicted in Fig. 6. As discussed in Section III,

the coordinates of every point along the robot p0(s) can be

reconstructed with given A and A0, where s ∈ [0, L]. With

given Pin, the initial curvature K0 can be calculated through

static modeling without external forces, and the flexural rigid-

ity is determined by the stiffness-tunable model in (15). Now

with any given horizontal force Fx and vertical force Fy , the

robot’s configuration p(st) can be predicted using (13)–(17).

The external forces (F̂x, F̂y) can be estimated by minimizing

Fig. 6. Schematic of the proposed force estimation algorithm. In this
framework, the inputs consist of the signal values A and the background
signal values Abg from the curvature sensor, along with the actuation
pressure Pin from a pressure sensor. The outputs are optimal force

F̂x, F̂y making the predicted shape p(st) closest to the reconstructed

shape p0(s).

the difference between the predicted shape p(st) and the recon-

structed shape p0(s). Furthermore, constraints on Fx and Fy

for practical applications, such as fixed directions in inertial or

body coordinates [22], can be incorporated in the estimation

process. In summary, this can be formulated as a least-square

optimization problem:

(F̂x, F̂y) = argmin
Fx,Fy

∫ L

0

(
∥

∥p0(s)− p(st)
∥

∥

)2
ds

s.t. f(Fx, Fy) = 0 (18)

where st = L− s, and the function f captures the constraints

on Fx and Fy.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

To validate the proposed curvature sensor and force estimation

framework, an experimental platform is developed, as shown

in Fig. 7(a). The SFPBA, weighing 25.86 g with structural

dimensions (a, b, t, L) = (6.35, 2, 2, 134)mm, is clamped at the

proximal end to the horizontal framing rail, and the distal end

is free to bend and interact with objects. A pneumatic control

board is utilized to control the air pressure Pin via an underlying

PID controller.

The sensor weighs 13.41 g, making the total robot weight

be 39.27 g. The silicone sleeve thickness c is 0.75 mm, and

the distance d between the top and bottom strips is 1 mm. The

receiver strip is segmented into 16 sections (N=16) with lengths

(l1, l2, l3, . . . , l15, l16) = (10, 8, 8, . . . , 8, 10) mm, as illustrated

in Fig. 2(b). Both receiver and transmitter coils, each with 6 mm

diameters and a total of 20 turns, are arranged in two FPCB

layers. The spacing between coils is 8 mm. The hardware system

for the curvature sensor includes a power supply, a waveform

generator, and a circuit board operating on a ±5 V power supply

(KETHELEY 1103). A signal generator provides the excitation

voltage for the transmitter coil array, applying a 1 MHz sinu-

soidal signal with a 2 V amplitude. Using the designed circuit

board, the 16 receiver coil signals are sequentially processed via

a multiplexer chip (ADG1406). The selected signal is processed

by a lock-in amplifier (AD8333) to capture the induced ac

voltage’s amplitude and is then converted into a digital signal

using the embedded ADC in the MCU (STM32F407).
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Fig. 7. Illustration of the experimental setup and processes. (a) Overall
configuration for the SFPBA with the curvature sensor. (b) Calibration
process for shape reconstruction by pressing the robot against the cal-
ibration strip. (c) Validation experiment for static modeling with external
force by hanging a load on the tip. (d) Validation experiment for the force
estimation algorithm with applied contact force Fc on the fingertip of a
hand model.

To capture the actual shape of the robot (as ground truth), a

high-resolution camera (RealSense D435, Intel) is mounted on

the side, as depicted in Fig. 7(a). Fourteen color dots, uniformly

distributed along the actuator’s bottom layer, capture the shape

of that layer, whose length remains unchanged during actuation

due to the strain-limiting material [5]. Each dot is detected by

analyzing RGB channel mean intensity using MATLAB’s Image

Processing Toolbox.

B. Results on Shape Reconstruction for the Curvature
Sensor

To establish the magnitude-shift mapping in (2), various 3-D-

printed arc calibration strips with different curvatures are used.

Considering the accessible workspace with respect to the length,

the radii of calibration strips,Rcal, are set to 40, 50, 60, 70, 80, 90,

100, 200, 300, and 400 mm. The corresponding curvatures, κcal,

are determined as 25, 20, 16.67, 14.29, 12.5, 11.11, 10, 5, 3.33,

and 2.50 m−1. After mounting each calibration strip, we can

manually press the soft actuator onto the calibration strip and col-

lect the signal data, as shown in Fig. 7(b). The actual total relative

shift Si can be determined as Si = κcal · d · Li. Afterward, odd

and even segment data are curve-fitted in MATLAB to identify

coefficients ak and bk in (2). We tested the calibrated coefficients

using validation strips with untested radii (Rval = 45–150 mm).

With the proposed shape reconstruction algorithm, the recon-

structed shape p0(s) is obtained for each validation curvature.

TABLE I
COMPARISON OF CONSTRUCTED RESULTS FOR DIFFERENT CURVATURES

Fig. 8. Shape reconstruction using third-order polynomials on valida-
tion strips. The solid and dotted lines represent reconstructed and actual
shapes, respectively.

Table I shows the comparison between the actual curvatures κval

and the reconstructed curvatures κrecon for different polynomial

degrees (n = 1, 2, 3). The reconstructed curvatures κrecon are

determined by matching the reconstructed shape p0(s) with the

predicted one via the following least-squares optimization:
⎧

⎨

⎩

κrecon = argmin
κ

∫ L

0

(
∥

∥p0(s)− pcon(s, κ)
∥

∥

)2
ds

pcon(s, κ) =
[

1
κ
(1 − cos(κs)) 1

κ
sin(κs) 0

]T
(19)

where pcon(s, κ) represents the positions of the constructed

circular shape with curvature κ along the arc length. While

the low relative error δκ=|κrecon − κval|/κval in the curvature

measurement confirms the functionality of the proposed sensor,

accurate prediction of the position is crucial in the subsequent

force estimation framework. We can find the maximum position

error (δp)max between the reconstructed shape p0(s) and the

actual validation shape pcon(s, κval) along the arc length with

respect to the robot’s length as follows:

(δp)max = max
0≤s≤L

(

∥

∥p0(s)− pcon(s, κval)
∥

∥

L

)

· 100. (20)

As shown in Table I, all reconstructed curvature errors are be-

low 2%, and all maximum position errors are under 4%. Forn =
3, the magnitude-shift mapping achieves the highest accuracy

in curvature (0.65%± 0.58%) and position (1.59%± 0.72%).

Fig. 8 shows the shape reconstruction results of validation strips

with n = 3 calibrated coefficients. Compared with ShArc [15],

the proposed inductive curvature sensor performs slightly better

in reconstructing shapes with small curvature, as it is more

sensitive to detect the differential inductance than differential

Authorized licensed use limited to: Michigan State University. Downloaded on September 06,2024 at 22:24:26 UTC from IEEE Xplore.  Restrictions apply. 



MEI et al.: SIMULTANEOUS SHAPE RECONSTRUCTION AND FORCE ESTIMATION OF SOFT BENDING ACTUATORS 2855

capacitance within small displacement. However, curvature and

position errors increase with larger curvatures, possibly due to

unbalanced calibration data—total relative shift Si. As Si sums

up from 0 for each calibration strip, it includes more small

shift data. Another potential factor is the curved deformation of

coils during large bending motions, leading to complex changes

in magnetic fields and sensing, which may not be accurately

captured by sensor calibration. Future research can explore cali-

bration improvement. The proposed inductive curvature sensor,

with its compact alternating structure, theoretically has twice as

many PCC segments as ShArc within the same length, indicating

potential for higher resolution in capturing irregular shapes.

Additional experiments also confirm the sensor’s immunity to

the presence of metallic objects nearby and external dc magnetic

fields. Technically, its performance is only impacted by external

ac magnetic fields matching the excitation current frequency

(1 MHz in this work). Regarding computational efficiency, this

shape reconstruction can be implemented in real-time at a fre-

quency of at least 35 Hz on a laptop with an Intel i7-11800H pro-

cessor and 32.0 GB RAM, as demonstrated in the online video.1

We note that the inductive sensors have a sensing bandwidth of

over 50 kHz. The slowdown is mainly due to the configuration

and computation of the circuit board, which can be significantly

improved by optimizing embedded processing in the future.

C. Results on Static Modeling

To establish the connection between the air pressure and the

bending angle in the absence of external force, we need to

calibrate the material properties μ̄ and μs. Using the same cali-

bration method in [5], effective shear modulus μ̄ for the SFPBA

without the sensor can be identified. The stiffness of sensor μs

is determined using the calibration procedure in [8]. Notably, an

initial bending angle should be added to the analytical bending

angle due to the prebending phenomenon.

To validate static modeling with external forces, experiments

are conducted with different actuation pressures and tip loads,

as shown in Fig. 7(c). The robot is only subject to vertical

downward force Fy . We collect a dataset for evaluating the

modeling accuracy across the accessible workspace. The dataset

includes actual shapes captured from the camera and sensor

signals at the steady state after actuation with various pressures,

ranging from 20 to 120 kPa in 10 kPa increments. Meantime,

tip loads increase progressively from 0 to 0.3 N in 0.1 N steps

for each pressure level. The force range is selected to generate

comparable moments relative to the actuation moment and to

prevent actuator buckling. Effective flexural rigidity EI in (13)

is determined for various pressure levels using randomly chosen

pressure-load combinations, following the calibration process

in [23]. Employing linear regression, we identify the coefficients

in (15) as γ0 = 2.53 × 10−3 and γ1 = 1.25 × 10−5. Predicting

the shape using (15)–(17) with known Pin and Fy , we evaluate

the maximum position errors based on the position of 14 colored

dots captured by the camera. The averaged maximum position

1[Online]. Available: https://youtu.be/0Kpc-y5kq6U

Fig. 9. Experimental results on static modeling. (a) Maximum position
errors in shape reconstruction based on analytical Euler–Bernoulli beam
theory and sensor measurements, averaged across tip loads at the
same pressure level. (b) Comparison of the predicted shapes based
on analytical modeling and on the sensor measurement with the ground
truth, under 40 kPa pressure with various loads.

Fig. 10. Force estimation errors for various tip loads Fy under different
actuation pressures Pin.

errors between the predicted shape based on analytical mod-

eling and the experimental data are below 6% across different

pressures, as shown in Fig. 9(a). At the same time, the sensor

measurement errors are below 6.32%. Fig. 9(b) illustrates exam-

ples of reconstructed shapes under 40 kPa pressure with various

loads, showing consistent patterns observed at other pressure

levels. Both sensor measurements and analytical modeling fit

the experimental data well, except for the 0.3 N case, which

exhibits nonnegligible deviations. The possible reason is that

the cross-section of the actuator deforms when the bending is

larger, leading to a deviation in the base orientation from the

straight upward direction. This factor was not considered in

either the sensor-based reconstruction and the analytical model.

The overall accuracy of both the analytical model and the sensor

allows for directly estimating the external force from the curva-

ture sensor measurement while simultaneously reconstructing

the shape.

D. Results on Force Estimation

Experiments have been conducted to validate the force esti-

mation algorithm in different scenarios.

1) Tip Load Estimation: We utilize the acquired dataset for

experiments on tip load estimation, covering various pressure-

load combinations. In this scenario, the constraint in (18) stip-

ulates that Fx = 0. The tip load Fy is estimated based on the

provided actuation pressure and the measured shape based on

the curvature sensor, following the framework in Fig. 6.
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TABLE II
COMPARISON OF MEAN ERRORS (%) IN CONTACT FORCE ESTIMATION WITH

AND WITHOUT GEOMETRIC CONSTRAINT

Fig. 10 shows the force estimation error for each pressure-load

combination. The average estimation error is 11.9%± 14.4%
with respect to the maximum load (0.3 N). While the tip load

estimation error is significant when the load is 0.3 N, the force es-

timation error when the load is 0–0.2 N is only 5.49%± 4.99%.

The main reason is that both sensor measurement and analytical

static modeling have larger errors when the bending is signifi-

cant, causing the estimated force F̂y to be optimized to approach

the deviated shape in (18).

2) Contact Force Estimation: The contact force is a type of

follower force, wherein the tip force maintains a fixed direction

in body coordinates. In this scenario, the robot’s tip is fixed

on the fingertip of a model hand, and the contact force Fc will

occur in the orthogonal upward direction when the robot bends,

as illustrated in Fig. 7(d). We collect 12 random data points from

various robot configurations and hand postures, including pres-

sures, sensor signals, and actual contact forces recorded from

a 1-D force sensor (FSG005WNPB, Honeywell). To validate

the force estimation algorithm, we test it in two modes: The

first estimates horizontal and vertical forces without constraints,

and the second incorporates constraints with prior knowledge

that the contact force Fc direction is perpendicular to the tip

orientation, introducing the following geometric constraint into

(18):

f(Fx, Fy) = Fx sin(θ0) + Fy cos(θ0) = 0 (21)

where the angle of the tip, θ0, is calculated from static modeling

for free motion. The functions fminsearch and fmincon in MAT-

LAB are employed to optimize Fx and Fy without and with

the geometric constraint, respectively. If no feasible solution

satisfies the constraint, the best feasible point can be obtained

using fmincon. The errors between the estimated forces F̂x, F̂y ,

and their resultant force F̂c, and the actual forces Fx, Fy , and Fc

are calculated with respect to the maximum contact force. The

ground truth ofFx andFy are obtained by decomposing the force

measured by the force sensor into tangential and orthogonal

directions, as provided by the vision system. The comparison

of the mean errors for each force range between two modes are

documented in Table II. The geometric constraint reduces the

errors of estimated force F̂x, F̂y from 14.90% and 12.91% to

5.15% and 6.77%, respectively. The result also shows that the

error increases as the contact force increases, and the reason

is the same as in the tip load case. In terms of computational

efficiency, the constraint-free force estimation algorithm aver-

ages 0.42 s per estimation, whereas the constrained algorithm

averages 1.38 s per estimation. The force estimation algorithm,

especially the case with constraints, introduces relatively large

latency in real-time operation compared with the speed of shape

reconstruction. Given that, one could potentially perform shape

sensing and force estimation at different time scales. The force

estimation implementation was carried out using App Designer

in MATLAB, as shown in the online video.

VI. CONCLUSION

In this study, we present a systematic approach to simultane-

ous shape reconstruction and force estimation in soft bending ac-

tuators, leveraging a novel distributed inductive curvature sensor

based on electromagnetic induction. In addition, a force estima-

tion framework was proposed, facilitated by both sensor data and

analytical static modeling, enabling the accurate estimation of

external forces at the tip. Rigorous experiments were conducted

to validate the sensor and the shape reconstruction performance,

static modeling, and the force estimation algorithm.

The future work aims to use real-time shape sensing as

feedback for developing control algorithms, with a focus on

extending the approach to 3-D shape sensing and speeding up

the force estimation algorithm.

REFERENCES

[1] R. K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, “Exploration
of underwater life with an acoustically controlled soft robotic fish,” Sci.

Robot., vol. 3, no. 16, 2018, Art. no. eaar3449.
[2] P. Glick, S. A. Suresh, D. Ruffatto, M. Cutkosky, M. T. Tolley, and A.

Parness, “A soft robotic gripper with gecko-inspired adhesive,” IEEE

Robot. Autom. Lett., vol. 3, no. 2, pp. 903–910, Apr. 2018.
[3] C. Hegde, J. Su, J. M. R. Tan, K. He, X. Chen, and S. Magdassi, “Sensing

in soft robotics,” ACS Nano, vol. 17, no. 16, pp. 15 277–15 307, 2023.
[4] K. Xu and N. Simaan, “An investigation of the intrinsic force sensing

capabilities of continuum robots,” IEEE Trans. Robot., vol. 24, no. 3,
pp. 576–587, Jun. 2008.

[5] P. Polygerinos et al., “Modeling of soft fiber-reinforced bending actuators,”
IEEE Trans. Robot., vol. 31, no. 3, pp. 778–789, Jun. 2015.

[6] C. D. Santina, R. K. Katzschmann, A. Bicchi, and D. Rus, “Model-based
dynamic feedback control of a planar soft robot: Trajectory tracking and
interaction with the environment,” Int. J. Robot. Res., vol. 39, no. 4,
pp. 490–513, 2020.

[7] G. Gerboni, A. Diodato, G. Ciuti, M. Cianchetti, and A. Menciassi,
“Feedback control of soft robot actuators via commercial flex bend sen-
sors,” IEEE/ASME Trans. Mechatron., vol. 22, no. 4, pp. 1881–1888,
Aug. 2017.

[8] Z. Wang, P. Polygerinos, J. T. Overvelde, K. C. Galloway, K. Bertoldi, and
C. J. Walsh, “Interaction forces of soft fiber reinforced bending actuators,”
IEEE/ASME Trans. Mechatron., vol. 22, no. 2, pp. 717–727, Apr. 2017.

[9] R. L. Truby, C. D. Santina, and D. Rus, “Distributed proprioception of 3D
configuration in soft, sensorized robots via deep learning,” IEEE Robot.

Autom. Lett., vol. 5, no. 2, pp. 3299–3306, Apr. 2020.
[10] E. L. White, J. C. Case, and R. K. Kramer, “Multi-mode strain and

curvature sensors for soft robotic applications,” Sensors Actuators A:

Phys., vol. 253, pp. 188–197, 2017.
[11] H. Bezawada, C. Woods, and V. Vikas, “Shape reconstruction of soft

manipulators using vision and IMU feedback,” IEEE Robot. Autom. Lett.,
vol. 7, no. 4, pp. 9589–9596, Oct. 2022.

[12] T. Li, L. Qiu, and H. Ren, “Distributed curvature sensing and shape
reconstruction for soft manipulators with irregular cross sections based
on parallel dual-FBG arrays,” IEEE/ASME Trans. Mechatron., vol. 25,
no. 1, pp. 406–417, Feb. 2020.

[13] D. Hu, F. G.-Serchi, S. Zhang, and Y. Yang, “Stretchable e-skin and
transformer enable high-resolution morphological reconstruction for soft
robots,” Nat. Mach. Intell., vol. 5, no. 3, pp. 261–272, 2023.

Authorized licensed use limited to: Michigan State University. Downloaded on September 06,2024 at 22:24:26 UTC from IEEE Xplore.  Restrictions apply. 



MEI et al.: SIMULTANEOUS SHAPE RECONSTRUCTION AND FORCE ESTIMATION OF SOFT BENDING ACTUATORS 2857

[14] J. Tapia, E. Knoop, M. Mutny, M. A. Otaduy, and M. Bächer, “Makesense:
Automated sensor design for proprioceptive soft robots,” Soft Robot.,
vol. 7, no. 3, pp. 332–345, 2020.

[15] F. Shahmiri and P. H. Dietz, “ShArc: A geometric technique for multi-
bend/shape sensing,” in Proc. CHI Conf. Hum. Factors Comput. Syst.,
2020, pp. 1–12.

[16] T. G. Thuruthel, B. Shih, C. Laschi, and M. T. Tolley, “Soft robot perception
using embedded soft sensors and recurrent neural networks,” Sci. Robot.,
vol. 4, no. 26, 2019, Art. no. eaav1488.

[17] Y. Toshimitsu, K. W. Wong, T. Buchner, and R. Katzschmann, “SoPrA:
Fabrication & dynamical modeling of a scalable soft continuum robotic
arm with integrated proprioceptive sensing,” in Proc. IEEE/RSJ Int. Conf.

Intell. Robots Syst., 2021, pp. 653–660.
[18] A. Gao, N. Liu, M. Shen, M. EMK Abdelaziz, B. Temelkuran, and G.-Z.

Yang, “Laser-profiled continuum robot with integrated tension sensing for
simultaneous shape and tip force estimation,” Soft Robot., vol. 7, no. 4,
pp. 421–443, 2020.

[19] W. Felt et al., “An inductance-based sensing system for bellows-driven
continuum joints in soft robots,” Auton. Robots, vol. 43, pp. 435–448,
2019.

[20] W. Felt, M. Suen, and C. D. Remy, “Sensing the motion of bellows through
changes in mutual inductance,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots

Syst., 2016, pp. 5252–5257.
[21] R. J. Webster III and B. A. Jones, “Design and kinematic modeling of

constant curvature continuum robots: A review,” Int. J. Robot. Res., vol. 29,
no. 13, pp. 1661–1683, 2010.

[22] M. H. N. Ghalati, H. Ghafarirad, A. A. Suratgar, M. Zareinejad, and M. A.
A.-Pajouh, “Static modeling of soft reinforced bending actuator consid-
ering external force constraints,” Soft Robot., vol. 9, no. 4, pp. 776–787,
2022.

[23] S. Liu, J. Jiao, F. Meng, T. Mei, X. Sun, and W. Kong, “Modeling of a soft
actuator with a semicircular cross section under gravity and external load,”
IEEE Trans. Ind. Electron., vol. 70, no. 5, pp. 4952–4961, May 2023.

[24] Y. Mei, P. Fairchild, V. Srivastava, C. Cao, and X. Tan, “Simultaneous
motion and stiffness control for soft pneumatic manipulators based on a
Lagrangian-based dynamic model,” in Proc. Amer. Control Conf., 2023,
pp. 145–152.

[25] C. Majidi, R. F. Shepherd, R. K. Kramer, G. M. Whitesides, and R. J. Wood,
“Influence of surface traction on soft robot undulation,” Int. J. Robot. Res.,
vol. 32, no. 13, pp. 1577–1584, 2013.

Authorized licensed use limited to: Michigan State University. Downloaded on September 06,2024 at 22:24:26 UTC from IEEE Xplore.  Restrictions apply. 


