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Abstract
Modern cloud-native OLAP databases adopt a storage-disaggregation architecture that separates the management of compu-
tation and storage. A major bottleneck in such an architecture is the network connecting the computation and storage layers.
Computation pushdown is a promising solution to tackle this issue, which offloads some computation tasks to the storage
layer to reduce network traffic. This paper presents FlexPushdownDB (FPDB), where we revisit the design of computation
pushdown in a storage-disaggregation architecture, and then introduce several optimizations to further accelerate query pro-
cessing. First, FPDB supports hybrid query execution, which combines local computation on cached data and computation
pushdown to cloud storage at a fine granularity. Within the cache, FPDB uses a novel Weighted-LFU cache replacement
policy that takes into account the cost of pushdown computation. Second, we design adaptive pushdown as a new mecha-
nism to avoid throttling the storage-layer computation during pushdown, which pushes the request back to the computation
layer at runtime if the storage-layer computational resource is insufficient. Finally, we derive a general principle to identify
pushdown-amenable computational tasks, by summarizing common patterns of pushdown capabilities in existing systems,
and further propose two new pushdown operators, namely, selection bitmap and distributed data shuffle. Evaluation on SSB
and TPC-H shows each optimization can improve the performance by 2.2×, 1.9×, and 3× respectively.

Keywords OLAP · Cloud databases · Caching · Computation pushdown · Adaptive query processing · Query optimization

1 Introduction

Databasemanagement systems (DBMSs) are graduallymov-
ing to the cloud for high elasticity and low cost. Modern
cloud DBMSs adopt a storage-disaggregation architecture

B Yifei Yang
yyang673@wisc.edu

Xiangyao Yu
yxy@cs.wisc.edu

Marco Serafini
marco@cs.umass.edu

Ashraf Aboulnaga
ashraf.aboulnaga@uta.edu

Michael Stonebraker
stonebraker@csail.mit.edu

1 University of Wisconsin Madison, Madison, WI, USA

2 University of Massachusetts-Amherst, Amherst, MA, USA

3 University of Texas at Arlington, Arlington, TX, USA

4 Massachusetts Institute of Technology, Cambridge, MA, USA

that divides computation and storage into separate lay-
ers connected through the network, which simplifies pro-
visioning and enables independent scaling of resources.
Disaggregation requires rethinking a fundamental principle
of distributed DBMSs: “move computation to data rather
than data to computation”. Conventionally, the network in
the disaggregation architecture is recognized as the major
performance bottleneck [70]. Computation pushdown is a
promising solution tomitigate the network bottleneck, where
some computation logic is sent and evaluated close to the
storage, thereby reducing the network data transfer. Exam-
ples of pushdown systems include Oracle Exadata [79], IBM
Netezza [41], AWS Redshift Spectrum [4], AWS Aqua [11],
and PushdownDB [84]. While recent improvements in net-
work and storage mitigate the performance bottleneck of
disaggregation, reducing data transfer from storage can still
provide performance improvement and cost reduction.More-
over, computation pushdown can help alleviate the issues of
request throttling and instability incurred by noisy neighbors
[44, 60] and the usage of packet-switch algorithms like token
bucket [68, 71], which can potentially improve the reliabil-
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ity of the network and storage access in the cloud. Although
the concept of pushdown computation is absorbed into cur-
rent cloud databases, its implementation remains somewhat
restricted. As a result, there are substantial performance
enhancements left unexploited. We identify the following
three limitations of existing designs:

First, caching is a widely adopted technique, which keeps
the hot data in the compute layer to reduce the amount
of data transferred between the compute and storage lay-
ers. Examples include AWS Redshift [49], Snowflake [39,
78], Databricks [23], and Presto with Alluxio cache service
[26]. However, existing cloud DBMSs consider caching and
computation pushdown as orthogonal. Most systems imple-
ment only one of them. Some systems, such as Exadata [79],
Netezza [41], Redshift Spectrum [4], and Presto [26] con-
sider the two techniques as independent: query operators can
either access cached data (i.e., full tables) or push down com-
putation on remote data, but not both.

Second, existing systems decide whether to push down
computation during the query optimization phase statically.
For example, Presto [25] enables pushdown for all filter
operators to S3 by setting a flag in the configuration file
(“hive.s3select-pushdown.enabled=true”). However, push-
down in existing systems does not consider the current
storage layer’s computational capacity and load at the time
when the query is executed. If the storage-layer computation
resource is scarce (e.g., due to multi-tenancy), computation
pushdown may hurt the performance of a particular query.
Unfortunately, it is difficult and sometimes impossible to
predict the storage-side computational load ahead of query
execution, making it challenging to determine how aggres-
sive computation pushdown should occur.

A third limitation is the lack of a general principle that
determines which operators are amenable for pushdown.
Existing systems empirically consider a subset of relational
operators such as selection, projection, and aggregation, due
to their ease of implementation and effective traffic reduc-
tion. We believe a larger set of operators can benefit from
pushdown and a principle should exist to identify pushdown-
amenable operators.

In this paper, we present FlexPushdownDB (FPDB in
short), which addresses the three limitations above. First,
we observe that caching and computation pushdown are
not orthogonal techniques, and that the rigid dichotomy in
existing systems leaves potential performance benefits unex-
ploited. FPDB introduces the concept of separable operators,
which combines local computation on cached segments and
pushdown within the cloud storage in a fine granularity.
We observe that some of the most common operators are
separable, including filtering, projection, and aggregation.
Separable operators also open up new opportunities for
buffermanagement. FPDBuses a novelWeighted-LFU cache
replacement policy that takes into account the pushdown

amenability of a data block—misses that can be acceler-
ated with pushdown are cached with lower priority. We
build a lightweight cost model to determine the weight of
each data access. Evaluation shows that the hybrid execution
outperforms both caching-only and pushdown-only architec-
tures by 2.2× on the Star Schema Benchmark (SSB) [62].
Weighted-LFU can further accelerate query execution by
37% over the baseline LFU.

Second, we propose adaptive query processing that adapts
the query plan during execution to consider the current load
on storage nodes. We first analyze theoretically the optimal
division of the tasks between pushdown and non-pushdown
to achieve the best overall performance. Then we design a
new mechanism, adaptive pushdown, to avoid throttling the
storage-layer computation during pushdown. Instead of hav-
ing the database engine make pushdown decisions, adaptive
pushdown lets the storage layer decide whether to execute a
pushdown request, or to push the request back to the com-
pute layer since the storage-layer computation is saturated.
When a pushback happens, the compute layer reads the raw
data from the storage layer and processes the task locally.We
will demonstrate that the proposed mechanism can perform
close to the theoretical bound. Evaluation shows that adaptive
pushdown outperforms traditional baselines of no pushdown
and eager pushdown by 1.9× on TPC-H [30] benchmark.

Finally,wederive ageneral principle to identify pushdown-
amenable computational tasks, by summarizing common
patterns of pushdown capabilities in existing systems. First,
pushdown tasks should be local—pushdown computation
should access data only within a single storage node and not
incur data transfer across nodes within the storage layer. Sec-
ond, pushdown tasks should be bounded—a pushdown task
should require at most linear CPU and memory resources
with respect to the accessed data size. This principle pre-
serves the benefits of storage-disaggregation, and simplifies
resource isolation and security in amulti-tenant environment.
Following the principle above, we further identify two opera-
tors that can benefit from computation pushdown—selection
bitmap and distributed data shuffle. Evaluation results show
that the two new pushdown operators can further accelerate
end-to-end query processing on TPC-H by 3.0× and 1.7×
respectively.

The paper makes the following key contributions:

• We develop a fine-grained hybrid execution mode for
cloud DBMSs to combine the benefits of caching and
pushdown in a storage-disaggregation architecture, and
a novel Weighted-LFU cache replacement policy that is
specifically optimized for the disaggregated architecture.

• We develop adaptive pushdown, which leverages the
computation at storage dynamically with the consider-
ation of the storage-layer resource utilization, through a
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pushback mechanism used to decide if a pushdown task
should be executed in the storage.

• We infer a general principle to determine whether an
operator is amenable to pushdown from existing systems,
and identify two unexplored operators that can benefit
from pushdown to the storage layer—distributed data
shuffle and selection bitmap.

• We present the detailed design and implementation of
FPDB, an open-source C++-based cloud-native OLAP
DBMS, with a storage-layer prototype that supports the
proposed pushdowncapabilities.Webelieve it can benefit
the community given the lack of open-source cloud-
DBMS research prototypes.

The rest of the paper is organized as follows. Section2
introduces the background and limitations of pushdown in
existing cloud OLAP DBMSs. After showing an overview
of FPDB in Sects. 3, 4, 5, and 6 discuss hybrid query execu-
tion, adaptive pushdown, and proposed pushdown operators,
respectively. Section7 presents implementation details of
FPDB. Section8 evaluates the performance of proposed opti-
mization techniques. Finally, Sect. 9 discusses the related
work and Sect. 10 concludes the paper.

This paper extends our prior conference paper [83], which
developed a fine-grained hybrid query execution framework
combining pushdown and caching, and a new cache replace-
ment policy, Weight-LFU. The techniques proposed in [83]
is discussed in Sect. 4. This paper extends prior work and fur-
ther proposes two new optimizations: adaptive pushdown as
discussed in Sect. 5 and twomore pushdown-amenable oper-
ators following a general principle as discussed in Sect. 6.
Furthermore, the system prototype, FPDB, is also signif-
icantly extended with Parquet and full TPC-H support,
distributed query execution, and an additional storage-layer
subsystem in which we implement pushdown with proposed
optimizations (Sect. 7).

2 Background andmotivation

This section describes background on the storage disaggre-
gation architecture (Sects. 2.1–2.2) and the limitations in
existing pushdown systems (Sect. 2.3).

2.1 Storage-disaggregation architecture

According to the conventional wisdom, shared-nothing
(Fig. 1a) is the most scalable architecture for distributed data
warehousing systems, where servers with local memory and
disks are connected through a network. Many modern cloud
DBMSs, however, choose to disaggregate the compute and
storage layers (Fig. 1c) while within each layer a shared-
nothing architecture may be adopted. This brings benefits of

Fig. 1 Distributed Database Architectures—a shared-nothing, b
shared-disk, and c storage-disaggregation

lower cost, simpler fault tolerance, and higher hardware uti-
lization. A large number of cloud databases have followed
this architecture, including Aurora [76, 77], Redshift Spec-
trum [4], Snowflake [39], Hive [72], Presto [25], SparkSQL
[34], and Vertica EON mode [57, 74].

While storage-disaggregation is similar to the conven-
tional shared-disk architecture (Fig. 1b), they also have
significant differences. In a shared-disk architecture, the
disks are typically centralized, making it hard to scale out
the system. The disaggregation architecture, by contrast,
can scale the storage layer horizontally just like the com-
pute layer. The disaggregation architecture can also provide
limited computation in the storage layer (e.g., selection, pro-
jection, etc.), while disks are passive storage devices in the
shared-disk architecture. As Table 1 shows, existing systems
supports offloading various relational operators by leverag-
ing computation within or near the storage layer.

2.2 Computation pushdown

The concept of computation pushdown was incubated in
database machines since the 1970s. The early systems
push computation to storage via special hardware. Database
machines like the Intelligent Database Machine [73], Grace
[42], IBM Netezza data warehouse appliances [41], and
Oracle ExadataDatabaseMachine [79]move relational oper-
ations such as filtering and projection close to disks. Other
research areas, including Smart Disks/SSD [40, 43, 48, 56,
80, 82] and processing-in-memory [45, 54] also endorse this
spirit.

Cloud databases have emerged in the last decade, with
computation and storagedisaggregated, especially for analyt-
ical queries. The disaggregated architecture supports certain
amount of computation within the storage layer, so that some
operators can be offloaded to storage to reduce network traf-
fic and improve the reliability of the network and the cloud
storage. The actual computation can happen either on the
storage servers (e.g., Aurora [76, 77]), or in a different layer
close to the storage devices (e.g., S3 Select [27], Redshift
Spectrum [4], Presto [25], PushdownDB [84], AQUA [11],
Azure Data Lake Storage query acceleration [15]).
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Table 1 Supported pushdown operators in existing cloud OLAP DBMSs—FlexPushdownDB refers to our prior work [83], which further supports
hybrid pushdown and caching query execution

Operator Selection Projection Scalar
Agg

Grouped
Agg

Bloom
Filter

Top-K Sort Join Merge

Redshift spec-
trum

� � � �

AQUA � � �
S3 select � � �
Presto � � �
PushdownDB � � � �∗ �∗ �
FlexPushdownDB
([83])

� � �

Azure data
lake query
acceleration

� � �

Snowflake
query acceler-
ation service

� � �

PolarDB-X � � � � � � �∗

PolarDB-
MySQL

� � � �∗

Marked with *: Pushdown of grouped aggregation and Bloom filters are not efficiently supported by PushdownDB, join pushdown in PolarDB-X
requires both tables co-located on the join key, and top-K pushdown in PolarDB-MySQL requires indexes on the sort key

2.3 Limitations of computation pushdown in
existing cloud OLAP DBMSs

Computation pushdown is a general optimization tech-
nique that can benefit both the cloud setups with storage-
disaggregtaion, and on-premise architectures through hard-
ware accelerators like FPGA [11] or Smart SSDs. In this
paper,we focus on optimizing pushdown for the cloud setups,
in particular, cloud OLAP databases. In the rest of this
section, we demonstrate three major limitations in existing
systems.

2.3.1 Dichotomy between pushdown and caching

Caching is a traditional wisdom to speed up query execu-
tion in a disaggregated architecture. The system keeps hot
data in the local memory or disks of the computation nodes.
Cache hits require only local data accesses and are thusmuch
faster than cache misses, which require loading data over the
network.

Both pushdown and caching can mitigate the network
issue in a disaggregated architecture. Figure 2 shows the
high-level performance trade-offs. With caching, the query
execution time decreases as the cache size increases, due to
a higher hit ratio. Pushdown outperforms caching when the
cache size is small due to reduced network traffic, but under-
performs when the cache size is sufficiently large. Ideally, a
system should adopt a hybrid design that combines the ben-

Fig. 2 Performance trade-off between caching, computation push-
down, and an ideal hybrid approach

efits of both worlds—caching a subset of hot data and push
down computation for the rest, as the bottom line in Fig. 2
shows.

Existing systems do not offer a fully hybrid design. While
some systems support both caching and pushdown, they
select the operation mode at the table granularity, consider-
ing the two techniques as orthogonal. The storage layer keeps
additional “external” tables that can be queried using com-
putation pushdown. No system, to the best of our knowledge,
can utilize both caching and pushdown within the processing
of a single table in a fine granularity.
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2.3.2 Static pushdown decisions at planning time

Existing cloud OLAP DBMSs make pushdown decisions
during the query optimization phase—the operation is
offloaded as long as the storage layer can execute it, and the
pushdown decision cannot be changed at runtime. Pushdown
tasks are processed eagerly.

Eager pushdown may not always improve the perfor-
mance. Since the storage layer is multi-tenant, the amount of
available computation resource for each request may vary. To
measure the pushdown performance under different storage-
layer resource utilization conditions, we prototype a S3-like
[5] object storage layer within FPDB, and evaluate using
TPC-H [30] (we regard full storage-layer computational
power as all CPU cores at the storage node are available for
pushdown tasks, see Sect. 8.1 for detailed setups). Figure 3
presents the results of two sample queries (Q1 and Q19).

For both queries, the execution time of no pushdown
remains flat. Eager pushdown outperforms no pushdown
when the storage has abundant computational resource
since data transfer is reduced. However, eager pushdown
starts to suffer from the slowdown of pushdown execution
when storage-layer computational resource is insufficient,
and underperforms no pushdown when the storage layer is
saturated—pushdown execution becomes the major perfor-
mance bottleneck.

An ideal solution should consider the storage-layer com-
putational resource utilization status, and adaptively adjust
howaggressive the pushdown is. Intuitively,when the storage
system is idle on computation, more pushdown tasks should
be offloaded to the storage; when the storage system is under
heavy load, the DBMS should execute more operators at the
local compute nodes, to avoid throttling storage-layer com-
putation.

2.3.3 Empirically adopting pushdown operators

Existing systems design and implement pushdown features
empirically, which end up picking a customized set of push-
down operators respectively (see Table 1). For example,
functionalities including selection, projection, and scalar
aggregation are supported by almost all existing pushdown
systems, grouped aggregation is favored by Redshift Spec-
trum [4], and pushdown of Bloom filters is introduced in
PushdownDB [84].

We aim to conduct a comprehensive analysis of the design
space, to identify key characteristics that contribute to the
suitability of a pushdown operator. We closely examine the
behaviors of existing OLAP DBMSs that offer pushdown
support and categorize pushdown operators based on their
key features. By deriving a shared pattern from these obser-
vations, we establish a general principle that will potentially
facilitate the discovery of new pushdown operators.

3 System overview

In this section, we demonstrate the high-level system archi-
tecture of FPDB (Fig. 4), including both the basic designs
and several enhancements.
Hybrid Pushdown with Caching: Fig. 4(a, b) shows the
traditional caching-only and pushdown-only designs. In a
hybrid architecture (Fig. 4c), FPDB stores the hot input data
in the local cache (i.e., main memory) to take advantage of
fast IO, and keeps the cold data in the external cloud storage,
utilizing pushdown computation to reduce network traffic.
FPDB contains the following two main modules for such
hybrid execution.

The hybrid query executor (Sect. 4.1) takes in a logical
query plan from the optimizer and transforms it into a sepa-
rable query plan based on the cached data, which processes
the cached data in the compute node and pushes down com-
putation tasks to the storage layer for uncached data. The two
portions are then merged and fed to downstream operators.

The cache manager (Sect. 4.2) determines what data
should be cached in the compute node. The cache replace-
ment policy takes into account the existence of computation
pushdown to exploit further performance improvement. For
each query, the cache manager updates the metadata (e.g.,
access frequency) for the accessed data and determines
whether admission/eviction should occur.
Adaptive Pushdown (Sect. 5). As discussed in Sect. 2.3.2,
blindly executing all pushdown tasks in the storage layermay
throttle the storage-layer computational resources. Ideally,
only a portion of tasks that the pushdown engine can sustain
are offloaded. For the rest computation tasks, the accessed
raw data is returned to the compute nodes and no push-
down occurs. FPDB is enhanced by an adaptive pushdown
arbitrator deployed in the storage layer (Fig. 4d, which is
responsible for determining how aggressive pushdown com-
putation should occur—whether a particular pushdown task
shouldbe accepted and executed in the storage, through effec-
tive heuristics.
Advanced Pushdown Operators (Section 6). We inspect
commonly used pushdown operators that are not investigated
deeply but can benefit query processing (Fig. 4e). Besides
the conventional pushdown operators that are supported by
existing systems (e.g., selection, projection, aggregation,
bloomfilter, etc.), FPDBadditionally supports offloadingdis-
tributed data shuffle and selection bitmap operations to the
storage layer. The two proposed pushdown operators are dis-
covered following a general principle which decides whether
an operator is amenable to pushdown.

123



1648 Y. Yang et al.

Fig. 3 Performance of no
pushdown and eager pushdown
on Sample Queries—Q1 and
Q19 in TPC-H

Fig. 4 System Architectures—High level architectures of baseline solutions (caching-only (a), pushdown-only (b)), and three proposed enhance-
ments deployed within FPDB (hybrid execution (c), adaptive pushdown (d), and advanced pushdown operators (e))

4 Hybrid pushdown and caching execution

In this section, we present the solution of fine-grained hybrid
query executionwith pushdownand caching, and anewcache
replacement policy specifically designed for the storage-
disaggregation architecture.

4.1 Hybrid query executor

At a high level, the query executor converts the logical query
plan into a separable query plan by dispatching separa-
ble operators into both local and pushdown processing; the
results are then combined through a merge operator. This
section describes the module and illustrates how the system
works through an example query.

4.1.1 Design choices

Designing the hybrid query executor requires making two
high-level design decisions:what to cache and at which gran-
ularity, which we discuss below.
Caching Table Data or Query Results: Two types of data
can potentially be cached in FPDB: table data and query
results. Table data can be either the raw input files or a subset
of rows/columns of the input tables. Query results can be

the final or intermediate results of a query, which can be
considered as materialized views.

We consider the caching of table data and results as two
orthogonal techniques,with their ownopportunities and chal-
lenges. In FPDB, we explore caching on the raw table data
since it is adopted more widely in existing OLAP DBMSs
[23, 26, 39, 49, 78]—the system usually deploys a data cache
in a granularity such as tables, pages, blocks, etc.
Storage and Caching Granularity: FPDB stores tables in
object cloud storage service. Tables are horizontally parti-
tioned based on certain attributes (e.g., primary key, sorted
field, timestamp, etc.). Each partition is stored as an object
in the cloud storage and contains all the columns for the cor-
responding subset of rows.

The basic caching unit in FPDB is a segment, which con-
tains data for a particular column in a table partition. The data
format of a segment (e.g., Apache Arrow [7]) can be poten-
tially different from the raw input data (e.g., CSV, Parquet
[10], etc.).

4.1.2 Separable operators

We call an operator separable if it can be executed using
segments in both the cache and the cloud storage. Not all
the operators are separable (e.g., a join). Below we analyze
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the separability of several common operators, based on the
observations in Table 1.
Projection: Projection is a separable operator. If only a
subset of segments in the queried columns are cached, the
executor can load the remaining segments from the storage
layer, and merge them with cached segments.
FilteringScan:Whether a filtering scan is separable depends
on the cache contents. Ideally, the executor can process some
partitions in the cache, push down filtering for the remaining
partitions, and then merge the results, thus separating the
execution. However, the situation can be complex when not
all of the selected columns are part of the filtering predicate.

Consider a scan query that returns two sets of attributes
A and B from a table but the filtering predicate is applied
on only attribute set A. For a particular table partition, if
all segments in both A and B are cached, the partition can
be processed using the data in the cache. However, if only
a subset of segments in A are cached, the executor must
either load the missing segments or push down the scan of
the partition to the storage entirely. Finally, if all segments in
A but only a subset of segments in B are cached (call it B ′),
the processing can be partially separated—the executor filters
A and B ′ using cached data, and pushes down the filtering
for (B − B ′).
Base Table Aggregation:Aggregation on base tables can be
naturally separated: an aggregate function is executed locally
if all involved segments are cached, and pushed to the storage
otherwise.
Hash Join: A join cannot be completely pushed down to the
storage layer due to limitations of the computation model
that a storage layer supports (Sect. 6.1). Prior work [84] has
shown that a Bloom hash join can be partially pushed down
as a regular predicate on the outer relation. Given this obser-
vation, we conclude that the building phase in hash join is not
separable—the columns of interest in the inner relation must
be loaded to the compute node. The probing phase is separa-
ble: cached segments of the outer relation can be processed
locally, while uncached segments can be filtered using the
Bloom filter generated based on the inner relation.

4.1.3 Separable query plan

Aquery plan is separable if it contains separable operators.
Figure 5 shows an example of a conventional query plan
without pushdown (Fig. 5a) and the transformed separable
query plan (Fig. 5b). A conventional query plan reads all the
data from the compute node’s local cache (i.e., buffer pool).
For a miss, the data is loaded from the storage layer into the
cache before query processing. A separable query plan, by
contrast, splits its separable operators and processes them
using both the cached data and pushdown computation.

For good performance and scalability, the merge opera-
tor in FPDB is implemented across multiple parallel threads.

Fig. 5 Example of a Separable Query Plan—The hybrid query plan
contains a parallel merge operator that combines the results from cache
and computation pushdown

Specifically, each operator in FPDB is implemented using
multiple worker threads and each worker thread is assigned
multiple segments of data. The segments assigned to a par-
ticular worker might be entirely cached, entirely remote, or a
mixture of both. For threads with a mixture of data sources,
the results must be first merged locally into a unified data
structure. The data across different threads does not need
to be explicitly merged—they are directly forwarded to the
downstream operators (e.g., joins) following the original par-
allel query plan.

4.1.4 Example query execution

SELECT R.B, sum(S.D)
FROM R, S
WHERE R.A = S.C AND R.B > 10 AND S.D > 20
GROUP BY R.B

Listing 1 Example query joining relations R and S.

We use the query above as an example to further demon-
strate how the hybrid query executor works; the plan of the
query is shown in Fig. 6. The example database contains two
relations R and S with the assumption that |R| < |S|, and
each relation has two partitions (as shown in the cloud storage
in Fig. 6). Relation R has two attributes A and B, and rela-
tion S has two attributes C and D. Four segments are cached
locally, as shown in the Local Cache module in Fig. 6.

To execute the query using hash join, theDBMSfirst scans
R to build the hash table and scans S to probe the hash table.
The output is fed to the group-by operator. Four partitions
are involved in the join, i.e., partitions 1 and 2 in relations R
and S, respectively. Depending onwhat segments are cached,
the partition can be scanned locally, remotely, or in a hybrid
mode.
ScanofRelationR. For the first partition in R, both segments
(i.e., A1 and B1) are cached. Therefore, the executor reads
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Fig. 6 Separable Query Plan—For the query in Listing 1

them from the local cache and no pushdown is involved. For
the second partition in R, neither segment (i.e., A2 and B2)
is cached, thus the filter is pushed down to the storage layer,
which returns the subset of rows in A2 and B2 that satisfy the
predicate. Finally, the local and remote results are combined
through a merge operator.
Scan of Relation S. For the first partition in S, segmentC1 is
cached, however, the system cannot process the filter on C1

because the segment to evaluate the filter predicate (D1) is
missing. Instead, the system has to push the filter operation to
the storage, which returns the filtered segments C1 and D1.
For the second partition in S, only segment D2 is cached.
Since the filter predicate is on D, the DBMS can directly
read from the cache to process D2. Since the scan should also
return attributeC2, the DBMS can push down the filter to the
storage to load C2. Note that it is also possible to process
this partition by pushing down the processing of bothC2 and
D2—ignoring the cached D2. This alternative design avoids
evaluating the predicate twice (i.e., for the cached data and
remote data) but incurs more network traffic. FPDB adopts
the former option.

In the discussion so far, only the filtering scan is executed
in a hybrid mode. As described in Sect. 4.1.2, the probe table
in a hash join can also be partially pushed down. For the
example query in particular, the DBMS can scan relation R
first, builds a Bloom filter on attribute R.A, and consider this
Bloom filter as an extra predicate when scanning relation
S; namely, the predicates on S then become S.D > 20 AND

Bloom_filter(S.C). Note theBloomfilter can only be con-
structed after the entire column of attribute R.A is loaded.
Therefore, when pushing down the Bloom filter on the probe
table, the scan of relation S can start only after the scan of

relation R completes. In contrast, both scans can be executed
in parallel without Bloom filter pushdown.
4.1.5 Execution plan selection

FPDB currently uses heuristics to generate separable query
plans. It takes an initial plan from the query optimizer, and
splits the execution of separable operators based on the cur-
rent cache content. Specifically, an operator on a partition is
always processed based on cached segments whenever the
accessed data is cached. Otherwise, we try to pushdown the
processing of the partition as much as we can. If neither
works (e.g., the operator is not separable), we have to load
the missing segments from the storage layer. We adopt these
heuristics based on the following two assumptions:

• Local processing on cached data is more efficient than
pushdown processing in the storage layer (memory
bandwidth of local compute nodes is higher than disk
bandwidth of the storage).

• Pushdown processing is more efficient than fetching all
the missing segments from the storage layer and then
processing locally (disks of the storage has higher aggre-
gated bandwidth than the network between the compute
and storage layers).

The two conditions can hold in many cloud setups with
storage-disaggregation. Evaluation in Sect. 8.2 will demon-
strate the effectiveness of the heuristics with good perfor-
mance.

4.2 Cachemanager

The cachemanager decides what segments should be fetched
into the cache or evicted, as well as when cache replacement
should happen. We noticed a key architectural difference in
FPDB that makes conventional cache replacement policies
sub-optimal. Conventionally, cache misses require loading
data from storage. If cached segments are of equal size, each
cachemiss incurs the same cost. In FPDB, however, since we
can push down computation instead of loading data, cache
misses incur different overheads. In other words, segments
with higher pushdown costs should be considered for caching
with higher weights. We develop a Weighted-LFU (WLFU)
cache replacement policy based on this observation.

4.2.1 Integration with hybrid executor

Figure 7 demonstrates how the cache manager is inte-
gratedwith the hybrid executor inFPDB.Thehybrid executor
takes a query plan as input and sends information about the
accessed segments (both pushdown and non-pushdown seg-
ments) to the cache manager. The cache manager updates
its local data structures, determines which segments should
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Fig. 7 Integration of Executor and Cache Manager—The cache man-
ager decides what segments should stay in cache

be admitted or evicted, and loads segments from the cloud
storage into the cache during query execution.

For cache hits, the hybrid executor processes the query
using the cached segments. Cache misses include two cases:
First, if the caching policy decides not to load the segment
into the cache, then FPDB exploits computation pushdown to
process the segment. Otherwise, the DBMS can either wait
for the cache load or push down the computation. FPDB
adopts the former option to minimize network traffic.

4.2.2 Weighted-LFU cache replacement policy

As discussed previously, the hybrid caching and pushdown
design in FPDB changes a fundamental assumption of cache
replacement — cache misses for different segments incur
different costs. Specifically, consider two segments, A and
B, where A is accessed slightly more frequently than B, so
that an LFU policy prefers caching A. However, it can be the
case that segment A can benefit from computation pushdown
so that a cache miss is not very expensive, while segment B
is always accessed with no predicate hence cannot benefit
from pushdown. In this case, it might be more beneficial if
the DBMS prefers B over A when considering caching.

Following this insight, we can tailor the standard LFU
specifically for the pushdown context. Instead of increment-
ing the frequency counter by 1/segment.size for each access
of a segment (assuming the standard LFU is size-sensitive),
we increment the counter by a weight, which depends on
whether the segment can be pushed down and if so, what
cost the pushdown is. Intuitively, the more costly the push-
down is, the more benefit we get from caching, hence the
higher weight.

In FPDB, we choose a straightforward formulation to
represent a weight by the estimated total amount of work
(measured in time) of pushdown computation, which is mod-
eled by three components: time of network transfer, time of
data scanning, and time of computation, as shown in Eq.1.
The total time is divided by the segment size to indicate the

size-normalized benefit of caching.

w(s) = total_work(s)

size(s)

= tnet(s) + tscan(s) + tcompute(s)

size(s)
(1)

We estimate the time of each component using the follow-
ing equations (Eqs. 2–4).

tnet(s) = selectivity(s) × size(s)

BWnet
(2)

tscan(s) = Ntuples(s) × size(tuple)

BWscan
(3)

tcompute(s) = Ntuples(s) × Npredicates

BWcompute
(4)

Specifically, size(s), Ntuples, and selectivity(s) represent
the segment size, the number of tuples in the segment, and
the filter selectivity when filtering the segment. size(tuple)
denotes the tuple length. Npredicates refers to the number of
filter predicates to evaluate. BWnet, BWscan, and BWcompute

represent the network bandwidth when transferring push-
down results, disk bandwidth when scanning the raw data,
and processing speed of filter evaluation, respectively. The
time of each component is essentially the total amount of
data transfer or computation divided by the corresponding
processing bandwidth.

In FPDB, required statistics are retrieved for determin-
ing each component and for different supported pushdown
operators listed in Table 1. For time of network transfer
and data scanning, statistics of the input and output data
size (e.g., size(s), size(tuple), Ntuples(s), selectivity(s)) are
required and can be obtained from table metadata and cardi-
nality estimation [50, 55] by the optimizer. The computation
time estimation is based on the number of input records
(Ntuples(s)) and the complexity of the pushdown operator.
Most pushdown operators have a constant complexity per
data record (e.g., projection, aggregation, Bloom filter, etc.).
The complexity of other operators is estimated from the
corresponding query clause. For example, we refer to the
complexity of selection pushdown as the number of filter
predicates (Npredicates), and the complexity of top-K push-
down is dependent on the parameter K .

For the bandwidth numbers in the denominators, we run
simple synthetic queries that exercise the corresponding com-
ponents to estimate their values. This process is performed
only once before all the experiments are conducted.

The equations above assume the data within the cloud
storage is in a row-oriented format (e.g., CSV)—they can be
easily accommodated for columnar data (e.g., Parquet) by
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adjusting data scan amount to the size of columns accessed
instead of the whole object.

The estimation model described above can be potentially
improved by considering more complicated factors, such as
the parallelismandoperation pipelining during the pushdown
execution. Specific design and implementation details of the
target storage layer may also help, for example, the distribu-
tion of data partitions across the storage servers, and whether
the storage maintains multiple copies of the data. Moreover,
when treating the storage layer as a black box, a learning-
based approach can potentially discover hidden parameters
to better shape the cost model.

5 Adaptive pushdown

This section presents the detailed design of the adaptive push-
downmechanism,which performs computation pushdown in
storage adaptively, by taking into account the storage-layer
resource utilization status.

5.1 Theoretical analysis

We begin by analyzing the theoretical optimal bound of
adaptive pushdown—the optimal division of the computa-
tion tasks between pushdown and non-pushdown to achieve
the best overall performance. Specifically, we analyze the
workload under the following assumptions.

• The workload (which may consist of multiple concurrent
queries) contains N pushdown requests submitted to the
storage layer in parallel.

• Each pushdown request consumes the same amount of
computational resource bwpd when admitted, or the same
amount of network resource bwpbwhen pushed back. The
total available CPUand network bandwidth in the storage
are BWcpu and BWnet.

• The overall execution time of the pushable query plan
portion is Tpd with pushdown enabled, and Tnpd with

pushdown disabled, where
Tnpd
Tpd

= k. Intuitively, k
determines the maximum speedup that any pushdown
technique can possibly achieve.

Weuse the following terms to describe the pushdowndeci-
sions made at the storage layer.

• Among N pushdown requests arriving at the storage, n
requests are admitted and N−n requests are pushed back.

• The admitted pushdown requests result in an overall exe-
cution time of Tpd_part, and requests that are pushed back
take Tpb_part to finish.

Since the admitted pushdown requests at the storage layer
and the pushback requests at the compute layer are executed
in parallel, the overall execution time of the pushable portion
in the query plan can be formulated as follows (Eq.5).

T = max{Tpd_part , Tpb_part} (5)

In the optimal case, the storage layer would have a global
view of all requests that it will receive ahead of the query exe-
cution. Therefore, an optimal split of the pushdown requests
for admission and pushback can be constructed. Intuitively,
withmorepushdown requests admitted at the storage,Tpd_part
becomes larger, and Tpb_part gets smaller, and vice versa. The
overall execution time obtains the minimum when these two
terms are equal, namely:

Topt = Tpd_part = Tpb_part (6)

We assume the pushdown tasks are bounded by CPU
computation and pushback tasks are bounded by network.
Therefore, Eq. 6 can be further expanded as follows (Eq.7).

n · bwpd

BWcpu
= (N − n) · bwpb

BWnet
(7)

Tpd and Tnpd can be expressed as Eq.8.

Tpd = N · bwpd

BWcpu
, Tnpd = N · bwpb

BWnet
(8)

Since we know
Tnpd
Tpd

= k by assumptions, we plug it into
Eq.8 and obtain Eq.9.

kN · bwpd

BWcpu
= N · bwpb

BWnet
(9)

Combining Eq.9 and Eq.7, we can express n as follows
(Eq.10).

n = k

k + 1
N (10)

Additionally, the optimal execution time can be expressed
as follows (Eq.11).

Topt = k

k + 1
Tpd = 1

k + 1
Tnpd (11)

Note the optimum can only be approximately satisfied in
practice, since we have to round the number of pushdown
and pushback tasks to the closest integers.

To summarize, the optimal division between pushdown
and non-pushdown tasks can be expressed based on the
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Fig. 8 High Level Workflow of Adaptive Pushdown—The adaptive
pushdown arbitrator determines whether to accept a pushdown request
for execution or push it back

performance ratio between pushdown and non-pushdown
execution (i.e., k). A larger k (i.e., a higher speedup with
pushdown) leads to more tasks executed in the storage (n
being larger). When the pushdown layer processes tasks
slower than the compute layer (k < 1), it can still accel-
erate the system by offloading some computation. When the
pushdown layer is extremely slow or does not exist (k = 0),
optimally all tasks are pushed back to the compute layer and
no pushdown occurs.

5.2 Pushbackmechanism

One major challenge of adaptive pushdown is that it is hard
for the compute nodes to collect accurate statistics from
the storage to decide whether a pushable task should be
offloaded. Furthermore, even if such information canbe accu-
rately collected at planning time, the resource utilization in
the storage layer may change at runtime. In FPDB, push-
down decisions are made at the storage layer via a pushback
mechanism.

The high level workflow is depicted in Fig. 8. In our
design, the compute nodes always try to offload all pushdown
tasks as if the storage has abundant computational resource.
However, only a portion of tasks that the pushdown engine
can sustain are actually processed, which is determined by
the adaptive pushdown arbitrator. The rest of the pushdown
requests are rejected and pushed back, in which case the raw
data is returned and processed at the compute nodes as if
pushdown did not happen. The query plan at the compute
layer is then adjusted to accommodate the pushback.

Algorithm 1 illustrates the pushbackmechanism deployed
in the storage layer. It is invoked when a new request arrives
or a running request completes. The state maintained in
the pushdown node includes a wait queue (Qwait), which is
used to buffer excess pushdown requests when the server is
under heavy load, and a finite set of execution slots (Sexec-pd,
Sexec-pb) for both pushdown and pushback executions, to help
isolate performance among different executions and avoid
throttling. We assume all incoming requests first enter Qwait.

Algorithm 1: Pushback Mechanism of Storage

State: wait queue: Qwait
pushdown execution slots: Sexec-pd
pushback execution slots: Sexec-pb

Assume: all incoming requests first enter Qwait
1 while Qwait is not empty do
2 req = Qwait .front()
3 tpd = estimate_pushdown_time(req)
4 tpb = estimate_pushback_time(req)
5 if tpd < tpb then
6 success = try_pushdown(req, Sexec-pd) or
7 try_pushback(req, Sexec-pb)
8 else
9 success = try_pushback(req, Sexec-pb) or

10 try_pushdown(req, Sexec-pd)

11 if success then
12 Qwait .dequeue()
13 else
14 break

For each request in the wait queue (line 1–2), we begin by
estimating the execution time for both pushdown and push-
back (lines 3–4), which are classified as the faster path and
slower path respectively through comparison (line 5). The
adaptive pushdown arbitrator first tries to assign the request
to the faster path (line 6 and line 9). If the assignment is not
successful due to resource contention, i.e., the corresponding
execution slots are full, the arbitrator then tries to assign the
request to the slower path (line 7 and line 10). If at least one
assignment is successful, the request is removed from the
wait queue and admitted for execution, and we start evalu-
ating the next request in the wait queue. The process pauses
when both computation and network resources are saturated
(line 14), which behaves as a back-pressure mechanism to
limit data processing rates. The intuition here is that the stor-
age server should balance the resource utilization between
CPU and network adaptively. In practice, we observe Algo-
rithm 1 is lightweight and the overhead is negligible.

Time estimation (line 3–4) follows the same methodol-
ogy adopted by Weighted-LFU cache replacement policy
(Sect. 4.2.2), where the pushdown time (tpd) consists of three
components: data scanning, computation, and network trans-
fer of pushdown results. Similarly, the pushback time (tpb)
contains data scanning, network transfer of raw data, and
compute-layer computation. Note data scanning is included
in both pushdown time and pushback time, and will cancel
each other when compared in Algorithm 1 (line 5).

We further simplify the time estimation by ignoring
compute-layer computation in pushback time, based on two
observations. First, in a storage-disaggregated architecture,
usually raw data transfer dominates the pushback time so
the computation component has little effect (in Sect. 6.1 we
observe most existing pushdown operators are bounded).
Second, the storage layer is unaware of the computation
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bandwidth of the compute nodes, which can vary across
different users. This may bring some inaccuracies into the
estimation, but overall we observe a near-optimal result on
how aggressive pushdown should be and better performance.
Section8.3will show the pushbackmechanism closely aligns
with the theoretical analysis in Sect. 5.1.

5.3 Awareness of pushdown amenability

The wait queue deployed in Algorithm 1 manages the arriv-
ing pushdown requests in a FIFO order—whether the request
will be accepted is purely based on current resource utiliza-
tion status. However, some requests may benefit more on
pushdown compared to other requests (e.g., the request has
a selective filter but incurs little computation). Intuitively,
these pushdown-amenable requests should be given a higher
priority to be executed in the pushdown path than the requests
that cannot benefit a lot by pushdown.

Consider a scenario where the wait queue contains two
requests: r1 with tpd = 3 and tpb = 4, followed by r2 with
t ′pd = 1 and t ′pb = 4. The two requests have the same esti-
mated pushback time but differs on the estimated pushdown
time. Assume at a moment one request can be admitted for
pushdown execution and the other needs to be pushed back.
Algorithm 1 would first evaluate r1 and places it into the
pushdown path, then evaluate r2 with it pushed back. How-
ever, a better solution would be to push back r1 instead of r2,
since r2 incurs a lower execution time by pushdown.

Given a request, we define Pushdown Amenability (PA)
as the potential benefit of pushdown compared to pushback,
which can be expressed as Eq.12.

PA = tpb − tpd (12)

At runtime, the arbitrator keeps the wait queue sorted by
the PA value of the requests. Pushdown execution always
consumes the request with the highest PA value, and push-
back execution does the reverse. In the example shown above,
PA(r1) = 1 and PA(r2) = 3, which means the storage
server would consider executing r2 in the storage and pushes
r1 back. Compared to Algorithm 1, the total amount of con-
sumedCPU and network resources are potentially decreased.

6 Advanced pushdown operators

In this section,we aim to obtain a comprehensive understand-
ing of the effects of computation pushdown to cloud OLAP
DBMSs. We first derive a principle about whether an oper-
ator is amenable to pushdown (Sect. 6.1), and then further
identify two operators that can benefit from pushdown to the
storage (Sect. 6.2).

6.1 Key characteristics

Table 1 summaries the pushdown support in existing cloud
OLAP DBMSs. Selection, projection, and aggregation are
mostly considered due to the wide usage and ease of devel-
opment (e.g., AQUA, S3 Select, Presto, etc.). Beyond this,
different systems adopt a customized set of pushdown oper-
ators. Grouped aggregation can be pushed to the storage
by Redshift Spectrum. PushdownDB supports pushdown
of grouped aggregation, top-K, and Bloom filters using
existing APIs of S3 Select. However, due to the intrin-
sic restrictions of S3 Select interfaces, the implementations
are not efficient. First, pushdown of grouped aggregation
has to be processed in two phases, resulting two rounds
of data exchange. Second, Bloom filters are required to be
serialized explicitly into strings with 0 s and 1s, which is
space- and computation-inefficient. FlexPushdownDB ([83])
improves the efficiency of pushdown computation through
a fine-grained hybrid execution framework with caching.
PolarDB-X enables pushdown for a specific join type which
requires both tables co-partitioned on the join key. PolarDB-
MySQL supports pushing Bloom filter and top-K operations
to the underlying storage, but does not support aggregation
pushdown.

We conclude the following key characteristics from
Table 1 that contribute to the suitability of a pushdown oper-
ator.

Key Characteristics of Pushdown. The required
storage-layer computation is local and bounded.

Characteristic 1: Locality:Localitymeans the computation
tasks placed at the storage do not incur any network traffic
across the storage servers—the traffic occurs only between
the compute and storage layers.
Analysis of Operators: Popular pushdown operators like
selection, projection, and scalar aggregation comply with
locality, since no network traffic is incurred across storage
nodes. The same rationale also applies to operators includ-
ing grouped aggregation, Bloom filter, top-K, sort, where the
computation functionality can be performed on each individ-
ual data object.

General join does not embrace locality, unless the two
joining relations are co-partitioned using the join key
(PolarDB-X). Otherwise the data needs redistributeed across
the network. Another example of non-local operator is
Merge, which combines the output of multiple upstream
operators (e.g., select, project, aggregate, sort, etc.). Merge
requires data exchange within the storage layer since data
objects are typically spread across multiple storage servers.
As Table 1 shows, none of the existing systems pushes merge
to the storage.
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Potential Advantages: We believe locality is an important
characteristic for pushdownoperators for three reasons. First,
a pushdown environment must support multi-tenancy. For-
bidding data exchange across storage servers can reduce the
performance variations in pushdown tasks (e.g., due to net-
work interference and queueing). Second, cloud storagemust
be encrypted using protocols like TLS [67] during data trans-
fer. Local operators avoid the complexity of encryption and
decryption across storage servers (e.g., distributing private
keys). Third, local pushdown keeps the design of the storage
layer simple, since otherwise it needs to support the server-
side functionalities of client–server APIs.
Characteristic 2: Boundedness:Bounded implies the push-
down tasks require at most linear amount of CPU and
memory resources over the accessed data size.
Analysis of Operators: Selection, projection, and scalar
aggregation are linearly bounded since theCPUconsumption
is linear to the size of the processed data, and the memory
consumption is a constant. Grouped aggregation consumes
linear CPU and linear memory capacity. Bloom filter can be
regarded as a special regular filter which is thus also linearly
bounded. Top-K is typically implemented using a max or
min heap which consumes O(K ) memory and O(NlogK )

execution time, where N is the size of the input data. The
variable K is a constant and typically much smaller than N ,
making the time complexity also linear in N .

The computation complexity of the sort operation is not
linearly bounded. The boundedness of the join operator
depends on the cardinality of its output. For example, in
a key-foreign key join, the output size is bounded by the
larger input table, which also bounds the memory usage
and computational complexity. Non-equi-joins are typically
computed using a nested loop, resulting in complexity that
grows beyond linear.
Potential Advantages: Supporting only bounded operators
preserves the key benefits of storage-disaggregation, where
the storage service scales only based on the volume of the
stored data, regardless of the computational resource con-
sumption of the workloads. If pushdown operators are not
bounded (linearly), the computational resource consump-
tion may grow beyond the scale of the store data, which
requires the storage servers to balance between storage and
computational needs, which defeats the purpose of storage-
disaggregation.

6.2 Proposed pushdown operators

Following the key characteristics derived from existing sys-
tems, we identify two commonly used operators in modern
distributed query processing that can also benefit from push-
down to storage, but have not been deeply investigated
previously. First, we observe that the hybrid pushdown and
caching execution (Sect. 4)maywaste some cached segments

when they cannot cover the filter predicates entirely. To tackle
this, we leverage late materialization to push down selec-
tion bitmap as the form of the filter predicate to better use
the cached data. Second, we noticed that existing pushdown
operator are not specifically designed for distributed execu-
tion. Therefore, we propose to offload distributed data shuffle
to the storage layer to reduce network traffic.
SelectionBitmap:Latematerialization is adopted by colum-
nar OLAP engines broadly, as demonstrated by various
previous studies [31, 59, 65, 66, 69]. Selection bitmaps
are one common technique embracing late materialization,
and DBMSs frequently filter columnar data using selection
bitmaps. For instance, when selecting a column based on a
filter predicate on another column, the predicate column is
read in first to generate a selection bitmap. This bitmap is then
used to filter the selection column in later execution stages.

Storage-disaggregation opens up new design space to
better utilize late materialization—bitmap construction and
bitmap apply may not happen in the same layer, since mod-
ern columnar query engines cache individual columns within
the compute nodes [18, 23, 35, 39]. Selection bitmap push-
down essentially is a variant of regular filtering pushdown,
and hence is both local and bounded. In the following dis-
cussion, we will delve deeper into this larger design space by
demonstrating with two prevalent cases, and then formulate
a comprehensive solution that can be applied more broadly.
Case 1: Selection Bitmap from the Storage Layer: Selection
bitmaps can be transferred from the storage to the compute
layer when they can only be created at storage—when the
storage evaluates pushdown computation (i.e., filter predi-
cates), it actively constructs a bitmapwhich is later leveraged
by the compute nodes to filter columns in the local cache.

W.l.o.g., we use the filtering query below to demonstrate
how selection bitmap pushdown works, which essentially
evaluates a set of filter predicates on attribute set B and
returns both columns of both attribute sets A and B. In more
general cases, the filtering query can be a subquery in more
complicated queries, for example, producing a input joining
relation.

SELECT A, B FROM R
WHERE [predicates on B]

Listing 2 A General Filtering Query (A and B refer two attribute sets).

Assume columns A are stored in the local cache, as Fig. 9
shows. Conventionally, the DBMS needs to load the missing
columns B to evaluate the filter (Fig. 9a) (it is also possi-
ble that the DBMS pushes down the entire scan and loads
both filtered columns A and B). The hybrid solution pro-
posed in [83] also requires the predicate column B loaded
to the compute node. Figure 9b illustrates the case when
selection bitmap pushdown is enabled. The storage layer first
constructs a selection bitmap by evaluating the filter predi-
cates on columns B. Then the bitmap is sent to the compute
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Fig. 9 Selection Bitmap Pushdown (from the Storage Layer)—
Selection bitmap constructed at storage can be used to filter cached
data at the compute layer

Fig. 10 Selection Bitmap Pushdown (from the Compute Layer)—
Storage can use the compute-layer selection bitmap to perform filtering
without touching the predicate columns

node,where columns A are loaded from the cache andfiltered
by directly applying the bitmap. At the same time, filtered
columns B are returned to the compute node, forming the
final result together with filtered columns A.
Case 2: Selection Bitmap from the compute layer:When the
selection bitmap can be constructed in the compute layer, it
canbe sent to the storage layer to dofilteringwithout touching
the predicate columns from the disks.

Specifically, assume columns B are cached when execut-
ing Listing 2. As Fig. 10 shows, conventionally, the storage
layer must scan both columns A and B to get the result back
to the compute layer (Fig. 10a). Selection bitmap pushdown
can reduce the number of columns scanned at the storage
layer. As Fig. 10b demonstrates, before sending the push-
down request, the compute node evaluates the filter predicate
on B from the local cache, and constructs a bitmap represent-
ing the filter result. The bitmap is then sent to storage such
that the storage server can perform filtering without loading
columns B from disks. Moreover, the CPU cycles used to
evaluate filter predicates are eliminated at the storage layer.
Our prior work [83] adopts the conventional approach since
it does not support transferring bitmaps between the compute
and storage layers.
Complete Fine-Grained Solution: Selection bitmap push-
down from the storage layer and the compute layer com-
plements each other, as one of them is always applicable
depending on what data columns are cached. In practice, fil-
ter predicates are often composed of multiple sub-predicates

Fig. 11 Distributed Data Shuffle Pushdown—Data is directly redis-
tributed to the target compute node from the storage layer

connected by ‘AND’ or ‘OR’, and these sub-predicates may
themselves be composite. In these situations, a fine-grained
execution framework can be used to combine the benefits of
both storage-side and compute-side selection bitmaps. For
example, on evaluating the predicate “(A or B) and C”,
assume columns A and B are cached. We can assign the sub-
predicate “A or B” to be evaluated at the compute layer, and
leave the rest “C” to the storage layer. Selection bitmaps are
constructed in both layers and then exchanged, allowing for
the formationof a complete selectionbitmap that corresponds
to the input filter predicate, through inexpensive bitwise oper-
ations. Subsequently, the complete selection bitmap is used
to filter both the cached columns at the compute layer and
the uncached columns at the storage layer.
Distributed Data Shuffle: Shuffle is a commonly used
operator to redistribute data among compute nodes, for exam-
ple, when the downstream operator is an equi-join and the
two joining relations need to be redistributed based on the
join key. In a traditional shared-nothing architecture, shuffle
moves data from one node to another based on a partition
function (hash-based, range-based, etc), so each data record
experiences one network transfer. However, in a storage-
disaggregation architecture, as Fig. 11a shows, existing
systems (e.g., Presto) involve two network transfers—load
data from the storage (Step 2) which is pre-filtered within
the storage (Step 1, e.g., selection and projection pushdown),
and then exchange data across compute nodes (Step 3).

Figure 11b presents the proposed design where we push
the shuffle operators into the storage layer. In this case, the
processing of the pushdown tasks is initiated on the stor-
age servers without shuffling (Step 1). Before returning the
pushdown results to the compute layer, the data is partitioned
and directly forwarded to the appropriate target computation
nodes (Step 2). Essentially, the new shuffle design merges
steps 2 and 3 in the previous design into a single step, which
reduces two network transfers to one.

The compute layer needs to send some key parameters
to the storage layer for it to conduct the shuffle operation.
These include a partition function, the partition key, and the
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identifiers of the target compute nodes (e.g., IP addresses and
keys in FPDB, for FaaS platforms this requires more com-
plicated designs which are beyond the scope of this paper)
which the shuffled results are returned to. In our implemen-
tation, pushdown requests are sent per data partition, and the
parameters used in shuffle processing are attached to each
pushdown request when sent to the storage layer. The shuffle
operation for a data partition is initiated once its upstream
operators are finished (e.g. scan, filter).

There are two approaches for a storage server to transfer
shuffled data to target compute nodes: (1) actively pushing
the data to the compute nodes, or (2) buffering the shuffled
results locally and waiting for compute nodes to request. We
chose the latter approach since the target compute nodes may
not be immediately ready to receive the datawhen the storage
server issues the transmission. However, the storage server
has limited memory space and should not indefinitely write
shuffled results to the local buffer. The storage server will set
an upper bound on its local buffer size; when the buffer is
full, the shuffle process will throttle until the buffer is drained
by the target computation node.

Pushdown of distributed data shuffle is local since it does
not incur network traffic across the storage servers—data is
solely transferred from storage to the compute layer. It is also
bounded because essentially it involves scanning of the input
data and assigning records to their corresponding partitions,
which consumes CPU and memory resources linearly.
Interact with CachedData: It is non-trivial to exploit the data
in the cache while performing shuffle pushdown, since the
shuffle operation changes the data distribution, which means
the cached datamay not be directly applicable to downstream
operators.

The most straightforward method is to ignore the cached
data when pushing shuffle to the storage layer—the entire
table is redistributed to the compute nodes from the storage.
Abetter solution is to perform the same shuffle function to the
cached columns within the compute cluster, and only brings
back shuffle results on uncached columns from the storage.
The advantages are as follows. First, in an n-node cluster,
a portion of roughly 1

n network traffic of redistributed data
can be saved (i.e., redistributed to the same node), assuming
the raw data is initially uniformly distribute into the n nodes
and the shuffle function evenly partitions the data across the
cluster. Second, the network bandwidth within the compute
cluster is usually higher than the bandwidth between the com-
putation and storage layer. Finally, reading cached data is
more efficient than loading data from the storage devices.

However, it may not be directly applicable to perform the
shuffle function over the cached data, which depends on the
existence of the shuffle columns in the cache. To tackle this,
we can resort the similar insight of selection bitmap push-
down.When processing the partitioning function, the storage
layer can generate a position vector, representing the com-

Fig. 12 Distributed Query Execution in FPDB

pute node that each row should be redistributed to. For a
n-node compute cluster, each position value requires only
log2n bits, making the position vector a lightweight data
structure.
Interact with theUpstreamOperator;The rationale aformen-
tioned can be generalized when the shuffle operation is not
the direct downstream operator of data scan—it may be per-
formed on intermediate results of computation like filtering
and aggregation. The input data produced by the upstream
operator can be divided into local portion—produced within
the compute layer, and remote portion—produced within the
storage layer (i.e. pushdown), which can also abstractly be
regarded as cached data and uncached data respectively.

7 Implementation

Given that notmanyopen-source cloud-nativeOLAPDBMSs
exist, we decided to implement a new prototype, FPDB, in
C++ andmake the code publicly available to the community.1

Figure 12 shows the distributed query execution framework
of FPDB. FPDB adopts a storage-disaggregation architec-
ture. Data is stored persistently in the object storage layer like
AWSSimple Storage Service (S3) [5]. FPDB supports query-
ing both row-based (e.g., CSV) and columnar data formats
(e.g., Parquet [10]), and widely used benchmarks including
SSB, TPC-H, and Join Order Benchmark (JOB) [58].

7.1 FPDB compute layer

FPDB runs on a cluster of AWS EC2 [3] virtual machines,
which contains a coordinator node and several executor
nodes. When a query arrives, the coordinator is responsible

1 https://github.com/cloud-olap/FlexPushdownDB/tree/vldbj_24
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for inspecting the catalog and metadata, parsing the query,
and optimizing the query plan. FPDB integrates Apache Cal-
cite [8] as an extendable cost-based query optimizer.
Actor-Based Parallel Processing: FPDB supports dis-
tributed parallel query execution using C++ Actor Frame-
work (CAF [38]). CAF is a lightweight and efficient imple-
mentation of the Actor model [33], similar to those found in
Erlang [36] or Akka [1]. Physical operators are wrapped into
actors, which are remotely spawned at the executor nodes
by the Actor Manager. A query is composed of a number
of actors arranged in a tree. Within each individual executor
node, the CAF scheduler multiplexes active actors over all
CPU cores on the host machine.

Actors communicate via message passing from producers
to consumers—messages flow from leaves to the root. FPDB
manages actor behaviors using data messages and control
messages. Data messages represent the execution result of
the producer, as well as the data input of the consumer, which
are sent in a pipelined fashion. Data messages are placed in
the shared memory when the producer and consumer actors
are in the same node. For data transfer among different nodes,
FPDB leverages Arrow Flight [12], which achieves a higher
network throughput over CAF’s builtin cross-node commu-
nication. Arrow Flight enables wire-speed, zero-copy, and
serialization-free data transfer by sending data in Arrow IPC
format [13], which can be processed directly by FPDB’s exe-
cution runtime. Control message are used to instruct actors
to begin execution, track their completion status, and col-
lect operators’ execution metrics. Query execution begins on
leaf operators (i.e., scan), and the results are gathered on the
collate operator on completion.

FPDB’s local cache is also implemented as an actor with
cache contents managed by the cache replacement policy.
The cache actor communicates with other operator actors
through message passing to admit and evict data segments.
FPDB performs caching using the main memory (RAM) of
the executor nodes.
Arrow-Based Runtime:Within the database engine and the
cache, we use Apache Arrow [7] to manage data; table data
is converted to Arrow within the scan operator. Arrow is
a language-agnostic columnar data format designed for in-
memory data processing. In the executor, we encapsulated
Arrow’s central type, Array, to represent a data segment.
Arrays are one or more contiguous memory blocks holding
elements of a particular type. Using the same data format for
the processing engine and the cache eliminates the overhead
of extra data conversions.

Arrow provides efficient compute kernels (aggregation,
sorting, join, etc.) using optimization techniques including
prefetching for cache-efficiency and vectorization via CPU
SIMD instructions. Besides, FPDB uses Gandiva [19] for
efficient expression evaluation,which is built on top ofArrow

and further enhanced by exploiting LLVM and just-in-time
expression compilation.

7.2 FPDB storage layer

FPDB supports querying data from object storage including
AWS S3 and FPDB-Store, a S3-like storage prototype with
pushdown capabilities discussed in Sect. 5 and Sect. 6.

When querying data from S3, FPDB pushes down com-
putational tasks through S3 Select [27], a feature where
limited computation can be pushed down onto S3, includ-
ing projection, filtering scan, and base table aggregation.
Raw data retrieval is performed by issuing S3 GetObject [6]
requests. We configure rate limits, timeouts, and connections
in AWSClientConfiguration high enough to saturate the net-
work bandwidth. Besides, FPDB does not use HTTPS/SSL
which incurs extra overhead, as we expect analytics work-
loads would typically be run in a secure environment.

To offers more complex storage-layer computation (e.g.,
shuffle, selection bitmap, Bloom filter, etc.), we developed
FPDB-Store, an open-source storage layer with pushdown
support. Existing pushdown platforms (Table 1) are deployed
in a separate layer with compute resources (e.g., Redshift
Spectrum, Snowflake Query Acceleration Service, Azure
Data Lake Query Acceleration, S3 Select), or by leverag-
ing the computation power within the storage servers (e.g.,
PolarDB-X, PolarDB-MySQL). FPDB-Store emulates the
functionality of a pushdown layer by deploying onto EC2
storage-optimized instances. Data objects are stored on file
systems located on locally attached SSDs, and fetched by
the compute nodes via gRPC [20]. Arrow Flight is utilized to
send pushdown requests to the storage layer and get results
back to the compute layer, to avoid costly data format con-
versions. Each pushdown request contains a serialized query
plan instead of a plain SQL dialect [15, 27], to avoid redun-
dant query parsing and planning in the storage. FPDB-Store
reuses the same distributed MPP engine of FPDB when pro-
cessing pushdown tasks.

For pushdown operators with bitmaps (e.g., selection
bitmap, Bloom filter), FPDB wraps bitmaps into single-
column Arrow tables for low serialization overhead. FPDB
also avoids two-phase processing [84] when pushing down
grouped aggregation to achieve lower latency. In adaptive
pushdown, when the storage decides to push back a request,
a special Flight error will be returned to the computation
layer, where the corresponding compute node will issue a
another gRPC call to retrieve the compressed raw data.

8 Evaluation

In this section, we evaluate the performance of FPDB by
focusing on the following key questions:
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• How does the hybrid pushdown and caching architec-
ture perform compared to baseline pushdown-only and
caching-only architectures, and what is the impact of
Weighted-LFU on top of it, compared to traditional cache
replacement policies?

• How does adaptive pushdown perform under different
resource utilization status?

• What is the performance impact of the two proposed
pushdown operators?

8.1 Experimental setup

Hardware Configuration: We conduct all the experiments
on AWS EC2 virtual machines. The compute layer is
deployed on compute-optimized instances (e.g., c5a.8xlarge)
ormemory optimized instances (e.g., r5.4xlarge), and FPDB-
Store is deployed on storage-optimized instances (e.g.,
r5d.4xlarge). All instances run the Ubuntu 20.04 operating
system.
Benchmark: We use the widely adopted data analytics
benchmarks, the Star Schema Benchmark (SSB) [62] and
TPC-H [30]. Each table is partitioned into objects of roughly
150 MB when in CSV. We use both CSV and Parquet for-
mat in the experiments, and Parquet data is converted from
CSV data. When using FPDB-Store as the storage layer, data
objects are evenly distributed to local disks of the storage
instances.

We use a scale factor of 50 or 100 for a few reasons. First,
we observe it is large enough to stress the system sufficiently
—both CPU and network resources are nearly saturated (i.e.,
a resource usage of more than 90%). Second, the current
FPDB does not support disk spilling when processing data
that does not fit in memory, which we left as future work.
Finally, for the subquery that can be offloaded to the storage
layer, the data size is not going to affect the performance ratio
between pushdown and no-pushdown designs. In FPDB,
we push down operations that are only local and bounded
(Sect. 6.1). We also chunk the table data into small fixed-size
partitions. Within a single table, the same pushdown com-
putation occurs on each data partition independently, and
will not generate large intermediate results. Hence the ratio
between pushdown execution time and that of no-pushdown
should be fixed regardless of the data scale. Therefore, a
larger data set will not affect our main conclusions.
Measurement: We measure the execution time and other
relevant metrics (e.g., network traffic). For each experiment
(i.e., a single query or a batch of sequentially executed
queries), we run three times and record the average execu-
tion time with the associated metrics. We observe that the
variance in all the measurements are relatively low—within
5% of the average execution time. When caching is disabled,
each of the three runs is a cold run and during the run no data
is cached in the main memory of the compute node. When

the cache is used, we warm up the cache before each of the
three runs. By default caching is disabled.

8.2 Evaluating hybrid pushdown and caching
execution framework

This section evaluates the performance of the hybrid query
execution framework and Weight-LFU cache replacement
policy on SSB (SF = 100). We implement a random query
generator based on SSB queries. A query is generated based
on a query template with parameters in the filter predicates
randomly picked from a specified range of values (or a set of
values for categorical data). We incorporate skewness into
the benchmark by picking the values following a Zipfian
[47] distribution with tunable skewness that is controlled
by a parameter θ . Skewness is applied to the fact table (i.e.
Lineorder) such that more recent records are accessed
more frequently. A larger θ indicates higher skewness. The
default value of θ is 2.0, where about 80% queries access the
20% most recent data (i.e. hot data).

Each experiment sequentially executes 50 queries. For
architectures using the cache (i.e., Caching- only and
Hybrid), cache is warmed up before the execution.

8.2.1 Caching and pushdown architectures

Proposed and Baseline Designs:We implemented the pro-
posed Hybrid architecture (Sect. 4.1) and the following
baseline designs within FPDB.

• Pullup: Data is never cached in the computation node.
All accesses load table data from S3. This design is used
in Hive [72], SparkSQL [34], and Presto [25].

• Caching- only: Data is cached in the computation node
upon a miss. There is no computation pushdown in this
design. This design is used in Snowflake [39] and Presto
with Alluxio caching [26].

• Pushdown- only: Filtering scan is always pushed down
to the storage layer whenever possible. Data is never
cached in the computation node. This design is used in
PushdownDB [84] and Presto with S3 Select enabled.

We use S3 as the storage layer and leverage S3 Select
to perform pushdown computation. By default, we use
LFU cache replacement policy for Caching- only and
Hybrid. We report performance varying two parameters:
cache size and access skewness of the workload (i.e., θ ), on
both c5a.8xlarge (32 vCPU, 64 GB memory, 10 Gbps net-
work) and c5n.9xlarge instances (36 vCPU, 96 GB memory,
50 Gbps network).
Overall Performance: Fig. 13 shows the runtime compari-
son on the c5a.8xlarge instance using CSV data. Figure 13a
compares different caching/pushdown architectures when
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Fig. 13 Performance
Comparison (c5a.8xlarge)—The
runtime with different a cache
sizes and b access skewness

(a) Varying Cache Size (b) Varying Skewness

Fig. 14 Performance
Comparison (c5n.9xlarge)—The
runtime with different a cache
sizes and b access skewness

(a) Varying Cache Size (b) Varying Skewness

the cache size changes. First, we observe that the perfor-
mance of Pullup and Pushdown- only are not affected
by the cache size; this is because data is never cached in
either architecture. Pushdown- only outperforms Pullup
by 5.2×, because pushdown can significantly reduce the net-
work traffic. The Caching- only architecture, in contrast,
can take advantage of a bigger cache for higher performance.
When the cache is small, its performance is close to Pullup.
When the cache size is bigger than 12 GB, it outperforms
Pushdown- only due to the high cache hit ratio.

Finally, the performance of Hybrid is consistently bet-
ter than all other baselines. When the cache is small,
FPDB behaves like Pushdown- only; when the cache is
large enough to hold the working set, FPDB behaves like
Caching- only. For cache sizes in between, Hybrid can
exploit both caching and pushdown to achieve the best of
both worlds. At the crossing point of Pushdown- only and
Caching- only (i.e., roughly 12 GB), Hybrid outperforms
both by 2.2×.

Figure 13b shows the performance of different architec-
tures as the access skewness increases (we use a cache of
8 GB which is enough to cache the hot data). Pullup and
Pushdown- only are not sensitive to changing skewness.
Both Caching- only and Hybrid see improving perfor-
mance for higher skew, due to a higher cache hit ratio since
there is less hot data.

We further evaluate FPDB on the c5n.9xlarge instance
which has a 50 Gbps network. Figure 14a compares the per-
formance of different architectureswith different cache sizes.
The general trends are similar to the case of c5a.8xlarge, and
Hybrid consistently outperforms all baselines.With a higher
network bandwidth, Pushdown- only is 2× faster than
Pullup, which is lower than the speedup on the c5a.8xlarge
instance because loading data from the storage is faster. The
crossing point of Pushdown- only and Caching- only
shifts towards the left to roughly 6GB, atwhichpointHybrid
outperforms both baselines by 51%.

The performance results with increasing access skew on
the c5n.9xlarge instance are shown in Fig. 14b. The general
trend is also similar to c5a.8xlarge.

From the results above,we observe that different hardware
configurations can shift the relative performance of push-
down and caching, but the hybrid design always outperforms
both baselines.
Query Categorization:We dive deeper into the behavior of
the system by inspecting the behavior of individual queries,
and observe that they can be categorized into three rep-
resentative cases: (1) caching has better performance, (2)
pushdown has better performance, and (3) both have simi-
lar performance. For each category, we compute the average
speedup of different architectures compared to Pullup. The
results on c5a.8xlarge are shown in Fig. 15. Although not
shown here, the results on c5n.9xlarge have a similar trend.
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Fig. 15 Query Categorization—The average speedup of each represen-
tative case in different architectures

Table 2 Performance Comparsion between Presto and FPDB—
The runtime (in seconds) of different architectures in both systems
(Pushdown- only as PD- only, Caching- only as CA- only)

Architecture Pullup PD-only CA-only Hybrid

Presto 588.7 271.3 536.3 –

FPDB 472.1 111.2 225.7 80.8

In all three cases, Hybrid is able to match the best of the
three baseline architectures. When pushdown (or caching)
achieves a higher speedup, Hybrid slightly outperforms
Pushdown- only (orCaching- only).When the two tech-
niques have similar performance,Hybrid outperforms either
baseline significantly. The performance results in Fig. 13 and
Fig. 14 are an aggregated effect of these three categories of
queries.
Comparison against Existing Solutions: To further vali-
date the performance of our system, we compare FPDB with
Presto, a production cloud database. We use Presto v0.240
which supports computation pushdown through S3 Select
and caching through Alluxio cache service [26]. For Alluxio,
we cache data in main memory, which is consistent with
FPDB. We conduct the experiment using the same workload
of Fig. 13 with an 8 GB cache and a skewness of 2.0.

The result is shown in Fig. 2. FPDB outperforms Presto
by 25% in Pullup and 2.4× in Pushdown- only, which
implies that query processing inside FPDB is efficient.
In Caching- only FPDB is 2.4× faster than Presto with
Alluxio caching. A few reasons explain this performance

gain: First, Alluxio caches data at block granularity, which is
more coarse-grained than FPDB. Second, Alluxio manages
cached data through its file system, incurring higher overhead
than FPDB, which manages cached data directly using heap
memory. We further note that only FPDB supports Hybrid
query execution. The Alluxio caching layer is unaware of the
pushdown capability of S3 while loading data, thus only one
technique can be used.
Parquet Performance: In this experiment, we investigate
the performance of FPDBon the Parquet data. The challenge,
however, is that current S3 Select has poor performance on
Parquet (potentially due to inefficient Parquet readers), lead-
ing to even worse performance than Pullup. We studied a
fewother cloud-storage systems but they either have the same
problem [16, 22] or do not support Parquet pushdown [15].

Therefore, we evaluate the performance on the Parquet
data using our storage prototype—FPDB-Store (Sect. 7.2),
which uses Arrow’s Parquet reader to efficiently decompress
the Parquet data into Arrow’s in-memory columnar format.
The pushdown results are sent to the compute layer viaArrow
Flight without any format conversions—uncompressed data
is transferred (S3 Select also transfers uncompressed CSV
data).

We perform the experiments on both c5a.8xlarge and
c5n.9xlarge instances and report results in Fig. 16. We add
the performance on the CSV data for reference. We observe
that the performance on Parquet is always better than the
performance on CSV, since projection pushdown is free in
the Parquet format, leading to network traffic and disk I/O
reduction. For Pullup and Caching- only, by cmparing
Fig. 16a and 16b, we observe that the gain of Parquet is
more prominentwhen the network bandwidth is low, inwhich
case a more severe bottleneck is being addressed. The per-
formance improvement of Pushdown- only on Parquet is
similar on both instances, since pushdown results are rel-
atively small, making the network not a major bottleneck
anymore—joins are dominating the performance instead.
When using the Parquet format, Hybrid still achieves the
best performance among all the architectures. At the crossing

Fig. 16 Performance of
different architectures with
different cache sizes on the
Parquet data. Results on the
CSV data (Fig. 13a, 14a) are
added for reference
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Fig. 17 Weighted-LFUCache Replacement Policy—Runtime compar-
ison of Weighted-LFU (WLFU) and baseline policies (i.e., LFU and
Belady) with varying access skewness

point of Pushdown- only and Caching- only, Hybrid
outperformns both by 59% and 30%, respectively.

We provide the following intuition as to why Hybrid’s
advantage remains in Parquet data. In essence, the perfor-
mance gain of pushdown mainly comes from three aspects:
(1) network traffic reduction from projection pushdown; (2)
network traffic reduction from selection pushdown; (3) pars-
ing and filtering data withmassive parallelism.With Parquet,
all architectures have the benefit of (1), but only pushdown
processing has the advantages of (2) and (3). For example,
under the default cache size (i.e. 8 GB), Hybrid reduces
network traffic by 50% over Caching- only on the Parquet
data (as opposed to 93% on CSV).

8.2.2 Weighted-LFU cache replacement policy

Proposed and Baseline Designs:We implemented the pro-
posed Weighted-LFU cache replacement policy (Sect. 4.2)
and the following baseline policies within FPDB.

• LFU: Least-frequently-used caching policy.
• Belady [37]: an optimal replacement policy that assumes
availability of future information.

• LRU: Least-recently-used caching policy. However, we
have conducted a separate experiment which shows that
LRU has worse performance than LFU and Belady, so
excluded it in the results.

In thedefault SSBqueries, predicates ondifferent attributes
have similar selectivity, making the pushdown cost of dif-
ferent segments similar. To measure the effectiveness of
Weighted-LFU, we change the SSB queries to incorpo-
rate different pushdown costs, by varying the selectivity
of filter predicates. Specifically, we change predicates on
some attributes to equality predicates which are highly
selective (e.g., lo_quanti t y = 10), while using range
predicates on the other attributes (e.g., lo_discount <

3 or lo_discount > 6).

As Fig. 17 shows, WLFU consistently outperforms the
baseline LFU and Belady. The biggest speedup happens
when θ = 0.3 (i.e., low access skewness), where WLFU
outperforms LFU and Belady by 37% and 47%, respec-
tively. We further measure network traffic and find WLFU
can achieve a reduction of 66% and 78%, compared to the
baseline LFU and Belady respectively. In fact, we observe
similar cache hit ratios between LFU and WLFU. However,
since WLFU selectively caches segments with a potentially
higher pushdown overhead, each cache miss incurs a much
lower cost compared to LFU. Interestingly, Belady under-
performs the baseline LFU and incurs more network traffic,
because Belady keeps prefetching entire segments for future
queries, which takes little advantage of computation push-
down.

As θ increases, the performancebenefit ofWLFUdecreases.
When θ is small, there is little access skewness, so segments
with higher pushdown cost are cached, leading to the higher
effectiveness ofWLFU.When θ is large, the access skewness
overwhelms the difference of pushdown cost among seg-
ments. In this case, both policies cache frequently accessed
segments and thus perform similar.

8.3 Evaluating adaptive pushdown

Proposed and Baseline Designs:We implemented the pro-
posed Adaptive pushdown mechanism (Sect. 5) and the
following baseline designs within FPDB.

• No pushdown: Pushdown is disabled. Raw data is
directly loaded from the storage layer. This design is used
in existing systems without pushdown capabilities.

• Eager pushdown: Pushdown is enable and occurs
whenever the computation task can be offloaded to the
storage layer. This design is used in existing systemswith
pushdown capabilites (e.g., Redshift Spectrum, Presto,
etc.).

We compare the performance under different storage-
layer computational resource conditions, using the TPC-H
benchmark (SF = 50).We use the Parquet data. Since S3 does
not support execution pushdown tasks adaptively, we use
FPDB-Store (Sect. 7) as the storage layer, which is deployed
on r5d.4xlarge instances (16 vCPU, 128 GB memory, up to
10 Gbps network, and two 300 GB local NVMe SSDs). We
emulate the storage-layer computational resource status by
varying the number of available CPU cores for pushdown
tasks (with a storage computational power of 1 meaning that
all CPU cores are available). The compute layer is deployed
on r5.4xlarge instances (16 vCPU, 128 GB memory, up to
10 Gbps network).
Overall Performance: Fig. 18 compares the execution time
of Adaptive pushdown with Eager pushdown and No
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Fig. 18 Performance Evaluation of Adaptive pushdown on TPC-H (Execution time is normalized to No pushdown)

pushdown baselines. When the computational resource at
storage is abundant for pushdown execution (i.e., storage
computational power is higher than 0.5), Eager pushdown
outperforms No pushdown and is only slightly affected by
the computational power at storage. As the storage compu-
tational power decreases, pushdown execution gets throttled
and gradually becomes the major bottleneck, making Eager
pushdown underperformNo pushdownwhen the storage-
layer computational resource is scarce.

The performance ofAdaptive pushdown is consistently
better than both baselines. Specifically, when the storage
computational power is high, it performs similarly to Eager
pushdown, and when the storage server is tiny or under
heavy burden, its performance degrades less than Eager
pushdown and can still slightly outperform No push-
down. In situations where the storage computational power
falls between these two extremes, Adaptive pushdown
achieves the best of both worlds. When the performance of
No pushdown andEager pushdown breaks even,Adap-
tive pushdown outperforms both baselines by 1.5× on
average, and a speedup of 1.9× is observed on queries includ-
ing Q1, Q6, Q8, Q17, and Q19.

With pushdown enabled, the sensitivity on the storage
layer’s CPU utilization status varies among different queries.
Most queries (15 of all) expose a high sensitivity when
executed with pushdown. For example, the performance of
Eager pushdown of Q1, Q12, Q19, and Q22 is greatly
impacted by the storage-layer computational power, and
starts to degrade even when the storage-layer CPU resource
is not scarce. In these queries, the performance improvement
of Adaptive pushdown is prominent since the pushable
portion of the query plan dominates the end-to-end execu-
tion time, and Adaptive pushdown mitigates the issue of
resource contention at storage when the pushable subquery
plan is processed. For the remaining queries, the performance
of Eager pushdown is not very sensitive to the storage-
layer computational power (e.g., Q2, Q3, and Q18), where
the execution time is dominated by non-pushable operators.

In these queries,Adaptive pushdown only shows its supe-
riority when the available computational resource at storage
is extremely low. For example,Adaptive pushdown in Q2
outperforms both baselines by 1.2× when the storage-layer
computational power is 25%.
Case Study: To get a deeper understanding of the per-
formance benefits, we conduct detailed analysis on two
representative queries. We pick Q14 as the query that ben-
efits significantly from computation pushdown, and Q12 as
the query that benefits little from pushdown.

Wemeasure the number of admitted pushdown requests at
the storage layer in each experiment, and compute the ratio
against the total number of requests. Figure 19 shows the
results of both the heuristics used in the pushbackmechanism
(Algorithm1), and the theoretical optimum (Eq.10). For both
queries, with the storage computational power decreasing,
fewer pushdown requests are admitted to be executed on
the storage server, and more requests are pushed back to
the compute layer. Compared to Q12, pushbacks in Q14 are
less frequent since it achieves a higher maximal pushdown
speedup, such that more tasks are executed in the storage.

Overall we observe a very small difference between the
heuristics and optimum (1% on Q12 and 2% on Q14), and in
some cases pushback heuristics achieve the optimal bound
(e.g., for Q12 when the storage computational power is less
than 25%). This demonstrates that the pushback mechanism
is able to find a proper division of the computation tasks
between pushdown and non-pushdown.

Fig. 20 compares the total amount of data transfer between
the storage and compute layers among different pushdown
strategies. The data transfer amount of No pushdown
and Eager pushdown both remain consistent, and Eager
pushdown reduces data transfer up to an order of magni-
tude. The incurred network traffic of Adaptive pushdown
is sensitive to the storage-layer computational power, since it
adaptively adjusts the ratio between assigned pushdown and
pushback tasks, such that both CPU and network resources
at the storage server can be fully utilized.
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Fig. 19 Percentage of the
Number of Admitted Pushdown
Requests over the Total Number
of Requests

Fig. 20 Total Amount of Data
Transfer through the network (in
a unit of gigabytes) of the Two
Representative Queries (Q12
and Q14) among Different
Pushdown Strategies

Fig. 21 Performance
Breakdown on Two
Representative Queries (Q12
and Q14)

Figure 21 shows the performance breakdown on the two
representative queries. We present three cases where the
storage-layer computational power is high,medium, and low,
respectively. The execution time of the non-pushable portion
of the query plan remains stable in all cases. Compared to
fetching raw data from the storage in No pushdown, the
overhead of pushback executions inAdaptive pushdown is
consistently smaller since less data is returned. Compared to
Eager pushdown, Adaptive pushdown executes push-
down tasks more efficiently since fewer tasks are actually
admitted by the storage. We further observe in Adaptive
pushdown that, the performance of pushdown and pushback
executions are close, which means our algorithm is able to

properly divide pushdown and pushback tasks to balance the
usage of CPU and network resources.
Awareness of Pushdown Amenability: Next we evalu-
ate Adaptive pushdown when the pushdown requests
have different pushdown amenability. Within a single query,
pushdown amenability of different requests is similar, since
the TPC-H dataset embraces a uniform distribution among
different data partitions. Therefore, in this experiment we
execute the two representative queries (Q12 and Q14) con-
currently to ingest heterogenity of pushdown amenability.

Figure 22 compares the original Adaptive pushdown
and Adaptive pushdown with awareness of pushdown
amenability. We also add No pushdown and Eager
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Fig. 22 Evaluation of
Awareness of
Pushdown-Amenability in
Concurrent Executions

Fig. 23 Number of Admitted
Pushdown Requests at storage
in Concurrent Executions

Fig. 24 Total Resource
Consumption of the Storage
Layer in Concurrent Executions
(CPU consumption is measured
by the total CPU time that is
normalized to the time of 1
vCPU, and network
consumption is measured by the
total amount of data transfer, in
a unit of gigabytes)

pushdown baselines for reference. Both original Adap-
tive pushdown andAdaptive pushdownwhich is aware
of the pushdown amenability (PA-aware) outperform the
two baselines. Compared to the original Adaptive push-
down, PA-aware Adaptive pushdown further improves
the performance of both concurrent queries, where Q12 is
accelerated by up to 1.2× andQ14 is improved by up to 1.9×.
An interesting observation on Q14 is that the performance
is sometimes even improved with lower storage computa-
tion power (e.g., 0.3). This is because the performance gap
between the two concurrent queries are increased, such that
the contention on the non-pushable portion in the compute
layer is mitigated—the slower query (Q12) has not entered

the non-pushable portion when the faster query (Q14) has
completed.

To understand the achieved performance improvement,
we trace the number of admitted pushdown requests for both
queries respectively, which is shown in Fig. 23. Overall, we
observe a decrease for the number of admitted pushdown
requests on Q12 but an increase on Q14. This is because
the requests of Q14 have a potentially larger pushdown ben-
efit, and they are prioritized to be executed at the storage
layer. Correspondingly, more requests of Q12 are pushed
back to the compute layer. It is interesting to note that the
performance of Q12 does not degrade but is even slightly
improved, where the reasons are two-fold. First, the differ-
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ence of the execution time between the pushback path and
pushdown path on Q12 is not significant, so a small number
of more pushback execution do not hurt the performance.
Second, since the requests of Q14 are executed more effi-
ciently, the time spent in the wait queue for the requests of
Q12 decreases.

We further investigate the resource consumption of CPU
and network, which is demonstrated in Fig. 24. PA-aware
Adaptive pushdown reduces CPU consumption by up to
15%, and network consumption by up to 31%, compared to
the original Adaptive pushdown. The reduction is more
significant when storage-layer computational power is lower,
since more requests are pushed back to the compute layer,
and PA-aware Adaptive pushdown is able to capture the
most beneficial requests that should be pushed back.

8.4 Evaluating proposed pushdown operators

Proposed and Baseline Designs:We implemented the pro-
posed pushdown operators (Sect. 6.2), namely, selection
bitmap and distributed data shuffle, within FPDB, and also
the pushdown operators presented in existing systems (e.g.,
selection, projection, aggregation, Bloom filter, top-K, etc.)
as the baseline.

8.4.1 Evaluating selection bitmap pushdown

We first evaluate the performance of selection bitmap push-
down on several representative benchmark queries: Q3, Q4,
Q12, Q14, and Q19 (other queries observe similar results),
using TPC-H (SF = 50). We use the Parquet data. Part of
the queries contain lightweight non-pushdown portion (e.g.,
Q4, Q14, and Q19), while the rest contain heavy or complex
non-pushdown logics (Q3 and Q12). In each experiment, we
vary the selectivity of the filter predicate associated with the
fact table Lineitem, and warm up the cache before the
execution.
Selection Bitmap from the Storage Layer: We first sim-
ulate the scenario where the selection bitmap can only be
generated in the storage layer. We achieve this by warming
up the cache using the projected (i.e., output) columns of the
filter operator. The results are depicted in Fig. 25.

As Fig. 25a illustrates, all queries show an improvement
in performance compared to the baseline. Selection bitmap
pushdown is most effective in Q14 and Q19. When the fil-
ter predicate is non-selective (e.g., 0.9), these two queries
performover 3.0× better than baseline pushdown since trans-
ferring selection bitmaps instead of data columns reduces
network traffic significantly (over 90% of data transfer is
saved, as shown in Fig. 25b). Q4 also observes a speedup of
2.3×.

When the filter predicate is highly selective, the speedup
is less obvious. This is because baseline pushdown returns

less data to the compute layer, such that the reduction of data
transfer is less significant. Despite this, query execution still
gets accelerated. For instance, when the selectivity is 0.1, the
speedups of Q14 and Q19 are 1.8× and 1.3× respectively.

The performance gain on Q3 and Q12 is less substantial
compared to the other queries. These queries contain more
complex operators at the downstream of pushdown (e.g.,
more intricate joins and aggregations), leading to a diluted
performance benefit.
Selection Bitmap from the Compute Layer:We next emu-
late the casewhere the compute-layer selection bitmap can be
used to accelerate pushdown execution in the storage layer.
The cache is warmed up using the predicate columns of the
filter operator. Results are displayed in Fig. 26.

As demonstrated inFig. 26a, all queries benefit fromselec-
tion bitmap pushdown when the filter predicate is selective.
For example, when the selectivity approaches 0, pushdown
of selection bitmaps outperforms the baseline by 2.0× and
2.6× on Q12 and Q19, respectively. When the filter predi-
cate becomes less selective, the performance gain decreases,
since more data is transferred to the compute nodes, which
dominates the query execution time.

We also analyze disk metrics by measuring the number
of bytes read and the number of columns accessed from
the disks, which are illustrated in Fig. 26b. The amount of
data scanning is reduced by 36% and 46% on Q4 and Q14
respectively, and by approximately 10% on the rest queries.
Additionally, the number of columns accessed of the Par-
quet data decreases between 18% and 56%. The reduction of
data scanning is less substantial compared to column access
reduction because the columns that can be skipped via selec-
tion bitmap pushdown are typically highly compressed, as
for example l_shipmode, which only has 7 unique values, and
l_quantity, whose values are within a small range between
1 and 50. Conversely, columns that must be transferred are
often join keys or have a decimal type, which usually have a
low compression ratio.

8.4.2 Evaluating distributed data shuffle pushdown

Next we evaluate the performance of distributed data shuf-
fle pushdown over TPC-H (SF = 100) in Parquet, as Fig. 27
shows. The execution time is normalized to the no push-
down baseline. Across all queries, shuffle pushdown results
in an average of 1.3× performance improvement over base-
line pushdown, and 1.8× over no pushdown.

Among all 22 queries, we observe the performance
improvement on 20 of them, with 15 queries are acceler-
ated by over 1.2×, 10 queries accelerated by over 1.3×,
and 6 queries accelerated by over 1.5×. Q7, Q8, and Q17
benefit from shuffle pushdown most significantly, which are
improved bymore than 1.7×. In these queries, the filter pred-
icates associated with the base tables are not selective, where
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Fig. 25 Performance Evaluation
of Selection Bitmap Pushdown
(Results are normalized to
Pushdown (baseline))—The
selection bitmap is constructed
at the storage layer

Fig. 26 Performance Evaluation
of Selection Bitmap Pushdown
(Results are normalized to
Pushdown (baseline))—The
selection bitmap is constructed
at the compute layer

Fig. 27 Performance Evaluation of Distributed Data Shuffle Pushdown on TPC-H (normalized to No pushdown)

a major part of the table data still needs to be fetched. Shuf-
fle pushdown is able to eliminate the redistribution of the
scanned base table data, which occupies a large portion of
the overall execution time. As a result, we observe more than
half of the data exchange across the compute nodes is saved
compared to baseline pushdown.

Conversely, several queries do not benefit a lot from shuf-
fle pushdown (Q6, Q15, Q19, etc.). These queries typically
have highly selective filter predicates on base tables, such
that the amount of data transferred from the storage layer is
not significant, and the overhead of data exchange across the
compute nodes is negligible.

We further investigate the incurred network traffic in
different pushdown configurations. On average shuffle push-
down reduces the consumed network resource by 38%.
Specifically, shuffle pushdown reduces the data exchange
across the compute layer by 84% on overage, while the
network traffic between the compute and storage layers is
unaffected. Out of all 22 queries, the incurred data exchange
across the compute layer is reduced by over 50% on 20

queries, by over 90% on 16 queries, and by over 99% on
7 queries.

9 Related work

Cloud Databases: Modern cloud databases adopt an archi-
tecture with storage-disaggregation. This includes conven-
tional data warehouses adapting to the cloud (e.g., Vertica
[57] Eon [74] mode) as well as databases natively developed
for the cloud (e.g., Snowflake [39, 78], Redshift [49], Red-
shift Spectrum [4], Athena [2]). FPDB enhances the existing
systems by leveraging pushdown computation.
Computation Pushdown: The concept of computation
pushdown has been widely adopted by modern cloud-
native databases, such as AWS Redshift Spectrum [4], S3
Select [27], and Azure Data Lake Storage Query Accelera-
tion [15]. Systems such as Presto [25], PushdownDB [84]
and FlexPushdownDB [83] support computation offload-
ing via S3 Select [27]. PolarDB-X [24] incorporates sorting
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and co-located equi-join pushdown. AWS Advanced Query
Accelerator (AQUA) [11] uses special hardware accelera-
tors (AWS Nitro chips [14]) to develop pushdown functions.
However, existing systems do not consider the storage-layer
load during pushdown and lack a systematic analysis of push-
down operators, which are addressed in this paper.
Workload Management: General workload management
techniques havebeen intensively studied tomake efficient use
of system resources in addition to achieving any performance
objectives [32, 61, 85], and widely deployed in industrial
commercial systems [17, 29, 75]. For example, SQL Server
ResourceGovernor [29] providesmulti-tenancy and resource
isolation on single instances of SQL Server that serve mul-
tiple client workloads. Moreover, YARN [75] decouples
resource management from the programming model for
Hadoop’s [9] compute platform. However, existingworkload
managers fall short of considering the broader optimization
space in a storage-disaggregated architecture, where a push-
down task can either be executed and pushed back. In FPDB,
pushdown tasks are managed through adaptive pushdown to
improve resource efficiency.
AdaptiveQuery Processing:There is a rich literature on the
topic of adaptive query processing [46, 51, 52], which adjusts
the query execution dynamically based on more accurate
runtime statistics. Examples include re-optimization tech-
niques [53, 81] and memory adaptive operators [63, 64, 86].
Adaptive query processing is also integrated into modern
commercial systems such as Spark [28] and SQLServer [21].
However, optimizing adaptive processing in the pushdown
context exposes new design constraints, including limited
computational power in the storage, limited network band-
width and the coordination between compute and storage
layers, which are addressed in this paper.

10 Conclusion

We presented FPDB, a cloud-native OLAP database that
optimizes computation pushdown within a storage-disaggre-
gation architecture in several aspects. We propose a hybrid
execution mode which combines the benefits of caching and
pushdown in a fine granularity. We develop adaptive push-
down that executes pushdown tasks adaptively based on the
storage-layer resource utilization. Moreover, we conduct a
systematical analysis of existing pushdown operators and
propose two new beneficial pushdown operators, selection
bitmap and distribute data shuffle. Evaluation on SSB and
TPC-H shows each optimizations can improve the perfor-
mance by 2.2×, 1.9×, and 3× respectively.
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