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Abstract

We develop a theory of stated SL(n)-skein modules,
S, (M, N'), of 3-manifolds M marked with intervals N°
in their boundaries. These skein modules, generalizing
stated SL(2)-modules of the first author, stated SL(3)-
modules of Higgins’, and SU(n)-skein modules of the
second author, consist of linear combinations of framed,
oriented graphs, called n-webs, with ends in N, consid-
ered up to skein relations of the Uq(sln)-Reshetikhin—
Turaev functor on tangles, involving coupons represent-
ing the anti-symmetrizer and its dual. We prove the
Splitting Theorem asserting that cutting of a marked
3-manifold M along a disk resulting in a 3-manifold
M’ yields a homomorphism S, (M) — S, (M’) for all n.
That result allows to analyze the skein modules of 3-
manifolds through the skein modules of their pieces.
The theory of stated skein modules is particularly rich
for thickened surfaces M = X X (-1, 1), in whose case,
S,(M) is an algebra, denoted by S,,(Z). One of the main
results of this paper asserts that the skein algebra of the
ideal bigon is isomorphic with O,(SL(n)) and it provides
simple geometric interpretations of the product, coprod-
uct, counit, the antipode, and the cobraided structure
on Oq(SL(n)). (In particular, the coproduct is given by
a splitting homomorphism.) We show that for surfaces
with boundary ¥ every splitting homomorphism is injec-
tive and that S, (%) is a free module with a basis induced
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from the Kashiwara-Lusztig canonical bases. Addition-
ally, we show that a splitting of a thickened bigon near
a marking defines a right Oq(SL(n))-comodule struc-
ture on S, (M), or dually, a left Uq(sln)-module structure.
Furthermore, we show that the skein algebra of surfaces
21,2, glued along two sides of a triangle is isomor-
phic with the braided tensor product S,(Z,)®S5,(Z,) of
Majid. These results allow for geometric interpretation
of further concepts in the theory of quantum groups, for
example, of the braided products and of Majid’s trans-
mutation operation. Building upon the above results,
we prove that the factorization homology with coeffi-
cients in the category of representations of U,(sl,) is
equivalent to the category of left modules over S,(X)
for surfaces T with 9% = S'. We also establish isomor-
phisms of our skein algebras with the quantum moduli
spaces of Alekseev-Schomerus and with the internal
algebras of the skein categories for these surfaces and

g = sl(n).
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1 | INTRODUCTION
1.1 | Motivation

Moduli spaces of flat connections on surfaces and their quantizations play a pivotal role in quan-
tum field theory. For example, they appear as the classical phase spaces of the Yang-Mills and
Chern-Simons theories, [5, 67], and are quantized by these theories. More rigorous quantizations
are achieved in mathematics through the Topological Quantum Field Theories, [65], Kauffman
bracket skein algebras, [55, 56, 64], the lattice gauge theory, [3, 8], and more recently, through
(quantum) cluster algebras, [23, 29], and factorization homology, [7]. These quantizations and
relations between them are a subject of current active research and are of central importance to
Quantum Topology.

Based on ideas of [12], the first author extended the notion of the Kauffman bracket skein alge-
bras (quantizing SL(2, C)-character varieties) to their stated version, built of links and arcs with
stated ends, [41]. His approach made it possible to analyze skein algebras of surfaces through sur-
face triangulations and provided a conceptual framework for the Bonahon-Wang theory, [12, 42].
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FIGURE 1 Anexample of a 3-web with two endpoints in a marking (in red) stated by i, i,.

On the other hand, the second author introduced the notion of SL(n)-skein modules of 3-
manifolds and proved that they quantize their SL(n)-character varieties, [58]. Based on these two
developments, we develop a theory of stated SL(n)-skein modules of 3-manifolds. Our theory
generalizes the recent work of Higgins for n = 3, [28], however, it is not a straightforward gen-
eralization of the n = 2, 3 cases, because the SL(n)-skein theories for n = 2 and 3 rely on explicit
bases of skein algebras that are unknown for higher n. In fact, one of the main achievements of this
work is a construction of bases for the SL(n)-skein algebras of surfaces with nonempty boundary
for all n.

We discuss the relation between our stated SL(n)-skein algebras and other quantizations of the
SL(n)-character varieties of surfaces in Subsection 1.14 and Section 10.

1.2 | Skein modules of marked 3-manifolds

In this paper, we will work with a commutative ring of coefficients R with a distinguished invert-

ible v = qi. A marked 3-manifold is a pair (M, N'), where M is a smooth oriented 3-manifold
with (possibly empty) boundary M and M C 8M consists of open intervals, called markings.

An n-web a in (M, N') is a disjoint union of an oriented link and a directed ribbon graph whose
every vertex is either 1-valent end in N or an internal n-valent sink or source, see Figure 1. Each
web is equipped with a transversal vector field called its framing, which at each end e points in
the direction of the marking containing e, see Subsection 4.1.

A state of a web «a is an assignment of a label from {1, ..., n} to each of its ends.

The stated SL(n)-skein module, S, (M, N'), of (M, N') is the space of all R-linear combination of
stated n webs in (M, N'), up to internal skein relations (43)-(46) and boundary skein relations (47)-
(50). These relations mimic those satisfied by the Reshetikhin-Turaev functor on tangles, with
n-vertices representing the anti-symmetrizer tensor and its dual. More specifically, the internal
relations are based on the skein relations of [58]. (It may be useful to recall here the premise of [58]:
that although n-webs seem unnecessary from the point of view of study of quantum invariants of
links in manifolds, they allow for a very efficient formulation of the necessary skein relations.)

However, our specific relations involve a novel sign modification that leads to a major technical
benefit: the half-edges around each n-valent vertex have a cyclic ordering only, rather than a linear
ordering required in [58], see Subsections 3.3 and 3.9. An additional benefit of this modification is
that it makes skein relations invariant under the orientation reversal of the webs. (That is reversal
of all loop orientations and edge directions.)

The boundary skein relations of S,(M, N') are new and generalize those of [41] and [28].
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FIGURE 2 Anexample of a splitting of an n-web (in green) intersecting the splitting disk D twice.

1.3 | Splitting homomorphisms

An important property of stated skein modules is that they behave in a simple manner under
the splitting of 3-manifolds along disks. Specifically, for a marked 3-manifold (M, V) with a
properly embedded closed disk D in M — N, let M’ be M with an open collar neighborhood
of D removed. Then M’ is a 3-manifolds with copies D;,D, of D in its boundary, whose glu-
ing together leads to an epimorphism pr : M’ — M. Given an oriented open interval 8 C D, the
splitting of (M, N') along (D, §8), denoted by cutp, g(M, N'), is the marked 3-manifold (M’, N'),
where N/ = N U 3, U B,, where §; C D; are the connected components of pr—'(B), see Figure 2.
Note that for any stated n-web « in (M, N') transversal to D with & n D C §3, the inverse image
pr—i(a) is an n-web in (M’, N”/) stated at all its ends except those at 3, U 8,. Given any map
s:anp —{l,..,n}let a(s) be pr~!(a) with each of its ends x € pr~'(a) N (B, U B,) stated by
s(pr(x)).

The following result generalizes that of [11, 41] for the Kauffman bracket skein modules (n = 2)
and of [28] for n = 3:

Theorem (Splitting Theorem 4.5). There is a unique R-module homomorphism
G(Dsﬁ) . Sn(M, N) e d Sn(CUt(D,ﬁ)(M, N))
sending every stated (D, B)-transverse n-web o in (M, N') to the sum of all of its lifts,

Opp@= ), als.

sianf—{+}

1.4 | Basic properties of stated skein modules

We discuss symmetries and other properties of stated skein modules of marked 3-manifolds in
Subsections 4.9-4.10. In particular, we observe that for every marked 3-manifold (M, N'), the
orientation reversal of webs o — & defines an R-module automorphism:

T S,(M,ND) = S,(M, N,

where an orientation of a web consists of orientations of all its loop components and directions of
all its edges.

Let (M, N') denote M and N with reversed orientations. Let R be the ring R with the distin-
guished element v~ instead of v. For an n-web a of (M, N'), let « be the n-web in (M, N') obtained
from a by negating its framing, f — —f.
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STATED SL(n)-SKEIN MODULES AND ALGEBRAS 7 of 93

Theorem (Theorem 4.9).

(1) Any ring isomorphism x : R — R sending v to v™! extends to an isomorphism of R-modules

XNy - Su(M, N, R) = S,(M, N, R) sending every stated n-web « to @, where S,(M, N, R)
is an R-modulevia x : R - R.

(2) The composition KT O X MN) is the identity on S,(M, N, R).

For every marking § of (M, N'), there is an R-module automorphism gz of S, (M, ), called a
marking automorphism, sending stated n-webs «a to

gp@= J] 0 'g*® " q,

xeanp

where s(x) is the state of the endpoint x of a.
There is an additional automorphism of S, (M, N') associated with each marking of (M, N) :

Proposition (Proposition 4.11). For any marking 8 in N there exist unique R-linear isomorphisms,
called the half-twist automorphisms,

htw, htw : S,(M, N) = S, (M, N)

sending any stated n-web o in (M, N') with k endpoints on 3 to

A
i —
8 k |k k .
htW,g — 1| = (Hclj> . E= (Hclj) N
i j=1 _ Jj=1
D I
and to
— 1
e k te k
| |- (1T )] = (116
i j=1 2 j=1
~ - 1t

where c; € R’s are defined in (2) in Subsection 2.1, andi = n + 1 — i. H is the positive half-twist - see
further details in Subsection 4.11. (The directions of the horizontal edges are arbitrary.)

1.5 | Stated SL(n)-skein algebras of surfaces

The theory of stated SL(n)-skein modules is particularly rich for thickened surfaces M = X x
(—1,1). It is most convenient to consider it in the context of punctured bordered surfaces (pb sur-
faces for short) which are of the form = = £ — P, where £ is a compact oriented surface and P C £
is a finite set, called the ideal points of =, which meets each connected component of %. Then 6%
is a union of open intervals. These intervals are called boundary edges.
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In each boundary edge e, choose a point b,. Let S, (%) = S,(Z X (—1,1), N'), where N is the
union of all b, X (-1, 1), each having the natural orientation of the interval (-1, 1).
For the monogon I, which is the closed disk with a boundary point removed, we have

Theorem (Theorem 6.1). The map u : R — S,(I) given by u(r) = r - @ is an R-algebra isomor-
phism.

Despite its simple statement, the proof of the above result is nontrivial; see the comment at the

end of this subsection.
The bigon, B, is a closed disk with two boundary points removed. In Lemma 6.5, we show that

the R-algebra S, (%) is generated by the arcs q;; = ifor 1 <1, j < n. Splitting B along an
interior ideal arc connecting its two ideal vertices defines an algebra R-homomorphism
A:S,(8) - S,(8)RS,08).

Lete : S,,(B) — R be the composition

htw,, L,
€:5,(B)—> S,(B)— S, (M) ~R,

where htw, is the half-twist automorphism defined above and ¢, is the algebra homomorphism
induced by an embedding 8 < I filling in one of the two ideal points of B, (depicted always on

top of B in this paper).
e(a) = (@) = ¢ Z@] =65

On generators,

Let O,(SL(n)) be the quantized coordinate ring algebra of sl,,. This Hopf algebra is the restricted
dual of the quantized enveloping algebra, Uq(sln), see [35, 9.2.2]. For technical convenience, we
consider O, (SL(n)) as defined over Q[v*'].

Theorem (Theorem 6.3).

(a) The algebra S,,(B) has the structure of a Hopf algebra over R with the coproduct A, the counit e,
and the antipode S such that

; ] .
S(a;.) =(=q)7 q; fori,j=1,..,n.

(b) The map II’(u;) = a;'. extends to a unique Hopf algebra isomorphism

Oy (51,3 R) 1= O,(SL(n) ® R — S,,(B).
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The above theorems generalize statements for n = 2 in [15] and n = 3 in [28]. However, it is
not a straightforward generalization. The proofs of [15, 28] relied on specific bases of S, (Z) for
n = 2,3 that can be obtained through the confluence method, see [60]. That method does not
work for higher n and a construction of bases for n > 3 is an important and still open problem.
(We discuss our progress on that problem below.) We were able to establish the above theorem
without constructing a basis of S,,(B).

1.6 | Geometric interpretation of the cobraided structure on O (SL(n))

The Hopf algebra Oq(sln;R) is dual quasitriangular (see [52, section 2.2], [35, section 10], [20,
section 10.3]), also known as cobraided (see, e.g., [33, section VIIL.5]). This means it has an R-form
(also known as co-R-matrix), which is a bilinear form

p: Oq(sln;R) ® (Dq(sln;R) —R

satisfying certain properties, with the help of which one can make the category of O, (sl,; R)-
modules a braided category. The following generalizes [15, Theorem 3.5] from n = 2 to all n:

Theorem (Theorem 6.4). Under the above identification S, (3) = @q(sln; R) the R-form p has the

following geometric description
@

forany x,y € Oq(sln;R).

Above we identified B with [—1,1] X (-1, 1) by stretching its top and bottom ideal points into
horizontal intervals.

1.7 | Relation to Reshetikhin-Turaev theory

Sections 2-3 mostly summarize the background in quantum groups and in Reshetikhin-Turaev
theory necessary for this paper. Section 2, however, also introduces a novel modification of the
Reshetikhin-Turaev functor, utilized throughout the paper. Let us briefly describe its connection
to stated skein modules.

When the bigon B is identified with [-1, 1] X (—1, 1), the webs on B can be thought as oriented
framed tangles with coupons given by n-valent sinks and sources.

The sign sgn(e) of an endpoint e € da is positive if the direction of a goes from left to right
at e, and negative otherwise. Let sgn,;(«) (respectively, sgn,.(a)) be the sequence of signs of left
(respectively, right) endpoints of o appearing from the bottom to the top.

Let V = Q(v)" be the defining representation of Uq(sl,l) with its standard basis {e;, ..., e, }. Let

{e],...,e,} be the dual basis of V* and let {f1, ..., f .} be a basis of V* given by f; = (—l)i‘lqi_”TTalei
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10 of 93 | LE and SIKORA

fori =1,...,n. For any sign sequence 5 = (3, ..., ), let
V=V @ QV'k,

where Vt =V and V~ = V*. The above bases {ey, ..., e,} and {f, ..., f,,} induce the tensor basis
of V7 indexed by the elements of {1, ..., n}, see Subsection 3.4.

Note that V7 is a U,(sl,,)-module for every sign sequence 7. The key to our work is a modi-
fied version of the Reshetikhin-Turaev functor, introduced in Section 3, which associates to each
web ain B a Uq(sln)-module homomorphism RT(x) : Vs&u(®) — ysen (@ (Itisa sign modifica-
tion of the standard U, (s, )-Reshetikhin-Turaev functor, [57], which requires that the half-edges
incident to each n-valent vertex in « are linearly ordered.)

We show that the benefit of utilizing the basis {f}, ..., f,,} of V* rather than the dual basis to
{ej, ..., e,} is that it makes the modified R-T functor values RT(cr) independent of the orientation
of tangles.

The following result relates our skein algebra of B to the Reshetikhin-Turaev theory:

Proposition (Proposition 6.6). Let &« be an n-web o on B stated by i = (iy, ..., iy ) on theleftand j =
(ji>---» j;) on theright. Then e(e) is equal to the (i, j)-entry of the matrix of the modified Reshetikhin-
Turaev operator RT(a) of a in the above tensor bases.

1.8 | Module and Co-module structures

Given a marking § of a marked 3-manifold (M, N'), consider its closed disk neighborhood D in
dM, disjoint from the other markings of (M, N'). By pushing the interior of D inside M we get a
new disk D’ which is properly embedded in M. Splitting (M, N') along D', we get a new marked
3-manifold (M’, N'") isomorphic to (M, N'), and another marked 3-manifold bounded by D and
D’. The latter, after removing the common boundary of D and D’, is isomorphic to the thickening
of the bigon. Hence, this construction yields an R-linear splitting map

Ag 1 S, (M, N) = S, (M, N) ® O,(SL(n)),

which defines a right coaction of O,(SL(n)) on S,(M, N). Such coactions at different mark-
ings commute.

The Hopf algebra O,(SL(n); Z[v*']) has a Hopf dual given by a completion Uy(sl,) of the
Lusztig’s integral version, L7i of UL, which is a Hopf algebra over Z[v*!], see Subsection 3.9 and
[48, section 1.3]. The duality between these two Hopf algebras turns any right Gq(SL(n))—comodule

W to a left UL-module as follows: For u € UL and x € w,
usx =Y xq(fzpu), where A(x) =Y X1y ® [

(in the Sweedler notation) is the Oq(SL(n))-coaction map. We make this left UL-action on
S, (M, N) explicit in Subsection 7.1.

The Hopf algebra UL contains distinguished charmed element g and the half-ribbon element
X € UL. We prove that the action of these elements on S, (M, N') at a marking f is exactly the
marking automorphism gg and the half-twist homomorphism htw of Subsection 1.4.
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STATED SL(n)-SKEIN MODULES AND ALGEBRAS 11 of 93

FIGURE 3 Left: The standard ideal triangle €. Middle: Glueing X and ¥ by a, = ¢, and a, = e, to get
Z,, A, Right: Tangle diagram x € S, (Z) and its image glue, , (x) € S,(Z, Aq,)-

1.9 | Glueing over an ideal triangle
The standard ideal triangle T C R? is the closed triangle with vertices (-1, 0), (1, 0) and (0,1) with

these vertices removed. We will denote its sides by e;, e,, and J, T as in Figure 3. Suppose a;, a,
are two distinct boundary edges of a (possibly disconnected) pb surface. Define

Zofay = (EUD)/ (e = a0, = @),

as in Figure 3. Define the R-linear homomorphism glue, , : S,(Z) = S, (£, A4,) by continuing
the strands of any web « with endpoints on a, and a, until they reach 8, Z, as in Figure 3 (right).

Proposition (Proposition 8.1, see [15] for n = 2 and [28] for n = 3). The map
gluey o, © S$u(2) = S,(Zg, A,)
is an R-linear isomorphism.

We construct an explicit inverse map to glue,  in Subsection 8.1.

Although the bijective map glue, , isnotan algebra isomorphism with respect to the standard
skein algebra product on S, (Z, A4, ), We show in Subsection 8.1 that it is one with respect to the
self-braided tensor product which we will define right now.

There are two right O, (SL(n))-comodule algebra structures on S, (Z) given by

A =4 1 S(E) = S(E)®O,(SL(n), i=1,2,
which commute. Define the R-linear map A : S,(Z) - S,(2) ® Oq(SL(n)) by
A(x) = Z X ® Uy,
in Sweedler’s notation, where

(&1 ® Idp, (5102 (X) = ) x(1) ® ug) ® ).

For x,y € S, (2) define a new product by

Yix = 2 YayXayp(p) @ wy)),
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12 of 93 | LE and SIKORA

where

A(y) = ZY(l) ®upy, A(x)= Z X1) ® Wy,

and p is the R-form.

It is proved in [15] that A and * together give S,(Z) a right O, (SL(n))-comodule algebra
structure for n = 2. That proof extends to all n.

Denote by ®S5,(2) the R-module S, (£) with this O,(SL(n))-comodule algebra structure. On
the other hand, S'n(ZJa1 Aaz) has a right (Qq(SL(n))-comodule algebra structure coming from the
boundary edge J, <. Here is a stronger version of the proposition above.

Theorem (Theorem 8.2). The map glue, |
O, (SL(n))-comodule algebras.

, 1 88,(2) = S,(Zg, Ag,) is an isomorphism of right

a

WhenZ =X, LUZ;and g; C Z; fori = 1,2 then each S,,(Z;) is a right O, (SL(n))-comodule alge-
bra via the coaction coming from the edge a; and ®(S,(X)) is the well-known braided tensor
product S,(Z,) and S,(Z,) of the two (Dq(SL(n))-m(;lule algebras S, (Z,) and S,(Z,) of Majid,
see [52, Lemma 9.2.12]. An analogous braided tensor product in the context of lattice gauge the-
ory appears in [3] (quantizing [24]) and, in the context of factorization homology, in [7, Corollary
6.11], see Subsection 1.14.

1.10 | On injectivity of splitting homomorphism

A pb surface X is essentially bordered if every connected component of it has nonempty boundary.

Proposition (Proposition 8.6). Suppose X is an essentially bordered pb surface. Then for any interior
ideal arc c of Z, the splitting homomorphism @, : S,(2) — S,(cut X) is injective.

Conjecture (Conjecture 8.7). For any punctured bordered surface ¥ and any interior ideal arc c
the splitting homomorphism O, is injective as well.

The conjecture is true when n = 2 by [15] and for n = 3 by Higgins [28]. In both cases, the proofs
rely on explicit bases of S, (Z). Proposition 8.6 shows the conjecture is true if £ has nontrivial
boundary. We will establish an alternative, weaker version of this conjecture for all pb surfaces in
Subsection 1.12.

1.11 | Skein algebras of surfaces with boundary

LetX  , denote the surface of genus g with p — 1 puncturesand 9%, , = St Let Zz,p beX , with
a boundary point removed. Hence, 23’2 is a punctured monogon.

Utilizing the results of Subsection 1.9, we show in Proposition 8.5 that Sn(Zg"z) =~ Oy (SL(n))
as an R-module with the O,(SL(n))-comodule structure, A, Sy, coinciding with the adjoint
(Dq(SL(n))—coaction on Oq(SL(n)), [52, Example 1.6.14]. Furthermore, we prove that the product
on Sn(Zg’z) coincides with the braided (or, covantarised) product of Majid, [52, Example 9.4.10].
(That result was shown for n = 2 in [15].) Consequently, our theory provides simple geomet-
ric proofs of the associativity of the braided product on O,(SL(n)) and of O,(SL(n)) being an
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@ - [Ow
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P

FIGURE 4 FromZto Z,. Here p is an interior ideal point. The picture when p is a boundary ideal point is
similar.

O, (SL(n))-comodule algebra. (The proofs of these facts are quite technical and involved in [52].)
Furthermore, our theory generalizes these statements to the boundary O, (SL(n))-coaction on the
skein algebra of any essentially bordered punctured surface. We discuss a finite presentation of
Sn(Eaz) in Subsection 8.2.

Let X be now any essentially bordered pb surface. A collection A = {a, ..., a,} of disjoint closed
oriented arcs properly embedded in X is saturated if

(i) each connected component of X\ |J;_, a; contains exactly one ideal point (interior or
boundary) of Z, and
(i) A is maximal with respect to the above condition.

Let U(a,), ..., U(a,) be a collection of disjoint open tubular neighborhood of a saturated col-
lection of arcs ay, ..., q,, respectively. Each U(q;) is homeomorphic with a; X (—1,1) (by an
orientation preserving homeomorphism) and we require that (da;) X (—1,1) C 0Z. Let U(A) =

Uﬁ;l U(ai)-
Theorem (Theorem 8.8).

(1) We haver = r(X) := #0X — y(X), where #0X is the number of boundary components of ¥ and
x denotes the Euler characteristics.
(2) The embedding U(A) < X induces an R-module isomorphism f , : S,(U(A)) - S,(2).

Note that each U(q;) = a; X (—1,1) is naturally a directed bigon, with its sides (da;) X (—1,1)
oriented in the direction of (—1, 1) and that we have an R-linear isomorphism

®r per fa
Oy(SL(n))*" — S, (U(A)) — S, (2).
As O4(SL(n)) has a Kashiwara-Lusztig’s canonical basis over Z[v*!], see [32, 49], we have

Corollary. S,(X)is a free R-modulewith a basis given by the image of tensor product of Kashiwara—
Lusztig’s canonical bases on O (SL(n))®" under f ,0¥®".

We apply the above method to show that S, (2] ) ~ (Dq(SL(n))®2 (as an R-module) and to
describe the product on it in Subsection 8.6. Furthermore, we explain a construction of finite
presentations for S, (%), for every essentially bordered X.

1.12 | Kernel of the splitting homomorphism

Suppose X is a connected pb surface with an ideal point p. Then a trivial ideal arc ¢, at p cuts =

into a monogon and a new pb surface X, which has c,, as its boundary edge, see Figure 4.
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Theorem 9.1 shows that the kernel of

o,
0, 1 5,(2) — S,(£,) ®; S,(M) — S,(Z,)

1R

does not depend on the choice of p. Let us denote it by X(Z). Then the quotient S, (Z) :=
S,(2)/K(Z) is called the projected stated skein algebra of . By Proposition 8.6, K is trivial and
S, (2) =8,(Z)if oz # 6,

Corollary (Corollary 9.2). The splitting homomorphism descends to an injective algebra homomor-
phism

0, : S,() — S, (cut, T) = S, (cut, %).

The following is an alternative characterization of projected skein algebras:

Theorem. ForanyZ, p and c,, as above, S,,(Z) coincides with the subalgebra of S, (Z,) coinvariant
under the coaction Acp 15,(2,) = S,(Z,) ®S,(B)atcy:

$,(Z) ={x € S,(Z,) : Acp(x) =x®1}L

LetE =3 — P,where P is a finite subset of compact surface f, asin Subsection 1.6. Generalizing
the setup of Subsection 1.11, consider a collection A of disjoint, oriented, arcs in X, each with
endpoints in 0X U P, satisfying the conditions (i) and (ii) above. We show in Subsection 9.1 that
such A defines an identification of S,(X) with Oq(SL(n))@” and, hence, it determines a basis of
S, (2).

1.13 | The image of the splitting homomorphism

Let c be an interior oriented ideal arc of a pb surface X. Denote the two copies of ¢ in cut, Z by a,
and a,. We have the splitting R-algebra homomorphism

0, :S,(2) > S,(cut, %)
and S,(cut, X)isa O, (SL(n))-bi-comodule with the right and left coactions
AV S,(cut.2) - S,(cut, ) ® (Dq(SL(n))
o, A S, (cut, T) = Oy(SL(n) ® S,(cut. 2),

respectively, where O,(SL(n)) is identified with the skein algebra of the bigon directed by the
orientation of c. Recall that the Hochschild cohomology module is defined by

HHO(Sn(cutC 2) ={x e S, (cut.X) | A, (x) = floazA(x)},
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STATED SL(n)-SKEIN MODULES AND ALGEBRAS 15 0of 93

where fl is the transposition
fl 1 O,(SL(n)) ® S,(2) = S,(2) @ O,(SL(n)), flx®y) =y x.
Theorem 1.1 ([15, 38] for n = 2 and [28] for n = 3). The image of ©, is equal to HH°(S, (cut, X)).

We prove it by considering the projected version O, : S,(Z) - HH(S,(cut, X)), which has
the same image as nonprojected one. Furthermore, we construct an explicit inverse map V :
HH(S,(cut, ) > S,(2).

1.14 | Relation to factorization homology, skein categories, and lattice
field theory

Factorization homology is an invariant of oriented n-dimensional manifolds introduced by Beilin-
son and Drinfeld [6] in the setting of conformal field theory and then in [1, 2, 47] in the topological
context. For n = 2, it associates with every surface ¥ and every balanced braided category A,
a certain category denoted by f): A. When the base ring is a field, using reconstruction theory
Ben-Zvi, Brochier, and Jordan [7] showed that fz A is equivalent to the category of left modules
over a certain algebra .45, which is isomorphic to the quantum moduli spaces of Alekseev-
Grosse-Schomerus and Buffenoir-Roche [3, 4, 8-10], and also to the internal algebras of the skein
categories of Walker and Johnson-Freyd, [14, 30, 66].

Building upon the above theory of stated skein algebras, we prove that for surfaces £ with 0% =
S', the algebra Ay, for the representation category A of Uq(sl(n)), is isomorphic with S, (Z*),
where 2* is £ with a boundary point removed. The n = 2 case follows also from the results of [21,
37, 43]; see further discussion in Subsection 10.2.

Although our construction of the stated skein modules was motivated by its rich the-
ory developed in this paper, the above result provides a further justification for that
construction.

On the one hand, factorization homology of [7] is more general in that it can defined for
all semi-simple Lie algebras g and it can be viewed as quantizing the entire moduli stacks of
representations, rather than just the character varieties.

On the other hand, our approach has its own advantages. First our theory is defined over
any ground ring, a commutative domain, while the factorization homology approach defines
the algebra Ay over a field. For example, our theory works over the cyclotomic ring (and of
course cyclotomic field), an important quantization case. Over the ring Z[q,q!] our theory
highlights some integral results in quantum group theory, like relations to canonical basis. Fur-
thermore, we define the stated skein module not only for surfaces but also for all 3-dimensional
manifolds, and we worked out the theory for surfaces with multiple boundary components and
multiple markings.

The stated skein algebra of a surface is defined explicitly, via generators (which are geometric
objects and relations, making the theory elementary) while in factorization homology the algebra
As is defined up to an isomorphism only.

The cutting homomorphism in our theory, though related to the excision in factorization
homology, is different from the latter. Our cutting homomorphism and gluing over trian-
gle operations make the study of the stated skein algebra easy by cutting surfaces into
triangles.
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An important application of our approach is it allows the first author and Yu [45] to prove
the existence of the quantum trace map that quantizes the classical Fock and Goncharov trace
map [22] and generalizes the quantum SL,-trace map of Bonahon and Wong [12] to all SL,,. The
concrete geometric nature of the generators of the stated skein algebra allows in many cases to
present a set of elements that generates a quantum space inside the stated skein algebra. This
eventually leads to various versions of quantum traces.

The above works relate our algebras to the theory of quantum cluster algebras, which provide
alternative quantizations of character varieties. Further connections to quantum cluster algebras
are through [13, 29, 59].

1.15 | Compatibility with stated Kauffman bracket skein modules

The stated Kauffman bracket skein algebras (of surfaces) of the first author [41] were generalized
to stated skein modules of marked 3-manifolds in [11] (cf. also [43]). We are going to prove that
these modules are isomorphic with our SL(2)-skein modules, S,(M, N').

To relate these modules to ours, let us replace the variable g of [41] with gq'/? and denote
the resulted stated Kauffman bracket skein module by (M, N’ )qi/2- Recall that it is built of
nonoriented 2-webs without sinks nor sources, stated by sings +.

Theorem (Theorem 11.1). Suppose (M, N') is a marked 3-manifold.

(1) Thereis a unique R-linear isomorphism A : S(M, N' )q1 ;2 = S,(M, N) that maps framed links
a to a stated 2-webs by assigning arbitrary orientation to them, and changing the minus state to
1 and the plus state to 2.

(2) The splitting homomorphism of [11, 41] coincides with ours through A.

1.16 | Compatibility with the SU(n)-skein modules

As mentioned already, a partial motivation for our definition of S,(M, N') were the SU(n)-skein
modules of 3-manifolds introduced by the second author in [58]. These skein modules are built
of based n-webs in M that are defined as our n-webs in (M, @), except that the half-edges incident
to any of their n-valent vertices are linearly ordered. In particular, the based n-webs have no end-
points and SU(n)-skein modules have no boundary skein relations. In Subsection 11.2 we show
that for any 3-manifold M and any n our S,,(M, §) is isomorphic with the SU(n)-skein module of
M. That isomorphism is straightforward for n odd, but it requires a choice of a spin structure on
M for n even.

1.17 | Compatibility with Higgins’ SL3 skein algebras

In his recent work [28], Higgins introduced his version of stated SL;-skein algebras, denoted by
55 L3(E), of punctured bordered surfaces X. His skein algebra is the R-module freely generated by
3-webs stated by —1, 0, 1, subject to his system of skein relations. We show that in that our theory
recovers Higgins’ for n = 3 in Subsection 11.3.
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1.18 | Relation to the Frohman-Sikora SU(3)-skein algebras

C. Frohman and the second author considered in [25] the “reduced SU(3)-skein algebra” of
marked surfaces built of unstated 3-webs, subject to the SU(3)-skein relations of [40], extended
by certain boundary skein relations, which depend on an invertible parameter a € R. We denote
that algebra by Sr¢(Z) for the value 1 of that parameter.

For an unstated 3-web a in Z, let () (respectively, 7_(a)) denote « stated with threes (respec-
tively, ones) at all its ends. In Subsection 11.4 we show that these operations extend to injective
homomorphisms 7,,7_ : Spg(Z) = S3(Z). Furthermore, their images are direct summands of
S5(2).

2 | QUANTUM GROUPS ASSOCIATED TO sln
2.1 | Notations and conventions

We use the notations C, R, Q, Z, N for, respectively, the sets of complex numbers, reals, rationals
numbers, integers, and nonnegative integers. We emphasize that our N contains 0. The number
n (in sl,) is a fixed integer > 2.

The ground ring R is a commutative ring with unit containing a distinguished invertible ele-
ment v. The element g = v?" is the usual quantum parameter. The basic example is R = Z[v*!],
the ring of Laurent polynomials in v with integer coefficients. All fractional powers of q in our
papers are defined via the obvious integral powers of v = ¢!/

For a nonnegative integer m, we define the quantum integer [m] and its factorials by

m = L2 =TT fon =1

We will often use the following scalars:

n2-1 n2-1 (n—1n n2-1
(2 =g =0 = () = () g = (- T T ()
0 = (—oYn=D/2n/2 - g1-m@n+D)/4 - q1‘4"2—”24—” d=i-n +1 @
’ 2
. on+l . nz—l .
¢ = (_1)n—lq%—lq7 — (—1)n_lq_di[(l)/2. (3)
Note that
n n nz—l
Hci =% = (—1)(z)qT andc; - ¢ =t, fori=1,..,n, @
i=1

where I is the conjugate of i, defined asn + 1 — i.

In fact, our entire theory works (up to a normalization) for any invertible a, ¢, ¢y, ..., ¢, satisfying
Equation (4), see Subsection 4.12. However, our particular choice of these constants makes our
theory invariant under the orientation reversal of 3-manifolds and the orientation reversal of webs
in it, see Corollary 4.8 and Theorem 4.9.
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18 of 93 | LE and SIKORA

Let S, be the group of permutations of {1, ..., n}. The length of o € S,, is the minimal num-
ber of factors in the decomposition of ¢ into elementary transpositions (i,i +1),i =1,...,n — 1.
Alternatively, it is

2(0) =G NN <i<j<n, o) > (i (5)

The longest element w, € S,, is the permutation wy(i) = i.
We use the convention that

(-q)’@ =o0ifo : {1,..,n} > {1, ..., n} is not a permutation. (6)

We also use Kronecker’s delta notation and its sibling:
1 ifj=i 1 ifj>i
5i,j= e 0 5j>i= e
0 ifj#i 0 ifj<i.
2.2 | Quantized enveloping algebra U (sl,,)

The quantized enveloping algebra U,(sl,,) is a Hopf algebra over the field Q(v) with explicit
presentation given in [35, section 6.1.2].

Let V = Q(v)" be the defining representation of Uq(sln). Its dual V* is the simple Uq(sln)-
module with highest weight the (n — 1)-st fundamental weight. Lete,, ..., e,, be the standard basis
of V with e, being the highest weight vector, see [35, section 8.4.1]. Let el, ..., e" be the dual basis
of V*, defined by e'(e i) =06, . As U,(sl,) is a Hopf algebra, the category of finite-dimensional
Uq(sln)-modules is monoidal. Let C,, be the full subcategory of Uq(sln)-modules consisting of
objects isomorphic to tensor products of copies of V and V*.

It is known that Hoqu(Sln)(V‘X’”, Q(v)) has dimension 1 and is generated by the g-

antisymmetrizer A_ : V®" — Q(v) defined by
A_(es) ® = ®eyp) = t"2a(—q)’ @, foranyo : {1,..,n} - {1,..,n}, @)

where (—q)’(®) = 0 if o is not a permutation (according to Equation 6), and a,t are given in
Subsection 2.1, see [26]. Similarly, Hoqu(Sln)(Q(v), V®") has dimension 1 and is generated by

A, 1 Q(v) - V@ given by

A, =a 2 (=)' e,y ® €502) ® .. @ €5y, ®)

g€eS,

2.3 | Braiding and the Iwahori-Hecke algebra

The algebra U,(sl,,) has a topological completion which is a topological ribbon Hopf algebra,
making the category of finite-dimensional U,(sl,)-modules a ribbon category, see [16, 64]. The
ribbon structure defines (through the universal R-matrix) for any two U, (sl,)-modules V,V, a

braiding ﬁvl,vz : V1 ®V, >V, ®V,, which is an invertible U,(sl,)-morphism satisfying cer-
tain conditions discussed below. Let us record here the formula for 7A€V,V, which will be simply
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STATED SL(n)-SKEIN MODULES AND ALGEBRAS | 19 of 93

denoted by R. An operator A : V®V — V @ V is given by its matrix entries Aiik € Q(v), with
i, j,m,k €{1,...,n}, which are defined such that

Ale, ®ey) = Z Azkei ®e;.
)

The braiding R :V®V - V®YV and the matrix R are given by
R;li = R;‘;{ =q n <q51"]5j,k5i,l + (q —q 1)5j<i5j,15i,k)’ (9)

see [35, section 8.4.2(60) and section 9.2], where §;; = 1 if j <i and §;; = 0 otherwise, as in
Subsection 2.1.
For an integer k > 2andi = 1,..,k — 1, we define R, : V& — v®k by

R=id®"'@R®id® .
Then the operators ﬁl satisfy the following relations

~ ~

1 1
q"R,—q "R, =(q—q7Hid, fori=1,..,k—1

~ ~

R =RR for1<i<j-1<k-1
Az'R\z’+1R\i =R\i+11/€i1/€i+1 fori=1,...k—2.

The last equation, known as the braid relation, is a consequence of R being induced by the R-
matrix of Uy, (sl,).
By [26, 58],

RoA, =—q " 'A,, A_oR=—-q A (10)

2.4 | The dual module
For x e V¥ and y € V let (x,y) denote x(y) € Q(v). There is an invertible element g, € Uq(sln)
called the charmed element, whose action on V' is given by

go(e) = ¢* e = g*ie;.

The ribbon structure implies that the following Q(v)-linear maps are U, (s, )-morphisms:

ev iV QV - Q(v), eV(ei®ej)=<eiaej>=5i,j
n
coev : Q(v) - V@ V*, coev(l) = Z e ®e
i=1
1 VRV - Q) Fole; ®e) = g1, ; = (el gole)

n n
coev, 1 Q) > V¥RV, coevy(1) = Z g1 el ®e; = Z e' ® (g0) e
i=1 i=1
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2.5 | The quantized coordinate algebra O (SL(n))

The algebra of quantum matrices O,(M(n)) is the associative Z[v*!]-algebra generated by
elements uj, fori, j =1,2,...,n, subject to relations

W®uWR =RuQu), €1))

where R is the R-matrix given by Equation (9), and u ® u is the n? x n?> matrix with entries
u® u)iﬁ = u;u;‘ for i, j,k,l1 €{1,..,n}. We call u := (u;) as well as its images under algebra
homomorphisms quantum matrices. Any square submatrix of u is a quantum matrix (of smaller
size). The element

1
dety(w) 1= 3~ @] e ul™ = § (@ Ol

g€ES, g€eS,

is central and called the quantum determinant of the quantum matrix u, see [35, 9.2.2].
The quantized coordinate algebra of SL(n) is the quotient

O,4(SL(n)) = O4,(M(n))/(detju — 1).
It is a Hopf algebra with comultiplication, counit, and antipode given by

M) = Yo ®uf, o) =8, S = o) hi(w) (12

where Mij (u) is the quantum determinant of the minor of u obtained by removing the jth row
and ith column of the matrix u, see, for example, [35, 9.2.2] or [63].

For technical convenience, we have defined (Dq(SL(n)) over the ring Z[v*!]. The dual U, (s1,)",
consisting of all Q(v)-linear maps Uq(sln) — Q(v), has a Q(v)-algebra structure, dual to the
coalgebra structure of U, (sl,,), and is considered as a Z[v*!]-algebra via Z[v*!] & Q(v).

Proposition 2.1 (Hopf duality between Oq(SL(n)) and Uq(sln), [62, section 4]). There is a unique
pairing(-,-) : O,(SL(n)) X Uy(sl,) = Q(v), such that (uj.,x) = e'(x(e))) forx € Uy(sl,) andi, j =
1,...,n. It is a Hopf pairing that induces an embedding of Z[v*!]-algebras O,(SL(n)) < Uq(sln)*.

For the convenience of the reader, we recall that (-, -) being a Hopf pairing means that O, (SL(n))
and U,(sl,) are in Hopf duality: for all u, u' e O,4(SL(n)) and x, x' e Uy(sly,)
(uu’,x) = Z(u, XU, x)),  where A(x) = Z X1y ® Xz
(u, xx") = 2(“(1), x)(uey, x"),  where A(u) = Z Uy ® Uy

(1,x) =¢(x), (u,1)y=c¢e), (S(w),x)= (u,S(x)).
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NEERN Q .
A A =

FIGURE 5 (a)The cube Q, the square S (shadowed) and its sides A,, A;. (b) An example of a diagram of a
based 3-tangle. The order at the source is counterclockwise, beginning with lowest branch. (c) The tensor product
a ® . (d) The composition Soa. (Orientations of «, 3 are not shown.).

3 | REVIEW OF THE RESHETIKHIN-TURAEV THEORY
3.1 | Based n-tangles and their operator invariants

Reshetikhin-Turaev theory associates with every ribbon category an operator invariant of ribbon
graphs, see [65]. Let us make this construction explicit for the category of left U,(sl,)-modules
and a special class of ribbon graphs, called based n-tangles, defined below.

The cube Q :=[-1,1] x (=1,1)? in the 3-space, see Figure 5a, has boundary consisting of the
right face {1} x (—1,1)? and the left face {—1} X (=1, 1)%. The intersection of Q and the XY-plane
is S = [—1,1] x (—1,1) x {0}. It is depicted as the shaded square in Figure 5a, with its sides A; =
{=1} x {0} x (=1,1) and A, = {1} x {0} X (—1, 1). We will say that vectors of the form (0, 0, z) with
z > 0 are in the Z-direction.

For the sake of the definition below and for later use, we say that directed graph « is properly
embedded into a 3-manifold M, if its set of 1-valent vertices, d«a, coincides with &« N dM and « is
transversal to dM.

Definition 3.1. A based n-tangle « is a disjoint union of finitely many oriented circles and directed
graphs properly embedded into the cube Q, such that

(1) The graphs of a have finitely many vertices only. Every vertex of « is either a sink or a source
and either 1-valent or n-valent. We denote the set of 1-valent vertices, called endpoints of , by
da.

(2) Each edge of the graph is a smooth embedding of the closed interval [0,1] into Q.

(3) « is equipped with a framing that is a continuous nonvanishing vector field transversal to «a.
In particular, the framing at a vertex is transversal to all incident edges.

(4) The set of half-edges at every n-valent vertex is linearly ordered.

(5) The endpoints of « lie in A; U A,, and the framing at these endpoints has a Z-direction.

We consider based n-tangles up to isotopies that are continuous deformations of n-webs in their
class.

Remark 3.2. Our notion of an n-tangle is broader than that of a traditional tangle, because it allows
for n-valent vertices. It is a version of the notion of an n-web of [58]. However, we use a different
name for it here to distinguish it from n-webs that we will introduce in Subsection 4.1 and that
are unbased and have a different framing setup near their boundaries.
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Suppose « is a based n-tangle. The sign sgn(e) of an endpoint e € da is positive if the direction
of a goes from left to right at e, and negative otherwise. Let sgn,(«) (respectively, sgn;(«)) be the
sequence of signs of endpoints of o on A, (respectively, A,) appearing from the bottom to the top.

Let (Snb be the Z[v*!]-linear monoidal category whose objects 7 are finite sequences of signs
+, and the set of morphisms Hom »(, u) is the Z [v*!]-module freely spanned by isotopy classes
of based n-tangles a such that sgnn,,(oc) =7 and sgn;(a) = u. Here the tensor product of two
sequences 5 and u is the concatenation of 5 followed by u. The empty sequence is the unit. The
tensor product o ® 8 of two based n-tangles is the result of stacking § above «, as in Figure 5c.
If sgn; () = sgn,(B) then the composition Soa is obtained by placing 8 to the left of « (after an
isotopy to match endpoints), as in Figure 5d.

Let C,, be the category of left U, (sl,,)-modules isomorphic to tensor products of finite numbers
of modules V and V*. The morphisms of C,, are U(sl,,)-module homomorphisms. It is a ribbon
category. As based tangles can be viewed as tangles with coupons, in the sense of Reshetikhin-
Turaev, their theory [57] defines a monoidal functor RT,, : (Snb — C, constructed as follows. For
a sequence 1 = (9, ..., ;) of signs + let

RTO(’?) =V1:=Vh Q. QVk,

where VF = Vand V~ = V*,

We will define values of RT, for based n-tangles through their diagrams. For that purpose, we
will identify the XY-plane in R* with the pages of this paper and we will point the z-axis toward
the reader, as in Figure 5a. Any based n-tangle o can be represented by its diagram obtained by
isotoping « first so that its framing is in the Z-direction everywhere and then by putting it in a
general position with respect to the projection p : R3 — R? onto the XY-plane, see Figure 5b. We
further assume that the projection of a near an n-valent vertex consists of n lines directed from
left to right, and that their linear order is counterclockwise beginning from the lowest line to the
highest for the source, and from the highest to the lowest line, for the sink.

Such a projection of « onto the square S = [—1,1] X (-1, 1) X {0} (shaded in Figure 5a), together
with the over/under information at every crossing is called a diagram of a.

In Equations (13)-(15), we list elementary based n-tangles a and the corresponding opera-
tors RTy(a). The associated operators ev, €V, coev, Coev,, were defined in Subsection 2.4, while
A_, A, and R were given by Equations (7)-(9), respectively. As every based n-tangle can be built
of them through tensor products and compositions, these operators totally determine RT,,.

- 9 P

id: v¥ s v* ev: V¥V SR coev:R—-VQ@V*

9 P

Wy :VV¥ >R Toevy iRV @V

I/\);I M §> (15)

R:VQV-oV®RV RL:v@V-veVv Ay :R-vOT 4 .v®n _p

(13)

(14)
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Based n-tangles and the Reshetikhin-Turaev functor on them were considered in [58], albeit
with a different normalization of A, .
3.2 | Kernel of functor RT,
Recall that a monoidal ideal in a monoidal category C is a subset I ¢ Hom(C) such that for x € I
and y € Hom(C) we have x ® ¥,y ® x € I and xoy, yox € I, whenever such compositions can

be defined.
The following are well-known elements of ker RT,, (see [58]):

qi M - q_i Oy )
RT,
LQ,I = I H—I a7)

Ke;

% O ¥ (-g) el
D=z g

where ¢ is given by Equation (1), o, is the minimum crossing positive braid representing a per-
mutation o and (o) is the length of o defined in Subsection 2.1. Here x 2o y means x —y €
ker(RT,).

(16)

Y Y

= [n]| | (18)

Conjecture 3.3. The kernel kerRT, is the monoidal ideal I, generated by elements given in
Equation (16)—(19).

For example, the arguments in [58] indeed imply that the following identities are consequences

of (16)—(19):
= ' [, = (- is ‘ (20)

% g_q—mg) % 1)

[n -2 RI B o apgs _(—1)(3)q‘5|:>"—2<1, (22)

where the tangle on the right has n — 2 parallel edges in the middle.

Y Y
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Conjecture 3.3 is analogous to Morrison’s conjecture [53, section 5.5] that was proved in [17].
Note that our formalism of n-webs leads to a simpler set of kernel generators than that in [53].
After this manuscript was posted on arxiv, Poudel announced a proof of the above conjecture
[54].

3.3 | (Unbased) n-tangles

Now we will consider a modified ribbon structure on the category of U,(sl,)-modules, giving
rise to a new Reshetikhin-Turaev functor, denoted by RT, with simpler skein properties. We will
explain in Subsection 3.9 how this new ribbon structure comes from the theory of quantized
enveloping algebras. For now we simply declare RT to coincide on all elementary based n-tangles
with RT,, except that we multiply the values of &V, and Coev,, of (14) by (—1)"~!. Thus, if D is a
diagram of a based n-tangle a and # | (D) is the number of its downward critical points, that is,
points where the tangent is parallel to the vertical y-axis and pointing downward, then

RT(D) = (=) VHDRT (a). (23)

It is an easy exercise to show that RT(D) is an isotopy invariant of based n-tangles.
From Equation (20) it follows that RT is invariant under cyclic changes of an order at a vertex:

RT 6 ‘é) RT 3‘
= > :§ > (24)

where x Ll y means RT(x) = RT(y).

An (unbased) n-tangle is defined exactly as a based n-tangle except that half-edges incident
to its every n-valent vertex are required to be cyclically ordered only. (Such cyclic orderings of
edges around each vertex are called a ribbon structure.) Equation (24) shows that RT is an invari-
ant of n-tangles. In a diagram of an n-tangle, the cyclic order at every n-valent vertex is the
counterclockwise order.

Let €, be a monoidal category obtained from GZ by replacing based n-tangles with n-tangles.
Then RT is a Z[v*!]-linear monoidal function from €, to C,,.

By Equations (16)—(19), we have

g M —q7 M = (q-q7)
|« £ (26)

= o] @)

Y Y

(25)
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l;}él 0z e .

4 = —q_(Hi) A (29)

- (—1)(3)q‘5|:>"—’2<1|, (30)

3.4 | Linear functionals on U (sl,) from n-tangles

—
S
|
D
o
1=
S
|
[\9]
=
|\
4 4

For x € Homg (n,u) and an element u € Uq(sln) define RT(x)ou : V7 — V¥ as the composition
of the action of u on V? with RT(x). Similarly, one defines uoRT(a) : V? — V¥ where u acts on
V¥ now. We will use ovals for depicting morphisms of €, and rectangles for elements of U,(sl,)
throughout the paper. As RT(x) is a U,(sl,,)-morphism, we have

RT(x)ou = uoRT(x), or, pictorially, !@ll = “ (31)

A vector space equipped with a basis is called based. The tensor product of based vector spaces
V,; with bases B; fori = 1, ..., k, has the natural tensor product basis Hﬁ;l B;. Alinear operator A :

V, — V, between based vector spaces with bases {el.(l)} and {egz) } defines a matrix with elements

A{ , also denoted by (j|A|i), such that
A(e") =Y ale?, (jlali =
J

We consider the Uq(sln)-module V as a based Q(v)-vector space with basis {e,, ..., e, }, defined
in Subsection 2.2. The dual V* will be considered as a based vector space with the basis {f1, ..., "}
where

fi= c;ei, fori =1,...,n, where c; are given by (3). (32)

This basis allows for a simplification of our theory and, in particular, makes the RT functor inde-
pendent of web orientations, see Subsection 3.5. Now for any sign sequence 7, the vector space V'
is based with the tensor basis, indexed by {1, ..., n}"", induced by the above bases of V and V*.

A right state (respectively, a left state) of a morphism x € Homg, (n, u), for some 7 and u, is
an assignment of Iy s by € {1, ..., n} (respectively, j,, s Jjul € {1,...,n}) to the right (respec-
tively, left) endpoints of x, listing them from the bottom to the top. A right (respectively, a

d '€ FTOT FTHSESLI

:sdyy woxy

:sdyy) suonIpuOy) pue suwd | a1 995 [S70Z/50/40] U0 A1eiqr duiuQ Kof1 “ABo[ouyea) JO Mmusu] BiFI090) £q 0SEZ1°0d0YZ ] | 1°01/10p/WOd Ko[IAn

Kopmkl

5501 sUOWIWOY) 9ANER1) d]qear]dde Ay Aq POLIOACS AIE ST V() O8N JO SN 10} K1eIqIT AUIUQ AO[1A UO (SLONIP



26 of 93 | LE and SIKORA

left) stated morphism x as above will be denoted by x = (x, 1) (respectively, x = (j, x)), where
i={ip,...ip}e{l,...n}" and j={j,.., jj,} € {L,..,n}¥. Similarly, a stated morphism is a
triplex = (j, x, 1), as above. For such x define a @(v)-linear function I'(x) : U,(sl,) — Q(v) whose
value atu € U(sl,) is

(Cx), u) 1= (jIRT(x)ouli) = (jluoRT(x)|i).
For example, for x = @

[(@) =€ : Uy(sl,) » Q(v), is the counit. (33)

Let 7 be the set of isotopy classes of stated n-tangles. The module Z[v*!']T over Z[v*!] freely
spanned by 7 is an algebra with the product @ = ¢ ® § obtained by placing & below g and
concatenating the states. We extend I linearly onto a Z[v*!]-linear map

r:zZ[v)T - Ugy(sL,)",
Proposition 3.4. The map T is a Z[v*']-algebra homomorphism.

Proof. As the U,(sl,,)-action on tensor product of U,(sl,)-modules is given by the coproduct on
Uy(sl,), for any n-tangles a and § and any u € U,(sl,,) we have

(@ ®Bou = Y (aou') ® (Bou’), where A@w) = Y u' @u".
By assigning states, we get

(@ ®B,uy = Y (o, u'YB U,

which means that I' maps the product & ® f to the dual of the coproduct in U, (s, ), which is the
product on Uq(sln)*. Hence, I' is an algebra homomorphism. O

3.5 | Dual operator, orientation reversal invariance

For a stated morphism x = (i, x, j) let (x) be the (i, j)-element of the matrix of RT(x),
(x) = (1| RT(x) | j) € Q).

For a stated n-tangle, @ = (i, a, j), let & = (i, &, j), where & is obtained from « by reversing the
orientation of all its edges and and of all circle components.
Furthermore, let

&' = (6) ¢ (. ro(a). i)

where ro(a) is obtained by 180° rotation of «,

k
¢ = H ¢; and (i, .., i)" = (§, ., ip), where i=n+1-1i.
m=1
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Pictorially,

*

. gt Ju ih
«-| Ao -712 - e, o) s

J1 ;

The above operations extend linearly onto Z[v*!]7.

It should be noted that for an n-tangle a the operators RT(ct), RT(&), and RT(ro(a)) have differ-
ent domains and different target spaces. The following statement shows an important benefit the
basis {f*, ..., f"} of V*:

Proposition 3.5. For any stated morphism x = (i, x, j) one has (x) = (X) = (x*).

Proof. Checking (&) = (a) for cups and caps is quite easy:

i RT i RT 5 i RT i
frd frd . =Cs —
j j LJ=b j j

(1) The identity (a*) = (a) follows from

L ;e (34)

-
JiF

1

k 1 -
—<Hcim>< c,-m> GIRT@)1),

where the first identity is by an isotopy. For the second identity, we decompose the tangle
above along the dashed lines and use the values of cups and caps in Equation (34).

(2) To prove (&) = (a) one needs to check it for the elementary n-tangles. For cups and caps,
it have been done in Equation (34). The statement for the positive crossing (Equation (15))
follows from part (1) and the fact that the R-matrix formula (9) is preserved under the invo-
lution i <> [, j < k. The statement for the sink and the source follows by a straightforward
computation. O

(F*IRT(ro(a))[i*) ==

3.6 | Annihilators

In this and the next two subsections, we will analyze the kernel of T' : Z[v*']T — Uq(sln)*.
An internal annihilator is a €, -morphism x such that RT(x) = 0. From the definition, we have:
Proposition 3.6.

(a) Internal annihilators form a monoidal ideal in €,,.
(b) For any stating (i, x, j) of an internal annihilator x, we have T'((i, x, j)) = 0.
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Equations (25)-(28) are internal annihilators, called the basic internal annihilators.

For a sequence 7 of signs {+} let H,(n) be the Z[v*']-module freely spanned by right stated
n-tangles (a,i) such that the sequence of left ends of a has type 5. Note that H,.(n) contains
Homg (#,7), and we extend the map RT to

RT : Hr(n) g Hom@(u)(@(v)9 V’)) by RT((C{, i))(l) = RT(C()(Ui),

where v; is the basis vector of V,.(a) with index i. For example, forn = (+, —, +,—), ¢ =

+ I+ I

and i = (i}, i,), we have
RT((a,0)) = ¢; @Coev (1)@ f2 eV RV @V V™
Note that for x € H,(») \ Hom(f, n), the operator RT(x) might not be a U, (sl,,)-morphism.
For y € H,(1/) define x ® y € H,(n ® 1) by placing y atop x and by concatenating the right
states. For z € Homg (n, m), we can define the composition zox € H,(u). Clearly,

RT(x ® ¥) = RT(X) @ RT(y) and RT(xoy) = RT(x)oRT(Y).

A right annihilator is an element x € H,(n), for certain #, such that RT(x) = 0. By the above
equation and by Equation (31), we have

Proposition 3.7. Let x € H,(n), y € H,(1)) be right annihilators and let z € Hom(z, p).

(a) For any left state i of x, we have T'((i, x)) = 0.
(b) Allx ® y,y ® x, and zox are right annihilators.

We do not draw the left boundary vertical edge in pictures of right annihilators, to indicate that
RT holds for their composition with any web on the left (for which such composition is possible).

Proposition 3.8. We have the following identities for the values of the function RT:

o(n)

RT
o | =a ) (9@ (35)
. CES, o(1)
i RT
CI"' = 57,0 | (36)
RT = i
= 2(c;>-1j:|i (37)
i=1
i RT _1 i J
X |,= q - <5j<i(q—q‘1) ; |,+ q‘sf-f'j:li), (38)
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foranyi, j = 1,..., n, where the white circle represents the orientation, left-to-right or right-to-left, and
is the same for all white circles in one identity. The black circle stands for the opposite orientation of
the white one. The values 5j<i, 51-’]-, a,cy, ..., ¢, were defined in Subsection 2.1.

By subtracting the left side from the right side in the equations above we obtain right
annihilators which we call basic.

Proof of Proposition 3.8. By applying the total orientation reversion and Proposition 3.5 if neces-
sary, we can assume all the white circles indicate the left-to-right orientation. Identity (35) is the
defining equation (8) of the operator .4, , while Identity (38) is the defining equation (9) of the
braiding. Identities (36) and (37) are consequences of Equation (34). O

We now define left annihilators. For a sign sequence 7, let H,(n) be the Z[v*!]-module freely
spanned by left-stated n-tangles (i, «) such that V,.(a) = V7. Then H,(n) contains Homg (n,9),
and we extend RT to

RT : Hi(n) — HomQ(U)(V”, Q(v)) by RT((i, 2))(z) = coeff;(RT(x)(2)),

for z € V", where coeff; : V¥ — Q(v) is coefficient of the basis vector of V# indexed by i.
A left annihilator is an element x € H,(n), for a certain #, such that RT(x) = 0. In analogy to
Proposition 3.7, we have:

Proposition 3.9. Let x € H;(n),y € H,(1) be left annihilators and let z € Hom(u, 7).

(a) For any right state i of x, we have T'((x, 1)) = 0.
(b) Allx ® y,y ® x, and xoz are left annihilators.

3.7 | Turning right annihilators to left ones

For an integer k > 2 let H;, be the positive half-twist of k strands and let H}, be its inverse:

(Note that H; does not twist the framing, which always points toward the reader. This applies
to all half-twists considered in this paper.) By abuse of notation, for any n-tangle a with k left
endpoints, denote by H, oa the composition of a with a version of H,, in which the orientation of
some of its components was reversed so that it is composable with a.

Let hd : H,(n) — H,(n) be a Z[v*']-linear map given by

hd((«, i)) = (i, Horo(a)),

where ro(a) denotes the 180° rotation of a about the center, as before.
In Subsection 3.5, we showed that our basis { f'} of VV* makes the matrices RT(x) invariant under
the total reversal of orientation of x. It also makes the following statement hold.
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Proposition 3.10. If x is a basic right annihilator then hd(x) is a left annihilator.

Proof. The statement for each basic right annihilator can be checked by a direct computation. The
calculation for Relations (36)-(37) follows from the framing change, Equation (26). The calcula-
tion for Relation (38) utilizes Equation (25). Finally, let us show that the image of (35) under hd,
pictured below, is a left annihilator. (We assume its orientation to the right, as the statement for
the opposite orientation follows from Proposition 3.5.)

RT o
= a Z(—Q)f(a) b“ )
c€ES, o(2) “

o(1)

Note that as Hy, is invertible in End(V®") we can consider the above equality composed with
H on the right instead. Then, by Equation (10), it reduces to

n(n—1)
1 p
(7)) T A=a P @0,

o€ES,

1 n(n—1)
which is indeed equivalent to the definition of .A_, Equation (7), as (—q_ﬁ_l) > =t2 g

A stronger statement, valid for all right annihilators, will be shown in Subsection 3.9 using a
more conceptual approach.
We call the left annihilators of Proposition 3.10 basic.

3.8 | Kernel of T

Theorem 3.11 (Proof in Subsection 6.10). The kernel of T : Z[v*'|T — Uq(sln)* is generated by
internal basic annihilators, right basic annihilators, and left basic annihilators.

This means that if we begin with the internal, left, and right basic annihilators, and use
procedures described in Propositions 3.6, 3.7, and 3.9, we obtain the entire kernel kerI'. This
theorem is analogous to Conjecture 3.3, except that it describes the kernel of a stated version
of RT.

3.9 | Half-ribbon Hopf algebra

In this subsection, we explain conceptually some technical aspects of this paper. In particular,
we interpret our sign modification of the Reshetikhin-Turaev functor, Equation (23), through a
modification of the ribbon element in a completion of U,(sl,,). Coincidently, that modification
leads to a “half-ribbon” element which makes it possible to prove a stronger version of Propo-
sition 3.10. Although the content of this subsection is more technical, it is not necessary for the

paper.
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Proposition 3.12. If x is a right annihilator, then hd(x) is a left annihilator.

We precede the proof with a few preliminaries: the quantized enveloping algebra U,(sl,) is
a topological ribbon Hopf algebra, meaning it has an R-matrix R in a completion of U,(sl,,) ®
Uy(sl,) and a ribbon element 9, in a completion of U, (sl,), satisfying certain conditions. It
is proved in [61] that there is a completion IE(‘sTn) of U,(sl,) having the same R-matrix but
a new ribbon element 9, which acts on V and V* the same way as (—1)""19,. (That comple-
tion was studied in different context also in [51].) Consequently, the new charmed element g is
(=1)""1g, on V and V*, explaining the sign correction in (23), which we used as the definition
of RT.

Additionally, there is an invertible element X € m), called the half-twist, such that X% = &
and the universal R-matrix R satisfies

R=X"'1@X HAX) = ((floA)X)NX '@ X)), where flx ® y) :=y ® x. (39)

For a sign sequence 1 = (1, ..., ;) let i = (ny, ..., n;) and letrey, : V7 — V77 be the R-linear
operator given by rev;(x; ® --- ® x;.) = (x; ® -+ ® x;). From Equation (39) by induction on k,
we get the following, see [61, Proposition 4.18]: If H stands for H, with an orientation on the
strands on the right given by 7 then we have an equality of transformations y» _, V?):

RT(H) = rev, oX®oalkl(x—1), (40)
Here Al¥] is defined inductively by Al2! = A and AlF+1] = (A @ 1d®F)oAlK],

An additional special feature of the basis { '} of V* (besides those discussed already) is:

Proposition 3.13. The actions of X on V and V* are given by the same matrix

X;=6;c (41)
As this is not proved in [61], we give a proof of this result in the Appendix. Similarly, the

actions of the charmed element g on both V and V* are given by the same diagonal matrix with
entries

gi =89, whereg = (-1)""g¥ "l = (1)1, (42)
Proof of Proposition 3.12. Let x € H,(n) for some 5 be a right annihilator. We need to show

that RT(hd(x)) = 0. As X is invertible, this is equivalent to RT(hd(x))oX = 0, which, in turn, is
equivalent to:

(RT(hd(x))oX, j=0  forall j=(j;,..,J;) €{1,..,n}, 1 := |yl
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Suppose (a, i) is a right stated n-tangle. By Equation (40) and then by Equation (31), we have

ik
hd((a, 1)) = =, Lrev x-1- l
11 H X -

=
= . rev
22
21

By composing with X on the right, then decomposing along the dashed line and using the values
of X]i. from Equation (41), we get

RT 7 Ji
(hd((a,1))oX, j) = ¢ | = l(a )

11

where ¢; =[], ¢; .- The second identity follows from Proposition 3.5. By linearity,
. RT .
(hd(X)OX,J> = CJ(J |x> =0,

for every j € {1,...,n}!"l. This proves hd(x) o O

Remark 3.14. The use of half-ribbon element came up in a discussion of the first author with
Costantino and Korinman. A full-fledged theory of stated skein algebra based on half-ribbon
category will be developed in an upcoming work by Costantino, Korinman, and Lé.

4 | STATED SL(n)-SKEIN MODULES
4.1 | Marked 3-manifolds and n-webs

A marked 3-manifold is a pair (M, N'), where M is a smooth oriented 3-manifold with (possibly
empty) boundary M and N C dM consists of open intervals, called markings. The topological
closure of each marking is required to be the closed interval [0,1], disjoint from the closure of
other markings.

Roughly speaking, an n-web in (M, N') is like n-tangle, except that the framing at boundary
points is different. Here is the precise definition, where the first four requirements are the same
as those in the definition of an n-tangle.

Definition 4.1. An n-web o in (M, N) is a disjoint union of finite number of oriented circles and
a finite directed graph properly embedded into M such that
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|
E
|

FIGURE 6 (a)Cube Q with a marking 8 and a perpendicular line 3+ on the right face. The shaded square S
is in the XY-plane. (b) An example of a web a with three strands (depicted by different colors) in & N Q. (c) The
projection of @ N Q onto S. (d) A diagram of a N Q, with the height order indicated by numeric labels: i > j means
i is higher than j. (e) Another diagram of @ N Q obtained by using a different height preserving deformation. (f)
This is the same diagram of (e), with the height order indicated by the direction of the boundary line.

(1) Every vertex of a is either a sink or a source and either 1-valent or n-valent. We denote the set
of 1-valent vertices, called endpoints of a, by da.

(2) Each edge of the graph is a smooth embedding of the closed interval [0,1] into M.

(3) aisequipped with a framing that is a continuous nonvanishing vector field transversal to .
In particular, the framing at a vertex is transversal to all incident edges.

(4) The set of half-edges at every n-valent vertex is cyclically ordered.

(5") The endpoints of « lie in A and the framing at these endpoints is a tangent vector of N,
pointing in the direction of the orientation of /. We call such tangent vector positive.

Webs are considered up to continuous isotopy within their space.

Note that the only difference between the unbased n-tangles of Subsection 3.3 and n-webs in
the cube Q marked with A, A, is the framing at their endpoints. The difference explains why
half-twists appear in our theory.

The height order on da is the partial order in which two points x,y € da are comparable if and
only if they belong to the same marking, and x > y, or x is higher than y, if going along the positive
direction of the marking we encounter y first. We say x and y are consecutive if there isno z € da
suchthatx >z >yory >z > x.

To depict alocal part of an n-web o we consider the intersection of « with the cube Q = [—1, 1] X
(—1,1)? embedded into M, presented in Figure 6a. The cube Q can be either in the interior of M
or its right side, {1} x (—1,1)?, lies in M.

» If Q is in the interior of M then we assume that @ N Q is an n-tangle, and depict a N Q by its n-
tangle diagrams on the shaded square, as in Subsection 3.3. In particular, for all drawn diagrams
the framing is perpendicular to the page and pointing to the reader, and the cyclic order of
half-edges at each n-valent vertex is counterclockwise.

* In the second case, we assume that Q N dM is equal to the right face of Q, and QNN is a
subinterval of a marking  depicted pointing in the direction of the z-axis, as in Figure 6a. In the
Q coordinates, B N dM = {1} x {0} X (—1,1). Let B+ = A,, the right side of the shaded square.
As in the previous case, we assume that the framing points to the reader. (Note the difference
between webs in M and tangles in Q: the boundary points of « in Q are in 5, while the right
endpoints tangles in Q are in A, = 3*.) By an isotopy, we can bring a N Q to a general position
with respect to the projection p : R? — R?, except that all the points in da N § project to the
same point, see Figure 6¢. To resolve this issue, first we define a height-preserving deformation
of Q as a continuous family of diffeomorphisms ¢, : Q — Q,t € [0, 1], supported in a small
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neighborhood of the right face of Q and preserving the z-coordinate, that is, the height above
the page. We use such a height-preserving deformation to bring « to a’ whose endpoints on
the right face of Q have distinct projections (through p). The image p(a’ N Q) together with
the usual over- and undercrossing data and with the linear order of its boundary points on
B+ (induced from the height order) is a diagram of a N Q. For example, Figure 6d shows a
diagram of Figure 6b. Note however that a different height-preserving deformation can give
rise to different diagram, see for example Figure 6e. Note that &’ is not an n-web because its
endpoints are not in N in general.

Although the height order of web ends in @ N Q can be always indicated by integers as in
Figure 6d-e, in this paper we will always use the following convention: when presentinga N Q C
M diagrammatically, we will choose a direction of 8+ (indicating it by an arrow down or up) and
arrange for the height order of web ends in o N Q to increase monotonically (without gaps) in the
indicated direction. For example, Figure 6f indicates the web in part (e). Note that the height order
of endpoints of the a outside the drawn part can be arbitrary.

4.2 | Skein relations for n-webs

A state of an n-web o isamap s : da — {1,2, ..., n}. The value s(x), for x € da, is called the state
of x. A web with a state s is called stated.

We will consider stated n-webs up to isotopy (in the space of all stated n-webs) and denote the
set of their isotopy classes by W, (M, N).

Recall that the ground ring R is commutative and it comes with a distinguished invertible v =
q'/?" € R. The stated SL(n)-skein module of (M, N"), denoted by S, (M, N'), is the quotient of the
free R-module RW, (M, N') by the submodule SkRel, (M, N') generated by the following internal
relations (43)—(50), which are the basic internal annihilators, and boundary relations (47)—(50),
which comes from the basic right annihilators:

g B - ¢ >4 =@-q" _)_): (43)
_£l+=t——%—, W’heret=(—1)”"1qn_i (44)
O = (—1)"—1[n]q , where [n], = %, (45)

t(o)

(46)

; <; — (_q)(Z). Z <_q]_7n>
€S,

where the ellipse enclosing o, is the minimum crossing positive braid representing a permutation
o € S,, and 7(0) is the length of o € S,,, as before.

The remaining relations in SkRel,,(M, N') take place near markings where we use the conven-
tion in Subsection 4.1 about height order. Thus, the bold boundary line of a shaded rectangle is a
part of 8+, orthogonal to a marking 3, and if it has a direction, then the endpoints on that part are
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consecutive in the height order, given by the direction. The height order outside the drawn part
of 31 can be arbitrary. Here are the boundary relations:

a(n)

=a ) (-g)f@ ) (47)

o€ES, o(1)

q}= 5]"1' C; |, (48)
>|-303 “)

i=1
%j: g (5 j<i(q — q‘l)j:lﬁ q‘s"-/j:l:) ; (50)

where the values §;;,6; j, a, ¢y, ..., ¢, were defined in Subsection 2.1 and the small white circles
represent an arbitrary direction of the edges (left-to-right or right-to-left), consistent for the entire
equation, as before. The black circle represents the opposite direction.

We show in Proposition 7.5 that if [n — 2]! is invertible in R then Relation (50) is a consequence
of Relations (43)—(49).

4.3 | Eliminating sinks and sources

Proposition 4.2. For any marked 3-manifold, S,(M, N') is spanned by stated n-webs with no sinks
nor sources.

Proof. If N' = {J then the numbers of sinks and sources in any n-web coincide and they can
be eliminated by Relation (46). If A # #J, then sinks and sources can be eliminated by Relation
(47). ]

Nonetheless, the use of sinks and sources in our theory makes it much more manageable.

4.4 | Change of ground ring

We will use the notation S, (M, N, R) when we need to make the coefficient ring R explicit. By
our assumptions, R is an algebra over Z[v*!]. The right exactness of tensor product gives a natural
isomorphism

o~

S, (M, N, Z[v*']) ® (1] R = S,(M, N, R).

Therefore, many properties of S, (M, N, R) follow from those of S,(M, N, Z[v*!]).

d '€ FTOT FTHSESLI

:sdyy woxy

:sdyy) suonIpuOy) pue suwd | a1 995 [S70Z/50/40] U0 A1eiqr duiuQ Kof1 “ABo[ouyea) JO Mmusu] BiFI090) £q 0SEZ1°0d0YZ ] | 1°01/10p/WOd Ko[IAn

Kopmkl

P

P!

5501 SUOWIWOY) 9ANER1) d]qeardde ayy Aq POLIOAGS AIE SI[IILIT V() 98N JO SN 10} AIeIqI] SUIUQ AO[E UO (



36 of 93 | LE and SIKORA

4.5 | Functoriality

An embedding of a marked 3-manifold (M, N') into a marked 3-manifold (M’, N'') is an ori-
entation preserving proper embedding f : M & M’ that maps N into N’/ preserving their
orientations. Clearly, f induces an R-module homomorphism S,(f) : S,(M,N) - S,(M', N")
mapping each n-web « to f(a) with its framing transformed by the differential f, : TM — TM’.
That homomorphism depends only on the isotopy class of f (in the embeddings). A morphism
from (M, N') to (M’, N'') is an isotopy class of embeddings from (M, N') to (M’, N''). Hence,
S, () defines a functor from the category of marked 3-manifolds to the category of R-modules.

Example 4.3. Let (M, N) be a marked 3-manifold. For any closed subset X of M — W,
its complement (M — X, N') is a marked 3-manifold as well and the natural embedding ¢ :
(M -X,N)s (M, N) is a morphism called a pseudo-isomorphism. It induces an R-module

isomorphism ¢, : S,(M', N) it S, (M, N).

In this paper, we will consider certain geometric operations on 3-manifolds, like cutting and
gluing them along disks, which produce new manifolds defined up a diffeomorphisms only. We
will address this issue with the aid of the following notion:

A strict isomorphism class of marked 3-manifolds is a family of marked 3-manifolds (M;, V)),i €
I equipped with isomorphisms f;; : (M;, N) - WM s N ;) for any two indices i, j such that f; =
id and fiof;; = fi.. For a strict isomorphism class of marked 3-manifolds we can identify all
R-modules S,,(M;, N;) via the isomorphisms S,(f;;)-

For example, to glue a pair of boundary edges e; and e, we first fix an orientation reversing
diffeomorphism ¢ : e; — e, and then identify x = ¢(x) for all x € e,. Various ¢’s give various
surfaces, but they belong to the same strict isomorphism class.

For a disjoint union of M, and M,, the map

S,(M;, N7) ® S,(M,, N;) = S,(M; UM,, N7 UN,)
sending a; ® a, to a; U a, is an isomorphism. We will identify S,(M; U M,, N; UN,) with
S, (M, N7) ® S, (M,, N,) though this map.
4.6 | Grading

For a stated n-web o in (M, M) and a marking 8 C N we define the 3-degree

degs@ = Y do= Y, (s0-"22) e’z

xeanf xeanp 2

where s(x) denotes the state of o at x. Note that the 3-degree is preserved by the skein relations
(43)—(50) and, therefore, it descends to %Z-Valued grading on S, (M, ).

4.7 | Useful identities

Recall that a, t, ¢; were defined in Subsection 2.1.
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Proposition 4.4. The following identities hold in any stated skein module S, (M, N'):

-2t D =ln-20g" - n@g > (51)

where the label in the diagram on the right indicates n — 2 parallel horizontal edges.

% =_q—(1+§> ’ (52)

a(n)

0 = at™*(—q)!©@ (53)

(1)

a(1)

a(2) — a(_q)g(g) (54)

a(n)

a(n)
6 = ar"’? 2 (=)@ 0 |- . (55)
o€ESs, a(1)

SR
=Y ‘ . (57)

i=1
,\Fy<= 'E <5j<i(q -q" ,Pi+ g% Eg (58)

Proof. Identities (51) and (52) are, respectively, (30) and (29). As remarked in Subsection 3.3,
these identities are consequences of the basic internal annihilators, which are skein relations for

S, (M, N).
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a(n)

o(n)

a(n) a(2)
a(2) a(1)
Proof of (53): o) = w=ay o (—q)f® 0, The web on the right is

o(1) @

(n)
h 4

nonzero only for 7(i) = (i) for i = 1,...n. As £(r) = £(c) then, the above equals
a(=q)’@ ¢, - ... ¢, = at"*(—q)’ @,

by (4).

a(n)
o(1)
Proof of (54): o@2)_ o DY (52). As

a(1)

o(n)

(59)

the statement follows by (53).

/i

Proof of (55): By composing (47) with 7\  on the left, we obtain

~—

o(n)

a(1)

o) = Z a(—q)®@ 3 47(2)’

a(1) o€ES,

() R |- Zecoe PX

o€es,
" o(n)

by (52). Now the statement follows by (59) and by rotating these skeins 180°.
Proof of (56): The left side equals

J J
— +—1 — 1S — 1S A5 a1
%—f : dli_t i jc; =t 850 =y ¢ s
n _ i
= ,\QF T @) %

Now the statement follows by 180° rotation and the fact that tc- L=¢;, see (4).

by (44).

Proof of (57): By (44) and (49), 71
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D B Op, n 5 5
M M’

FIGURE 7 Anexample of a splitting of an n-web (in green) intersecting the splitting disk D twice.

Proof of (58):

s . R A ak
[ 3823 - o (sute-3G et 3q)
! ~ ~

. A AN
=q <5j<i(q g )T+ T ) ;
—0—i

by (50). O

4.8 | Splitting homomorphism

As mentioned in the introduction, an important property of stated skein modules is that they
behave in a simple manner under the splitting of 3-manifolds along disks. This property, known
as the Splitting Theorem, was first proved by [11, 41] for the Kauffman bracket skein modules
(n = 2) and then by [28] for n = 3. We formulate it now and prove for all n below.

Suppose (M, N') is a marked 3-manifold and D is a properly embedded closed disk in M (and,
hence, 3D C M), disjoint from the closure of A. By removing a collar neighborhood of D we
get a topological 3-manifold M’ whose boundary contains two copies D; and D, of D such that
gluing D, to D, yields M together with a surjective homomorphism pr : M’ — M. The manifold
M’ has a smooth structure with corners. However, these corners can be smoothed out uniquely
up to isotopy.

Let C Dbean oriented openinterval,and 3, C D; and 3, C D, be preimages of 5. The splitting
of (M, N') along (D, B), denoted by cut(p ) (M, N), is the marked 3-manifold (M’, N'), where
N’ = N Uy UB,.Itis easy to see that cut , 5(M, N') is defined uniquely as a strict isomorphism
class, see Subsection 4.5.

Let o be a stated n-web in (M, N'). This web in this subsection is given by a specific embedding
and, hence, not considered up to isotopy. It is said to be (D, 3)-transverse if the vertices of « are
not in D, a is transverse to D, a N D C 8, and the framing at every point of & N § is a positive
tangent vector of 8. Note that every web « in (M, N') can be isotoped so that it is (D, 8)-transverse.
Suppose in addition that « is stated. Then the n-web pr=!(a) of (M’, N/) is stated everywhere
except for its endpoints in 3, U 3,, see Figure 7. Given any map s : a N — {+}, let a(s) denote
the (partially stated) n-web pr—!(c) in (M’, N/) with additional states s(pr(x)) for x € pr~'(a) N
(B, U B,). Hence, a(s) is fully stated. We call a(s) a lift of a. If |« N B| = k then « has nk distinct
lifts.

Theorem 4.5. Let D be a closed disk properly embedded in a marked 3-manifold (M, N') and let 8
be an oriented open arcin D. Let cut(p, 5(M, N) be the splitting of (M, N') along (D, B), as described
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5 o
K/ 1112213 i 01
_________ L
(a) B (b) \ d

FIGURE 8 (a)The cube Q. The disk D is the middle square containing the lines 8 and B*. (b) The splitting
homomorphism ©.

above. Then there is a unique R-module homomorphism
O p) + Su(M, N) = Sylcutp 5 (M, N))
sending every stated (D, B)-transverse n-web o in (M, N') to the sum of all of its lifts,

Opp@ =Y als). (60)

s:anf—{+}

Note that for any arcs 8,8’ in D there is an isomorphism between marked 3-manifolds
cut(D,ﬁ)(M ,N) cut(Dﬁ/)(M , N, inducing an isomorphism of stated skein modules that com-
mutes with the splitting homomorphisms. Consequently, we will often denote © g and
cutp gy(M, N') by ©p, and cut, (M, N') when it does not lead to confusion.

Remark 4.6. 1t is easy to see that splitting homomorphisms along any two disjoint splitting disks
D, and D, commute,

®D10®D2 = @DZOG)DI.

Remark 4.7. By removing a closed subset of 0M disjoint from N and using the pseudo-
isomorphism of Example 4.3, we can apply the theorem to many cases when D is a closed
disk with some closed intervals on its boundary removed. This fact will be useful in Section 5
where we will apply the Splitting Theorem to thickened surfaces  x (—1, 1) cut along open disks,
(-1,1) X (=1, 1).

In general, the splitting homomorphism is not injective. For an example in the n = 2 case, see
a forthcoming paper by Costantino and Lé. We will discuss the injectivity and the image of the
splitting homomorphism for thickened surfaces in Section 5.

Proof of the Splitting Theorem. We identify a closed collar neighborhood of D with the closed cube
Q =[-1,1]% so that D = {0} x [-1, 1]? and § is an open interval subset of {0} x {0} x [—1,1], as in
Figure 8a. For a stated (D, §)-transverse n-web a let O(a) € S, (cutp g)(M, N)) be the right side
of Equation (60). To prove the theorem, we need to show @(«) is invariant under isotopies of a.
An ambient isotopy of o in M can be decomposed into a sequence of isotopies, each of which
is supported in a small neighborhood of D or supported outside of D. The latter clearly preserves
®, so we only need to check invariance of ® under isotopies with support in the interior of Q.
By an isotopy outside D we can assume that a N Q is an n-tangle. To get a diagram of a N Q we
first use height preserving deformation near D to move « to a general position with respect to
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the projection onto [—1,1]? x {0} (as always considered in page). The points in a N §, after that
deformation, project to points on . We will always choose a height preserving deformation such
that the height order on 8+ is given by the direction from the top to the bottom, as in Figure 8b.
Now we can decompose a diagram of « into elementary tangle diagrams listed in (13)-(15). If
o’ is isotopic to a by an isotopy in Q, then its diagram can be obtained by a sequence of opera-
tions moving elementary tangles through 3, and the height exchange move, discussed in point (d)
below. Therefore, it is enough to verify that @(«) is preserved by the following four moves.

(a) Passing a cap through S. The invariance of ®(«) under this move is a consequence of skein
relations (48) and (57):

1 )2 Q-5 =9
>:@

(b) Passing a sink or a source through S. The invariance of ® under this move is a direct
consequence of skein relations (53) and (55):

a(n| o)
©) -~ =Y o =at"? Y ()@ Lo =0| [£ ;:
o€Es, o(1 o€ES, a(1)

(c) Passing a positive crossing through £:

0| o = Z%JJ;?;= g <Z(q—q‘1):3$;l::+ g’ Ziijl;i)
i,j Jj<i i,j
=g (Z(q - q‘l)@;lj:+ ‘DY :?%J [;ﬁ)
Jj<i Lj
= e DX |
i

by (50) and (58).

(d) Passing a negative crossing through g follows from (c) by composing the fragments of dia-
grams on the left and the right side of the above identity with a negative crossing on their
both sides.

(e) Height exchange of two consecutive points of « N § as in Figure 9. The invariance of ® under
this moves follows from the move in (c) or (d) if the arcs involved have coinciding orientations.
If Figure 9 involves arcs in opposite directions, then the left side of the diagram on the right

By the same argument, @ (3
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Y

FIGURE 9 Height exchange move.

can be decomposed into elementary diagrams and all of them can be moved to the right side
by (a)~(d).

The above argument shows that @(«) is preserved by isotopies of a. To finish the proof off,
observe that ® maps the defining relations (43)-(50) to 0 in S,,(M’, N"), because they are all local
and can be moved away from D. O

4.9 | Reversing orientations of 3-manifolds and of webs

An orientation of a web consists of orientations of all its loop components and directions of all
its edges. Let & denote an n-web a with its orientation reversed (and unchanged framing). As the
defining relations (43)—-(50) of S, (M, N') are invariant under the total orientation inversion, we
have

Corollary 4.8.

T S,M,N) = S,(M, N)

is a well-defined R-module automorphism.

Let (M, N') denote M and N with reversed orientations. Let R be the ring R with the distin-

guished element v~ instead of v. For an n-web « of (M, N') let @ be the n-web in (M, N') obtained
from o by negating its framing, f — —f, but retaining the orientation.

Theorem 4.9.

(1) Any ring isomorphism x : R — R sending v to v=! extends to an isomorphism of R-modules
XNy - Sp(M, N,R) = S, (M, N, R) sending every stated n-web a to a, where S,(M, N',R)
is an R-modulevia x : R - R.

(2) The composition KT M) is the identity on S,(M, N, R).

The above isomorphism is called the orientation reversion isomorphism. (Note that for some
rings R, an isomorphism x : R — R as above may not exist or be nonunique.)
Proof of Theorem 4.9: By abuse of notation, we define an R-linear map xy, - first as

}{(M,./\/) . an(M, .N.) g SH(M, N), }{(M,./\/)(a) =a.

One checks immediately that map factors through Relations (43)-(45).
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By our graphical convention, a diagram of @ near a marking is given by switching all crossings

in a diagram a and by reversing of the direction of the vertical line 8. For example, if & = ﬁ
j

_ A
then o = 4 It is clear that x, ) maps (46) to the equality of Lemma 4.10 and, therefore, it

preserves that relation.
To see that x(, v factors through (47) substitute ¢’ for o in (55), where o’(i) = o(i), for i =
1,...,n, and rotate that equation 180°. As £(¢’) = (Z) — £(0), we get

a(n)

— tn/Za Z (_q)(;)—f(a)

g€ES,

0(2).

a(1)

n%-1

(_q)(g)tn/z = q(rzl)_'— 2 = a_2

k]

by Equation (2), we get the desired relation

a(n)

=a! Y (—g®

o€ES,

0(2).

a(1)

Furthermore, x( ) maps (48) and (49) to (56) and (57).
Let us show now that x,, ) factors through (50). We need to verify that

ﬁ= qr <5j<i(q_1 - Q):jj\% q“sw'jj\l) .
J J i

2 ot (g — -1 i

q ﬁj q-(q—gq ):j:

the above equation reduces to

By (43), the left side is

and as 1-— 5j<i = 5]<i + 51',],

; = gn S:i(qg—q! i+ gl 1,
qﬂj q (K(q q )jflj q jfl)

which is (58) rotated 180° (and with i and j interchanged).
Hence, we have shown that the above map factors to

XNy - Su(M, N) = S,(M, N).
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It is an R-module homomorphism by definition.
Part (2) is obvious.

Lemma 4.10. One has

where o_ is the minimal crossing negative braid representing g € S,,.

Proof. Lett(i)=n+1—1i,fori =1,...,n. Then 7_ is the negative half-twist n-braid. By applying
it to the left side of (46), we obtain

(_q—%)‘@g> é a0 3 ()
o€S,

by (52). Note that t_o, = (7o)_ for every o € S, and that by (5),

(o)

(61)

£(0) + £(t0) = £(7) = <;‘>

Therefore, by denoting 7o by ¢’, the right side of (61) reduces to

; NG SICH w n n 1on\ (@)
0@ Y (-a7) =qWq O Y (-g7)
o’es, o’eS,

and, hence, (61) becomes
t(o)

;; é :<_1><z>qD.oén (=*)
pe- (0)+ ()5 0)=-6) :

4.10 | Marking automorphisms

where

Consider a function 7 : {1,...,n} - R* such that

n

Hn(i) = 1and 5(i)n@) = 1 for every i,
i=1
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where the bar denotes the conjugation, i = n+1—i,asbefore. It is easy to see that for every such
71 and every marking 8 in N there is an R-module automorphism ¢, 0f S, (M, N) sending stated
n-webs a to

$p@ = J] 6D -«

xeanf

where s(x) is the state of the endpoint x of a. We call ¢,  a marking automorphism of S,(M, N).
When 7; = g; = (=1)""'¢*~""1, as in Equation (42), we denote ¢, 5 by gz.
4.11 | Half-twist automorphisms

Proposition 4.11. For any marking f8 in N there exist unique R-linear isomorphisms
htw, htwg © S,(M, N) > S, (M, N)

sending any stated n-web o in (M, N*) with k endpoints on 3 to

— ] ™
k "
htWﬁ —2| = <H CLJ> . EI (62)
i j=1 _
~ D R
and to
S ~
: K i
htwy | ——{=|= <H cij> .= (63)
i j=1 -
~ - 1n

\ :

where H is the positive half-twist, / . (The orientations of the horizontal edges are arbitrary.)

We call htw; and flt\\;\}ﬁ the half-twist automorphisms. Note that fl?\flﬁ coincides with htwy
composed with g5 of Subsection 4.10, because ¢; = ¢;(—1)""1g? "1,
Remark 4.12. We will show in Subsection 7.1 that every marking in N defines a left action of a
completion UL of the Lusztig integral version U” of Uy (sl,). That completion contains the half-
twist element X and the charmed element g of Subsection 3.9. The automorphisms htw and gz
coincide with the actions of X and g, respectively.

The map htw generalizes the inversion along an edge, for the stated Kauffman bracket skein
algebras of thickened surfaces in [15]. However, it is the inverse of that map.
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The inverse of htw/ is given by

=
<
o |
I

where H denotes the negative half-twist, as before.

Proof of Proposition 4.11. By abuse of notation, let us first consider a map htwg : W,(M, N) —
S, (M, N') sending any stated n-web o in (M, N') with k endpoints on j to

htw

L

Ll = C— -
Bl

j=1
w g

Obviously, htw; preserves the internal skein relations, (43)-(46). It maps (47) to

o(n)

=aqa- (g Ci> . Z (_Q)f(a) : el

o€ES, 5
ol

The right side equals

1 ES E)

: n n+1 @ . @
@ =a <H Ci (—q n ) 2 (_q)f(O) : 5

o(n) o€ES, a(n)

n -N
) —_q)t) -
a<,»=1 q)%( D@ 1]

n+l n(n—1)
by (52). By (4), (H?zl ci) . (—q_%) 2 = 1and, hence, the expression above coincides with the

right side of (47) by the substitution ¢ — ¢’, where ¢’(i) — o(i), for i = 1, ..., n, which does not
affect the permutation length. Consequently, htw preserves (47).

The preservation of the remaining relations, (48)-(50) by htw is an immediate consequence
of the left boundary relations (56)-(58).

This shows that our map descends indeed to an R-module homomorphism

htws © S, (M, N) = S, (M, N).
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Similarly, it is straightforward to show that there is a well-defined map htvv;3 :S,(M,N) -
S, (M, N') sending any n-web « in (M, N') with k endpoints on 3 to

As htw’,

5 is an inverse of htwﬁ, both are isomorphisms. O

4.12 | Essential uniqueness of the skein relations of S,(M, N')

In the context of our theory, it is natural to ask how arbitrary are the constants a,c; in Sub-
section 2.1. For a tuple u = (u,uy, ..., u,) of n+ 1 invertible elements of R let S,(M, N';u) be
defined the same as S, (M, N'), with ¢; and a replaced, respectively, by ¢/ = ¢;(w;u;)~" and a’ =
a(l_[l.":1 u;)/u, and with the right side of (46) multiplied by u?. We denote the set of n-valent
vertices of a by V(). Then it is easy to see that the map

a— aulVn@l H Usg(x)s

xEda

defined on stated n-webs, extends to an R-linear isomorphism from S,(M, N') to S,(M, N'; u).
One can show that the new stated skein module S, (M, N'; u) satisfies the splitting homomor-
phism if and only if the following holds:

n
u; = +1, H”i = 1luu; =1, foreveryi.
i=1

Furthermore, all properties of S, (M, M) formulated so far have their version for S,(M, N'; u).

5 | STATED SL(n)-SKEIN ALGEBRAS OF SURFACES

The theory of stated SL(n)-skein modules is particularly rich for thickened surfaces M = X X
(—1,1). Note that any finite set B C 9% defines markings N = B x (-1, 1) for which S, (M, )
is an R-algebra with the product of webs «; - «, given by stacking a; on top of «,. It is convenient,
however, to represent unmarked boundary components of £ by punctures and to separate points
of B by ideal boundary points. That leads to the notion of a punctured bordered surface, consid-
ered, for example, in [15, 41] already. In particular, a punctured bordered surface encapsulates
information about the points B in it.
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FIGURE 10 Eliminating crossings.

5.1 | Punctured bordered surface

A punctured bordered surface (a pb surface for short) X is an oriented surface with possibly empty
boundary 0% such that each connected component of 0% is an open interval. These components
are called boundary edges.

For simplicity, we will assume that ¥ is of finite type in the sense that ¥ = £ \ P, where £ is
a compact oriented surface and P C £ is a finite set, called the ideal points of . Note that each
connected component of 8% meets P. (However, some of the points of 7 may be in the interior of
)

An ideal arc in ¥ is the image of a proper embedding c : (0,1) & X. This means c can be
extended to an immersion ¢ : [0,1] — X such that ¢(0), (1) € P. Anideal arc s trivial if it bounds
adiskin 2.

In each boundary edge e choose a point b,. Let S,(Z) = S,,(M, N'), where M = £ X (—1,1) and
N is the union of all b, X (—1, 1), each having the natural orientation of the interval (—1,1). As
up to a canonical isomorphism, S, (Z) does not depend on the specific choice of the points b,, we
do not specify them in our notation. An n-web in (M, N') is simply called an n-web over .

For stated n-webs a and 8 over X let their product a8 € S,,(2) be the result of stacking o above
B. This product turns S, (Z) into an R-algebra.

According to the graphical convention of Subsection 4.1, an n-web over X is presented by its
diagram on £, which is the projection of « onto X with the over/undercrossing information at every
double point. Before projecting, we use height-preserving deformation near the markings b, X
(—1,1) to make the projections of endpoints of a distinct. As before, the height order at endpoints
of the diagram on each boundary edge is part of the diagram.

The orientation of £ induces an orientation on its boundary. When part of X is drawn on a page
of paper, which is identified with the standard XY -plane, the orientation of 0% is the counterclock-
wise direction. A diagram where the height order on a boundary edge e is given by the orientation
of e induced from that of Z (respectively, the opposite orientation) is called positively (respectively,
negatively) ordered on e.

Given two edges e}, e, of a pb surface Z, not necessarily connected, the gluing >/(e; = e,) is the
result of identifying e, with e, via a diffeomorphism e; — e, such that the resulting surface has an
orientation induced from that of Z. Such a surface is defined uniquely up to strict isomorphisms.

A pb surface X is essentially bordered if every connected component of it has nonempty
boundary.

Lemma 5.1. Ifa pb surface X is essentially bordered then S, () is spanned by stated n-web diagrams
without any of: sinks, sources, crossings, trivial loops, and trivial arcs.

Proof. Crossings can be eliminated by bringing them to near a boundary edge as in Figure 10 (left),
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then expressing them as linear combinations of webs of the form Figure 10 (right) by Relation (49),
and finally eliminating them by Relation (50).

Sinks and sources, trivial loops, and trivial arcs can be eliminated by Relations (47), (45), (48),
respectively. Ol

5.2 | Splitting homomorphism for surfaces

Let ¢ be an ideal arc in the interior of a pb surface X. The splitting cut.(X) is a pb surface having
two boundary edges ¢, c, such that £ = cut.(X)/(c; = ¢,). Let pr : cut,(X) — X be the natural
projection map. An n-web diagram D is c-transverse if n-valent vertices of D are not in ¢ and D is
transverse to c. Assume that D is a stated c-transverse n-web diagram. Let & be a linear order on
theset DNnec.Foramaps : DNc — {1,...,n}let D(h,s) be the stated n-web diagram over cut,(X)
which is pr~!(D) with the height order on ¢; U ¢, induced (via pr) from h, and the states on ¢; U ¢,
induced (via pr) from s. The Splitting Theorem (Theorem 4.5) for  becomes

Theorem 5.2. Let c be an interior ideal arc of a pb surface Z. There is a unique R-linear map
0, : S,(2) = S,(cut,(X))such thatif D is a diagram of a stated n-web o over £ which is c-transverse
and h is any linear order on D N ¢, then

0= )  Dhbs).

s:Dnc—{1,...,n}

The map ©, is an R-algebra homomorphism.

Proof. The set ¢ X (—1,1) is not a closed disk but we can still use Theorem 4.5, see Remark 4.7.
More precisely, let us enlarge the ideal points of £ to open disks in £, and embed X into R>. Let M
be the topological closure of £ x (—1,1) in R3.

Then (M, N') is pseudo-isomorphic to (M, N'). Applying Theorem 4.5 to split (M, N') along the
topological closure of ¢ X (—1, 1) in M, we get the R-linear map 8, : S,(Z) — S, (cut.(Z)) defined
in the statement.

From the definition, it is clear that ®, is an algebra homomorphism. O

5.3 | Reflection anti-involution

For any pb surface X we have an involution 7 : ¥ X (—1,1) » Z x (-1,1), (x,u) - (x,—u) that
maps webs a to 7(cr) (with their framing transformed by the tangent map 7, : T(Z X (—1,1)) —
T(Z X (—1,1)). Given astated web « in X X (—1, 1) let & be 7(«) with its framing reversed, f — —f.
Proposition 5.3. For any commutative ring P and R = P[v*!] and for any pb surface Z, there is
a unique P-algebra anti-involution~ : S,(Z) — S,(Z) such that v = v™! and & for stated webs o is

defined as above.

We call - the mirror reflection map.
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2

FIGURE 11 Left: A surface X, with a skein x. Middle: The image of x under the negative height order
embedding of X, into Z,. Right: The image of x under the positive height order embedding of Z,.

Proof. Let (M, N') be defined as in Subsection 5.1 and (M, N') be defined as in Subsection 4.9.
Then the mirror reflection map is the composition of the orientation reversion x - with 7 and
hence, a P-linear isomorphism sending v to 0 = v~! by Theorem 4.9. It is easy to see that

d=aanda-a’ =o' -a
for stated webs «a, o’. [l

If « is a stated n-web diagram over T then & is obtained from o by switching all the crossings
and reversing the height order on each boundary edge.

5.4 | Embedding of punctured bordered surfaces

Consider a proper embedding of a pb surface Z; into X,. Note that it can map several boundary
edges of X, into one boundary edge of %,. For a boundary edge b of £, a linear order on the set
of boundary edges of X, mapped into b is called a b-order. Fixing it for each b defines a height
ordered embedding f : £, & %,, inducing an R-module homomorphism f, : S,(Z;) = S,(Z,),
where f.(a) is o with its height order on each b determined by the b-order in addition to the
height order of da. If the b-order is given by the positive (respectively, negative) orientation of b,
we say f, is positively (respectively, negatively) induced from f, see Figure 11.

Note that f, is an R-algebra homomorphism if and only if each boundary edge of X, contains
the image of at most one boundary edge of %;.

6 | SKEIN ALGEBRAS OF BIGON AND QUANTUM GROUPS

In this section, we prove that the stated skein algebra S, (8B) of the bigon, B, has a natural structure
of a co-braided Hopf algebra which is naturally isomorphic to the quantized coordinate algebra
(9q(SL(n)). We also show that the stated skein algebra of the monogon, I, is the ground ring R.
Finally, we prove Theorem 3.11 that identifies the kernel of the map I'.

6.1 | Monogon

Let D = {(x,y) € R? | x?> + y? < 1} be the standard disk with the counterclockwise orientation.
The monogon M is the pb surface obtained by removing the bottom point (0, —1) from D.
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€l €r €] (9

(a) (b) (¢) (d)

FIGURE 12 (a)and (b)Bigon 8. (c) Stated arc aj.. (d) Splitting of B.

Theorem 6.1 (Proof in Subsection 6.6). The stated skein algebra S,,(9N) of the monogon I is
isomorphic to the ground ring R via the map u : R — S,,(M) given by u(r) =r - 0.

6.2 | Bigon

The bigon B is the punctured bordered surface obtained from the standard disk D by remov-
ing the top and the bottom points, (0,1), (0, —1). The two edges of B are denoted by e; and e, as
in Figure 12. Up to isotopy there are two orientation preserving auto-diffeomorphisms of B, the
identity and the rotation rot by 180° about the center of B. The rotation rot induces an algebra
involution rot, : S,(B) - S,(B).

A directed bigon is an oriented surface diffeomorphic to 8B, with one ideal vertex designated as
the bottom vertex. Equivalently the direction of a bigon can be specified by choosing the left (or
right) edge. We often depict B as the square [—1,1] X (—1,1), as in Figure 12b. Let a;; be the stated

n-web over B given in Figure 12c, and let 5; be a;'. with the reverse orientation.

We will now define a Hopf algebra structure on S,,(28) geometrically. By splitting 8 along an
interior ideal arc connecting its two ideal vertices we get two directed bigons B, and B, for each
the bottom vertex comes from the one of 8. The splitting homomorphism becomes an algebra
R-homomorphism

A:S,(B) = S,(B)® S,(B).

The commutativity of the splitting homomorphisms at disjoint ideal arcs shows that A is a co-
product. For example, from the definition one has

Ad) =Y ai@a', AGE)=Y &G ®a. (64)
k k

The natural embedding ¢ : B — I (filling in the top ideal point) induces an R-linear map
L, © S,(B) = S, (M), where the left edge ¢, is higher than the right edge e,. Lete : S,(8) - R
be the composition

HTWE Ly
€:5,(8) — S,(B)— S,(M) ~R, (65)

d '€ FTOT FTHSESLI

:sdyy woxy

:sdyy) suonIpuOy) pue suwd | a1 995 [S70Z/50/40] U0 A1eiqr duiuQ Kof1 “ABo[ouyea) JO Mmusu] BiFI090) £q 0SEZ1°0d0YZ ] | 1°01/10p/WOd Ko[IAn

Kopmkl

5501 sUOWIWOY) 9ANER1) d]qear]dde Ay Aq POLIOACS AIE ST V() O8N JO SN 10} K1eIqIT AUIUQ AO[1A UO (SLONIP



52 0f93 | LE and SIKORA

where mer is a half-twist automorphism of Subsection 4.11. Explicitly, for a stated diagram «,

where u : R — S, (M) is the isomorphism of Theorem 6.1. For example,
i i y 7
E(a;) = €(aj) = Cj G j = 61',]. (66)

Let the R-module automorphism S : S,(8) — S,(B) be the composition
S = rot, ohtw 'ohtw, .
1 r

Explicitly, for a stated diagram «,

Ji - 1 i
Z.k 1 : 1
A () () PEE o

Ji

where ro(a) is the result of rotating the planar diagram a about the center of the square by 180°.
(Here, we use the fact that ¢; = (=1)""'¢*~""¢;.)
For example, we have

S(a) = (~q)"~ &, (68)

Remark 6.2. Note that stated n-tangle diagrams can be identified with the diagrams of stated n-
webs in B with the downward ascending height order on 0,8 and 9,8, that is, the height order is
positive on the left edge but negative on the right edge.

That leads to a natural identification of stated n-tangles with stated n-webs in the thickened
bigon, for which the basic internal, right, and left annihilators of Subsection 3.6 correspond to
defining skein relations (43)—(50) of S, (8).

The positive order on the left edge explains why there is a twist in the definition of the operation
hd that turns right annihilators to basic annihilators of Subsection 3.7.

By this identification S corresponds to the dual operation « — o™ of Subsection 3.5.

Recall that B is the standard bigon.

Theorem 6.3 (Proof in Subsection 6.8).

(a) The algebra S,,(8B) has the structure of a Hopf algebra over R with the coproduct A, the counit e,
and the antipode S.
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(b) The map lI‘(u;) = a;'. extends to a unique Hopf algebra isomorphism

112

Wi Oy(sly; R) — S,(B).
Here O,(sl,;;R) 1= O4(SL(n)) ®[,+11 R is the algebra O, (SL(n)) of Subsection 2.5 with the
ground ring R.
6.3 | Cobraided structure
The Hopf algebra O(sl,;; R) is dual quasitriangular (see [52, section 2.2], [35, section 10], 20,

section 10.3]), also known as cobraided (see, e.g., [33, section VIIL.5]). This means it has an R-form
(i.e., a co-R-matrix), which is a bilinear form

p 1 Oy(sl;;R) ® Oy(sl;R) — R

satisfying certain properties, with the help of which one can make the category of O (sl,; R)-
modules a braided category. The following generalizes [15, Theorem 3.5] from n = 2 to all n:

Theorem 6.4 (Proof in Subsection 6.9). Under the identification of S,(13) and O,(sl,; R) via the
isomorphism ¥, the R-form p has the following geometric description

(aeo)() -

foranyx,y € (Dq(sln;R).

6.4 | Groundring

The remainder of this section is devoted to proving Theorems 6.1, 6.3, 6.4, and 3.11. As it is enough
to do it for R = Z[v*!], we will assume this ground ring for the rest of this section.

6.5 | Algebra homomorphism S,(8) — O,(SL(n))

Lemma 6.5. The webs aj. fori,j €{1,...,n}, generate S,(B) as an R-algebra.

Proof. By Lemma 5.1, S,,(B) is generated by a; and 5; fori,j=1,..,n.
Fix i, j and choose a permutation t € S, with 7(1) = i. By (57) and (54),

7(n)

P
=¢ = ac(—q/®a;.
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On the other hand, Equation (47) expresses the left side in terms of af’s:

(n)

Y

o(n)

k4 > al 2
@ 300 S man- 0 0aly e all)

1) -
= d ; €S, o(1)=]

~ ~

Ascje' = (—g)’ ", by comparing the two equalities, we have

i i t(0)—¢ 7(2) t(n)
a;=(—q)™ Z (=9 @ (T)ag(z) T Aoy (70)
c€S,0(1)=j
which shows 5; is in the subalgebra generated by aj.. O

As the first step toward proving the theorems of this section, we will construct an R-algebra
homomorphism @ : S, (B) — O, (SL(n)) C Uy(sl,)*.

Let o — T(a) be the bijection of Remark 6.2 between the set of isotopy classes of stated n-webs
over B and stated n-tangles. It extends to an R-algebra isomorphism T : RW,(8B) — RT.

By Remark 6.2, the composition I'oT : RW,(B) - U,(sl,)" of T with I' defined in Sub-
section 3.4 preserves all the defining relations of S,(28). Hence, I'oT descends to an R-linear
homomorphism @ : S, (B) — U,(sl,)*, which by Proposition 3.4 is an algebra homomorphism.
From Equation (33) and Proposition 2.1, we have

®(#) =€, counitof Ugy(sl,), (71)
<1>(a;.) = u;, generators of Oq(SL(n)), (72)
fori,j=1,..,n. As uz. generate O, (SL(n)), Lemma 6.5 and Equation (72) show that

B(S,(B)) = O,(SL(n).

6.6 | Proofof Theorem 6.1

By Lemma 5.1, S,,(IM) is spanned by the empty n-web. Therefore, the map ¢ : R — S,,(IM) given
by u(r) = r - @ is surjective. By removing the left edge of B, we get a monogon. This gives an
embedding ¢ : MM < B, which induces an R-algebra homomorphism ¢, : S, (M) — S,,(B). By
Equation (71), the composition

RE $,(00) 2 $,(B) > Uy (sl,)'

is an R-linear map sending 1 to €. As the free R-module generated by ¢ is a submodule of U, (sl,,)*,
the composition is injective. Thus, u is injective, and hence, bijective.
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as the skein x can be brought to a scalar with the same skein relations on the left as on the right.

Note that we have

6.7 | Proofthat S, (B)is a Hopf algebra

We already noted that A is a coproduct. As u is an isomorphism, ¢ is well-defined by Equation (65).
Aversion of the argument of [15] shows that € is an R-algebra homomorphism as well: for any webs
061 ) 0(2 P

O

B2 @ dray 1y II Gray
€(OC10£2) = EIES) l' s | T H s(x 'u o1 @ Srar
v x€(a;Va,)nd, B

X

B X€a,Nd,B

H cs(x). H cs(x)"u_1 e @ e ':u_l e @ o :€(051)€(052),
x€a;Nd
XS

O

where 0,a, d,a denote the sequences of left and right side states of & and the third identity follows
from (73).
We also have

(e ® id)oA(x) = x = (id ® €)oA(x)

for all x € S,(3B). Indeed, as A and ¢ are algebra homomorphisms, it is enough to verify it for
the generators x = a' and that follows from the explicit values of A(aj'.) and of e(aj.) given by
Equations (64) and (66).

Consequently, (S,(8B),A,¢) is an R-bialgebra. By (67), S is R-algebra anti-isomorphism.
Therefore, to prove that S is an antipode for (S,,(8B), A, €) it remains to to be shown that

2 S(X))x) = e(x) = 2 X1yS(X(z)), where Ax = 2 X)) ® X(2), (74)

As before, it suffices to be verified for the generators a;, i,j=1,..,n,only. As A(a}i.) =Y, a;'{ ®
a;?, the left side of (74) reduces to:

X Ci k i 1 J
st =32 {4 =5,
J ¢ ¢ "
k k 1 1

by Equations (68), (57), and (48). The proof of the right identity of (74) is analogous.
This completes the proof that (S,,(8), A, €, S) is a Hopf algebra.
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6.8 | Proofof Theorem 6.3

Proposition 6.6. Suppose @ = (i, a, j) is a stated n-web on B. Then e() is equal to the matrix
element of the corresponding modified Reshetikhin-Turaev operator:

e(er) = (i | RT(T(a)) | J)- (75)

Proof. The map S,(B) — Q(v) given by @« — (i | RT(T(«)) | j) is clearly an R-algebra homomor-
phism whose values on aj. coincide with those of €, by Equation (71). O

1 i
_ Pkl _ plk
e< k\N ) =R =Ry (76)

Let us show thata = (aj.) is a quantum matrix. By isotopy,

In particular, we have

m
VR
;W&
SN—
Lo s
)

v+
y)
A

Il
L, -
)

4 4
y)

) J——
m
/N
B
SN—

Using the value of R in Equation (76), the above identity becomes
Ra®a)=(a®a)R,

which is the defining relation Equation (11) of a quantum matrix. Besides

n > a(n) "
_ ¢ : - g _
det,(a) = Z ('@ o =at, =1
gES, ) o)) .
~ W

where the second equality is from Equation (47) and the third is from Equation (54). Hence, the
algebra map ¥ : O,(SL(n)) — S,(%B) given by ‘P(uj'.) = aj. is well-defined.

As d)o‘P(a;.) = aj., we have ®o¥ = id. This shows @ is injective, and hence @ : S,(B) —
O,4(SL(n)) is an algebra isomorphism. By checking the values of A, ¢, and S on the generators
a;. we see that @ is a Hopf algebra homomorphism. This completes the proof of Theorem 6.3.

Y Yt
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6.9 | Proofof Theorem 6.4

Proof. The R-form satisfies the following equalities (stated with Sweedler’s notation for the
coproduct):

Py ®2) =) p(x®2)p(y ®2") (77)

p(x®yz) = Y p(x' ® 2)p(x" ® y). (78)

For O, (SL(n)), the values of p are given by (see [52, section 2.2] or [35, section 10.1.2]):

P, ® 1) = p(1 ®ul) = &y, puj ® uf) = RY, (79)

which, together with Relations (77) and (78), totally determine p.

The first part of the proof follows that of [15]. Let p’ be the map defined by the right side of (69);
we will show that p’ = p. It is enough to show that p’ satisfies (77), (78), and the initial values (79),
all with p replaced by p’. We have, where a line labeled by, say x, stands for the stated n-tangle

diagram x,
Y
Plxy®z)=¢ (’%)

Splitting the bigon by the vertical middle ideal arc, then using e(u) = ). e(uq)e(u)),

Ya) 2(2)
Py ®z) =) e|Z) ‘e Y(2)
“(1 L (2)

= Z P’ (xay ® za)p' W) ® 22)e(x2)ea)) = Z P'(x ®za)p' (¥ ® z(z).

This proves (77) for p’. The proof of (78) is similar.
Under the isomorphism, u; becomes a;. Using Equation (76), we have

. i L A .
v oapy=c( P )-ri-ns

p’(aj. RD=p1R aj.) = (aj.) =6

which proves (79), completing the proof of the theorem. O

6.10 | Proofof Theorem 3.11

Proof. The proof of Theorem 6.3 shows that the kernel of the map I'oeT : RW,(B) — Uq(sln)*
is generated by internal relations, boundary relations on the right side, and boundary relations
on the left side. Transferring back to T : RT — Uq(sln)* via the isomorphism T : RW,(B) —
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RT we conclude that the kernel of I' is generated by the basic internal annihilators, basic right
annihilators, and basic left annihilators. [l

6.11 | Additional facts

(1) Formula (70), after a simple manipulation, has the form

i 7
a;= dethi,(a),

where M;:(a) is the submatrix of a obtained my removing the i-row and j-column. Alterna-

tively, this formula is a consequence of the (geometric) antipode formula, S (a;) = (—q)"7/ Eg ,
combined with the (algebraic) antipode formula, (12), in O,(SL(n)).
(2) The antipode, given by (67), is equivalent to the dual map of Subsection 3.5 via T":

T(S(x)) = (T(x))".

(3) The algebra involution rot,, : (Dq(SL(n)) - (Dq(SL(n)), induced from the rotation by 180°, is
a coalgebra anti-homomorphism. It is easy to show that its dual restrict to an algebra anti-
involution rot* : Uq(sln) - Uq(sln). One can check that rot* is equal the anti-involution p
introduced by Lusztig [50, chapter 19] in his study of canonical bases of quantized enveloping
algebras.

7 | COACTION OF O,(SL(n)) ON STATED SKEIN MODULES

Similarly to the case n = 2 considered in [11, 15], we are going to show that every marking 3 of a
marked 3-manifold (M, N') defines a right coaction of O, (SL(n)) on S, (M, N'). Dually, it defines

aleft-U module structure on S, (M, N'), where Ulisa completion of the Lusztig integral version
U’ of the quantum group U, (sl,). We will observe that the actions of the charmed and the half-
ribbon elements on S,(M, N') coincide with the marking automorphism gz and the half-twist
automorphism htw of Subsections 4.10-4.11, respectively.

The above O, (SL(n))-coaction will be very important for the further development of the theory
of stated skein algebras in the remainder of this paper. For simplicity, we assume R = Z[v*!] in
this section.

7.1 | Module and Co-module structures

Suppose X is a punctured bordered surface and b is a boundary edge. Let ¢ be an interior ideal arc
isotopic to b. This means that b and ¢ cobound a bigon. By splitting ¥ along ¢, we get a surface
¥/ and a directed bigon with b considered its right edge. As ¥’ is diffeomorphic to £ via a unique
up to isotopy diffeomorphism, we identify S, (') = S,(Z). The splitting homomorphism gives an
algebra homomorphism

Ayt Sy(2) = S,(2) ® O (SL(n)). (80)
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The commutativity of splitting maps and the values of € on horizontal stated arcs given by (71)
imply that A, is a right coaction of O,(SL(n)) on S, (£). Moreover, the right coactions at different
boundary edges commute. As A, in Equation (80) is an algebra homomorphism, S, () is a right
comodule-algebra over O, (SL(n)), as defined in [33, section IIL.7].

If we split off a bigon (as above) and identify b with its left edge, we get a left O,(SL(n))-
comodule structure on S,,(Z).

The above construction of the O,(SL(n))-coactions on S,(Z) generalizes to O,(SL(n))-
coactions on stated modules of marked 3-manifolds. Given a marking 5 of a marked 3-manifold
(M, N), consider its closed disk neighborhood D in M, disjoint from the other markings of
(M, N). By pushing the interior of D inside M we get a new disk D’ that is properly embedded in
M. Splitting (M, M) along D', we get a new marked 3-manifold (M’, N'") isomorphic to (M, N'),
and another marked 3-manifold bounded by D and D’. The latter, after removing the common
boundary of D and D’, is isomorphic to the thickening of the bigon, with 8 considered its right
face marking, as depicted in Figure 6a. Hence, this construction yields an R-linear splitting map

Ag : S,(M, N) = S, (M, N) ® O,(SL(n)).

As in the surface case, this is a right coaction of O,(SL(n)) on S, (M, N), and the right coactions
at different markings commute.

The completion l};(\sl—,;) of U,(sl,,) of [61], see Subsection 3.9, has its integral version, fﬁ’ which
contains the half-twist element X of Subsection 3.9, see [39, Comment 3.7]. Equivalently, this is a
completion of the Lusztig integral version U of U, (sl,) [48, section 1.3]. The Hopf algebras UL
and O, (SL(n)) are in Hopf duality over Z [v*!], which turns any right O,(SL(n))-comodule W' to

a left UL-module as follows: for u € UL and x € W,

U x= 2 x1)(f(2)-u), where A(x) = 2 X1 ® f2)

is the O, (SL(n))-coaction map.

To make explicit the left action of UL on S,(M, N') coming to the right coaction Ag we extend
the states of an n-web at marking 8 as follows. Suppose « is an n-web in (M, N') with the sign
sequence on f equal to = (9;,...,7;) € {+}X. The set {v; | i € {1,...,n}} is the R-basis of the
based module V?. Assume « is stated at all markings except 8. For x € V7 let (a, x) € S,,(M, N)
be defined so that («,v;) is o with states i on 3, and the map x — («, x) is R-linear. From the
definition, we have

u * (a,x) = (a,ux) (81)

Example 7.1. The action of the charmed element g on S,,(M, N') is exactly the map gp of Subsec-
tion 4.10. In fact, ¢ is a group-like element, that is, AlKl(g) = ¢®* for k = 1,2, ..., and the actions
of g on the based U, (sl,)-modules V and V* are given by the same diagonal matrix with ¢, ..., g,
on the diagonal, see (42). That ensures that the action of g on S,,(M, N) coincides with the map

9p-

Example 7.2. The action of the half-ribbon element X is the half-twist homomorphism htw of
Subsection 4.11. Indeed, for the positive half-twist H on k strands (with arbitrary orientations) by
(40) we have

RT(H) = AFI(X)o(Xx~1)®korev,.
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By applying this value of RT(H) to (62) we obtain

— — - Zk
: K ]
hth bl = H c— |- = X .
) : b — e 12
h Jj=1 5
 d = — 21

where the second identity follows from (41). This proves the statement.

Formula (81) makes it easy to study S, (M, N') as an UL-module. For example, one can show
that over the field Q(v) the Uq(sln)—module S, (M, N) ®[p+1] Q(v) is integrable and is a direct
sum of finite-dimensional simple Uq(sln)—modules. For the case n = 2, see [15].

7.2 | Boundary relations revisited

Let D = (D, i) be an n-web diagram D over the bigon B right stated by i = (i}, ..., i} ). Assume that
D has I left endpoints, which are not stated. Suppose further that « is a stated n-web in a marked
3-manifold (M, N') and that in a cube Q that intersects A at a subinterval of a marking j the
intersection a N Q has diagram equal to D, as in the left side of (82). By the property of the counit
of the coaction, we have

(82)

This identity provides a local relation in any stated skein module, called the D-relation. By (75),
the values of ¢ of stated n-webs are the entries of the matrix describing the Reshetikhin-Turaev
operator RT(D) and are not difficult to calculate. All the boundary relations (47)-(50) are of this
type. As Relations (43)-(50) are sufficient for defining the (Dq(SL(n))-coaction on S, (M, N)), any
D-relation is a consequence of these relations.

o i
Example 7.3. For D = 4, the D-relation is

f/\l, =g <q5-7f:):lf+ 8t ) (—)* (g - q‘l):):\D :
k>i

Example 7.4. The following relations for n = 3 will be useful later:

AN AN . .
i_ 5= =1 )4 fori > j
=a . . -1 o (83)
J —_]i ——] q fOI'l<J
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—O—ﬂ: 5i;&j(_q)5i>1q_g 40_| itj-2 (84)
jq;: jq(; for i =1,3. (85)

7.3 | The last among the defining skein relations

Proposition 7.5. If [n — 2]! is invertible in R then the last defining relation, (50), is a consequence
of the other defining relations (43)—(49).

Proof. Note that Relation (50) is the D-relation for D = %
As [n —2]! is invertible, Identity (51) makes it possible to eliminate all crossings in every
diagram,

1
n—1

N =¢7 T -0V (86)

For the purpose of this proof, let S/ (M, N') be defined as S,(M, N'), only without Relation
(50). The Splitting Theorem holds for S/ (M, N), as using (86) we do not have to consider the
invariance of the splitting homomorphism under moving a crossing through the splitting disk.
Lemma 5.1 holds for S/ (B) because all crossings of diagrams on 28 can be eliminated. Conse-
quently, Lemma 6.5 holds as well and the proof of the isomorphism S,(8B) =~ O, (sl,; R) extends
to an isomorphism

S/(B) = S,(B) = O, (sl,; R).

Furthermore, every marking 8 of (M, N’) defines a right coaction A% D SI(M,N) -

S/ (M, N) ®r Oy4(sl,; R) as in previous subsection. Using the coaction, one sees that for every
right stated n-web diagram D = (D, i) on B, the relation (82) is a consequence of the defining

relations for S/ (M, N). In particular, for D = o\, we get the statement of the proposition. []

8 | ALGEBRAIC STRUCTURE OF SKEIN ALGEBRAS

8.1 | Glueing over an ideal triangle

The standard ideal triangle € C R? is the closed triangle with vertices (—1,0), (1, 0) and (0,1) with
these vertices removed. We will denote its sides by e;, e,, and 9, T as in Figure 13. Suppose a,, a,

are two distinct boundary edges of a (possibly disconnected) pb surface . Define

Zofay = (ZEUD)/ (e = a0, = ay),
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FIGURE 13 Left: The standard ideal triangle €. Middle: Glueing £ and ¥ by a, = e, and a, = e, to get
Z,, Aa,- Right: Tangle diagram x € S, () and its image glue, , (x) € S,(Z, Aq,)-

as in Figure 13. Define the R-linear homomorphism glue, , @ S,(Z) = S,(Z, A4,) s0 thatif ais
a stated n-web diagram over X with the negative height order on both a, and a, then glue, . (&)
is the result of continuing the strands of @ with endpoints on a; and a, until they reach 6, T, as
in Figure 13 (right). (As usual, the arrows indicate the height order.)
We are going to show that glue, , isalinear isomorphism and to construct its inverse, cut, . .
Let

a

£x 1 Sy (T) = S, (M) =R, eq = cofill,

where fill embeds T into a bigon by filling in the top vertex of ¥ and making the web ends at ¢;
higher than those at e,. Let us consider also the homomorphism

cuty g, : Sn(ZalAaz) - S,(2), Cuty o, = (e ® idsn(z))°®a1°®a2-
Proposition 8.1. The homomorphisms cut, . and glue, . areinverses of each other:
cuty 4, 0glue, o =idg (s)andglue, , ocut, , = ldsn(zalAaz)

Proof. We follow Higgins’ proof for n = 3. It is enough to check the above identities for the
diagrams over ¥ and over £, A ,,, respectively. We have

€1 jk €2 Ll li i
&g . = H <5J'a,gcj_a1> . <£[1 5ib,sb) . (!;[1 5ld,[d> s (87)

a=1
T

where the orientations of arcs in the triangle are arbitrary and i,s and j,k and 1, t are any three
pairs are state sequences of equal length, |i| = |s|, | j| = |k]|, and [1] = |t|.

Let us call diagrams over € that are like in Equation (87) without the horizontal arcs, vertical.
As for every x € S,(2, Aq,)> the skein ©, 00, oglue, . (x)is alinear combination of diagrams
that are vertical on Z, the first identity follows.

To prove the second identity observe that each diagram in S,(Z, A,,) can be positioned so
that it intersects & in disjoint arcs only. By applying Relation (49), it can be presented as a linear
combination of diagrams that are vertical on . By Equation (87), for each of them we have

g|Uea1,a2°(5‘z(W) ® idsn(z))°®a1°®a2(W) =W.

d '€ FTOT FTHSESLI

:sdyy woxy

:sdyy) suonIpuOy) pue suwd | a1 995 [S70Z/50/40] U0 A1eiqr duiuQ Kof1 “ABo[ouyea) JO Mmusu] BiFI090) £q 0SEZ1°0d0YZ ] | 1°01/10p/WOd Ko[IAn

Kopmkl

55101 SUOWIOY) 9ANER1) d[qeardde ay Aq POLIGACS AIE SIIILIT V() 95N JO SN 10f AILIqIT AUIUQ AO[1 UO (:



STATED SL(n)-SKEIN MODULES AND ALGEBRAS 63 of 93

FIGURE 14 Diagrams of yx, f(yx), and f(y)f(x).

Hence, the right identity of Proposition 8.1 follows. O

Note that the bijective map glue, , is not an algebra isomorphism. In fact, glueal,az(yx) and
glue, o (»)glue, . (x)are depicted in Figure 14, where f = glue, , .

However, we are going to show that it is one with respect to the self-braided tensor product that
we will define right now. The n = 2 version of this product was considered in [15].

There are two right O, (SL(n))-comodule algebra structures on S, () given by

;1= By, 0 S,(2) = S,(2) ® Oy (SL(n)), =12,

which commute.
Define the R-linear map A : S,(2) = S,(2) ® O,(SL(n)) by

A(x) = 2 X(1) @ U)U3),
in Sweedler’s notation, where
(A1 ®Ido (s10n)))082(x) = Z X(1) @ Uz) @ Us).
For x,y € S,(£) define a new product by

yEx = 3 vyl ® we), (83)

where

A(y) = Z)’u) ®up)y, A(x)= Z X1y ® Wz,

and p is the R-form.

It is proved in [15] that A and * together give S, (Z) a right Oq(SL(n))-comodule algebra struc-
ture for n = 2. That proof extends verbatim to all n. Denote by ®S,,(Z) the R-module S,(X) with
this Oq(SL(n))—comodule algebra structure. On the other hand, gn(Zal Aaz) has a right Oq(SL(n))—
comodule algebra structure coming from the boundary edge 9, F. Here is a stronger version of
Proposition 8.1.

Theorem 8.2. The maps glue, . : ®S,(X) = S, (Zq Ag,) CUty q, T Sp(Zq, Ag,) = @S,(2)
are isomorphisms of right O (SL(n))-comodule algebras.

Proof. The geometric proof of [15] for n = 2 carries over to all n without modification. Here is a
sketch. It is enough to show that f = glue, , is an algebra homomorphism. Let x, y be stated
n-web diagrams.

a
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Q2

FIGURE 15 The operation £; /\ T, on two surfaces with a single arc boundaries.

We present yx, f(yx), f(y)f(x) schematically as in Figure 14. By splitting along the dashed line
in the picture of f(y)f(x) and by using the counit property,

T ya) /
O = X o @ € <w§)ﬁf)> ’

where
A(y) = 2 Ya) ® Uy, and A, (x) = 2 X1y ® W)

The above equals Y, f(y)X1))p(uz) ® wy)), and, by (88), it reduces to f(yx*x). Thus, f is an
algebra homomorphism. O

A special case is when X = %, UZ, and a; C %; for i = 1,2. In this case we say that , A,
is the result of gluing ¥, and %, over the triangle. Each S,(%;) is a right O (SL(n))-comodule
algebra via the coaction coming from the edge a;. Then ®(S, (%)) is the well-known braided tensor
product S,(Z;) and S,,(Z,) of the two O,(SL(n))-module algebras S, () and S, (Z,), defined in
[52, Lemma 9.2.12].

Example 8.3 (Ideal triangle). Let £, = X, = B, where q, is the right edge of X, and a, is the left
edge of Z,. Then £, A, is the triangle . Hence, we have

S,(2) = O, (SL(n)QO,(SL(n)),

where each copy of Oq(SL(n)) is a right (Dq(SL(n))-comodule algebra via the coproduct. From
here one can easily write down an explicit presentation of the algebra S,(Z). Such presentation
is used in the work [44] on the quantum trace for stated SL,-skein algebras.

LetX, ,,, be a p-punctured genus g surface with a single loop boundary and let ZZ, » be X,
with a boundary point removed.

p

Example 8.4. Let © = {2; »920,p> 1} be the set of pb surfaces with a single arc boundary,
considered up to a homeomorphism. For £,,%, € &, let £, /\ %, be the result of gluing over a
triangle along a, = 8%, and a, = 8%,, as in Figure 15. Note that the /\ operation makes & into a
monoid with the identity I0.

Theorem 8.2 implies that for any £,,%, € &, the algebra S,(Z; A S,) is the braided tensor
product S,(Z,)®S,,(Z,).

Therefore, SKEZ,;) is the braided tensor product of p — 1 copies of SH(ZS,Z) and g copies of
S, (Z;l). We will analyze S, (Z;,z) and Sn(Zil) in detail in Subsections 8.2 and 8.6 and we will see
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FIGURE 16 From the bigon to a punctured monogon by gluing over a triangle.

in particular that
Su(Z5,) = Oy(SL(n)) and S, (27 ) = Oy (SL(n))®*
as R-modules. Consequently,
~ ®(p—1+29)
Sn(Zf;’p) ~ Oy (SL(n))**? g

as an R-module. (A version of this formula appeared in [7].) This statement will be generalized by
Theorem 8.8.

8.2 | Punctured monogon and Majid’s transmutation

By attaching an ideal triangle to the bigon B along its left and right edges ¢, and e, as in Figure 16,
we obtain the once-punctured monogon, %, =B, nq,-

An algebraic description of the product on Sn(Zg,z) can be derived from that for (Dq(SL(n)) by
the rule described in Equation (88). This allows to identify Sn(Zg,z) with Majid’s transmutation of
0, (SL(n)), as we explain now.

Let tm be the composition of the inverse of the half-twist around the left edge with the above
triangle gluing map,

tm = glue, . htw ! 1 O (SL(n)) = S,(B) = S,(Z; ). (89)

This map can be visualized as follows: let a stated web x in B be represented by a diagram

i i» where the left horizontal line represents multiple horizontal edges (of possibly differ-

ent directions) whose ends on the left are labeled by i = < ) and, similarly, the right horizontal
Bt
Ji
line represents multiple horizontal edges whose ends on the right are labeled by j = ( : ) Then

J1

i
. By Propositions 4.11 and 8.1, tm is an R-linear

htw, ' (x) = HLC i jand tm(x) = HLC

(&>

isomorphism. We will prove that this map defines Magid’s transmutation on O, (SL(n)). (That was
the reason for denoting the above map by tm.)
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Let us recall that notion first: for every Hopf algebra H, Majid proved that
Ad:H—>HH, Adx)= ) xu) ® (Sxq)xg), (90)

defines a coaction on H on itself [52, Example 1.6.14], called the adjoint H-coaction and that there
is an associative braided product (or, covariantised)

x.y= Z X2V 2)P((SX(1))x3) ® Sy(1))s (oD
see [52, Example 9.4.10]. (This product should not be confused with the braided tensor prod-
uct of Majid, which we discussed in Subsection 8.1.) Furthermore, he showed that H with the
braided product and the adjoint H-coaction is an H-comodule coalgebra. With these structures,

H is denoted by T H called the transmutation of H.

Proposition 8.5.

(1) tm is an isomorphism between the Oq(SL(n))—comodule algebra T Oq(SL(n)) and Sn(Zé 5)-
Hence, (tm @ I)oAd = AaA(’;2°tm-

(2) tm is a ring isomorphism. Hence, tmQOtm(y) = tm(x: y).

This statement was proved for n = 2 in [15].

Proof of Proposition 8.5.

(1) Let a stated web in B be given by the diagram i@j, as above. Then
AZ(x) — Zk,l i kQ k@l@ 1 J

where as above, horizontal arcs indicate multiple edges of possibly different directions.
Consequently, by Equations (90) and (67),

(92)

where Ro denotes 180° rotation in plane, i denotes conjugation of components and the

i o
> fori= < ) and [] ¢; denotes [T;_; ; -

b

. . . N
inversion of their order: i = < i

Ls
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On the other hand, we have
@) @) @)
i @ j 3 1 ! A ;
S lU/RIURC!
" U7

[ Fene (e

and, hence,

1 i

Ajye | =—
622,0 HCI

As this equality coincides with (92) after replacing x with tm(x) and Ad by Aazﬁo’ the

statement follows.
(2) Consider stated webs x = 1 jand y = & 'in B. Then
oGy ¢ Kk 1 1 @ 1
m(xy) =tm] | | = @Hi -
CiCx -~
i\ (7] i
k
On the other hand,

1
tm()tm(y) = —|| @

) e ) —

Denoting the stated web diagram on the right by z € S, (X ,), we have

z= Z Z(1)&(2(2)), where A(z) = Z Z(1) ® z(y) € Sn(Z’O"’z) ® O4(SL(n))

is the coaction along the dashed line and ¢ is the counit in O, (SL(n)). By applying this identify

to (94), we obtain

1
M) = —— D tm(xX) V)T Xy, X3 Yay)s
CiCx

(93)

(94)
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where T(x(), X3, ¥1)) = P((SX(1))X(3) ® Sy(1)), by Theorem 6.4. Consequently,
tm(x)tm(y) = tm(x: y),

by (91). Ol

Consequently, our theory provides simple geometric proofs of the associativity of the (braided)
product on 7O, (SL(n)) and of T O, (SL(n)) being an O (SL(n))-comodule algebra. (The proofs
of these facts are quite technical and involved in [52].) Furthermore, our theory generalizes these
statements to the boundary O, (SL(n))-coaction on the skein algebra of any essentially bordered
punctured surface.

Let us discuss generators and relations of 7 Oq(SL(n)) now. A reflection equation algebra
A4(M,) is an R-algebra generated by formal variables x;; for i, j = 1, ..., n subject to the quadratic
relations of the reflection equation:

X,RX,R = RX,RX,, (95)

.....

equations are written explicitly out in [18, section 3].)

It is proved in [36] that T Oq(SL(n)) is the quotient of the reflection equation algebra by the
braided determinant which is the image of the quantum determinant under the linear isomor-
phism 7 Oq(SL(n)) ~ Oq(SL(n)) above. An explicit polynomial expression in x; ;s for it appears in
[31]. Consequently, that expression together with the relations (95) are a complete set of relations
for 70,(SL(n)).

Let us relate this discussion to Sn(Eg’z) now. It is straightforward to verify that tm maps the

generators x;; € T Oq(SL(n)) to the arcs ‘] which we will denote by b, ;. (Then tm(a; ;) =
1

C%_b;, ; for the generators a;; for S, () of Subsection 6.2. Independently of the above considerations,
it is easy to see that b; j’s fori, j =1,...,n generate SH(ZE 2), as any web in Sn(Eg' 2) can be pushed
toward the boundary of 623’2 and simplified by the boundary relations to a polynomial expression
in b;j’s.)

Consequently, the above discussion provides a concrete finite presentation for S, (Z7 ).

8.3 | On injectivity of splitting homomorphism

Proposition 8.6. Suppose X is an essentially bordered pb surface. Then for any interior ideal arc c
of %, the splitting homomorphism 0, : S, (Z) — S, (cut.X) is injective.

Proof. First assume that an endpoint of c is a boundary ideal point, which is an endpoint of a
boundary edge e # c. In a small neighborhood of e U ¢, we can find an interior ideal arc ¢’ such
that e, ¢, ¢’ cobound an ideal triangle; see Figure 17.
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€

FIGURE 17 The curve ¢'. Left: General case. Middle: ¢ and e form a bigon. Right: ¢ cuts out a monogon.

Let € be the interior of the triangle ¥ bounded by ¢,¢’, and e, and let ¥’ = ) \ (‘i’ Ue). Then
(Z)caer = Z. By Theorem 8.2, the map cut, . = (¢g ® idg (517)0©/00, is bijective. It follows that
0. is injective.

Now assume that both endpoints of ¢ are interior ideal points. As X is essentially bordered it
contains an interior ideal arc d, disjoint from c, with one endpoint coinciding with an endpoint
of ¢ and the other endpoint being a boundary ideal point. By the above case, the splitting map
0, : S,(2) - S,(cuty (X)) is injective. As the interior ideal arc ¢ C cuty(Z) has one endpoint on
the boundary, ©, : cut;(Z) — cut, 4() is injective. From the commutativity ©,00,; = 0,00, we
conclude that 8, : S,(X) — cut.(Z) is injective. O

Conjecture 8.7. For any punctured bordered surface T and any interior ideal arc c the splitting
homomorphism O, is injective as well.

The conjecture is true when n = 2 by [15] and for n = 3 by Higgins [28]. In both cases, explicit
bases of S,,(X) were used. Proposition 8.6 shows the conjecture is true if £ has nontrivial boundary.
Furthermore, the argument of the proof reduces the conjecture to the empty boundary surfaces
with a trivial ideal arc c, that is, an ideal arc bounding a disk in X. Corollary 9.2 will establish a
weaker version of this conjecture for all pb surfaces.

8.4 | Skein algebras of surfaces with boundary

Let X be an essentially bordered pb surface. A collection A = {a,...,a,} of disjoint compact
oriented arcs properly embedded into X is saturated if

(i) each connected component of £\ [JI_, a; contains exactly one ideal point (interior or
boundary) of Z, and
(i) A is maximal with respect to the above condition.

Note that condition (i) does not imply (ii). For example, A = @ C Z’il satisfies (i), but not (ii).
Saturated A consists of two ideal arcs in this surface.

Let U(a,),...,U(a,) be a collection of disjoint open tubular neighborhoods of a,...,q,,
respectively. Each U(q;) is homeomorphic with a; X (—1,1) (by an orientation preserving
homeomorphism) and we require that (0a;) X (—1,1) C 0.

Recall from Subsection 5.4 that any embedding of pb surfaces £’ C T together with an order-
ing on the boundary edges of ¥’ in the boundary edges b of Z, called b-orders, defines a linear
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ai az

FIGURE 18 Examples of saturated systems. Left: A = {a,} in a punctured monogon, X}

oo Right:

A ={a,, a,}in an ideal triangle ¥ with a, in blue and a, in red.

homomorphism S, (') = S,(X). We will show that it is an isomorphism for a saturated system
forarcs aj,...,a, and ¥’ = U(A) = |JI_, U(a,):

Theorem 8.8. Assume X is an essentially bordered pb surface and A = {a, ..., a,} is a saturated
system of arcs.

(1) Wehaver =r(X) := #0Z — y(X), where #9% is the number of boundary components of ~ and
x denotes the Euler characteristics.

(2) The embedding U(A) <& X with negative b-orderings for all boundary edges b of Z, induces an
R-module isomorphism f 4 : S, (U(A)) = S,,(2).

Note that each U(q;) = a; X (—1,1) is naturally a directed bigon, with its sides (da;) X (—1,1)
oriented in the direction of (—1, 1).

Example 8.9. The saturated systems of Figure 18 induce the linear isomorphisms
tm : S,(B) > S,(Z;,) and S,(B) @ S,(B) — S,(T) (96)
of Equation (89) and Example 8.3.

By the above theorem, for any essentially bordered pb surface we have an R-linear isomor-
phism

0,(SL® 2 5, L 5,

As O,4(SL(n)) has a Kashiwara-Lusztig’s canonical basis over Z[v*!], see [19, Proposition 5.1.1],
we have

Corollary 8.10. For any essentially bordered pb surface, S,(X) is a free R-module with a basis
given by the image of tensor product of Kashiwara-Lusztig’s canonical bases on O, (SL(n))®" under
quJ®r.

Remark 9.5 generalizes the above theorem and corollary to all nonclosed pb surfaces.

Remark 8.11. Part (1) implies that condition (ii) in the definition of a saturated system can be
replaced by condition |A| = r(Z).
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FIGURE 19 Left: The arcs in A are in red, the ideal arcs b, e,, e, are in blue. Right: After pulling e, e, and
arcs in A taut.

Proof of Theorem 8.8.

(1) By the maximality of A, its arcs cut X into pieces of the following two types:

whose Euler characteristics are, respectively, 0 and 1. Hence, the Euler characteristic of the
result is the number of boundary ideal points, which is #9%. On the other hand, each arc cut
increases the Euler characteristic by 1. Hence, y(X) + r = #90%, proving part (1).

(2) We prove it by induction on tri(X) which is the number of ideal triangles in an ideal triangula-
tion of X, defined as follows. Let £ be a maximal collection of nontrivial ideal arcs in X that are
pairwise disjoint and pairwise nonisotopic. The ideal arcs in £ not isotopic to boundary edges
split ¥ into pieces, each is either a monogon, a bigon, or a triangle. Then tri(X) is the number
of triangles, which is known to be independent on the choice of €. Note that tri(X) = 0 if and
only if ¥ is a disjoint union of monogons and bigons, and the theorem is true for this case.

Suppose tri(X) > 0. We can assume that X is connected.
Lemma 8.12. There is a boundary edge of  containing at least two endpoints of arcs in A.

Proof. As arcs of A are disjoint and simple, they have 2|A| endpoints and it is enough to prove
that 2|A| > #0X. Assuming otherwise, 2|A| < #0Z, and by part (1) we have 1 < #0Z < 2y(%).
The positivity of the Euler characteristic implies that y(X) = 1 and X is a polygon. Then #0% <
2x(Z) = 2 implies X is a monogon or a bigon, contradicting the assumption tri(X) > 0. O

Let b be a boundary edge containing at least two endpoints of A. Let p the ideal end point of b,
following the positive direction of b. Among all arcs in A having endpoints in b assume a; has an
endpoint closest to p. When X is cut by arcs in A, there are two pieces adjacent to a;, one of them,
denoted by P, contains the ideal point p. The other piece, denoted by P,, contains an ideal point
p’. Let e, be an ideal arc of £ lying in the interior of P; U P, connecting p and p’ and intersecting
a, once. No other arcs in A intersects e;. Because the geometric intersection of b with all arcs in
A is at least 2, e; cannot be isotopic to b. Pushing the union e; U b slightly into the interior of £
yields an ideal arc e, such that e;, e,, b bounds an ideal triangle T, as in Figure 19. After an isotopy
we can assume that A is taught with respect to e}, e,, b in the sense that for each a i € A and each
e € {b,e;,e,} the number |a; N e is minimal when we replace a; by any isotopic arc.
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Let ¥’ be the result of removing b and the interior of T from X, and let A’ be the collec-
tion alf =a;nY,i=1,..,r. As |A| = |A| = r(Z) = r(¥'), the system A’ is saturated for ’. As
each alf is a shrinking of a;, there is a natural isomorphism f,_, ,» : S,(U(A)) —» S, (U(A")). As
tri(Z’) = tri(Z) — 1 the induction hypothesis applies to ¥’. From the definition, we see that f , is
the composition of

Sfazar glue,, ¢,

far
Sy (UA) == S,(UA) == S,(E) — S,(2).
As each map in this composition is an R-linear isomorphism, so is f 4. [

We will show now that the assumption about the negativity of all b-orderings in Theorem 8.8(2)
is unnecessary.

Let us enumerate the boundary edges of X by b, ..., b, for bookkeeping purposes. Let oy, ..., 0, be
some b, -,..., by-orderings of the boundary intervals of U(A) in the boundary intervals of X and let
faop,0, © Sn(U(A)) = S,(Z) be the homomorphism induced by that height ordered embedding.

To relate f,, o to f4, note that each b-ordering o is obtained by a certain permutation
o of the negatively height ordered points A N b. Let us denote by oy, ...,0, the permutations
corresponding to height orderings oy, ...,0. Then f,, , (x) is induced by the embedding of
U(A) x (—1,1) into Z X (—1, 1) with the boundary intervals of U(A) braided by (o)., ..., (o),
see Figure 11. Let us elaborate on it more detail now.

Let us call skeins of the form f,(x; ® ... ® x,) € S,(Z) pure.

Lemma 8.13.

(i) Forany braids T, € Bjsnp,|s - Ts € Bjanp,| there exists a unique linear transformation

Tt - Sa(E) = S,(2)
which braids the endpoints of each pure skein in S, (X) in b; by t;, fori = 1,..., s. (All skeins are
considered with negative b;-orderings fori = 1,...,5.)

(ii) Let oy, ..., 0, be permutations corresponding to height orderings 04, ... ,0, on by, ..., b;. Then for
pure x,

(iii) (7y,...,7,) = braid, . . defines a group homomorphism from B sy, | X == X Bj 4y | t0 the
group of R-linear automorphisms of S,(X). In particular, each braid, . . is a linear
isomorphism of S,,(X).

Proof.

(i) Forbraids 7, € Bjsnp, |, - Ts € Bjanp,| consider the embedding

ll,-.

U(a))V..uU(a,) CEZx(-1,1)

modified by the braiding by 7; of its components going toward b; C %, for i = 1, ...,s. This
map is considered with the negative height order. It induces a linear map of skein algebras
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that we denote by g, -, - © S,(U(A)) > S,(Z). Then for pure x, let

: -1
braldA,Tl,...,rs(x) = 9A7 0T OfA .

By Theorem 8.8(2), pure skeins span S, (). Consequently, the condition of (i) determines
braid, ; . . completely.

(ii) Follows from the discussion above Lemma 8.13.

(iii) By definition,

braldA,fl,...,fsObraldA,Ti 7 =bra|dA,Tl’[1 ..... )

!
forany 7;,7/ € B, Anby s> Ts> Ty € By Anb, |- Consequently, each braid, . isalinear isomor-
phism of S,/ (Z). As braid, ;4 ;4 = id, the statement follows. O

By Theorem 8.8(2) and Lemma 8.13(2) and (3), we have:

Corollary 8.14. f,, , : S,(U(A)) - S,(Z) is a linear isomorphism for every o, ..., 0.

8.5 | Products on skein algebras of surfaces with boundary

In the previous subsection, we discussed R-module structures of skein algebras only. We will
address the algebra products now.

Leta,, ..., a, be asaturated system of arcs in X as before. Note that the induced linear homomor-
phism S, (U(q;)) — S,(¥) is an algebra homomorphism if and only if g; has its ends at different
boundary intervals of . (We have seen this already in Example 8.9, where the right map of
Equation (96) is an algebra homomorphism on each of the components, S,(28), but the left map
tm: S,(B) - Sn(Z;,z) is not an algebra homomorphism.)

Therefore, for the sake of studying algebra products on S, () let us consider modified neigh-
borhoods U’(a;) = U(a;) UV for arcs a; with both their ends in the same boundary interval,
where V is a tubular neighborhood of the arc of 0Z connecting the endpoints of a;. We assume
that V is small enough so that U’(a;) is homeomorphic to a punctured monogon. Note that the
transmutation map is a linear isomorphism tm : S,(U(q;)) = S,,(U’(q;)) by Proposition 8.5. We
leave the chosen neighborhoods of the arcs with ends in different components of 9% unchanged,
U'(a;) = U(ay).

Let us consider the map

mult, : S,(U"(a) ® .. ® S,(U'(a,)) = S,(Z), mult,(x; ®..®X,)=x; - ... X,.

Note that by the transmutation map for arcs in the same component of 0%, mult, coincides with
fa0,,..0, fOr by-,..., bg-orderings oy, ..., oy, for which the boundary arcs of U’(q;) are higher than
the boundary arcs of U’ (a j) fori > j in any boundary interval of 0%.

Consequently, by the above discussion and by Corollary 8.14:

Corollary 8.15. mult, : S,(U'(¢1)) ® ... ® S,,(U'(a,)) = S,() is an R-linear isomorphism and
an algebra homomorphism on

S,(U(a)=R®..QR®S,(U'(¢)) ®R®..®R C S,(U'(a) ® .. ® S,(U'(a,))
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m

FIGURE 20  Left: A triangulation of X7 | (in black) with the horizontal edges identified and with the
vertical edges identified. (Hence, all ideal vertices are identified.) The red and the blue arcs form a saturated arc

collection. Right: Another presentation of X7, with the corresponding red and blue arcs.

for every i (where each R is spanned by the appropriate identity element).

S, (%) is not the tensor product of the algebras S, (U’(ay)), ..., S,(U’(a,,)) because elements of
different component algebras do not necessarily commute in S,,(Z).

We have seen in Examples 8.3 and 8.9 already that the skein algebra of the ideal trian-
gle, S,(Z) is the braided tensor product S,(B)RS,(B). We will see in the next subsection
however that our stated skein algebras are not braided products of their component algebras,
S, (U'(ay)), ..., S,(U'(a,)) in general.

8.6 | Torus with an arc boundary
Let us apply the approach of the above section to analyze the skein algebra of the torus with an
arc boundary, S, (Z] ). Figure 20 shows a torus (in black) with a saturated arc collection: a; in

red and a, in blue.
By Corollary 8.15,

mult, © S,(Z5,) ® Su(Z5,) = Su(Z1,), mult(x @ y) = AN

is an R-linear isomorphism and an algebra homomorphism on each of the components algebras.
We described a method of finding an algebraic presentation of S,(Z;,) in Subsection 8.2.

The above discussion allows for an algebraic description of the product on S (2 ) ®S,(Z;,)

(induced from S, (X} 11 1) by mult,) as follows: by the construction of mult 4, o

xR -X®N=>x-xN®1, 1®y) - 1®Y)=10%-)Y), x®1)-1®y)=xQy

in §,(=5)) for x € $,(U'(ay)) and y € S,(U’(a,)). Therefore, to complete the algebraic
descrlptlon of the product in S (Z 1) it remains to consider

1®y) - x®1)=
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Op —_— p
Cp

FIGURE 21 From X to Z,. Here p is an interior ideal point. The picture when p is a boundary ideal point is
similar.

Denoting this diagram by z, and applying the identity (95), where A is our O,(SL(n))-coproduct
taken with respect to the dashed line, we see that

1®y) - x®1) = Z X2y Yy - T(Xy X3y, Y1) Y3))s

where T(x(), X(3), ¥(1), ¥(3)) is the counit value of the tangle in B cut off from the diagram above
by the dashed line.

The above formulae completely determine the multiplication in S, (Zil) and allow for writing
a finite presentation of S, (27 ) in terms of generators and relators. Note that mult,, in this case
is not a braided tensor product of the component algebras S, (U’(a,)), for i = 1,2, in the sense of
[52].

For R =k(q), the skein algebra S,(Z;;) is given by a semi-direct product U,(sl(n)) X
@(Dq(SL(n)) and is called the “elliptic double” of Uq(sl(n)), and also the “algebra of quantum
differential operators on SL(n, k),” see [7, section 6.4].

Remark 8.16. The finite presentations of SH(Z;,Z) and Sn(Zil) (discussed in Subsection 8.2 and
above) induce finite presentations of algebras Sn(ZZ’p) for all g > 0, p > 0 by the method of
Example 8.4.

Furthermore, Corollary 8.15 allows for a generalization of the above method to provide a finite
presentation of S, (X) in terms of generators and relators for every essentially bordered surface X.

9 | KERNEL AND IMAGE OF THE SPLITTING HOMOMORPHISM
9.1 | Kernel of the splitting homomorphism
Suppose X is a connected pb surface with an ideal point p and a trivial ideal arc ¢, at p. Then cut,

is the disjoint union of a monogon M and of a new pb surface X, that has c,, as its boundary edge,
see Figure 21. Let K,(Z) be the kernel of the composition

p

O, ~
©, 1 Sy(E) —> S,(Z,) ®r Sy(M) — S,(Z,).

Explicitly ©, is given as follows. Any stated n-web a over X can be isotoped so that it is disjoint
from ¢, and, hence, lyingin 2. Then © p(oc) = a as elements of S,,( p).

Theorem 9.1. For any two ideal points p and p’ of a connected punctured bordered surface = we
have K p(Z) =K p/(Z).
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Proof. Assume the two trivial ideal arcs ¢, and ¢, are disjoint. By splitting both ¢, and ¢, we
get two monogons and a pb surface Z, ;. Let © : S, () = S, (£, /) be the composition of the
two splittings, first along ¢, and then along c¢,,. As by Proposition 8.6, the second one is injective,
we have ker ®, = ker ©. By switching the order of the splitting, we have ker ® ,» = ker ©. Thus,
Kp=K,. O

We denote this common ideal by K(Z). The quotient S,(Z) := S,(X)/K(T) is called the
projected stated skein algebra of T. By Proposition 8.6, K, is trivial and S,,(Z) = S,,(2) if 9 # 0,

Corollary 9.2. For any ideal arc c, the splitting homomorphism descends to an injective algebra
homomorphism

0, : 5,2 - S,(cut, ) =S, (cut, X).

Proof. The proof is similar to that of Theorem 9.1. Assume c is disjoint from a trivial arc c,. As
the compositions G)C(Dcp, G)Cp 0, : S,(Z) = S,(cut.(,)) coincide and for both of them the second
map is injective, ker G)Cp = ker©,. O

Corollary 9.3. Conjecture 8.7 is equivalent to the projection S,(X) — S, () being an isomorphism.
(And, hence, this projection is an isomorphism for n = 2 and 3.)

In the next subsection, we will prove the following.

Theorem 9.4. For any %, p and ¢, as above, S, (L) coincides with the subalgebra of Sn(Zp)
coinvariant under the coaction Acp : Sn(Zp) — Sn(Zp) ® S,(B)at Cp:

S$,(Z) ={x € S,(Z)) : Acp(x) =x®1}L

Remark9.5. LetT =% — P, where P is a finite subset of compact surface f, as in Subsection 5.1.
Generalizing the setup of Subsection 8.4, consider a collection A of disjoint, oriented, arcs in X,
each with endpoints in 6% U P, satisfying conditions (i) and (ii) above. Theorem 8.8 and the dis-
cussion of the projected stated skein algebra implies that such A defines an identification of S,,(Z)
with O, (SL(n))®" and, hence, it determines a basis of S, ().

9.2 | The image of the splitting homomorphism

Let c be an interior oriented ideal arc of a pb surface . Denote the two copies of ¢ in cut, Z by a,
and a,. We have the splitting R-algebra homomorphism

0, : 5,(2) - S,(cut, %)
and S,(cut,X)isa O, (SL(n))-bi-comodule with the right and left coactions
A, S, (cut, =) - S,(cut, ) ® Oq(SL(n))

A S,(cut, X) — Oq(SL(n)) ® S, (cut, X),

d '€ FTOT FTHSESLI

:sdyy woxy

:sdyy) suonIpuOy) pue suwd | a1 995 [S70Z/50/40] U0 A1eiqr duiuQ Kof1 “ABo[ouyea) JO Mmusu] BiFI090) £q 0SEZ1°0d0YZ ] | 1°01/10p/WOd Ko[IAn

Kopmkl

5501 sUOWIWOY) 9ANER1) d]qear]dde Ay Aq POLIOACS AIE ST V() O8N JO SN 10} K1eIqIT AUIUQ AO[1A UO (SLONIP



STATED SL(n)-SKEIN MODULES AND ALGEBRAS 77 of 93
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FIGURE 22 (cut, %), n,-

respectively, where O,(SL(n)) is identified with the skein algebra of the bigon directed by the
orientation of c. Recall that the Hochschild cohomology module is defined by

HH'(S,(cut, %)) = {x € S,(cut, X) | A, (x) = floazA(x)},
where fl is the transposition
fl 1 Oy(SL(n) ® S, (Z) = S, (D) @ Oy(SL(n)), flx®y)=y®x.

Theorem 9.6 (See [15, 38] for n =2 and [28] for n =3.). The image of ©, is equal to
HHO(S, (cut, X)).

Proof. As the image of O, is equal to the image of ©, : S,(Z) — S, (cut, £), we can work with
projected skein algebras. More specifically, we will assume that one end v of ¢ is a boundary ideal
point of %, as we can remove a disk from X, adjacent to v and disjoint from c, if necessary. We will
present ¢, a;,a, in cut, X, A, as in Figure 22, with v in the bottom.

Let (cut, ), 5q, denote (cut, X),, A4, — 992, for simplicity, where 9,2 is the bottom edge of T,
as in Subsection 8.1. Note that we can identify the image of S,,((cut, Z)a1 Aaz) - S, ((cut, Z)a1 Aaz)
with S,,(Z). We will use this identification below.

Let

\% D S,(eut. ) = Sp((eut, ) Ag,)s Vaye, = 8'“ea1,a2°ht""a_21-

a,a

a;,a

It is an isomorphism by Propositions 4.11 and 8.1.

Lemma 9.7.

D) Vg,.0,0:5,(2) = S,((cut, D)y 1q,) = S,(D).
(2) Vg, q, restricted to Im O, is the inverse to ©..

Proof. For every stated web diagram D on X, we have

d '€ FTOT FTHSESLI

sdyyy woyy

:sdyy) suonIpuOy) pue suwd | a1 995 [S70Z/50/40] U0 A1eiqr duiuQ Kof1 “ABo[ouyea) JO Mmusu] BiFI090) £q 0SEZ1°0d0YZ ] | 1°01/10p/WOd Ko[IAn

Kopmkl

55101 SUOWIOY) 9ANER1) d[qeardde ay Aq POLIGACS AIE SIIILIT V() 95N JO SN 10f AILIqIT AUIUQ AO[1 UO (:



78 of 93 LE and SIKORA

FIGURE 23 Thecurvey.

with the last equality by Relation (49). Hence,

\Y C]

ap,a; -c

=id

S,(D)

AsV restricted to Im@, is a bijection onto §n(2), this identity implies (2). O

a;,a

For any collection of boundary edges X C 0%, letImy S,(Z — X) denote the image1,(S,,(Z — X))
in S, (%) of the homomorphism induced by : £ - X < X.

Lemma 9.8. Let by, b, be two boundary components of X separated by a puncture. Then the
embedding

is onto.

Proof. Consider an arc y parallel to b, U b,, as in Figure 23.
Then the following diagram commutes:

Imy S, (2 — (b; Ub,)) o Imy S,(Z — b)) NImy S,,(X —b,)
10, 10,
Imcuty zSpleut, Z—(byUDby)) < ImcutyZ Sp(eut, X —by)N Imcuty2 Sp(cut, Z — by).

By Proposition 8.6, both homomorphisms ©, in the diagram are 1-1 and, hence, it is enough to
show that the embedding in the bottom line is onto. As the skein algebra of a surface is the tensor
product of its connected components, it is enough to show the statement of the lemma for the tri-
angle T bounded by b,, b, and y. By Proposition 8.2, S,,(Z) is isomorphic with S,,(8,) ® S,(3B,),
as an R-module, where B, for i = 1 are disjoint bigons in & such that b; C d%B,, as in Figure 23.
Through that isomorphism the statement of the lemma reduces to

Oy(SL(n)) ®R-1NR-1Q Oy (SL(n)) = S,(M) =R,

where 1 is the identify in O,(SL(n)) and 9 is the monogon & — b; — b,. That follows from the
fact that R - 1 is a direct summand of O (SL(n)), by [19, Proposition 5.1.1]. O

Let us continue with the proof of the theorem. To prove that the inclusion

0.(S,(2)) C Ker (4, —flo, A)
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is an equality, we will show that for any y € Ker (Aa1 —flo a A),
X = Val,az(y) € S, ((cut, Z)G1Aaz)
liesin S, ((cut, Z)4, oq,)- Then
0.x)=y 97)
by Proposition 9.7(2).
As mentioned above, it remains to be shown that x € S, ((cut, £), »q,)- Recall that A, and
fl, oA map y into S, (cut, %) ® S,(B), where the left and right edges of B are denoted by

e;, e,, respectively.
Let

z= Aa1(y) = floazA(y)-
By Proposition 9.7(2),
Val’bl(z) = Va1,blAa] (y) = y:

where y at the end of the above equation is a skein in cut, Z U B/(a; = b;) identified with cut, X.
Then

Vira, Vayb,(2) =V 0,0 = Vy o 0.(x) = x,
by (97).
By Proposition 9.7(1), V, 1, A, (v) belongs to S, (£ U B),, 4p,)- By applying V;, . to it, we see

that

x € S,((ZUB)g aby.b, Aay)-
As nablas for disjoint pairs of edges commute,

x=Vy 0, Va2

and by an analogous argument

x € S,((ZUB)g, Abybray)-
Now the statement follows from Lemma 9.8. O

The construction of the inverse of the splitting map (Lemma 9.7) implies the following:

Corollary 9.9. For any union C of ideal boundary arcs of Z,
0.(5,Z2-0)=0.(5,E)nS,(cut,Z—-C) inS,(cut.X).

Proof. The inclusion C is obvious and the opposite inclusion D is obtained by applying the inverse
map to ®, of Lemma 9.7. L
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Proof of Theorem 9.4.
S, cixes, (2 : ®cp(x) =x®1}

is obvious. The opposite inclusion, D, is immediate for £ = IN: in that case p is the only vertex of
m, zmcp = B, wherec, = 9,8 and ifACp x=xQ®lforx e mch then by applying ¢ @ 1 we obtain
x=¢(x)1 €R.

More generally, let  be a disjoint union of an essentially bordered ¥’ and of I (with a vertex

p and an arc ¢, as above). Let Acp x=xQ®1lforx e u Emcp. Then by Theorem 8.8, x can be

written as x = Zf\; 1 Vi ® z;, where yy, ..., yy € S,(¥) are linearly independent and z, ..., zy €
S,(38B). Then Acpzi = z; ® 1for every i and, hence, z,, ..., zy € R. That concludes the proof of the
inclusion D in that case.

Let®, (x) =x ® 1 now for some arbitrary Z, p, ¢, (as above) and x € S,,(£). We need to show
that x lies in the image of Sn(Ep - cp) in Sn(Zp).

Let c; be an arc in X, parallel to c,, splitting =, into Z; and a bigon bounded by c,, and c;.
Then

@Cp@cé(x) = @C;GCP(X) = @C;(x) ® 1.

As G)C;7 (x) e Sn(Z; LI mch) the previous case implies that G)C;7 (x)isoftheformy ® 1 € Sn(ZID) ®
sn(mcp), forsome y € Sn(Z;)). By Corollary 9.9 above for C = ¢,,, we have @C;) (x) e @C; (S,E&, -
cp)). As G)C;] is 1-1, x lies in Sn(Zp — cp). O

10 | RELATION TO FACTORIZATION HOMOLOGY, SKEIN
CATEGORIES, AND LATTICE GAUGE THEORY

10.1 | Factorization homology

Factorization homology was introduced by Beilinson and Drinfeld [6] in the setting of conformal
field theory and then in [1, 2, 47] in the topological context. Given an algebraic object .A called
an E, -algebra, it associates to oriented n-dimensional manifolds (with boundary) M categories
[M A, which are linear over a certain ring of coefficients R.

For n = 2, the notion of E,-algebra is equivalent to that of a braided tensor category. Important
examples of such categories are the categories of finite-dimensional representations of quantum
groups U, (g). The factorization homology of surfaces for these categories was studied in [ 7], where
the authors proved that if 9= = S! then fM A is equivalent to the category of left modules over a
certain algebra Ay, (depending on the Lie algebra g).

The factorization homology of [7] and skein categories (discussed below) are theories parallel
to ours. We show:

Theorem 10.1. Let R = k(q) for a field k and let E, be the category of type 1 finite-dimensional
representations of Uq(sl(n)) (over R). Then A):(/ ) is isomorphic to S, (E’;’ p) (as R-algebras) for every
g20,p>1 ' ‘
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On the one hand, factorization homology of [7] is more general in that it is defined for all
semi-simple Lie algebras and it can be viewed as a quantization of the entire moduli stacks of
representations, rather than just the character varieties.

On the other hand, one may consider our theory more elementary because it does not involve
higher category theory. More importantly, our stated skein modules are defined over nonfield
rings of coefficients, for all 3-dimensional manifolds, and we worked out their theory for sur-
faces with multiple boundary components and multiple markings. Furthermore, unlike our stated
skein algebras, the algebras Ay of [7] are defined up to an isomorphism only.

The existence of our stated skein algebras over Z[q ﬁ] allows to construct quantum trace homo-
morphisms of the stated skein algebras into quantum tori, over any ground ring. It was done
for n = 2 by Bonahon-Wang, [12], and more generally in [15, 44]. The construction of quantum
trace was generalized to all n in [45], where two versions of quantum trace maps, quantizing,
respectively, the length coordinates and the shear coordinates trace formulae, were introduced.

Embeddings into quantum tori allow to study algebraic properties S,(X) and their representa-
tions.

The above works relate our algebras to the theory of quantum cluster algebras, which provide
alternative quantizations of character varieties. Further connections to quantum cluster algebras
are through [13, 29, 59].

For completeness, let us summarize briefly the construction of the factorization homology of [7]
(in dimension 2): it is based on the (o0, 1)-category Mfld* whose objects are oriented surfaces (with
boundary), morphisms are given by their embeddings, 2-morphisms are isotopies between embed-
dings and higher order morphisms are isotopies between them. This category has a monoidal
structure given by disjoint embeddings and it has a full subcategory Disk? consisting of disks (with
partial boundaries) and their embeddings. One can prove that any pivotal ribbon category defines
asymmetric monoidal functor into a symmetric monoidal (o0, 1)-category C whose objects are cer-
tain presentable categories and its monoidal structure is given by the categorical product. Then
Ju A is the left Kan extension

Mfld*

which, in more concrete terms, is a certain colimit in C over all possible embeddings of collections
of disks into a given surface.

Proofof Theorem 10.1. Let g = sl(n). Then the algebra & 4 of [7] is isomorphic with S, (23’2), see [7,
section 6.1] Furthermore, one can see that AZM coincides with S, (21"1), by comparing the “gluing
pattern” of £, ; in [7, Theorem 5.11] with ours in Figure 20 (right) or by [7, Corollary 6.8].

By [7, Theorem 5.11], Azw is the braided tensor product of p — 1 copies of Ay, = Sn(Zz)",z) and
g copies of AZL1 = Sn(Zil). Now the statement follows from Example 8.4. O

10.2 | Skein categories

Skein categories are categorical analogous of skein algebras introduced by Walker and Johnson-
Freyd [66, p. 70], [30, section 9]. A framing of a point p on surface X is a choice of a nonzero vector
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v € T,Z. Let V be a ribbon category, linear over R. The ribbon category Rib,,(Z) has objects given
by finite sets of framed, signed disjoint points of Z. Its morphisms are R-linear combinations of
ribbon graphs in X x [0, 1] (in the sense of Reshetikhin-Turaev) whose edges are decorated with
objects of ¥ and coupons are decorated with intertwiners. The ends of a ribbon graph I in X X {0}
(respectively, in X X {1}) determine the source (and, respectively, the target) of the morphism I.

For an oriented arc C, the Reshetikhin-Turaev construction defines a functor RT :

Riby,(C x [0,1]) —» V. (This functor was denoted by RT, for the ribbon category C, of
Subsection 3.1.)

The skein category, Sky,(Z) is Rib,,(2) modulo the relation on morphisms Y’ ¢;I'; ~ 0, whenever
a restriction of Y ¢;I'; to a certain cube C X [0, 1] X [0,1] is in the kernel of Reshetikhin-Turaev
evaluation, RT.

Cooke proved that for the category V of finite-dimensional representations of a quantum group
U,(g), the skein category of any surface coincides with its factorization homology /2 V, [14]. Fur-
thermore, [21, 27, 43] proved that for ¢ = sI(2) and R a field, the skein category of & with 6% = St
is equivalent to the category of left modules over S,(Z). By Theorem 10.1, we obtain

Corollary 10.2. For g = sl(n) (for any n) and R a field, the skein category of = with 3% = S is
equivalent to the category of left modules over S, ().

Note that this equivalence is quite nonintuitive, as skein categories are built of unstated ribbon
graphs with ends in X X {0, 1} rather than of stated webs with ends in 0% x (—1, 1) considered in
stated skein algebras.

Corollary 10.2 asserts that the sl(2)-skein category of £ with = = S! has an internal algebra
object isomorphic to S,(Z). In fact, by [27, Theorem 1.1] and [21, Theorem 5.3] this internal algebra
object is isomorphic to S,(Z) as a Oq(SL(2))-comodule algebra. We expect that this statement
generalizes to sl(n) for all n.

10.3 | Lattice gauge theory, quantum moduli spaces

A ciliated graph T’ is a finite graph with additional data specifying for each vertex of I a linear
order of half-edges adjacent to it. Each ciliated graph I' is ribbon and, hence, defines a surface that
contracts onto I'. Inspired by an earlier Fock-Rosly’s work [24], Alekseev-Grosse-Schomerus and
Buffenoir-Roche quantized moduli spaces of flat connections on such surfaces in [3, 4, 8, 9]. (See
also [10].) Specifically, for each ciliated graph I" and a quantized coordinate Hopf algebra O,(G)
they have defined an O, (G)-comodule £(I'), called quantum moduli space, quantizing a (properly
defined) algebra of functions on the space of flat G-connections on T.

Let Z(T') be a surface without boundary realizing the ribbon structure on I' and let Z°(T) be
3(I") with one of its punctures blown up into a disk, as in Figure 21. (Hence, Z%(T) = Z(F)p for
some puncture p, in the notation of Subsection 9.1. Note that °(T") and Z(T') are uniquely deter-
mined up to a homeomorphism.) Then, as observed in [7], the defining equations for £(T") coincide
with those induced by the gluing patterns of [7]. In other words, quantum moduli spaces are
determined by the factorization homology of [7] and, consequently, for G = SL(n),

L(T) = S, (=)
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as 0,(G)-comodule algebras. This result was observed independently by the first author and
proved by [37] for n = 2.

By Theorem 9.4, the coinvariant subalgebra E(F)Oq(SL(”)) isisomorphic with our projected skein
algebra S, (Z(I)). This result generalizes the results of [10, 37] for n = 2.

11 | RELATION TO OTHER KNOWN CASES

11.1 | Compatibility with stated Kauffman bracket skein modules of
3-manifolds

The stated Kauffman bracket skein algebras (of surfaces) of the first author [41] were generalized
to stated skein modules of marked 3-manifolds in [11] (cf. also [43]). We are going to prove that
these modules are isomorphic with our SL(2)-skein modules, S,(M, N').

To relate these modules to ours, let us replace the variable g of [41] with g/ and denote the
resulted stated Kauffman bracket skein module by & (M, N') g/ Let a framed link in (M, N') be a
nonoriented 2-web without sinks nor sources, stated by signs +. By definition (M, N’ )ql 2 is the
R-module freely spanned by isotopy classes of framed links subject to Relations (98)—(101).

1/2

Theorem 11.1. Suppose (M, N') is a marked 3-manifold.

(1) Thereis a unique R-linear isomorphism A : (M, N)ql/z — S,(M, N') that maps framed links
a to stated 2-webs by assigning arbitrary orientations to them, and changing the minus state to
1 and the plus state to 2.

(2) The splitting homomorphism of [11, 41] coincides with ours through A.

Proof of Theorem 11.1. Let L(M, N') be the set of all stated framed links in (M, A'). First let us
record the defining relations for &(M, N )q1/2t

X =g +q? ) C (98)

wu O =-@@+qHw 99)
Cl; Cl:o, Cl*=q1/4, Cl;—qs/“ (by [41, 18))). (100)
> | o DU i (10)

(This last equality is a consequence of applying a half-twist to [41, (13)].)

For convenience, we draw diagrams with the arrow down, rather than up as in [11, 41], to make
them compatible with the skein relations of our S,(M, N'). As the half-twist is an invertible oper-
ation, they form an alternative set of defining skein relations of the stated skein module of [11,
41].

On the other hand, for n = 2 our skein relations are:
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_ 1N T

g2 DL g2 24 =(q-qM) (102)

_Q, =-¢— (103)

wu (O =-(@@+qghH-w (104)

< =-q _>_+ql/2 | ] (105)

2| =g <f:Jf— qf:J l> (106)
q; cl q g q: )
:5| =—q¥ 4;01; gV 431 (108)

(By Proposition 7.5, Relation (50) is redundant.)

Lemma 11.2. The value of any framed link T in (M, N) considered as a 2-web in S,(M, N') does
not depend on the orientation of T.

Proof. By (105), (103), and (104), we have

(), =a@+gH—r +q%_Q»=—>—- (109)

For any arc with a 2-vertex near its end, we have

i —q fori=1
( ‘ _ L Lgesa. ) T =_%_Ji, 110
: i 1 {1 fori=2 (o)

Hence, for any arc we have,
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(Both ends may lie on the same marking in A.) Similarly, by (109), for loops we have

O-O-C

By Lemma 11.2, assigning arbitrary orientations of links defines a map A : RC(M,N') -
S,(M, N') preserving Relations (99)-(101). To see that (98) is preserved as well, we start with the
following combinatorial observation:

d

We say that a crossing X or X in an unoriented framed link L in (M, N') is of ) C -type

if L with that smoothing can be oriented, so that it is a 2-web with only two 2-vertices, looking

like } 4 We define a crossing of -type analogously. It is straightforward to verify that every

crossing is of one of these two types. (However, it can be of both types simultaneously, if the
crossing involves an arc.)

Lemma 11.3. Ifa crossing X or X in L is of ) C -type then for that smoothing of L we have
A =»<

Proof. There are two possibilities.

(1) The NE end of is connected to the NW or the SW end. Then the statement follows by
introducing two 2-valent vertices as in (109).

(2) The NE end is connected to the marking. Then one of the SE or SW ends must be connected
to a marking and the statement follows by applying (110) twice near the markings. O

Suppose that the crossing X on the left side of (98) is of ) C -type. Then by the above lemma,

A maps that skein relation to
X: q1/2_>_+ q\2A () 9 _ q1/2_>_+ q—1/2;> q

which coincides with (105) in S,(M, N'). The proof for a crossing of -type is analogous. Thus,

the R-linear map A : S(M, N’ )ql/z - S,(M, N) is well-defined.

We prove that A is an isomorphism by constructing its inverse: Consider first the map
RW,(M,N') = (M, N) 1.2 sending webs « to (=1)"2(@lg, where & is the result of forgetting
the orientation and of smoothing all the 2-valent vertices. It is immediate to see that it factors
through Relations (102)-(108) into a homomorphism S,(M, N') — (M, N' )g1/2- As S(M, N )glr2
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and S,(M, N') are spanned by links (i.e., webs with no sinks nor sources) and as A and the above
map S,(M,N') > S(M, N )41/2 are inverses of each other on links, the statement follows.
The proof of part (2) is straightforward. O

11.2 | Compatibility with the SU(n)-skein modules

In this subsection, we are going to show that for any 3-manifold M and any n our skein module
S, (M, ¥) is isomorphic with the SU(n)-skein module introduced by the second author in [58].
That module is built of based n-webs in M that are defined as our n-webs in (M, @), except that the
half-edges incident to any of their n-valent vertices are linearly ordered. We denote the set of all
such webs up to isotopy by W}f (M). Let S}f (M) be the quotient of the R-module freely generated
by WS (M) subject to Relations (16)-(19), which are the internal annihilators of the functor RT,,.
For an invertible u € R let S}’; (M;u) be an R-module defined as Sf; (M), except that the right side
of (19) is multiplied by u. From the definition, we see that Sg(M ;1) is isomorphic to 5111) (M) via
the map a — u*si"ks(@q. The SU,,-skein module defined in [58] is actually So(M; (—g)""~1/2).

Given a based n-web a, let a° denote the underlying n-web in S, (M, N). Recall that every
oriented 3-manifold has a spin structure.

Theorem 11.4. Let M be an oriented 3-manifold.

(a) Fornodd, the operation @ — a° on based n-webs extends to an isomorphism S°(M) = S, (M, @).
n n
(b) Every spin structure on M defines a function s : Wnb(M ) = {1,—1} such that the map a —
f(a) = (=1)@a° induces a unique R-linear isomorphism SS(M) =S, (M,9).

Proof.

(a) Forn odd, Relations (20) that are consequences of the defining relations, (16)-(19), show that
a based n-web «, as an element of SS(M ), is determined by «°. Furthermore, the defining
relations (16)—(19) coincide with the defining relations (25)-(28).

(b) Let n be even now. Fix a Riemannian metric on M and let UM be a principal SO(3)-bundle
associated to the tangent bundle of M. A section at a point is the group SO(3), which can
be identified with the set of all ordered, positively oriented, orthonormal bases (v;, vy, U3)
of the tangent space at the point. Any such ordered orthonormal basis is totally determined
by the first two vectors. A smooth embedding a : [0,1] — M equipped with a normal vector
field defines aliftd : [0,1] -» UM where the first and the second vectors are, respectively, the
velocity vector and the framing vector, normalized to have length 1. For a based n-web « define
s(a) € {0, 1} as follows: First isotope a so that the framing is normal everywhere, and at every
n-valent vertex the n half edges have the same velocity vector. The latter condition implies the
lift of the endpoints at all the half-edges at an n-valent vertex are the same. As 7 is even the
lifts of all edges of a and of all its circle components form a Z/2 one-cycle & of UM. Recall
that a spin structure s of M can be identified with a cohomology class in H'(UM, Z/2) which
is nontrivial at the section at every point of M. Let s(x) be the evaluation of the spin structure,
considered as an element of H'(UM, Z/2) on &. Clearly, s(c) depends only on the isotopy
class of a. From the definition, s(«t) = 1 if « is the trivial loop. If «’ is the result of adding a
positive twist to an edge or loop of a then s(a’) = —s(a). Thus, f maps the defining relations
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(16)-(19), respectively, to the defining relations (25)-(28). Hence, it extends to a well-defined
R-linear map f : SE(M) — S, (M, 9).

For the inverse, note that Relations (20) show that the map RW, (M, @) — Sg (M) sending
a°® — (=1)*@q for every based n-web « is well-defined. As f maps the defining relations
(25)—(28) to the defining relations (16)—(19), it descends to a well-defined R-linear map from
S,(M, %) to S,(M), which is the inverse of f. m

11.3 | Compatibility with Higgins’ SL3 skein algebras

In his recent work [28], Higgins introduced his version of stated SL;-skein algebras, denoted by
S§L3(Z), of punctured bordered surfaces X. His skein algebra is the R-module freely generated by
3-webs stated by —1, 0, 1, subject to his system of skein relations.

Let us identify Higgins’s states 1, 0, —1 of Higgins with our states 1,2,3, respectively.

Theorem 11.5. For any punctured bordered surface X, there is an isomorphism ¢ : S;L3(Z) -
S;(Z) sending every stated 3-web a to

(_1)]’1_(0‘)"'”3(“) . q(3v3(“)+sin(“)_sout(0{))/2 - a, (111)

where

* v;3(a) is the number of 3-valent sources and sinks of «,

* h_(a) is the number of Higgins’ —1 states in a, and

* S;(a) and S, («) are sums of Higgins’ states of all edges edges coming into and coming out of the
boundary, respectively.

We thank V. Higgins for suggesting the above formula to us.

Furthermore, our theory recovers most of Higgins’ for n = 3. Specifically, Higgins constructed

i . . . . . SL, .
splitting homomorphisms for his skein algebras and an isomorphism Sy ) ~ (Dq(sl3). It is
straightforward to check that these maps coincide with ours through ¢. Higgins also proved a
version of Theorem 8.2 for n = 3. (However, additionally, he defined bases of his skein algebras
S; L3(Z) for all pb surfaces X. There appears no easy generalization of these bases to n > 3, as the
relay on the confluence method of [60], which works for n = 2 and 3 only.)

Proof of Theorem 11.5. By Identity (51),

= X - X ()

By capping the skeins of Equation (112) from the top, we get

+Ctl.=qajl+—q_£2;_=@3—ﬂf+1+q*»——+-=—@+q”%—+<

(113)
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Taking the reflection of Equation (112),

1! N\
H=q3/‘\_q /X (114)

Hence, we have
(115)

by Equation (113).

Let Wf (Z) be the set of all isotopy classes of 3-webs over X with states —1,0, 1. Consider an
R-linear isomorphism ¢ : RW!(£) — RW;(Z) given on stated 3-webs a by (111).

By definition, the Higgins algebra S§L3(E) is RWéH (2) modulo his skein relations [28, (I1a)-
(I14b),(B1)-(B4)]. It is easy to see that Higgins’ internal relations are pullbacks under ¢ of Relations
(112), (114), (115), (113), and (45), respectively.

Higgins’ boundary relations (B1) and (B3) are pullbacks of Relation (54), (B4) is a pullback of
(54), and, finally, (B2) is a pullback of (114) at the boundary combined with (58).

Hence, we showed that ¢ descends to an R-linear homomorphism ¢ : 55L3(Z) — S;3(2). The

definition of ¢ suggests an obvious inverse homomorphism S;(X) — S;L3(Z) and, indeed, one
can verify that it is well-defined. However, as checking that it respects our relation (46) requires
a lengthy calculation, we enclose an alternative proof of ¢ being an isomorphism:

As it is clearly a surjective algebra homomorphism, it remains to show that ¢ is injective. From
the definition it clear that ¢ commutes with the splitting homomorphism. As Sg LS(Z) satisfies the

splitting homomorphism, 55 L3(2) = O,4(sl;), and the gluing over a triangle is given by the same
isomorphism as described in Theorem 8.2. Theorem 8.8 is also valid with S; replaced by Sg " Part
(2) of Theorem 8.2 shows that ¢ is an isomorphism when X is essentially bordered.

Suppose X is a connected, having empty boundary, and at least one puncture. Let ¢ be an ideal
arc of Z. In the commutative diagram

sSh(z) <2y 5 (cut,x)

bk

S5(2) —= Sy(cut,T)

the upper O, is injective by Higgins result, which forces ¢ to be injective.
Consider the remaining case when X is a closed surface without ideal point. Remove a point p
from X to obtained a pb surface ¥’ having one puncture. As for both S = S; and S = Sg '3 we have

S(Z) = S(Z')/Rel, where Rel is the relation ~°_— = /5\, we conclude that ¢ : S[; L3(Z) -
S;(2) is an isomorphism. This completes the proof. O
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11.4 | Relation to the Frohman-Sikora SU(3)-skein algebras

Frohman and the second author considered in [25] the “reduced SU(3)-skein algebra” of marked
surfaces built of unstated 3-webs, subject to the SU(3)-skein relations of [40], extended by certain
boundary skein relations, which depend on an invertible parameter a € R. We denote that algebra
by Srs(Z, B) for the value 1 of that parameter.

For an unstated 3-web a in X, let 7, () (respectively, n_(a)) denote « stated with 3s
(respectively, 1’s) at all its ends.

Theorem 11.6.

(1) For any punctured bordered surface Z, the above operations extent to R-linear homomorphisms

Ny Sps(T) = S5(2).
(2) 7. are embeddings and 1, (Srs(Z)) are direct summands of S;(2).

Proof.

(1) n, maps the internal relations of [25] to (45), (112)-(115), and the boundary relations (for apg =

1) to
for i = 1,3, which are satisfied by (48), (84), and (85).

(2) To prove that we identify S;(Z) with Higgins’ skein algebra, through Theorem 11.5. Now it is
easy to see that 7, map the basis of reduced nonelliptic webs without British highways of [25]
1-1 into the basis composed of irreducible webs of [28]. O

APPENDIX: PROOF OF PROPOSITION 3.13 (A CALCULATION OF MATRICES OF X)
We need to prove Identity (41). The generators The quantized enveloping algebra U,(sl,,) is gen-
erated by E;, Fl-,Kl.‘—L1 with relations given in [35]. Its action on V' = Q(q)" with the standard basis
e, ..., e, is given by

L

Ele] —_ 5i,j€~+1, Flej —_ 5i’j+1el’, Kle] —_ q Lj+l l‘Jej. (A.l)

Note that e, is the highest weight vector.
By definition [61], a half-ribbon element is an invertible element X & Uq(sln) satisfying

R =X"1Q®X HAX), and X? = 9, the ribbon element. (A.2)

In [61, section 4], a half-ribbon element, denoted here by X, was constructed based on work of
Kirillov-Reshetikhin [34] and Levendorskii-Soibelman [46].
To calculated the action of X), we use the following identities from [61, Lemma 3.10],

X, FiX;' =-E (A.3)

n—i»
XK X,' =K. (A4)

X(T ) = t, ey, (A5)
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where T, € U,(sl,) the quantum braid group element corresponding to the longest element wj,
of the symmetric group S,, whose exact definition is not needed here.
Let & be the sum of all the fundamental weights. From (A.4), we get
XoKsX; ' =K1
It follows that X := KngO also satisfies (A.2) and hence is a half-ribbon element. Actually, X is
a half-ribbon element considered in [34, 46].

If x €V has weight 4, then T, (x) has weight w,(1). As each weight subspace of V' is
1-dimensional and TwO is invertible, we have

TL_US(en) =ce;, 0+#ce Q).

By [39, Proposition 5.9], there are positive integers m,,...,m; and a sequence i, ...,i; €
{1,...,n — 1} such that

(my) (my) -
Fl.lm1 ...Fl.]:"" (e,) = Tw;(en) =ce;, where Fl.(m) =F"/[m]!

AsF 12 =0onV,allthem j must bel. As Fie j is either O or another e i by Equation (A.1), we must
have ¢ = 1. Hence, T;;(en) = e,, and Equation (A.5) becomes

1/2
Xoler) =t e,

Applying F,,_; to the above equation and using (A.3), we get X,e, = —té/ 2en_l. Continue applying
F,_,,F,_,.. and using (A.3), we get

i—1,1/2
n+l .
AsKj;'actson V by K;'(e;) = g 2 ~'e;, we the matrix of the action of X on V

i i 1/2 nHl_
X; = 51',] (_1)}1 lto/ q 2 ! = 51',] Cl'.

The action of X on a dual space is given by the antipode S. By [61, Proposition 4.3], we have
S(X) = ¢gX. From here one can easily calculate

Xe' = c;ef = fl.

It follows that the action of X on V* in the basis {f*, ..., f"} is given by X j = §; jc;- This completes
the proof of Identity (41).
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