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Abstract
We develop a theory of stated SL(𝑛)-skein modules,
𝑛(𝑀, ), of 3-manifolds 𝑀 marked with intervals 
in their boundaries. These skein modules, generalizing
stated SL(2)-modules of the first author, stated SL(3)-
modules of Higgins’, and SU(n)-skein modules of the
second author, consist of linear combinations of framed,
oriented graphs, called 𝑛-webs, with ends in , consid-
ered up to skein relations of the 𝑈𝑞(𝑠𝑙𝑛)-Reshetikhin–
Turaev functor on tangles, involving coupons represent-
ing the anti-symmetrizer and its dual. We prove the
Splitting Theorem asserting that cutting of a marked
3-manifold 𝑀 along a disk resulting in a 3-manifold
𝑀′ yields a homomorphism 𝑛(𝑀) → 𝑛(𝑀

′) for all 𝑛.
That result allows to analyze the skein modules of 3-
manifolds through the skein modules of their pieces.
The theory of stated skein modules is particularly rich
for thickened surfaces 𝑀 = Σ × (−1, 1), in whose case,
𝑛(𝑀) is an algebra, denoted by 𝑛(Σ). One of the main
results of this paper asserts that the skein algebra of the
ideal bigon is isomorphic with𝑞(𝑆𝐿(𝑛)) and it provides
simple geometric interpretations of the product, coprod-
uct, counit, the antipode, and the cobraided structure
on 𝑞(𝑆𝐿(𝑛)). (In particular, the coproduct is given by
a splitting homomorphism.) We show that for surfaces
with boundaryΣ every splitting homomorphism is injec-
tive and that 𝑛(Σ) is a free module with a basis induced
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from the Kashiwara–Lusztig canonical bases. Addition-
ally, we show that a splitting of a thickened bigon near
a marking defines a right 𝑞(𝑆𝐿(𝑛))-comodule struc-
ture on𝑛(𝑀), or dually, a left𝑈𝑞(𝑠𝑙𝑛)-module structure.
Furthermore, we show that the skein algebra of surfaces
Σ1, Σ2 glued along two sides of a triangle is isomor-
phic with the braided tensor product 𝑛(Σ1)⊗𝑛(Σ2) of
Majid. These results allow for geometric interpretation
of further concepts in the theory of quantum groups, for
example, of the braided products and of Majid’s trans-
mutation operation. Building upon the above results,
we prove that the factorization homology with coeffi-
cients in the category of representations of 𝑈𝑞(𝑠𝑙𝑛) is
equivalent to the category of left modules over 𝑛(Σ)

for surfaces Σ with 𝜕Σ = 𝑆1. We also establish isomor-
phisms of our skein algebras with the quantum moduli
spaces of Alekseev–Schomerus and with the internal
algebras of the skein categories for these surfaces and
𝔤 = 𝑠𝑙(𝑛).

MSC 2020
57K31 (primary), 57K16, 20G42, 17B37 (secondary)
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1 INTRODUCTION

1.1 Motivation

Moduli spaces of flat connections on surfaces and their quantizations play a pivotal role in quan-
tum field theory. For example, they appear as the classical phase spaces of the Yang–Mills and
Chern–Simons theories, [5, 67], and are quantized by these theories. More rigorous quantizations
are achieved in mathematics through the Topological Quantum Field Theories, [65], Kauffman
bracket skein algebras, [55, 56, 64], the lattice gauge theory, [3, 8], and more recently, through
(quantum) cluster algebras, [23, 29], and factorization homology, [7]. These quantizations and
relations between them are a subject of current active research and are of central importance to
Quantum Topology.
Based on ideas of [12], the first author extended the notion of the Kauffman bracket skein alge-

bras (quantizing 𝑆𝐿(2, ℂ)-character varieties) to their stated version, built of links and arcs with
stated ends, [41]. His approach made it possible to analyze skein algebras of surfaces through sur-
face triangulations and provided a conceptual framework for the Bonahon–Wang theory, [12, 42].
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F IGURE 1 An example of a 3-web with two endpoints in a marking (in red) stated by 𝑖1, 𝑖2.

On the other hand, the second author introduced the notion of SL(𝑛)-skein modules of 3-
manifolds and proved that they quantize their SL(𝑛)-character varieties, [58]. Based on these two
developments, we develop a theory of stated SL(𝑛)-skein modules of 3-manifolds. Our theory
generalizes the recent work of Higgins for 𝑛 = 3, [28], however, it is not a straightforward gen-
eralization of the 𝑛 = 2, 3 cases, because the SL(𝑛)-skein theories for 𝑛 = 2 and 3 rely on explicit
bases of skein algebras that are unknown for higher𝑛. In fact, one of themain achievements of this
work is a construction of bases for the SL(𝑛)-skein algebras of surfaces with nonempty boundary
for all 𝑛.
We discuss the relation between our stated SL(𝑛)-skein algebras and other quantizations of the

𝑆𝐿(𝑛)-character varieties of surfaces in Subsection 1.14 and Section 10.

1.2 Skein modules of marked 3-manifolds

In this paper, we will work with a commutative ring of coefficients 𝑅 with a distinguished invert-
ible 𝑣 = 𝑞

1
2𝑛 . A marked 3-manifold is a pair (𝑀, ), where 𝑀 is a smooth oriented 3-manifold

with (possibly empty) boundary 𝜕𝑀 and ⊂ 𝜕𝑀 consists of open intervals, calledmarkings.
An 𝑛-web 𝛼 in (𝑀, ) is a disjoint union of an oriented link and a directed ribbon graph whose

every vertex is either 1-valent end in or an internal 𝑛-valent sink or source, see Figure 1. Each
web is equipped with a transversal vector field called its framing, which at each end 𝑒 points in
the direction of the marking containing 𝑒, see Subsection 4.1.
A state of a web 𝛼 is an assignment of a label from {1, … , 𝑛} to each of its ends.
The stated 𝑆𝐿(𝑛)-skeinmodule,𝑛(𝑀, ), of (𝑀, ) is the space of all𝑅-linear combination of

stated𝑛webs in (𝑀, ), up to internal skein relations (43)–(46) and boundary skein relations (47)-
(50). These relations mimic those satisfied by the Reshetikhin–Turaev functor on tangles, with
𝑛-vertices representing the anti-symmetrizer tensor and its dual. More specifically, the internal
relations are based on the skein relations of [58]. (Itmay be useful to recall here the premise of [58]:
that although 𝑛-webs seem unnecessary from the point of view of study of quantum invariants of
links in manifolds, they allow for a very efficient formulation of the necessary skein relations.)
However, our specific relations involve a novel signmodification that leads to amajor technical

benefit: the half-edges around each 𝑛-valent vertex have a cyclic ordering only, rather than a linear
ordering required in [58], see Subsections 3.3 and 3.9. An additional benefit of this modification is
that it makes skein relations invariant under the orientation reversal of the webs. (That is reversal
of all loop orientations and edge directions.)
The boundary skein relations of 𝑛(𝑀, ) are new and generalize those of [41] and [28].

 17538424, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12350 by G
eorgia Institute O

f Technology, W
iley O

nline Library on [04/05/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



6 of 93 LÊ and SIKORA

F IGURE 2 An example of a splitting of an 𝑛-web (in green) intersecting the splitting disk 𝐷 twice.

1.3 Splitting homomorphisms

An important property of stated skein modules is that they behave in a simple manner under
the splitting of 3-manifolds along disks. Specifically, for a marked 3-manifold (𝑀, ) with a
properly embedded closed disk 𝐷 in 𝑀 − , let 𝑀′ be 𝑀 with an open collar neighborhood
of 𝐷 removed. Then 𝑀′ is a 3-manifolds with copies 𝐷1, 𝐷2 of 𝐷 in its boundary, whose glu-
ing together leads to an epimorphism 𝑝𝑟 ∶ 𝑀′ → 𝑀. Given an oriented open interval 𝛽 ⊂ 𝐷, the
splitting of (𝑀, ) along (𝐷, 𝛽), denoted by 𝖼𝗎𝗍(𝐷,𝛽)(𝑀, ), is the marked 3-manifold (𝑀′, ′),
where ′ =  ∪ 𝛽1 ∪ 𝛽2, where 𝛽𝑖 ⊂ 𝐷𝑖 are the connected components of 𝑝𝑟−1(𝛽), see Figure 2.
Note that for any stated 𝑛-web 𝛼 in (𝑀, ) transversal to 𝐷 with 𝛼 ∩ 𝐷 ⊂ 𝛽, the inverse image
𝑝𝑟−1(𝛼) is an 𝑛-web in (𝑀′, ′) stated at all its ends except those at 𝛽1 ∪ 𝛽2. Given any map
𝑠 ∶ 𝛼 ∩ 𝛽 → {1, … , 𝑛} let 𝛼(𝑠) be pr−1(𝛼) with each of its ends 𝑥 ∈ pr−1(𝛼) ∩ (𝛽1 ∪ 𝛽2) stated by
𝑠(pr(𝑥)).
The following result generalizes that of [11, 41] for the Kauffman bracket skeinmodules (𝑛 = 2)

and of [28] for 𝑛 = 3:

Theorem (Splitting Theorem 4.5). There is a unique 𝑅-module homomorphism

Θ(𝐷,𝛽) ∶ 𝑛(𝑀, ) → 𝑛(𝖼𝗎𝗍(𝐷,𝛽)(𝑀, ))

sending every stated (𝐷, 𝛽)-transverse 𝑛-web 𝛼 in (𝑀, ) to the sum of all of its lifts,

Θ(𝐷,𝛽)(𝛼) =
∑

𝑠∶𝛼∩𝛽→{±}

𝛼(𝑠).

1.4 Basic properties of stated skein modules

We discuss symmetries and other properties of stated skein modules of marked 3-manifolds in
Subsections 4.9–4.10. In particular, we observe that for every marked 3-manifold (𝑀, ), the
orientation reversal of webs defines an 𝑅-module automorphism:

where an orientation of a web consists of orientations of all its loop components and directions of
all its edges.
Let (𝑀, ) denote 𝑀 and  with reversed orientations. Let 𝑅̄ be the ring 𝑅 with the distin-

guished element 𝑣−1 instead of 𝑣. For an 𝑛-web𝛼 of (𝑀, ), let𝛼 be the 𝑛-web in (𝑀, ) obtained
from 𝛼 by negating its framing, 𝑓 → −𝑓.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 7 of 93

Theorem (Theorem 4.9).

(1) Any ring isomorphism 𝜘 ∶ 𝑅 → 𝑅̄ sending 𝑣 to 𝑣−1 extends to an isomorphism of 𝑅-modules
𝜘(𝑀, ) ∶ 𝑛(𝑀, , 𝑅)

≅
6→ 𝑛(𝑀, , 𝑅̄) sending every stated 𝑛-web 𝛼 to 𝛼, where 𝑛(𝑀, , 𝑅̄)

is an 𝑅-module via 𝜘 ∶ 𝑅 → 𝑅̄.
(2) The composition 𝜘

(𝑀, )
◦𝜘(𝑀, ) is the identity on 𝑛(𝑀, , 𝑅).

For every marking 𝛽 of (𝑀, ), there is an 𝑅-module automorphism g𝛽 of 𝑛(𝑀, ), called a
marking automorphism, sending stated 𝑛-webs 𝛼 to

g𝛽(𝛼) =
∏

𝑥∈𝛼∩𝛽

(−1)𝑛−1𝑞2𝑠(𝑥)−𝑛−1 ⋅ 𝛼,

where 𝑠(𝑥) is the state of the endpoint 𝑥 of 𝛼.
There is an additional automorphism of 𝑛(𝑀, ) associated with each marking of (𝑀, ) ∶

Proposition (Proposition 4.11). For anymarking 𝛽 in there exist unique 𝑅-linear isomorphisms,
called the half-twist automorphisms,

htw𝛽, h̃tw𝛽 ∶ 𝑛(𝑀, ) → 𝑛(𝑀, )

sending any stated 𝑛-web 𝛼 in (𝑀, ) with 𝑘 endpoints on 𝛽 to

htw𝛽

⎛⎜⎜⎜⎜⎝
𝑖𝑘

𝑖2

𝑖1

⋮
⎞⎟⎟⎟⎟⎠
=

(
𝑘∏

𝑗=1

𝑐𝑖𝑗

)
⋅

𝑖𝑘

𝑖2

𝑖1

⋮
=

(
𝑘∏

𝑗=1

𝑐𝑖𝑗

)
⋅

and to

h̃tw𝛽

⎛⎜⎜⎜⎜⎝
𝑖𝑘

𝑖2

𝑖1

⋮
⎞⎟⎟⎟⎟⎠
=

(
𝑘∏

𝑗=1

𝑐𝑖𝑗

)
⋅

𝑖𝑘

𝑖2

𝑖1

⋮
=

(
𝑘∏

𝑗=1

𝑐𝑖𝑗

)
⋅ ,

where 𝑐𝑖 ∈ 𝑅’s are defined in (2) in Subsection 2.1, and 𝑖 = 𝑛 + 1 − 𝑖.𝐻 is the positive half-twist – see
further details in Subsection 4.11. (The directions of the horizontal edges are arbitrary.)

1.5 Stated SL(𝒏)-skein algebras of surfaces

The theory of stated SL(𝑛)-skein modules is particularly rich for thickened surfaces 𝑀 = Σ ×

(−1, 1). It is most convenient to consider it in the context of punctured bordered surfaces (pb sur-
faces for short) which are of the form Σ = Σ̄ −  , where Σ̄ is a compact oriented surface and ⊂ Σ̄

is a finite set, called the ideal points of Σ, which meets each connected component of 𝜕Σ̄. Then 𝜕Σ

is a union of open intervals. These intervals are called boundary edges.
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8 of 93 LÊ and SIKORA

In each boundary edge 𝑒, choose a point 𝑏𝑒. Let 𝑛(Σ) = 𝑛(Σ × (−1, 1), ), where  is the
union of all 𝑏𝑒 × (−1, 1), each having the natural orientation of the interval (−1, 1).
For the monogon𝔐, which is the closed disk with a boundary point removed, we have

Theorem (Theorem 6.1). The map 𝜇 ∶ 𝑅 → 𝑆𝑛(𝔐) given by 𝜇(𝑟) = 𝑟 ⋅ ∅ is an 𝑅-algebra isomor-
phism.

Despite its simple statement, the proof of the above result is nontrivial; see the comment at the
end of this subsection.
The bigon,𝔅, is a closed disk with two boundary points removed. In Lemma 6.5, we show that

the 𝑅-algebra 𝑛(𝔅) is generated by the arcs for 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛. Splitting 𝔅 along an

interior ideal arc connecting its two ideal vertices defines an algebra 𝑅-homomorphism

Δ ∶ 𝑛(𝔅) → 𝑛(𝔅) ⊗ 𝑛(𝔅).

Let 𝜖 ∶ 𝑛(𝔅) → 𝑅 be the composition

𝜖 ∶ 𝑛(𝔅)
h̃tw𝑒𝑟
66666→ 𝑛(𝔅)

𝜄∗
66→ 𝑛(𝔐) ≃ 𝑅,

where htw𝑒𝑟
is the half-twist automorphism defined above and 𝜄∗ is the algebra homomorphism

induced by an embedding𝔅 ↪ 𝔐 filling in one of the two ideal points of𝔅, (depicted always on
top of𝔅 in this paper).
On generators,

𝜖(𝑎𝑖
𝑗) = 𝜖( ⃗𝑎

𝑖
𝑗) = 𝑐𝑗̄ = 𝛿𝑖,𝑗.

Let𝑞(𝑆𝐿(𝑛)) be the quantized coordinate ring algebra of 𝑠𝑙𝑛. ThisHopf algebra is the restricted
dual of the quantized enveloping algebra, 𝑈𝑞(𝑠𝑙𝑛), see [35, 9.2.2]. For technical convenience, we
consider 𝑞(𝑆𝐿(𝑛)) as defined over ℚ[𝑣±1].

Theorem (Theorem 6.3).

(a) The algebra 𝑛(𝔅) has the structure of a Hopf algebra over 𝑅 with the coproduct Δ, the counit 𝜖,
and the antipode 𝑆 such that

(b) The map Ψ(𝑢𝑖
𝑗
) = 𝑎𝑖

𝑗
extends to a unique Hopf algebra isomorphism

𝑞(𝑠𝑙𝑛; 𝑅) ∶= 𝑞(𝑆𝐿(𝑛)) ⊗ 𝑅
Ψ
6→ 𝑛(𝔅).
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 9 of 93

The above theorems generalize statements for 𝑛 = 2 in [15] and 𝑛 = 3 in [28]. However, it is
not a straightforward generalization. The proofs of [15, 28] relied on specific bases of 𝑆𝑛(Σ) for
𝑛 = 2, 3 that can be obtained through the confluence method, see [60]. That method does not
work for higher 𝑛 and a construction of bases for 𝑛 > 3 is an important and still open problem.
(We discuss our progress on that problem below.) We were able to establish the above theorem
without constructing a basis of 𝑛(𝔅).

1.6 Geometric interpretation of the cobraided structure on 𝒒(𝑺𝑳(𝒏))

The Hopf algebra 𝑞(𝑠𝑙𝑛; 𝑅) is dual quasitriangular (see [52, section 2.2], [35, section 10], [20,
section 10.3]), also known as cobraided (see, e.g., [33, section VIII.5]). This means it has an 𝑅-form
(also known as co-𝑅-matrix), which is a bilinear form

𝜌 ∶ 𝑞(𝑠𝑙𝑛; 𝑅) ⊗ 𝑞(𝑠𝑙𝑛; 𝑅) → 𝑅

satisfying certain properties, with the help of which one can make the category of 𝑞(𝑠𝑙𝑛; 𝑅)-
modules a braided category. The following generalizes [15, Theorem 3.5] from 𝑛 = 2 to all 𝑛:

Theorem (Theorem 6.4). Under the above identification 𝑛() ≃ 𝑞(𝑠𝑙𝑛; 𝑅) the 𝑅-form 𝜌 has the
following geometric description

𝜌

(
⊗

)
= 𝜖

( )
,

for any 𝑥, 𝑦 ∈ 𝑞(𝑠𝑙𝑛; 𝑅).

Above we identified𝔅 with [−1, 1] × (−1, 1) by stretching its top and bottom ideal points into
horizontal intervals.

1.7 Relation to Reshetikhin–Turaev theory

Sections 2–3 mostly summarize the background in quantum groups and in Reshetikhin–Turaev
theory necessary for this paper. Section 2, however, also introduces a novel modification of the
Reshetikhin–Turaev functor, utilized throughout the paper. Let us briefly describe its connection
to stated skein modules.
When the bigon𝔅 is identified with [−1, 1] × (−1, 1), the webs on𝔅 can be thought as oriented

framed tangles with coupons given by 𝑛-valent sinks and sources.
The sign sgn(𝑒) of an endpoint 𝑒 ∈ 𝜕𝛼 is positive if the direction of 𝛼 goes from left to right

at 𝑒, and negative otherwise. Let sgn𝑙(𝛼) (respectively, sgn𝑟(𝛼)) be the sequence of signs of left
(respectively, right) endpoints of 𝛼 appearing from the bottom to the top.
Let 𝑉 = ℚ(𝑣)𝑛 be the defining representation of 𝑈𝑞(𝑠𝑙𝑛) with its standard basis {𝑒1, … , 𝑒𝑛}. Let

{𝑒∗
1
, … , 𝑒∗𝑛} be the dual basis of𝑉

∗ and let {𝑓1, … , 𝑓𝑛} be a basis of𝑉∗ given by 𝑓𝑖 = (−1)𝑖−1𝑞𝑖− 𝑛+1
2𝑛 𝑒𝑖
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10 of 93 LÊ and SIKORA

for 𝑖 = 1, … , 𝑛. For any sign sequence 𝜼 = (𝜂1, … , 𝜂𝑘), let

𝑉𝜼 ∶= 𝑉𝜂1 ⊗⋯⊗ 𝑉𝜂𝑘 ,

where 𝑉+ = 𝑉 and 𝑉− = 𝑉∗. The above bases {𝑒1, … , 𝑒𝑛} and {𝑓1, … , 𝑓𝑛} induce the tensor basis
of 𝑉𝜼 indexed by the elements of {1, … , 𝑛}𝑘, see Subsection 3.4.
Note that 𝑉𝜼 is a 𝑈𝑞(𝑠𝑙𝑛)-module for every sign sequence 𝜼. The key to our work is a modi-

fied version of the Reshetikhin–Turaev functor, introduced in Section 3, which associates to each
web 𝛼 in𝔅 a 𝑈𝑞(𝑠𝑙𝑛)-module homomorphism 𝖱𝖳(𝛼) ∶ 𝑉sgn𝑙(𝛼) → 𝑉sgn𝑟(𝛼). (It is a sign modifica-
tion of the standard𝑈𝑞(𝑠𝑙𝑛)-Reshetikhin–Turaev functor, [57], which requires that the half-edges
incident to each 𝑛-valent vertex in 𝛼 are linearly ordered.)
We show that the benefit of utilizing the basis {𝑓1, … , 𝑓𝑛} of 𝑉∗ rather than the dual basis to

{𝑒1, … , 𝑒𝑛} is that it makes the modified R-T functor values 𝖱𝖳(𝛼) independent of the orientation
of tangles.
The following result relates our skein algebra of𝔅 to the Reshetikhin–Turaev theory:

Proposition (Proposition 6.6). Let 𝜶 be an 𝑛-web 𝛼 on𝔅 stated by 𝐢 = (𝑖1, … , 𝑖𝑘) on the left and 𝒋 =

(𝑗1, … , 𝑗𝑙) on the right. Then 𝜖(𝛂) is equal to the (𝐢, 𝒋)-entry of thematrix of themodified Reshetikhin–
Turaev operator 𝖱𝖳(𝛼) of 𝛼 in the above tensor bases.

1.8 Module and Co-module structures

Given a marking 𝛽 of a marked 3-manifold (𝑀, ), consider its closed disk neighborhood 𝐷 in
𝜕𝑀, disjoint from the other markings of (𝑀, ). By pushing the interior of 𝐷 inside 𝑀 we get a
new disk 𝐷′ which is properly embedded in𝑀. Splitting (𝑀, ) along 𝐷′, we get a new marked
3-manifold (𝑀′, ′) isomorphic to (𝑀, ), and another marked 3-manifold bounded by 𝐷 and
𝐷′. The latter, after removing the common boundary of 𝐷 and 𝐷′, is isomorphic to the thickening
of the bigon. Hence, this construction yields an 𝑅-linear splitting map

Δ𝛽 ∶ 𝑛(𝑀, ) → 𝑛(𝑀, ) ⊗ 𝑞(𝑆𝐿(𝑛)),

which defines a right coaction of 𝑞(𝑆𝐿(𝑛)) on 𝑛(𝑀, ). Such coactions at different mark-
ings commute.
The Hopf algebra 𝑞(𝑆𝐿(𝑛); ℤ[𝑣±1]) has a Hopf dual given by a completion 𝑈𝑞(𝑠𝑙𝑛) of the

Lusztig’s integral version,𝑈𝐿, of𝑈𝐿, which is a Hopf algebra over ℤ[𝑣±1], see Subsection 3.9 and
[48, section 1.3]. The duality between these twoHopf algebras turns any right𝑞(𝑆𝐿(𝑛))-comodule
𝑊 to a left 𝑈𝐿-module as follows: For 𝑢 ∈ 𝑈𝐿 and 𝑥 ∈ 𝑊,

𝑢 ∗ 𝑥 =
∑

𝑥(1)⟨𝑓(2), 𝑢⟩, where Δ(𝑥) =
∑

𝑥(1) ⊗ 𝑓(2)

(in the Sweedler notation) is the 𝑞(𝑆𝐿(𝑛))-coaction map. We make this left 𝑈𝐿-action on
𝑛(𝑀, ) explicit in Subsection 7.1.
The Hopf algebra 𝑈𝐿 contains distinguished charmed element g and the half-ribbon element

𝑋 ∈ 𝑈𝐿. We prove that the action of these elements on 𝑛(𝑀, ) at a marking 𝛽 is exactly the
marking automorphism g𝛽 and the half-twist homomorphism htw𝛽 of Subsection 1.4.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 11 of 93

F IGURE 3 Left: The standard ideal triangle 𝔗. Middle: Glueing Σ and𝔗 by 𝑎1 = 𝑒1 and 𝑎2 = 𝑒2 to get
Σ𝑎1△𝑎2

. Right: Tangle diagram 𝑥 ∈ 𝑛(Σ) and its image 𝗀𝗅𝗎𝖾𝑎1,𝑎2
(𝑥) ∈ 𝑛(Σ𝑎1△𝑎2

).

1.9 Glueing over an ideal triangle

The standard ideal triangle𝔗 ⊂ ℝ2 is the closed triangle with vertices (−1, 0), (1, 0) and (0,1) with
these vertices removed. We will denote its sides by 𝑒1, 𝑒2, and 𝜕𝑏𝔗 as in Figure 3. Suppose 𝑎1, 𝑎2

are two distinct boundary edges of a (possibly disconnected) pb surface. Define

Σ𝑎1△𝑎2
= (Σ ⊔ 𝔗)∕(𝑒1 = 𝑎1, 𝑒2 = 𝑎2),

as in Figure 3. Define the 𝑅-linear homomorphism 𝗀𝗅𝗎𝖾𝑎1,𝑎2
∶ 𝑛(Σ) → 𝑛(Σ𝑎1△𝑎2

) by continuing
the strands of any web 𝛼 with endpoints on 𝑎1 and 𝑎2 until they reach 𝜕𝑏𝔗, as in Figure 3 (right).

Proposition (Proposition 8.1, see [15] for 𝑛 = 2 and [28] for 𝑛 = 3). The map

𝗀𝗅𝗎𝖾𝑎1,𝑎2
∶ 𝑛(Σ) → 𝑛(Σ𝑎1△𝑎2

)

is an 𝑅-linear isomorphism.

We construct an explicit inverse map to 𝗀𝗅𝗎𝖾𝑎1,𝑎2
in Subsection 8.1.

Although the bijectivemap 𝗀𝗅𝗎𝖾𝑎1,𝑎2
is not an algebra isomorphismwith respect to the standard

skein algebra product on 𝑛(Σ𝑎1△𝑎2
), we show in Subsection 8.1 that it is one with respect to the

self-braided tensor product which we will define right now.
There are two right 𝑞(𝑆𝐿(𝑛))-comodule algebra structures on 𝑛(Σ) given by

Δ𝑖 ∶= Δ𝑎𝑖
∶ 𝑛(Σ) → 𝑛(Σ) ⊗ 𝑞(𝑆𝐿(𝑛)), 𝑖 = 1, 2,

which commute. Define the 𝑅-linear map Δ ∶ 𝑛(Σ) → 𝑛(Σ) ⊗ 𝑞(𝑆𝐿(𝑛)) by

Δ(𝑥) =
∑

𝑥′ ⊗ 𝑢1𝑢2,

in Sweedler’s notation, where

(Δ1 ⊗ Id𝑞(𝑆𝐿(𝑛))
)◦Δ2(𝑥) =

∑
𝑥(1) ⊗ 𝑢(2) ⊗ 𝑢(3).

For 𝑥, 𝑦 ∈ 𝑛(Σ) define a new product by

𝑦∗𝑥 =
∑

𝑦(1)𝑥(1)𝜌(𝑢(2) ⊗ 𝑤(2)),
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12 of 93 LÊ and SIKORA

where

Δ2(𝑦) =
∑

𝑦(1) ⊗ 𝑢(2), Δ1(𝑥) =
∑

𝑥(1) ⊗ 𝑤(2),

and 𝜌 is the 𝑅-form.
It is proved in [15] that Δ and ∗ together give 𝑛(Σ) a right 𝑞(𝑆𝐿(𝑛))-comodule algebra

structure for 𝑛 = 2. That proof extends to all 𝑛.
Denote by ⊗𝑛(Σ) the 𝑅-module 𝑛(Σ) with this 𝑞(𝑆𝐿(𝑛))-comodule algebra structure. On

the other hand, 𝑛(Σ𝑎1△𝑎2
) has a right 𝑞(𝑆𝐿(𝑛))-comodule algebra structure coming from the

boundary edge 𝜕𝑏𝔗. Here is a stronger version of the proposition above.

Theorem (Theorem 8.2). The map 𝗀𝗅𝗎𝖾𝑎1,𝑎2
∶ ⊗𝑛(Σ) → 𝑛(Σ𝑎1△𝑎2

) is an isomorphism of right
𝑞(𝑆𝐿(𝑛))-comodule algebras.

When Σ = Σ1 ⊔ Σ2 and 𝑎𝑖 ⊂ Σ𝑖 for 𝑖 = 1, 2 then each𝑛(Σ𝑖) is a right𝑞(𝑆𝐿(𝑛))-comodule alge-
bra via the coaction coming from the edge 𝑎𝑖 and ⊗(𝑛(Σ)) is the well-known braided tensor
product 𝑛(Σ1) and 𝑛(Σ2) of the two 𝑞(𝑆𝐿(𝑛))-module algebras 𝑛(Σ1) and 𝑛(Σ2) of Majid,
see [52, Lemma 9.2.12]. An analogous braided tensor product in the context of lattice gauge the-
ory appears in [3] (quantizing [24]) and, in the context of factorization homology, in [7, Corollary
6.11], see Subsection 1.14.

1.10 On injectivity of splitting homomorphism

A pb surface Σ is essentially bordered if every connected component of it has nonempty boundary.

Proposition (Proposition 8.6). SupposeΣ is an essentially bordered pb surface. Then for any interior
ideal arc 𝑐 of Σ, the splitting homomorphism Θ𝑐 ∶ 𝑛(Σ) → 𝑛(𝖼𝗎𝗍𝑐Σ) is injective.

Conjecture (Conjecture 8.7). For any punctured bordered surface Σ and any interior ideal arc 𝑐

the splitting homomorphism Θ𝑐 is injective as well.

The conjecture is truewhen 𝑛 = 2 by [15] and for 𝑛 = 3 byHiggins [28]. In both cases, the proofs
rely on explicit bases of 𝑛(Σ). Proposition 8.6 shows the conjecture is true if Σ has nontrivial
boundary. We will establish an alternative, weaker version of this conjecture for all pb surfaces in
Subsection 1.12.

1.11 Skein algebras of surfaces with boundary

Let Σg ,𝑝 denote the surface of genus g with 𝑝 − 1 punctures and 𝜕Σg ,𝑝 = 𝑆1. Let Σ∗
g ,𝑝 be Σg ,𝑝 with

a boundary point removed. Hence, Σ∗
0,2

is a punctured monogon.
Utilizing the results of Subsection 1.9, we show in Proposition 8.5 that 𝑛(Σ

∗
0,2

) ≃ 𝑞(𝑆𝐿(𝑛))

as an 𝑅-module with the 𝑞(𝑆𝐿(𝑛))-comodule structure, Δ𝜕𝑛(Σ
∗
0,2

), coinciding with the adjoint
𝑞(𝑆𝐿(𝑛))-coaction on 𝑞(𝑆𝐿(𝑛)), [52, Example 1.6.14]. Furthermore, we prove that the product
on 𝑛(Σ

∗
0,2

) coincides with the braided (or, covantarised) product of Majid, [52, Example 9.4.10].
(That result was shown for 𝑛 = 2 in [15].) Consequently, our theory provides simple geomet-
ric proofs of the associativity of the braided product on 𝑞(𝑆𝐿(𝑛)) and of 𝑞(𝑆𝐿(𝑛)) being an
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 13 of 93

F IGURE 4 From Σ to Σ𝑝 . Here 𝑝 is an interior ideal point. The picture when 𝑝 is a boundary ideal point is
similar.

𝑞(𝑆𝐿(𝑛))-comodule algebra. (The proofs of these facts are quite technical and involved in [52].)
Furthermore, our theory generalizes these statements to the boundary𝑞(𝑆𝐿(𝑛))-coaction on the
skein algebra of any essentially bordered punctured surface. We discuss a finite presentation of
𝑛(Σ

∗
0,2

) in Subsection 8.2.
Let Σ be now any essentially bordered pb surface. A collection𝐴 = {𝑎1, … , 𝑎𝑟} of disjoint closed

oriented arcs properly embedded in Σ is saturated if

(i) each connected component of Σ ⧵
⋃𝑟

𝑖=1 𝑎𝑖 contains exactly one ideal point (interior or
boundary) of Σ, and

(ii) 𝐴 is maximal with respect to the above condition.

Let 𝑈(𝑎1), … ,𝑈(𝑎𝑛) be a collection of disjoint open tubular neighborhood of a saturated col-
lection of arcs 𝑎1, … , 𝑎𝑛, respectively. Each 𝑈(𝑎𝑖) is homeomorphic with 𝑎𝑖 × (−1, 1) (by an
orientation preserving homeomorphism) and we require that (𝜕𝑎𝑖) × (−1, 1) ⊂ 𝜕Σ. Let 𝑈(𝐴) =⋃𝑘

𝑖=1 𝑈(𝑎𝑖).

Theorem (Theorem 8.8).

(1) We have 𝑟 = 𝑟(Σ) ∶= #𝜕Σ − 𝜒(Σ), where #𝜕Σ is the number of boundary components of Σ and
𝜒 denotes the Euler characteristics.

(2) The embedding𝑈(𝐴) ↪ Σ induces an 𝑅-module isomorphism 𝑓𝐴 ∶ 𝑛(𝑈(𝐴)) → 𝑛(Σ).

Note that each 𝑈(𝑎𝑖) = 𝑎𝑖 × (−1, 1) is naturally a directed bigon, with its sides (𝜕𝑎𝑖) × (−1, 1)

oriented in the direction of (−1, 1) and that we have an 𝑅-linear isomorphism

𝑞(𝑆𝐿(𝑛))
⊗𝑟 Ψ⊗𝑟

6666→ 𝑛(𝑈(𝐴))
𝑓𝐴
666→ 𝑛(Σ).

As 𝑞(𝑆𝐿(𝑛)) has a Kashiwara–Lusztig’s canonical basis over ℤ[𝑣±1], see [32, 49], we have

Corollary. 𝑛(Σ) is a free𝑅-module with a basis given by the image of tensor product of Kashiwara–
Lusztig’s canonical bases on 𝑞(𝑆𝐿(𝑛))

⊗𝑟 under 𝑓𝐴◦Ψ
⊗𝑟.

We apply the above method to show that 𝑛(Σ
∗
1,1

) ≃ 𝑞(𝑆𝐿(𝑛))
⊗2 (as an 𝑅-module) and to

describe the product on it in Subsection 8.6. Furthermore, we explain a construction of finite
presentations for 𝑛(Σ), for every essentially bordered Σ.

1.12 Kernel of the splitting homomorphism

Suppose Σ is a connected pb surface with an ideal point 𝑝. Then a trivial ideal arc 𝑐𝑝 at 𝑝 cuts Σ
into a monogon and a new pb surface Σ𝑝 which has 𝑐𝑝 as its boundary edge, see Figure 4.
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14 of 93 LÊ and SIKORA

Theorem 9.1 shows that the kernel of

Θ𝑝 ∶ 𝑛(Σ)
Θ𝑐𝑝

666→ 𝑛(Σ𝑝) ⊗𝑅 𝑛(𝔐)
≅
6→ 𝑛(Σ𝑝)

does not depend on the choice of 𝑝. Let us denote it by (Σ). Then the quotient ̄𝑛(Σ) ∶=

𝑛(Σ)∕(Σ) is called the projected stated skein algebra of Σ. By Proposition 8.6,  is trivial and
̄𝑛(Σ) = 𝑛(Σ) if 𝜕Σ ≠ ∅,

Corollary (Corollary 9.2). The splitting homomorphism descends to an injective algebra homomor-
phism

Θ̄𝑐 ∶ ̄𝑛(Σ) → ̄𝑛(𝖼𝗎𝗍𝑐 Σ) = 𝑛(𝖼𝗎𝗍𝑐 Σ).

The following is an alternative characterization of projected skein algebras:

Theorem. For any Σ, 𝑝 and 𝑐𝑝 as above, ̄𝑛(Σ) coincides with the subalgebra of 𝑛(Σ𝑝) coinvariant
under the coaction Δ𝑐𝑝

∶ 𝑛(Σ𝑝) → 𝑛(Σ𝑝) ⊗ 𝑛(𝔅) at 𝑐𝑝:

̄𝑛(Σ) = {𝑥 ∈ 𝑛(Σ𝑝) ∶ Δ𝑐𝑝
(𝑥) = 𝑥 ⊗ 1}.

LetΣ = Σ −  , where is a finite subset of compact surfaceΣ, as in Subsection 1.6. Generalizing
the setup of Subsection 1.11, consider a collection 𝐴 of disjoint, oriented, arcs in Σ, each with
endpoints in 𝜕Σ ∪  , satisfying the conditions (i) and (ii) above. We show in Subsection 9.1 that
such 𝐴 defines an identification of ̄𝑛(Σ) with 𝑞(𝑆𝐿(𝑛))

⊗𝑟 and, hence, it determines a basis of
̄𝑛(Σ).

1.13 The image of the splitting homomorphism

Let 𝑐 be an interior oriented ideal arc of a pb surface Σ. Denote the two copies of 𝑐 in 𝖼𝗎𝗍𝑐 Σ by 𝑎1

and 𝑎2. We have the splitting 𝑅-algebra homomorphism

Θ𝑐 ∶ 𝑛(Σ) → 𝑛(𝖼𝗎𝗍𝑐 Σ)

and 𝑛(𝖼𝗎𝗍𝑐 Σ) is a 𝑞(𝑆𝐿(𝑛))-bi-comodule with the right and left coactions

Δ𝑎1
∶ 𝑛(𝖼𝗎𝗍𝑐 Σ) → 𝑛(𝖼𝗎𝗍𝑐 Σ) ⊗ 𝑞(𝑆𝐿(𝑛))

𝑎2
Δ ∶ 𝑛(𝖼𝗎𝗍𝑐 Σ) → 𝑞(𝑆𝐿(𝑛)) ⊗ 𝑛(𝖼𝗎𝗍𝑐 Σ),

respectively, where 𝑞(𝑆𝐿(𝑛)) is identified with the skein algebra of the bigon directed by the
orientation of 𝑐. Recall that the Hochschild cohomology module is defined by

𝐻𝐻0(𝑛(𝖼𝗎𝗍𝑐 Σ)) = {𝑥 ∈ 𝑛(𝖼𝗎𝗍𝑐 Σ) ∣ Δ𝑎1
(𝑥) = f l◦𝑎2

Δ(𝑥)},
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 15 of 93

where f l is the transposition

f l ∶ 𝑞(𝑆𝐿(𝑛)) ⊗ 𝑛(Σ) → 𝑛(Σ) ⊗ 𝑞(𝑆𝐿(𝑛)), f l(𝑥 ⊗ 𝑦) = 𝑦 ⊗ 𝑥.

Theorem 1.1 ([15, 38] for 𝑛 = 2 and [28] for 𝑛 = 3). The image of Θ𝑐 is equal to𝐻𝐻0(𝑛(𝖼𝗎𝗍𝑐 Σ)).

We prove it by considering the projected version Θ𝑐 ∶ ̄𝑛(Σ) → 𝐻𝐻0(𝑛(𝖼𝗎𝗍𝑐 Σ)), which has
the same image as nonprojected one. Furthermore, we construct an explicit inverse map ∇ ∶

𝐻𝐻0(𝑛(𝖼𝗎𝗍𝑐 Σ)) → ̄𝑛(Σ).

1.14 Relation to factorization homology, skein categories, and lattice
field theory

Factorization homology is an invariant of oriented 𝑛-dimensionalmanifolds introduced by Beilin-
son and Drinfeld [6] in the setting of conformal field theory and then in [1, 2, 47] in the topological
context. For 𝑛 = 2, it associates with every surface Σ and every balanced braided category ,
a certain category denoted by ∫Σ . When the base ring is a field, using reconstruction theory
Ben-Zvi, Brochier, and Jordan [7] showed that ∫Σ  is equivalent to the category of left modules
over a certain algebra Σ, which is isomorphic to the quantum moduli spaces of Alekseev–
Grosse–Schomerus and Buffenoir–Roche [3, 4, 8–10], and also to the internal algebras of the skein
categories of Walker and Johnson-Freyd, [14, 30, 66].
Building upon the above theory of stated skein algebras, we prove that for surfaces Σwith 𝜕Σ =

𝑆1, the algebra 𝐴Σ, for the representation category  of 𝑈𝑞(𝑠𝑙(𝑛)), is isomorphic with 𝑛(Σ
∗),

where Σ∗ is Σwith a boundary point removed. The 𝑛 = 2 case follows also from the results of [21,
37, 43]; see further discussion in Subsection 10.2.
Although our construction of the stated skein modules was motivated by its rich the-

ory developed in this paper, the above result provides a further justification for that
construction.
On the one hand, factorization homology of [7] is more general in that it can defined for

all semi-simple Lie algebras 𝔤 and it can be viewed as quantizing the entire moduli stacks of
representations, rather than just the character varieties.
On the other hand, our approach has its own advantages. First our theory is defined over

any ground ring, a commutative domain, while the factorization homology approach defines
the algebra Σ over a field. For example, our theory works over the cyclotomic ring (and of
course cyclotomic field), an important quantization case. Over the ring ℤ[𝑞, 𝑞−1] our theory
highlights some integral results in quantum group theory, like relations to canonical basis. Fur-
thermore, we define the stated skein module not only for surfaces but also for all 3-dimensional
manifolds, and we worked out the theory for surfaces with multiple boundary components and
multiple markings.
The stated skein algebra of a surface is defined explicitly, via generators (which are geometric

objects and relations, making the theory elementary) while in factorization homology the algebra
𝐴Σ is defined up to an isomorphism only.
The cutting homomorphism in our theory, though related to the excision in factorization

homology, is different from the latter. Our cutting homomorphism and gluing over trian-
gle operations make the study of the stated skein algebra easy by cutting surfaces into
triangles.
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16 of 93 LÊ and SIKORA

An important application of our approach is it allows the first author and Yu [45] to prove
the existence of the quantum trace map that quantizes the classical Fock and Goncharov trace
map [22] and generalizes the quantum 𝑆𝐿2-trace map of Bonahon and Wong [12] to all 𝑆𝐿𝑛. The
concrete geometric nature of the generators of the stated skein algebra allows in many cases to
present a set of elements that generates a quantum space inside the stated skein algebra. This
eventually leads to various versions of quantum traces.
The above works relate our algebras to the theory of quantum cluster algebras, which provide

alternative quantizations of character varieties. Further connections to quantum cluster algebras
are through [13, 29, 59].

1.15 Compatibility with stated Kauffman bracket skein modules

The stated Kauffman bracket skein algebras (of surfaces) of the first author [41] were generalized
to stated skein modules of marked 3-manifolds in [11] (cf. also [43]). We are going to prove that
these modules are isomorphic with our 𝑆𝐿(2)-skein modules, 2(𝑀, ).
To relate these modules to ours, let us replace the variable 𝑞 of [41] with 𝑞1∕2 and denote

the resulted stated Kauffman bracket skein module by 𝒮(𝑀, )𝑞1∕2 . Recall that it is built of
nonoriented 2-webs without sinks nor sources, stated by sings ±.

Theorem (Theorem 11.1). Suppose (𝑀, ) is a marked 3-manifold.

(1) There is a unique𝑅-linear isomorphismΛ ∶ 𝒮(𝑀, )𝑞1∕2 → 2(𝑀, ) thatmaps framed links
𝛼 to a stated 2-webs by assigning arbitrary orientation to them, and changing the minus state to
1 and the plus state to 2.

(2) The splitting homomorphism of [11, 41] coincides with ours through Λ.

1.16 Compatibility with the SU(n)-skein modules

As mentioned already, a partial motivation for our definition of 𝑛(𝑀, ) were the 𝑆𝑈(𝑛)-skein
modules of 3-manifolds introduced by the second author in [58]. These skein modules are built
of based 𝑛-webs in𝑀 that are defined as our 𝑛-webs in (𝑀, ∅), except that the half-edges incident
to any of their 𝑛-valent vertices are linearly ordered. In particular, the based 𝑛-webs have no end-
points and 𝑆𝑈(𝑛)-skein modules have no boundary skein relations. In Subsection 11.2 we show
that for any 3-manifold𝑀 and any 𝑛 our 𝑛(𝑀, ∅) is isomorphic with the SU(n)-skein module of
𝑀. That isomorphism is straightforward for 𝑛 odd, but it requires a choice of a spin structure on
𝑀 for 𝑛 even.

1.17 Compatibility with Higgins’ SL3 skein algebras

In his recent work [28], Higgins introduced his version of stated 𝑆𝐿3-skein algebras, denoted by
𝑆𝐿3

𝑞 (Σ), of punctured bordered surfaces Σ. His skein algebra is the 𝑅-module freely generated by
3-webs stated by −1, 0, 1, subject to his system of skein relations. We show that in that our theory
recovers Higgins’ for 𝑛 = 3 in Subsection 11.3.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 17 of 93

1.18 Relation to the Frohman–Sikora SU(3)-skein algebras

C. Frohman and the second author considered in [25] the “reduced 𝑆𝑈(3)-skein algebra” of
marked surfaces built of unstated 3-webs, subject to the 𝑆𝑈(3)-skein relations of [40], extended
by certain boundary skein relations, which depend on an invertible parameter 𝑎 ∈ 𝑅. We denote
that algebra by 𝐹𝑆(Σ) for the value 1 of that parameter.
For an unstated 3-web 𝛼 in Σ, let 𝜂+(𝛼) (respectively, 𝜂−(𝛼)) denote 𝛼 statedwith threes (respec-

tively, ones) at all its ends. In Subsection 11.4 we show that these operations extend to injective
homomorphisms 𝜂+, 𝜂− ∶ 𝐹𝑆(Σ) → 3(Σ). Furthermore, their images are direct summands of
3(Σ).

2 QUANTUMGROUPS ASSOCIATED TO 𝒔𝒍𝒏

2.1 Notations and conventions

We use the notations ℂ,ℝ,ℚ, ℤ, ℕ for, respectively, the sets of complex numbers, reals, rationals
numbers, integers, and nonnegative integers. We emphasize that our ℕ contains 0. The number
𝑛 (in 𝑠𝑙𝑛) is a fixed integer ⩾ 2.
The ground ring 𝑅 is a commutative ring with unit containing a distinguished invertible ele-

ment 𝑣. The element 𝑞 = 𝑣2𝑛 is the usual quantum parameter. The basic example is 𝑅 = ℤ[𝑣±1],
the ring of Laurent polynomials in 𝑣 with integer coefficients. All fractional powers of 𝑞 in our
papers are defined via the obvious integral powers of 𝑣 = 𝑞1∕2𝑛.
For a nonnegative integer𝑚, we define the quantum integer [𝑚] and its factorials by

[𝑚] =
𝑞𝑚 − 𝑞−𝑚

𝑞 − 𝑞−1
, [𝑚]! =

𝑚∏
𝑖=1

[𝑖], [0]! = 1.

We will often use the following scalars:

𝑡
1∕2
0

= 𝑞
𝑛2−1
2𝑛 ∶= 𝑣𝑛2−1, 𝑡 = (−1)𝑛−1𝑡0 = (−1)𝑛−1𝑞

𝑛2−1
𝑛 , 𝑡𝑛∕2 = (−1)

(𝑛−1)𝑛
2 𝑞

𝑛2−1
2 (1)

𝑎 = (−𝑣)𝑛(𝑛−1)∕2𝑡−𝑛∕2 = 𝑞(1−𝑛)(2𝑛+1)∕4 = 𝑞
1−𝑛2

4
− 𝑛2−𝑛

4 , 𝑑𝑖 = 𝑖 −
𝑛 + 1

2
(2)

𝑐𝑖 = (−1)𝑛−𝑖𝑞
𝑛+1
2

−𝑖𝑞
𝑛2−1
2𝑛 = (−1)𝑛−𝑖𝑞−𝑑𝑖 𝑡

1∕2
0

. (3)

Note that

𝑛∏
𝑖=1

𝑐𝑖 = 𝑡𝑛∕2 = (−1)(
𝑛
2)𝑞

𝑛2−1
2 and 𝑐𝑖 ⋅ 𝑐𝑖 = 𝑡, for 𝑖 = 1, … , 𝑛, (4)

where 𝑖 is the conjugate of 𝑖, defined as 𝑛 + 1 − 𝑖.
In fact, our entire theoryworks (up to a normalization) for any invertible 𝑎, 𝑡, 𝑐1, … , 𝑐𝑛 satisfying

Equation (4), see Subsection 4.12. However, our particular choice of these constants makes our
theory invariant under the orientation reversal of 3-manifolds and the orientation reversal of webs
in it, see Corollary 4.8 and Theorem 4.9.
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18 of 93 LÊ and SIKORA

Let 𝑆𝑛 be the group of permutations of {1, … , 𝑛}. The length of 𝜎 ∈ 𝑆𝑛 is the minimal num-
ber of factors in the decomposition of 𝜎 into elementary transpositions (𝑖, 𝑖 + 1), 𝑖 = 1, … , 𝑛 − 1.
Alternatively, it is

𝓁(𝜎) = |{(𝑖, 𝑗)|1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛, 𝜎(𝑖) > 𝜎(𝑗)}|. (5)

The longest element 𝑤0 ∈ 𝑆𝑛 is the permutation 𝑤0(𝑖) = 𝑖.
We use the convention that

(−𝑞)𝓁(𝜎) = 0 if 𝜎 ∶ {1, … , 𝑛} → {1, … , 𝑛} is not a permutation. (6)

We also use Kronecker’s delta notation and its sibling:

𝛿𝑖,𝑗 =

{
1 if 𝑗 = 𝑖

0 if 𝑗 ≠ 𝑖
, 𝛿𝑗>𝑖 =

{
1 if 𝑗 > 𝑖

0 if 𝑗 ⩽ 𝑖.

2.2 Quantized enveloping algebra𝑼𝒒(𝒔𝒍𝒏)

The quantized enveloping algebra 𝑈𝑞(𝑠𝑙𝑛) is a Hopf algebra over the field ℚ(𝑣) with explicit
presentation given in [35, section 6.1.2].
Let 𝑉 = ℚ(𝑣)𝑛 be the defining representation of 𝑈𝑞(𝑠𝑙𝑛). Its dual 𝑉∗ is the simple 𝑈𝑞(𝑠𝑙𝑛)-

module with highest weight the (𝑛 − 1)-st fundamental weight. Let 𝑒1, … , 𝑒𝑛 be the standard basis
of 𝑉 with 𝑒𝑛 being the highest weight vector, see [35, section 8.4.1]. Let 𝑒1, … , 𝑒𝑛 be the dual basis
of 𝑉∗, defined by 𝑒𝑖(𝑒𝑗) = 𝛿𝑖,𝑗 . As 𝑈𝑞(𝑠𝑙𝑛) is a Hopf algebra, the category of finite-dimensional
𝑈𝑞(𝑠𝑙𝑛)-modules is monoidal. Let 𝑛 be the full subcategory of 𝑈𝑞(𝑠𝑙𝑛)-modules consisting of
objects isomorphic to tensor products of copies of 𝑉 and 𝑉∗.
It is known that Hom𝑈𝑞(𝑠𝑙𝑛)

(𝑉⊗𝑛, ℚ(𝑣)) has dimension 1 and is generated by the 𝑞-
antisymmetrizer− ∶ 𝑉⊗𝑛 → ℚ(𝑣) defined by

−(𝑒𝜎(1) ⊗⋯⊗ 𝑒𝜎(𝑛)) = 𝑡𝑛∕2𝑎(−𝑞)𝓁(𝜎), for any 𝜎 ∶ {1, … , 𝑛} → {1, … , 𝑛}, (7)

where (−𝑞)𝓁(𝜎) = 0 if 𝜎 is not a permutation (according to Equation 6), and 𝑎, 𝑡 are given in
Subsection 2.1, see [26]. Similarly, Hom𝑈𝑞(𝑠𝑙𝑛)

(ℚ(𝑣), 𝑉⊗𝑛) has dimension 1 and is generated by
+ ∶ ℚ(𝑣) → 𝑉⊗𝑛, given by

+(1) = 𝑎
∑
𝜎∈𝑆𝑛

(−𝑞)𝑙(𝜎)𝑒𝜎(1) ⊗ 𝑒𝜎(2) ⊗ … ⊗ 𝑒𝜎(𝑛), (8)

2.3 Braiding and the Iwahori–Hecke algebra

The algebra 𝑈𝑞(𝑠𝑙𝑛) has a topological completion which is a topological ribbon Hopf algebra,
making the category of finite-dimensional 𝑈𝑞(𝑠𝑙𝑛)-modules a ribbon category, see [16, 64]. The
ribbon structure defines (through the universal 𝑅-matrix) for any two 𝑈𝑞(𝑠𝑙𝑛)-modules 𝑉1, 𝑉2 a
braiding ̂𝑉1,𝑉2

∶ 𝑉1 ⊗ 𝑉2 → 𝑉2 ⊗ 𝑉1, which is an invertible 𝑈𝑞(𝑠𝑙𝑛)-morphism satisfying cer-
tain conditions discussed below. Let us record here the formula for ̂𝑉,𝑉 , which will be simply
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 19 of 93

denoted by ̂. An operator 𝐴 ∶ 𝑉 ⊗ 𝑉 → 𝑉 ⊗ 𝑉 is given by its matrix entries 𝐴𝑖𝑗

𝑚𝑘
∈ ℚ(𝑣), with

𝑖, 𝑗,𝑚, 𝑘 ∈ {1, … , 𝑛}, which are defined such that

𝐴(𝑒𝑚 ⊗ 𝑒𝑘) =
∑
𝑖,𝑗

𝐴
𝑖𝑗

𝑚𝑘
𝑒𝑖 ⊗ 𝑒𝑗.

The braiding ̂ ∶ 𝑉 ⊗ 𝑉 → 𝑉 ⊗ 𝑉 and the matrix are given by

̂𝑗𝑖

𝑙𝑘
= 𝑖𝑗

𝑙𝑘
= 𝑞− 1

𝑛

(
𝑞𝛿𝑖,𝑗 𝛿𝑗,𝑘𝛿𝑖,𝑙 + (𝑞 − 𝑞−1)𝛿𝑗<𝑖𝛿𝑗,𝑙𝛿𝑖,𝑘

)
, (9)

see [35, section 8.4.2(60) and section 9.2], where 𝛿𝑗<𝑖 = 1 if 𝑗 < 𝑖 and 𝛿𝑗<𝑖 = 0 otherwise, as in
Subsection 2.1.
For an integer 𝑘 ⩾ 2 and 𝑖 = 1, … , 𝑘 − 1, we define 𝑅𝑖 ∶ 𝑉⊗𝑘 → 𝑉⊗𝑘 by

𝑅𝑖 = id⊗𝑖−1 ⊗ ̂⊗ id⊗𝑘−𝑖−1
.

Then the operators 𝑅𝑖 satisfy the following relations

𝑞
1
𝑛 𝑅𝑖 − 𝑞− 1

𝑛 𝑅𝑖 = (𝑞 − 𝑞−1)id, for 𝑖 = 1, … , 𝑘 − 1

𝑅𝑖𝑅𝑗 = 𝑅𝑗𝑅𝑖 for 1 ⩽ 𝑖 < 𝑗 − 1 ⩽ 𝑘 − 1

𝑅𝑖𝑅𝑖+1𝑅𝑖 = 𝑅𝑖+1𝑅𝑖𝑅𝑖+1 for 𝑖 = 1, … , 𝑘 − 2.

The last equation, known as the braid relation, is a consequence of ̂ being induced by the 𝑅-
matrix of 𝑈𝑞(𝑠𝑙𝑛).
By [26, 58],

𝑅𝑖◦+ = −𝑞− 1
𝑛
−1+, −◦𝑅𝑖 = −𝑞− 1

𝑛
−1−. (10)

2.4 The dual module

For 𝑥 ∈ 𝑉∗ and 𝑦 ∈ 𝑉 let ⟨𝑥, 𝑦⟩ denote 𝑥(𝑦) ∈ ℚ(𝑣). There is an invertible element g0 ∈ 𝑈𝑞(𝑠𝑙𝑛)

called the charmed element, whose action on 𝑉 is given by

g0(𝑒𝑖) = 𝑞2𝑖−𝑛−1𝑒𝑖 = 𝑞2𝑑𝑖 𝑒𝑖.

The ribbon structure implies that the following ℚ(𝑣)-linear maps are 𝑈𝑞(𝑠𝑙𝑛)-morphisms:

ev ∶ 𝑉∗ ⊗ 𝑉 → ℚ(𝑣), ev(𝑒𝑖 ⊗ 𝑒𝑗) = ⟨𝑒𝑖, 𝑒𝑗⟩ = 𝛿𝑖,𝑗

coev ∶ ℚ(𝑣) → 𝑉 ⊗ 𝑉∗, coev(1) =

𝑛∑
𝑖=1

𝑒𝑖 ⊗ 𝑒𝑖

ẽv0 ∶ 𝑉 ⊗ 𝑉∗ → ℚ(𝑣), ẽv0(𝑒𝑖 ⊗ 𝑒𝑗) = 𝑞2𝑖−𝑛−1𝛿𝑖,𝑗 = ⟨𝑒𝑗, g0(𝑒𝑖)⟩
c̃oev0 ∶ ℚ(𝑣) → 𝑉∗ ⊗ 𝑉, c̃oev0(1) =

𝑛∑
𝑖=1

𝑞𝑛+1−2𝑖𝑒𝑖 ⊗ 𝑒𝑖 =

𝑛∑
𝑖=1

𝑒𝑖 ⊗ (g0)
−1𝑒𝑖.
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20 of 93 LÊ and SIKORA

2.5 The quantized coordinate algebra 𝒒(𝑺𝑳(𝒏))

The algebra of quantum matrices 𝑞(𝑀(𝑛)) is the associative ℤ[𝑣±1]-algebra generated by
elements 𝑢𝑖

𝑗
, for 𝑖, 𝑗 = 1, 2, … , 𝑛, subject to relations

(𝐮 ⊗ 𝐮) = (𝐮 ⊗ 𝐮), (11)

where  is the 𝑅-matrix given by Equation (9), and 𝐮 ⊗ 𝐮 is the 𝑛2 × 𝑛2 matrix with entries
(𝐮 ⊗ 𝐮)𝑖𝑘

𝑗𝑙
= 𝑢𝑖

𝑗
𝑢𝑘
𝑙
for 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, … , 𝑛}. We call 𝐮 ∶= (𝑢𝑖

𝑗
) as well as its images under algebra

homomorphisms quantum matrices. Any square submatrix of 𝐮 is a quantum matrix (of smaller
size). The element

det𝑞(𝐮) ∶=
∑
𝜎∈𝑆𝑛

(−𝑞)𝓁(𝜎)𝑢𝜎(1)
1

⋯𝑢𝜎(𝑛)
𝑛 =

∑
𝜎∈𝑆𝑛

(−𝑞)𝓁(𝜎)𝑢1
𝜎(1)

⋯𝑢𝑛
𝜎(𝑛)

is central and called the quantum determinant of the quantum matrix 𝐮, see [35, 9.2.2].
The quantized coordinate algebra of 𝑆𝐿(𝑛) is the quotient

𝑞(𝑆𝐿(𝑛)) = 𝑞(𝑀(𝑛))∕(det𝑞𝐮 − 1).

It is a Hopf algebra with comultiplication, counit, and antipode given by

Δ(𝑢𝑖
𝑗
) =

∑
𝑘

𝑢𝑖
𝑘
⊗ 𝑢𝑘

𝑗
, 𝜖(𝑢𝑖

𝑗
) = 𝛿𝑖,𝑗, 𝑆(𝑢𝑖

𝑗
) = (−𝑞)𝑖−𝑗𝑀

𝑗
𝑖
(𝐮), (12)

where 𝑀
𝑗
𝑖
(𝐮) is the quantum determinant of the minor of 𝐮 obtained by removing the 𝑗th row

and 𝑖th column of the matrix 𝐮, see, for example, [35, 9.2.2] or [63].
For technical convenience, we have defined𝑞(𝑆𝐿(𝑛)) over the ringℤ[𝑣±1]. The dual𝑈𝑞(𝑠𝑙𝑛)

∗,
consisting of all ℚ(𝑣)-linear maps 𝑈𝑞(𝑠𝑙𝑛) → ℚ(𝑣), has a ℚ(𝑣)-algebra structure, dual to the
coalgebra structure of 𝑈𝑞(𝑠𝑙𝑛), and is considered as a ℤ[𝑣±1]-algebra via ℤ[𝑣±1] ↪ ℚ(𝑣).

Proposition 2.1 (Hopf duality between 𝑞(𝑆𝐿(𝑛)) and𝑈𝑞(𝑠𝑙𝑛), [62, section 4]). There is a unique
pairing ⟨⋅, ⋅⟩ ∶ 𝑞(𝑆𝐿(𝑛)) × 𝑈𝑞(𝑠𝑙𝑛) → ℚ(𝑣), such that ⟨𝑢𝑖

𝑗
, 𝑥⟩ = 𝑒𝑖(𝑥(𝑒𝑗)) for𝑥 ∈ 𝑈𝑞(𝑠𝑙𝑛)and 𝑖, 𝑗 =

1, … , 𝑛. It is a Hopf pairing that induces an embedding of ℤ[𝑣±1]-algebras 𝑞(𝑆𝐿(𝑛)) ↪ 𝑈𝑞(𝑠𝑙𝑛)
∗.

For the convenience of the reader,we recall that ⟨⋅, ⋅⟩ being aHopf pairingmeans that𝑞(𝑆𝐿(𝑛))

and 𝑈𝑞(𝑠𝑙𝑛) are in Hopf duality: for all 𝑢, 𝑢′ ∈ 𝑞(𝑆𝐿(𝑛)) and 𝑥, 𝑥′ ∈ 𝑈𝑞(𝑠𝑙𝑛)

⟨𝑢𝑢′, 𝑥⟩ =
∑⟨𝑢, 𝑥(1)⟩⟨𝑢′, 𝑥(2)⟩, where Δ(𝑥) =

∑
𝑥(1) ⊗ 𝑥(2)

⟨𝑢, 𝑥𝑥′⟩ =
∑⟨𝑢(1), 𝑥⟩⟨𝑢(2), 𝑥

′⟩, where Δ(𝑢) =
∑

𝑢(1) ⊗ 𝑢(2)

⟨1, 𝑥⟩ = 𝜀(𝑥), ⟨𝑢, 1⟩ = 𝜀(𝑢), ⟨𝑆(𝑢), 𝑥⟩ = ⟨𝑢, 𝑆(𝑥)⟩.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 21 of 93

F IGURE 5 (a) The cube 𝑄, the square 𝑆 (shadowed) and its sides Λ𝑟, Λ𝑙 . (b) An example of a diagram of a
based 3-tangle. The order at the source is counterclockwise, beginning with lowest branch. (c) The tensor product
𝛼 ⊗ 𝛽. (d) The composition 𝛽◦𝛼. (Orientations of 𝛼, 𝛽 are not shown.).

3 REVIEWOF THE RESHETIKHIN–TURAEV THEORY

3.1 Based 𝒏-tangles and their operator invariants

Reshetikhin–Turaev theory associates with every ribbon category an operator invariant of ribbon
graphs, see [65]. Let us make this construction explicit for the category of left 𝑈𝑞(𝑠𝑙𝑛)-modules
and a special class of ribbon graphs, called based 𝑛-tangles, defined below.
The cube 𝑄 ∶= [−1, 1] × (−1, 1)2 in the 3-space, see Figure 5a, has boundary consisting of the

right face {1} × (−1, 1)2 and the left face {−1} × (−1, 1)2. The intersection of 𝑄 and the XY-plane
is 𝑆 = [−1, 1] × (−1, 1) × {0}. It is depicted as the shaded square in Figure 5a, with its sides Λ𝑙 =

{−1} × {0} × (−1, 1) and Λ𝑟 = {1} × {0} × (−1, 1). We will say that vectors of the form (0, 0, 𝑧) with
𝑧 > 0 are in the Z-direction.
For the sake of the definition below and for later use, we say that directed graph 𝛼 is properly

embedded into a 3-manifold 𝑀, if its set of 1-valent vertices, 𝜕𝛼, coincides with 𝛼 ∩ 𝜕𝑀 and 𝛼 is
transversal to 𝜕𝑀.

Definition 3.1. A based𝑛-tangle𝛼 is a disjoint union of finitelymany oriented circles and directed
graphs properly embedded into the cube 𝑄, such that

(1) The graphs of 𝛼 have finitely many vertices only. Every vertex of 𝛼 is either a sink or a source
and either 1-valent or 𝑛-valent. We denote the set of 1-valent vertices, called endpoints of 𝛼, by
𝜕𝛼.

(2) Each edge of the graph is a smooth embedding of the closed interval [0,1] into 𝑄.
(3) 𝛼 is equipped with a framing that is a continuous nonvanishing vector field transversal to 𝛼.

In particular, the framing at a vertex is transversal to all incident edges.
(4) The set of half-edges at every 𝑛-valent vertex is linearly ordered.
(5) The endpoints of 𝛼 lie in Λ𝑙 ∪ Λ𝑟, and the framing at these endpoints has a 𝑍-direction.

We consider based 𝑛-tangles up to isotopies that are continuous deformations of 𝑛-webs in their
class.

Remark 3.2. Our notion of an 𝑛-tangle is broader than that of a traditional tangle, because it allows
for 𝑛-valent vertices. It is a version of the notion of an 𝑛-web of [58]. However, we use a different
name for it here to distinguish it from 𝑛-webs that we will introduce in Subsection 4.1 and that
are unbased and have a different framing setup near their boundaries.
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22 of 93 LÊ and SIKORA

Suppose 𝛼 is a based 𝑛-tangle. The sign sgn(𝑒) of an endpoint 𝑒 ∈ 𝜕𝛼 is positive if the direction
of 𝛼 goes from left to right at 𝑒, and negative otherwise. Let sgn𝑙(𝛼) (respectively, sgn𝑙(𝛼)) be the
sequence of signs of endpoints of 𝛼 on Λ𝑙 (respectively, Λ𝑟) appearing from the bottom to the top.
Let ℭ𝑛

𝑏 be the ℤ[𝑣±1]-linear monoidal category whose objects 𝜼 are finite sequences of signs
±, and the set of morphismsHom

ℭ𝑛
𝑏 (𝜼, 𝝁) is theℤ[𝑣±1]-module freely spanned by isotopy classes

of based 𝑛-tangles 𝛼 such that sgn𝑟(𝛼) = 𝜼 and sgn𝑙(𝛼) = 𝝁. Here the tensor product of two
sequences 𝜼 and 𝝁 is the concatenation of 𝜼 followed by 𝝁. The empty sequence is the unit. The
tensor product 𝛼 ⊗ 𝛽 of two based 𝑛-tangles is the result of stacking 𝛽 above 𝛼, as in Figure 5c.
If sgn𝑙(𝛼) = sgn𝑟(𝛽) then the composition 𝛽◦𝛼 is obtained by placing 𝛽 to the left of 𝛼 (after an
isotopy to match endpoints), as in Figure 5d.
Let 𝑛 be the category of left𝑈𝑞(𝑠𝑙𝑛)-modules isomorphic to tensor products of finite numbers

of modules 𝑉 and 𝑉∗. The morphisms of 𝑛 are 𝑈𝑞(𝑠𝑙𝑛)-module homomorphisms. It is a ribbon
category. As based tangles can be viewed as tangles with coupons, in the sense of Reshetikhin–
Turaev, their theory [57] defines a monoidal functor 𝖱𝖳0 ∶ ℭ𝑛

𝑏 → 𝑛 constructed as follows. For
a sequence 𝜼 = (𝜂1, … , 𝜂𝑘) of signs ± let

𝖱𝖳0(𝜼) = 𝑉𝜼 ∶= 𝑉𝜂1 ⊗⋯⊗ 𝑉𝜂𝑘 ,

where 𝑉+ = 𝑉 and 𝑉− = 𝑉∗.
We will define values of 𝖱𝖳0 for based 𝑛-tangles through their diagrams. For that purpose, we

will identify the XY-plane in ℝ3 with the pages of this paper and we will point the 𝑧-axis toward
the reader, as in Figure 5a. Any based 𝑛-tangle 𝛼 can be represented by its diagram obtained by
isotoping 𝛼 first so that its framing is in the Z-direction everywhere and then by putting it in a
general position with respect to the projection 𝑝 ∶ ℝ3 → ℝ2 onto the XY-plane, see Figure 5b. We
further assume that the projection of 𝛼 near an 𝑛-valent vertex consists of 𝑛 lines directed from
left to right, and that their linear order is counterclockwise beginning from the lowest line to the
highest for the source, and from the highest to the lowest line, for the sink.
Such a projection of𝛼 onto the square 𝑆 = [−1, 1] × (−1, 1) × {0} (shaded in Figure 5a), together

with the over/under information at every crossing is called a diagram of 𝛼.
In Equations (13)–(15), we list elementary based 𝑛-tangles 𝛼 and the corresponding opera-

tors 𝖱𝖳0(𝛼). The associated operators ev, ẽv0, coev, c̃oev0 were defined in Subsection 2.4, while
−,+ and ̂were given by Equations (7)–(9), respectively. As every based 𝑛-tangle can be built
of them through tensor products and compositions, these operators totally determine 𝖱𝖳0.

(13)

(14)

(15)
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 23 of 93

Based 𝑛-tangles and the Reshetikhin–Turaev functor on them were considered in [58], albeit
with a different normalization of±.

3.2 Kernel of functor 𝗥𝗧𝟎

Recall that a monoidal ideal in a monoidal category  is a subset 𝐼 ⊂ Hom() such that for 𝑥 ∈ 𝐼

and 𝑦 ∈ Hom() we have 𝑥 ⊗ 𝑦, 𝑦 ⊗ 𝑥 ∈ 𝐼 and 𝑥◦𝑦, 𝑦◦𝑥 ∈ 𝐼, whenever such compositions can
be defined.
The following are well-known elements of ker 𝖱𝖳0 (see [58]):

(16)

(17)

(18)

(19)

where 𝑡0 is given by Equation (1), 𝜎+ is the minimum crossing positive braid representing a per-
mutation 𝜎 and 𝓁(𝜎) is the length of 𝜎 defined in Subsection 2.1. Here means 𝑥 − 𝑦 ∈

ker(𝖱𝖳0).

Conjecture 3.3. The kernel ker 𝖱𝖳0 is the monoidal ideal 𝐼0 generated by elements given in
Equation (16)–(19).

For example, the arguments in [58] indeed imply that the following identities are consequences
of (16)–(19):

(20)

(21)

(22)

where the tangle on the right has 𝑛 − 2 parallel edges in the middle.
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24 of 93 LÊ and SIKORA

Conjecture 3.3 is analogous to Morrison’s conjecture [53, section 5.5] that was proved in [17].
Note that our formalism of 𝑛-webs leads to a simpler set of kernel generators than that in [53].
After this manuscript was posted on arxiv, Poudel announced a proof of the above conjecture
[54].

3.3 (Unbased) 𝒏-tangles

Now we will consider a modified ribbon structure on the category of 𝑈𝑞(𝑠𝑙𝑛)-modules, giving
rise to a new Reshetikhin–Turaev functor, denoted by 𝖱𝖳, with simpler skein properties. We will
explain in Subsection 3.9 how this new ribbon structure comes from the theory of quantized
enveloping algebras. For now we simply declare 𝖱𝖳 to coincide on all elementary based 𝑛-tangles
with 𝖱𝖳0, except that we multiply the values of ẽv0 and c̃oev0 of (14) by (−1)𝑛−1. Thus, if 𝐷 is a
diagram of a based 𝑛-tangle 𝛼 and # ↓ (𝐷) is the number of its downward critical points, that is,
points where the tangent is parallel to the vertical 𝑦-axis and pointing downward, then

𝖱𝖳(𝐷) = (−1)(𝑛−1)#↓(𝐷)𝖱𝖳0(𝛼). (23)

It is an easy exercise to show that 𝖱𝖳(𝐷) is an isotopy invariant of based 𝑛-tangles.
From Equation (20) it follows that 𝖱𝖳 is invariant under cyclic changes of an order at a vertex:

(24)

where means 𝖱𝖳(𝑥) = 𝖱𝖳(𝑦).
An (unbased) 𝑛-tangle is defined exactly as a based 𝑛-tangle except that half-edges incident

to its every 𝑛-valent vertex are required to be cyclically ordered only. (Such cyclic orderings of
edges around each vertex are called a ribbon structure.) Equation (24) shows that 𝖱𝖳 is an invari-
ant of 𝑛-tangles. In a diagram of an 𝑛-tangle, the cyclic order at every 𝑛-valent vertex is the
counterclockwise order.
Let ℭ𝑛 be a monoidal category obtained from ℭ𝑏

𝑛 by replacing based 𝑛-tangles with 𝑛-tangles.
Then 𝖱𝖳 is a ℤ[𝑣±1]-linear monoidal function from ℭ𝑛 to 𝑛.
By Equations (16)–(19), we have

(25)

(26)

(27)
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 25 of 93

(28)

The following two are consequences of Equations (25)–(28):

(29)

(30)

3.4 Linear functionals on𝑼𝒒(𝒔𝒍𝒏) from 𝒏-tangles

For 𝑥 ∈ Homℭ𝑛
(𝜼, 𝝁) and an element 𝑢 ∈ 𝑈𝑞(𝑠𝑙𝑛) define 𝖱𝖳(𝑥)◦𝑢 ∶ 𝑉𝜼 → 𝑉𝝁 as the composition

of the action of 𝑢 on 𝑉𝜼 with 𝖱𝖳(𝑥). Similarly, one defines 𝑢◦𝖱𝖳(𝛼) ∶ 𝑉𝜼 → 𝑉𝝁 where 𝑢 acts on
𝑉𝝁 now. We will use ovals for depicting morphisms of ℭ𝑛 and rectangles for elements of 𝑈𝑞(𝑠𝑙𝑛)

throughout the paper. As 𝖱𝖳(𝑥) is a 𝑈𝑞(𝑠𝑙𝑛)-morphism, we have

𝖱𝖳(𝑥)◦𝑢 = 𝑢◦𝖱𝖳(𝑥), or, pictorially, 𝖱𝖳
== , (31)

A vector space equipped with a basis is called based. The tensor product of based vector spaces
𝑉𝑖 with bases 𝐵𝑖 for 𝑖 = 1, … , 𝑘, has the natural tensor product basis

∏𝑘
𝑖=1 𝐵𝑖 . A linear operator𝐴 ∶

𝑉1 → 𝑉2 between based vector spaces with bases {𝑒
(1)
𝑖

} and {𝑒(2)
𝑗

} defines a matrix with elements

𝐴
𝑗
𝑖
, also denoted by ⟨𝑗|𝐴|𝑖⟩, such that

𝐴
(
𝑒(1)
𝑖

)
=
∑
𝑗

𝐴
𝑗
𝑖
𝑒(2)
𝑗

, ⟨𝑗|𝐴|𝑖⟩ ∶= 𝐴
𝑗
𝑖
.

We consider the 𝑈𝑞(𝑠𝑙𝑛)-module 𝑉 as a based ℚ(𝑣)-vector space with basis {𝑒1, … , 𝑒𝑛}, defined
in Subsection 2.2. The dual𝑉∗ will be considered as a based vector space with the basis {𝑓1, … , 𝑓𝑛}

where

𝑓𝑖 = 𝑐𝑖𝑒
𝑖, for 𝑖 = 1, … , 𝑛, where 𝑐𝑖 are given by (3). (32)

This basis allows for a simplification of our theory and, in particular, makes the 𝖱𝖳 functor inde-
pendent of web orientations, see Subsection 3.5. Now for any sign sequence 𝜼, the vector space𝑉𝜼

is based with the tensor basis, indexed by {1, … , 𝑛}|𝜼|, induced by the above bases of 𝑉 and 𝑉∗.
A right state (respectively, a left state) of a morphism 𝑥 ∈ Homℭ𝑛

(𝜼, 𝝁), for some 𝜼 and 𝝁, is
an assignment of 𝑖1, … , 𝑖|𝜼| ∈ {1, … , 𝑛} (respectively, 𝑗1, … , 𝑗|𝝁| ∈ {1, … , 𝑛}) to the right (respec-
tively, left) endpoints of 𝑥, listing them from the bottom to the top. A right (respectively, a
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26 of 93 LÊ and SIKORA

left) stated morphism 𝑥 as above will be denoted by 𝐱 = (𝑥, 𝐢) (respectively, 𝐱 = (𝒋, 𝑥)), where
𝐢 = {𝑖1, … , 𝑖|𝜼|} ∈ {1, … , 𝑛}|𝜼| and 𝒋 = {𝑗1, … , 𝑗|𝝁|} ∈ {1, … , 𝑛}|𝝁|. Similarly, a stated morphism is a
triple𝐱 = (𝒋, 𝑥, 𝐢), as above. For such𝐱 define aℚ(𝑣)-linear functionΓ(𝐱) ∶ 𝑈𝑞(𝑠𝑙𝑛) → ℚ(𝑣)whose
value at 𝑢 ∈ 𝑈𝑞(𝑠𝑙𝑛) is

⟨Γ(𝐱), 𝑢⟩ ∶= ⟨𝒋|𝖱𝖳(𝑥)◦𝑢|𝐢⟩ = ⟨𝒋|𝑢◦𝖱𝖳(𝑥)|𝐢⟩.
For example, for 𝑥 = ∅

Γ(∅) = 𝜖 ∶ 𝑈𝑞(𝑠𝑙𝑛) → ℚ(𝑣), is the counit. (33)

Let  be the set of isotopy classes of stated 𝑛-tangles. The module ℤ[𝑣±1] over ℤ[𝑣±1] freely
spanned by  is an algebra with the product 𝜶𝜷 = 𝜶 ⊗ 𝜷 obtained by placing 𝜶 below 𝜷 and
concatenating the states. We extend Γ linearly onto a ℤ[𝑣±1]-linear map

Γ ∶ ℤ[𝑣±1] → 𝑈𝑞(𝑠𝑙𝑛)
∗,

Proposition 3.4. The map Γ is a ℤ[𝑣±1]-algebra homomorphism.

Proof. As the 𝑈𝑞(𝑠𝑙𝑛)-action on tensor product of 𝑈𝑞(𝑠𝑙𝑛)-modules is given by the coproduct on
𝑈𝑞(𝑠𝑙𝑛), for any 𝑛-tangles 𝛼 and 𝛽 and any 𝑢 ∈ 𝑈𝑞(𝑠𝑙𝑛) we have

(𝛼 ⊗ 𝛽)◦𝑢 =
∑

(𝛼◦𝑢′) ⊗ (𝛽◦𝑢′′), where Δ(𝑢) =
∑

𝑢′ ⊗ 𝑢′′.

By assigning states, we get

⟨𝜶 ⊗ 𝜷, 𝑢⟩ =
∑⟨𝜶, 𝑢′⟩⟨𝜷, 𝑢′′⟩,

which means that Γmaps the product 𝜶 ⊗ 𝜷 to the dual of the coproduct in𝑈𝑞(𝑠𝑙𝑛), which is the
product on 𝑈𝑞(𝑠𝑙𝑛)

∗. Hence, Γ is an algebra homomorphism. □

3.5 Dual operator, orientation reversal invariance

For a stated morphism 𝐱 = (𝐢, 𝑥, 𝒋) let ⟨𝐱⟩ be the (𝐢, 𝒋)-element of the matrix of 𝖱𝖳(𝑥),

⟨𝐱⟩ = ⟨𝐢 ∣ 𝖱𝖳(𝑥) ∣ 𝒋⟩ ∈ ℚ(𝑣).

For a stated 𝑛-tangle, 𝜶 = (𝐢, 𝛼, 𝒋), let , where is obtained from 𝛼 by reversing the
orientation of all its edges and and of all circle components.
Furthermore, let

𝜶∗ = (𝑐𝐢)
−1 𝑐𝒋 (𝒋

∗, 𝗋𝗈(𝛼), 𝐢∗),

where 𝗋𝗈(𝛼) is obtained by 180◦ rotation of 𝛼,

𝑐𝐢 =

𝑘∏
𝑚=1

𝑐𝑖𝑚 and (𝑖1, … , 𝑖𝑘)
∗ = (𝑖𝑘, … , 𝑖1), where 𝑖 = 𝑛 + 1 − 𝑖.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 27 of 93

Pictorially,

𝜶∗ =

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

∗

= (𝑐𝐢)
−1𝑐𝒋 .

The above operations extend linearly onto ℤ[𝑣±1] .
It should be noted that for an 𝑛-tangle 𝛼 the operators , and 𝖱𝖳(𝗋𝗈(𝛼)) have differ-

ent domains and different target spaces. The following statement shows an important benefit the
basis {𝑓1, … , 𝑓𝑛} of 𝑉∗:

Proposition 3.5. For any stated morphism 𝐱 = (𝒊, 𝑥, 𝒋) one has .

Proof. Checking for cups and caps is quite easy:

(34)

(1) The identity ⟨𝛼∗⟩ = ⟨𝛼⟩ follows from

⟨𝒋∗|𝖱𝖳(𝗋𝗈(𝛼))|𝐢∗⟩ 𝖱𝖳
== =

(
𝑘∏

𝑚=1

𝑐𝑖𝑚

)(
𝑙∏

𝑚=1

𝑐𝑗𝑚

)−1 ⟨𝐢|𝖱𝖳(𝛼)|𝒋⟩,
where the first identity is by an isotopy. For the second identity, we decompose the tangle
above along the dashed lines and use the values of cups and caps in Equation (34).

(2) To prove one needs to check it for the elementary 𝑛-tangles. For cups and caps,
it have been done in Equation (34). The statement for the positive crossing (Equation (15))
follows from part (1) and the fact that the 𝑅-matrix formula (9) is preserved under the invo-
lution 𝑖 ↔ 𝑙, 𝑗 ↔ 𝑘̄. The statement for the sink and the source follows by a straightforward
computation. □

3.6 Annihilators

In this and the next two subsections, we will analyze the kernel of Γ ∶ ℤ[𝑣±1] → 𝑈𝑞(𝑠𝑙𝑛)
∗.

An internal annihilator is aℭ𝑛-morphism 𝑥 such that 𝖱𝖳(𝑥) = 0. From the definition, we have:

Proposition 3.6.

(a) Internal annihilators form a monoidal ideal in ℭ𝑛.
(b) For any stating (𝒊, 𝑥, 𝒋) of an internal annihilator 𝑥, we have Γ((𝒊, 𝑥, 𝒋)) = 0.
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28 of 93 LÊ and SIKORA

Equations (25)–(28) are internal annihilators, called the basic internal annihilators.
For a sequence 𝜼 of signs {±} let 𝑟(𝜼) be the ℤ[𝑣±1]-module freely spanned by right stated

𝑛-tangles (𝛼, 𝒊) such that the sequence of left ends of 𝛼 has type 𝜼. Note that 𝑟(𝜼) contains
Homℭ𝑛

(∅, 𝜼), and we extend the map 𝖱𝖳 to

𝖱𝖳 ∶ 𝑟(𝜼) → Homℚ(𝑣)(ℚ(𝑣), 𝑉𝜼) by 𝖱𝖳((𝛼, 𝒊))(1) = 𝖱𝖳(𝛼)(𝑣𝒊),

where 𝑣𝒊 is the basis vector of 𝑉𝑟(𝛼)with index 𝒊. For example, for 𝜂 = (+,−,+,−),

and 𝒊 = (𝑖1, 𝑖2), we have

𝖱𝖳((𝛼, 𝒊)) = 𝑒𝑖1 ⊗ c̃oev0(1) ⊗ 𝑓𝑖2 ∈ 𝑉 ⊗ 𝑉∗ ⊗ 𝑉 ⊗ 𝑉∗.

Note that for 𝑥 ∈ 𝑟(𝜼) ⧵ Hom(∅, 𝜼), the operator 𝖱𝖳(𝑥)might not be a 𝑈𝑞(𝑠𝑙𝑛)-morphism.
For 𝑦 ∈ 𝑟(𝜼

′) define 𝑥 ⊗ 𝑦 ∈ 𝑟(𝜼 ⊗ 𝜼′) by placing 𝑦 atop 𝑥 and by concatenating the right
states. For 𝑧 ∈ Homℭ𝑛

(𝜼, 𝝁), we can define the composition 𝑧◦𝑥 ∈ 𝑟(𝝁). Clearly,

𝖱𝖳(𝑥 ⊗ 𝑦) = 𝖱𝖳(𝑥) ⊗ 𝖱𝖳(𝑦) and 𝖱𝖳(𝑥◦𝑦) = 𝖱𝖳(𝑥)◦𝖱𝖳(𝑦).

A right annihilator is an element 𝑥 ∈ 𝑟(𝜼), for certain 𝜼, such that 𝖱𝖳(𝑥) = 0. By the above
equation and by Equation (31), we have

Proposition 3.7. Let 𝑥 ∈ 𝑟(𝜼), 𝑦 ∈ 𝑟(𝜼
′) be right annihilators and let 𝑧 ∈ Hom(𝜼, 𝝁).

(a) For any left state 𝒊 of 𝑥, we have Γ((𝒊, 𝑥)) = 0.
(b) All 𝑥 ⊗ 𝑦, 𝑦 ⊗ 𝑥, and 𝑧◦𝑥 are right annihilators.

We do not draw the left boundary vertical edge in pictures of right annihilators, to indicate that
holds for their composition with any web on the left (for which such composition is possible).

Proposition 3.8. We have the following identities for the values of the function 𝖱𝖳:

(35)

(36)

(37)

(38)
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 29 of 93

for any 𝑖, 𝑗 = 1, … , 𝑛, where thewhite circle represents the orientation, left-to-right or right-to-left, and
is the same for all white circles in one identity. The black circle stands for the opposite orientation of
the white one. The values 𝛿𝑗<𝑖, 𝛿𝑖,𝑗, 𝑎, 𝑐1, … , 𝑐𝑛 were defined in Subsection 2.1.

By subtracting the left side from the right side in the equations above we obtain right
annihilators which we call basic.

Proof of Proposition 3.8. By applying the total orientation reversion and Proposition 3.5 if neces-
sary, we can assume all the white circles indicate the left-to-right orientation. Identity (35) is the
defining equation (8) of the operator +, while Identity (38) is the defining equation (9) of the
braiding. Identities (36) and (37) are consequences of Equation (34). □

We now define left annihilators. For a sign sequence 𝜼, let 𝑙(𝜼) be the ℤ[𝑣±1]-module freely
spanned by left-stated 𝑛-tangles (𝒊, 𝛼) such that 𝑉𝑟(𝛼) = 𝑉𝜼. Then 𝑙(𝜼) contains Homℭ𝑛

(𝜼, ∅),
and we extend 𝖱𝖳 to

𝖱𝖳 ∶ 𝑙(𝜼) → Homℚ(𝑣)(𝑉
𝜼, ℚ(𝑣)) by 𝖱𝖳((𝒊, 𝛼))(𝑧) = coef f 𝒊(𝖱𝖳(𝛼)(𝑧)),

for 𝑧 ∈ 𝑉𝜂, where coef f 𝒊 ∶ 𝑉𝝁 → ℚ(𝑣) is coefficient of the basis vector of 𝑉𝝁 indexed by 𝒊.
A left annihilator is an element 𝑥 ∈ 𝑙(𝜼), for a certain 𝜼, such that 𝖱𝖳(𝑥) = 0. In analogy to

Proposition 3.7, we have:

Proposition 3.9. Let 𝑥 ∈ 𝑙(𝜼), 𝑦 ∈ 𝑙(𝜼
′) be left annihilators and let 𝑧 ∈ Hom(𝝁, 𝜼).

(a) For any right state 𝒊 of 𝑥, we have Γ((𝑥, 𝒊)) = 0.
(b) All 𝑥 ⊗ 𝑦, 𝑦 ⊗ 𝑥, and 𝑥◦𝑧 are left annihilators.

3.7 Turning right annihilators to left ones

For an integer 𝑘 ⩾ 2 let𝐻𝑘 be the positive half-twist of 𝑘 strands and let 𝐻̄𝑘 be its inverse:

(Note that 𝐻𝑘 does not twist the framing, which always points toward the reader. This applies
to all half-twists considered in this paper.) By abuse of notation, for any 𝑛-tangle 𝛼 with 𝑘 left
endpoints, denote by 𝐻̄𝑘◦𝛼 the composition of 𝛼 with a version of 𝐻̄𝑘 in which the orientation of
some of its components was reversed so that it is composable with 𝛼.
Let 𝗁𝖽 ∶ 𝑟(𝜼) → 𝑙(𝜼) be a ℤ[𝑣±1]-linear map given by

𝗁𝖽((𝛼, 𝒊)) = (𝒊, 𝐻̄◦𝗋𝗈(𝛼)),

where 𝗋𝗈(𝛼) denotes the 180◦ rotation of 𝛼 about the center, as before.
In Subsection 3.5, we showed that our basis {𝑓𝑖} of𝑉∗makes thematrices𝖱𝖳(𝑥) invariant under

the total reversal of orientation of 𝑥. It also makes the following statement hold.
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30 of 93 LÊ and SIKORA

Proposition 3.10. If 𝑥 is a basic right annihilator then 𝗁𝖽(𝑥) is a left annihilator.

Proof. The statement for each basic right annihilator can be checked by a direct computation. The
calculation for Relations (36)–(37) follows from the framing change, Equation (26). The calcula-
tion for Relation (38) utilizes Equation (25). Finally, let us show that the image of (35) under 𝗁𝖽,
pictured below, is a left annihilator. (We assume its orientation to the right, as the statement for
the opposite orientation follows from Proposition 3.5.)

Note that as 𝐻𝑘 is invertible in 𝐸𝑛𝑑(𝑉⊗𝑛) we can consider the above equality composed with
𝐻 on the right instead. Then, by Equation (10), it reduces to

(
−𝑞− 1

𝑛
−1
) 𝑛(𝑛−1)

2
− = 𝑎

∑
𝜎∈𝑆𝑛

(−𝑞)𝓁(𝜎)𝑒𝜎(1) ⊗⋯⊗ 𝑒𝜎(𝑛),

which is indeed equivalent to the definition of−, Equation (7), as (−𝑞− 1
𝑛
−1)

𝑛(𝑛−1)
2 = 𝑡−𝑛∕2. □

A stronger statement, valid for all right annihilators, will be shown in Subsection 3.9 using a
more conceptual approach.
We call the left annihilators of Proposition 3.10 basic.

3.8 Kernel of 𝚪

Theorem 3.11 (Proof in Subsection 6.10). The kernel of Γ ∶ ℤ[𝑣±1] → 𝑈𝑞(𝑠𝑙𝑛)
∗ is generated by

internal basic annihilators, right basic annihilators, and left basic annihilators.

This means that if we begin with the internal, left, and right basic annihilators, and use
procedures described in Propositions 3.6, 3.7, and 3.9, we obtain the entire kernel ker Γ. This
theorem is analogous to Conjecture 3.3, except that it describes the kernel of a stated version
of RT.

3.9 Half-ribbon Hopf algebra

In this subsection, we explain conceptually some technical aspects of this paper. In particular,
we interpret our sign modification of the Reshetikhin–Turaev functor, Equation (23), through a
modification of the ribbon element in a completion of 𝑈𝑞(𝑠𝑙𝑛). Coincidently, that modification
leads to a “half-ribbon” element which makes it possible to prove a stronger version of Propo-
sition 3.10. Although the content of this subsection is more technical, it is not necessary for the
paper.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 31 of 93

Proposition 3.12. If 𝑥 is a right annihilator, then 𝗁𝖽(𝑥) is a left annihilator.

We precede the proof with a few preliminaries: the quantized enveloping algebra 𝑈𝑞(𝑠𝑙𝑛) is
a topological ribbon Hopf algebra, meaning it has an 𝑅-matrix  in a completion of 𝑈𝑞(𝑠𝑙𝑛) ⊗

𝑈𝑞(𝑠𝑙𝑛) and a ribbon element 𝜗0 in a completion of 𝑈𝑞(𝑠𝑙𝑛), satisfying certain conditions. It
is proved in [61] that there is a completion 𝑈𝑞(𝑠𝑙𝑛) of 𝑈𝑞(𝑠𝑙𝑛) having the same 𝑅-matrix but
a new ribbon element 𝜗, which acts on 𝑉 and 𝑉∗ the same way as (−1)𝑛−1𝜗0. (That comple-
tion was studied in different context also in [51].) Consequently, the new charmed element g is
(−1)𝑛−1g0 on 𝑉 and 𝑉∗, explaining the sign correction in (23), which we used as the definition
of 𝖱𝖳.
Additionally, there is an invertible element𝑋 ∈ 𝑈𝑞(𝑠𝑙𝑛), called the half-twist, such that𝑋2 = 𝜗

and the universal 𝑅-matrix satisfies

 = (𝑋−1 ⊗ 𝑋−1)Δ(𝑋) = ((f l◦Δ)(𝑋))(𝑋−1 ⊗ 𝑋−1), where f l(𝑥 ⊗ 𝑦) ∶= 𝑦 ⊗ 𝑥. (39)

For a sign sequence 𝜼 = (𝜂1, … , 𝜂𝑘) let and let be the 𝑅-linear
operator given by rev𝑘(𝑥1 ⊗⋯⊗ 𝑥𝑘) = (𝑥𝑘 ⊗⋯⊗ 𝑥1). From Equation (39) by induction on 𝑘,
we get the following, see [61, Proposition 4.18]: If 𝐻̄ stands for 𝐻̄𝑘 with an orientation on the
strands on the right given by 𝜼 then we have an equality of transformations :

𝖱𝖳(𝐻̄) = rev𝑘◦𝑋
⊗𝑘◦Δ[𝑘](𝑋−1). (40)

Here Δ[𝑘] is defined inductively by Δ[2] = Δ and Δ[𝑘+1] = (Δ ⊗ id⊗𝑘)◦Δ[𝑘].
An additional special feature of the basis {𝑓𝑖} of 𝑉∗ (besides those discussed already) is:

Proposition 3.13. The actions of 𝑋 on 𝑉 and 𝑉∗ are given by the same matrix

𝑋𝑖
𝑗
= 𝛿𝑖,𝑗̄ 𝑐𝑖 . (41)

As this is not proved in [61], we give a proof of this result in the Appendix. Similarly, the
actions of the charmed element g on both 𝑉 and 𝑉∗ are given by the same diagonal matrix with
entries

g 𝑖
𝑗 = 𝛿𝑖,𝑗g𝑖 , where g𝑖 = (−1)𝑛−1𝑞2𝑖−𝑛−1 = (−1)𝑛−1𝑞2𝑑𝑖 . (42)

Proof of Proposition 3.12. Let 𝑥 ∈ 𝑟(𝜼) for some 𝜼 be a right annihilator. We need to show
that 𝖱𝖳(𝗁𝖽(𝑥)) = 0. As 𝑋 is invertible, this is equivalent to 𝖱𝖳(𝗁𝖽(𝑥))◦𝑋 = 0, which, in turn, is
equivalent to:

⟨𝖱𝖳(𝗁𝖽(𝑥))◦𝑋, 𝒋⟩ = 0 for all 𝒋 = (𝑗1, … , 𝑗𝑙) ∈ {1, … , 𝑛}𝑙, 𝑙 ∶= |𝜼|.
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32 of 93 LÊ and SIKORA

Suppose (𝛼, 𝒊) is a right stated 𝑛-tangle. By Equation (40) and then by Equation (31), we have

𝗁𝖽((𝛼, 𝐢)) = =

= .

By composing with 𝑋 on the right, then decomposing along the dashed line and using the values
of 𝑋𝑖

𝑗
from Equation (41), we get

⟨𝗁𝖽((𝛼, 𝐢))◦𝑋, 𝒋⟩ 𝖱𝖳
== 𝑐𝐢 = 𝑐𝒋 ⟨𝒋∗|(𝛼, 𝐢)⟩

where 𝑐𝒊 =
∏

𝑘 𝑐𝑖𝑘 . The second identity follows from Proposition 3.5. By linearity,

for every 𝒋 ∈ {1, … , 𝑛}|𝜼|. This proves . □

Remark 3.14. The use of half-ribbon element came up in a discussion of the first author with
Costantino and Korinman. A full-fledged theory of stated skein algebra based on half-ribbon
category will be developed in an upcoming work by Costantino, Korinman, and Lê.

4 STATED SL(𝒏)-SKEINMODULES

4.1 Marked 3-manifolds and 𝒏-webs

A marked 3-manifold is a pair (𝑀, ), where 𝑀 is a smooth oriented 3-manifold with (possibly
empty) boundary 𝜕𝑀 and  ⊂ 𝜕𝑀 consists of open intervals, called markings. The topological
closure of each marking is required to be the closed interval [0,1], disjoint from the closure of
other markings.
Roughly speaking, an 𝑛-web in (𝑀, ) is like 𝑛-tangle, except that the framing at boundary

points is different. Here is the precise definition, where the first four requirements are the same
as those in the definition of an 𝑛-tangle.

Definition 4.1. An 𝑛-web 𝛼 in (𝑀, ) is a disjoint union of finite number of oriented circles and
a finite directed graph properly embedded into𝑀 such that
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 33 of 93

F IGURE 6 (a) Cube 𝑄 with a marking 𝛽 and a perpendicular line 𝛽⟂ on the right face. The shaded square 𝑆

is in the 𝑋𝑌-plane. (b) An example of a web 𝛼 with three strands (depicted by different colors) in 𝛼 ∩ 𝑄. (c) The
projection of 𝛼 ∩ 𝑄 onto 𝑆. (d) A diagram of 𝛼 ∩ 𝑄, with the height order indicated by numeric labels: 𝑖 > 𝑗 means
𝑖 is higher than 𝑗. (e) Another diagram of 𝛼 ∩ 𝑄 obtained by using a different height preserving deformation. (f)
This is the same diagram of (e), with the height order indicated by the direction of the boundary line.

(1) Every vertex of 𝛼 is either a sink or a source and either 1-valent or 𝑛-valent. We denote the set
of 1-valent vertices, called endpoints of 𝛼, by 𝜕𝛼.

(2) Each edge of the graph is a smooth embedding of the closed interval [0,1] into𝑀.
(3) 𝛼 is equipped with a framing that is a continuous nonvanishing vector field transversal to 𝛼.

In particular, the framing at a vertex is transversal to all incident edges.
(4’) The set of half-edges at every 𝑛-valent vertex is cyclically ordered.
(5’) The endpoints of 𝛼 lie in  and the framing at these endpoints is a tangent vector of  ,

pointing in the direction of the orientation of . We call such tangent vector positive.

Webs are considered up to continuous isotopy within their space.
Note that the only difference between the unbased 𝑛-tangles of Subsection 3.3 and 𝑛-webs in

the cube 𝑄 marked with Λ𝑙, Λ𝑟 is the framing at their endpoints. The difference explains why
half-twists appear in our theory.
The height order on 𝜕𝛼 is the partial order in which two points 𝑥, 𝑦 ∈ 𝜕𝛼 are comparable if and

only if they belong to the samemarking, and 𝑥 > 𝑦, or 𝑥 is higher than 𝑦, if going along the positive
direction of the marking we encounter 𝑦 first. We say 𝑥 and 𝑦 are consecutive if there is no 𝑧 ∈ 𝜕𝛼

such that 𝑥 > 𝑧 > 𝑦 or 𝑦 > 𝑧 > 𝑥.
To depict a local part of an𝑛-web𝛼we consider the intersection of𝛼with the cube𝑄 = [−1, 1] ×

(−1, 1)2 embedded into𝑀, presented in Figure 6a. The cube 𝑄 can be either in the interior of𝑀
or its right side, {1} × (−1, 1)2, lies in 𝜕𝑀.

∙ If 𝑄 is in the interior of𝑀 then we assume that 𝛼 ∩ 𝑄 is an 𝑛-tangle, and depict 𝛼 ∩ 𝑄 by its 𝑛-
tangle diagrams on the shaded square, as in Subsection 3.3. In particular, for all drawn diagrams
the framing is perpendicular to the page and pointing to the reader, and the cyclic order of
half-edges at each 𝑛-valent vertex is counterclockwise.

∙ In the second case, we assume that 𝑄 ∩ 𝜕𝑀 is equal to the right face of 𝑄, and 𝑄 ∩ is a
subinterval of amarking 𝛽 depicted pointing in the direction of the 𝑧-axis, as in Figure 6a. In the
𝑄 coordinates, 𝛽 ∩ 𝜕𝑀 = {1} × {0} × (−1, 1). Let 𝛽⟂ = Λ𝑟, the right side of the shaded square.
As in the previous case, we assume that the framing points to the reader. (Note the difference
between webs in 𝑀 and tangles in 𝑄: the boundary points of 𝛼 in 𝑄 are in 𝛽, while the right
endpoints tangles in 𝑄 are in Λ𝑟 = 𝛽⟂.) By an isotopy, we can bring 𝛼 ∩ 𝑄 to a general position
with respect to the projection 𝑝 ∶ ℝ3 → ℝ2, except that all the points in 𝜕𝛼 ∩ 𝛽 project to the
same point, see Figure 6c. To resolve this issue, first we define a height-preserving deformation
of 𝑄 as a continuous family of diffeomorphisms 𝜙𝑡 ∶ 𝑄 → 𝑄, 𝑡 ∈ [0, 1], supported in a small
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34 of 93 LÊ and SIKORA

neighborhood of the right face of 𝑄 and preserving the 𝑧-coordinate, that is, the height above
the page. We use such a height-preserving deformation to bring 𝛼 to 𝛼′ whose endpoints on
the right face of 𝑄 have distinct projections (through 𝑝). The image 𝑝(𝛼′ ∩ 𝑄) together with
the usual over- and undercrossing data and with the linear order of its boundary points on
𝛽⟂ (induced from the height order) is a diagram of 𝛼 ∩ 𝑄. For example, Figure 6d shows a
diagram of Figure 6b. Note however that a different height-preserving deformation can give
rise to different diagram, see for example Figure 6e. Note that 𝛼′ is not an 𝑛-web because its
endpoints are not in in general.

Although the height order of web ends in 𝛼 ∩ 𝑄 can be always indicated by integers as in
Figure 6d–e, in this paper we will always use the following convention: when presenting 𝛼 ∩ 𝑄 ⊂

𝑀 diagrammatically, we will choose a direction of 𝛽⟂ (indicating it by an arrow down or up) and
arrange for the height order of web ends in 𝛼 ∩ 𝑄 to increase monotonically (without gaps) in the
indicated direction. For example, Figure 6f indicates theweb in part (e). Note that the height order
of endpoints of the 𝛼 outside the drawn part can be arbitrary.

4.2 Skein relations for 𝒏-webs

A state of an 𝑛-web 𝛼 is a map 𝑠 ∶ 𝜕𝛼 → {1, 2, … , 𝑛}. The value 𝑠(𝑥), for 𝑥 ∈ 𝜕𝛼, is called the state
of 𝑥. A web with a state 𝑠 is called stated.
We will consider stated 𝑛-webs up to isotopy (in the space of all stated 𝑛-webs) and denote the

set of their isotopy classes by𝑛(𝑀, ).
Recall that the ground ring 𝑅 is commutative and it comes with a distinguished invertible 𝑣 =

𝑞1∕2𝑛 ∈ 𝑅. The stated 𝑆𝐿(𝑛)-skein module of (𝑀, ), denoted by 𝑛(𝑀, ), is the quotient of the
free 𝑅-module 𝑅𝑛(𝑀, ) by the submodule 𝑆𝑘𝑅𝑒𝑙𝑛(𝑀, ) generated by the following internal
relations (43)–(50), which are the basic internal annihilators, and boundary relations (47)–(50),
which comes from the basic right annihilators:

(43)

(44)

(45)

(46)

where the ellipse enclosing 𝜎+ is theminimum crossing positive braid representing a permutation
𝜎 ∈ 𝑆𝑛 and 𝓁(𝜎) is the length of 𝜎 ∈ 𝑆𝑛, as before.
The remaining relations in 𝑆𝑘𝑅𝑒𝑙𝑛(𝑀, ) take place near markings where we use the conven-

tion in Subsection 4.1 about height order. Thus, the bold boundary line of a shaded rectangle is a
part of 𝛽⟂, orthogonal to a marking 𝛽, and if it has a direction, then the endpoints on that part are
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 35 of 93

consecutive in the height order, given by the direction. The height order outside the drawn part
of 𝛽⟂ can be arbitrary. Here are the boundary relations:

(47)

(48)

(49)

(50)

where the values 𝛿𝑗<𝑖, 𝛿𝑖,𝑗, 𝑎, 𝑐1, … , 𝑐𝑛 were defined in Subsection 2.1 and the small white circles
represent an arbitrary direction of the edges (left-to-right or right-to-left), consistent for the entire
equation, as before. The black circle represents the opposite direction.
We show in Proposition 7.5 that if [𝑛 − 2]! is invertible in 𝑅 then Relation (50) is a consequence

of Relations (43)–(49).

4.3 Eliminating sinks and sources

Proposition 4.2. For anymarked 3-manifold, 𝑛(𝑀, ) is spanned by stated 𝑛-webs with no sinks
nor sources.

Proof. If  = ∅ then the numbers of sinks and sources in any 𝑛-web coincide and they can
be eliminated by Relation (46). If  ≠ ∅, then sinks and sources can be eliminated by Relation
(47). □

Nonetheless, the use of sinks and sources in our theory makes it much more manageable.

4.4 Change of ground ring

We will use the notation 𝑛(𝑀, , 𝑅) when we need to make the coefficient ring 𝑅 explicit. By
our assumptions, 𝑅 is an algebra overℤ[𝑣±1]. The right exactness of tensor product gives a natural
isomorphism

𝑛(𝑀, , ℤ[𝑣±1]) ⊗ℤ[𝑣±1] 𝑅
≅
6→ 𝑛(𝑀, , 𝑅).

Therefore, many properties of 𝑛(𝑀, , 𝑅) follow from those of 𝑛(𝑀, , ℤ[𝑣±1]).
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36 of 93 LÊ and SIKORA

4.5 Functoriality

An embedding of a marked 3-manifold (𝑀, ) into a marked 3-manifold (𝑀′, ′) is an ori-
entation preserving proper embedding 𝑓 ∶ 𝑀 ↪ 𝑀′ that maps  into  ′ preserving their
orientations. Clearly, 𝑓 induces an 𝑅-module homomorphism 𝑛(𝑓) ∶ 𝑛(𝑀, ) → 𝑛(𝑀

′, ′)

mapping each 𝑛-web 𝛼 to 𝑓(𝛼) with its framing transformed by the differential 𝑓∗ ∶ 𝑇𝑀 → 𝑇𝑀′.
That homomorphism depends only on the isotopy class of 𝑓 (in the embeddings). A morphism
from (𝑀, ) to (𝑀′, ′) is an isotopy class of embeddings from (𝑀, ) to (𝑀′, ′). Hence,
𝑛(⋅) defines a functor from the category of marked 3-manifolds to the category of 𝑅-modules.

Example 4.3. Let (𝑀, ) be a marked 3-manifold. For any closed subset 𝑋 of 𝜕𝑀 − ,
its complement (𝑀 − 𝑋, ) is a marked 3-manifold as well and the natural embedding 𝜄 ∶

(𝑀 − 𝑋, ) ↪ (𝑀, ) is a morphism called a pseudo-isomorphism. It induces an 𝑅-module
isomorphism 𝜄∗ ∶ 𝑛(𝑀

′, )
≃
6→ 𝑛(𝑀, ).

In this paper, we will consider certain geometric operations on 3-manifolds, like cutting and
gluing them along disks, which produce new manifolds defined up a diffeomorphisms only. We
will address this issue with the aid of the following notion:
A strict isomorphism class ofmarked 3-manifolds is a family ofmarked 3-manifolds (𝑀𝑖,𝑖), 𝑖 ∈

𝐼 equipped with isomorphisms 𝑓𝑖𝑗 ∶ (𝑀𝑖,𝑖) → (𝑀𝑗,𝑗) for any two indices 𝑖, 𝑗 such that 𝑓𝑖𝑖 =

id and 𝑓𝑗𝑘◦𝑓𝑖𝑗 = 𝑓𝑖𝑘. For a strict isomorphism class of marked 3-manifolds we can identify all
𝑅-modules 𝑛(𝑀𝑖,𝑖) via the isomorphisms 𝑛(𝑓𝑖𝑗).
For example, to glue a pair of boundary edges 𝑒1 and 𝑒2 we first fix an orientation reversing

diffeomorphism 𝜙 ∶ 𝑒1 → 𝑒2 and then identify 𝑥 ≡ 𝜙(𝑥) for all 𝑥 ∈ 𝑒1. Various 𝜙’s give various
surfaces, but they belong to the same strict isomorphism class.
For a disjoint union of𝑀1 and𝑀2, the map

𝑛(𝑀1,1) ⊗ 𝑛(𝑀2,2) → 𝑛(𝑀1 ⊔ 𝑀2,1 ⊔2)

sending 𝛼1 ⊗ 𝛼2 to 𝛼1 ⊔ 𝛼2 is an isomorphism. We will identify 𝑛(𝑀1 ⊔ 𝑀2,1 ⊔2) with
𝑛(𝑀1,1) ⊗ 𝑛(𝑀2,2) though this map.

4.6 Grading

For a stated 𝑛-web 𝛼 in (𝑀, ) and a marking 𝛽 ⊂  we define the 𝛽-degree

deg𝛽(𝛼) =
∑

𝑥∈𝛼∩𝛽

𝑑𝑠(𝑥) =
∑

𝑥∈𝛼∩𝛽

(
𝑠(𝑥) −

𝑛 + 1

2

)
∈

1

2
ℤ,

where 𝑠(𝑥) denotes the state of 𝛼 at 𝑥. Note that the 𝛽-degree is preserved by the skein relations
(43)–(50) and, therefore, it descends to 1

2
ℤ-valued grading on 𝑛(𝑀, ).

4.7 Useful identities

Recall that 𝑎, 𝑡, 𝑐𝑖 were defined in Subsection 2.1.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 37 of 93

Proposition 4.4. The following identities hold in any stated skein module 𝑛(𝑀, ):

(51)

where the label in the diagram on the right indicates 𝑛 − 2 parallel horizontal edges.

(52)

(53)

(54)

(55)

(56)

(57)

(58)

Proof. Identities (51) and (52) are, respectively, (30) and (29). As remarked in Subsection 3.3,
these identities are consequences of the basic internal annihilators, which are skein relations for
𝑛(𝑀, ).
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38 of 93 LÊ and SIKORA

Proof of (53): The web on the right is

nonzero only for 𝜏(𝑖) = 𝜎(𝑖) for 𝑖 = 1, …𝑛. As 𝓁(𝜏) = 𝓁(𝜎) then, the above equals

𝑎(−𝑞)𝓁(𝜎) ⋅ 𝑐1 ⋅ … ⋅ 𝑐𝑛 = 𝑎𝑡𝑛∕2(−𝑞)𝓁(𝜎),

by (4).

Proof of (54):
𝜎(1)

𝜎(2)

𝜎(𝑛)

⋮ =

(n)

(2)
(1)

...
=

(
−𝑞

−
(
1+

1

𝑛

))(𝑛
2
)

𝜎(𝑛)

𝜎(2)

𝜎(1)

⋮
by (52). As

(
−𝑞

−
(
1+ 1

𝑛

))(𝑛2)
= (−1)(

𝑛
2)𝑞−𝑛2−1

2 , (59)

the statement follows by (53).

Proof of (55): By composing (47) with on the left, we obtain

by (52). Now the statement follows by (59) and by rotating these skeins 180◦.
Proof of (56): The left side equals

by (44).

Proof of (57): By (44) and (49), .

Now the statement follows by 180◦ rotation and the fact that 𝑡𝑐−1
𝑖

= 𝑐𝑖 , see (4).
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 39 of 93

F IGURE 7 An example of a splitting of an 𝑛-web (in green) intersecting the splitting disk 𝐷 twice.

Proof of (58):

by (50). □

4.8 Splitting homomorphism

As mentioned in the introduction, an important property of stated skein modules is that they
behave in a simple manner under the splitting of 3-manifolds along disks. This property, known
as the Splitting Theorem, was first proved by [11, 41] for the Kauffman bracket skein modules
(𝑛 = 2) and then by [28] for 𝑛 = 3. We formulate it now and prove for all 𝑛 below.
Suppose (𝑀, ) is a marked 3-manifold and 𝐷 is a properly embedded closed disk in𝑀 (and,

hence, 𝜕𝐷 ⊂ 𝜕𝑀), disjoint from the closure of  . By removing a collar neighborhood of 𝐷 we
get a topological 3-manifold 𝑀′ whose boundary contains two copies 𝐷1 and 𝐷2 of 𝐷 such that
gluing 𝐷1 to 𝐷2 yields𝑀 together with a surjective homomorphism pr ∶ 𝑀′ → 𝑀. The manifold
𝑀′ has a smooth structure with corners. However, these corners can be smoothed out uniquely
up to isotopy.
Let𝛽 ⊂ 𝐷 be an oriented open interval, and𝛽1 ⊂ 𝐷1 and𝛽2 ⊂ 𝐷2 be preimages of𝛽. The splitting

of (𝑀, ) along (𝐷, 𝛽), denoted by 𝖼𝗎𝗍(𝐷,𝛽)(𝑀, ), is the marked 3-manifold (𝑀′, ′), where
 ′ =  ∪ 𝛽1 ∪ 𝛽2. It is easy to see that 𝖼𝗎𝗍(𝐷,𝛽)(𝑀, ) is defined uniquely as a strict isomorphism
class, see Subsection 4.5.
Let 𝛼 be a stated 𝑛-web in (𝑀, ). This web in this subsection is given by a specific embedding

and, hence, not considered up to isotopy. It is said to be (𝐷, 𝛽)-transverse if the vertices of 𝛼 are
not in 𝐷, 𝛼 is transverse to 𝐷, 𝛼 ∩ 𝐷 ⊂ 𝛽, and the framing at every point of 𝛼 ∩ 𝛽 is a positive
tangent vector of 𝛽. Note that every web 𝛼 in (𝑀, ) can be isotoped so that it is (𝐷, 𝛽)-transverse.
Suppose in addition that 𝛼 is stated. Then the 𝑛-web pr−1(𝛼) of (𝑀′, ′) is stated everywhere
except for its endpoints in 𝛽1 ∪ 𝛽2, see Figure 7. Given any map 𝑠 ∶ 𝛼 ∩ 𝛽 → {±}, let 𝛼(𝑠) denote
the (partially stated) 𝑛-web pr−1(𝛼) in (𝑀′, ′) with additional states 𝑠(pr(𝑥)) for 𝑥 ∈ pr−1(𝛼) ∩

(𝛽1 ∪ 𝛽2). Hence, 𝛼(𝑠) is fully stated. We call 𝛼(𝑠) a lift of 𝛼. If |𝛼 ∩ 𝛽| = 𝑘 then 𝛼 has 𝑛𝑘 distinct
lifts.

Theorem 4.5. Let 𝐷 be a closed disk properly embedded in a marked 3-manifold (𝑀, ) and let 𝛽
be an oriented open arc in𝐷. Let 𝖼𝗎𝗍(𝐷,𝛽)(𝑀, ) be the splitting of (𝑀, ) along (𝐷, 𝛽), as described
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40 of 93 LÊ and SIKORA

F IGURE 8 (a) The cube 𝑄̄. The disk 𝐷 is the middle square containing the lines 𝛽 and 𝛽⟂. (b) The splitting
homomorphism Θ.

above. Then there is a unique 𝑅-module homomorphism

Θ(𝐷,𝛽) ∶ 𝑛(𝑀, ) → 𝑛(𝖼𝗎𝗍(𝐷,𝛽)(𝑀, ))

sending every stated (𝐷, 𝛽)-transverse 𝑛-web 𝛼 in (𝑀, ) to the sum of all of its lifts,

Θ(𝐷,𝛽)(𝛼) =
∑

𝑠∶ 𝛼∩𝛽→{±}

𝛼(𝑠). (60)

Note that for any arcs 𝛽, 𝛽′ in 𝐷 there is an isomorphism between marked 3-manifolds
𝖼𝗎𝗍(𝐷,𝛽)(𝑀, ) ≃ 𝖼𝗎𝗍(𝐷,𝛽′)(𝑀, ), inducing an isomorphism of stated skein modules that com-
mutes with the splitting homomorphisms. Consequently, we will often denote Θ(𝐷,𝛽) and
𝖼𝗎𝗍(𝐷,𝛽)(𝑀, ) by Θ𝐷 and 𝖼𝗎𝗍𝐷(𝑀, ) when it does not lead to confusion.

Remark 4.6. It is easy to see that splitting homomorphisms along any two disjoint splitting disks
𝐷1 and 𝐷2 commute,

Θ𝐷1
◦Θ𝐷2

= Θ𝐷2
◦Θ𝐷1

.

Remark 4.7. By removing a closed subset of 𝜕𝑀 disjoint from  and using the pseudo-
isomorphism of Example 4.3, we can apply the theorem to many cases when 𝐷 is a closed
disk with some closed intervals on its boundary removed. This fact will be useful in Section 5
where we will apply the Splitting Theorem to thickened surfaces Σ × (−1, 1) cut along open disks,
(−1, 1) × (−1, 1).

In general, the splitting homomorphism is not injective. For an example in the 𝑛 = 2 case, see
a forthcoming paper by Costantino and Lê. We will discuss the injectivity and the image of the
splitting homomorphism for thickened surfaces in Section 5.

Proof of the Splitting Theorem. We identify a closed collar neighborhood of𝐷 with the closed cube
𝑄 = [−1, 1]3 so that 𝐷 = {0} × [−1, 1]2 and 𝛽 is an open interval subset of {0} × {0} × [−1, 1], as in
Figure 8a. For a stated (𝐷, 𝛽)-transverse 𝑛-web 𝛼 let Θ(𝛼) ∈ 𝑛(𝖼𝗎𝗍(𝐷,𝛽)(𝑀, )) be the right side
of Equation (60). To prove the theorem, we need to show Θ(𝛼) is invariant under isotopies of 𝛼.
An ambient isotopy of 𝛼 in 𝑀 can be decomposed into a sequence of isotopies, each of which

is supported in a small neighborhood of 𝐷 or supported outside of 𝐷. The latter clearly preserves
Θ, so we only need to check invariance of Θ under isotopies with support in the interior of 𝑄̄.
By an isotopy outside 𝐷 we can assume that 𝛼 ∩ 𝑄 is an 𝑛-tangle. To get a diagram of 𝛼 ∩ 𝑄 we
first use height preserving deformation near 𝐷 to move 𝛼 to a general position with respect to
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 41 of 93

the projection onto [−1, 1]2 × {0} (as always considered in page). The points in 𝛼 ∩ 𝛽, after that
deformation, project to points on 𝛽⟂. Wewill always choose a height preserving deformation such
that the height order on 𝛽⟂ is given by the direction from the top to the bottom, as in Figure 8b.
Now we can decompose a diagram of 𝛼 into elementary tangle diagrams listed in (13)–(15). If

𝛼′ is isotopic to 𝛼 by an isotopy in 𝑄, then its diagram can be obtained by a sequence of opera-
tionsmoving elementary tangles through 𝛽, and the height exchangemove, discussed in point (d)
below. Therefore, it is enough to verify that Θ(𝛼) is preserved by the following four moves.

(a) Passing a cap through 𝛽. The invariance of Θ(𝛼) under this move is a consequence of skein
relations (48) and (57):

By the same argument,

(b) Passing a sink or a source through 𝛽. The invariance of Θ under this move is a direct
consequence of skein relations (53) and (55):

(c) Passing a positive crossing through 𝛽:

by (50) and (58).
(d) Passing a negative crossing through 𝛽 follows from (c) by composing the fragments of dia-

grams on the left and the right side of the above identity with a negative crossing on their
both sides.

(e) Height exchange of two consecutive points of 𝛼 ∩ 𝛽 as in Figure 9. The invariance ofΘ under
thismoves follows from themove in (c) or (d) if the arcs involved have coinciding orientations.
If Figure 9 involves arcs in opposite directions, then the left side of the diagram on the right
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42 of 93 LÊ and SIKORA

F IGURE 9 Height exchange move.

can be decomposed into elementary diagrams and all of them can be moved to the right side
by (a)–(d).

The above argument shows that Θ(𝛼) is preserved by isotopies of 𝛼. To finish the proof off,
observe that Θmaps the defining relations (43)–(50) to 0 in 𝑛(𝑀

′,𝑁′), because they are all local
and can be moved away from 𝐷. □

4.9 Reversing orientations of 3-manifolds and of webs

An orientation of a web consists of orientations of all its loop components and directions of all
its edges. Let denote an 𝑛-web 𝛼 with its orientation reversed (and unchanged framing). As the
defining relations (43)–(50) of 𝑛(𝑀, ) are invariant under the total orientation inversion, we
have

Corollary 4.8.

is a well-defined 𝑅-module automorphism.

Let (𝑀, ) denote 𝑀 and  with reversed orientations. Let 𝑅̄ be the ring 𝑅 with the distin-
guished element 𝑣−1 instead of 𝑣. For an 𝑛-web 𝛼 of (𝑀, ) let 𝛼 be the 𝑛-web in (𝑀, ) obtained
from 𝛼 by negating its framing, 𝑓 → −𝑓, but retaining the orientation.

Theorem 4.9.

(1) Any ring isomorphism 𝜘 ∶ 𝑅 → 𝑅̄ sending 𝑣 to 𝑣−1 extends to an isomorphism of 𝑅-modules
𝜘(𝑀, ) ∶ 𝑛(𝑀, , 𝑅)

≅
6→ 𝑛(𝑀, , 𝑅̄) sending every stated 𝑛-web 𝛼 to 𝛼, where 𝑛(𝑀, , 𝑅̄)

is an 𝑅-module via 𝜘 ∶ 𝑅 → 𝑅̄.
(2) The composition 𝜘

(𝑀, )
◦𝜘(𝑀, ) is the identity on 𝑛(𝑀, , 𝑅).

The above isomorphism is called the orientation reversion isomorphism. (Note that for some
rings 𝑅, an isomorphism 𝜘 ∶ 𝑅 → 𝑅̄ as above may not exist or be nonunique.)
Proof of Theorem 4.9: By abuse of notation, we define an 𝑅-linear map 𝜘(𝑀, ) first as

𝜘(𝑀, ) ∶ 𝑅𝑛(𝑀, ) → 𝑛(𝑀, ), 𝜘(𝑀, )(𝛼) = 𝛼.

One checks immediately that map factors through Relations (43)–(45).
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 43 of 93

By our graphical convention, a diagram of 𝛼 near a marking is given by switching all crossings

in a diagram 𝛼 and by reversing of the direction of the vertical line 𝛽⟂. For example, if

then It is clear that 𝜘(𝑀, ) maps (46) to the equality of Lemma 4.10 and, therefore, it

preserves that relation.
To see that 𝜘(𝑀, ) factors through (47) substitute 𝜎′ for 𝜎 in (55), where 𝜎′(𝑖) = 𝜎(𝑖), for 𝑖 =

1, … , 𝑛, and rotate that equation 180◦. As 𝓁(𝜎′) =
(𝑛
2

)
− 𝓁(𝜎), we get

As

(−𝑞)(
𝑛
2)𝑡𝑛∕2 = 𝑞(

𝑛
2)+

𝑛2−1
2 = 𝑎−2,

by Equation (2), we get the desired relation

Furthermore, 𝜘(𝑀, ) maps (48) and (49) to (56) and (57).
Let us show now that 𝜘(𝑀, ) factors through (50). We need to verify that

By (43), the left side is

and as 1 − 𝛿𝑗<𝑖 = 𝛿𝑗̄<𝑖 + 𝛿𝑖,𝑗 , the above equation reduces to

which is (58) rotated 180◦ (and with 𝑖 and 𝑗 interchanged).
Hence, we have shown that the above map factors to

𝜘(𝑀, ) ∶ 𝑛(𝑀, ) → 𝑛(𝑀, ).
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44 of 93 LÊ and SIKORA

It is an 𝑅-module homomorphism by definition.
Part (2) is obvious.

Lemma 4.10. One has

where 𝜎− is the minimal crossing negative braid representing 𝜎 ∈ 𝑆𝑛.

Proof. Let 𝜏(𝑖) = 𝑛 + 1 − 𝑖, for 𝑖 = 1, … , 𝑛. Then 𝜏− is the negative half-twist 𝑛-braid. By applying
it to the left side of (46), we obtain

(61)

by (52). Note that 𝜏−𝜎+ = (𝜏𝜎)− for every 𝜎 ∈ 𝑆𝑛 and that by (5),

𝓁(𝜎) + 𝓁(𝜏𝜎) = 𝓁(𝜏) =

(
𝑛

2

)
.

Therefore, by denoting 𝜏𝜎 by 𝜎′, the right side of (61) reduces to

and, hence, (61) becomes

where

𝐷 = −
𝑛 + 1

𝑛
⋅
(
𝑛

2

)
+

(
𝑛

2

)
+

1 − 𝑛

𝑛

(
𝑛

2

)
= −

(
𝑛

2

)
. □

4.10 Marking automorphisms

Consider a function 𝜂 ∶ {1, … , 𝑛} → 𝑅∗ such that

𝑛∏
𝑖=1

𝜂(𝑖) = 1 and 𝜂(𝑖)𝜂(𝑖) = 1 for every 𝑖,
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 45 of 93

where the bar denotes the conjugation, 𝑖 = 𝑛 + 1 − 𝑖, as before. It is easy to see that for every such
𝜂 and everymarking 𝛽 in there is an 𝑅-module automorphism 𝜙𝜂,𝛽 of𝑛(𝑀, ) sending stated
𝑛-webs 𝛼 to

𝜙𝜂,𝛽(𝛼) =
∏

𝑥∈𝛼∩𝛽

𝜂(𝑠(𝑥)) ⋅ 𝛼

where 𝑠(𝑥) is the state of the endpoint 𝑥 of 𝛼. We call 𝜙𝜂,𝛽 amarking automorphism of 𝑛(𝑀, ).
When 𝜂𝑖 = g𝑖 = (−1)𝑛−1𝑞2𝑖−𝑛−1, as in Equation (42), we denote 𝜙𝜂,𝛽 by g𝛽 .

4.11 Half-twist automorphisms

Proposition 4.11. For any marking 𝛽 in there exist unique 𝑅-linear isomorphisms

htw𝛽, h̃tw𝛽 ∶ 𝑛(𝑀, ) → 𝑛(𝑀, )

sending any stated 𝑛-web 𝛼 in (𝑀, ) with 𝑘 endpoints on 𝛽 to

htw𝛽

⎛⎜⎜⎜⎜⎝
𝑖𝑘

𝑖2

𝑖1

⋮
⎞⎟⎟⎟⎟⎠
=

(
𝑘∏

𝑗=1

𝑐𝑖𝑗

)
⋅

𝑖𝑘

𝑖2

𝑖1

⋮
=

(
𝑘∏

𝑗=1

𝑐𝑖𝑗

)
⋅ , (62)

and to

h̃tw𝛽

⎛⎜⎜⎜⎜⎝
𝑖𝑘

𝑖2

𝑖1

⋮
⎞⎟⎟⎟⎟⎠
=

(
𝑘∏

𝑗=1

𝑐𝑖𝑗

)
⋅

𝑖𝑘

𝑖2

𝑖1

⋮
=

(
𝑘∏

𝑗=1

𝑐𝑖𝑗

)
⋅ , (63)

where𝐻 is the positive half-twist, . (The orientations of the horizontal edges are arbitrary.)

We call htw𝛽 and h̃tw𝛽 the half-twist automorphisms. Note that h̃tw𝛽 coincides with htw𝛽

composed with g𝛽 of Subsection 4.10, because 𝑐𝑖 = 𝑐𝑖(−1)𝑛−1𝑞2𝑖−𝑛−1.

Remark 4.12. We will show in Subsection 7.1 that every marking in  defines a left action of a
completion 𝑈𝐿 of the Lusztig integral version 𝑈𝐿 of 𝑈𝑞(𝑠𝑙𝑛). That completion contains the half-
twist element 𝑋 and the charmed element g of Subsection 3.9. The automorphisms htw𝛽 and g𝛽
coincide with the actions of 𝑋 and g , respectively.

The map htw𝛽 generalizes the inversion along an edge, for the stated Kauffman bracket skein
algebras of thickened surfaces in [15]. However, it is the inverse of that map.
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46 of 93 LÊ and SIKORA

The inverse of htw𝛽 is given by

htw−1
𝛽

⎛⎜⎜⎜⎜⎝
𝑖𝑘

𝑖2

𝑖1

⋮
⎞⎟⎟⎟⎟⎠
=
⎛⎜⎜⎝

1∏𝑘

𝑗=1 𝑐𝑖𝑗

⎞⎟⎟⎠ ,

where 𝐻̄ denotes the negative half-twist, as before.

Proof of Proposition 4.11. By abuse of notation, let us first consider a map htw𝛽 ∶ 𝑛(𝑀, ) →

𝑛(𝑀, ) sending any stated 𝑛-web 𝛼 in (𝑀, ) with 𝑘 endpoints on 𝛽 to

Obviously, htw𝛽 preserves the internal skein relations, (43)–(46). It maps (47) to

The right side equals

by (52). By (4),
(∏𝑛

𝑖=1 𝑐𝑖
)
⋅ (−𝑞−𝑛+1

𝑛 )
𝑛(𝑛−1)

2 = 1 and, hence, the expression above coincides with the

right side of (47) by the substitution 𝜎 → 𝜎′, where 𝜎′(𝑖) → 𝜎(𝑖), for 𝑖 = 1, … , 𝑛, which does not
affect the permutation length. Consequently, htw𝛽 preserves (47).
The preservation of the remaining relations, (48)–(50) by htw𝛽 is an immediate consequence

of the left boundary relations (56)–(58).
This shows that our map descends indeed to an 𝑅-module homomorphism

htw𝛽 ∶ 𝑛(𝑀, ) → 𝑛(𝑀, ).
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 47 of 93

Similarly, it is straightforward to show that there is a well-defined map htw′
𝛽
∶ 𝑛(𝑀, ) →

𝑛(𝑀, ) sending any 𝑛-web 𝛼 in (𝑀, ) with 𝑘 endpoints on 𝛽 to

As htw′
𝛽
is an inverse of htw𝛽 , both are isomorphisms. □

4.12 Essential uniqueness of the skein relations of 𝒏(𝑴, )

In the context of our theory, it is natural to ask how arbitrary are the constants 𝑎, 𝑐𝑖 in Sub-
section 2.1. For a tuple 𝒖 = (𝑢, 𝑢1, … , 𝑢𝑛) of 𝑛 + 1 invertible elements of 𝑅 let 𝑛(𝑀, ; 𝒖) be
defined the same as 𝑛(𝑀, ), with 𝑐𝑖 and 𝑎 replaced, respectively, by 𝑐′

𝑖
= 𝑐𝑖(𝑢𝑖𝑢𝑖)

−1 and 𝑎′ =

𝑎(
∏𝑛

𝑖=1 𝑢𝑖)∕𝑢, and with the right side of (46) multiplied by 𝑢2. We denote the set of 𝑛-valent
vertices of 𝛼 by 𝑉𝑛(𝛼). Then it is easy to see that the map

𝛼 → 𝛼 𝑢|𝑉𝑛(𝛼)| ∏
𝑥∈𝜕𝛼

𝑢𝑠(𝑥),

defined on stated 𝑛-webs, extends to an 𝑅-linear isomorphism from 𝑛(𝑀, ) to 𝑛(𝑀, ; 𝒖).
One can show that the new stated skein module 𝑛(𝑀, ; 𝒖) satisfies the splitting homomor-

phism if and only if the following holds:

𝑢𝑖 = ±1,

𝑛∏
𝑖=1

𝑢𝑖 = 1 𝑢𝑖𝑢𝑖 = 1, for every 𝑖.

Furthermore, all properties of 𝑛(𝑀, ) formulated so far have their version for 𝑛(𝑀, ; 𝒖).

5 STATED SL(𝒏)-SKEIN ALGEBRAS OF SURFACES

The theory of stated SL(𝑛)-skein modules is particularly rich for thickened surfaces 𝑀 = Σ ×

(−1, 1). Note that any finite set 𝐵 ⊂ 𝜕Σ defines markings  = 𝐵 × (−1, 1) for which 𝑛(𝑀, )

is an 𝑅-algebra with the product of webs 𝛼1 ⋅ 𝛼2 given by stacking 𝛼1 on top of 𝛼2. It is convenient,
however, to represent unmarked boundary components of Σ by punctures and to separate points
of 𝐵 by ideal boundary points. That leads to the notion of a punctured bordered surface, consid-
ered, for example, in [15, 41] already. In particular, a punctured bordered surface encapsulates
information about the points 𝐵 in it.
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48 of 93 LÊ and SIKORA

F IGURE 10 Eliminating crossings.

5.1 Punctured bordered surface

A punctured bordered surface (a pb surface for short) Σ is an oriented surface with possibly empty
boundary 𝜕Σ such that each connected component of 𝜕Σ is an open interval. These components
are called boundary edges.
For simplicity, we will assume that Σ is of finite type in the sense that Σ = Σ̄ ⧵  , where Σ̄ is

a compact oriented surface and  ⊂ Σ̄ is a finite set, called the ideal points of Σ. Note that each
connected component of 𝜕Σ̄meets  . (However, some of the points of  may be in the interior of
Σ.)
An ideal arc in Σ is the image of a proper embedding 𝑐 ∶ (0, 1) ↪ Σ. This means 𝑐 can be

extended to an immersion 𝑐 ∶ [0, 1] → Σ such that 𝑐(0), 𝑐(1) ∈  . An ideal arc is trivial if it bounds
a disk in Σ.
In each boundary edge 𝑒 choose a point 𝑏𝑒. Let 𝑛(Σ) = 𝑛(𝑀, ), where𝑀 = Σ × (−1, 1) and

 is the union of all 𝑏𝑒 × (−1, 1), each having the natural orientation of the interval (−1, 1). As
up to a canonical isomorphism, 𝑛(Σ) does not depend on the specific choice of the points 𝑏𝑒, we
do not specify them in our notation. An 𝑛-web in (𝑀, ) is simply called an 𝑛-web over Σ.
For stated 𝑛-webs 𝛼 and 𝛽 over Σ let their product 𝛼𝛽 ∈ 𝑛(Σ) be the result of stacking 𝛼 above

𝛽. This product turns 𝑛(Σ) into an 𝑅-algebra.
According to the graphical convention of Subsection 4.1, an 𝑛-web over Σ is presented by its

diagramonΣ, which is the projection of𝛼 ontoΣwith the over/undercrossing information at every
double point. Before projecting, we use height-preserving deformation near the markings 𝑏𝑒 ×

(−1, 1) to make the projections of endpoints of 𝛼 distinct. As before, the height order at endpoints
of the diagram on each boundary edge is part of the diagram.
The orientation of Σ induces an orientation on its boundary. When part of Σ is drawn on a page

of paper, which is identifiedwith the standard𝑋𝑌-plane, the orientation of 𝜕Σ is the counterclock-
wise direction. A diagramwhere the height order on a boundary edge 𝑒 is given by the orientation
of 𝑒 induced from that of Σ (respectively, the opposite orientation) is called positively (respectively,
negatively) ordered on 𝑒.
Given two edges 𝑒1, 𝑒2 of a pb surface Σ, not necessarily connected, the gluing Σ∕(𝑒1 = 𝑒2) is the

result of identifying 𝑒1 with 𝑒2 via a diffeomorphism 𝑒1 → 𝑒2 such that the resulting surface has an
orientation induced from that of Σ. Such a surface is defined uniquely up to strict isomorphisms.
A pb surface Σ is essentially bordered if every connected component of it has nonempty

boundary.

Lemma5.1. If a pb surfaceΣ is essentially bordered then𝑛(Σ) is spanned by stated𝑛-web diagrams
without any of: sinks, sources, crossings, trivial loops, and trivial arcs.

Proof. Crossings can be eliminated by bringing them to near a boundary edge as in Figure 10 (left),
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 49 of 93

then expressing them as linear combinations of webs of the formFigure 10 (right) by Relation (49),
and finally eliminating them by Relation (50).
Sinks and sources, trivial loops, and trivial arcs can be eliminated by Relations (47), (45), (48),

respectively. □

5.2 Splitting homomorphism for surfaces

Let 𝑐 be an ideal arc in the interior of a pb surface Σ. The splitting 𝖼𝗎𝗍𝑐(Σ) is a pb surface having
two boundary edges 𝑐1, 𝑐2 such that Σ = 𝖼𝗎𝗍𝑐(Σ)∕(𝑐1 = 𝑐2). Let pr ∶ 𝖼𝗎𝗍𝑐(Σ) → Σ be the natural
projection map. An 𝑛-web diagram 𝐷 is 𝑐-transverse if 𝑛-valent vertices of 𝐷 are not in 𝑐 and 𝐷 is
transverse to 𝑐. Assume that 𝐷 is a stated 𝑐-transverse 𝑛-web diagram. Let ℎ be a linear order on
the set 𝐷 ∩ 𝑐. For a map 𝑠 ∶ 𝐷 ∩ 𝑐 → {1, … , 𝑛} let 𝐷(ℎ, 𝑠) be the stated 𝑛-web diagram over 𝖼𝗎𝗍𝑐(Σ)
which is pr−1(𝐷)with the height order on 𝑐1 ∪ 𝑐2 induced (via pr) from ℎ, and the states on 𝑐1 ∪ 𝑐2
induced (via pr) from 𝑠. The Splitting Theorem (Theorem 4.5) for Σ becomes

Theorem 5.2. Let 𝑐 be an interior ideal arc of a pb surface Σ. There is a unique 𝑅-linear map
Θ𝑐 ∶ 𝑛(Σ) → 𝑛(𝖼𝗎𝗍𝑐(Σ)) such that if𝐷 is a diagramof a stated𝑛-web𝛼 overΣwhich is 𝑐-transverse
and ℎ is any linear order on 𝐷 ∩ 𝑐, then

Θ𝑐(𝛼) =
∑

𝑠∶𝐷∩𝑐→{1,…,𝑛}

𝐷(ℎ, 𝑠).

The map Θ𝑐 is an 𝑅-algebra homomorphism.

Proof. The set 𝑐 × (−1, 1) is not a closed disk but we can still use Theorem 4.5, see Remark 4.7.
More precisely, let us enlarge the ideal points of Σ to open disks in Σ̄, and embed Σ into ℝ3. Let 𝑀̄
be the topological closure of Σ × (−1, 1) in ℝ3.
Then (𝑀, ) is pseudo-isomorphic to (𝑀̄, ). Applying Theorem 4.5 to split (𝑀̄, ) along the

topological closure of 𝑐 × (−1, 1) in 𝑀̄, we get the 𝑅-linear mapΘ𝑐 ∶ 𝑛(Σ) → 𝑛(𝖼𝗎𝗍𝑐(Σ)) defined
in the statement.
From the definition, it is clear that Θ𝑐 is an algebra homomorphism. □

5.3 Reflection anti-involution

For any pb surface Σ we have an involution 𝜏 ∶ Σ × (−1, 1) → Σ × (−1, 1), (𝑥, 𝑢) → (𝑥,−𝑢) that
maps webs 𝛼 to 𝜏(𝛼) (with their framing transformed by the tangent map 𝜏∗ ∶ 𝑇(Σ × (−1, 1)) →

𝑇(Σ × (−1, 1)). Given a statedweb 𝛼 inΣ × (−1, 1) let 𝛼̄ be 𝜏(𝛼)with its framing reversed, 𝑓 → −𝑓.

Proposition 5.3. For any commutative ring 𝑃 and 𝑅 = 𝑃[𝑣±1] and for any pb surface Σ, there is
a unique 𝑃-algebra anti-involution ⋅̄ ∶ 𝑛(Σ) → 𝑛(Σ) such that 𝑣 = 𝑣−1 and 𝛼̄ for stated webs 𝛼 is
defined as above.

We call ⋅̄ themirror reflectionmap.
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50 of 93 LÊ and SIKORA

F IGURE 11 Left: A surface Σ1 with a skein 𝑥. Middle: The image of 𝑥 under the negative height order
embedding of Σ1 into Σ2. Right: The image of 𝑥 under the positive height order embedding of Σ2.

Proof. Let (𝑀, ) be defined as in Subsection 5.1 and (𝑀, ) be defined as in Subsection 4.9.
Then the mirror reflection map is the composition of the orientation reversion 𝜘(𝑀, ) with 𝜏 and
hence, a 𝑃-linear isomorphism sending 𝑣 to 𝑣 = 𝑣−1 by Theorem 4.9. It is easy to see that

̄̄𝛼 = 𝛼 and 𝛼 ⋅ 𝛼′ = 𝛼′ ⋅ 𝛼̄

for stated webs 𝛼, 𝛼′. □

If 𝛼 is a stated 𝑛-web diagram over Σ then 𝛼̄ is obtained from 𝛼 by switching all the crossings
and reversing the height order on each boundary edge.

5.4 Embedding of punctured bordered surfaces

Consider a proper embedding of a pb surface Σ1 into Σ2. Note that it can map several boundary
edges of Σ1 into one boundary edge of Σ2. For a boundary edge 𝑏 of Σ2 a linear order on the set
of boundary edges of Σ1 mapped into 𝑏 is called a b-order. Fixing it for each 𝑏 defines a height
ordered embedding 𝑓 ∶ Σ1 ↪ Σ2, inducing an 𝑅-module homomorphism 𝑓∗ ∶ 𝑛(Σ1) → 𝑛(Σ2),
where 𝑓∗(𝛼) is 𝛼 with its height order on each 𝑏 determined by the 𝑏-order in addition to the
height order of 𝜕𝛼. If the 𝑏-order is given by the positive (respectively, negative) orientation of 𝑏,
we say 𝑓∗ is positively (respectively, negatively) induced from 𝑓, see Figure 11.
Note that 𝑓∗ is an 𝑅-algebra homomorphism if and only if each boundary edge of Σ2 contains

the image of at most one boundary edge of Σ1.

6 SKEIN ALGEBRAS OF BIGON AND QUANTUMGROUPS

In this section,we prove that the stated skein algebra𝑛(𝔅) of the bigon,𝔅, has a natural structure
of a co-braided Hopf algebra which is naturally isomorphic to the quantized coordinate algebra
𝑞(𝑆𝐿(𝑛)). We also show that the stated skein algebra of the monogon,𝔐, is the ground ring 𝑅.
Finally, we prove Theorem 3.11 that identifies the kernel of the map Γ.

6.1 Monogon

Let 𝐷 = {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑥2 + 𝑦2 ⩽ 1} be the standard disk with the counterclockwise orientation.
Themonogon𝔐 is the pb surface obtained by removing the bottom point (0, −1) from 𝐷.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 51 of 93

F IGURE 1 2 (a) and (b) Bigon𝔅. (c) Stated arc 𝑎𝑖
𝑗
. (d) Splitting of𝔅.

Theorem 6.1 (Proof in Subsection 6.6). The stated skein algebra 𝑛(𝔐) of the monogon 𝔐 is
isomorphic to the ground ring 𝑅 via the map 𝜇 ∶ 𝑅 → 𝑆𝑛(𝔐) given by 𝜇(𝑟) = 𝑟 ⋅ ∅.

6.2 Bigon

The bigon 𝔅 is the punctured bordered surface obtained from the standard disk 𝐷 by remov-
ing the top and the bottom points, (0, 1), (0, −1). The two edges of 𝔅 are denoted by 𝑒𝑙 and 𝑒𝑟 as
in Figure 12. Up to isotopy there are two orientation preserving auto-diffeomorphisms of 𝔅, the
identity and the rotation 𝗋𝗈𝗍 by 180◦ about the center of 𝔅. The rotation 𝗋𝗈𝗍 induces an algebra
involution 𝗋𝗈𝗍∗ ∶ 𝑛(𝔅) → 𝑛(𝔅).
A directed bigon is an oriented surface diffeomorphic to𝔅, with one ideal vertex designated as

the bottom vertex. Equivalently the direction of a bigon can be specified by choosing the left (or
right) edge.We often depict𝔅 as the square [−1, 1] × (−1, 1), as in Figure 12b. Let 𝑎𝑖𝑗 be the stated

𝑛-web over𝔅 given in Figure 12c, and let be 𝑎𝑖
𝑗
with the reverse orientation.

We will now define a Hopf algebra structure on 𝑛(𝔅) geometrically. By splitting 𝔅 along an
interior ideal arc connecting its two ideal vertices we get two directed bigons𝔅𝑙 and𝔅𝑟, for each
the bottom vertex comes from the one of 𝔅. The splitting homomorphism becomes an algebra
𝑅-homomorphism

Δ ∶ 𝑛(𝔅) → 𝑛(𝔅) ⊗ 𝑛(𝔅).

The commutativity of the splitting homomorphisms at disjoint ideal arcs shows that Δ is a co-
product. For example, from the definition one has

(64)

The natural embedding 𝜄 ∶ 𝔅 → 𝔐 (filling in the top ideal point) induces an 𝑅-linear map
𝜄∗ ∶ 𝑛(𝔅) → 𝑛(𝔐), where the left edge 𝑒𝑙 is higher than the right edge 𝑒𝑟. Let 𝜖 ∶ 𝑛(𝔅) → 𝑅

be the composition

𝜖 ∶ 𝑛(𝔅)
h̃tw𝑒𝑟
66666→ 𝑛(𝔅)

𝜄∗
66→ 𝑛(𝔐) ≃ 𝑅, (65)
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52 of 93 LÊ and SIKORA

where h̃tw𝑒𝑟
is a half-twist automorphism of Subsection 4.11. Explicitly, for a stated diagram 𝛼,

𝜖

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠
=

(∏
𝑗

𝑐𝑖𝑗

)
𝜇−1

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠
,

where 𝜇 ∶ 𝑅 → 𝑛(𝔐) is the isomorphism of Theorem 6.1. For example,

𝜖(𝑎𝑖
𝑗) = 𝜖( ⃗𝑎

𝑖
𝑗) = 𝑐𝑗 = 𝛿𝑖,𝑗. (66)

Let the 𝑅-module automorphism 𝑆 ∶ 𝑛(𝔅) → 𝑛(𝔅) be the composition

𝑆 = 𝗋𝗈𝗍∗◦htw
−1
𝑒𝑙
◦h̃tw𝑒𝑟

.

Explicitly, for a stated diagram 𝛼,

𝑆

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠
=

(∏
𝑚

𝑐𝑖𝑚

)−1 (∏
𝑚

𝑐𝑗𝑚

)
, (67)

where 𝗋𝗈(𝛼) is the result of rotating the planar diagram 𝛼 about the center of the square by 180◦.
(Here, we use the fact that 𝑐𝑗̄ = (−1)𝑛−1𝑞2𝑗−𝑛−1𝑐𝑗 .)
For example, we have

(68)

Remark 6.2. Note that stated 𝑛-tangle diagrams can be identified with the diagrams of stated 𝑛-
webs in𝔅with the downward ascending height order on 𝜕𝑙𝔅 and 𝜕𝑟𝔅, that is, the height order is
positive on the left edge but negative on the right edge.
That leads to a natural identification of stated 𝑛-tangles with stated 𝑛-webs in the thickened

bigon, for which the basic internal, right, and left annihilators of Subsection 3.6 correspond to
defining skein relations (43)–(50) of 𝑛(𝔅).
The positive order on the left edge explains why there is a twist in the definition of the operation

𝗁𝖽 that turns right annihilators to basic annihilators of Subsection 3.7.
By this identification 𝑆 corresponds to the dual operation 𝛼 → 𝛼∗ of Subsection 3.5.

Recall that𝔅 is the standard bigon.

Theorem 6.3 (Proof in Subsection 6.8).

(a) The algebra 𝑛(𝔅) has the structure of a Hopf algebra over 𝑅 with the coproduct Δ, the counit 𝜖,
and the antipode 𝑆.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 53 of 93

(b) The map Ψ(𝑢𝑖
𝑗
) = 𝑎𝑖

𝑗
extends to a unique Hopf algebra isomorphism

Ψ ∶ 𝑞(𝑠𝑙𝑛; 𝑅)
≅
6→ 𝑛(𝔅).

Here 𝑞(𝑠𝑙𝑛; 𝑅) ∶= 𝑞(𝑆𝐿(𝑛)) ⊗ℤ[𝑣±1] 𝑅 is the algebra 𝑞(𝑆𝐿(𝑛)) of Subsection 2.5 with the
ground ring 𝑅.

6.3 Cobraided structure

The Hopf algebra 𝑞(𝑠𝑙𝑛; 𝑅) is dual quasitriangular (see [52, section 2.2], [35, section 10], [20,
section 10.3]), also known as cobraided (see, e.g., [33, section VIII.5]). This means it has an 𝑅-form
(i.e., a co-𝑅-matrix), which is a bilinear form

𝜌 ∶ 𝑞(𝑠𝑙𝑛; 𝑅) ⊗ 𝑞(𝑠𝑙𝑛; 𝑅) → 𝑅

satisfying certain properties, with the help of which one can make the category of 𝑞(𝑠𝑙𝑛; 𝑅)-
modules a braided category. The following generalizes [15, Theorem 3.5] from 𝑛 = 2 to all 𝑛:

Theorem 6.4 (Proof in Subsection 6.9). Under the identification of 𝑛() and 𝑞(𝑠𝑙𝑛; 𝑅) via the
isomorphism Ψ, the 𝑅-form 𝜌 has the following geometric description

𝜌

(
⊗

)
= 𝜖

( )
, (69)

for any 𝑥, 𝑦 ∈ 𝑞(𝑠𝑙𝑛; 𝑅).

6.4 Ground ring

The remainder of this section is devoted to proving Theorems 6.1, 6.3, 6.4, and 3.11. As it is enough
to do it for 𝑅 = ℤ[𝑣±1], we will assume this ground ring for the rest of this section.

6.5 Algebra homomorphism 𝒏(𝕭) → 𝒒(𝑺𝑳(𝒏))

Lemma 6.5. The webs 𝑎𝑖
𝑗
for 𝑖, 𝑗 ∈ {1, … , 𝑛}, generate 𝑛(𝔅) as an 𝑅-algebra.

Proof. By Lemma 5.1, 𝑛(𝔅) is generated by 𝑎𝑖
𝑗
and for 𝑖, 𝑗 = 1, … , 𝑛.

Fix 𝑖, 𝑗 and choose a permutation 𝜏 ∈ 𝑆𝑛 with 𝜏(1) = 𝑖. By (57) and (54),
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54 of 93 LÊ and SIKORA

On the other hand, Equation (47) expresses the left side in terms of 𝑎𝑘
𝑙
’s:

As 𝑐𝑗̄𝑐−1
𝑖

= (−𝑞)𝑗−𝑖 , by comparing the two equalities, we have

(70)

which shows is in the subalgebra generated by 𝑎𝑖
𝑗
. □

As the first step toward proving the theorems of this section, we will construct an 𝑅-algebra
homomorphism Φ ∶ 𝑛(𝔅) → 𝑞(𝑆𝐿(𝑛)) ⊂ 𝑈𝑞(𝑠𝑙𝑛)

∗.
Let 𝛼 → 𝑇(𝛼) be the bijection of Remark 6.2 between the set of isotopy classes of stated 𝑛-webs

over𝔅 and stated 𝑛-tangles. It extends to an 𝑅-algebra isomorphism 𝑇 ∶ 𝑅𝑛(𝔅) → 𝑅 .
By Remark 6.2, the composition Γ◦𝑇 ∶ 𝑅𝑛(𝔅) → 𝑈𝑞(𝑠𝑙𝑛)

∗ of 𝑇 with Γ defined in Sub-
section 3.4 preserves all the defining relations of 𝑛(𝔅). Hence, Γ◦𝑇 descends to an 𝑅-linear
homomorphism Φ ∶ 𝑛(𝔅) → 𝑈𝑞(𝑠𝑙𝑛)

∗, which by Proposition 3.4 is an algebra homomorphism.
From Equation (33) and Proposition 2.1, we have

Φ(∅) = 𝜖, counit of 𝑈𝑞(𝑠𝑙𝑛), (71)

Φ(𝑎𝑖
𝑗
) = 𝑢𝑖

𝑗
, generators of 𝑞(𝑆𝐿(𝑛)), (72)

for 𝑖, 𝑗 = 1, … , 𝑛. As 𝑢𝑖
𝑗
generate 𝑞(𝑆𝐿(𝑛)), Lemma 6.5 and Equation (72) show that

Φ(𝑛(𝔅)) = 𝑞(𝑆𝐿(𝑛)).

6.6 Proof of Theorem 6.1

By Lemma 5.1, 𝑛(𝔐) is spanned by the empty 𝑛-web. Therefore, the map 𝜇 ∶ 𝑅 → 𝑛(𝔐) given
by 𝜇(𝑟) = 𝑟 ⋅ ∅ is surjective. By removing the left edge of 𝔅, we get a monogon. This gives an
embedding 𝜄 ∶ 𝔐 ↪ 𝔅, which induces an 𝑅-algebra homomorphism 𝜄∗ ∶ 𝑛(𝔐) → 𝑛(𝔅). By
Equation (71), the composition

𝑅
𝜇
6→ 𝑛(𝔐)

𝜄∗
66→ 𝑛(𝔅)

Φ
6→ 𝑈𝑞(𝑠𝑙𝑛)

∗

is an 𝑅-linear map sending 1 to 𝜖. As the free 𝑅-module generated by 𝜖 is a submodule of𝑈𝑞(𝑠𝑙𝑛)
∗,

the composition is injective. Thus, 𝜇 is injective, and hence, bijective.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 55 of 93

Note that we have

= , (73)

as the skein 𝑥 can be brought to a scalar with the same skein relations on the left as on the right.

6.7 Proof that 𝒏(𝕭) is a Hopf algebra

We already noted thatΔ is a coproduct. As 𝜇 is an isomorphism, 𝜖 is well-defined by Equation (65).
A version of the argument of [15] shows that 𝜖 is an𝑅-algebra homomorphismaswell: for anywebs
𝛼1, 𝛼2,

where 𝜕𝑙𝛼, 𝜕𝑟𝛼 denote the sequences of left and right side states of 𝛼 and the third identity follows
from (73).
We also have

(𝜖 ⊗ 𝑖𝑑)◦Δ(𝑥) = 𝑥 = (𝑖𝑑 ⊗ 𝜖)◦Δ(𝑥)

for all 𝑥 ∈ 𝑛(𝔅). Indeed, as Δ and 𝜖 are algebra homomorphisms, it is enough to verify it for
the generators 𝑥 = 𝑎𝑖

𝑗
and that follows from the explicit values of Δ(𝑎𝑖

𝑗
) and of 𝜖(𝑎𝑖

𝑗
) given by

Equations (64) and (66).
Consequently, (𝑛(𝔅), Δ, 𝜖) is an 𝑅-bialgebra. By (67), 𝑆 is 𝑅-algebra anti-isomorphism.

Therefore, to prove that 𝑆 is an antipode for (𝑛(𝔅), Δ, 𝜖) it remains to to be shown that∑
𝑆(𝑥(1))𝑥(2) = 𝜀(𝑥) =

∑
𝑥(1)𝑆(𝑥(2)), where Δ𝑥 =

∑
𝑥(1) ⊗ 𝑥(2), (74)

As before, it suffices to be verified for the generators 𝑎𝑖
𝑗
, 𝑖, 𝑗 = 1, … , 𝑛, only. As Δ(𝑎𝑖

𝑗
) =

∑
𝑘 𝑎𝑖

𝑘
⊗

𝑎𝑘
𝑗
, the left side of (74) reduces to:

by Equations (68), (57), and (48). The proof of the right identity of (74) is analogous.
This completes the proof that (𝑛(𝔅), Δ, 𝜖, 𝑆) is a Hopf algebra.
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56 of 93 LÊ and SIKORA

6.8 Proof of Theorem 6.3

Proposition 6.6. Suppose 𝜶 = (𝒊, 𝛼, 𝒋) is a stated 𝑛-web on 𝔅. Then 𝜖(𝜶) is equal to the matrix
element of the corresponding modified Reshetikhin–Turaev operator:

𝜖(𝜶) = ⟨𝒊 ∣ 𝖱𝖳(𝑇(𝛼)) ∣ 𝒋⟩. (75)

Proof. The map 𝑛(𝔅) → ℚ(𝑣) given by 𝜶 → ⟨𝒊 ∣ 𝖱𝖳(𝑇(𝛼)) ∣ 𝒋⟩ is clearly an 𝑅-algebra homomor-
phism whose values on 𝑎𝑖

𝑗
coincide with those of 𝜖, by Equation (71). □

In particular, we have

(76)

Let us show that 𝐚 = (𝑎𝑖
𝑗
) is a quantum matrix. By isotopy,

Split along the dashed lines (coproduct), then apply the counit

Using the value of in Equation (76), the above identity becomes

(𝐚 ⊗ 𝐚) = (𝐚 ⊗ 𝐚),

which is the defining relation Equation (11) of a quantum matrix. Besides

where the second equality is from Equation (47) and the third is from Equation (54). Hence, the
algebra map Ψ ∶ 𝑞(𝑆𝐿(𝑛)) → 𝑛(𝔅) given by Ψ(𝑢𝑖

𝑗
) = 𝑎𝑖

𝑗
is well-defined.

As Φ◦Ψ(𝑎𝑖
𝑗
) = 𝑎𝑖

𝑗
, we have Φ◦Ψ = id. This shows Φ is injective, and hence Φ ∶ 𝑛(𝔅) →

𝑞(𝑆𝐿(𝑛)) is an algebra isomorphism. By checking the values of Δ, 𝜖, and 𝑆 on the generators
𝑎𝑖
𝑗
we see that Φ is a Hopf algebra homomorphism. This completes the proof of Theorem 6.3.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 57 of 93

6.9 Proof of Theorem 6.4

Proof. The 𝑅-form satisfies the following equalities (stated with Sweedler’s notation for the
coproduct):

𝜌(𝑥𝑦 ⊗ 𝑧) =
∑

𝜌(𝑥 ⊗ 𝑧′)𝜌(𝑦 ⊗ 𝑧′′) (77)

𝜌(𝑥 ⊗ 𝑦𝑧) =
∑

𝜌(𝑥′ ⊗ 𝑧)𝜌(𝑥′′ ⊗ 𝑦). (78)

For 𝑞(𝑆𝐿(𝑛)), the values of 𝜌 are given by (see [52, section 2.2] or [35, section 10.1.2]):

𝜌(𝑢𝑖
𝑗 ⊗ 1) = 𝜌(1 ⊗ 𝑢𝑖

𝑗) = 𝛿𝑖𝑗, 𝜌(𝑢𝑖
𝑗 ⊗ 𝑢𝑘

𝑙
) = 𝑅𝑖𝑘

𝑗𝑙
, (79)

which, together with Relations (77) and (78), totally determine 𝜌.
The first part of the proof follows that of [15]. Let 𝜌′ be the map defined by the right side of (69);

we will show that 𝜌′ = 𝜌. It is enough to show that 𝜌′ satisfies (77), (78), and the initial values (79),
all with 𝜌 replaced by 𝜌′. We have, where a line labeled by, say 𝑥, stands for the stated 𝑛-tangle
diagram 𝑥,

𝜌′(𝑥𝑦 ⊗ 𝑧) = 𝜖

( )

Splitting the bigon by the vertical middle ideal arc, then using 𝜖(𝑢) =
∑

𝜖(𝑢(1))𝜖(𝑢(2))),

𝜌′(𝑥𝑦 ⊗ 𝑧) =
∑

𝜖
⎛⎜⎜⎝

⎞⎟⎟⎠ ⋅ 𝜖
⎛⎜⎜⎝

⎞⎟⎟⎠
=
∑

𝜌′(𝑥(1) ⊗ 𝑧(1))𝜌
′(𝑦(2) ⊗ 𝑧(2))𝜖(𝑥(2))𝜖(𝑦(1)) =

∑
𝜌′(𝑥 ⊗ 𝑧(1))𝜌

′(𝑦 ⊗ 𝑧(2)).

This proves (77) for 𝜌′. The proof of (78) is similar.
Under the isomorphism, 𝑢𝑖

𝑗
becomes 𝑎𝑖

𝑗
. Using Equation (76), we have

which proves (79), completing the proof of the theorem. □

6.10 Proof of Theorem 3.11

Proof. The proof of Theorem 6.3 shows that the kernel of the map Γ◦𝑇 ∶ 𝑅𝑛(𝔅) → 𝑈𝑞(𝑠𝑙𝑛)
∗

is generated by internal relations, boundary relations on the right side, and boundary relations
on the left side. Transferring back to Γ ∶ 𝑅 → 𝑈𝑞(𝑠𝑙𝑛)

∗ via the isomorphism 𝑇 ∶ 𝑅𝑛(𝔅) →
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58 of 93 LÊ and SIKORA

𝑅 we conclude that the kernel of Γ is generated by the basic internal annihilators, basic right
annihilators, and basic left annihilators. □

6.11 Additional facts

(1) Formula (70), after a simple manipulation, has the form

where 𝑀𝑖
𝑗̄
(𝐚) is the submatrix of 𝐚 obtained my removing the 𝑖-row and 𝑗̄-column. Alterna-

tively, this formula is a consequence of the (geometric) antipode formula, ,
combined with the (algebraic) antipode formula, (12), in 𝑞(𝑆𝐿(𝑛)).

(2) The antipode, given by (67), is equivalent to the dual map of Subsection 3.5 via 𝑇:

𝑇(𝑆(𝑥)) = (𝑇(𝑥))∗.

(3) The algebra involution 𝗋𝗈𝗍∗ ∶ 𝑞(𝑆𝐿(𝑛)) → 𝑞(𝑆𝐿(𝑛)), induced from the rotation by 180◦, is
a coalgebra anti-homomorphism. It is easy to show that its dual restrict to an algebra anti-
involution 𝗋𝗈𝗍∗ ∶ 𝑈𝑞(𝑠𝑙𝑛) → 𝑈𝑞(𝑠𝑙𝑛). One can check that 𝗋𝗈𝗍∗ is equal the anti-involution 𝜌

introduced by Lusztig [50, chapter 19] in his study of canonical bases of quantized enveloping
algebras.

7 COACTION OF 𝒒(𝑺𝑳(𝒏)) ON STATED SKEINMODULES

Similarly to the case 𝑛 = 2 considered in [11, 15], we are going to show that every marking 𝛽 of a
marked 3-manifold (𝑀, ) defines a right coaction of 𝑞(𝑆𝐿(𝑛)) on 𝑛(𝑀, ). Dually, it defines
a left-𝑈𝐿 module structure on 𝑛(𝑀, ), where𝑈𝐿 is a completion of the Lusztig integral version
𝑈𝐿 of the quantum group 𝑈𝑞(𝑠𝑙𝑛). We will observe that the actions of the charmed and the half-
ribbon elements on 𝑛(𝑀, ) coincide with the marking automorphism g𝛽 and the half-twist
automorphism htw𝛽 of Subsections 4.10–4.11, respectively.
The above𝑞(𝑆𝐿(𝑛))-coaction will be very important for the further development of the theory

of stated skein algebras in the remainder of this paper. For simplicity, we assume 𝑅 = ℤ[𝑣±1] in
this section.

7.1 Module and Co-module structures

Suppose Σ is a punctured bordered surface and 𝑏 is a boundary edge. Let 𝑐 be an interior ideal arc
isotopic to 𝑏. This means that 𝑏 and 𝑐 cobound a bigon. By splitting Σ along 𝑐, we get a surface
Σ′ and a directed bigon with 𝑏 considered its right edge. As Σ′ is diffeomorphic to Σ via a unique
up to isotopy diffeomorphism, we identify 𝑛(Σ

′) = 𝑛(Σ). The splitting homomorphism gives an
algebra homomorphism

Δ𝑏 ∶ 𝑛(Σ) → 𝑛(Σ) ⊗ 𝑞(𝑆𝐿(𝑛)). (80)
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The commutativity of splitting maps and the values of 𝜖 on horizontal stated arcs given by (71)
imply that Δ𝑏 is a right coaction of𝑞(𝑆𝐿(𝑛)) on 𝑛(Σ). Moreover, the right coactions at different
boundary edges commute. As Δ𝑏 in Equation (80) is an algebra homomorphism, 𝑛(Σ) is a right
comodule-algebra over 𝑞(𝑆𝐿(𝑛)), as defined in [33, section III.7].
If we split off a bigon (as above) and identify 𝑏 with its left edge, we get a left 𝑞(𝑆𝐿(𝑛))-

comodule structure on 𝑛(Σ).
The above construction of the 𝑞(𝑆𝐿(𝑛))-coactions on 𝑛(Σ) generalizes to 𝑞(𝑆𝐿(𝑛))-

coactions on stated modules of marked 3-manifolds. Given a marking 𝛽 of a marked 3-manifold
(𝑀, ), consider its closed disk neighborhood 𝐷 in 𝜕𝑀, disjoint from the other markings of
(𝑀, ). By pushing the interior of 𝐷 inside𝑀 we get a new disk 𝐷′ that is properly embedded in
𝑀. Splitting (𝑀, ) along 𝐷′, we get a new marked 3-manifold (𝑀′, ′) isomorphic to (𝑀, ),
and another marked 3-manifold bounded by 𝐷 and 𝐷′. The latter, after removing the common
boundary of 𝐷 and 𝐷′, is isomorphic to the thickening of the bigon, with 𝛽 considered its right
face marking, as depicted in Figure 6a. Hence, this construction yields an 𝑅-linear splitting map

Δ𝛽 ∶ 𝑛(𝑀, ) → 𝑛(𝑀, ) ⊗ 𝑞(𝑆𝐿(𝑛)).

As in the surface case, this is a right coaction of 𝑞(𝑆𝐿(𝑛)) on 𝑛(𝑀, ), and the right coactions
at different markings commute.
The completion𝑈𝑞(𝑠𝑙𝑛) of𝑈𝑞(𝑠𝑙𝑛) of [61], see Subsection 3.9, has its integral version,𝑈𝐿, which

contains the half-twist element 𝑋 of Subsection 3.9, see [39, Comment 3.7]. Equivalently, this is a
completion of the Lusztig integral version 𝑈𝐿 of 𝑈𝑞(𝑠𝑙𝑛) [48, section 1.3]. The Hopf algebras 𝑈𝐿

and 𝑞(𝑆𝐿(𝑛)) are in Hopf duality over ℤ[𝑣±1], which turns any right 𝑞(𝑆𝐿(𝑛))-comodule𝑊 to
a left 𝑈𝐿-module as follows: for 𝑢 ∈ 𝑈𝐿 and 𝑥 ∈ 𝑊,

𝑢 ∗ 𝑥 =
∑

𝑥(1)⟨𝑓(2), 𝑢⟩, where Δ(𝑥) =
∑

𝑥(1) ⊗ 𝑓(2)

is the 𝑞(𝑆𝐿(𝑛))-coaction map.
To make explicit the left action of 𝑈𝐿 on 𝑛(𝑀, ) coming to the right coaction Δ𝛽 we extend

the states of an 𝑛-web at marking 𝛽 as follows. Suppose 𝛼 is an 𝑛-web in (𝑀, ) with the sign
sequence on 𝛽 equal to 𝜼 = (𝜂1, … , 𝜂𝑘) ∈ {±}𝑘. The set {𝑣𝒊 ∣ 𝒊 ∈ {1, … , 𝑛}𝑘} is the 𝑅-basis of the
based module 𝑉𝜼. Assume 𝛼 is stated at all markings except 𝛽. For 𝑥 ∈ 𝑉𝜼 let (𝛼, 𝑥) ∈ 𝑛(𝑀, )

be defined so that (𝛼, 𝑣𝒊) is 𝛼 with states 𝒊 on 𝛽, and the map 𝑥 → (𝛼, 𝑥) is 𝑅-linear. From the
definition, we have

𝑢 ∗ (𝛼, 𝑥) = (𝛼, 𝑢𝑥) (81)

Example 7.1. The action of the charmed element g on 𝑛(𝑀, ) is exactly themap g𝛽 of Subsec-
tion 4.10. In fact, g is a group-like element, that is, Δ[𝑘](g) = g⊗𝑘 for 𝑘 = 1, 2, … , and the actions
of g on the based𝑈𝑞(𝑠𝑙𝑛)-modules 𝑉 and 𝑉∗ are given by the same diagonal matrix with g1, … , g𝑛
on the diagonal, see (42). That ensures that the action of g on 𝑛(𝑀, ) coincides with the map
g𝛽 .

Example 7.2. The action of the half-ribbon element 𝑋 is the half-twist homomorphism htw𝛽 of
Subsection 4.11. Indeed, for the positive half-twist𝐻 on 𝑘 strands (with arbitrary orientations) by
(40) we have

𝖱𝖳(𝐻) = Δ[𝑘](𝑋)◦(𝑋−1)⊗𝑘◦rev𝑘.
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60 of 93 LÊ and SIKORA

By applying this value of 𝖱𝖳(𝐻) to (62) we obtain

htw𝛽

⎛⎜⎜⎜⎜⎝
𝑖𝑘

𝑖2

𝑖1

⋮
⎞⎟⎟⎟⎟⎠
=

(
𝑘∏

𝑗=1

𝑐𝑖𝑗

)
⋅ = ,

where the second identity follows from (41). This proves the statement.

Formula (81) makes it easy to study 𝑛(𝑀, ) as an 𝑈𝐿-module. For example, one can show
that over the field ℚ(𝑣) the 𝑈𝑞(𝑠𝑙𝑛)-module 𝑛(𝑀, ) ⊗ℤ[𝑣±1] ℚ(𝑣) is integrable and is a direct
sum of finite-dimensional simple 𝑈𝑞(𝑠𝑙𝑛)-modules. For the case 𝑛 = 2, see [15].

7.2 Boundary relations revisited

Let𝑫 = (𝐷, 𝒊) be an 𝑛-web diagram𝐷 over the bigon𝔅 right stated by 𝒊 = (𝑖1, … , 𝑖𝑘). Assume that
𝐷 has 𝑙 left endpoints, which are not stated. Suppose further that 𝛼 is a stated 𝑛-web in a marked
3-manifold (𝑀, ) and that in a cube 𝑄 that intersects  at a subinterval of a marking 𝛽 the
intersection 𝛼 ∩ 𝑄 has diagram equal to 𝑫, as in the left side of (82). By the property of the counit
of the coaction, we have

=
∑
𝑗1,…,𝑗𝑙

⋅ 𝜖

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠
. (82)

This identity provides a local relation in any stated skein module, called the 𝑫-relation. By (75),
the values of 𝜖 of stated 𝑛-webs are the entries of the matrix describing the Reshetikhin–Turaev
operator 𝖱𝖳(𝐷) and are not difficult to calculate. All the boundary relations (47)-(50) are of this
type. As Relations (43)–(50) are sufficient for defining the𝑞(𝑆𝐿(𝑛))-coaction on𝑛((𝑀, )), any
𝑫-relation is a consequence of these relations.

Example 7.3. For , the 𝑫-relation is

Example 7.4. The following relations for 𝑛 = 3 will be useful later:

(83)
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 61 of 93

(84)

(85)

7.3 The last among the defining skein relations

Proposition 7.5. If [𝑛 − 2]! is invertible in 𝑅 then the last defining relation, (50), is a consequence
of the other defining relations (43)–(49).

Proof. Note that Relation (50) is the 𝑫-relation for .

As [𝑛 − 2]! is invertible, Identity (51) makes it possible to eliminate all crossings in every
diagram,

(86)

For the purpose of this proof, let  ′
𝑛(𝑀, ) be defined as 𝑛(𝑀, ), only without Relation

(50). The Splitting Theorem holds for  ′
𝑛(𝑀, ), as using (86) we do not have to consider the

invariance of the splitting homomorphism under moving a crossing through the splitting disk.
Lemma 5.1 holds for  ′

𝑛(𝔅) because all crossings of diagrams on 𝔅 can be eliminated. Conse-
quently, Lemma 6.5 holds as well and the proof of the isomorphism 𝑛(𝔅) ≃ 𝑞(𝑠𝑙𝑛; 𝑅) extends
to an isomorphism

 ′
𝑛(𝔅)

≃
6→ 𝑛(𝔅)

≃
6→ 𝑞(𝑠𝑙𝑛; 𝑅).

Furthermore, every marking 𝛽 of (𝑀, ) defines a right coaction Δ′
𝛽
∶  ′

𝑛(𝑀, ) →

 ′
𝑛(𝑀, ) ⊗𝑅 𝑞(𝑠𝑙𝑛; 𝑅) as in previous subsection. Using the coaction, one sees that for every

right stated 𝑛-web diagram 𝑫 = (𝐷, 𝒊) on 𝔅, the relation (82) is a consequence of the defining

relations for  ′
𝑛(𝑀, ). In particular, for , we get the statement of the proposition. □

8 ALGEBRAIC STRUCTURE OF SKEIN ALGEBRAS

8.1 Glueing over an ideal triangle

The standard ideal triangle𝔗 ⊂ ℝ2 is the closed triangle with vertices (−1, 0), (1, 0) and (0,1) with
these vertices removed. We will denote its sides by 𝑒1, 𝑒2, and 𝜕𝑏𝔗 as in Figure 13. Suppose 𝑎1, 𝑎2

are two distinct boundary edges of a (possibly disconnected) pb surface Σ. Define

Σ𝑎1△𝑎2
= (Σ ⊔ 𝔗)∕(𝑒1 = 𝑎1, 𝑒2 = 𝑎2),
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62 of 93 LÊ and SIKORA

F IGURE 13 Left: The standard ideal triangle 𝔗. Middle: Glueing Σ and𝔗 by 𝑎1 = 𝑒1 and 𝑎2 = 𝑒2 to get
Σ𝑎1△𝑎2

. Right: Tangle diagram 𝑥 ∈ 𝑛(Σ) and its image 𝗀𝗅𝗎𝖾𝑎1,𝑎2
(𝑥) ∈ 𝑛(Σ𝑎1△𝑎2

).

as in Figure 13. Define the 𝑅-linear homomorphism 𝗀𝗅𝗎𝖾𝑎1,𝑎2
∶ 𝑛(Σ) → 𝑛(Σ𝑎1△𝑎2

) so that if 𝛼 is
a stated 𝑛-web diagram over Σ with the negative height order on both 𝑎1 and 𝑎2 then 𝗀𝗅𝗎𝖾𝑎1,𝑎2

(𝛼)

is the result of continuing the strands of 𝛼 with endpoints on 𝑎1 and 𝑎2 until they reach 𝜕𝑏𝔗, as
in Figure 13 (right). (As usual, the arrows indicate the height order.)
We are going to show that 𝗀𝗅𝗎𝖾𝑎1,𝑎2

is a linear isomorphism and to construct its inverse, 𝖼𝗎𝗍𝑎1,𝑎2
.

Let

𝜀𝔗 ∶ 𝑛(𝔗) → 𝑛(𝔐) = 𝑅, 𝜀𝔗 = 𝜀◦fill∗

where fill embeds 𝔗 into a bigon by filling in the top vertex of 𝔗 and making the web ends at 𝑒1
higher than those at 𝑒2. Let us consider also the homomorphism

𝖼𝗎𝗍𝑎1,𝑎2
∶ 𝑛(Σ𝑎1△𝑎2

) → 𝑛(Σ), 𝖼𝗎𝗍𝑎1,𝑎2
= (𝜀𝔗 ⊗ 𝑖𝑑𝑛(Σ)

)◦Θ𝑎1
◦Θ𝑎2

.

Proposition 8.1. The homomorphisms 𝖼𝗎𝗍𝑎1,𝑎2
and 𝗀𝗅𝗎𝖾𝑎1,𝑎2

are inverses of each other:

𝖼𝗎𝗍𝑎1,𝑎2
◦𝗀𝗅𝗎𝖾𝑎1,𝑎2

= 𝑖𝑑𝑛(Σ)
and 𝗀𝗅𝗎𝖾𝑎1,𝑎2

◦𝖼𝗎𝗍𝑎1,𝑎2
= 𝑖𝑑𝑛(Σ𝑎1△𝑎2

)

Proof. We follow Higgins’ proof for 𝑛 = 3. It is enough to check the above identities for the
diagrams over Σ and over Σ𝑎1△𝑎2

, respectively. We have

𝜀𝔗

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠
=

|𝒋|∏
𝑎=1

(
𝛿𝑗𝑎,𝑘𝑎 𝑐

−1
𝑗𝑎

)
⋅

( |𝐢|∏
𝑏=1

𝛿𝑖𝑏,𝑠𝑏

)
⋅

( |𝐥|∏
𝑑=1

𝛿𝑙𝑑,𝑡𝑑

)
, (87)

where the orientations of arcs in the triangle are arbitrary and 𝒊, 𝐬 and 𝒋, 𝐤 and 𝐥, 𝐭 are any three
pairs are state sequences of equal length, |𝒊| = |𝐬|, |𝒋| = |𝐤|, and |𝐥| = |𝐭|.
Let us call diagrams over 𝔗 that are like in Equation (87) without the horizontal arcs, vertical.

As for every 𝑥 ∈ 𝑛(Σ𝑎1△𝑎2
), the skein Θ𝑎1

◦Θ𝑎2
◦𝗀𝗅𝗎𝖾𝑎1,𝑎2

(𝑥) is a linear combination of diagrams
that are vertical on𝔗, the first identity follows.
To prove the second identity observe that each diagram in 𝑛(Σ𝑎1△𝑎2

) can be positioned so
that it intersects 𝔗 in disjoint arcs only. By applying Relation (49), it can be presented as a linear
combination of diagrams that are vertical on𝔗. By Equation (87), for each of them we have

𝗀𝗅𝗎𝖾𝑎1,𝑎2
◦(𝜀𝔗(𝑊) ⊗ 𝑖𝑑𝑛(Σ)

)◦Θ𝑎1
◦Θ𝑎2

(𝑊) = 𝑊.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 63 of 93

F IGURE 14 Diagrams of 𝑦𝑥, 𝑓(𝑦𝑥), and 𝑓(𝑦)𝑓(𝑥).

Hence, the right identity of Proposition 8.1 follows. □

Note that the bijective map 𝗀𝗅𝗎𝖾𝑎1,𝑎2
is not an algebra isomorphism. In fact, 𝗀𝗅𝗎𝖾𝑎1,𝑎2

(𝑦𝑥) and
𝗀𝗅𝗎𝖾𝑎1,𝑎2

(𝑦)𝗀𝗅𝗎𝖾𝑎1,𝑎2
(𝑥) are depicted in Figure 14, where 𝑓 = 𝗀𝗅𝗎𝖾𝑎1,𝑎2

.
However, we are going to show that it is one with respect to the self-braided tensor product that

we will define right now. The 𝑛 = 2 version of this product was considered in [15].
There are two right 𝑞(𝑆𝐿(𝑛))-comodule algebra structures on 𝑛(Σ) given by

Δ𝑖 ∶= Δ𝑎𝑖
∶ 𝑛(Σ) → 𝑛(Σ) ⊗ 𝑞(𝑆𝐿(𝑛)), 𝑖 = 1, 2,

which commute.
Define the 𝑅-linear map Δ ∶ 𝑛(Σ) → 𝑛(Σ) ⊗ 𝑞(𝑆𝐿(𝑛)) by

Δ(𝑥) =
∑

𝑥(1) ⊗ 𝑢(2)𝑢(3),

in Sweedler’s notation, where

(Δ1 ⊗ Id𝑞(𝑆𝐿(𝑛))
)◦Δ2(𝑥) =

∑
𝑥(1) ⊗ 𝑢(2) ⊗ 𝑢(3).

For 𝑥, 𝑦 ∈ 𝑛(Σ) define a new product by

𝑦∗𝑥 =
∑

𝑦(1)𝑥(1)𝜌(𝑢(2) ⊗ 𝑤(2)), (88)

where

Δ2(𝑦) =
∑

𝑦(1) ⊗ 𝑢(2), Δ1(𝑥) =
∑

𝑥(1) ⊗ 𝑤(2),

and 𝜌 is the 𝑅-form.
It is proved in [15] that Δ and ∗ together give 𝑛(Σ) a right 𝑞(𝑆𝐿(𝑛))-comodule algebra struc-

ture for 𝑛 = 2. That proof extends verbatim to all 𝑛. Denote by⊗𝑛(Σ) the 𝑅-module 𝑛(Σ) with
this𝑞(𝑆𝐿(𝑛))-comodule algebra structure. On the other hand,𝑛(Σ𝑎1△𝑎2

)has a right𝑞(𝑆𝐿(𝑛))-
comodule algebra structure coming from the boundary edge 𝜕𝑏𝔗. Here is a stronger version of
Proposition 8.1.

Theorem 8.2. The maps 𝗀𝗅𝗎𝖾𝑎1,𝑎2
∶ ⊗𝑛(Σ) → 𝑛(Σ𝑎1△𝑎2

), 𝖼𝗎𝗍𝑎1,𝑎2
∶ 𝑛(Σ𝑎1△𝑎2

) → ⊗𝑛(Σ)

are isomorphisms of right 𝑞(𝑆𝐿(𝑛))-comodule algebras.

Proof. The geometric proof of [15] for 𝑛 = 2 carries over to all 𝑛 without modification. Here is a
sketch. It is enough to show that 𝑓 = 𝗀𝗅𝗎𝖾𝑎1,𝑎2

is an algebra homomorphism. Let 𝑥, 𝑦 be stated
𝑛-web diagrams.

 17538424, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12350 by G
eorgia Institute O

f Technology, W
iley O

nline Library on [04/05/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



64 of 93 LÊ and SIKORA

F IGURE 15 The operation Σ1 △ Σ2 on two surfaces with a single arc boundaries.

We present 𝑦𝑥, 𝑓(𝑦𝑥), 𝑓(𝑦)𝑓(𝑥) schematically as in Figure 14. By splitting along the dashed line
in the picture of 𝑓(𝑦)𝑓(𝑥) and by using the counit property,

𝑓(𝑦)𝑓(𝑥) =
∑

⊗ 𝜖

( )
,

where

Δ2(𝑦) =
∑

𝑦(1) ⊗ 𝑢(2), and Δ1(𝑥) =
∑

𝑥(1) ⊗ 𝑤(2).

The above equals
∑

𝑓(𝑦(1)𝑥(1))𝜌(𝑢(2) ⊗ 𝑤(2)), and, by (88), it reduces to 𝑓(𝑦∗𝑥). Thus, 𝑓 is an
algebra homomorphism. □

A special case is when Σ = Σ1 ⊔ Σ2 and 𝑎𝑖 ⊂ Σ𝑖 for 𝑖 = 1, 2. In this case we say that Σ𝑎1△𝑎2

is the result of gluing Σ1 and Σ2 over the triangle. Each 𝑛(Σ𝑖) is a right 𝑞(𝑆𝐿(𝑛))-comodule
algebra via the coaction coming from the edge 𝑎𝑖 . Then⊗(𝑛(Σ)) is thewell-known braided tensor
product 𝑛(Σ1) and 𝑛(Σ2) of the two 𝑞(𝑆𝐿(𝑛))-module algebras 𝑛(Σ1) and 𝑛(Σ2), defined in
[52, Lemma 9.2.12].

Example 8.3 (Ideal triangle). Let Σ1 = Σ2 = 𝔅, where 𝑎1 is the right edge of Σ1 and 𝑎2 is the left
edge of Σ2. Then Σ𝑎1△𝑎2

is the triangle𝔗. Hence, we have

𝑛(𝔗) ≅ 𝑞(𝑆𝐿(𝑛))⊗𝑞(𝑆𝐿(𝑛)),

where each copy of 𝑞(𝑆𝐿(𝑛)) is a right 𝑞(𝑆𝐿(𝑛))-comodule algebra via the coproduct. From
here one can easily write down an explicit presentation of the algebra 𝑛(𝔗). Such presentation
is used in the work [44] on the quantum trace for stated 𝑆𝐿𝑛-skein algebras.

Let Σg ,𝑝+1 be a 𝑝-punctured genus g surface with a single loop boundary and let Σ∗
g ,𝑝 be Σg ,𝑝

with a boundary point removed.

Example 8.4. Let 𝔖 = {Σ∗
g ,𝑝, g ⩾ 0, 𝑝 ⩾ 1} be the set of pb surfaces with a single arc boundary,

considered up to a homeomorphism. For Σ1, Σ2 ∈ 𝔖, let Σ1 △ Σ2 be the result of gluing over a
triangle along 𝑎1 = 𝜕Σ1 and 𝑎2 = 𝜕Σ2, as in Figure 15. Note that the△ operation makes𝔖 into a
monoid with the identity𝔐.
Theorem 8.2 implies that for any Σ1, Σ2 ∈ 𝔖, the algebra 𝑛(Σ1 △ 𝑛) is the braided tensor

product 𝑛(Σ1)⊗𝑛(Σ2).
Therefore, 𝑛(Σ

∗
g ,𝑝) is the braided tensor product of 𝑝 − 1 copies of 𝑛(Σ

∗
0,2

) and g copies of
𝑛(Σ

∗
1,1

). We will analyze 𝑛(Σ
∗
0,2

) and 𝑛(Σ
∗
1,1

) in detail in Subsections 8.2 and 8.6 and we will see
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 65 of 93

F IGURE 16 From the bigon to a punctured monogon by gluing over a triangle.

in particular that

𝑛(Σ
∗
0,2) ≃ 𝑞(𝑆𝐿(𝑛)) and 𝑛(Σ

∗
1,1) ≃ 𝑞(𝑆𝐿(𝑛))

⊗2

as 𝑅-modules. Consequently,

𝑛(Σ
∗
g ,𝑝) ≃ 𝑞(𝑆𝐿(𝑛))

⊗(𝑝−1+2g)

as an 𝑅-module. (A version of this formula appeared in [7].) This statement will be generalized by
Theorem 8.8.

8.2 Punctured monogon andMajid’s transmutation

By attaching an ideal triangle to the bigon𝔅 along its left and right edges 𝑒𝑙 and 𝑒𝑟, as in Figure 16,
we obtain the once-punctured monogon, Σ∗

0,2
= 𝔅𝑎1△𝑎2

.
An algebraic description of the product on 𝑛(Σ

∗
0,2

) can be derived from that for 𝑞(𝑆𝐿(𝑛)) by
the rule described in Equation (88). This allows to identify 𝑛(Σ

∗
0,2

)with Majid’s transmutation of
𝑞(𝑆𝐿(𝑛)), as we explain now.
Let 𝗍𝗆 be the composition of the inverse of the half-twist around the left edge with the above

triangle gluing map,

𝗍𝗆 = 𝗀𝗅𝗎𝖾𝑒𝑙,𝑒𝑟htw
−1
𝑒𝑙

∶ 𝑞(𝑆𝐿(𝑛)) = 𝑛(𝔅) → 𝑛(Σ
∗
0,2). (89)

This map can be visualized as follows: let a stated web 𝑥 in 𝔅 be represented by a diagram

i jx , where the left horizontal line represents multiple horizontal edges (of possibly differ-

ent directions) whose ends on the left are labeled by 𝐢 =

(
𝑖𝑠
⋮
𝑖1

)
and, similarly, the right horizontal

line represents multiple horizontal edges whose ends on the right are labeled by 𝐣 =

(
𝑗𝑡
⋮
𝑗1

)
. Then

and . By Propositions 4.11 and 8.1, 𝗍𝗆 is an 𝑅-linear

isomorphism.Wewill prove that thismap definesMagid’s transmutation on𝑞(𝑆𝐿(𝑛)). (That was
the reason for denoting the above map by 𝗍𝗆.)
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66 of 93 LÊ and SIKORA

Let us recall that notion first: for every Hopf algebra, Majid proved that

𝐴𝑑 ∶  →  ⊗, 𝐴𝑑(𝑥) =
∑

𝑥(2) ⊗ (𝑆𝑥(1))𝑥(3), (90)

defines a coaction on on itself [52, Example 1.6.14], called the adjoint-coaction and that there
is an associative braided product (or, covariantised)

𝑥⋅ 𝑦 =
∑

𝑥(2)𝑦(2)𝜌((𝑆𝑥(1))𝑥(3) ⊗ 𝑆𝑦(1)), (91)

see [52, Example 9.4.10]. (This product should not be confused with the braided tensor prod-
uct of Majid, which we discussed in Subsection 8.1.) Furthermore, he showed that  with the
braided product and the adjoint -coaction is an -comodule coalgebra. With these structures,
 is denoted by  𝐻 called the transmutation of.

Proposition 8.5.

(1) 𝗍𝗆 is an isomorphism between the 𝑞(𝑆𝐿(𝑛))-comodule algebra  𝑞(𝑆𝐿(𝑛)) and 𝑛(Σ
∗
0,2

).
Hence, (𝗍𝗆 ⊗ 𝐼)◦𝐴𝑑 = Δ𝜕Δ∗

0,2
◦𝗍𝗆.

(2) 𝗍𝗆 is a ring isomorphism. Hence, 𝗍𝗆(𝑥)𝗍𝗆(𝑦) = 𝗍𝗆(𝑥⋅ 𝑦).

This statement was proved for 𝑛 = 2 in [15].

Proof of Proposition 8.5.

(1) Let a stated web in𝔅 be given by the diagram , as above. Then

where as above, horizontal arcs indicate multiple edges of possibly different directions.
Consequently, by Equations (90) and (67),

𝐴𝑑

⎛⎜⎜⎜⎜⎝
𝐢 𝐣𝑥

⎞⎟⎟⎟⎟⎠
=
∑
𝐤,𝐥

∏
𝑐𝐤∏
𝑐𝐢

𝐤 𝐥𝑥 ⊗
𝐥

𝐤̂

𝐣

𝐢̂Ro , (92)

where Ro denotes 180◦ rotation in plane, 𝐢̂ denotes conjugation of components and the

inversion of their order: 𝐢̂ =
(

𝑖1
⋮
𝑖𝑠

)
for 𝐢 =

(
𝑖𝑠
⋮
𝑖1

)
, and

∏
𝑐𝐢 denotes

∏𝑠
𝑡=1 𝑐𝑖𝑡 .
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 67 of 93

On the other hand, we have

and, hence,

Δ𝜕Σ∗
2,0

⎛⎜⎜⎜⎜⎝
1∏
𝑐𝐢

𝐢 𝐣𝑥
⎞⎟⎟⎟⎟⎠
=
∑
𝐤,𝐥

∏
𝑐𝐤∏
𝑐𝐢

1∏
𝑐𝐤

𝐤 𝐥𝑥
⊗

𝐥

𝐤̂

𝐣

𝐢̂Ro .

As this equality coincides with (92) after replacing 𝑥 with 𝗍𝗆(𝑥) and 𝐴𝑑 by Δ𝜕Σ∗
2,0
, the

statement follows.

(2) Consider stated webs x = 𝐢 𝐣𝑥 and 𝑦 = 𝐤 𝐥𝑦 in𝔅.Then

𝗍𝗆(𝑥𝑦) = 𝗍𝗆

⎛⎜⎜⎜⎜⎝
𝐤

𝐢

𝐥

𝐣

𝑦

𝑥

⎞⎟⎟⎟⎟⎠
=

1
𝑐𝐢𝑐𝐤

. (93)

On the other hand,

𝗍𝗆(𝑥)𝗍𝗆(𝑦) =
1

𝑐𝐢𝑐𝐤
. (94)

Denoting the stated web diagram on the right by 𝑧 ∈ 𝑛(Σ
∗
0,2

), we have

𝑧 =
∑

𝑧(1)𝜀(𝑧(2)), where Δ(𝑧) =
∑

𝑧(1) ⊗ 𝑧(2) ∈ 𝑛(Σ
∗
0,2) ⊗ 𝑞(𝑆𝐿(𝑛))

is the coaction along the dashed line and 𝜀 is the counit in𝑞(𝑆𝐿(𝑛)). By applying this identify
to (94), we obtain

𝗍𝗆(𝑥)𝗍𝗆(𝑦) =
1

𝑐𝐢𝑐𝐤

∑
𝗍𝗆(𝑥(2)𝑦(2))𝑇(𝑥(1), 𝑥(3), 𝑦(1)),
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68 of 93 LÊ and SIKORA

where 𝑇(𝑥(1), 𝑥(3), 𝑦(1)) = 𝜌((𝑆𝑥(1))𝑥(3) ⊗ 𝑆𝑦(1)), by Theorem 6.4. Consequently,

𝗍𝗆(𝑥)𝗍𝗆(𝑦) = 𝗍𝗆(𝑥⋅ 𝑦),

by (91). □

Consequently, our theory provides simple geometric proofs of the associativity of the (braided)
product on  𝑞(𝑆𝐿(𝑛)) and of  𝑞(𝑆𝐿(𝑛)) being an 𝑞(𝑆𝐿(𝑛))-comodule algebra. (The proofs
of these facts are quite technical and involved in [52].) Furthermore, our theory generalizes these
statements to the boundary 𝑞(𝑆𝐿(𝑛))-coaction on the skein algebra of any essentially bordered
punctured surface.
Let us discuss generators and relations of  𝑞(𝑆𝐿(𝑛)) now. A reflection equation algebra

𝐴𝑞(𝑀𝑛) is an 𝑅-algebra generated by formal variables 𝑥𝑖𝑗 for 𝑖, 𝑗 = 1, … , 𝑛 subject to the quadratic
relations of the reflection equation:

𝑋2̂𝑋2̂ = ̂𝑋2̂𝑋2, (95)

where 𝑋 = (𝑥𝑖𝑗)𝑖,𝑗=1,…,𝑛, 𝑋2 = 𝑋 ⊗ 𝐼𝑑, and ̂ is the braiding matrix of Subsection 2.3. (These
equations are written explicitly out in [18, section 3].)
It is proved in [36] that  𝑞(𝑆𝐿(𝑛)) is the quotient of the reflection equation algebra by the

braided determinant which is the image of the quantum determinant under the linear isomor-
phism  𝑞(𝑆𝐿(𝑛)) ≃ 𝑞(𝑆𝐿(𝑛)) above. An explicit polynomial expression in 𝑥𝑖𝑗 ’s for it appears in
[31]. Consequently, that expression together with the relations (95) are a complete set of relations
for  𝑞(𝑆𝐿(𝑛)).
Let us relate this discussion to 𝑛(Σ

∗
0,2

) now. It is straightforward to verify that 𝗍𝗆 maps the

generators 𝑥𝑖𝑗 ∈  𝑞(𝑆𝐿(𝑛)) to the arcs which we will denote by 𝑏𝑖,𝑗 . (Then 𝗍𝗆(𝑎𝑖,𝑗) =

1

𝑐𝑖
𝑏𝑖,𝑗 for the generators𝑎𝑖𝑗 for𝑛(𝔅) of Subsection 6.2. Independently of the above considerations,

it is easy to see that 𝑏𝑖𝑗 ’s for 𝑖, 𝑗 = 1, … , 𝑛 generate 𝑛(Σ
∗
0,2

), as any web in 𝑛(Σ
∗
0,2

) can be pushed
toward the boundary of 𝜕Σ∗

0,2
and simplified by the boundary relations to a polynomial expression

in 𝑏𝑖𝑗 ’s.)
Consequently, the above discussion provides a concrete finite presentation for 𝑛(Σ

∗
0,2

).

8.3 On injectivity of splitting homomorphism

Proposition 8.6. Suppose Σ is an essentially bordered pb surface. Then for any interior ideal arc 𝑐
of Σ, the splitting homomorphism Θ𝑐 ∶ 𝑛(Σ) → 𝑛(𝖼𝗎𝗍𝑐Σ) is injective.

Proof. First assume that an endpoint of 𝑐 is a boundary ideal point, which is an endpoint of a
boundary edge 𝑒 ≠ 𝑐. In a small neighborhood of 𝑒 ∪ 𝑐, we can find an interior ideal arc 𝑐′ such
that 𝑒, 𝑐, 𝑐′ cobound an ideal triangle; see Figure 17.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 69 of 93

F IGURE 17 The curve 𝑐′. Left: General case. Middle: 𝑐 and 𝑒 form a bigon. Right: 𝑐 cuts out a monogon.

Let 𝔗̊ be the interior of the triangle 𝔗 bounded by 𝑐, 𝑐′, and 𝑒, and let Σ′ = Σ̊ ⧵ (𝔗̊ ∪ 𝑒). Then
(Σ′)𝑐Δ𝑐′ = Σ. By Theorem 8.2, the map 𝖼𝗎𝗍𝑐,𝑐′ = (𝜀𝔗 ⊗ id𝑆𝑛(Σ

′))◦Θ𝑐′◦Θ𝑐 is bijective. It follows that
Θ𝑐 is injective.
Now assume that both endpoints of 𝑐 are interior ideal points. As Σ is essentially bordered it

contains an interior ideal arc 𝑑, disjoint from 𝑐, with one endpoint coinciding with an endpoint
of 𝑐 and the other endpoint being a boundary ideal point. By the above case, the splitting map
Θ𝑑 ∶ 𝑛(Σ) → 𝑛(𝖼𝗎𝗍𝑑(Σ)) is injective. As the interior ideal arc 𝑐 ⊂ 𝖼𝗎𝗍𝑑(Σ) has one endpoint on
the boundary,Θ𝑐 ∶ 𝖼𝗎𝗍𝑑(Σ) → 𝖼𝗎𝗍𝑐,𝑑(Σ) is injective. From the commutativityΘ𝑐◦Θ𝑑 = Θ𝑑◦Θ𝑐 we
conclude that Θ𝑐 ∶ 𝑛(Σ) → 𝖼𝗎𝗍𝑐(Σ) is injective. □

Conjecture 8.7. For any punctured bordered surface Σ and any interior ideal arc 𝑐 the splitting
homomorphism Θ𝑐 is injective as well.

The conjecture is true when 𝑛 = 2 by [15] and for 𝑛 = 3 by Higgins [28]. In both cases, explicit
bases of𝑛(Σ)were used. Proposition 8.6 shows the conjecture is true ifΣ has nontrivial boundary.
Furthermore, the argument of the proof reduces the conjecture to the empty boundary surfaces
with a trivial ideal arc 𝑐, that is, an ideal arc bounding a disk in Σ. Corollary 9.2 will establish a
weaker version of this conjecture for all pb surfaces.

8.4 Skein algebras of surfaces with boundary

Let Σ be an essentially bordered pb surface. A collection 𝐴 = {𝑎1, … , 𝑎𝑟} of disjoint compact
oriented arcs properly embedded into Σ is saturated if

(i) each connected component of Σ ⧵
⋃𝑟

𝑖=1 𝑎𝑖 contains exactly one ideal point (interior or
boundary) of Σ, and

(ii) 𝐴 is maximal with respect to the above condition.

Note that condition (i) does not imply (ii). For example, 𝐴 = ∅ ⊂ Σ∗
1,1

satisfies (i), but not (ii).
Saturated 𝐴 consists of two ideal arcs in this surface.
Let 𝑈(𝑎1), … ,𝑈(𝑎𝑟) be a collection of disjoint open tubular neighborhoods of 𝑎1, … , 𝑎𝑟,

respectively. Each 𝑈(𝑎𝑖) is homeomorphic with 𝑎𝑖 × (−1, 1) (by an orientation preserving
homeomorphism) and we require that (𝜕𝑎𝑖) × (−1, 1) ⊂ 𝜕Σ.
Recall from Subsection 5.4 that any embedding of pb surfaces Σ′ ⊂ Σ together with an order-

ing on the boundary edges of Σ′ in the boundary edges 𝑏 of Σ, called 𝑏-orders, defines a linear
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70 of 93 LÊ and SIKORA

F IGURE 18 Examples of saturated systems. Left: 𝐴 = {𝑎1} in a punctured monogon, Σ∗
0,2
. Right:

𝐴 = {𝑎1, 𝑎2} in an ideal triangle 𝔗 with 𝑎1 in blue and 𝑎2 in red.

homomorphism 𝑛(Σ
′) → 𝑛(Σ). We will show that it is an isomorphism for a saturated system

for arcs 𝑎1, … , 𝑎𝑟 and Σ′ = 𝑈(𝐴) =
⋃𝑟

𝑖=1 𝑈(𝑎𝑖):

Theorem 8.8. Assume Σ is an essentially bordered pb surface and 𝐴 = {𝑎1, … , 𝑎𝑟} is a saturated
system of arcs.

(1) We have 𝑟 = 𝑟(Σ) ∶= #𝜕Σ − 𝜒(Σ), where #𝜕Σ is the number of boundary components of Σ and
𝜒 denotes the Euler characteristics.

(2) The embedding 𝑈(𝐴) ↪ Σ with negative 𝑏-orderings for all boundary edges 𝑏 of Σ, induces an
𝑅-module isomorphism 𝑓𝐴 ∶ 𝑛(𝑈(𝐴)) → 𝑛(Σ).

Note that each 𝑈(𝑎𝑖) = 𝑎𝑖 × (−1, 1) is naturally a directed bigon, with its sides (𝜕𝑎𝑖) × (−1, 1)

oriented in the direction of (−1, 1).

Example 8.9. The saturated systems of Figure 18 induce the linear isomorphisms

𝗍𝗆 ∶ 𝑛(𝔅) → 𝑛(Σ
∗
0,2) and 𝑛(𝔅) ⊗ 𝑛(𝔅) → 𝑛(𝔗) (96)

of Equation (89) and Example 8.3.

By the above theorem, for any essentially bordered pb surface we have an 𝑅-linear isomor-
phism

𝑞(𝑆𝐿(𝑛))
⊗𝑟 Ψ⊗𝑟

6666→ 𝑛(𝑈(𝐴))
𝑓𝐴
666→ 𝑛(Σ).

As𝑞(𝑆𝐿(𝑛)) has a Kashiwara–Lusztig’s canonical basis overℤ[𝑣±1], see [19, Proposition 5.1.1],
we have

Corollary 8.10. For any essentially bordered pb surface, 𝑛(Σ) is a free 𝑅-module with a basis
given by the image of tensor product of Kashiwara–Lusztig’s canonical bases on𝑞(𝑆𝐿(𝑛))

⊗𝑟 under
𝑓𝐴Ψ⊗𝑟.

Remark 9.5 generalizes the above theorem and corollary to all nonclosed pb surfaces.

Remark 8.11. Part (1) implies that condition (ii) in the definition of a saturated system can be
replaced by condition |𝐴| = 𝑟(Σ).
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 71 of 93

F IGURE 19 Left: The arcs in 𝐴 are in red, the ideal arcs 𝑏, 𝑒1, 𝑒2 are in blue. Right: After pulling 𝑒1, 𝑒2 and
arcs in 𝐴 taut.

Proof of Theorem 8.8.

(1) By the maximality of 𝐴, its arcs cut Σ into pieces of the following two types:

,

whose Euler characteristics are, respectively, 0 and 1. Hence, the Euler characteristic of the
result is the number of boundary ideal points, which is #𝜕Σ. On the other hand, each arc cut
increases the Euler characteristic by 1. Hence, 𝜒(Σ) + 𝑟 = #𝜕Σ, proving part (1).

(2) We prove it by induction on 𝗍𝗋𝗂(Σ)which is the number of ideal triangles in an ideal triangula-
tion of Σ, defined as follows. Let  be amaximal collection of nontrivial ideal arcs in Σ that are
pairwise disjoint and pairwise nonisotopic. The ideal arcs in  not isotopic to boundary edges
split Σ into pieces, each is either a monogon, a bigon, or a triangle. Then 𝗍𝗋𝗂(Σ) is the number
of triangles, which is known to be independent on the choice of  . Note that 𝗍𝗋𝗂(Σ) = 0 if and
only if Σ is a disjoint union of monogons and bigons, and the theorem is true for this case.

Suppose 𝗍𝗋𝗂(Σ) > 0. We can assume that Σ is connected.

Lemma 8.12. There is a boundary edge of Σ containing at least two endpoints of arcs in 𝐴.

Proof. As arcs of 𝐴 are disjoint and simple, they have 2|𝐴| endpoints and it is enough to prove
that 2|𝐴| > #𝜕Σ. Assuming otherwise, 2|𝐴| ⩽ #𝜕Σ, and by part (1) we have 1 ⩽ #𝜕Σ ⩽ 2𝜒(Σ).
The positivity of the Euler characteristic implies that 𝜒(Σ) = 1 and Σ is a polygon. Then #𝜕Σ ⩽

2𝜒(Σ) = 2 implies Σ is a monogon or a bigon, contradicting the assumption 𝗍𝗋𝗂(Σ) > 0. □

Let 𝑏 be a boundary edge containing at least two endpoints of 𝐴. Let 𝑝 the ideal end point of 𝑏,
following the positive direction of 𝑏. Among all arcs in 𝐴 having endpoints in 𝑏 assume 𝑎1 has an
endpoint closest to 𝑝. When Σ is cut by arcs in𝐴, there are two pieces adjacent to 𝑎1, one of them,
denoted by 𝑃1, contains the ideal point 𝑝. The other piece, denoted by 𝑃2, contains an ideal point
𝑝′. Let 𝑒1 be an ideal arc of Σ lying in the interior of 𝑃1 ∪ 𝑃2 connecting 𝑝 and 𝑝′ and intersecting
𝑎1 once. No other arcs in 𝐴 intersects 𝑒1. Because the geometric intersection of 𝑏 with all arcs in
𝐴 is at least 2, 𝑒1 cannot be isotopic to 𝑏. Pushing the union 𝑒1 ∪ 𝑏 slightly into the interior of Σ
yields an ideal arc 𝑒2 such that 𝑒1, 𝑒2, 𝑏 bounds an ideal triangle 𝑇, as in Figure 19. After an isotopy
we can assume that𝐴 is taught with respect to 𝑒1, 𝑒2, 𝑏 in the sense that for each 𝑎𝑗 ∈ 𝐴 and each
𝑒 ∈ {𝑏, 𝑒1, 𝑒2} the number |𝑎𝑗 ∩ 𝑒| is minimal when we replace 𝑎𝑗 by any isotopic arc.
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72 of 93 LÊ and SIKORA

Let Σ′ be the result of removing 𝑏 and the interior of 𝑇 from Σ, and let 𝐴′ be the collec-
tion 𝑎′

𝑖
∶= 𝑎𝑖 ∩ Σ′, 𝑖 = 1, … , 𝑟. As |𝐴′| = |𝐴| = 𝑟(Σ) = 𝑟(Σ′), the system 𝐴′ is saturated for Σ′. As

each 𝑎′
𝑖
is a shrinking of 𝑎𝑖 , there is a natural isomorphism 𝑓𝐴→𝐴′ ∶ 𝑛(𝑈(𝐴)) → 𝑛(𝑈(𝐴′)). As

𝗍𝗋𝗂(Σ′) = 𝗍𝗋𝗂(Σ) − 1 the induction hypothesis applies to Σ′. From the definition, we see that 𝑓𝐴 is
the composition of

𝑛(𝑈(𝐴))
𝑓𝐴→𝐴′

666666→ 𝑛(𝑈(𝐴′))
𝑓𝐴′

666→ 𝑛(Σ
′)

𝗀𝗅𝗎𝖾𝑒1,𝑒2
6666666→ 𝑛(Σ).

As each map in this composition is an 𝑅-linear isomorphism, so is 𝑓𝐴. □

Wewill show now that the assumption about the negativity of all 𝑏-orderings in Theorem 8.8(2)
is unnecessary.
Let us enumerate the boundary edges ofΣ by 𝑏1, … , 𝑏𝑠 for bookkeeping purposes. Let 𝑜1, … , 𝑜𝑠 be

some 𝑏1-,. . . , 𝑏𝑠-orderings of the boundary intervals of𝑈(𝐴) in the boundary intervals of Σ and let
𝑓𝐴,𝑜1,…,𝑜𝑠

∶ 𝑛(𝑈(𝐴)) → 𝑛(Σ) be the homomorphism induced by that height ordered embedding.
To relate 𝑓𝐴,𝑜1,…,𝑜𝑠

to 𝑓𝐴, note that each 𝑏-ordering 𝑜 is obtained by a certain permutation
𝜎 of the negatively height ordered points 𝐴 ∩ 𝑏. Let us denote by 𝜎1, … , 𝜎𝑠 the permutations
corresponding to height orderings 𝑜1, … , 𝑜𝑠. Then 𝑓𝐴,𝑜1,…,𝑜𝑠

(𝑥) is induced by the embedding of
𝑈(𝐴) × (−1, 1) into Σ × (−1, 1) with the boundary intervals of 𝑈(𝐴) braided by (𝜎1)+, … , (𝜎𝑠)+,
see Figure 11. Let us elaborate on it more detail now.
Let us call skeins of the form 𝑓𝐴(𝑥1 ⊗ … ⊗ 𝑥𝑟) ∈ 𝑛(Σ) pure.

Lemma 8.13.

(i) For any braids 𝜏1 ∈ 𝐵|𝐴∩𝑏1|, … , 𝜏𝑠 ∈ 𝐵|𝐴∩𝑏𝑠| there exists a unique linear transformation
𝖻𝗋𝖺𝗂𝖽𝐴,𝜏1,…,𝜏𝑠

∶ 𝑛(Σ) → 𝑛(Σ)

which braids the endpoints of each pure skein in 𝑛(Σ) in 𝑏𝑖 by 𝜏𝑖 , for 𝑖 = 1, … , 𝑠. (All skeins are
considered with negative 𝑏𝑖-orderings for 𝑖 = 1, … , 𝑠.)

(ii) Let 𝜎1, … , 𝜎𝑠 be permutations corresponding to height orderings 𝑜1, … , 𝑜𝑠 on 𝑏1, … , 𝑏𝑠 . Then for
pure 𝑥,

𝑓𝐴,𝑜1,…,𝑜𝑠
(𝑥) = 𝖻𝗋𝖺𝗂𝖽𝐴,(𝜎1)+,…,(𝜎𝑠)+

◦𝑓𝐴.

(iii) (𝜏1, … , 𝜏𝑠) → 𝖻𝗋𝖺𝗂𝖽𝐴,𝜏1,…,𝜏𝑠
defines a group homomorphism from 𝐵|𝐴∩𝑏1| ×⋯ × 𝐵|𝐴∩𝑏𝑠| to the

group of 𝑅-linear automorphisms of 𝑛(Σ). In particular, each 𝖻𝗋𝖺𝗂𝖽𝐴,𝜏1,…,𝜏𝑠
is a linear

isomorphism of 𝑛(Σ).

Proof.

(i) For braids 𝜏1 ∈ 𝐵|𝐴∩𝑏1|, … , 𝜏𝑠 ∈ 𝐵|𝐴∩𝑏𝑠| consider the embedding
𝑈(𝑎1) ∪ … ∪ 𝑈(𝑎𝑛) ⊂ Σ × (−1, 1)

modified by the braiding by 𝜏𝑖 of its components going toward 𝑏𝑖 ⊂ Σ, for 𝑖 = 1, … , 𝑠. This
map is considered with the negative height order. It induces a linear map of skein algebras
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 73 of 93

that we denote by g𝐴,𝜏1,…,𝜏𝑠
∶ 𝑛(𝑈(𝐴)) → 𝑛(Σ). Then for pure 𝑥, let

𝖻𝗋𝖺𝗂𝖽𝐴,𝜏1,…,𝜏𝑠
(𝑥) = g𝐴,𝜏1,…,𝜏𝑠

◦𝑓−1
𝐴 .

By Theorem 8.8(2), pure skeins span 𝑛(Σ). Consequently, the condition of (i) determines
𝖻𝗋𝖺𝗂𝖽𝐴,𝜏1,…,𝜏𝑠

completely.
(ii) Follows from the discussion above Lemma 8.13.
(iii) By definition,

𝖻𝗋𝖺𝗂𝖽𝐴,𝜏1,…,𝜏𝑠
◦𝖻𝗋𝖺𝗂𝖽𝐴,𝜏′

1
,…,𝜏′𝑠

= 𝖻𝗋𝖺𝗂𝖽𝐴,𝜏1𝜏
′
1
,…,𝜏𝑠𝜏

′
𝑠
,

for any 𝜏1, 𝜏
′
1
∈ 𝐵|𝐴∩𝑏1|, … , 𝜏𝑠, 𝜏

′
𝑠 ∈ 𝐵|𝐴∩𝑏𝑠|. Consequently, each 𝖻𝗋𝖺𝗂𝖽𝜏1,…,𝜏𝑠

is a linear isomor-
phism of 𝑛(Σ). As 𝖻𝗋𝖺𝗂𝖽𝐴,𝑖𝑑,…,𝑖𝑑 = 𝑖𝑑, the statement follows. □

By Theorem 8.8(2) and Lemma 8.13(2) and (3), we have:

Corollary 8.14. 𝑓𝐴,𝑜1,…,𝑜𝑠
∶ 𝑛(𝑈(𝐴)) → 𝑛(Σ) is a linear isomorphism for every 𝑜1, … , 𝑜𝑠 .

8.5 Products on skein algebras of surfaces with boundary

In the previous subsection, we discussed 𝑅-module structures of skein algebras only. We will
address the algebra products now.
Let 𝑎1, … , 𝑎𝑟 be a saturated system of arcs inΣ as before. Note that the induced linear homomor-

phism 𝑛(𝑈(𝑎𝑖)) → 𝑛(Σ) is an algebra homomorphism if and only if 𝑎𝑖 has its ends at different
boundary intervals of Σ. (We have seen this already in Example 8.9, where the right map of
Equation (96) is an algebra homomorphism on each of the components, 𝑛(𝔅), but the left map
𝑡𝑚 ∶ 𝑛(𝔅) → 𝑛(Σ

∗
0,2

) is not an algebra homomorphism.)
Therefore, for the sake of studying algebra products on 𝑛(Σ) let us consider modified neigh-

borhoods 𝑈′(𝑎𝑖) = 𝑈(𝑎𝑖) ∪ 𝑉 for arcs 𝑎𝑖 with both their ends in the same boundary interval,
where 𝑉 is a tubular neighborhood of the arc of 𝜕Σ connecting the endpoints of 𝑎𝑖 . We assume
that 𝑉 is small enough so that 𝑈′(𝑎𝑖) is homeomorphic to a punctured monogon. Note that the
transmutation map is a linear isomorphism 𝗍𝗆 ∶ 𝑛(𝑈(𝑎𝑖)) → 𝑛(𝑈

′(𝑎𝑖)) by Proposition 8.5. We
leave the chosen neighborhoods of the arcs with ends in different components of 𝜕Σ unchanged,
𝑈′(𝑎𝑖) = 𝑈(𝑎𝑖).
Let us consider the map

𝗆𝗎𝗅𝗍𝐴 ∶ 𝑛(𝑈
′(𝑎1)) ⊗ … ⊗ 𝑛(𝑈

′(𝑎𝑟)) → 𝑛(Σ), 𝗆𝗎𝗅𝗍𝐴(𝑥1 ⊗ … ⊗ 𝑥𝑟) = 𝑥1 ⋅ … ⋅ 𝑥𝑟.

Note that by the transmutation map for arcs in the same component of 𝜕Σ,𝗆𝗎𝗅𝗍𝐴 coincides with
𝑓𝐴,𝑜1,…,𝑜𝑠

for 𝑏1-,. . . , 𝑏𝑠-orderings 𝑜1, … , 𝑜𝑠, for which the boundary arcs of 𝑈′(𝑎𝑖) are higher than
the boundary arcs of 𝑈′(𝑎𝑗) for 𝑖 > 𝑗 in any boundary interval of 𝜕Σ.
Consequently, by the above discussion and by Corollary 8.14:

Corollary 8.15. 𝗆𝗎𝗅𝗍𝐴 ∶ 𝑛(𝑈
′(𝑎1)) ⊗ … ⊗ 𝑛(𝑈

′(𝑎𝑟)) → 𝑛(Σ) is an 𝑅-linear isomorphism and
an algebra homomorphism on

𝑛(𝑈
′(𝑎𝑖)) = 𝑅 ⊗ … ⊗ 𝑅 ⊗ 𝑛(𝑈

′(𝑎𝑖)) ⊗ 𝑅 ⊗ … ⊗ 𝑅 ⊂ 𝑛(𝑈
′(𝑎1)) ⊗ … ⊗ 𝑛(𝑈

′(𝑎𝑟))
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74 of 93 LÊ and SIKORA

F IGURE 20 Left: A triangulation of Σ∗
1,1
(in black) with the horizontal edges identified and with the

vertical edges identified. (Hence, all ideal vertices are identified.) The red and the blue arcs form a saturated arc
collection. Right: Another presentation of Σ∗

1,1
with the corresponding red and blue arcs.

for every 𝑖 (where each 𝑅 is spanned by the appropriate identity element).

𝑛(Σ) is not the tensor product of the algebras 𝑛(𝑈
′(𝑎1)), … ,𝑛(𝑈

′(𝑎𝑛)) because elements of
different component algebras do not necessarily commute in 𝑛(Σ).
We have seen in Examples 8.3 and 8.9 already that the skein algebra of the ideal trian-

gle, 𝑛(𝔗) is the braided tensor product 𝑛(𝔅)⊗𝑛(𝔅). We will see in the next subsection
however that our stated skein algebras are not braided products of their component algebras,
𝑛(𝑈

′(𝑎1)), … ,𝑛(𝑈
′(𝑎𝑟)) in general.

8.6 Torus with an arc boundary

Let us apply the approach of the above section to analyze the skein algebra of the torus with an
arc boundary, 𝑛(Σ

∗
1,1

). Figure 20 shows a torus (in black) with a saturated arc collection: 𝑎1 in
red and 𝑎2 in blue.
By Corollary 8.15,

𝗆𝗎𝗅𝗍𝐴 ∶ 𝑛(Σ
∗
0,2) ⊗ 𝑛(Σ

∗
0,2) → 𝑛(Σ

∗
1,1), 𝗆𝗎𝗅𝗍(𝑥 ⊗ 𝑦) =

is an 𝑅-linear isomorphism and an algebra homomorphism on each of the components algebras.
We described a method of finding an algebraic presentation of 𝑛(Σ

∗
0,2

) in Subsection 8.2.
The above discussion allows for an algebraic description of the product on 𝑛(Σ

∗
0,2

) ⊗ 𝑛(Σ
∗
0,2

)

(induced from 𝑛(Σ
∗
1,1

) by 𝗆𝗎𝗅𝗍𝐴) as follows: by the construction of 𝗆𝗎𝗅𝗍𝐴,

(𝑥 ⊗ 1) ⋅ (𝑥′ ⊗ 1) = (𝑥 ⋅ 𝑥′) ⊗ 1, (1 ⊗ 𝑦) ⋅ (1 ⊗ 𝑦′) = 1 ⊗ (𝑦 ⋅ 𝑦′), (𝑥 ⊗ 1) ⋅ (1 ⊗ 𝑦) = 𝑥 ⊗ 𝑦

in 𝑛(Σ
∗
1,1

) for 𝑥 ∈ 𝑛(𝑈
′(𝑎1)) and 𝑦 ∈ 𝑛(𝑈

′(𝑎2)). Therefore, to complete the algebraic
description of the product in 𝑛(Σ

∗
1,1

) it remains to consider

(1 ⊗ 𝑦) ⋅ (𝑥 ⊗ 1) = .
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 75 of 93

F IGURE 2 1 From Σ to Σ𝑝 . Here 𝑝 is an interior ideal point. The picture when 𝑝 is a boundary ideal point is
similar.

Denoting this diagram by 𝑧, and applying the identity (95), where Δ is our 𝑞(𝑆𝐿(𝑛))-coproduct
taken with respect to the dashed line, we see that

(1 ⊗ 𝑦) ⋅ (𝑥 ⊗ 1) =
∑

𝑥(2) ⋅ 𝑦(2) ⋅ 𝑇(𝑥(1), 𝑥(3), 𝑦(1), 𝑦(3)),

where 𝑇(𝑥(1), 𝑥(3), 𝑦(1), 𝑦(3)) is the counit value of the tangle in 𝔅 cut off from the diagram above
by the dashed line.
The above formulae completely determine the multiplication in 𝑛(Σ

∗
1,1

) and allow for writing
a finite presentation of 𝑛(Σ

∗
1,1

) in terms of generators and relators. Note that 𝗆𝗎𝗅𝗍𝐴 in this case
is not a braided tensor product of the component algebras 𝑛(𝑈

′(𝑎1)), for 𝑖 = 1, 2, in the sense of
[52].
For 𝑅 = 𝕜(𝑞), the skein algebra 𝑛(Σ1,1) is given by a semi-direct product 𝑈𝑞(𝑠𝑙(𝑛))⋉

⊗𝑞(𝑆𝐿(𝑛)) and is called the “elliptic double” of 𝑈𝑞(𝑠𝑙(𝑛)), and also the “algebra of quantum
differential operators on 𝑆𝐿(𝑛, 𝕜),” see [7, section 6.4].

Remark 8.16. The finite presentations of 𝑛(Σ
∗
0,2

) and 𝑛(Σ
∗
1,1

) (discussed in Subsection 8.2 and
above) induce finite presentations of algebras 𝑛(Σ

∗
g ,𝑝) for all g ⩾ 0, 𝑝 > 0 by the method of

Example 8.4.
Furthermore, Corollary 8.15 allows for a generalization of the above method to provide a finite

presentation of 𝑛(Σ) in terms of generators and relators for every essentially bordered surface Σ.

9 KERNEL AND IMAGE OF THE SPLITTING HOMOMORPHISM

9.1 Kernel of the splitting homomorphism

SupposeΣ is a connected pb surfacewith an ideal point𝑝 and a trivial ideal arc 𝑐𝑝 at𝑝. Then 𝖼𝗎𝗍𝑐𝑝Σ

is the disjoint union of a monogon𝔐 and of a new pb surface Σ𝑝 that has 𝑐𝑝 as its boundary edge,
see Figure 21. Let𝑝(Σ) be the kernel of the composition

Θ𝑝 ∶ 𝑛(Σ)
Θ𝑐𝑝
666→ 𝑛(Σ𝑝) ⊗𝑅 𝑛(𝔐)

≅
6→ 𝑛(Σ𝑝).

Explicitly Θ𝑝 is given as follows. Any stated 𝑛-web 𝛼 over Σ can be isotoped so that it is disjoint
from 𝑐𝑝 and, hence, lying in Σ𝑝. Then Θ𝑝(𝛼) = 𝛼 as elements of 𝑛(Σ𝑝).

Theorem 9.1. For any two ideal points 𝑝 and 𝑝′ of a connected punctured bordered surface Σ we
have𝑝(Σ) = 𝑝′(Σ).
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76 of 93 LÊ and SIKORA

Proof. Assume the two trivial ideal arcs 𝑐𝑝 and 𝑐𝑝′ are disjoint. By splitting both 𝑐𝑝 and 𝑐𝑝′ we
get two monogons and a pb surface Σ𝑝,𝑝′ . Let Θ ∶ 𝑛(Σ) → 𝑛(Σ𝑝,𝑝′ ) be the composition of the
two splittings, first along 𝑐𝑝 and then along 𝑐𝑝′ . As by Proposition 8.6, the second one is injective,
we have kerΘ𝑝 = kerΘ. By switching the order of the splitting, we have kerΘ𝑝′ = kerΘ. Thus,
𝑝 = 𝑝′ . □

We denote this common ideal by (Σ). The quotient ̄𝑛(Σ) ∶= 𝑛(Σ)∕(Σ) is called the
projected stated skein algebra of Σ. By Proposition 8.6,𝑝 is trivial and ̄𝑛(Σ) = 𝑛(Σ) if 𝜕Σ ≠ ∅,

Corollary 9.2. For any ideal arc 𝑐, the splitting homomorphism descends to an injective algebra
homomorphism

Θ̄𝑐 ∶ ̄𝑛(Σ) → ̄𝑛(𝖼𝗎𝗍𝑐 Σ) = 𝑛(𝖼𝗎𝗍𝑐 Σ).

Proof. The proof is similar to that of Theorem 9.1. Assume 𝑐 is disjoint from a trivial arc 𝑐𝑝. As
the compositionsΘ𝑐Θ𝑐𝑝

, Θ𝑐𝑝
Θ𝑐 ∶ 𝑛(Σ) → 𝑛(𝖼𝗎𝗍𝑐(Σ𝑝)) coincide and for both of them the second

map is injective, kerΘ𝑐𝑝
= kerΘ𝑐. □

Corollary 9.3. Conjecture 8.7 is equivalent to the projection 𝑛(Σ) → ̄𝑛(Σ) being an isomorphism.
(And, hence, this projection is an isomorphism for 𝑛 = 2 and 3.)

In the next subsection, we will prove the following.

Theorem 9.4. For any Σ, 𝑝 and 𝑐𝑝 as above, ̄𝑛(Σ) coincides with the subalgebra of 𝑛(Σ𝑝)

coinvariant under the coaction Δ𝑐𝑝
∶ 𝑛(Σ𝑝) → 𝑛(Σ𝑝) ⊗ 𝑛(𝔅) at 𝑐𝑝:

̄𝑛(Σ) = {𝑥 ∈ 𝑛(Σ𝑝) ∶ Δ𝑐𝑝
(𝑥) = 𝑥 ⊗ 1}.

Remark 9.5. Let Σ = Σ −  , where  is a finite subset of compact surface Σ, as in Subsection 5.1.
Generalizing the setup of Subsection 8.4, consider a collection 𝐴 of disjoint, oriented, arcs in Σ,
each with endpoints in 𝜕Σ ∪  , satisfying conditions (i) and (ii) above. Theorem 8.8 and the dis-
cussion of the projected stated skein algebra implies that such𝐴 defines an identification of ̄𝑛(Σ)

with 𝑞(𝑆𝐿(𝑛))
⊗𝑟 and, hence, it determines a basis of ̄𝑛(Σ).

9.2 The image of the splitting homomorphism

Let 𝑐 be an interior oriented ideal arc of a pb surface Σ. Denote the two copies of 𝑐 in 𝖼𝗎𝗍𝑐 Σ by 𝑎1

and 𝑎2. We have the splitting 𝑅-algebra homomorphism

Θ𝑐 ∶ 𝑛(Σ) → 𝑛(𝖼𝗎𝗍𝑐 Σ).

and 𝑛(𝖼𝗎𝗍𝑐 Σ) is a 𝑞(𝑆𝐿(𝑛))-bi-comodule with the right and left coactions

Δ𝑎1
∶ 𝑛(𝖼𝗎𝗍𝑐 Σ) → 𝑛(𝖼𝗎𝗍𝑐 Σ) ⊗ 𝑞(𝑆𝐿(𝑛))

𝑎2
Δ ∶ 𝑛(𝖼𝗎𝗍𝑐 Σ) → 𝑞(𝑆𝐿(𝑛)) ⊗ 𝑛(𝖼𝗎𝗍𝑐 Σ),
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 77 of 93

F IGURE 22 (𝖼𝗎𝗍𝑐 Σ)𝑎1△𝑎2
.

respectively, where 𝑞(𝑆𝐿(𝑛)) is identified with the skein algebra of the bigon directed by the
orientation of 𝑐. Recall that the Hochschild cohomology module is defined by

𝐻𝐻0(𝑛(𝖼𝗎𝗍𝑐 Σ)) = {𝑥 ∈ 𝑛(𝖼𝗎𝗍𝑐 Σ) ∣ Δ𝑎1
(𝑥) = f l◦𝑎2

Δ(𝑥)},

where f l is the transposition

f l ∶ 𝑞(𝑆𝐿(𝑛)) ⊗ 𝑛(Σ) → 𝑛(Σ) ⊗ 𝑞(𝑆𝐿(𝑛)), f l(𝑥 ⊗ 𝑦) = 𝑦 ⊗ 𝑥.

Theorem 9.6 (See [15, 38] for 𝑛 = 2 and [28] for 𝑛 = 3.). The image of Θ𝑐 is equal to
𝐻𝐻0(𝑛(𝖼𝗎𝗍𝑐 Σ)).

Proof. As the image of Θ𝑐 is equal to the image of Θ̄𝑐 ∶ 𝑛(Σ) → 𝑛(𝖼𝗎𝗍𝑐 Σ), we can work with
projected skein algebras. More specifically, we will assume that one end 𝑣 of 𝑐 is a boundary ideal
point of Σ, as we can remove a disk from Σ, adjacent to 𝑣 and disjoint from 𝑐, if necessary. We will
present 𝑐, 𝑎1, 𝑎2 in 𝖼𝗎𝗍𝑐 Σ𝑎1△𝑎2

as in Figure 22, with 𝑣 in the bottom.
Let (𝖼𝗎𝗍𝑐 Σ)𝑎1∧𝑎2

denote (𝖼𝗎𝗍𝑐 Σ)𝑎1△𝑎2
− 𝜕0𝔗, for simplicity, where 𝜕0𝔗 is the bottom edge of𝔗,

as in Subsection 8.1. Note that we can identify the image of 𝑛((𝖼𝗎𝗍𝑐 Σ)𝑎1∧𝑎2
) → 𝑛((𝖼𝗎𝗍𝑐 Σ)𝑎1△𝑎2

)

with 𝑛(Σ). We will use this identification below.
Let

∇𝑎1,𝑎2
∶ 𝑛(𝖼𝗎𝗍𝑐 Σ) → 𝑛((𝖼𝗎𝗍𝑐 Σ)𝑎1△𝑎2

), ∇𝑎1,𝑎2
= 𝗀𝗅𝗎𝖾𝑎1,𝑎2

◦htw−1
𝑎2

.

It is an isomorphism by Propositions 4.11 and 8.1.

Lemma 9.7.

(1) ∇𝑎1,𝑎2
Θ𝑐(𝑛(Σ)) = 𝑛((𝖼𝗎𝗍𝑐 Σ)𝑎1∧𝑎2

) ≃ 𝑛(Σ).
(2) ∇𝑎1,𝑎2

restricted to ImΘ𝑐 is the inverse to Θ𝑐 .

Proof. For every stated web diagram 𝐷 on Σ, we have

Θ𝑐
KK→

∑
𝑖1,...,𝑖𝑘

∇𝑎1,𝑎2
KKKKK→

∑
𝑖1,...,𝑖𝑘

(∏
𝑐−1𝑖𝑗

)
= 𝐷,
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78 of 93 LÊ and SIKORA

F IGURE 2 3 The curve 𝛾.

with the last equality by Relation (49). Hence,

∇𝑎1,𝑎2
Θ𝑐 = id𝑛(Σ)

.

As ∇𝑎1,𝑎2
restricted to ImΘ𝑐 is a bijection onto 𝑛(Σ), this identity implies (2). □

For any collection of boundary edges𝑋 ⊂ 𝜕Σ, let ImΣ 𝑛(Σ − 𝑋)denote the image 𝚤∗(𝑛(Σ − 𝑋))

in 𝑛(Σ) of the homomorphism induced by 𝚤 ∶ Σ − 𝑋 ↪ Σ.

Lemma 9.8. Let 𝑏1, 𝑏2 be two boundary components of Σ separated by a puncture. Then the
embedding

ImΣ 𝑛(Σ − (𝑏1 ∪ 𝑏2)) ↪ ImΣ 𝑛(Σ − 𝑏1) ∩ ImΣ 𝑛(Σ − 𝑏2)

is onto.

Proof. Consider an arc 𝛾 parallel to 𝑏1 ∪ 𝑏2, as in Figure 23.
Then the following diagram commutes:

ImΣ 𝑛(Σ − (𝑏1 ∪ 𝑏2)) ↪ ImΣ 𝑛(Σ − 𝑏1) ∩ ImΣ 𝑛(Σ − 𝑏2)

↓ Θ𝛾 ↓ Θ𝛾

Im𝖼𝗎𝗍𝛾 Σ 𝑛(𝖼𝗎𝗍𝛾 Σ − (𝑏1 ∪ 𝑏2)) ↪ Im𝖼𝗎𝗍𝛾 Σ 𝑛(𝖼𝗎𝗍𝛾 Σ − 𝑏1) ∩ Im𝖼𝗎𝗍𝛾 Σ 𝑛(𝖼𝗎𝗍𝛾 Σ − 𝑏2).

By Proposition 8.6, both homomorphisms Θ𝛾 in the diagram are 1-1 and, hence, it is enough to
show that the embedding in the bottom line is onto. As the skein algebra of a surface is the tensor
product of its connected components, it is enough to show the statement of the lemma for the tri-
angle𝔗 bounded by 𝑏1, 𝑏2 and 𝛾. By Proposition 8.2, 𝑛(𝔗) is isomorphic with 𝑛(𝔅1) ⊗ 𝑛(𝔅2),
as an 𝑅-module, where 𝔅𝑖 for 𝑖 = 1 are disjoint bigons in 𝔗 such that 𝑏𝑖 ⊂ 𝜕𝔅𝑖 , as in Figure 23.
Through that isomorphism the statement of the lemma reduces to

𝑞(𝑆𝐿(𝑛)) ⊗ 𝑅 ⋅ 1 ∩ 𝑅 ⋅ 1 ⊗ 𝑞(𝑆𝐿(𝑛)) = 𝑛(𝔐) = 𝑅,

where 1 is the identify in 𝑞(𝑆𝐿(𝑛)) and 𝔐 is the monogon 𝔗 − 𝑏1 − 𝑏2. That follows from the
fact that 𝑅 ⋅ 1 is a direct summand of 𝑞(𝑆𝐿(𝑛)), by [19, Proposition 5.1.1]. □

Let us continue with the proof of the theorem. To prove that the inclusion

Θ𝑐(𝑛(Σ)) ⊂ 𝐾𝑒𝑟 (Δ𝑎1
− f l◦𝑎2

Δ)
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 79 of 93

is an equality, we will show that for any 𝑦 ∈ 𝐾𝑒𝑟 (Δ𝑎1
− f l◦𝑎2

Δ),

𝑥 = ∇𝑎1,𝑎2
(𝑦) ∈ 𝑛((𝖼𝗎𝗍𝑐 Σ)𝑎1△𝑎2

)

lies in 𝑛((𝖼𝗎𝗍𝑐 Σ)𝑎1∧𝑎2
). Then

Θ𝑐(𝑥) = 𝑦 (97)

by Proposition 9.7(2).
As mentioned above, it remains to be shown that 𝑥 ∈ 𝑛((𝖼𝗎𝗍𝑐 Σ)𝑎1∧𝑎2

). Recall that Δ𝑎1
and

f l𝑎2
◦Δ map 𝑦 into 𝑛(𝖼𝗎𝗍𝑐 Σ) ⊗ 𝑛(𝔅), where the left and right edges of 𝔅 are denoted by

𝑒𝑙, 𝑒𝑟, respectively.
Let

𝑧 = Δ𝑎1
(𝑦) = f l◦𝑎2

Δ(𝑦).

By Proposition 9.7(2),

∇𝑎1,𝑏𝑙
(𝑧) = ∇𝑎1,𝑏𝑙

Δ𝑎1
(𝑦) = 𝑦,

where 𝑦 at the end of the above equation is a skein in 𝖼𝗎𝗍𝑐 Σ ⊔ 𝔅∕(𝑎1 = 𝑏𝑙) identified with 𝖼𝗎𝗍𝑐 Σ.
Then

∇𝑏𝑟,𝑎2
∇𝑎1,𝑏𝑙

(𝑧) = ∇𝑏𝑟,𝑎2
(𝑦) = ∇𝑏𝑟,𝑎2

Θ𝑐(𝑥) = 𝑥,

by (97).
By Proposition 9.7(1), ∇𝑎1,𝑏𝑙

Δ𝑎1
(𝑦) belongs to 𝑛((Σ ⊔ 𝔅)𝑎1∧𝑏𝑙

). By applying ∇𝑏𝑟,𝑎2
to it, we see

that

𝑥 ∈ 𝑛((Σ ⊔ 𝔅)𝑎1∧𝑏𝑙,𝑏𝑟△𝑎2
).

As nablas for disjoint pairs of edges commute,

𝑥 = ∇𝑏𝑟,𝑎2
∇𝑎1,𝑏𝑙

(𝑧)

and by an analogous argument

𝑥 ∈ 𝑛((Σ ⊔ 𝔅)𝑎1△𝑏𝑙,𝑏𝑟∧𝑎2
).

Now the statement follows from Lemma 9.8. □

The construction of the inverse of the splitting map (Lemma 9.7) implies the following:

Corollary 9.9. For any union  of ideal boundary arcs of Σ,

Θ𝑐(𝑛(Σ − )) = Θ𝑐(𝑛(Σ)) ∩ 𝑛(𝖼𝗎𝗍𝑐 Σ − ) in 𝑛(𝖼𝗎𝗍𝑐Σ).

Proof. The inclusion⊂ is obvious and the opposite inclusion⊃ is obtained by applying the inverse
map to Θ𝑐 of Lemma 9.7. □
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80 of 93 LÊ and SIKORA

Proof of Theorem 9.4.

̄𝑛(Σ) ⊂ {𝑥 ∈ 𝑛(Σ) ∶ Θ𝑐𝑝
(𝑥) = 𝑥 ⊗ 1}

is obvious. The opposite inclusion, ⊃, is immediate for Σ = 𝔐: in that case 𝑝 is the only vertex of
𝔐,𝔐𝑐𝑝

= 𝔅, where 𝑐𝑝 = 𝜕𝑟𝔅 and ifΔ𝑐𝑝
𝑥 = 𝑥 ⊗ 1 for 𝑥 ∈ 𝔐𝑐𝑝

then by applying 𝜀 ⊗ 1we obtain
𝑥 = 𝜀(𝑥)1 ∈ 𝑅.
More generally, let Σ be a disjoint union of an essentially bordered Σ′ and of𝔐 (with a vertex

𝑝 and an arc 𝑐𝑝 as above). Let Δ𝑐𝑝
𝑥 = 𝑥 ⊗ 1 for 𝑥 ∈ Σ′ ⊔ 𝔐𝑐𝑝

. Then by Theorem 8.8, 𝑥 can be
written as 𝑥 =

∑𝑁
𝑖=1 𝑦𝑖 ⊗ 𝑧𝑖 , where 𝑦1, … , 𝑦𝑁 ∈ 𝑛(Σ

′) are linearly independent and 𝑧1, … , 𝑧𝑁 ∈

𝑛(𝔅). Then Δ𝑐𝑝
𝑧𝑖 = 𝑧𝑖 ⊗ 1 for every 𝑖 and, hence, 𝑧1, … , 𝑧𝑁 ∈ 𝑅. That concludes the proof of the

inclusion ⊃ in that case.
LetΘ𝑐𝑝

(𝑥) = 𝑥 ⊗ 1 now for some arbitrary Σ, 𝑝, 𝑐𝑝 (as above) and 𝑥 ∈ 𝑛(Σ𝑝). We need to show
that 𝑥 lies in the image of 𝑛(Σ𝑝 − 𝑐𝑝) in 𝑛(Σ𝑝).
Let 𝑐′𝑝 be an arc in Σ𝑝 parallel to 𝑐𝑝, splitting Σ𝑝 into Σ′

𝑝 and a bigon bounded by 𝑐𝑝 and 𝑐′𝑝.
Then

Θ𝑐𝑝
Θ𝑐′𝑝

(𝑥) = Θ𝑐′𝑝
Θ𝑐𝑝

(𝑥) = Θ𝑐′𝑝
(𝑥) ⊗ 1.

AsΘ𝑐′𝑝
(𝑥) ∈ 𝑛(Σ

′
𝑝 ⊔ 𝔐𝑐𝑝

) the previous case implies thatΘ𝑐′𝑝
(𝑥) is of the form 𝑦 ⊗ 1 ∈ 𝑛(Σ

′
𝑝) ⊗

𝑆𝑛(𝔐𝑐𝑝
), for some 𝑦 ∈ 𝑛(Σ

′
𝑝). By Corollary 9.9 above for  = 𝑐𝑝, we haveΘ𝑐′𝑝

(𝑥) ∈ Θ𝑐′𝑝
(𝑛(Σ𝑝 −

𝑐𝑝)). As Θ𝑐′𝑝
is 1-1, 𝑥 lies in 𝑛(Σ𝑝 − 𝑐𝑝). □

10 RELATION TO FACTORIZATION HOMOLOGY, SKEIN
CATEGORIES, AND LATTICE GAUGE THEORY

10.1 Factorization homology

Factorization homology was introduced by Beilinson and Drinfeld [6] in the setting of conformal
field theory and then in [1, 2, 47] in the topological context. Given an algebraic object  called
an 𝐸𝑛-algebra, it associates to oriented 𝑛-dimensional manifolds (with boundary) 𝑀 categories
∫𝑀 , which are linear over a certain ring of coefficients 𝑅.
For 𝑛 = 2, the notion of 𝐸2-algebra is equivalent to that of a braided tensor category. Important

examples of such categories are the categories of finite-dimensional representations of quantum
groups𝑈𝑞(𝔤). The factorizationhomology of surfaces for these categorieswas studied in [7],where
the authors proved that if 𝜕Σ = 𝑆1 then ∫𝑀  is equivalent to the category of left modules over a
certain algebra 𝐴Σ (depending on the Lie algebra 𝔤).
The factorization homology of [7] and skein categories (discussed below) are theories parallel

to ours. We show:

Theorem 10.1. Let 𝑅 = 𝕜(𝑞) for a field 𝕜 and let 𝐸2 be the category of type 1 finite-dimensional
representations of𝑈𝑞(𝑠𝑙(𝑛)) (over 𝑅). Then 𝐴Σg ,𝑝

is isomorphic to 𝑛(Σ
∗
g ,𝑝) (as 𝑅-algebras) for every

g ⩾ 0, 𝑝 ⩾ 1.
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 81 of 93

On the one hand, factorization homology of [7] is more general in that it is defined for all
semi-simple Lie algebras and it can be viewed as a quantization of the entire moduli stacks of
representations, rather than just the character varieties.
On the other hand, one may consider our theory more elementary because it does not involve

higher category theory. More importantly, our stated skein modules are defined over nonfield
rings of coefficients, for all 3-dimensional manifolds, and we worked out their theory for sur-
faceswithmultiple boundary components andmultiplemarkings. Furthermore, unlike our stated
skein algebras, the algebras 𝐴Σ of [7] are defined up to an isomorphism only.
The existence of our stated skein algebras overℤ[𝑞

1
2𝑛 ] allows to construct quantum trace homo-

morphisms of the stated skein algebras into quantum tori, over any ground ring. It was done
for 𝑛 = 2 by Bonahon–Wang, [12], and more generally in [15, 44]. The construction of quantum
trace was generalized to all 𝑛 in [45], where two versions of quantum trace maps, quantizing,
respectively, the length coordinates and the shear coordinates trace formulae, were introduced.
Embeddings into quantum tori allow to study algebraic properties 𝑛(Σ) and their representa-

tions.
The above works relate our algebras to the theory of quantum cluster algebras, which provide

alternative quantizations of character varieties. Further connections to quantum cluster algebras
are through [13, 29, 59].
For completeness, let us summarize briefly the construction of the factorization homology of [7]

(in dimension 2): it is based on the (∞, 1)-category𝖬𝖿𝗅𝖽2 whose objects are oriented surfaces (with
boundary),morphisms are given by their embeddings, 2-morphisms are isotopies between embed-
dings and higher order morphisms are isotopies between them. This category has a monoidal
structure given by disjoint embeddings and it has a full subcategory𝖣𝗂𝗌𝗄2 consisting of disks (with
partial boundaries) and their embeddings. One can prove that any pivotal ribbon category defines
a symmetricmonoidal functor into a symmetricmonoidal (∞, 1)-categorywhose objects are cer-
tain presentable categories and its monoidal structure is given by the categorical product. Then
∫𝑀  is the left Kan extension

𝖣𝗂𝗌𝗄2 

𝖬𝖿𝗅𝖽2

𝐹

∫
−
 ,

which, inmore concrete terms, is a certain colimit in  over all possible embeddings of collections
of disks into a given surface.

Proof of Theorem 10.1. Let 𝔤 = 𝑠𝑙(𝑛). Then the algebra𝔉𝐴 of [7] is isomorphic with𝑛(Σ
∗
0,2

), see [7,
section 6.1] Furthermore, one can see that𝐴Σ1,1

coincides with 𝑛(Σ
∗
1,1

), by comparing the “gluing
pattern” of Σ1,1 in [7, Theorem 5.11] with ours in Figure 20 (right) or by [7, Corollary 6.8].
By [7, Theorem 5.11],𝐴Σg ,𝑝

is the braided tensor product of 𝑝 − 1 copies of𝐴Σ0,2
= 𝑛(Σ

∗
0,2

) and
g copies of 𝐴Σ1,1

= 𝑛(Σ
∗
1,1

). Now the statement follows from Example 8.4. □

10.2 Skein categories

Skein categories are categorical analogous of skein algebras introduced by Walker and Johnson-
Freyd [66, p. 70], [30, section 9]. A framing of a point 𝑝 on surface Σ is a choice of a nonzero vector
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82 of 93 LÊ and SIKORA

𝑣 ∈ 𝑇𝑝Σ. Let  be a ribbon category, linear over 𝑅. The ribbon category 𝖱𝗂𝖻 (Σ) has objects given
by finite sets of framed, signed disjoint points of Σ. Its morphisms are 𝑅-linear combinations of
ribbon graphs in Σ × [0, 1] (in the sense of Reshetikhin–Turaev) whose edges are decorated with
objects of  and coupons are decorated with intertwiners. The ends of a ribbon graph Γ in Σ × {0}

(respectively, in Σ × {1}) determine the source (and, respectively, the target) of the morphism Γ.
For an oriented arc 𝐶, the Reshetikhin–Turaev construction defines a functor 𝖱𝖳 ∶

𝖱𝗂𝖻 (𝐶 × [0, 1]) →  . (This functor was denoted by 𝖱𝖳0 for the ribbon category 𝑛 of
Subsection 3.1.)
The skein category, 𝖲𝗄 (Σ) is 𝖱𝗂𝖻 (Σ)modulo the relation on morphisms

∑
𝑐𝑖Γ𝑖 ∼ 0, whenever

a restriction of
∑

𝑐𝑖Γ𝑖 to a certain cube 𝐶 × [0, 1] × [0, 1] is in the kernel of Reshetikhin–Turaev
evaluation, 𝖱𝖳.
Cooke proved that for the category  of finite-dimensional representations of a quantum group

𝑈𝑞(𝔤), the skein category of any surface coincides with its factorization homology ∫Σ  , [14]. Fur-
thermore, [21, 27, 43] proved that for 𝔤 = 𝑠𝑙(2) and 𝑅 a field, the skein category of Σ with 𝜕Σ = 𝑆1

is equivalent to the category of left modules over 2(Σ). By Theorem 10.1, we obtain

Corollary 10.2. For 𝔤 = 𝑠𝑙(𝑛) (for any 𝑛) and 𝑅 a field, the skein category of Σ with 𝜕Σ = 𝑆1 is
equivalent to the category of left modules over 𝑛(Σ).

Note that this equivalence is quite nonintuitive, as skein categories are built of unstated ribbon
graphs with ends in Σ × {0, 1} rather than of stated webs with ends in 𝜕Σ × (−1, 1) considered in
stated skein algebras.
Corollary 10.2 asserts that the 𝑠𝑙(2)-skein category of Σ with 𝜕Σ = 𝑆1 has an internal algebra

object isomorphic to2(Σ). In fact, by [27, Theorem 1.1] and [21, Theorem 5.3] this internal algebra
object is isomorphic to 2(Σ) as a 𝑞(𝑆𝐿(2))-comodule algebra. We expect that this statement
generalizes to 𝑠𝑙(𝑛) for all 𝑛.

10.3 Lattice gauge theory, quantummoduli spaces

A ciliated graph Γ is a finite graph with additional data specifying for each vertex of Γ a linear
order of half-edges adjacent to it. Each ciliated graph Γ is ribbon and, hence, defines a surface that
contracts onto Γ. Inspired by an earlier Fock–Rosly’s work [24], Alekseev–Grosse–Schomerus and
Buffenoir–Roche quantized moduli spaces of flat connections on such surfaces in [3, 4, 8, 9]. (See
also [10].) Specifically, for each ciliated graph Γ and a quantized coordinate Hopf algebra 𝑂𝑞(𝐺)

they have defined an𝑂𝑞(𝐺)-comodule(Γ), called quantummoduli space, quantizing a (properly
defined) algebra of functions on the space of flat 𝐺-connections on Γ.
Let Σ(Γ) be a surface without boundary realizing the ribbon structure on Γ and let Σ0(Γ) be

Σ(Γ) with one of its punctures blown up into a disk, as in Figure 21. (Hence, Σ0(Γ) = Σ(Γ)𝑝 for
some puncture 𝑝, in the notation of Subsection 9.1. Note that Σ0(Γ) and Σ(Γ) are uniquely deter-
minedup to a homeomorphism.) Then, as observed in [7], the defining equations for(Γ) coincide
with those induced by the gluing patterns of [7]. In other words, quantum moduli spaces are
determined by the factorization homology of [7] and, consequently, for 𝐺 = 𝑆𝐿(𝑛),

(Γ) ≃ 𝑛(Σ
0(Γ))
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 83 of 93

as 𝑂𝑞(𝐺)-comodule algebras. This result was observed independently by the first author and
proved by [37] for 𝑛 = 2.
By Theorem9.4, the coinvariant subalgebra(Γ)𝑞(𝑆𝐿(𝑛)) is isomorphicwith our projected skein

algebra ̄𝑛(Σ(Γ)). This result generalizes the results of [10, 37] for 𝑛 = 2.

11 RELATION TO OTHER KNOWN CASES

11.1 Compatibility with stated Kauffman bracket skein modules of
3-manifolds

The stated Kauffman bracket skein algebras (of surfaces) of the first author [41] were generalized
to stated skein modules of marked 3-manifolds in [11] (cf. also [43]). We are going to prove that
these modules are isomorphic with our 𝑆𝐿(2)-skein modules, 2(𝑀, ).
To relate these modules to ours, let us replace the variable 𝑞 of [41] with 𝑞1∕2 and denote the

resulted stated Kauffman bracket skein module by𝒮(𝑀, )𝑞1∕2 . Let a framed link in (𝑀, ) be a
nonoriented 2-web without sinks nor sources, stated by signs ±. By definition 𝒮(𝑀, )𝑞1∕2 is the
𝑅-module freely spanned by isotopy classes of framed links subject to Relations (98)–(101).

Theorem 11.1. Suppose (𝑀, ) is a marked 3-manifold.

(1) There is a unique𝑅-linear isomorphismΛ ∶ 𝒮(𝑀, )𝑞1∕2 → 2(𝑀, ) thatmaps framed links
𝛼 to stated 2-webs by assigning arbitrary orientations to them, and changing the minus state to
1 and the plus state to 2.

(2) The splitting homomorphism of [11, 41] coincides with ours through Λ.

Proof of Theorem 11.1. Let (𝑀, ) be the set of all stated framed links in (𝑀, ). First let us
record the defining relations for 𝒮(𝑀, )𝑞1∕2 :

(98)

(99)

(100)

(101)

(This last equality is a consequence of applying a half-twist to [41, (13)].)
For convenience, we draw diagrams with the arrow down, rather than up as in [11, 41], to make

them compatible with the skein relations of our 2(𝑀, ). As the half-twist is an invertible oper-
ation, they form an alternative set of defining skein relations of the stated skein module of [11,
41].
On the other hand, for 𝑛 = 2 our skein relations are:
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84 of 93 LÊ and SIKORA

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(By Proposition 7.5, Relation (50) is redundant.)

Lemma 11.2. The value of any framed link 𝑇 in (𝑀, ) considered as a 2-web in 2(𝑀, ) does
not depend on the orientation of 𝑇.

Proof. By (105), (103), and (104), we have

(109)

For any arc with a 2-vertex near its end, we have

(110)

Hence, for any arc we have,
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STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 85 of 93

(Both ends may lie on the same marking in .) Similarly, by (109), for loops we have

= =

□

By Lemma 11.2, assigning arbitrary orientations of links defines a map Λ ∶ 𝑅(𝑀, ) →

2(𝑀, ) preserving Relations (99)–(101). To see that (98) is preserved as well, we start with the
following combinatorial observation:

We say that a crossing or in an unoriented framed link 𝐿 in (𝑀, ) is of -type

if 𝐿 with that smoothing can be oriented, so that it is a 2-web with only two 2-vertices, looking

like . We define a crossing of -type analogously. It is straightforward to verify that every

crossing is of one of these two types. (However, it can be of both types simultaneously, if the
crossing involves an arc.)

Lemma 11.3. If a crossing or in 𝐿 is of -type then for that smoothing of 𝐿 we have

Proof. There are two possibilities.

(1) The NE end of is connected to the NW or the SW end. Then the statement follows by
introducing two 2-valent vertices as in (109).

(2) The NE end is connected to the marking. Then one of the SE or SW ends must be connected
to a marking and the statement follows by applying (110) twice near the markings. □

Suppose that the crossing on the left side of (98) is of -type. Then by the above lemma,

Λmaps that skein relation to

which coincides with (105) in2(𝑀, ). The proof for a crossing of -type is analogous. Thus,

the 𝑅-linear map Λ ∶ 𝒮(𝑀, )𝑞1∕2 → 2(𝑀, ) is well-defined.
We prove that Λ is an isomorphism by constructing its inverse: Consider first the map

𝑅2(𝑀, ) → 𝒮(𝑀, )𝑞1∕2 sending webs 𝛼 to (−1)|𝑉2(𝛼)|𝛼̄, where 𝛼̄ is the result of forgetting
the orientation and of smoothing all the 2-valent vertices. It is immediate to see that it factors
through Relations (102)–(108) into a homomorphism 2(𝑀, ) → 𝒮(𝑀, )𝑞1∕2 . As𝒮(𝑀, )𝑞1∕2
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and 2(𝑀, ) are spanned by links (i.e., webs with no sinks nor sources) and as Λ and the above
map 2(𝑀, ) → 𝒮(𝑀, )𝑞1∕2 are inverses of each other on links, the statement follows.
The proof of part (2) is straightforward. □

11.2 Compatibility with the SU(n)-skein modules

In this subsection, we are going to show that for any 3-manifold 𝑀 and any 𝑛 our skein module
𝑛(𝑀, ∅) is isomorphic with the 𝑆𝑈(𝑛)-skein module introduced by the second author in [58].
That module is built of based 𝑛-webs in𝑀 that are defined as our 𝑛-webs in (𝑀, ∅), except that the
half-edges incident to any of their 𝑛-valent vertices are linearly ordered. We denote the set of all
such webs up to isotopy by𝑏

𝑛 (𝑀). Let 𝑏
𝑛 (𝑀) be the quotient of the 𝑅-module freely generated

by𝑏
𝑛 (𝑀) subject to Relations (16)–(19), which are the internal annihilators of the functor 𝖱𝖳0.

For an invertible 𝑢 ∈ 𝑅 let 𝑏
𝑛 (𝑀; 𝑢) be an 𝑅-module defined as 𝑏

𝑛 (𝑀), except that the right side
of (19) is multiplied by 𝑢. From the definition, we see that 𝑏

𝑛 (𝑀; 𝑢) is isomorphic to 𝑏
𝑛 (𝑀) via

the map 𝛼 → 𝑢#𝑠𝑖𝑛𝑘𝑠(𝛼)𝛼. The 𝑆𝑈𝑛-skein module defined in [58] is actually 𝑏
𝑛 (𝑀; (−𝑞)𝑛(𝑛−1)∕2).

Given a based 𝑛-web 𝛼, let 𝛼◦ denote the underlying 𝑛-web in 𝑛(𝑀, ). Recall that every
oriented 3-manifold has a spin structure.

Theorem 11.4. Let𝑀 be an oriented 3-manifold.

(a) For𝑛 odd, the operation𝛼 → 𝛼◦ onbased𝑛-webs extends to an isomorphism𝑏
𝑛 (𝑀) ≅ 𝑛(𝑀, ∅).

(b) Every spin structure on 𝑀 defines a function 𝑠 ∶ 𝑏
𝑛 (𝑀) → {1, −1} such that the map 𝛼 →

𝑓(𝛼) = (−1)𝑠(𝛼)𝛼◦ induces a unique 𝑅-linear isomorphism 𝑏
𝑛 (𝑀) ≅ 𝑛(𝑀, ∅).

Proof.

(a) For 𝑛 odd, Relations (20) that are consequences of the defining relations, (16)–(19), show that
a based 𝑛-web 𝛼, as an element of 𝑏

𝑛 (𝑀), is determined by 𝛼◦. Furthermore, the defining
relations (16)–(19) coincide with the defining relations (25)–(28).

(b) Let 𝑛 be even now. Fix a Riemannian metric on 𝑀 and let 𝑈𝑀 be a principal 𝑆𝑂(3)-bundle
associated to the tangent bundle of 𝑀. A section at a point is the group 𝑆𝑂(3), which can
be identified with the set of all ordered, positively oriented, orthonormal bases (𝑣1, 𝑣2, 𝑣3)

of the tangent space at the point. Any such ordered orthonormal basis is totally determined
by the first two vectors. A smooth embedding 𝑎 ∶ [0, 1] → 𝑀 equipped with a normal vector
field defines a lift 𝑎̃ ∶ [0, 1] → 𝑈𝑀 where the first and the second vectors are, respectively, the
velocity vector and the framing vector, normalized to have length 1. For a based𝑛-web𝛼 define
𝑠(𝛼) ∈ {0, 1} as follows: First isotope 𝛼 so that the framing is normal everywhere, and at every
𝑛-valent vertex the 𝑛 half edges have the same velocity vector. The latter condition implies the
lift of the endpoints at all the half-edges at an 𝑛-valent vertex are the same. As 𝑛 is even the
lifts of all edges of 𝛼 and of all its circle components form a ℤ∕2 one-cycle 𝛼̃ of 𝑈𝑀. Recall
that a spin structure 𝑠 of𝑀 can be identified with a cohomology class in𝐻1(𝑈𝑀,ℤ∕2)which
is nontrivial at the section at every point of𝑀. Let 𝑠(𝛼) be the evaluation of the spin structure,
considered as an element of 𝐻1(𝑈𝑀,ℤ∕2) on 𝛼̃. Clearly, 𝑠(𝛼) depends only on the isotopy
class of 𝛼. From the definition, 𝑠(𝛼) = 1 if 𝛼 is the trivial loop. If 𝛼′ is the result of adding a
positive twist to an edge or loop of 𝛼 then 𝑠(𝛼′) = −𝑠(𝛼). Thus, 𝑓 maps the defining relations
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(16)–(19), respectively, to the defining relations (25)-(28). Hence, it extends to a well-defined
𝑅-linear map 𝑓 ∶ 𝑏

𝑛 (𝑀) → 𝑛(𝑀, ∅).
For the inverse, note that Relations (20) show that the map 𝑅𝑛(𝑀, ∅) → 𝑏

𝑛 (𝑀) sending
𝛼◦ → (−1)𝑠(𝛼)𝛼 for every based 𝑛-web 𝛼 is well-defined. As 𝑓 maps the defining relations
(25)–(28) to the defining relations (16)–(19), it descends to a well-defined 𝑅-linear map from
𝑛(𝑀, ∅) to 𝑛(𝑀), which is the inverse of 𝑓. □

11.3 Compatibility with Higgins’ SL3 skein algebras

In his recent work [28], Higgins introduced his version of stated 𝑆𝐿3-skein algebras, denoted by
𝑆𝐿3

𝑞 (Σ), of punctured bordered surfaces Σ. His skein algebra is the 𝑅-module freely generated by
3-webs stated by −1, 0, 1, subject to his system of skein relations.
Let us identify Higgins’s states 1, 0, −1 of Higgins with our states 1,2,3, respectively.

Theorem 11.5. For any punctured bordered surface Σ, there is an isomorphism 𝜙 ∶ 𝑆𝐿3
𝑞 (Σ) →

3(Σ) sending every stated 3-web 𝛼 to

(−1)ℎ−(𝛼)+𝑣3(𝛼) ⋅ 𝑞(3𝑣3(𝛼)+𝑆𝑖𝑛(𝛼)−𝑆𝑜𝑢𝑡(𝛼))∕2 ⋅ 𝛼, (111)

where

∙ 𝑣3(𝛼) is the number of 3-valent sources and sinks of 𝛼,
∙ ℎ−(𝛼) is the number of Higgins’ −1 states in 𝛼, and
∙ 𝑆𝑖𝑛(𝛼) and 𝑆𝑜𝑢𝑡(𝛼) are sums of Higgins’ states of all edges edges coming into and coming out of the
boundary, respectively.

We thank V. Higgins for suggesting the above formula to us.
Furthermore, our theory recovers most of Higgins’ for 𝑛 = 3. Specifically, Higgins constructed

splitting homomorphisms for his skein algebras and an isomorphism 𝑆𝐿3
𝑞 (Σ) ≃ 𝑞(𝑠𝑙3). It is

straightforward to check that these maps coincide with ours through 𝜙. Higgins also proved a
version of Theorem 8.2 for 𝑛 = 3. (However, additionally, he defined bases of his skein algebras
𝑆𝐿3

𝑞 (Σ) for all pb surfaces Σ. There appears no easy generalization of these bases to 𝑛 > 3, as the
relay on the confluence method of [60], which works for 𝑛 = 2 and 3 only.)

Proof of Theorem 11.5. By Identity (51),

(112)

By capping the skeins of Equation (112) from the top, we get

= 𝑞
1

3 − 𝑞 =
(
𝑞3 − 𝑞(𝑞2 + 1 + 𝑞−2)

)
= −(𝑞 + 𝑞−1) .

(113)

 17538424, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12350 by G
eorgia Institute O

f Technology, W
iley O

nline Library on [04/05/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



88 of 93 LÊ and SIKORA

Taking the reflection of Equation (112),

(114)

Hence, we have

= 𝑞
1

3 − 𝑞 = 𝑞
1

3

⎛⎜⎜⎝𝑞−
1

3 − 𝑞−1
⎞⎟⎟⎠

+𝑞(𝑞 + 𝑞−1)) = + ,

(115)

by Equation (113).
Let 𝐻

3
(Σ) be the set of all isotopy classes of 3-webs over Σ with states −1, 0, 1. Consider an

𝑅-linear isomorphism 𝜙̃ ∶ 𝑅𝐻
3
(Σ) → 𝑅3(Σ) given on stated 3-webs 𝛼 by (111).

By definition, the Higgins algebra 𝑆𝐿3
𝑞 (Σ) is 𝑅𝐻

3
(Σ) modulo his skein relations [28, (I1a)–

(I4b),(B1)–(B4)]. It is easy to see that Higgins’ internal relations are pullbacks under 𝜙̃ of Relations
(112), (114), (115), (113), and (45), respectively.
Higgins’ boundary relations (B1) and (B3) are pullbacks of Relation (54), (B4) is a pullback of

(54), and, finally, (B2) is a pullback of (114) at the boundary combined with (58).
Hence, we showed that 𝜙̃ descends to an 𝑅-linear homomorphism 𝜙 ∶ 𝑆𝐿3

𝑞 (Σ) → 3(Σ). The
definition of 𝜙 suggests an obvious inverse homomorphism 3(Σ) → 𝑆𝐿3

𝑞 (Σ) and, indeed, one
can verify that it is well-defined. However, as checking that it respects our relation (46) requires
a lengthy calculation, we enclose an alternative proof of 𝜙 being an isomorphism:
As it is clearly a surjective algebra homomorphism, it remains to show that 𝜙 is injective. From

the definition it clear that 𝜙 commutes with the splitting homomorphism. As 𝑆𝐿3
𝑞 (Σ) satisfies the

splitting homomorphism, 𝑆𝐿3
𝑞 (Σ) = 𝑞(𝑠𝑙3), and the gluing over a triangle is given by the same

isomorphism as described in Theorem 8.2. Theorem 8.8 is also valid with3 replaced by
𝑆𝐿3
𝑞 . Part

(2) of Theorem 8.2 shows that 𝜙 is an isomorphism when Σ is essentially bordered.
Suppose Σ is a connected, having empty boundary, and at least one puncture. Let 𝑐 be an ideal

arc of Σ. In the commutative diagram

the upper Θ𝑐 is injective by Higgins result, which forces 𝜙 to be injective.
Consider the remaining case when Σ is a closed surface without ideal point. Remove a point 𝑝

from Σ to obtained a pb surface Σ′ having one puncture. As for both = 3 and = 𝑆𝐿3
𝑞 we have

(Σ) = (Σ′)∕Rel, whereRel is the relation ,we conclude that𝜙 ∶ 𝑆𝐿3
𝑞 (Σ) →

3(Σ) is an isomorphism. This completes the proof. □

 17538424, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12350 by G
eorgia Institute O

f Technology, W
iley O

nline Library on [04/05/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



STATED SL(𝑛)-SKEIN MODULES AND ALGEBRAS 89 of 93

11.4 Relation to the Frohman–Sikora SU(3)-skein algebras

Frohman and the second author considered in [25] the “reduced 𝑆𝑈(3)-skein algebra” of marked
surfaces built of unstated 3-webs, subject to the 𝑆𝑈(3)-skein relations of [40], extended by certain
boundary skein relations, which depend on an invertible parameter 𝑎 ∈ 𝑅. We denote that algebra
by 𝐹𝑆(Σ, 𝐵) for the value 1 of that parameter.
For an unstated 3-web 𝛼 in Σ, let 𝜂+(𝛼) (respectively, 𝜂−(𝛼)) denote 𝛼 stated with 3s

(respectively, 1’s) at all its ends.

Theorem 11.6.

(1) For any punctured bordered surface Σ, the above operations extent to 𝑅-linear homomorphisms

𝜂± ∶ 𝐹𝑆(Σ) → 3(Σ).
(2) 𝜂± are embeddings and 𝜂±(𝐹𝑆(Σ)) are direct summands of 3(Σ).

Proof.

(1) 𝜂±maps the internal relations of [25] to (45), (112)–(115), and the boundary relations (for 𝑎𝐹𝑆 =

1) to

for 𝑖 = 1, 3, which are satisfied by (48), (84), and (85).
(2) To prove that we identify 3(Σ) with Higgins’ skein algebra, through Theorem 11.5. Now it is

easy to see that 𝜂± map the basis of reduced nonelliptic webs without British highways of [25]
1-1 into the basis composed of irreducible webs of [28]. □

APPENDIX: PROOF OF PROPOSITION 3.13 (A CALCULATION OFMATRICES OF 𝑿)
We need to prove Identity (41). The generators The quantized enveloping algebra 𝑈𝑞(𝑠𝑙𝑛) is gen-
erated by 𝐸𝑖, 𝐹𝑖, 𝐾

±1
𝑖

with relations given in [35]. Its action on 𝑉 = ℚ(𝑞)𝑛 with the standard basis
𝑒1, … , 𝑒𝑛 is given by

𝐸𝑖𝑒𝑗 = 𝛿𝑖,𝑗𝑒𝑖+1, 𝐹𝑖𝑒𝑗 = 𝛿𝑖,𝑗+1𝑒𝑖, 𝐾𝑖𝑒𝑗 = 𝑞𝛿𝑖,𝑗+1−𝛿𝑖,𝑗 𝑒𝑗. (A.1)

Note that 𝑒𝑛 is the highest weight vector.
By definition [61], a half-ribbon element is an invertible element 𝑋 ∈ 𝑈𝑞(𝑠𝑙𝑛) satisfying

 = (𝑋−1 ⊗ 𝑋−1)Δ(𝑋), and 𝑋2 = 𝜗, the ribbon element. (A.2)

In [61, section 4], a half-ribbon element, denoted here by 𝑋0, was constructed based on work of
Kirillov–Reshetikhin [34] and Levendorskii–Soibelman [46].
To calculated the action of 𝑋0, we use the following identities from [61, Lemma 3.10],

𝑋0𝐹𝑖𝑋
−1
0 = −𝐸𝑛−𝑖, (A.3)

𝑋0𝐾𝑖𝑋
−1
0 = 𝐾−1

𝑛−𝑖. (A.4)

𝑋(𝑇−1
𝑤0

(𝑒𝑛)) = 𝑡
1∕2
0

𝑒𝑛, (A.5)
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where 𝑇𝑤0
∈ 𝑈𝑞(𝑠𝑙𝑛) the quantum braid group element corresponding to the longest element 𝑤0

of the symmetric group 𝑆𝑛 whose exact definition is not needed here.
Let 𝛿 be the sum of all the fundamental weights. From (A.4), we get

𝑋0𝐾𝛿𝑋
−1
0 = 𝐾−1

𝛿
.

It follows that 𝑋 ∶= 𝐾−1
𝛿

𝑋0 also satisfies (A.2) and hence is a half-ribbon element. Actually, 𝑋 is
a half-ribbon element considered in [34, 46].
If 𝑥 ∈ 𝑉 has weight 𝜆, then 𝑇𝑤0

(𝑥) has weight 𝑤0(𝜆). As each weight subspace of 𝑉 is
1-dimensional and 𝑇𝑤0

is invertible, we have

𝑇−1
𝑤0

(𝑒𝑛) = 𝑐𝑒1, 0 ≠ 𝑐 ∈ ℚ(𝑣).

By [39, Proposition 5.9], there are positive integers 𝑚1,… ,𝑚𝑘 and a sequence 𝑖1, … , 𝑖𝑘 ∈

{1, … , 𝑛 − 1} such that

𝐹
(𝑚1)

𝑖1
…𝐹

(𝑚𝑘)

𝑖𝑘
(𝑒𝑛) = 𝑇−1

𝑤0
(𝑒𝑛) = 𝑐𝑒1, where 𝐹(𝑚)

𝑖
= 𝐹𝑚

𝑖
∕[𝑚]!

As 𝐹2
𝑖
= 0 on 𝑉, all the𝑚𝑗 must be 1. As 𝐹𝑖𝑒𝑗 is either 0 or another 𝑒𝑗′ by Equation (A.1), we must

have 𝑐 = 1. Hence, 𝑇−1
𝑤0

(𝑒𝑛) = 𝑒1, and Equation (A.5) becomes

𝑋0(𝑒1) = 𝑡
1∕2
0

𝑒𝑛.

Applying𝐹𝑛−1 to the above equation and using (A.3), we get𝑋0𝑒2 = −𝑡
1∕2
0

𝑒𝑛−1. Continue applying
𝐹𝑛−2, 𝐹𝑛−3, … and using (A.3), we get

𝑋0𝑒𝑗 = (−1)𝑗−1𝑡
1∕2
0

𝑒𝑗̄.

As 𝐾−1
𝛿

acts on 𝑉 by 𝐾−1
𝛿

(𝑒𝑖) = 𝑞
𝑛+1
2

−𝑖𝑒𝑖 , we the matrix of the action of 𝑋 on 𝑉

𝑋𝑖
𝑗
= 𝛿𝑖,𝑗̄ (−1)𝑛−𝑖𝑡

1∕2
0

𝑞
𝑛+1
2

−𝑖 = 𝛿𝑖,𝑗̄ 𝑐𝑖 .

The action of 𝑋 on a dual space is given by the antipode 𝑆. By [61, Proposition 4.3], we have
𝑆(𝑋) = g𝑋. From here one can easily calculate

𝑋𝑒𝑖 = 𝑐𝑖𝑒
𝑖 = 𝑓𝑖.

It follows that the action of𝑋 on𝑉∗ in the basis {𝑓1, … , 𝑓𝑛} is given by𝑋𝑖
𝑗
= 𝛿𝑖,𝑗̄𝑐𝑖 . This completes

the proof of Identity (41).
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