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Abstract—Advances in robotics and manufacturing processes
have enabled the development of extremely small robotic de-
vices approaching the size of insects. In this domain, legged
microrobots (microbots) offer numerous potential applications
and characteristics to explore. However, controlling such small
multi-legged robots presents significant challenges in achieving
the desired behavior. Primarily, due to the robot’s small size,
it can only operate with a tiny battery, therefore, an extremely
computationally efficient controller is needed. Tiny robots are
also susceptible to damage and control methodologies are needed
that also ensure longevity. This paper presents a novel approach
for creating a control algorithm for a multi-legged system that
dynamically identifies and operates a microbot at its resonance
frequency of movement. At the resonance frequency, a microbot’s
leg oscillations achieve maximum amplitude with minimal en-
ergy, resulting in optimal locomotion efficiency. By imposing
a sinusoidal control for actuating each of the robot’s legs,
a two-part controller is developed. The controller is trained
using soft actor-critic-based reinforcement learning on a custom
model of the mClari microbot. A successful simulation-based
demonstration of the learning-based controller is shown by
varying the underlying surface (such as wet, soft, etc.) of the
microbot where the controller dynamically identifies and switches
to the corresponding resonance frequency, achieving efficient and
adaptive locomotion.

Index Terms—Microbot, Locomotion, Resonance Frequency,
Energy Efficiency, Reinforcement Learning, Actor-Critic.

I. INTRODUCTION

Legged micro-robots (i.e., microbots), tiny devices of mil-
limeter size, have recently been presented. For example, mi-
crobots such as the HAMR-VI [1] and the cockroach-inspired
mClari [2] have been developed. These microbots, comparable
in size to a penny, offer intriguing application prospects. For
instance, in agriculture, cameras embedded on microbots can
locate infected plants to prevent disease spread. In industrial
plants, microbots can navigate through constricted spaces such
as gas pipelines to identify gas leaks. During earthquakes,
autonomous microbots can assist in search and rescue oper-
ations by navigating through building debris. Within homes,
microbots can actively monitor for intruders.

Supporting these microbots, there has been significant
progress in maximizing the area/energy efficiency of on-
board robotic workload processing. [3], [4] demonstrated a
novel compute-in-memory approach to remarkably minimize
the necessary energy for robotics algorithms such as visual
odometry. Shukla et al., [5]-[7] demonstrated novel computing
architectures and technologies to enable robotic reasoning for

979-8-3315-1815-8/24/$31.00 ©2024 IEEE

7;(t) = G sin(2nft + ¢;)

Fig. 1: Schematic of the controller logic and system model:
Proposed control framework identifies the frequency and phase
difference angles to compute actuation signals, which are fed
into the system model for dynamic identification and operation
at resonance frequency.

localization and path-planning under uncertainties. [8]-[10]
demonstrated ultra-low-power solutions to check the reliability
of sensing and to take advantage of generative Al methods
to minimize the need for complex sensors such as LiDAR.
Suleiman et al., [11], [12] demonstrated chip designs operating
within 2 mW power to support a variety of robotic navigation
algorithms.

Despite this significant potential, effectively controlling
microbot’s locomotion presents several challenges. Since a mi-
crobot can only carry the payload of a tiny battery, minimizing
power dissipation for its locomotion becomes quite critical.
A microbot must also operate with only very few lightweight
sensors and actuators since each not only demands more power
but also increases the size and weight of the vehicle. Moreover,
the energy efficiency of their locomotion depends on several
time-varying factors which also vary from device-to-device.
For instance, these robots typically rely on piezoelectric actu-
ators, which exhibit inherent frequency-dependent character-
istics. Similarly, the movement of these tiny devices is driven
by an actuation kinematic chain composed of compliant links
and flexure joints, where manufacturing imperfections can
significantly affect the frequency response from one device
to another. Devices like mClari and HAMR-VI have even
more intricate coupled systems, with each leg controlling two
different degrees of freedom (DoF)-lift and swing—making the
system highly interdependent.

Addressing the above challenges, this work develops a novel
physics-informed control mechanism that dynamically identi-
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fies and operates a microbot at its resonance frequency. At this
frequency, the microbot moves with maximum amplitude and
minimal energy input, as the system’s natural frequency aligns
with the frequency of external forces, resulting in optimal
efficiency and performance. The resonance frequency is also
influenced by the underlying surface due to variations in
compliance and friction. On softer surfaces, the microbot’s
legs may sink slightly, lowering the resonance frequency due
to altered leg-surface interaction stiffness. Conversely, harder
surfaces increase rigidity, raising the resonance frequency.
Additionally, surface texture and friction affect energy transfer
and damping, further modifying the optimal resonance fre-
quency for efficient locomotion.

Considering such temporal variations in the resonance
frequency during locomotion, the proposed controller dy-
namically identifies and adjusts the locomotion frequency to
maintain optimal performance across different surfaces. We
specifically studied the controller on mClari, a four-legged mi-
crorobot developed by the University of Colorado Boulder [2].
The remaining paper is organized as follows: Sec. II presents
the controller logic, Sec. III details the simulation model used
for training and testing, Sec. IV discusses the reinforcement
learning architecture, Sec. V presents the results, Sec. VI
provides conclusions, and Sec. VII outlines future works.

II. CONTROLLER OBJECTIVES AND DESIGN

mClari [2] is a four-legged microrobot actuated by eight
piezoelectric actuators, each driven by phase-offset sinu-
soidals:

Each actuator is controlled by three variables (V;, f;, ¢;),
thus totaling 24 controllable variables. Considering the need
for a resource-efficient on-board controller, to simplify this
expensive control space, we fit the maximum amplitude of
applied voltages (V};) to a constant across all actuators. To
emulate typical locomotion control in robots and animals, we
drive all the legs at the same frequency. Prior research on
similar robots like the HAMR-VI [13] have shown effec-
tive movement through only phase adjustments, which our
preliminary tests (see Sec. V) also confirm. Therefore, all
directional movements were achieved by adjusting phase shifts
while operating the robot at resonance frequency for energy
efficiency. On this reduced control space, mClari’s controller
was designed to achieve three key objectives: (i) following
the desired path, (ii) ensuring longevity by avoiding excessive
leg stretches that could cause long-term damage, and (iii)
maintaining energy efficiency given its small battery.

Inspired by previous works on legged robots [14], we em-
ployed reinforcement learning (RL)-based control, incorporat-
ing both endogenous signals from the robot (power consumed
by actuators, robot velocity, and center of mass position) and
an exogenous component (desired center of mass position).
Operating on these signals, a deep neural network (DNN)-
based reinforcement learning agent extracts insights from the
robot’s operating state and dynamically tunes a reduced state
of actuation variables.

Fig. 2: Phases of the simulation models. From left to right: the
initial complete with all the robot’s links and joints, the first
simplification with just the leg outputs and the connections
between legs and the second simplification where the leg
output
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Fig. 3: Trajectories by the robot after 60 seconds of simulation
for different frequencies with intra-leg phase difference of pi/2
and no inter-leg difference (triple (0,0, 0)).

Based on previous work on microrobots [15], which showed
that two-layer NNs are sufficient for effective learning and
adaptation in similar environments, we used a similar NN
structure for our controller. Figure 1 provides a schematic
of the developed controller logic. Using such learning-based
control structure, the controller also selects the desired group
of phase angles to follow the intended direction, functioning
like a finite state machine (FSM) by choosing among fixed
angle combinations while aiming to reach the target within a
specific timeframe along with maximizing energy efficiency.

III. SIMULATION MODEL AND CHARACTERIZATIONS

A. Simulation Model of mClari Microbot

To evaluate the controller, we created a custom environ-
ment using the mClari robot, developed by the University of
Colorado Boulder [16], as a starting point. Utilizing the open-
source physics engine MuJoCo [17], we modeled and visual-
ized the mechanical system. Due to the small dimensions of
the robot, we adopted MMGS (millimeter-gram-second) units
instead of the standard MKS (meter-kilogram-second) to avoid

143
Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on May 04,2025 at 15:32:31 UTC from IEEE Xplore. Restrictions apply.



% Power vs Frequency

z 0.75 — (0,0,0)
o | (0,m,m)
3 0.50 \ — (0,m)
: / \

>

wn

5 0.25

S / ~—

<

2 0.00

K 0 20 40 60 80 100 120 140

Frequency (Hz)
Velocity vs Frequency

g :
— (0,0,0)
EL0 .71
2 — (mo,m
305
(] T
> j ~— —
$ 0.0 . :
2 T T T
0 20 40 60 80 100 120 140
Frequency (Hz)
Efficiency vs Frequency
; (0,0,0)
.. 0.075 (0,m,m)
[}
c — (m,0,n)
@ 0.050
o - ~
= 0.025 /\H/ —
5o
0.000

0 20 40 60 80 100 120 140
Frequency (Hz)

Fig. 4: Power consumption, mean velocity, and efficiency of
robot movement for different frequencies with fixed inter-leg
phase shifts triples of (0,0,0), (7,7,0) and (7,0,7).

numerical issues with very small component dimensions. All
forces and environment dimensions were scaled accordingly.
Our modeling process followed a three-step approach:
1. Initial Model: Using CAD files, we obtained mesh files
for modeling links and joints. However, closed-chain kine-
matics in each leg caused issues, as MuJoCo works with
open kinematic chains, requiring modifications that led to a
malfunctioning model.
2. Simplified Features: We focused on the leg end effector and
top connection to better simulate the quadruped’s dynamics,
addressing the kinematic challenges.
3. Optimized Model: Inspired by the ant model in MuJoCo,
we replaced leg mesh files with capsules, reducing computa-
tions and improving contact point identification and precision.
Figure 2 shows the three models used, from left to right,
from the most complex to the simplest.

B. Actuator Design

For the actuator design, we started with the physical results
from Doshi et al. [18], deriving the Bode plot of the frequency
response for each leg’s kinematic chain. Their findings indicate
that each actuator chain behaves like a second-order system,
allowing us to identify the inertia, damping, and stiffness co-
efficients for the actuation motor. According to the prior work,
for each actuator, the frequency behavior of the amplitude
of the leg’s oscillation in its respective direction, for a fixed
voltage, follows the transfer function:

3200
H() = 3785 + 1600 @
To simplify the implementation, we replaced the piezoelectric
actuators with motors to control each leg’s degrees of freedom

(DoF). Based on the transfer function, we characterized the
actuator’s armature, stiffness, and damping coefficients.

C. Surface Definitions

Finally, we designed various surfaces to evaluate the control
algorithm for dynamically finding the optimal frequency. Six
types of surfaces were implemented based on two classifica-
tions: surface texture and slipperiness level. The surface tex-
ture can be either rough or plain (with or without height field),
while the slipperiness level can be categorized as normal, wet,
or extra dry. The surface texture was obtained using random
Gaussian noise N(0,0.1), while the slipperiness level was
determined through three different friction coefficients: sliding
(SC), torsional (TC), and rolling (RC). The table below lists
the values used for the three surfaces:

TABLE I: Friction coefficients for the three slipperiness

Surface | Sliding (SC) | Torsional (TC) [ Rolling (RC)

Normal 1.0 0.005 0.0001
Wet 0.1 0.1 0.1

Extra Dry 1.0 1.0 1.0

IV. REINFORCEMENT LEARNING

For RL-based resonance frequency identification across
different terrains, we created a custom gym environment [19].
This environment defined all the main RL components, such
as the action space, observation space, and rewards. We then
used the Stable Baselines3 (sb3) library [20] to train the
agent using the Soft Actor-Critic (SAC) algorithm. Pseudo-
code of RL-based resonance identification is given below
and subsequently, the elements of the gym environment are
defined:

Algorithm 1 Reinforcement learning step

1: compute initial observation

2: while terminated == TRUE do

3 compute action

4 execute step

5:  compute reward, new observation
6:  episode reward += y*reward

7: end while

8: return episode reward, terminated

Observation Space: Due to the robot’s small size, only a
few sensors can be placed on it. Therefore, we decided to use
just four state space variables. The first is the overall power
consumed by the actuators, obtained from MuJoCo or, in a real
scenario, from the piezoelectric actuators. It is calculated by
multiplying the torque of each actuator by the angular velocity
of the respective joint and by taking the mean of the norm of
all the power values. The second value is the mean velocity of
the center of mass of the robot, determined by the difference
in the position of the robot’s center before and after a step. The
last two values are the errors along the x and y axes between
the target position of the robot and its actual position.
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Fig. 5: Results of the gait efficiency of the simulated robot after 3 minutes of simulation on the tree plain terrains.

Action Space: We worked with two normalized action vari-
ables: one for the frequency and another for selecting the
phase angles group. Frequency changes were constrained to
be gradual to avoid large jumps that could damage the robot.
Similarly, the second action variable selects the optimal angle
combination. Once both frequency and angles are computed,
the net actuation signals can be obtained.

Agent: The agent is a two-layer neural network with 10 nodes
in the first layer and 3 nodes in the second layer. It takes
the 4 observation space values as input and computes two
normalized float numbers as output. The agent is trained using
the SAC algorithm implemented by the sb3 library [20].

Action Step: Once the agent determines the action to be
performed (i.e., the frequency and phase alteration), the initial
position of the robot is recorded, and the robot is simulated
for one second using MuJoCo. At each timestep, the power
consumed by the actuators is registered. At the end of that
period, the final position of the robot is obtained along with the
mean power consumed by all the actuators. The observation
states are then updated, and the reward is computed.

Reward Function: In developing the reward function, two
main objectives were kept in mind: maximizing the robot’s
movement speed while minimizing overall energy consump-
tion and reaching the target position. For the first objective, we
focused on maximizing the overall system efficiency 7 (see 3).
For the second objective, we aimed to minimize the position
errors, calculated as the distance between the desired and the
actual position of the robot’s center of mass.

Termination: The termination signal indicates when an
episode has ended, used for both training and simulation. We
used three variables for termination: two boolean variables,
terminated and truncated, and a dictionary, info. Terminated
states whether the episode has ended, truncated indicates
whether the termination is due to reaching the maximum
number of steps or other causes, and info contains information
related to the end of the episode. The maximum length of
an episode was set to 180 steps (3 minutes). Termination
conditions include the robot falling (resulting in a penalty)
and reaching the chosen target.

V. SIMULATION RESULTS

Once the system model was complete and the actuators
fully characterized, we aimed to determine if the results from
[13] could be repurposed and validated for our mClari robot
simulation. To fully understand the behavior influenced by
phase angles and frequencies, we fixed the amplitude of all
actuation signals and focused solely on the eight phase angles
¢;. Initially, we reduced the phase differences from eight to
four by enforcing a fixed and constant phase shift between
the swing and lift movements in each leg (i.e. intra-leg phase
shift). Our tests indicated that a phase shift of 7/2 provided
the best results, resulting in a circular motion at the tip of the
robot leg in the swing and lift degree-of-freedom (DoF) plane,
leading to softer contact. Next, we fixed the phase angle of
the first leg to zero and defined other angles relative to it (i.e.
inter-leg phase shifts). We identified three additional angles
by defining three characteristic angles: (0, 7/2,7), and found
all possible permutations, producing 27 triples in total.

For each triplet, we ran eight simulations of the MuJoCo
model described in Sec. III for 1 minute, varying the frequency
from 1 Hz to 150 Hz ([1, 20, 40, 60, 80, 100, 120, 150]). We
recorded the position of the robot’s center-of-mass and plotted
the trajectory over 1 minute. The results, similar to those
presented in Fig. 3, showed a wide range of trajectories by
fixing the phase angle differences and varying the frequency.
This indicated that frequency and phase angles are intercon-
nected, and by choosing the correct tuple (frequency, phase
angles), any type of movement and direction can be achieved.
Likewise, to maximize the energy efficiency of movements,
we used a similar approach. Using the same 27 angle groups,
we ran eight 10-second simulations, one for each frequency.
For each frequency, we averaged the power consumed by each
motor and the mean velocity of the robot. We then evaluated
an efficiency parameter n defined as:

_ mgv
Z?:l P,
Figure 4 presents the plots of power consumed, mean veloc-

ity, and efficiency with respect to frequency for three groups

of angles. The results indicated that while power consumption
was nearly the same across different angle combinations,

n 3)
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velocity and efficiency had specific frequency values that
maximized performance (resonance frequency). These optimal
frequencies depended on the chosen angle group. Furthermore,
these results were obtained on a plain surface, but different
surfaces exhibited different resonance frequencies.

The previous setup was used to train the neural network
controller using the Soft Actor-Critic (SAC) algorithm im-
plemented in the sb3 library [20]. After tuning the hyper-
parameters (learning rates, size of the NN layers, etc.), we
found that training the algorithm for 500,000 steps enabled
the system to learn the resonance frequency for each terrain.
Each time an episode ended, the new one featured a different
terrain for the robot to navigate and a different target to reach.
This approach aimed to train the neural network to adapt
quickly to changes, improve system robustness, and promote
generalized behavior by avoiding focus on a single terrain type.
After the training phase, we tested the resulting model on all
six different terrains for an entire episode. We recorded the
efficiency of the robot’s movement and plotted it over time.
Figure 5 shows the obtained results for three of the tested
terrains, the plain ones. It can be seen that the agent can
identify the movement that leads to high efficiency, and the
research is quite fast, considering that it usually takes around
1 to 2 minutes of simulation.

VI. CONCLUSIONS

This paper presents a novel approach to control microbots
using just two variables: frequency and phase shifts. These
two parameters enable full control over the robot’s position
and direction, and by identifying the resonance frequency, the
robot’s efficiency can also be optimized. A RL-based control
setup was presented that under changing terrains dynamically
identifies the resonance frequency to maximize the energy
efficiency of movements.

VII. FUTURE WORKS

Several future research directions remain to be explored.
Firstly, the current work is confined to simulations. Fu-
ture research could explore advanced algorithms or hybrid
approaches to improve trajectory tracking performance in
real systems. Secondly, extending the results to a swarm
of microbots is a promising avenue. By enabling robots to
operate independently and subsequently merge their findings,
the computational cost of determining optimal frequencies
could be significantly reduced. This approach could enhance
the efficiency and scalability of microbot systems, allowing for
more complex and adaptive behaviors in swarm applications.
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