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Abstract

In this paper, we show that the Keller-Segel equation equipped with zero Dirichlet Boundary
condition and actively coupled to a Stokes-Boussinesq flow is globally well-posed provided that
the coupling is sufficiently large. We will in fact show that the dynamics is quenched after
certain time. In particular, such active coupling is blowup-suppressing in the sense that it
enforces global regularity for some initial data leading to a finite-time singularity when the flow
is absent.

1 Introduction

The Keller-Segel equation is a well known model of chemotaxis [18, 24|. It describes a population of
bacteria or slime mold that move in response to attractive external chemical that they themselves
secrete. The equation has interesting analytical properties: its solutions can form mass concentration
singularities in dimension greater than one (see e.g. [23]) where further references can be found).
Often, chemotactic processes take place in ambient fluid. One natural question is then how the
presence of fluid flow can affect singularity formation. In the case where the ambient flow is passive
- prescribed and independent of the bacteria density - it has been shown that presence of the flow can
suppress singularity formation. The flows that have been analyzed include some flows with strong
mixing properties [19], shear flows [3]|, hyperbolic splitting flow [13], and some cellular flows [17].
In a similar vein, [8] explored advection induced regularity has been for the Kuramoto-Sivashinsky
equation.

The case where the fluid flow is active - satisfies some fluid equation driven by force exerted
the bacteria - is very interesting but harder to analyze. There have been many impressive works
that analyzed such coupled systems, usually via buoyancy force; see for example [9, 10, 21, 20,
22, 25, 5, 11, 27, 26] where further references can be found. in some cases results involving global
existence of regular solutions (the precise notion of their regularity is different in different papers)
have been proved. These results, however, apply either in the settings where the initial data satisfy
some smallness assumptions (e.g. [10, 22, 5]) or in the systems where both fluid and chemotaxis
equations may not form a singularity if not coupled (e.g. [25, 27, 26]). Recently, in [14] and
[28], the authors analyzed Patlak-Keller-Segel equation coupled to the Navier-Stokes equation near
Couette flow. Based on ideas of blowup suppression in shear flows and stability of the Couette flow,
the authors proved that global regularity can be enforced if the amplitude of the Couette flow is
dominantly large and if the initial flow is very close to it. The density/fluid coupling in these works
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is not by buoyancy force but instead involves a model of the swimmer’s effect on fluid that leads to
special algebraic properties of the system.

In the recent work of the authors joint with Yao [15], the two dimensional Keller-Segel equation
coupled with the incompressible porous media via buoyancy force has been analyzed. It has been
proved that in this case, an arbitrary weak coupling constant (i.e, gravity) completely regularizes
the system, and the solutions become globally regular for any reasonable initial data. At the heart
of the proof is the analysis of potential energy, whose time derivative includes a coercive "main
term" H@mlpﬂé,l (where p is the bacteria density). Essentially, this H,' norm has to become
small, and intu(i)tively this implies mixing in the x; direction. Hence the solution becomes in some
sense quasi-one-dimensional and this arrests singularity formation.

Our goal in this paper is to analyze the Keller-Segel equation in an arbitrary smooth domain in
dimensions two and three coupled to the Stokes flow via buoyancy force:

Op+u-Vp—Ap+div(pV(=A)"1p) =0, z€Q,
ou — Au + Vp = gpe,, divu =0, x € Q,
u(0,2) = ug(x), p(0,x) = po(x), po(x) =0,

uloq =0, ploa = 0.

(1.1)

Here  is a smooth, compact domain in R%, d = 2 or 3. e, denotes the unit vector (0,1) when
d=2or (0,0,1) when d = 3. g € R" is the Rayleigh number representing the buoyancy strength.
Moreover, the operator (—A)~! denotes the inverse homogeneous Dirichlet Laplacian corresponding
to the domain . In the case of the Stokes flow, the fluid velocity is more regular, and the equation
includes time derivative that complicates matters, partly due to a loss of a “Biot-Savart law” that
relates p and u directly. We are unable to prove global regularity for all g, and we are not sure if it
is true. Our main result is global regularity for strong buoyancy. The proof is completely different
from [15]: it relies on softer arguments and the analysis of the large buoyancy limit.

The first part of this paper addresses the local well-posedness of regular solutions to (1.1).
Before we make precise of the notion of a regular solution, we shall first introduce the following
useful function spaces: to study the regularity properties of p, we consider

H} = completion of C2°(2) with respect to H' norm,
Hy' := dual space of Hj.
Moreover, we use the traditional notation W#P(Q) to denote Sobolev spaces equipped with norm
| - |lk,p in domain Q. If p = 2, we in particular write H*(Q) = W*2(2) equipped with norm | - |s.
We will write WEP (or H®) instead of W*P(Q) (or H*(Q)) for simplicity if there is no confusion

over the domain involved. We also say an n-vector field v = (v;); € H® if v; € H® fori = 1,...,n.
As we also need to work with Stokes equation, it is standard to introduce the following spaces:

Coo ={ue CX(Q) | divu = 0},

H := completion of C¢;, with respect to L? norm,
V = HNHLQ), V* := dual space of V,

where V' is equipped with H& norm, and V* is equipped with the standard dual norm. We also
recall the following useful operators: the Leray projector P : L? — H and the Stokes operator
A= -PA: D(A) = H*NV — H. We refer the readers to [6] for a more thorough treatment



of such operators. As a common practice in the study of Stokes equation, one may equivalently
rewrite the fluid equation as:
Ou + Au = gP(pe,), (1.2)
We will often use this formulation in regularity estimates for the rest of this work.
Now we give a rigorous definition of a regular solution to (1.1).

Definition 1.1. Given initial data pg € H}, ug € V', and some T > 0, we say the pair (p(t, x), u(t, z))
is a regular solution to (1.1) on [0,T] if

p € CU0,T); HY) N L*((0,T); H* N HY), w € C°([0,T); V)N L*((0,T); H* N'V),
Bip € CO[0,T); Hy'Y), dyu € CO([0,T); V),
pe C®(0,T] x Q),u e C®(0,T] x Q).

With this definition, we are able to obtain the following well-posedness result:

Theorem 1.1. Given initial data pg € Hé, ug € V, there exists a Ty = Ti(po) > 0 such that there
exists a unique regular solution (p,u) to problem (1.1) on [0,T%].

We will then prove a regularity criterion which allows us to continue the regular solution of (1.1)
4
as long as the L;"* L2 norm of p is controlled. More precisely, we have

Theorem 1.2. Let Q C R%, d = 2,3, be a smooth, bounded domain. If the mazimal lifespan Ty of
the regular solution (p,w) to problem (1.1) is finite, then necessarily

iy / loll %37 ds = oo

A similar result was proved in [19] in the periodic setting for the uncoupled Keller-Segel equation.

In the second part of this work, we will quantify the quenching effect of the Stokes-Boussinesq
flow with strong buoyancy on the Keller-Segel equation equipped with homogeneous Dirichlet bound-
ary condition. To be more precise, we show that the flow can suppress the norm ||p||;2 to be suffi-
ciently small within the time scale of local existence. In particular, we will show the following main
result of this work:

Theorem 1.3. For any smooth, bounded domain @ C R%, d = 2,3, and arbitrary initial data
po € HY, ug € V, there exists g. = gi«(po,uo) so that for any g > g., (1.1) admits a regular,
global-in-time solution. In particular, p is quenched exponentially fast in the sense that

im e < )
Jim e p(t)] 2 < C, (1.3)

where ¢, C are positive constants that only depend on the domain €.

We observe that if we fix any smooth passive divergence-free u satisfying the no-flux u-n =0
boundary condition, then one can find smooth initial data py such that the solution of the first
equation in (1.1) will lead to finite time blow up. The argument proving this is very similar to
that of Theorem 8.1 in [19] for the case of T?; however the localization used in the proof makes it
insensitive to the boundary condition.

We will use the expression f < g to denote the following: there exists some constant C' only de-
pending on domain €2 such that f < Cyg. In particular, we will denote a generic constant depending
only on € by C, and it could change from line to line. Finally, we will use the Einstein summa-
tion convention. That is, by default we sum over the repeated indices; e.g. we write a;z; == ), a;z;.
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2 Local Well-Posedness of Regular Solution

In this section, we will establish the local well-posedness of problem (1.1), namely Theorem 1.1.
It is well-known that the classical parabolic-elliptic Keller-Segel equation is locally well-posed in
domains such as R? or T? d = 2,3, or in a smooth, bounded domain with Neumann boundary
condition on p in suitable function spaces (see e.g. [4, 19, 25]). However, we were unable to locate a
convenient reference for a well-posedness theorem in the scale of Sobolev spaces H?® in the scenario
of (1.1). Thus for the sake of the completeness, we will give explicit a priori estimates which lead
to local well-posedness.

We first set up an appropriate Galerkin scheme that uses two sets of bases in Subsection 2.1. In
Subsection 2.2, we start with a set of lower order a prior: energy estimates which guarantee spatial
regularity of a solution up to H2. In Subsection 2.3, we will prove the existence of regular solutions
by devising an inductive argument that boosts both temporal and spatial regularity up to H® for
arbitrary s using parabolic smoothing. In Subsection 2.4, we will complete the proof of Theorem
1.1 by showing the uniqueness of regular solutions. Finally, we will demonstrate an L? regularity
criterion (i.e. Theorem 1.2) in Subsection 2.5. It will be instrumental in establishing the global
well-posedness of (1.1).

Remark 2.1. We will only discuss the case when d = 3. Then d = 2 case follows from similar (and
easier) arguments.

2.1 Galerkin Approximation

Since (1.1) is a system of semilinear parabolic equations in a compact domain, it is convenient to
construct a solution to (1.1) by Galerkin approximation. Let {vy}x, {\r }x be the eigenfunctions and
eigenvalues of —A. Let {w;};, {n;}; be the eigenfunctions and eigenvalues of the Stokes operator
A. Consider the following approximate system:

atpw +Qn <u<" - Vp™) = At + Qu(div(pV(=A)~pM)) =0,
8tu + -Au = an(p(n)ez)a (2‘1)
p(n ( ) = Qppo, u(n)(o) = Prup,

where Q. f := (f, vk) 20k, Pnf = (f,wj)r2wj. Here (-, )12 denotes the standard L2-inner product.
Note that the projection operators IP,,, Q,, are symmetric with respect to L? inner product. Writing
the approximated solutions p(™ (t,z) = p,(fn)( tyog(z), u™(t,x) = ug-") (t)w;(x) (recall that we are
summing over repeated indices), we obtain the following constant-coefficient ODEs in t: for [ =
1,...,n,

)

)+c<> uf o + A" — DI — o,

9y (n) ’
+ ;" = gCrpy ez, (2.2)

,,g ><o> = (po, 1) g2, ™ (0) = (uo,wy)p2,

i (n
atPi
d (

where
Ot = (Qu(w; - Vo), v) 12, D) = Qu(div(vpV(=A) " 05), 00) 2,
Ckl = (]P)Uk,wl)Lz.

To close the Galerkin approximation argument, we shall prove suitable uniform-in-n energy esti-
mates for (p(”),u(”)) and pass to the limit using compactness theorems. For the sake of simplicity,
we shall prove such energy estimates in an a priori fashion, for sufficiently regular solutions of
the original system (1.1). Omne could verify that all estimates below can be carried over to the
approximated solutions (p("),u(")) in a straightforward manner.



2.2 Lower Order a priori Estimates

Given intial data pg € Hi,u € V, we first show the following L{°L2 and L7H} estimates for a
regular solution (p,u):

Proposition 2.1. Given initial data pg € Hi,u € V, we assume (p,u) is a regqular solution to (1.1)
on [0,T] for some T > 0. Then fort € [0,T], we have

1d

d
el + IVl S lellga, 55l + IVl < gllullze ol 2 (23)

Moreover, there exists Ty € (0,1] only depending on py, and a constant C(ug, po,g) > 0 such that

T*
sup (03 + [ IVo(0) Fads < 4l 24)
te[0,T%] 0
2 o 2 2
s G+ [ IOl < e olli=) 6 + 1) (25)
(S sd %

Proof. First by testing the p-equation of (1.1) by p and integrating by parts, we have

1d
2 dt

1 3/2 3/2 _ 1
lollze + 1¥pll72 = /Q pldx < Cllol 2 IV ol < SIIVol: + Cloll3e,

where we used the following standard Gagliardo-Nirenberg inequality in 3D for trace-free f:

1F13s < IRV FISL.

After rearranging, we obtain the first inequality of (2.3). Similarly, we test the u-equation of (1.1)
by u. After integration by parts, we have

1d

3l + Vel = g [ w- (pes)do < glullalol, (26)

which proves the second inequality in (2.3). Then, the estimate (2.4) follows immediately from ap-
plying Gronwall inequality to (2.3) and choosing Ty = Ti(pg) < 1 sufficiently small. Now integrating
(2.6) from 0 to t € (0,T}), using (2.4), and taking supremum over ¢, we have

sup |u(t)||r2 < 8gllpoll 2T + [luol L2 (2.7)
te|0,T%]

Using (2.4) and (2.7) in the integrated in time version of (2.6), we obtain that

T.
/0 IVu(s)|I72ds < lluol72 + 49T poll 2 (8gllpoll 2 T + lluoll 12) (2.8)

The proof of (2.5) is finished after we combine (2.7) and (2.8). O
Remark 2.2. From now on, any appearance of Ty refers to the time Ty chosen in Proposition 2.1.

With Proposition 2.1, we will derive the following upgraded temporal and spatial regularity
estimates for solution (p,u) within the time interval [0, 7%].



Proposition 2.2. Assuming (p,u) to be a reqular solution to (1.1) with initial data po € H,u €V,
there exists C'(po,up,g) > 0 such that

T
/O (Ip@13 + a3 + 10ep(t) 72 + 0pu(t)lI72) dt

+ sup (lp@®)F + [u®]) < C(po, uo, 9)-
t€[0,T%]

Proof. Testing the p-equation in (1.1) by —Ap and integrating by parts, we obtain:

2dtHVpHLz + | Apl3e = / Ap(u-Vp) + / Apdiv(pV(=A)"tp) =T+ J.

Let us fix € > 0. Using Sobolev embedding, Poincaré inequality, and Young’s inequality with e, we
can estimate I by:

I<||Ap)e[IVpl2llullze < el Apll72 + Cle)llullZ]Voll7.-

Moreover, we can write J as:
= / Ap (Vp V(=A)"tp— p2) de = J; + Ja.
Q

Using the standard elliptic estimate and Gagliardo-Nirenberg-Sobolev inequality, we can estimate

J1 by:

T < 1800 21Vl s IV (=A) " pll e S 1A L2Vl sV (=2) ol
1/2 1/2 3/2 1/2
S 1Al 2 IVl 2191 ol e S Nolls 19 ol 1o 2
< e|Ap|2s + C@IVpl22pll2s,

where we also used Young’s inequality in the final step.
We are going to use the following Gagliardo-Nirenberg inequalities: in dimension three,

3/8 5/8 3/4 1/4

Iollze S AP NI Nollne S ol llollist
Then we can estimate Jy as follows:

1/2 5/6 1/2 1/6

Ty < | Apllz2llpl2e < ClAplllApl oI 2 ol o]l

3/2 1/2
= ClApl 2 ol llele < el Apllza + CIVpllza ol
Collecting the estimates above and choosing € to be sufficiently small, we obtain the following:
d
a\IVPH%z + 1800172 S (lellze + lul3) Vol (2.9)

On the other hand, we test (1.2) by Au. Integrating by parts, we have

1 2
33Vl + 1ule =g [ du- pe. < SlAulfs + Sl

Rearranging the above and using Theorem A.1, we conclude that,

d
ZIVulie + llullz < g*llollze < 4g*[pollzz, ¢ € 0, 7], (2.10)



where the last inequality is due to Proposition 2.1. Integrating (2.10) from 0 to ¢, ¢ < T} and then
taking supremum of ¢ on [0, 7}, we obtain

sup [|Vu(t)|22 < 4g%(|poll32T% + [[Vuol|32;
te[0,T%]

in addition,

T*
DA\MM@S@WmﬁﬂbHWwﬁw (2.11)

It follows that

T*
mowmﬁ+/ lu(t)2dt < C(uo, po. g).
t€[0,T%] 0

Integrating (2.9) and using (2.11), we have that for all ¢ € [0, 7],
2 2 T 2 2 2
IVp)llz2 < llpolli exp (/0 (llollz2 + Hu|lzds> < llpolli exp (Cpo, 9)Tx + Jluoll7) < oo.

Similarly to the case of u, we can also use (2.9) to control fOT p(t)||3dt as well, arriving at

T*
sw|wmﬁ+/ 113 < Cluo, po, 9)-
te]0,T%] 0

We have thus showed the spatial regularity of p and w.
Finally, we shall obtain regularity estimates for the time derivatives. Using the equation (1.1),
we see that

Op=—u-Vp+ Ap—div(pV(=A)"1p) and du = —Au + gP(pe.).

Using standard Sobolev embeddings and elliptic estimate, we have the following bounds:
Ty 5 Ty 5 5 ) T 5
/0 [u-Vp(t)||72dt < /0 [ullze[Vpllzsdt S sup HU(t)Hl/O lp(t)ll2dt,

t€[0,T%]
Ty Ty
A\MM%ﬁéL lo(0)]2dt,

Ty Ty
A wmwvarwm;ws%;nﬂ;+wmwvarwﬁwt

T
< sup [lp()|iT% + sup Hp(t)llf/ lp(t)]13dt,
te[0,T%] t€[0,T%] 0

Ts Ty
A MW%+WM@£§AIM%vM@ﬁ

The above estimates and bounds we proved earlier imply that

T T
/ ”8tpH%2dt+/ HatuH%Zdt < C(“O:PO:Q);
0 0

and the proof is thus complete. O



With the regularity estimates above, we may construct solutions (p,u) from (p™,u(™). The
following standard compactness theorem is useful. We refer interested readers to Theorem IV.5.11
in [2] and Theorem 4 of Chapter 5 in [12] for related proofs.

Theorem 2.1. Let

Ey:={pe L*(0,T);H?), d;p € L*((0,T); L?)},
Fy:={ue L*(0,7);H*NV), du e L*((0,T); H)}

for some T > 0. Then Ejy is continuously embedded in C([0,T], H'), and Es is continuously
embedded in C([0,T],V).

Corollary 2.1. Given initial data pg € Hé, u € V, there exists a weak solution (p,u) of the system
(1.1) satisfying

p e C0,T); H) N L2((0,T); H* N HY), w € C([0,T]; V) N L*((0,T); H*N'V), (2.12)
Op € C([0,T.); Hy ), o € C([0,To); V). (2.13)

Proof. The uniform bounds in Proposition 2.2 inform us that there exists a subsequence of {p™1,,, {u(™},,,
which we still denote by p(™, (™ and p, u, such that

1. p" — p weak-* in L>®((0,T,); HY), weakly in L2((0,T); H> N HY); 9ip™ — 9,p weakly in
L2((0,T); L?),

2. u™ — y weak-+ in L=((0,T,); V), weakly in L2((0,T); H> N V); dyu™ — dyu weakly in
L*((0,T); H).

It is straightforward to check that the limits p and w satisfy (1.1) in the sense of distribution.
Evoking Theorem 2.1, we have proved (2.12).

Now, we show Oyu € C([0,7%];V*). In view of (1.2), it suffices to show that —Au + gpes €
C([0,Ty]; V*). For simplicity, we show that the most singular term Au € C([0,T%];V*), and the
argument for gpes follows similarly. Choose t,s € [0,7y] and pick arbitrary vector field ¢ € V.
Integrating by parts, we observe that

[ (Autt.n) ~ Au(s.2)) - d(o)dn = [ A2(ulti) = uls.2)) - AV 6da
Q Q
< ludt, ) — uls, )1l
By duality, we observe that
H-Au(t? ) - AU(S, )”V* < ”u(t7 ) - U(S, )”1 —0

as t — s due to u € C([0,7%]; V). Thus, we have showed that Au € C([0,7%];V*) and hence
O € C([0,T]; V™).

To show the needed regularity of d;p, it suffices to show that —u-Vp+ Ap—div(pV(—=A)"1p) €
C([0,Ty); Hy ). Similarly, we prove strong continuity for the most singular term w - Vp. The rest
of the terms will follow from a similar argument. Let ¢,s € [0,7}]. Picking ¢ € H{ and integrating



by parts, we have
/Q(U(t,w) Vp(t,x) — uls,z) - Vp(s, z))p(z)dz

- / (ult, 2) — us, z)) - Vp(t, 2o + / u(s, ) - V(p(t, 2) — ps, ))p(x)de
Q

Q
= [ div((u(t.) - u(s,2)plt,a))edo + [ diviu(s, Np(t.2) ~ pls.2)pla)do
Q Q
- = / ((u(t7x) - u(s,a:))p(t,x)) : V(pdx - / (u(37 ~)(p(t,a;) - p(s,x))) : V(p(x)dx
Q Q

The first term on RHS can be estimated by:

/Q((U(t,w) —u(s, x))p(t, x)) - Viedr <lu(t,-) = uls,)l|s ot )lLs el

S Mlut, ) = uls, )llallo )l el
< Clpo, uo, 9)||ult;-) = uls,)|1llell-

Note that we used Sobolev embedding in the second inequality and the uniform bound of p in
L>=((0,T.); H}) norm in the last inequality. Similarly, we can estimate the second term on RHS by:

/Q(“(S’ p(t,x) — p(s,2))) - Veo(x)dz < Cpo, uo, 9)llp(t,) — p(s, )1 llelh

thanks to uw € L*°((0,7); V). Combining the two estimates above and using duality, we conclude
that

[ult, ) - Vp(t,-) —uls,-) - Vols, )l g1 < Clpo, uo, 9)(lult;-) — uls, )l + ot ) = p(s,-)l1) =0

as t — s due to u € C([0,T.]; V) and p € C([0,T%]; HY). This verifies 9;p € C([0,Ty); Hy''), and we
have proved (2.13). O

2.3 Higher Order a priori Estimates

Our next task is to establish the smoothness of a solution (p,u) for positive times, namely
p € C=((0, 1] x ), uw e CF((0, T3] x ),

via energy estimates in higher order Sobolev norms. We would like to remark on the following caveat:
with Dirichlet boundary condition imposed on both p and u, one cannot obtain higher order Sobolev
estimates by commuting the differential operator 9° with the equation, where 9° denotes a general s-
th order spatial derivative. The main reason is that when we treat the dissipation term, integration
by parts incurs a boundary term that is difficult to control. To remedy this issue, we commute
time derivatives 8f through the equation. It is clear that no boundary terms are generated since
0; preserves Dirichlet boundary condition. By applying this strategy, we can improve regularity in
time, after which spatial regularity can be upgraded using elliptic estimates.

Again, to obtain the claimed regularity we should proceed by the Galerkin scheme and perform
the estimates in Proposition 2.3 for the approximated solutions. Since this step is similar to that
in Corollary 2.1, we omit this tedious part and will proceed with only a prior: estimates as follows.



Proposition 2.3. Assume (p,u) is a reqular solution to problem (1.1) with initial condition py €
Hol,uo € V. Then the following bounds hold:

(10t son + 10fu(t, ) er) < Cloos o, 9, ), (2.14)
T
t / (10807, ) B ion + 194, ) B2t ) b < C oo, o, 9, ), (2.15)

foranyte (0,T,], keN,0<1< L%J, where | -] denotes the floor function.

Proof. We prove the proposition by inducting on k. Since k = 0 case is already proved by Proposition
2.2, we now assume that the statement holds up to index k — 1. We will discuss two cases based
on the parity of k. We also remind the readers that the constant C(pg, uo, g, k) might change from
line to line.

1. k is odd. Let us write S = %, and define the s-energy
Ey(r) = 03 p(7, )72 + 107 u(r, )17

for any 0 < s < S. From now on, we fix arbitrary ¢ € (0,7%]. This case can be detailed into
the following steps.

Step 1: show (2.14), (2.15) with [ = S. Commuting 0; with (1.1) for 0 < s < S, we obtain

that
- S —r s—r _ar s—T1 - r
0070 — Ap+ Y <T> [(&’Eu V) p+ 8T pdp+ VO -V (=A) 8] p)| =0,
r=0
(2.16a)
00 u + Adju = glP(0; pe), (2.16b)

equipped with boundary conditions 97 plaq = 0, Jjulsq = 0. Testing (2.16b) with s = S by
07w, we obtain that

1d g
5 197 Ul + 1Yo ullze < 5 (107 ulZ: + 1107 pl2) -
Testing (2.16a) with s = S by 9 p:

1d

S
S
5108l + 19080l = 3 (%)t g4 1), (217)
r=0

where

I - /Q (05 p) (0 u- V)95 p, T, = /Q (95 )05~ p(DFp),

Ko = [ (@30)V0 0 V(-8)"0[p)
Q

To estimate I, first note that Iy = 0 by incompressibility and integration by parts. For
1 <r <S5 —1, we integrate I, by parts once to obtain:

= [ 0,08 p0rusof s
Q

10



where we also used the incompressibility of 0ju. Thus, we can estimate:
L < VO pll 210y ull 13107 pllps < 811V 07 pll72 + C ()10 ull 75187 ol
for some 0 > 0. If r = .5, we instead estimate:
Is < IV pll 2107 ull 2 lpll L < 8IVO pll72 + C(O) 1 plI3107 |72
This concludes the estimates of I,.. To estimate J,., we note that if r =0 or » = .5, we have
Jr <107 pllZz ol S 107 plI3z 1ol

If1<r<8-—1, then we have

1
S S—
Jr < 51107 pllZz + 5107 el 1107 "l

DO | =

Now we estimate K. If r = 0, we use the standard elliptic estimate and Young’s inequality
to obtain:
Ko < 6V; plj2 + C@)lplF1107 plI 7z

where § > 0. If r =5, we apply elliptic estimate and Sobolev embedding:
Ks <|IVpll1s1107 pll 2|V (=2) 7' 07 pll s S VoIl 1107 o2
If1<r<8-—1, we can estimate
- — T 1 T T
K, <[V pllus 07 pll 2 |V (=A) 19 pll s < 5”(‘95/)\\%2 +CIIVOT " plF 10 o172

After choosing ¢ > 0 to be sufficiently small, the above estimates yield the following differential
inequality: for T € (0,T}),

dEg
- T V07 p(7, )72+ 1V O ulr, I < C(k) [ (L+g+llplz+ oll3) Es(r)
S—1
+ > (IVOP ol 07 ol + 1107 plF 107" oIl + 107 ull7s 107" plI7)
r=1
S—1
= C(k) (F(T)ES(T) +> G,(T)) (2.18)
r=1
with

F(r)=1+g+|lo(r, )2 + llo(r, )3,
S— S— S—
Go(r) = VO, " pllEN0] pll72 + 107 pIR 11O " plIT + 107 ullZ: 107 " ol

To proceed, we need the following useful lemma:

Lemma 2.1. There exists 79 € [t/2,t] such that Eg(mo) < C(po,uo, g, k)t=*.
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Proof. Let us consider (2.16) with s = S — 1. For any 7 € [t/2,], we note that by (2.16b),
107 u(r) 122 < 11487~ ullFe + g 1107 pllFe < 1107 ull3 + 9107 o2

Integrating over [t/2,t] and using (2.15) at index k& — 1 (which is valid as this is part of the
induction hypothesis), we obtain

t T
[ o) adr < [ jofunldr < Clonung. A (219)
t/2 t/2
Similarly, applying Holder inequality to (2.16a), we have

S—1

1050122 < 105 I3+ c<k>(ua{uuiuvaf—l—fpui
r=0

S—1— S—_1—
#1051 IR 1T + V08I0l ). (220)
Observe that given the induction hypothesis, applying (2.15) with index k — 1, we have

t
//2 105Lo(r) 3dr < C(po, o, g, K)E' .
t
Also, for r =0,...,5 -1,
t
/ 12 107 u(T) |2V~ p(r) || 2dr < Clpo,uo, g, k)t 2 ¢7257=D = C(pg, ug, g, k)t 7,
t

where we applied (2.14) with index 2r to ||0ju(7)||; and (2.15) with index 2(S —r — 1) to
[VOP =" p(7)|l1. In a similar fashion, we can also obtain the following bound:

t
/t/z (105 o) 10E (I + V05~ ()R 10F () 3| dr < C oo, o, 9, K.
Collecting the estimates above and combining with (2.20), we have

t
., 108t < O, . 01~ (2.21)
t/2

Combining (2.19) and (2.21), we have

t
/m (105u(r) |22 + 195 p(r)|22) dr < Cpo, o, g, k).

By mean value theorem, we can find a 7y € (¢/2,t) such that
Es(10) = (107 u(r0)[|72 + 187 p(10)lI72 < Clpo, uo, g, k)t ™",

and this concludes the proof. O

We also need another lemma that treats the terms G,.

12



Lemma 2.2. Let 19 be chosen as in Lemma 2.1. Then for anyr =1,...,5 — 1, we have

T
/ GT(T)dT < C(p07u0797 k)t_k
70
Proof. We fix r=1,...,5 — 1. By definition of G,., we can write

T* T*
S— S— S—
Gy = [ (N0 pIRI0L o3 + 10E RIS ol + 0Fulls 057 )
70 70

- / U (Gl + G2+ G ) dr

Applying (2.14) with index 2r — 1 and (2.15) with index & — 2r + 1 to terms H@Z’pH%z and
V7" pl||3 respectively, we observe that

T* T*
GL(r)dr < Clpo, o, g, k)i / 165" (7)1 2dr
TO TO

< Clpo, ug, g, k)rg &y 724D

< C(PO, uop, g, k)t_kv
where we used the fact that 79 > ¢/2.

To study the term involving G?, we will apply (2.14) with index 2r and (2.15) with index
k — 2r to terms |0} p|3 and |07 " p||? respectively. This yields:

Ty Ty
G2(r)dr < C(po, uo, g, k)75 ™" / 185" p(r)|2dr

70 0
< O(p07 uop, g, k)T()_2TT()_(k_2T)
< O(p()a uo, 9, k)t_k7

Finally, using Sobolev embedding, Gagliardo-Nirenberg-Sobolev inequality, and Cauchy-Schwarz
inequality,

T T T
Gi(r)dr < / 107 ull7a 107" pllFdr < / 107 ull L2 | VO ull 2 107 plFdr

70 70 70

_2r-1 T
< Cloosuo, g, K)rg T 75 / 105" |27

0
< C(p07 uo, g, k)t_(k_%) < C(p07 U, g, k)t_k
Note that we applied (2.14) with index 2r — 1 to ||0ju| 2, (2.14) with index 2r to ||VOjul| 2,
and (2.15) with index k — 2r to the other |07 "p||?. We also used 79 < Ti < 1 in the final

inequality. The proof is thus completed after we combine the estimates above. O

C(uo, po,g). We may thus apply Gronwall inequality to (2.18) on time interval [7g,t], where
7o is selected as in Lemma 2.1 above. Using the two lemmas above, we have

Using induction hypothesis at k& = 0, we have F' € L'(0,7,) with the bound 110,y <

S—1
Eg(t) < C(k) <ES(TO) + Z/ Gr(T)dT) exp (|[FllLo1))
r=1v70

< C(po,Uo,g, k)t_k7 (222)
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where we recall that T, depends only on pg. This verifies (2.14). To verify (2.15), we integrate
(2.18) on interval [¢,T}], which yields:

T T S=1 .1,
[ (9ol + Ivofuriie) ar < Esyrow ( [ F@Esrarsy [ i),
¢ t 1t
Using (2.22), Lemma 2.2, and the fact that % < 19 < t, we can estimate the above by:

Ty
/t (IV05 p()[122 + [IVOSu(r)|22)dr < Clpo,u0, g, k)t~

+C(po, uo, g, k) (|| F[pr +7)
< C(p07u0797 k)t_k

This concludes the proof of (2.15) with [ = S.

Step 2: show (2.14), (2.15) with | < S. We will show how we obtain the case when
[ =S — 1. Then the rest just follows from another induction on [ = 1,...,.S backwards.

We may rewrite the equations (2.16) with s =5 —1 as

S—1
— S—1 r —1—r —1—r _Aar —1—r — r
—A " p = —@%—Z( . >[5tu'Vaf o+ 07 0l p + VO T p - V(=A) T (0 p)
r=0
= -0 p+ Ry (2.23a)
AP = =07 u+ gP(97 Lpe.) = —07u + Ry (2.23b)

Here, Ri, Ro are the remainder terms which are essentially of lower order. We will see that
these terms can be treated by the induction hypothesis on k. To illustrate this, we show that
the following estimates hold:

Lemma 2.3. For any t € (0,T],

FE (RO + 1R2(D]1F2) < Clpo, o, g, k),

T
tk_%/ (1B (DI + [ Ro(7)II7) dr < Cpo, o, 9, K)-
t

Proof. First, it is straightforward to obtain the following bounds for Re by directly imposing
the induction hypothesis at index k£ — 1:

T
[ Ra )17 +t'H/ IR2(®)|3dt < C(po, uo, g, k)- (2.24)
t

Prior to estimating R, we first need an improved bound for ||u||2: invoking (2.24) with k = 1,
we have

IR2(t)[172 < C(po, 0, 9)-

Since S =1 when k = 1 by definition, we apply the Stokes estimate to (2.23b) with S =1 to
see that

[ull3 S 18eul72 + | Rall72 < Clpo,uo, g)(t™ +1) < Clpo,uo, 9)t ™, (2.25)
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where we used Step 1 with & = 1 above. Now, we are ready to estimate R;. We first note
that it involves 3 typical terms, namely

Riy = 0ju-Voy ™ "p, Riy:= 07" pdfp, Riy =V, p-V(=A)"" (9 p),

where 0 < r < § —1. We will prove suitable bounds for R}, and the rest can be bounded
more easily since these terms involve fewer derivatives. If 1 < r < § — 1, then by Holder
inequality:
2 2 S—1-r 112 21 95—1— S—1—
IRz < I07ullzeIVOT™ " pllzs S N0t ullillor—"pllllor "ol

kE—2r—1 k—2r

< C(po,uo, g, k)t 2"t 2t 2
< C(po, uo, g, k)t—F=2),

where we used (2.14) at indices 2r, k — 2r — 1, k — 2r respectively.
If » = 0, then we observe that R); = u - V&7 ~'p. We estimate as follows:

S— 1/2) 13/2(145—
8372 < = 107"l < ol ™10
< Clpo,uo,g. W)t/ 47470 = Clpo, u. g, k)t~ *-1/Y

where we used Agmon’s inequality in 3D:
/2, 13/2
lullfee S Ml uly’
in the second inequality. We also invoked (2.14) with index 0 to estimate ||u||z2, (2.14) with
index k — 1 to bound |87 p|1, and (2.25) to control |jus.

Turning to the second inequality, since d;u = 0 on 02, then we can invoke Poincaré inequality
to obtain:

T* 2 T* 2
/t IR 2dr < / VR, [2adr

T*
< [ (190w VO bl + 0 V205 gl e

. T T
=: Ryy; + Ripo.

If1 <r <85 —1, using Holder inequality and Gagliardo-Nirenberg-Sobolev inequalities, we
can estimate R}, by

T T
111 S/ IV O ullZallV Oy~ pl[Fedr 5/ IV Oy ull .2 V20 ull 121V O~ pllTdr
t t

T*
< Clpu. o, g 7020 [ V02 VO pladr
t

T k—2r—1

2 A = C(p(]au(]vgv k)t_(k_%)

k

-2
2

< C(p07 U, 9, k)t_rt_

If r = 0, then we apply Holder inequality and a Gagliardo-Nirenberg-Sobolev inequality to
estimate that

T* T*
Rl S/t HVUH%aHV(?tS_IPH%edTS/t s l|ull2l187 pll3dr

Ty
< Clpo, o, g, k)12 / 165|127
t

< C(po, ug, g, k)t~ =1 < C(pg, o, g, k)t~ k=172,
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where we used the bound (2.25) and (2.15) with index 0 and k& — 1 above.
Now we discuss the bound for Rj;,. For 1 <r <S5 —1, we have

T*
o < [ 10Tl 905 plf e

o S—1-r 112

S/t 10t ull 2|07 ull1 167~ pllzdr
i = S—1—-r 12
< C(po, uo, g, k)t~ =t 10 pllzdr
t
< Clpo, uo, g, k)t~ 1/,
where we used (2.14) with indices 2r — 1 and 2r in the third inequality, and (2.15) with index

k — 2r in the last inequality. If » = 0, then we take advantage of Agmon’s inequality in 3D
again to obtain:

T*
S—1
ROy, < / 2 V205 pl 2
T 1/2 3/2)1485—1 12
< / Y2 el 22105 pll 3

Tk
< Clpo,ug, g, k)t / 1051|127
t

< C(po,ug, g, k)t 34~ (k=1

= C(p07 U, 9, k)t_(k_1/4) .

Therefore, we arrive at the bound:
T
/ HR{IH%“’ < C(po,uo, 9, k;)t_(k—l/4)‘
t

Proceeding in a similar fashion, we can acquire similar bounds for the R7, and Rj5. The proof
of the lemma is thus complete after we sum up the estimates above. O

By Step 1, we know that for any ¢ € (0, T}],

t* (1107 oD 72 + 107 u(®)l[F2) < Clpo, uo, 9, k),

Ty
f* / (195 p(r)I2 + 95u(m)|2) dr < Clpo, uos g. k).

Combining Lemma 2.3 with equations (2.23a), (2.23b), and using elliptic estimates, we con-
clude that for ¢ € (0,7%]

107~ p(OI3 + 187~ w3 < Clpo, uo, g, k)t ",

T
| (105 0l + 105 (I ) dr < o, g

which finishes the case when [ = § — 1. The rest will follow from an induction in [, and we
omit the details here. Hence, we have concluded the case where k is odd.
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2. k is even. Since we have proved the k = 0 case, we may write k = 25, S > 1, and define
Ey(t) = VO pl7z + IV ull7

for 0 < s < S. Notice that E,(t) ~ [|0;p||? + ||07u||? in view of the Poincaré inequality. The
scheme of the proof in this case is the same double induction argument (in forward k and for
each k backwards in [), and we will follow the same outline as in the odd case. Considering
(2.16) for s = 1,...,S, we test (2.16a), (2.16b) with s = S by —Ad?p, Ad7u respectively,
which yields:

S

1d S\ - - -

5 V08l + 180801 = X (P) G+ Jo+ ),
r=0

1d S, 12 S, 112 S S g £

—— VO ull7s + |AO  ul|Fe = g [ A uP(9; pe,) < 2 Eg,

2dt o 2

where for r =0,...,.5,

I = [ 203 p(@ru- 9055, Jy = [ 20Fp0r08
Q Q
& = / AOE PV T (—A) 1ol p.
Q

To estimate I,, we first observe that
~ _ _ 1/2 — 1/2
I, < 1897 pll 21187 ull s V07 plls < 1807 ol 2107 ull [V 07~ pll 27119705 o 12
Hence if r # 0, we may estimate I, as follows: for any ¢ > 0,
L < el|AGP pl|72 + C ()|~ ol 107~ pllal|0f -

If r = 0, we estimate

Iy = /QA@S,O(U V)0 p < IA pll pellull e VO pll 2 < €ll A pl[ 72 + C (€|l VO pll 72

To estimate .J,, we have:
Jr < ellAGpl72 + CO197 Pl 1107l
where ¢ > 0. Finally, to estimate of K,, we evoke elliptic estimate to obtain
Ky < |80 pll 2107 pll IV (=2) 710 pll oo S 1A pll 2107 pll IV (=A) 10 pll2
< ellAGPp|IZ2 + ClOlO] I 1107 P12,

for any € > 0. Combining the estimates above yields the following energy inequality: for
T € (0,Ty),

dE N
= 107 plr, ) 3+H0F w3 < O (k) [ (g + l[ull3 + [Ip]13) Es(r)
S—1
+ 3 (1077l 07 pllall o ull? + 107" lI3 1105 pl13)
r=1
~ ~ S_l ~
< C(k) (F(T)Es(T) +y GT(T)) ; (2.26)
r=1
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where F € LY(0,T,) due to the induction hypothesis at k = 0. Now, we would like to follow
the same plan as that in the odd case. This motivates us to prove lemmas similar to Lemma
2.1, 2.2, and 2.3 adapted to the even case. First, we show the following lemma that parallels
Lemma 2.1:

Lemma 2.4. There exists 19 € [t/2,1] such that Eg(r9) < C(po,uo, g, k)t ="

Proof. We consider (2.16) with s =S — 1. In view of (2.16b), we have
7 ull? S 11407 ullf + ¢%1107 pllF < 1107l + 9?1107 oI,

for any 7 € [t/2,t]. Integrating over [t/2,t] and using (2.15) with index k — 1, we obtain
t T
[ 1osumlidr < [ “jofutrlRdr < o uosg. P (2.27)
t/2 t/2

To estimate |[VO7p||z2, we apply V to both sides of (2.16a) with s = S — 1, and then use
Holder’s inequality:

S—1

108122 < 1051013+ 3" C () (uwa:u VoS0 %
r=0
V@S )P + IV (VO v<—A>—1<a:p>>H%z). (2.28)

To save space, we only consider the most singular term, namely ||V (8} u - V37 _T_lﬂ)”%z, and
show that

t
/ IV (8w~ Vo~ p)|[2.dr < Clpo,uo, g, k)t ", (2.29)
t/2

The estimates on the rest of the terms follow from a similar argument. To show (2.29), we
first compute that

V(0u-VoZ ) =Voiu -V o4 afu- V2o 1),
The first term can be estimated by
IVOFu - Vo7~ pl[fz < VO ul[fallVO7 ™ pll7s
S
S IVorul2Ivoy = pll}
< [0y ull3 1oy~ pll3-
Similarly, we may estimate the second term above by
107w - V207" pll2 < N10F w1107 pll3
Thus for r =0,...,5 — 1,
! S—r—1 (|2 ! 2119S—r—1 |2 2|1 9S—r—1 |2
| 1@ 507 a5 [ (107ulBlo5 ol + orallor " olf) a
¢ t
< 0(1007 uo, g, k)(t—(2r+1)t—(k—2r—2) + t—2rt—(k—2r—1))
< C(,O(], uo, 9, k)t_(k_l)
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where we applied (2.14) with index 2r41 to ||0f ul|2, (2.15) with index k—2r—2to |07~ p|o,
(2.14) with index 2r to |07 u||;, and (2.15) with index k — 2r — 1 to |07 1 7"p||3. In a similar
fashion, we can also obtain the following bound:

t
/m 1905 001122 + IV (VO V(= 8) M@ p))I22] dr < Clpo, o, g, )P

Collecting the estimates above and combining with (2.28), we have

t
/ V07 p(7)||22dT < C(po, uo, g, k)t . (2.30)
t/2

Combining (2.27) and (2.30), we have

t

Es(r)dr < C(po, uo, g, k)t' ™"
t/2
By mean value theorem, we can find a 79 € (¢/2,t) such that
ES(TO) < O(p07 Uo, g, k)t_k7

and this concludes the proof. O

Then we show a counterpart to Lemma 2.2.

Lemma 2.5. Let 19 be chosen as in Lemma 2.4. Then for anyr =1,...,5 — 1, we have

Te _
G (r)dr < Clpo, uo, g, k)t~ *=3).

70
Proof. Observe that for r =1,...,5 —1,
A S— S — S— ~ ~
Gr = 1107 pll 107" pllzllOf ulld + 11677 plIF 10 plIT =: G + GF.

To estimate G2, apply (2.14) with index 2r to |07 p||? and (2.15) with index k — 2r — 1 to
107" pll3 -

T. T.
G2(r)dr < Clpo,up, g, k) > / 105 p|2dr
TO T0

< O(p07 uo, 9, k)TO_2TTO_(k_2T_1)

< C(p07 uo, 9, k)t_(k_l)‘

To treat the term é}n, we use the induction hypothesis to obtain that

T. T.
/ G (r)dr = / 105" pll 07wl 195 pllal| Ol s
T0 T0
_k=2r Tk g
< Clooyuo,g. )7y ® 7 / 105" plla | ull dr

0
k—2r k=2r _ 2r—1

N
(Posuo, g, k)19 % 19Ty P Ty C

<C
< C(po, ug, g, k)t~ 2

Summing up the two estimates above completes the proof of the lemma. O
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Finally, we show a result parallel to Lemma 2.3.

Lemma 2.6. For any t € (0,T,],

_1
(R + [ R2(D)1F) < Clpo, uo, g, k),

Ty
e / (IR(7)|2 + [|Ba(7)]12) dr < Clpo, uon g, k),
t

where Ry, Ry are defined as in (2.23).

Proof. First, we note that by applying (2.14) and (2.15) with index k — 2, we have

T*
k-2 (\|R2<t>||% -/ ||R2<T>||%d7> < Clpo, w0, g, k).
t

Then it suffices for us to show suitable bounds for Ry. Similarly to the proof of Lemma 2.3,
we need to control the following typical terms:

Ry o= 0u- VS~ " p, Ryy = 957 pdfp, Riy:= VS 70 V(=A) (9 p),

For simplicity, we will only consider in detail the most singular term R, as the estimates for
the remianing two terms will follow similarly.

We first study ||R},||?, and it suffices for us to consider the leading order contribution i.e.
HVR’l"lHQLQ. Recall from the proof of Lemma 2.3 that

IVRZ2 S IVOfu- Vo7 " plla + 10]u- V20, " pl|72 =: Riyy + Riya.

To treat R7;;, we see that for any 0 <r < .S —1 , an application of Holder inequality, Sobolev
embedding, and Gagliardo-Nirenberg Sobolev inequality yields:
11 < IVOFull 2V a7~ pllZs
S IVl IV O ull VO, plI}
S 18wl |97 ull2 107 pl13
< Clpo, g, g, k)"t 2 ¢ (k=2
< C(po, uo, g, k)t~ *=1/2),

where we used (2.14) with indices 2r, 2r 4+ 1, k — 2r — 1 respectively in the second to the last
inequality above. To treat R7,,, we first discuss the case when 1 <r < S —1:

T2 < 10FullZs V207~ pll e
< |8f ull g2 1|0F w1107~ pl13
< C(po,uo, 9, k;)t_L;lt_rt_(k_%)
< Cl(po, uo, g, k)t~ k=12,

where we used (2.14) with index 2r — 1, 2r, k — 2r respectively in the second to the last
inequality above. In the case where r = 0, we instead estimate as follows using Agmon’s
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inequality:
S—
RYyy < |l IV207 pl|72
1/2 3/2,14S—=1 (12
< Ml 2 a3 21105~ o113
< C(po, uo, g, k)t~ it~ =D
< C(po, uo, g, k)t~ *k=1/4),

where we used (2.14) with index 0, 1, and £ — 1 in the third inequality. Combining the

estimates above yields
FARE (O < Clpo, uo, 9. k).
Now we shall study || RT,[|3. We still consider the leading order contribution, namely [|[V?RT,|7..

A straightforward computation yields:

IV Ry B S V207w VoS pll2a + IVOFu - V205" pll2a + [0Fu - V207" |2

~

=: Riyy + Rip + Ry,
To control R},,, we have for any t € (0, T.]:

R < V20 ull7: VO~ pllZs
S V20 ull 2 | V207 ull 1 V07~ ol
S—1—
S 107 ullll0] wlls 107~ pll3
2r+1 k—2r—1

< C(,OQ,UQ,Q, k)t_Tt_ 2 Ha{u”guaig—l—rmb
_k _1—
= C(p()auO?g? k)t 2 ”8{UH3”8§ ! TpH2

where we used (2.14) with indices 2r + 1 and k — 2r — 1 above. Integrating in time, we obtain

Ty T
~ k 11—
quldTSC(lgO?uO?g?k)t_i/ ”8{'““3“829 ! Tp“2dT
t

T, 1/2 T,
(/ HGZ‘uH%dT> (/ Hc?f‘l"“pH%dT>

2r4+1  k—=2r—2

< Clpo,uo, g, k)t 2t~ % 3
< C(,O(],U(),g, k)t_(k_1/2)7

t
1/2

[ME

< C(p07 Uuo, 9, k)t_

where we used (2.15) with indices 2r + 1 and k — 2r — 2. A similar argument switching the
estimates of u and p terms yields the same bound for Rf5:

T*
/ Ryvpdr < Clpo, uo, g, k)t~ 6172,
t

To estimate R’l"lg, we first note that for 1 <r < .5 —1,

Ris < 1|07ul2: V207~ pl 2
S—r—
< 105 ull g2 |05l 107~ o2

_2r—1 _ P
< Clpo,uo, 9. k)t~ 2 t 7|07 " p|3
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where we used (2.14) with index 2r — 1 and 2r respectively in the last inequality above.
Integrating in time, we get:
T*

T
] R;l?)dT < C(poauoaga k)t_221t_r/t |’8£9_T_1pH42ldT

< O(p()v UQ, g, k)t_%t_rtk_%,
= C(po, uo, g, k)t~ *=1/2,

where we used (2.15) with index k — 2r above. In the case where r = 0, we instead estimate
as follows using Agmon’s inequality:

0 2 39S5—-1 2
Rii3 < ||lul|7<|V207 ™ pll72
1/2 3/2 S—1
< Nl 108 )13
_3 _
< C(po, uo, g, k)t~ 1)|0; |3

where we used (2.14) with indices 0 and 1. Integrating in time yields:

Ty T
~ _3 _
/ ROyydr < Clpo, o, g, k)t / 105~ |2
t t

< C(po, ug, g, k)t~ 1t~ *=D
= C(po, uo, g, k)t~ k=1,

where we used (2.15) with index k — 1 above. Collecting the estimates above yields
k o
¢ [T IR R R < Clon, o, 9.,
t

The proof is therefore completed. O

From this point on, a similar argument to the odd case combining with the three lemmas
above finishes the proof for the even case. We leave details for the interested reader.

O

Finally, by combining Corollary 2.1, Proposition 2.3, and using Sobolev embeddings, we infer

the existence of a regular solution to (1.1)

2.4 Uniqueness

In this section, we show the uniqueness of regular solutions to problem (1.1).

Proposition 2.4. Given initial data py € Hol, ug € V, there exist a Ty > 0 depending only on po,
and a unique regular solution to problem (1.1) on [0,T}].

Proof. Assume (p;,u;), i = 1,2, to be two regular solutions to problem (1.1) with initial condition
00, ug. Write r = p1 —pa, w = ug —us. A straightforward computation yields the following equations
satisfied by p, u:

Or — Ar+uy - Vr +w - Vg +div(rV(=A)"tp; — poV(=A)"1r) =0,
Ow + Aw = gP(re,),
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with boundary conditions r|sn = 0, w|sq = 0 and zero initial condition. Testing the r-equation by
r, we obtain

1d )
sl 4 19 == [ v e = [ v o)+ [ 19r9(-8) 0
Q Q Q
—/pQVT"V(—A)_lT’:Il+Ig—|—[3—|—[4.
Q

Using incompressibility of w1, we immediately have I; = 0 via integration by parts. Using Holder
inequality and Sobolev embedding, we can estimate I5 by:

L < |Irllzellwllzs IV p2llps < Irllcllwllillpzllz < ellwl + C(e)llp2l3]Irl7

for any € > 0. Using elliptic estimates, Sobolev embedding, and Gagliardo-Nirenberg-Sobolev
inequalities, we may estimate I3 by:
_ 1/2 1/2
I3 < V7|27l 1V (= 2) " pullze < 197l e il 719 12 o e

3/2 1/2
S ol VB2 1olNS < el Vrl2z + Ce)llprll iz ]|

Similarly, we can estimate I, by
L S lpallzeelirll 2197l 2 S Hlp2llzllrll 21Vl 2 < el VrliZe + Cle)llo2l3lr (7.

On the other hand, we test the w-equation by w:

Ld 2 vul?, = < 1 2 92
gl + IVl = g [ w-re. < Jluls + Ll
Consider E(t) := ||w||3,+]7[|2,. Collecting the estimates above and choosing € > 0 to be sufficiently

small, we have the following inequality:

< Cllal3 + il + VB = CTOB(),

Note that as (p;,u;) are regular solutions for i = 1,2, we particularly have p; € C(]0,T%]; V) and
p2 € L?((0,Ty); H* N V). Hence f € L*(0,T.). Since (r,w) assumes zero initial condition, we have
E(0) = 0. Then an application of Gronwall’s inequality implies

E(t) =0, t € [0,T,],
and uniqueness is proved. O

2.5 Regularity Criterion

In this section, we aim to prove Theorem 1.2. We first need the following fact on the monotonicity
of L' norm of cell density p:

Lemma 2.7. Assume Q to be a smooth domain in either R? or R3. Let (p,u) be a smooth solution
to problem (1.1) on [0,T]. Suppose also that py is nonnegative. Then for any t € [0,T], we have

d
—||p(t <0.
o)l <0
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Proof. First, we note that by parabolic maximum principle, we must have p(¢,2) > 0 in [0,7] x Q.
Using (1.1), we compute that

Gt =5 [ pttade = [ (cu- Vot ap—div(pV(=4)"p) do

:/div(Vp—pV(—A)_lp)dazz 8,0 PQ(_A)_IPdS

00 On on
/ 9% s,
o0 0

where % denotes the outward normal derivative and d.S denotes the surface unit. We also used the
incompressibility of u, divergence theorem, and the Dirichlet boundary condition in the derivation
above. In view of parabolic maximum principle, we must have

P

Hence, we conclude that

d
— I p(t, - <0, tel0,T].
dth( s )HL1 <0, t¢€ [ ) ]

Now, we are ready to give a proof of the L? regularity criterion:

Proof of Theorem 1.2. Assume (p,u) is a solution to (1.1) with smooth data (po,uo). Let Ty > 0
be its maximal lifespan.

1. d = 2. Suppose Ty < oo and

t
1i 2, ds=M .
t%o/o lpllz2ds <00

First, we test the u-equation in (1.1) by Au, which yields:

oIVl I Aule =g [ A pes < 1wl + ol € 0T

Rearranging the above inequality, using Gronwall inequality, Theorem A.1 and the assumption,
we obtain that

To ) ) g2M
sup [l + [ ulfds < ol + 27 < o (231)
te[0,T0]

Testing p-equation by —Ap, one obtains that

5 I Vol 180l = [ Bpu-Vo— [ Apst s [ apvp- V(-2
Q Q Q
= Q1+ Q2 + Q3.

Similarly to the estimate (2.9), we have for any € > 0
Q1 < [|Ap[l2[IVpll2llull= < €ellApl|72 + C(e)[VpllT2llull3,

Q2 < e[ AplZ2 + CO)plLs < el AplZz + ClOlplZ2lIVollZ:-
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The term that we have to treat differently is Q3. Using Holder inequality, Sobolev embedding,
and an LP-based elliptic estimate, we have:

Qs < 1Al Vol 31V (=2) " pllo S 18002 1Vpll s |V (=)ol 5
1/3 2/3 2/3 1/3
S Aol 190l s ol zare S AP L2 Il 1920l 2 ol 252V o s
5/3 1/3 2/3 1/3
S A2 NI o252 Vo135 < ellAplZ + Ce) o2z lloll i IV oll22,
where we used the Gagliardo-Nirenberg-Sobolev inequalities

2/3 1/3 1/3 2/3
1Fllzar2 < CIENZRINV I IV FllLs < ClFIE V2RI,

in the fourth inequality, and Young’s inequality in the last step. By Lemma 2.7, we know that
for t € [0,T0), |lp(t,)|lzr < |lpollz1- Then we have

Qs < el Apll72 + Clpo, )lpll72 1V pll72-

Choosing € > 0 sufficiently small and using the estimates of L; above, the p-estimate can be
rearranged as:

d
ZIVPIIZ + 1180072 < Cloo)(lull3 + lIpl72) 1V AIIZ:- (2.32)

Using Gronwall inequality, we have:

To TO
sup [ Vp(t, )2 + / 10l12ds < [1Vp0ll% exp <C(Po) /

(ull2 + Hpuiz>ds)
0<t<Top

< C(p07u07M797T0)7

where we used the assumption, (2.31), and elliptic estimate. But this implies that one can
extend the solution (p,u) beyond the supposed lifespan Ty by Theorem 1.1. This yields a
contradiction.

2. d = 3. Suppose Ty < oo and

t
li 4ds =M .
lim [ olifads = 21 < o0

Testing the u-equation in (1.1) by Au and deploying estimates similar to the d = 2 case, we

have - )
0
9"V M1y
sup [Valffa + [ Julfids < ol + SV < .
te(0,To) 0

A derivation identical to (2.9) yields:

d
Vol + 12017 < (lollze + elz) 1V pllZ:.

Applying Gronwall inequality and combining the two estimates above, we have for t € [0, 7]
that

To To
IVo(t, )72 +/0 Ipll3ds < llpollF exp (C(Po)/o (llollz= + HUH%)dS) < C(po, uo, M, g, Tp).

And this contradicts the assumption that Tp is the maximal lifespan in view of Theorem 1.1.

The proof is thus completed. O
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3 Proof of the Main Theorem: Suppression of Chemotactic Blowup

In this section, our goal is to conclude Theorem 1.3 that (1.1) is globally regular in the regime of
sufficiently large g. In particular, we will see that the coupling of the Keller-Segel equation to the
Stokes flow with sufficiently robust buoyancy term is regularizing, in the sense that the solution
p(t,z) approaches zero exponentially fast as g is sufficiently large. For the rest of the section, Q2
denotes any smooth, bounded domain in either 2D or 3D.

3.1 Velocity Control

In this subsection, we remark on two controls on the velocity field u in (1.1) that will be instrumental
in our main proof. The first lemma is in fact a standard H&m control of u, which is hidden in our
proof of energy estimate in Proposition 2.3. We give a brief derivation here for clarity.

Lemma 3.1. Let (p,u) be a reqular solution to problem (1.1) with initial data py € H}, ug € V.
We have

[ullZ1 (0.7, x62) < Cposu0)(g” + 1) (3.1)

Proof. In view of the estimate (2.5) in Proposition 2.1, it suffices to show that

T
/0 [0u(t)|22dt < Cpo, uo) (g + 1), (3.2)

Testing the u equation in (1.1) by d,u, we have

1d 1 §
ol + 5 51l =g | B (pes)ds < S0l + %ol
2dt 0 2 2

where we used incompressiblity of u and Cauchy-Schwarz inequality above. Rearranging, integrating
in time, and using (2.4) we obtain

t t
| 100y Bads + 19602 < 52 [ o) Bads + [T
< ¢*(2Tx|lpol1Z2) + lluoll?
< C(po, uo)(g” + 1),
By taking supremum of ¢ over [0, 7], we have arrive at the estimate (3.2). O

The following lemma yields a key additional control over the velocity field by genuinely exploiting
the buoyancy forcing structure of the fluid equation in (1.1):

Lemma 3.2. Let (p,u) be a regular solution to problem (1.1) with initial data py € H}, ugp € V.
Then

Ts
/0 () [22dt < C(, po, up)(g + 1). (3.3)

Remark 3.1. Note that a straightforward L? estimate of u only yields a bound fo -
What we display in the lemma is that the structure of buoyancy forcing “gains a g~

w(b)]22dt < g2

1»
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Proof. Without loss of generality, assume that  contains the origin. Denote L := diam(£2) > 0.
Multiplying the p-equation of (1.1) by z — L (recall that z = 24 when Q C R? d = 2,3) and
integrating over €2, we have

i z— T z— U - T — z— T z— iv —A) " p)de =
& |e=Dpte s [ G D Voo~ [ = DApdo+ [ (o= D)aiv(p9(-8)" ) =0

Moreover using the Dirichlet conditions plgg = 0 and ulgg = 0, we note that via integration by

parts:
/(z — L)(u-Vp)dz = —/ pudx —l—/ (z — L)pupdx = —/ pudx,
Q Q o0 Q
dp
—/(z— L)Apdx = / 0, pdx —/ (z — L)=dS,
Q Q o9 on

/u—mewveAr%sz—/p@earwm,
Q Q

where u,, denotes the normal component of u along 92, and dS denotes the surface measure induced
on 0f2. Collecting the above computations, we have

/,ouzdx: i/(z—L)pdx—l—/ azpdzn—/ (z—L)@dS—/paz(—A)_lpd:E. (3.4)
Q dt Jo Q 00 on Q

On the other hand, testing the u-equation of (1.1) by u, we also have

1d
3l + 19l =g [ pu. (35)

From Lemma 2.7, we also know that dp/dn < 0 on 02 in [0, T%]. Hence, we have faﬂ(z—L)%dS >0
by definition of L. Combining this fact with (3.4), (3.5), and integrating on [0, 7], we have

Hmwmg—wmﬁzsa{lgz—Lxmam—wmm»dx+[i£awdx—[?Ap@«ﬁm-mdﬂ

T, 1/2 T,
scmmmmu+¢ﬂ<4\wwéw> [ ol
< C(2,p0)9,

where we used elliptic estimate in the second inequality, and (2.4) in the final inequality. The proof
is therefore completed after integrating in time again. O

3.2 A Key Theorem

In this part, we prove a quantitative characterization of the regularizing effect of the Stokes-
Boussinesq flow in (1.1). With a rigidity-type argument inspired by [7], we show that the flow
with sufficiently large g can suppress the L? energy of p to be arbitrarily small within the time scale
of local existence, as elucidated in the following theorem:

Theorem 3.1. Let py € H},ug € V' be initial conditions for the problem (1.1), and consider (p,u)
to be the regular solution. For arbitrary ¢ > 0, there exists g. = g«(po,uo,€) such that for any

g 2 G«

inf t,- <e.
nt (e )z < e
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Proof. Suppose for the sake of contradiction that there exists ¢y > 0 such that there is a sequence
{(pnstn, gn)}n which are regular solutions to (1.1) with p = pp,u = u,, 9 = g, and g, — +o00
(corresponding to initial data pg,ug). Indeed, we may without loss of generality assume that the
sequence {gy, } is increasing by picking a subsequence if necessary. Also, for any t € [0, 7], and for
all n

[on(t, )|z > €o. (3.6)
Note that indeed we can use the uniform choice of time T} here, since T, only depends on pq.
Moreover, we consider the normalized velocity @, = u,/g,. We will divide the proof into the

following steps:

e Step 1: Convergence properties of (p,,u,). From (3.1), we have ||t g1 (jo,nix0) <

C(po,up). Using weak compactness and the Sobolev compact embedding theorem, we obtain
that there exists o, € H'([0,T%] x Q) such that

Ty — lio i HY([0,T,] x Q), and @, — te in L*([0,Ty] x Q).

In fact, observe that from the estimate (3.3) of Lemma 3.2 it follows that [/, | z2(j0.1,)x0) — 0
as m — 00, SO Us = 0. In addition, from the energy estimate (2.4), we may pick a further
subsequence, still indexed by n, such that there exists ps € L?(0,Ty; HE (Q)) and

Pn = Poo 1N L2(07T*§H&(Q))'

e Step 2: Derivation of the limiting fluid equation. Since (p,,, u,) is a regular solution to
(1.1) with parameter g, on [0,7}], u, in particular solves the fluid equation in (1.1) weakly.

That is,
- /0 " /Q (0¢p)tun daxdt + /0 " /Q (A¢)undrdt = /0 " /Q pn(@ - €z)dzdt,

for any smooth vector field ¢ € C2°([0, Ty] x ) with div ¢ = 0. By the convergence properties
of pn, u, as shown in Step 1, and by Lemma 3.2 we find that

Poctz = Voo, (t,x) € [0,T4] x Q2 (3.7)
holds in a weak sense.

e Step 3: Nontriviality of p,,. By maximum principle, we know that p,, and thus p,
is nonnegative. We would also like to claim that ps, # 0. To show this fact, we need the
following proposition.

Proposition 3.1. Let Q c R%, d = 2,3, be a smooth, bounded domain. Assume (p,u) to be
the reqular solution of problem (1.1) on [0, Ty] with initial condition py > 0 € H}, ug € V.. If
there exists M > 0 such that supg<i<r, ||p(t)||z2 < M, then we have

a4
sup [|p(t)|[ < CM =4
0<t<Ti
Here C is a constant that may only depend on d and €.
A variant of this result has been proved in [19] (Proposition 9.1), in a two dimensional periodic

setting. The proof of Proposition 3.1 is similar and for the sake of completeness will be provided
in the appendix.

Next, we need the following lemma.
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Lemma 3.3. Let D C R, d € N, be a bounded domain, and let {f,}n C L*(D) be a sequence
of nonnegative functions that weakly converges to a function f € L*(D). Assume that there

exist M,e > 0 such that || fullr2 > €, || fullLe < M for alln. Then f # 0.

Proof. Suppose for the sake of contradiction that f = 0. Consider the characteristic function
¢ = xp Since D is bounded, ¢ € L?(D). Then the weak convergence informs us that

lim fn=0.

n—oo D

As f, > 0 for all n, this is equivalent to lim, o ||fnllzr = 0. Since ||fnllze < M, by
interpolation we have
1 £all72 < fallzee |l fallzr — 0

as n — oo. But this contradicts with the assumption that || f,, |2 > €. O

Observe that from (2.4), we know that ||py(t,-)|lz2 < 4||pollz2 for all ¢ € [0,7%] and all n.
Thus applying Proposition 3.1 to p, we get that ||p,(t,)||r~ < M for all t € [0,7], and all
4

n, where M = C(d, Q)HpoHig_d. Then Lemma 3.3 implies that po # 0.

Step 4: Derivation of a contradiction. Let us consider

Ty Ty
bnle) = /0 pult,2)dt, o) 1= /0 oo, 2)d

In particular, 1, Z 0 and 15, > 0 by Step 3. On one hand, picking arbitrary n € L?(£2), we

have B
'/ — oo (2))dar| = ‘/T/ )(pn(t, ) poo(t,:n))dxdt‘
- \ / " | n@xoz ©eat.2) - pw<t,x>>dmdt',

which converges to 0 as p, — pso in L?([0,T}] x Q). This implies that 1, — s in L?(£).
On the other hand, we note that by Minkowski inequality and Holder inequality,

T,
IVenllz2 < /0 IVpullredt < N/Tl[Vpull2o,1.)x0) < Clpo),

where we used (2.4) in the last step. Since pplaog = 0, we know that v, € H}(Q) with
a uniform H'-norm bound from above. Hence by weak compactness and Sobolev compact
embedding theorem, there exists a subsequence, still denoted by ), and s, € Hol(Q) such
that

Yn = oo in HG(Q), tn = oo in L*(Q).
Indeed, we must have 1o, = 1so due to the uniqueness of weak limit, and hence 1o, € H&(Q)

But now, integrating (3.7) with respect to time, we have
VP =1es,

where P(x fo Poo(t, x)dt. But this implies that 1o (x) = h(z), where h is some single-
variable functlon Moreover, we know that 1, € H0 (©2). These two facts imply that 1o, = 0.
However, this contradicts the fact that ¢, > 0. This completes the proof of the theorem.

O
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3.3 Proof of Global Well-Posedness with Large g

Now we are ready to prove the main theorem. As we will see below, ||p||z2 enjoys a Riccati-type
differential inequality which preserves smallness. This structure combined with Theorem 3.1 gives
the boundedness of [|p(t)[|72 globally in time (and actually smallness in large time). The proof is
thus done after we invoke Theorem 1.2.

Proof of Theorem 1.3. Say the solution (p,u) is regular up to a maximal time Tj, which may or
may not be infinite. Suppose first that Ty < co. Similarly to the proof of Proposition 2.1, using the
energy estimate of p, a Gagliardo-Nirenberg-Sobolev inequality, Young’s inequality and Poincaré
inequality, we have for ¢t € (0,7)) that

1d 2 2 1 2 =z
5%“/)“1;2 < _”VPHm + §HVPHL2 + C”P”Lz
1 12—2d
< — sl + Cllall 5 = falllli22), (33)
P

where C), denotes the Poincaré constant that only depends on domain 2. Since 2 < 1‘21:3‘1 when

d = 2,3, we fix e € (0,1) sufficiently small that fz(e) < —ﬁe. Note that such choice of € only
depends on domain Q. By Theorem 3.1, there exists g, = g«(po, ug) such that there exists 7 € [0, 7]

with [|p(7)||32 < € for any g > g.. Now we consider the problem (1.1) starting from ¢ = 7. Then

from the inequalities above, we note that % |p(t,-)||22|1=r < 0; by (3.8) this inequality also holds
for all ¢ € [r,Tp]. Hence, there exists M > 0 depending on py such that sup;cjo 1, [1o(Z, MEs < M,
which yields

To _4 2
[ et 5 e < 2oy < o
0
By the regularity criterion, this contradicts the definition of Tj. Therefore, we conclude that Ty = oo

and the solution is globally regular. To prove (1.3), we note from above that sup;s, [[p(¢,-)[|7. < €.
In fact, by our choice of € and (3.8), we have

d 1
—lollFe < —=llpl7z, t > 7.
dt""E 4, "

Using Gronwall inequality, ||p(7)||7. < e <1, and 7 < Ty < 1, we have: for t > 7,

I S 1 4 1
P12 < [lp(r)|20e T 7 < o1 TG

__1 4
C
<Ce ",

where C' = €!/%C» is a constant that only depends on domain Q. This yields (1.3) after rearranging
the inequality above.
O

A  Appendix

In the appendix, we will remark on one regularity estimate for Stokes operator A that plays an
essential role in our energy estimates. What follows will be a proof of Proposition 3.1 that appear
in the proof of the main lemma.

The regularity result for Stokes operator stated below is standard; proofs can be found for
example in [6]:
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Theorem A.1. Let Q be a bounded C? domain. Then there exists a constant C = C(Q) such that
for allu € D(A) = H?(Q) N H}(Q),

[[ull2 < C(Q)]| Aul| 2.
Moreover, there exist constants co, Cy only depending on domain 0 such that
col Vul g2 < AV ?ul g2 < Col|Vul 2
We will now give a proof for Proposition 3.1; its statement is reiterated below.
Proposition A.1. Let Q@ € RY, d = 2,3, be a smooth, bounded domain. Assume p,u to be the
reqular solution of problem (1.1) on [0, T] with initial condition py € H¢ and py > 0. If there exists
M >0 such that supg<<p ||p(t)|| 2 < M, we then have
_4
sup_||p(t)|[Lee < CM =4,
0<t<T

where C' is a constant only depending on domain 2.

Proof. In the proof, we shall suppress the variable t. Let p > 1 be an integer. We start with the
following computation using (1.1):

d _ . _
o1 =20 [ 7l Do = div (¥ (=8) ") + Ap)do = 2p(T + 7 + ).
Using incompressibility of u, we can compute that

1
I:—/p2p_1(u-V)pdx:——/ujajp2p: .
Q 2p Q

Integrating by parts, we have

- - 2p—1 _ 2 — 1
J=(2p— 1)/ P10, p0;(—A) L pdr = 5 / 8;(p™)0;(—A) ' pda = . / P2y
Q D Q D o

Using chain rule, we also have

2p —1
K=—(2p-1) / P20 p0spd = — / Vo' da.
Q p Q
Collecting all computations above, we observe that
dy 2w _ 2p+1 2 2 A
gplelze = (22 = Dllpllzpe — (4 ; IVl z2- (A1)

Now we shall estimate ||p|| 2~ inductively on n. The base case n = 1 is dealt with by our assumption.
Assume for ¢ € [0,T] we have the bound

”p”LQ" <B,,B,>1

for any t € [0,T]. Define f = p?", and apply p = 2" to (A.1), we obtain that
d n “n
G | e < 21V 2RI (A2)
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Applying a Gagliardo-Nirenberg-Sobolev inequality (see [1], for example), we can estimate using
Young’s inequality that

2+27n7d27n71

|mgizwwmﬂ"wﬂ““”W”<w%2wmé+mm@kW“2, (A.3)
Il SIVAZEIATE. (A

The constants in the above inequalities do not depend on n. Plugging (A.3), (A.4) to (A.2), we
obtain

d 242" —d2~ Z 1
G | 1P < =293+ SIVHIR + G2

2427 " g2~ "1
T—d2—n—2
L2 ) (A5)

< CHHfHLz HfHL1-+Cb2"+1HfH

242" —d2—n—!

where C, Cy are constants only depending on d. Note that given d = 2,3, we have =-—=7—

2d+4 for n > 1. Moreover, observe that

I£llze < BE < o

Then for each n > 1, the right hand side of (A.5) becomes negative when || f||;2 is sufficiently large.
In particular, one can compute that | p|| 2n+1 Will never reach the value B, 11, where B, is defined
by the following recursive relation:

2n+2 —d

d
——log B, 1 1)1
ST 5108 + —[logC' + (n+1)log 2],

log By y1 =

where C' is a constant independent of n. Note that we have

22 —d  A—d2 4

= —
j:12"+2—2d 4—d 4—d

as n — 0o, where in the first equality we used the telescoping nature of the product. Then via an
inductive argument, there exists some dimensional constant C' > 0 such that for all n > 1,

B, <CM7T1.

As Q is bounded, we have
4
lpllzee = lim ||p|lpon < CMT4,
n—oo

and the proof of the lemma is complete. O
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