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Abstract

In this paper, we show that the Keller-Segel equation equipped with zero Dirichlet Boundary

condition and actively coupled to a Stokes-Boussinesq flow is globally well-posed provided that

the coupling is sufficiently large. We will in fact show that the dynamics is quenched after

certain time. In particular, such active coupling is blowup-suppressing in the sense that it

enforces global regularity for some initial data leading to a finite-time singularity when the flow

is absent.

1 Introduction

The Keller-Segel equation is a well known model of chemotaxis [18, 24]. It describes a population of
bacteria or slime mold that move in response to attractive external chemical that they themselves
secrete. The equation has interesting analytical properties: its solutions can form mass concentration
singularities in dimension greater than one (see e.g. [23]) where further references can be found).
Often, chemotactic processes take place in ambient fluid. One natural question is then how the
presence of fluid flow can affect singularity formation. In the case where the ambient flow is passive
- prescribed and independent of the bacteria density - it has been shown that presence of the flow can
suppress singularity formation. The flows that have been analyzed include some flows with strong
mixing properties [19], shear flows [3], hyperbolic splitting flow [13], and some cellular flows [17].
In a similar vein, [8] explored advection induced regularity has been for the Kuramoto-Sivashinsky
equation.

The case where the fluid flow is active - satisfies some fluid equation driven by force exerted
the bacteria - is very interesting but harder to analyze. There have been many impressive works
that analyzed such coupled systems, usually via buoyancy force; see for example [9, 10, 21, 20,
22, 25, 5, 11, 27, 26] where further references can be found. in some cases results involving global
existence of regular solutions (the precise notion of their regularity is different in different papers)
have been proved. These results, however, apply either in the settings where the initial data satisfy
some smallness assumptions (e.g. [10, 22, 5]) or in the systems where both fluid and chemotaxis
equations may not form a singularity if not coupled (e.g. [25, 27, 26]). Recently, in [14] and
[28], the authors analyzed Patlak-Keller-Segel equation coupled to the Navier-Stokes equation near
Couette flow. Based on ideas of blowup suppression in shear flows and stability of the Couette flow,
the authors proved that global regularity can be enforced if the amplitude of the Couette flow is
dominantly large and if the initial flow is very close to it. The density/fluid coupling in these works
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is not by buoyancy force but instead involves a model of the swimmer’s effect on fluid that leads to
special algebraic properties of the system.

In the recent work of the authors joint with Yao [15], the two dimensional Keller-Segel equation
coupled with the incompressible porous media via buoyancy force has been analyzed. It has been
proved that in this case, an arbitrary weak coupling constant (i.e, gravity) completely regularizes
the system, and the solutions become globally regular for any reasonable initial data. At the heart
of the proof is the analysis of potential energy, whose time derivative includes a coercive "main
term" ‖"x1

Ã‖2
H−1

0

(where Ã is the bacteria density). Essentially, this H21
0 norm has to become

small, and intuitively this implies mixing in the x1 direction. Hence the solution becomes in some
sense quasi-one-dimensional and this arrests singularity formation.

Our goal in this paper is to analyze the Keller-Segel equation in an arbitrary smooth domain in
dimensions two and three coupled to the Stokes flow via buoyancy force:

ù

ü

ü

ü

ü

ú

ü

ü

ü

ü

û

"tÃ+ u · 'Ã2∆Ã+ div(Ã'(2∆)21Ã) = 0, x * Ω,

"tu2∆u+'p = gÃez , div u = 0, x * Ω,

u(0, x) = u0(x), Ã(0, x) = Ã0(x), Ã0(x) g 0,

u|∂Ω = 0, Ã|∂Ω = 0.

(1.1)

Here Ω is a smooth, compact domain in Rd, d = 2 or 3. ez denotes the unit vector (0, 1) when
d = 2 or (0, 0, 1) when d = 3. g * R+ is the Rayleigh number representing the buoyancy strength.
Moreover, the operator (2∆)21 denotes the inverse homogeneous Dirichlet Laplacian corresponding
to the domain Ω. In the case of the Stokes flow, the fluid velocity is more regular, and the equation
includes time derivative that complicates matters, partly due to a loss of a “Biot-Savart law” that
relates Ã and u directly. We are unable to prove global regularity for all g, and we are not sure if it
is true. Our main result is global regularity for strong buoyancy. The proof is completely different
from [15]: it relies on softer arguments and the analysis of the large buoyancy limit.

The first part of this paper addresses the local well-posedness of regular solutions to (1.1).
Before we make precise of the notion of a regular solution, we shall first introduce the following
useful function spaces: to study the regularity properties of Ã, we consider

H1
0 := completion of C>

c (Ω) with respect to H1 norm,

H21
0 := dual space of H1

0 .

Moreover, we use the traditional notation W k,p(Ω) to denote Sobolev spaces equipped with norm
‖ · ‖k,p in domain Ω. If p = 2, we in particular write Hs(Ω) = W s,2(Ω) equipped with norm ‖ · ‖s.
We will write W k,p (or Hs) instead of W k,p(Ω) (or Hs(Ω)) for simplicity if there is no confusion
over the domain involved. We also say an n-vector field v = (vi)i * Hs if vi * Hs for i = 1, . . . , n.

As we also need to work with Stokes equation, it is standard to introduce the following spaces:

C>
c,σ := {u * C>

c (Ω) | div u = 0},

H := completion of C>
c,σ with respect to L2 norm,

V := H +H1
0 (Ω), V

7 := dual space of V,

where V is equipped with H1
0 norm, and V 7 is equipped with the standard dual norm. We also

recall the following useful operators: the Leray projector P : L2 ³ H and the Stokes operator
A := 2P∆ : D(A) = H2 + V ³ H. We refer the readers to [6] for a more thorough treatment
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of such operators. As a common practice in the study of Stokes equation, one may equivalently
rewrite the fluid equation as:

"tu+Au = gP(Ãez), (1.2)

We will often use this formulation in regularity estimates for the rest of this work.
Now we give a rigorous definition of a regular solution to (1.1).

Definition 1.1. Given initial data Ã0 * H1
0 , u0 * V , and some T > 0, we say the pair (Ã(t, x), u(t, x))

is a regular solution to (1.1) on [0, T ] if

Ã * C0([0, T ];H1
0 ) + L2((0, T );H2 +H1

0 ), u * C0([0, T ];V ) + L2((0, T );H2 + V ),

"tÃ * C0([0, T ];H21
0 ), "tu * C0([0, T ];V 7),

Ã * C>((0, T ] × Ω), u * C>((0, T ]× Ω).

With this definition, we are able to obtain the following well-posedness result:

Theorem 1.1. Given initial data Ã0 * H1
0 , u0 * V , there exists a T7 = T7(Ã0) > 0 such that there

exists a unique regular solution (Ã, u) to problem (1.1) on [0, T7].

We will then prove a regularity criterion which allows us to continue the regular solution of (1.1)

as long as the L
4

4−d
t L2

x norm of Ã is controlled. More precisely, we have

Theorem 1.2. Let Ω ¢ Rd, d = 2, 3, be a smooth, bounded domain. If the maximal lifespan T0 of
the regular solution (Ã, u) to problem (1.1) is finite, then necessarily

lim
t�T0

∫ t

0
‖Ã‖

4

4−d

L2 ds = >.

A similar result was proved in [19] in the periodic setting for the uncoupled Keller-Segel equation.
In the second part of this work, we will quantify the quenching effect of the Stokes-Boussinesq

flow with strong buoyancy on the Keller-Segel equation equipped with homogeneous Dirichlet bound-
ary condition. To be more precise, we show that the flow can suppress the norm ‖Ã‖L2 to be suffi-
ciently small within the time scale of local existence. In particular, we will show the following main
result of this work:

Theorem 1.3. For any smooth, bounded domain Ω ¢ Rd, d = 2, 3, and arbitrary initial data
Ã0 * H1

0 , u0 * V , there exists g7 = g7(Ã0, u0) so that for any g g g7, (1.1) admits a regular,
global-in-time solution. In particular, Ã is quenched exponentially fast in the sense that

lim
t³>

ect‖Ã(t)‖L2 f C, (1.3)

where c, C are positive constants that only depend on the domain Ω.

We observe that if we fix any smooth passive divergence-free u satisfying the no-flux u · n = 0
boundary condition, then one can find smooth initial data Ã0 such that the solution of the first
equation in (1.1) will lead to finite time blow up. The argument proving this is very similar to
that of Theorem 8.1 in [19] for the case of T2; however the localization used in the proof makes it
insensitive to the boundary condition.

We will use the expression f . g to denote the following: there exists some constant C only de-
pending on domain Ω such that f f Cg. In particular, we will denote a generic constant depending
only on Ω by C, and it could change from line to line. Finally, we will use the Einstein summa-
tion convention. That is, by default we sum over the repeated indices; e.g. we write aixi :=

∑

i aixi.

Acknowledgment. The authors acknowledge partial support of the NSF-DMS grants 2006372
and 2306726.
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2 Local Well-Posedness of Regular Solution

In this section, we will establish the local well-posedness of problem (1.1), namely Theorem 1.1.
It is well-known that the classical parabolic-elliptic Keller-Segel equation is locally well-posed in
domains such as Rd or Td, d = 2, 3, or in a smooth, bounded domain with Neumann boundary
condition on Ã in suitable function spaces (see e.g. [4, 19, 25]). However, we were unable to locate a
convenient reference for a well-posedness theorem in the scale of Sobolev spaces Hs in the scenario
of (1.1). Thus for the sake of the completeness, we will give explicit a priori estimates which lead
to local well-posedness.

We first set up an appropriate Galerkin scheme that uses two sets of bases in Subsection 2.1. In
Subsection 2.2, we start with a set of lower order a priori energy estimates which guarantee spatial
regularity of a solution up to H2. In Subsection 2.3, we will prove the existence of regular solutions
by devising an inductive argument that boosts both temporal and spatial regularity up to Hs for
arbitrary s using parabolic smoothing. In Subsection 2.4, we will complete the proof of Theorem
1.1 by showing the uniqueness of regular solutions. Finally, we will demonstrate an L2 regularity
criterion (i.e. Theorem 1.2) in Subsection 2.5. It will be instrumental in establishing the global
well-posedness of (1.1).

Remark 2.1. We will only discuss the case when d = 3. Then d = 2 case follows from similar (and
easier) arguments.

2.1 Galerkin Approximation

Since (1.1) is a system of semilinear parabolic equations in a compact domain, it is convenient to
construct a solution to (1.1) by Galerkin approximation. Let {vk}k, {»k}k be the eigenfunctions and
eigenvalues of 2∆. Let {wj}j , {·j}j be the eigenfunctions and eigenvalues of the Stokes operator
A. Consider the following approximate system:

ù

ü

ú

ü

û

"tÃ
(n) +Qn(u

(n) · 'Ã(n))2∆Ã(n) +Qn(div(Ã
(n)'(2∆)21Ã(n))) = 0,

"tu
(n) +Au(n) = gPn(Ã

(n)ez),

Ã(n)(0) = QnÃ0, u
(n)(0) = Pnu0,

(2.1)

where Qnf := (f, vk)L2vk, Pnf := (f,wj)L2wj . Here (·, ·)L2 denotes the standard L2-inner product.
Note that the projection operators Pn,Qn are symmetric with respect to L2 inner product. Writing

the approximated solutions Ã(n)(t, x) = Ã
(n)
k (t)vk(x), u

(n)(t, x) = u
(n)
j (t)wj(x) (recall that we are

summing over repeated indices), we obtain the following constant-coefficient ODEs in t: for l =
1, . . . , n,

ù

ü

ú

ü

û

d
dtÃ

(n)
l + C

(n)
ljk u

(n)
j Ã

(n)
k + »lÃ

(n)
l 2D

(n)
ljkÃ

(n)
k Ã

(n)
j = 0,

d
dtu

(n)
l + ·lu

(n)
l = gCklÃ

(n)
k ez,

Ã
(n)
l (0) = (Ã0, vl)L2 , u

(n)
l (0) = (u0, wl)L2 ,

(2.2)

where
C

(n)
ljk := (Qn(wj · 'vk), vl)L2 , D

(n)
ljk := Qn(div(vk'(2∆)21vj), vl)L2 ,

Ckl := (Pvk, wl)L2 .

To close the Galerkin approximation argument, we shall prove suitable uniform-in-n energy esti-
mates for (Ã(n), u(n)) and pass to the limit using compactness theorems. For the sake of simplicity,
we shall prove such energy estimates in an a priori fashion, for sufficiently regular solutions of
the original system (1.1). One could verify that all estimates below can be carried over to the
approximated solutions (Ã(n), u(n)) in a straightforward manner.
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2.2 Lower Order a priori Estimates

Given intial data Ã0 * H1
0 , u * V , we first show the following L>

t L
2
x and L2

tH
1
x estimates for a

regular solution (Ã, u):

Proposition 2.1. Given initial data Ã0 * H1
0 , u * V , we assume (Ã, u) is a regular solution to (1.1)

on [0, T ] for some T > 0. Then for t * [0, T ], we have

d

dt
‖Ã‖2L2 + ‖'Ã‖2L2 . ‖Ã‖6L2 ,

1

2

d

dt
‖u‖2L2 + ‖'u‖2L2 f g‖u‖L2‖Ã‖L2 . (2.3)

Moreover, there exists T7 * (0, 1] only depending on Ã0, and a constant C(u0, Ã0, g) > 0 such that

sup
t*[0,T∗]

‖Ã(t)‖2L2 +

∫ T∗

0
‖'Ã(t)‖2L2ds f 4‖Ã0‖2L2 . (2.4)

sup
t*[0,T∗]

‖u(t)‖2L2 +

∫ T∗

0
‖'u(t)‖2L2ds f C(‖Ã0‖L2 , ‖u0‖L2)(g2 + 1). (2.5)

Proof. First by testing the Ã-equation of (1.1) by Ã and integrating by parts, we have

1

2

d

dt
‖Ã‖2L2 + ‖'Ã‖2L2 =

1

2

∫

Ω
Ã3dx f C‖Ã‖3/2

L2 ‖'Ã‖3/2L2 f 1

2
‖'Ã‖2L2 +C‖Ã‖6L2 ,

where we used the following standard Gagliardo-Nirenberg inequality in 3D for trace-free f :

‖f‖3L3 f C‖f‖3/2
L2 ‖'f‖3/2L2 .

After rearranging, we obtain the first inequality of (2.3). Similarly, we test the u-equation of (1.1)
by u. After integration by parts, we have

1

2

d

dt
‖u‖2L2 + ‖'u‖2L2 = g

∫

Ω
u · (Ãez)dx f g‖u‖L2‖Ã‖L2 , (2.6)

which proves the second inequality in (2.3). Then, the estimate (2.4) follows immediately from ap-
plying Grönwall inequality to (2.3) and choosing T7 = T7(Ã0) f 1 sufficiently small. Now integrating
(2.6) from 0 to t * (0, T7), using (2.4), and taking supremum over t, we have

sup
t*[0,T∗]

‖u(t)‖L2 f 8g‖Ã0‖L2T7 + ‖u0‖L2 . (2.7)

Using (2.4) and (2.7) in the integrated in time version of (2.6), we obtain that

∫ T∗

0
‖'u(s)‖2L2ds f ‖u0‖2L2 + 4gT7‖Ã0‖L2(8g‖Ã0‖L2T7 + ‖u0‖L2) (2.8)

The proof of (2.5) is finished after we combine (2.7) and (2.8).

Remark 2.2. From now on, any appearance of T7 refers to the time T7 chosen in Proposition 2.1.

With Proposition 2.1, we will derive the following upgraded temporal and spatial regularity
estimates for solution (Ã, u) within the time interval [0, T7].
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Proposition 2.2. Assuming (Ã, u) to be a regular solution to (1.1) with initial data Ã0 * H1
0 , u * V ,

there exists C(Ã0, u0, g) > 0 such that

∫ T∗

0

(

‖Ã(t)‖22 + ‖u(t)‖22 + ‖"tÃ(t)‖2L2 + ‖"tu(t)‖2L2

)

dt

+ sup
t*[0,T∗]

(‖Ã(t)‖21 + ‖u(t)‖21) f C(Ã0, u0, g).

Proof. Testing the Ã-equation in (1.1) by 2∆Ã and integrating by parts, we obtain:

1

2

d

dt
‖'Ã‖2L2 + ‖∆Ã‖2L2 =

∫

Ω
∆Ã(u · 'Ã) +

∫

Ω
∆Ãdiv(Ã'(2∆)21Ã) = I + J.

Let us fix ë > 0. Using Sobolev embedding, Poincaré inequality, and Young’s inequality with ë, we
can estimate I by:

I f ‖∆Ã‖L2‖'Ã‖L2‖u‖L∞ f ë‖∆Ã‖2L2 + C(ë)‖u‖22‖'Ã‖2L2 .

Moreover, we can write J as:

J =

∫

Ω
∆Ã
(

'Ã · '(2∆)21Ã2 Ã2
)

dx = J1 + J2.

Using the standard elliptic estimate and Gagliardo-Nirenberg-Sobolev inequality, we can estimate
J1 by:

J1 f ‖∆Ã‖L2‖'Ã‖L3‖'(2∆)21Ã‖L6 . ‖∆Ã‖L2‖'Ã‖L3‖'(2∆)21Ã‖1
. ‖∆Ã‖L2‖'Ã‖1/2

L2 ‖'Ã‖1/21 ‖Ã‖L2 . ‖Ã‖3/22 ‖'Ã‖1/2
L2 ‖Ã‖L2

f ë‖∆Ã‖2L2 + C(ë)‖'Ã‖2L2‖Ã‖4L2 ,

where we also used Young’s inequality in the final step.
We are going to use the following Gagliardo-Nirenberg inequalities: in dimension three,

‖Ã‖L4 . ‖∆Ã‖3/8
L2 ‖Ã‖5/8L2 ; ‖Ã‖L4 . ‖Ã‖3/41 ‖Ã‖1/4

L2 .

Then we can estimate J2 as follows:

J2 f ‖∆Ã‖L2‖Ã‖2L4 f C‖∆Ã‖L2‖∆Ã‖1/2
L2 ‖Ã‖5/6L2 ‖Ã‖1/21 ‖Ã‖1/6

L2

= C‖∆Ã‖3/2
L2 ‖Ã‖1/21 ‖Ã‖L2 f ë‖∆Ã‖2L2 + C(ë)‖'Ã‖2L2‖Ã‖4L2 ,

Collecting the estimates above and choosing ë to be sufficiently small, we obtain the following:

d

dt
‖'Ã‖2L2 + ‖∆Ã‖2L2 .

(

‖Ã‖4L2 + ‖u‖22
)

‖'Ã‖2L2 (2.9)

On the other hand, we test (1.2) by Au. Integrating by parts, we have

1

2

d

dt
‖'u‖2L2 + ‖Au‖2L2 = g

∫

Ω
Au · Ãez f 1

2
‖Au‖2L2 +

g2

2
‖Ã‖2L2

Rearranging the above and using Theorem A.1, we conclude that,

d

dt
‖'u‖2L2 + ‖u‖22 f g2‖Ã‖2L2 f 4g2‖Ã0‖2L2 , t * [0, T7], (2.10)
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where the last inequality is due to Proposition 2.1. Integrating (2.10) from 0 to t, t f T7 and then
taking supremum of t on [0, T7], we obtain

sup
t*[0,T∗]

‖'u(t)‖2L2 f 4g2‖Ã0‖2L2T7 + ‖'u0‖2L2 ;

in addition,

∫ T∗

0
‖u(t)‖22 f 4g2‖Ã0‖2L2T7 + ‖'u0‖2L2 . (2.11)

It follows that

sup
t*[0,T∗]

‖u(t)‖21 +
∫ T∗

0
‖u(t)‖22dt f C(u0, Ã0, g).

Integrating (2.9) and using (2.11), we have that for all t * [0, T7],

‖'Ã(t)‖2L2 . ‖Ã0‖21 exp
(
∫ T∗

0
(‖Ã‖4L2 + ‖u‖22ds

)

f ‖Ã0‖21 exp
(

C(Ã0, g)T7 + ‖u0‖21
)

<>.

Similarly to the case of u, we can also use (2.9) to control
∫ T∗

0 ‖Ã(t)‖22dt as well, arriving at

sup
t*[0,T∗]

‖Ã(t)‖21 +
∫ T∗

0
‖Ã(t)‖22 f C(u0, Ã0, g).

We have thus showed the spatial regularity of Ã and u.
Finally, we shall obtain regularity estimates for the time derivatives. Using the equation (1.1),

we see that

"tÃ = 2u · 'Ã+∆Ã2 div(Ã'(2∆)21Ã) and "tu = 2Au+ gP(Ãez).

Using standard Sobolev embeddings and elliptic estimate, we have the following bounds:

∫ T∗

0
‖u · 'Ã(t)‖2L2dt f

∫ T∗

0
‖u‖2L6‖'Ã‖2L3dt . sup

t*[0,T∗]
‖u(t)‖21

∫ T∗

0
‖Ã(t)‖22dt,

∫ T∗

0
‖∆Ã‖2L2dt f

∫ T∗

0
‖Ã(t)‖22dt,

∫ T∗

0
‖div(Ã'(2∆)21Ã)‖2L2dt .

∫ T∗

0
‖Ã‖4L4 + ‖'Ã · '(2∆)21Ã‖2L2dt

. sup
t*[0,T∗]

‖Ã(t)‖41T7 + sup
t*[0,T∗]

‖Ã(t)‖21
∫ T∗

0
‖Ã(t)‖22dt,

∫ T∗

0
‖Au‖2L2 + g‖PÃ‖2L2dt f

∫ T∗

0
‖u‖22 + g‖Ã‖2L2dt.

The above estimates and bounds we proved earlier imply that

∫ T∗

0
‖"tÃ‖2L2dt+

∫ T∗

0
‖"tu‖2L2dt f C(u0, Ã0, g),

and the proof is thus complete.
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With the regularity estimates above, we may construct solutions (Ã, u) from (Ã(n), u(n)). The
following standard compactness theorem is useful. We refer interested readers to Theorem IV.5.11
in [2] and Theorem 4 of Chapter 5 in [12] for related proofs.

Theorem 2.1. Let

E1 := {Ã * L2((0, T );H2), "tÃ * L2((0, T );L2)},
E2 := {u * L2((0, T );H2 + V ), "tu * L2((0, T );H)}

for some T > 0. Then E1 is continuously embedded in C([0, T ],H1), and E2 is continuously
embedded in C([0, T ], V ).

Corollary 2.1. Given initial data Ã0 * H1
0 , u * V , there exists a weak solution (Ã, u) of the system

(1.1) satisfying

Ã * C([0, T ];H1
0 ) + L2((0, T );H2 +H1

0 ), u * C([0, T ];V ) + L2((0, T );H2 + V ), (2.12)

"tÃ * C([0, T7];H
21
0 ), "tu * C([0, T7];V

7). (2.13)

Proof. The uniform bounds in Proposition 2.2 inform us that there exists a subsequence of {Ã(n)}n, {u(n)}n,
which we still denote by Ã(n), u(n), and Ã, u, such that

1. Ã(n) á Ã weak-7 in L>((0, T7);H
1
0 ), weakly in L2((0, T );H2 + H1

0 ); "tÃ
(n) á "tÃ weakly in

L2((0, T );L2),

2. u(n) á u weak-7 in L>((0, T7);V ), weakly in L2((0, T );H2 + V ); "tu
(n) á "tu weakly in

L2((0, T );H).

It is straightforward to check that the limits Ã and u satisfy (1.1) in the sense of distribution.
Evoking Theorem 2.1, we have proved (2.12).

Now, we show "tu * C([0, T7];V
7). In view of (1.2), it suffices to show that 2Au + gÃe2 *

C([0, T7];V
7). For simplicity, we show that the most singular term Au * C([0, T7];V

7), and the
argument for gÃe2 follows similarly. Choose t, s * [0, T7] and pick arbitrary vector field Ç * V .
Integrating by parts, we observe that

∫

Ω
(Au(t, x)2Au(s, x)) · Ç(x)dx =

∫

Ω
A1/2(u(t, x)2 u(s, x)) · A1/2Çdx

f ‖u(t, ·) 2 u(s, ·)‖1‖Ç‖1.

By duality, we observe that

‖Au(t, ·)2Au(s, ·)‖V ∗ f ‖u(t, ·) 2 u(s, ·)‖1 ³ 0

as t ³ s due to u * C([0, T7];V ). Thus, we have showed that Au * C([0, T7];V
7) and hence

"tu * C([0, T7];V
7).

To show the needed regularity of "tÃ, it suffices to show that 2u ·'Ã+∆Ã2div(Ã'(2∆)21Ã) *
C([0, T7];H

21
0 ). Similarly, we prove strong continuity for the most singular term u · 'Ã. The rest

of the terms will follow from a similar argument. Let t, s * [0, T7]. Picking × * H1
0 and integrating
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by parts, we have

∫

Ω
(u(t, x) · 'Ã(t, x)2 u(s, x) · 'Ã(s, x))×(x)dx

=

∫

Ω
(u(t, x)2 u(s, x)) · 'Ã(t, x)×dx+

∫

Ω
u(s, ·) · '(Ã(t, x)2 Ã(s, x))×(x)dx

=

∫

Ω
div((u(t, x) 2 u(s, x))Ã(t, x))×dx +

∫

Ω
div(u(s, ·)(Ã(t, x) 2 Ã(s, x)))×(x)dx

= 2
∫

Ω
((u(t, x)2 u(s, x))Ã(t, x)) · '×dx2

∫

Ω
(u(s, ·)(Ã(t, x) 2 Ã(s, x))) · '×(x)dx.

The first term on RHS can be estimated by:

∫

Ω
((u(t, x) 2 u(s, x))Ã(t, x)) · '×dx f ‖u(t, ·) 2 u(s, ·)‖L3‖Ã(t, ·)‖L6‖×‖1

. ‖u(t, ·) 2 u(s, ·)‖1‖Ã(t, ·)‖1‖×‖1
f C(Ã0, u0, g)‖u(t, ·) 2 u(s, ·)‖1‖×‖1.

Note that we used Sobolev embedding in the second inequality and the uniform bound of Ã in
L>((0, T7);H

1
0 ) norm in the last inequality. Similarly, we can estimate the second term on RHS by:

∫

Ω
(u(s, ·)(Ã(t, x) 2 Ã(s, x))) · '×(x)dx f C(Ã0, u0, g)‖Ã(t, ·) 2 Ã(s, ·)‖1‖×‖1

thanks to u * L>((0, T );V ). Combining the two estimates above and using duality, we conclude
that

‖u(t, ·) · 'Ã(t, ·) 2 u(s, ·) · 'Ã(s, ·)‖H−1

0

f C(Ã0, u0, g)(‖u(t, ·) 2 u(s, ·)‖1 + ‖Ã(t, ·) 2 Ã(s, ·)‖1) ³ 0

as t³ s due to u * C([0, T7];V ) and Ã * C([0, T7];H
1
0 ). This verifies "tÃ * C([0, T7];H

21
0 ), and we

have proved (2.13).

2.3 Higher Order a priori Estimates

Our next task is to establish the smoothness of a solution (Ã, u) for positive times, namely

Ã * C>((0, T7]× Ω), u * C>((0, T7]× Ω),

via energy estimates in higher order Sobolev norms. We would like to remark on the following caveat:
with Dirichlet boundary condition imposed on both Ã and u, one cannot obtain higher order Sobolev
estimates by commuting the differential operator "s with the equation, where "s denotes a general s-
th order spatial derivative. The main reason is that when we treat the dissipation term, integration
by parts incurs a boundary term that is difficult to control. To remedy this issue, we commute
time derivatives "kt through the equation. It is clear that no boundary terms are generated since
"t preserves Dirichlet boundary condition. By applying this strategy, we can improve regularity in
time, after which spatial regularity can be upgraded using elliptic estimates.

Again, to obtain the claimed regularity we should proceed by the Galerkin scheme and perform
the estimates in Proposition 2.3 for the approximated solutions. Since this step is similar to that
in Corollary 2.1, we omit this tedious part and will proceed with only a priori estimates as follows.
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Proposition 2.3. Assume (Ã, u) is a regular solution to problem (1.1) with initial condition Ã0 *
H1

0 , u0 * V . Then the following bounds hold:

tk
(

‖"ltÃ(t, ·)‖21+k22l + ‖"ltu(t, ·)‖21+k22l

)

f C(Ã0, u0, g, k), (2.14)

tk
∫ T∗

t

(

‖"ltÃ(Ç, ·)‖22+k22l + ‖"ltu(Ç, ·)‖22+k22l

)

dÇ f C(Ã0, u0, g, k), (2.15)

for any t * (0, T7], k * N, 0 f l f +k+1
2 +, where +·+ denotes the floor function.

Proof. We prove the proposition by inducting on k. Since k = 0 case is already proved by Proposition
2.2, we now assume that the statement holds up to index k 2 1. We will discuss two cases based
on the parity of k. We also remind the readers that the constant C(Ã0, u0, g, k) might change from
line to line.

1. k is odd. Let us write S = k+1
2 , and define the s-energy

Es(Ç) = ‖"st Ã(Ç, ·)‖2L2 + ‖"st u(Ç, ·)‖2L2

for any 0 f s f S. From now on, we fix arbitrary t * (0, T7]. This case can be detailed into
the following steps.

Step 1: show (2.14), (2.15) with l = S. Commuting "st with (1.1) for 0 f s f S, we obtain
that

"t"
s
t Ã2∆"st Ã+

s
∑

r=0

(

s

r

)[

("rt u · ')"s2r
t Ã+ "s2r

t Ã"rt Ã+'"s2r
t Ã · '(2∆)21("rt Ã)

]

= 0,

(2.16a)

"t"
s
t u+A"st u = gP("st Ãez), (2.16b)

equipped with boundary conditions "st Ã|∂Ω = 0, "st u|∂Ω = 0. Testing (2.16b) with s = S by
"St u, we obtain that

1

2

d

dt
‖"St u‖2L2 + ‖'"St u‖2L2 f g

2

(

‖"St u‖2L2 + ‖"St Ã‖2L2

)

.

Testing (2.16a) with s = S by "St Ã:

1

2

d

dt
‖"St Ã‖2L2 + ‖'"St Ã‖2L2 =

S
∑

r=0

(

S

r

)

(Ir + Jr +Kr), (2.17)

where

Ir =

∫

Ω
("St Ã)("

r
t u · ')"S2r

t Ã, Jr =

∫

Ω
("St Ã)"

S2r
t Ã("rt Ã),

Kr =

∫

Ω
("St Ã)'"S2r

t Ã · '(2∆)21("rt Ã).

To estimate Ir, first note that I0 = 0 by incompressibility and integration by parts. For
1 f r f S 2 1, we integrate Ir by parts once to obtain:

Ir = 2
∫

Ω
"j"

S
t Ã"

r
t uj"

S2r
t Ã,

10



where we also used the incompressibility of "rt u. Thus, we can estimate:

Ir f ‖'"St Ã‖L2‖"rt u‖L3‖"S2r
t Ã‖L6 f ·‖'"St Ã‖2L2 + C(·)‖"rt u‖2L3‖"S2r

t Ã‖21,

for some · > 0. If r = S, we instead estimate:

IS f ‖'"St Ã‖L2‖"St u‖L2‖Ã‖L∞ f ·‖'"St Ã‖2L2 +C(·)‖Ã‖22‖"St u‖2L2 .

This concludes the estimates of Ir. To estimate Jr, we note that if r = 0 or r = S, we have

Jr f ‖"St Ã‖2L2‖Ã‖L∞ . ‖"St Ã‖2L2‖Ã‖2

If 1 f r f S 2 1, then we have

Jr f
1

2
‖"St Ã‖2L2 +

1

2
‖"rt Ã‖21‖"S2r

t Ã‖21.

Now we estimate Kr. If r = 0, we use the standard elliptic estimate and Young’s inequality
to obtain:

K0 f ·‖'"St Ã‖2L2 + C(·)‖Ã‖21‖"St Ã‖2L2 ,

where · > 0. If r = S, we apply elliptic estimate and Sobolev embedding:

KS f ‖'Ã‖L3‖"St Ã‖L2‖'(2∆)21"St Ã‖L6 . ‖'Ã‖1‖"St Ã‖2L2 .

If 1 f r f S 2 1, we can estimate

Kr f ‖'"S2r
t Ã‖L3‖"St Ã‖L2‖'(2∆)21"rt Ã‖L6 f 1

2
‖"St Ã‖2L2 + C‖'"S2r

t Ã‖21‖"rt Ã‖2L2 .

After choosing · > 0 to be sufficiently small, the above estimates yield the following differential
inequality: for Ç * (0, T7),

dES

dÇ
+ ‖'"St Ã(Ç, ·)‖2L2+‖'"St u(Ç, ·)‖2L2 f C(k)

[

(

1 + g + ‖Ã‖2 + ‖Ã‖22
)

ES(Ç)

+

S21
∑

r=1

(

‖'"S2r
t Ã‖21‖"rt Ã‖2L2 + ‖"rt Ã‖21‖"S2r

t Ã‖21 + ‖"rt u‖2L3‖"S2r
t Ã‖21

)

]

= C(k)

(

F (Ç)ES(Ç) +

S21
∑

r=1

Gr(Ç)

)

(2.18)

with

F (Ç) = 1 + g + ‖Ã(Ç, ·)‖2 + ‖Ã(Ç, ·)‖22,
Gr(Ç) = ‖'"S2r

t Ã‖21‖"rt Ã‖2L2 + ‖"rt Ã‖21‖"S2r
t Ã‖21 + ‖"rt u‖2L3‖"S2r

t Ã‖21.

To proceed, we need the following useful lemma:

Lemma 2.1. There exists Ç0 * [t/2, t] such that ES(Ç0) f C(Ã0, u0, g, k)t
2k.
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Proof. Let us consider (2.16) with s = S 2 1. For any Ç * [t/2, t], we note that by (2.16b),

‖"St u(Ç)‖2L2 . ‖A"S21
t u‖2L2 + g2‖"S21

t Ã‖2L2 f ‖"S21
t u‖22 + g2‖"S21

t Ã‖2L2 .

Integrating over [t/2, t] and using (2.15) at index k 2 1 (which is valid as this is part of the
induction hypothesis), we obtain

∫ t

t/2
‖"St u(Ç)‖2L2dÇ f

∫ T∗

t/2
‖"St u(Ç)‖2L2dÇ f C(Ã0, u0, g, k)t

12k . (2.19)

Similarly, applying Hölder inequality to (2.16a), we have

‖"St Ã‖2L2 . ‖"S21
t Ã‖22 +

S21
∑

r=0

C(k)

(

‖"rt u‖21‖'"S212r
t Ã‖21

+ ‖"S212r
t Ã‖21‖"rt Ã‖21 + ‖'"S212r

t Ã‖21‖"rt Ã‖2L2

)

. (2.20)

Observe that given the induction hypothesis, applying (2.15) with index k 2 1, we have

∫ t

t/2
‖"S21

t Ã(Ç)‖22dÇ f C(Ã0, u0, g, k)t
12k.

Also, for r = 0, . . . , S 2 1,

∫ t

t/2
‖"rt u(Ç)‖21‖'"S212r

t Ã(Ç)‖21dÇ f C(Ã0, u0, g, k)t
22rt22(S2r21) = C(Ã0, u0, g, k)t

12k ,

where we applied (2.14) with index 2r to ‖"rt u(Ç)‖1 and (2.15) with index 2(S 2 r 2 1) to
‖'"S212r

t Ã(Ç)‖1. In a similar fashion, we can also obtain the following bound:

∫ t

t/2

[

‖"S212r
t Ã(Ç)‖21‖"rt Ã(Ç)‖21 + ‖'"S212r

t Ã(Ç)‖21‖"rt Ã(Ç)‖2L2

]

dÇ f C(Ã0, u0, g, k)t
12k .

Collecting the estimates above and combining with (2.20), we have

∫ t

t/2
‖"St Ã(Ç)‖2L2dÇ f C(Ã0, u0, g, k)t

12k . (2.21)

Combining (2.19) and (2.21), we have

∫ t

t/2

(

‖"St u(Ç)‖2L2 + ‖"St Ã(Ç)‖2L2

)

dÇ f C(Ã0, u0, g, k)t
12k .

By mean value theorem, we can find a Ç0 * (t/2, t) such that

ES(Ç0) = ‖"St u(Ç0)‖2L2 + ‖"St Ã(Ç0)‖2L2 f C(Ã0, u0, g, k)t
2k,

and this concludes the proof.

We also need another lemma that treats the terms Gr.
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Lemma 2.2. Let Ç0 be chosen as in Lemma 2.1. Then for any r = 1, . . . , S 2 1, we have
∫ T∗

τ0

Gr(Ç)dÇ f C(Ã0, u0, g, k)t
2k.

Proof. We fix r = 1, . . . , S 2 1. By definition of Gr, we can write
∫ T∗

τ0

Gr(Ç)dÇ =

∫ T∗

τ0

(

‖'"S2r
t Ã‖21‖"rt Ã‖2L2 + ‖"rt Ã‖21‖"S2r

t Ã‖21 + ‖"rt u‖2L3‖"S2r
t Ã‖21

)

dÇ

=:

∫ T∗

τ0

(

G1
r(Ç) +G2

r(Ç) +G3
r(Ç)

)

dÇ.

Applying (2.14) with index 2r 2 1 and (2.15) with index k 2 2r + 1 to terms ‖"rt Ã‖2L2 and

‖'"S2r
t Ã‖21 respectively, we observe that

∫ T∗

τ0

G1
r(Ç)dÇ f C(Ã0, u0, g, k)Ç

122r
0

∫ T∗

τ0

‖"S2r
t Ã(Ç)‖22dÇ

f C(Ã0, u0, g, k)Ç
2(2r21)
0 Ç

2(k22r+1)
0

f C(Ã0, u0, g, k)t
2k ,

where we used the fact that Ç0 > t/2.

To study the term involving G2
r , we will apply (2.14) with index 2r and (2.15) with index

k 2 2r to terms ‖"rt Ã‖21 and ‖"S2r
t Ã‖21 respectively. This yields:

∫ T∗

τ0

G2
r(Ç)dÇ f C(Ã0, u0, g, k)Ç

22r
0

∫ T∗

τ0

‖"S2r
t Ã(Ç)‖21dÇ

f C(Ã0, u0, g, k)Ç
22r
0 Ç

2(k22r)
0

f C(Ã0, u0, g, k)t
2k,

Finally, using Sobolev embedding, Gagliardo-Nirenberg-Sobolev inequality, and Cauchy-Schwarz
inequality,

∫ T∗

τ0

G3
r(Ç)dÇ f

∫ T∗

τ0

‖"rt u‖2L3‖"S2r
t Ã‖21dÇ .

∫ T∗

τ0

‖"rt u‖L2‖'"rt u‖L2‖"S2r
t Ã‖21dÇ

f C(Ã0, u0, g, k)Ç
2 2r−1

2

0 Ç2r
0

∫ T∗

τ0

‖"S2r
t Ã‖21dÇ

f C(Ã0, u0, g, k)t
2(k2 1

2
) f C(Ã0, u0, g, k)t

2k.

Note that we applied (2.14) with index 2r2 1 to ‖"rt u‖L2 , (2.14) with index 2r to ‖'"rt u‖L2 ,
and (2.15) with index k 2 2r to the other ‖"S2r

t Ã‖21. We also used Ç0 f T7 f 1 in the final
inequality. The proof is thus completed after we combine the estimates above.

Using induction hypothesis at k = 0, we have F * L1(0, T7) with the bound ‖F‖L1(0,T∗) f
C(u0, Ã0, g). We may thus apply Grönwall inequality to (2.18) on time interval [Ç0, t], where
Ç0 is selected as in Lemma 2.1 above. Using the two lemmas above, we have

ES(t) f C(k)

(

ES(Ç0) +
S21
∑

r=1

∫ t

τ0

Gr(Ç)dÇ

)

exp
(

‖F‖L1(0,T∗)

)

f C(Ã0, u0, g, k)t
2k , (2.22)
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where we recall that T7 depends only on Ã0. This verifies (2.14). To verify (2.15), we integrate
(2.18) on interval [t, T7], which yields:

∫ T∗

t

(

‖'"St Ã(Ç)‖2L2 + ‖'"St u(Ç)‖2L2

)

dÇ f ES(t)+C(k)

(
∫ T∗

t
F (Ç)ES(Ç)dÇ+

S21
∑

r=1

∫ T∗

t
Gr(Ç)dÇ

)

.

Using (2.22), Lemma 2.2, and the fact that t
2 < Ç0 < t, we can estimate the above by:

∫ T∗

t
(‖'"St Ã(Ç)‖2L2 + ‖'"St u(Ç)‖2L2)dÇ f C(Ã0, u0, g, k)t

2k

+ C(Ã0, u0, g, k)(t
2k‖F‖L1 + t2k)

f C(Ã0, u0, g, k)t
2k .

This concludes the proof of (2.15) with l = S.

Step 2: show (2.14), (2.15) with l < S. We will show how we obtain the case when
l = S 2 1. Then the rest just follows from another induction on l = 1, . . . , S backwards.

We may rewrite the equations (2.16) with s = S 2 1 as

2∆"S21
t Ã = 2"St Ã2

S21
∑

r=0

(

S 2 1

r

)[

"rt u · '"S212r
t Ã+ "S212r

t Ã"rt Ã+'"S212r
t Ã · '(2∆)21("rt Ã)

]

= 2"St Ã+R1 (2.23a)

A"S21
t u = 2"St u+ gP("S21

t Ãez) = 2"St u+R2 (2.23b)

Here, R1, R2 are the remainder terms which are essentially of lower order. We will see that
these terms can be treated by the induction hypothesis on k. To illustrate this, we show that
the following estimates hold:

Lemma 2.3. For any t * (0, T7],

tk2
1

4 (‖R1(t)‖2L2 + ‖R2(t)‖2L2) f C(Ã0, u0, g, k),

tk2
1

4

∫ T∗

t

(

‖R1(Ç)‖21 + ‖R2(Ç)‖21
)

dÇ f C(Ã0, u0, g, k).

Proof. First, it is straightforward to obtain the following bounds for R2 by directly imposing
the induction hypothesis at index k 2 1:

tk21‖R2(t)‖2L2 + tk21

∫ T∗

t
‖R2(t)‖21dt f C(Ã0, u0, g, k). (2.24)

Prior to estimating R1, we first need an improved bound for ‖u‖2: invoking (2.24) with k = 1,
we have

‖R2(t)‖2L2 f C(Ã0, u0, g).

Since S = 1 when k = 1 by definition, we apply the Stokes estimate to (2.23b) with S = 1 to
see that

‖u‖22 . ‖"tu‖2L2 + ‖R2‖2L2 f C(Ã0, u0, g)(t
21 + 1) f C(Ã0, u0, g)t

21, (2.25)
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where we used Step 1 with k = 1 above. Now, we are ready to estimate R1. We first note
that it involves 3 typical terms, namely

Rr
11 := "rt u · '"S212r

t Ã, Rr
12 := "S212r

t Ã"rt Ã, R
r
13 := '"S212r

t Ã · '(2∆)21("rt Ã),

where 0 f r f S 2 1. We will prove suitable bounds for Rr
11, and the rest can be bounded

more easily since these terms involve fewer derivatives. If 1 f r f S 2 1, then by Hölder
inequality:

‖Rr
11‖2L2 f ‖"rt u‖2L6‖'"S212r

t Ã‖2L3 . ‖"rt u‖21‖"S212r
t Ã‖1‖"S212r

t Ã‖2
f C(Ã0, u0, g, k)t

22rt2
k−2r−1

2 t2
k−2r

2

f C(Ã0, u0, g, k)t
2(k2 1

2
),

where we used (2.14) at indices 2r, k 2 2r 2 1, k 2 2r respectively.
If r = 0, then we observe that R0

11 = u · '"S21
t Ã. We estimate as follows:

‖R0
11‖2L2 f ‖u‖2L∞‖"S21

t Ã‖21 f ‖u‖1/2
L2 ‖u‖3/22 ‖"S21

t Ã‖21
f C(Ã0, u0, g, k)t

23/4t2(k21) = C(Ã0, u0, g, k)t
2(k21/4)

where we used Agmon’s inequality in 3D:

‖u‖2L∞ . ‖u‖1/2
L2 ‖u‖3/22

in the second inequality. We also invoked (2.14) with index 0 to estimate ‖u‖L2 , (2.14) with
index k 2 1 to bound ‖"S21

t Ã‖1, and (2.25) to control ‖u‖2.
Turning to the second inequality, since "rt u = 0 on "Ω, then we can invoke Poincaré inequality
to obtain:

∫ T∗

t
‖Rr

11‖21dÇ .

∫ T∗

t
‖'Rr

11‖2L2dÇ

.

∫ T∗

t

(

‖'"rt u · '"S212r
t Ã‖2L2 + ‖"rt u · '2"S212r

t Ã‖2L2

)

dÇ

=: Rr
111 +Rr

112.

If 1 f r f S 2 1, using Hölder inequality and Gagliardo-Nirenberg-Sobolev inequalities, we
can estimate Rr

111 by

Rr
111 f

∫ T∗

t
‖'"rt u‖2L3‖'"S212r

t Ã‖2L6dÇ .

∫ T∗

t
‖'"rt u‖L2‖'2"rt u‖L2‖'"S212r

t Ã‖21dÇ

f C(Ã0, u0, g, k)t
2rt2(k22r)

∫ T∗

t
‖'2"rt u‖L2‖'"S212r

t Ã‖1dÇ

f C(Ã0, u0, g, k)t
2rt2

k−2r
2 t2rt2

k−2r−1

2 = C(Ã0, u0, g, k)t
2(k2 1

2
).

If r = 0, then we apply Hölder inequality and a Gagliardo-Nirenberg-Sobolev inequality to
estimate that

R0
111 f

∫ T∗

t
‖'u‖2L3‖'"S21

t Ã‖2L6dÇ f
∫ T∗

t
‖u‖1‖u‖2‖"S21

t Ã‖22dÇ

f C(Ã0, u0, g, k)t
21/2

∫ T∗

t
‖"S21

t Ã‖22dÇ

f C(Ã0, u0, g, k)t
21/2t2(k21) f C(Ã0, u0, g, k)t

2(k21/2),
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where we used the bound (2.25) and (2.15) with index 0 and k 2 1 above.
Now we discuss the bound for Rr

112. For 1 f r f S 2 1, we have

Rr
112 f

∫ T∗

t
‖"rt u‖2L3‖'2"S212r

t Ã‖2L6dÇ

f
∫ T∗

t
‖"rt u‖L2‖"rt u‖1‖"S212r

t Ã‖23dÇ

f C(Ã0, u0, g, k)t
2 2r−1

2 t2r

∫ T∗

t
‖"S212r

t Ã‖23dÇ

f C(Ã0, u0, g, k)t
2(k21/2),

where we used (2.14) with indices 2r2 1 and 2r in the third inequality, and (2.15) with index
k 2 2r in the last inequality. If r = 0, then we take advantage of Agmon’s inequality in 3D
again to obtain:

R0
112 f

∫ T∗

t
‖u‖2L∞‖'2"S21

t Ã‖2L2dÇ

f
∫ T∗

t
‖u‖1/2

L2 ‖u‖3/22 ‖"S21
t Ã‖22dÇ

f C(Ã0, u0, g, k)t
23/4

∫ T∗

t
‖"S21

t Ã‖22dÇ

f C(Ã0, u0, g, k)t
23/4t2(k21)

= C(Ã0, u0, g, k)t
2(k21/4).

Therefore, we arrive at the bound:

∫ T∗

t
‖Rr

11‖21dÇ f C(Ã0, u0, g, k)t
2(k21/4).

Proceeding in a similar fashion, we can acquire similar bounds for the Rr
12 and Rr

13. The proof
of the lemma is thus complete after we sum up the estimates above.

By Step 1, we know that for any t * (0, T7],

tk
(

‖"St Ã(t)‖2L2 + ‖"St u(t)‖2L2

)

f C(Ã0, u0, g, k),

tk
∫ T∗

t

(

‖"St Ã(Ç)‖21 + ‖"St u(Ç)‖21
)

dÇ f C(Ã0, u0, g, k).

Combining Lemma 2.3 with equations (2.23a), (2.23b), and using elliptic estimates, we con-
clude that for t * (0, T7]

‖"S21
t Ã(t)‖22 + ‖"S21

t u(t)‖22 f C(Ã0, u0, g, k)t
2k,

∫ T∗

t

(

‖"S21
t Ã(Ç)‖23 + ‖"S21

t u(Ç)‖23
)

dÇ f C(Ã0, u0, g, k)t
2k,

which finishes the case when l = S 2 1. The rest will follow from an induction in l, and we
omit the details here. Hence, we have concluded the case where k is odd.
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2. k is even. Since we have proved the k = 0 case, we may write k = 2S, S g 1, and define

Ẽs(t) = ‖'"st Ã‖2L2 + ‖'"st u‖2L2

for 0 f s f S. Notice that Ẽs(t) > ‖"st Ã‖21 + ‖"st u‖21 in view of the Poincaré inequality. The
scheme of the proof in this case is the same double induction argument (in forward k and for
each k backwards in l), and we will follow the same outline as in the odd case. Considering
(2.16) for s = 1, . . . , S, we test (2.16a), (2.16b) with s = S by 2∆"St Ã,A"St u respectively,
which yields:

1

2

d

dt
‖'"St Ã‖2L2 + ‖∆"St Ã‖2L2 =

S
∑

r=0

(

S

r

)

(Ĩr + J̃r + K̃r),

1

2

d

dt
‖'"St u‖2L2 + ‖A"St u‖2L2 = g

∫

Ω
A"St uP("St Ãez) f

g

2
ẼS ,

where for r = 0, . . . , S,

Ĩr =

∫

Ω
∆"St Ã("

r
t u · ')"S2r

t Ã, J̃r =

∫

Ω
∆"St Ã"

r
t Ã"

S2r
t Ã,

K̃r =

∫

Ω
∆"St Ã'"S2r

t Ã · '(2∆)21"rt Ã.

To estimate Ĩr, we first observe that

Ĩr f ‖∆"St Ã‖L2‖"rt u‖L6‖'"S2r
t Ã‖L3 f ‖∆"St Ã‖L2‖"rt u‖1‖'"S2r

t Ã‖1/2
L2 ‖'2"S2r

t Ã‖1/2
L2 .

Hence if r 6= 0, we may estimate Ĩr as follows: for any ë > 0,

Ĩr f ë‖∆"St Ã‖2L2 + C(ë)‖"S2r
t Ã‖1‖"S2r

t Ã‖2‖"rt u‖21.
If r = 0, we estimate

Ĩ0 =

∫

Ω
∆"St Ã(u · ')"St Ã f ‖∆"St Ã‖L2‖u‖L∞‖'"St Ã‖L2 f ë‖∆"St Ã‖2L2 + C(ë)‖u‖22‖'"St Ã‖2L2 .

To estimate J̃r, we have:

J̃r f ë‖∆"St Ã‖2L2 + C(ë)‖"rt Ã‖21‖"S2r
t Ã‖21,

where ë > 0. Finally, to estimate of K̃r, we evoke elliptic estimate to obtain

K̃r f ‖∆"St Ã‖L2‖"S2r
t Ã‖1‖'(2∆)21"rt Ã‖L∞ . ‖∆"St Ã‖L2‖"S2r

t Ã‖1‖'(2∆)21"rt Ã‖2
f ë‖∆"St Ã‖2L2 + C(ë)‖"rt Ã‖21‖"S2r

t Ã‖21,
for any ë > 0. Combining the estimates above yields the following energy inequality: for
Ç * (0, T7),

dẼS

dÇ
+ ‖"St Ã(Ç, ·)‖22+‖"St u(Ç, ·)‖22 f C(k)

[

(

g + ‖u‖22 + ‖Ã‖22
)

ẼS(Ç)

+

S21
∑

r=1

(

‖"S2r
t Ã‖1‖"S2r

t Ã‖2‖"rt u‖21 + ‖"S2r
t Ã‖21‖"rt Ã‖21

)

]

f C(k)

(

F̃ (Ç)ẼS(Ç) +

S21
∑

r=1

G̃r(Ç)

)

, (2.26)
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where F̃ * L1(0, T7) due to the induction hypothesis at k = 0. Now, we would like to follow
the same plan as that in the odd case. This motivates us to prove lemmas similar to Lemma
2.1, 2.2, and 2.3 adapted to the even case. First, we show the following lemma that parallels
Lemma 2.1:

Lemma 2.4. There exists Ç0 * [t/2, t] such that ẼS(Ç0) f C(Ã0, u0, g, k)t
2k.

Proof. We consider (2.16) with s = S 2 1. In view of (2.16b), we have

‖"St u‖21 . ‖A"S21
t u‖21 + g2‖"S21

t Ã‖21 f ‖"S21
t u‖23 + g2‖"S21

t Ã‖21,

for any Ç * [t/2, t]. Integrating over [t/2, t] and using (2.15) with index k 2 1, we obtain

∫ t

t/2
‖"St u(Ç)‖21dÇ f

∫ T∗

t/2
‖"St u(Ç)‖21dÇ f C(Ã0, u0, g, k)t

12k. (2.27)

To estimate ‖'"St Ã‖L2 , we apply ' to both sides of (2.16a) with s = S 2 1, and then use
Hölder’s inequality:

‖'"St Ã‖2L2 . ‖"S21
t Ã‖23 +

S21
∑

r=0

C(k)

(

‖'("rt u · '"S2r21
t Ã)‖2L2

+ ‖'("S2r21
t Ã"rt Ã)‖2L2 + ‖'('"S2r21

t Ã · '(2∆)21("rt Ã))‖2L2

)

. (2.28)

To save space, we only consider the most singular term, namely ‖'("rt u · '"S2r21
t Ã)‖2L2 , and

show that
∫ t

t/2
‖'("rt u · '"S2r21

t Ã)‖2L2dÇ f C(Ã0, u0, g, k)t
12k . (2.29)

The estimates on the rest of the terms follow from a similar argument. To show (2.29), we
first compute that

'("rt u · '"S2r21
t Ã) = '"rt u · '"S2r21

t Ã+ "rt u · '2"S2r21
t Ã.

The first term can be estimated by

‖'"rt u · '"S2r21
t Ã‖2L2 f ‖'"rt u‖2L4‖'"S2r21

t Ã‖2L4

. ‖'"rt u‖21‖'"S2r21
t Ã‖21

f ‖"rt u‖22‖"S2r21
t Ã‖22.

Similarly, we may estimate the second term above by

‖"rt u · '2"S2r21
t Ã‖2L2 . ‖"rt u‖21‖"S2r21

t Ã‖23
Thus for r = 0, . . . , S 2 1,

∫ t

t/2
‖'("rt u · '"S2r21

t Ã)‖2L2dÇ .

∫ t

t/2

(

‖"rt u‖22‖"S2r21
t Ã‖22 + ‖"rt u‖21‖"S2r21

t Ã‖23
)

dÇ

f C(Ã0, u0, g, k)(t
2(2r+1)t2(k22r22) + t22rt2(k22r21))

f C(Ã0, u0, g, k)t
2(k21)
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where we applied (2.14) with index 2r+1 to ‖"rt u‖2, (2.15) with index k22r22 to ‖"S212r
t Ã‖2,

(2.14) with index 2r to ‖"rt u‖1, and (2.15) with index k 2 2r 2 1 to ‖"S212r
t Ã‖3. In a similar

fashion, we can also obtain the following bound:
∫ t

t/2

[

‖'("S2r21
t Ã"rt Ã)‖2L2 + ‖'('"S2r21

t Ã · '(2∆)21("rt Ã))‖2L2

]

dÇ f C(Ã0, u0, g, k)t
12k.

Collecting the estimates above and combining with (2.28), we have

∫ t

t/2
‖'"St Ã(Ç)‖2L2dÇ f C(Ã0, u0, g, k)t

12k . (2.30)

Combining (2.27) and (2.30), we have

∫ t

t/2
ẼS(Ç)dÇ f C(Ã0, u0, g, k)t

12k.

By mean value theorem, we can find a Ç0 * (t/2, t) such that

ẼS(Ç0) f C(Ã0, u0, g, k)t
2k ,

and this concludes the proof.

Then we show a counterpart to Lemma 2.2.

Lemma 2.5. Let Ç0 be chosen as in Lemma 2.4. Then for any r = 1, . . . , S 2 1, we have

∫ T∗

τ0

G̃r(Ç)dÇ f C(Ã0, u0, g, k)t
2(k2 1

2
).

Proof. Observe that for r = 1, . . . , S 2 1,

G̃r = ‖"S2r
t Ã‖1‖"S2r

t Ã‖2‖"rt u‖21 + ‖"S2r
t Ã‖21‖"rt Ã‖21 =: G̃1

r + G̃2
r .

To estimate G̃2
r , apply (2.14) with index 2r to ‖"rt Ã‖21 and (2.15) with index k 2 2r 2 1 to

‖"S2r
t Ã‖21 :

∫ T∗

τ0

G̃2
r(Ç)dÇ f C(Ã0, u0, g, k)Ç

22r
0

∫ T∗

τ0

‖"S2r
t Ã‖21dÇ

f C(Ã0, u0, g, k)Ç
22r
0 Ç

2(k22r21)
0

f C(Ã0, u0, g, k)t
2(k21).

To treat the term G̃1
r , we use the induction hypothesis to obtain that

∫ T∗

τ0

G̃1
r(Ç)dÇ =

∫ T∗

τ0

‖"S2r
t Ã‖1‖"rt u‖1‖"S2r

t Ã‖2‖"rt u‖1dÇ

f C(Ã0, u0, g, k)Ç
2 k−2r

2

0 Ç2r
0

∫ T∗

τ0

‖"S2r
t Ã‖2‖"rt u‖1dÇ

f C(Ã0, u0, g, k)Ç
2 k−2r

2

0 Ç2r
0 Ç

2 k−2r
2

0 Ç
2 2r−1

2

0

f C(Ã0, u0, g, k)t
2(k2 1

2
)

Summing up the two estimates above completes the proof of the lemma.
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Finally, we show a result parallel to Lemma 2.3.

Lemma 2.6. For any t * (0, T7],

tk2
1

4 (‖R1(t)‖21 + ‖R2(t)‖21) f C(Ã0, u0, g, k),

tk2
1

4

∫ T∗

t

(

‖R1(Ç)‖22 + ‖R2(Ç)‖22
)

dÇ f C(Ã0, u0, g, k),

where R1, R2 are defined as in (2.23).

Proof. First, we note that by applying (2.14) and (2.15) with index k 2 2, we have

tk22

(

‖R2(t)‖21 +
∫ T∗

t
‖R2(Ç)‖22dÇ

)

f C(Ã0, u0, g, k).

Then it suffices for us to show suitable bounds for R1. Similarly to the proof of Lemma 2.3,
we need to control the following typical terms:

Rr
11 := "rt u · '"S212r

t Ã, Rr
12 := "S212r

t Ã"rt Ã, R
r
13 := '"S212r

t Ã · '(2∆)21("rt Ã),

For simplicity, we will only consider in detail the most singular term Rr
11, as the estimates for

the remianing two terms will follow similarly.

We first study ‖Rr
11‖21, and it suffices for us to consider the leading order contribution i.e.

‖'Rr
11‖2L2 . Recall from the proof of Lemma 2.3 that

‖'Rr
11‖2L2 . ‖'"rt u · '"S212r

t Ã‖2L2 + ‖"rt u · '2"S212r
t Ã‖2L2 =: Rr

111 +Rr
112.

To treat Rr
111, we see that for any 0 f r f S21 , an application of Hölder inequality, Sobolev

embedding, and Gagliardo-Nirenberg Sobolev inequality yields:

Rr
111 f ‖'"rt u‖2L3‖'"S2r21

t Ã‖2L6

. ‖'"rt u‖L2‖'"rt u‖1‖'"S2r21
t Ã‖21

. ‖"rt u‖1‖"rt u‖2‖"S2r21
t Ã‖22

f C(Ã0, u0, g, k)t
2rt2

2r+1

2 t2(k22r21)

f C(Ã0, u0, g, k)t
2(k21/2),

where we used (2.14) with indices 2r, 2r+ 1, k 2 2r 2 1 respectively in the second to the last
inequality above. To treat Rr

112, we first discuss the case when 1 f r f S 2 1:

Rr
112 f ‖"rt u‖2L3‖'2"S2r21

t Ã‖2L6

f ‖"rt u‖L2‖"rt u‖1‖"S2r21
t Ã‖23

f C(Ã0, u0, g, k)t
2 2r−1

2 t2rt2(k22r)

f C(Ã0, u0, g, k)t
2(k21/2),

where we used (2.14) with index 2r 2 1, 2r, k 2 2r respectively in the second to the last
inequality above. In the case where r = 0, we instead estimate as follows using Agmon’s
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inequality:

R0
112 f ‖u‖2L∞‖'2"S21

t Ã‖2L2

. ‖u‖1/2
L2 ‖u‖3/22 ‖"S21

t Ã‖22
f C(Ã0, u0, g, k)t

2 3

4 t2(k21)

f C(Ã0, u0, g, k)t
2(k21/4),

where we used (2.14) with index 0, 1, and k 2 1 in the third inequality. Combining the
estimates above yields

tk21/4‖Rr
11(t)‖21 f C(Ã0, u0, g, k).

Now we shall study ‖Rr
11‖22. We still consider the leading order contribution, namely ‖'2Rr

11‖2L2 .
A straightforward computation yields:

‖'2Rr
11‖2L2 . ‖'2"rt u · '"S212r

t Ã‖2L2 + ‖'"rt u · '2"S212r
t Ã‖2L2 + ‖"rt u · '3"S212r

t Ã‖2L2

=: R̃r
111 + R̃r

112 + R̃r
113.

To control R̃r
111, we have for any t * (0, T7]:

R̃r
111 f ‖'2"rt u‖2L3‖'"S212r

t Ã‖2L6

. ‖'2"rt u‖L2‖'2"rt u‖1‖'"S212r
t Ã‖21

. ‖"rt u‖2‖"rt u‖3‖"S212r
t Ã‖22

f C(Ã0, u0, g, k)t
2 2r+1

2 t2
k−2r−1

2 ‖"rt u‖3‖"S212r
t Ã‖2

= C(Ã0, u0, g, k)t
2 k

2 ‖"rt u‖3‖"S212r
t Ã‖2

where we used (2.14) with indices 2r+1 and k2 2r2 1 above. Integrating in time, we obtain

∫ T∗

t
R̃r

111dÇ f C(Ã0, u0, g, k)t
2 k

2

∫ T∗

t
‖"rt u‖3‖"S212r

t Ã‖2dÇ

f C(Ã0, u0, g, k)t
2 k

2

(
∫ T∗

t
‖"rt u‖23dÇ

)1/2(∫ T∗

t
‖"S212r

t Ã‖22dÇ
)1/2

f C(Ã0, u0, g, k)t
2 k

2 t2
2r+1

2 t2
k−2r−2

2

f C(Ã0, u0, g, k)t
2(k21/2),

where we used (2.15) with indices 2r + 1 and k 2 2r 2 2. A similar argument switching the
estimates of u and Ã terms yields the same bound for R̃r

112:

∫ T∗

t
R̃r

112dÇ f C(Ã0, u0, g, k)t
2(k21/2).

To estimate R̃r
113, we first note that for 1 f r f S 2 1,

R̃r
113 f ‖"rt u‖2L3‖'3"S2r21

t Ã‖2L6

f ‖"rt u‖L2‖"rt u‖1‖"S2r21
t Ã‖24

f C(Ã0, u0, g, k)t
2 2r−1

2 t2r‖"S2r21
t Ã‖24
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where we used (2.14) with index 2r 2 1 and 2r respectively in the last inequality above.
Integrating in time, we get:

∫ T∗

t
R̃r

113dÇ f C(Ã0, u0, g, k)t
2 2r−1

2 t2r

∫ T∗

t
‖"S2r21

t Ã‖24dÇ

f C(Ã0, u0, g, k)t
2 2r−1

2 t2rtk22r

= C(Ã0, u0, g, k)t
2(k21/2),

where we used (2.15) with index k 2 2r above. In the case where r = 0, we instead estimate
as follows using Agmon’s inequality:

R̃0
113 f ‖u‖2L∞‖'3"S21

t Ã‖2L2

. ‖u‖1/2
L2 ‖u‖3/22 ‖"S21

t Ã‖23
f C(Ã0, u0, g, k)t

2 3

4‖"S21
t Ã‖23

where we used (2.14) with indices 0 and 1. Integrating in time yields:

∫ T∗

t
R̃0

113dÇ f C(Ã0, u0, g, k)t
2 3

4

∫ T∗

t
‖"S21

t Ã‖23dÇ

f C(Ã0, u0, g, k)t
2 3

4 t2(k21)

= C(Ã0, u0, g, k)t
2(k21/4),

where we used (2.15) with index k 2 1 above. Collecting the estimates above yields

tk21/4

∫ T∗

t
‖'2Rr

11‖2L2 f C(Ã0, u0, g, k).

The proof is therefore completed.

From this point on, a similar argument to the odd case combining with the three lemmas
above finishes the proof for the even case. We leave details for the interested reader.

Finally, by combining Corollary 2.1, Proposition 2.3, and using Sobolev embeddings, we infer
the existence of a regular solution to (1.1)

2.4 Uniqueness

In this section, we show the uniqueness of regular solutions to problem (1.1).

Proposition 2.4. Given initial data Ã0 * H1
0 , u0 * V , there exist a T7 > 0 depending only on Ã0,

and a unique regular solution to problem (1.1) on [0, T7].

Proof. Assume (Ãi, ui), i = 1, 2, to be two regular solutions to problem (1.1) with initial condition
Ã0, u0. Write r = Ã12Ã2, w = u12u2. A straightforward computation yields the following equations
satisfied by Ã, u:

{

"tr 2∆r + u1 · 'r + w · 'Ã2 + div(r'(2∆)21Ã1 2 Ã2'(2∆)21r) = 0,

"tw +Aw = gP(rez),
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with boundary conditions r|∂Ω = 0, w|∂Ω = 0 and zero initial condition. Testing the r-equation by
r, we obtain

1

2

d

dt
‖r‖2L2 + ‖'r‖2L2 = 2

∫

Ω
ru1 · 'r 2

∫

Ω
r(w · 'Ã2) +

∫

Ω
r'r · '(2∆)21Ã1

2
∫

Ω
Ã2'r · '(2∆)21r = I1 + I2 + I3 + I4.

Using incompressibility of u1, we immediately have I1 = 0 via integration by parts. Using Hölder
inequality and Sobolev embedding, we can estimate I2 by:

I2 f ‖r‖L2‖w‖L6‖'Ã2‖L3 . ‖r‖L2‖w‖1‖Ã2‖2 f ë‖w‖21 + C(ë)‖Ã2‖22‖r‖2L2

for any ë > 0. Using elliptic estimates, Sobolev embedding, and Gagliardo-Nirenberg-Sobolev
inequalities, we may estimate I3 by:

I3 f ‖'r‖L2‖r‖L3‖'(2∆)21Ã1‖L6 . ‖'r‖L2‖r‖1/2
L2 ‖'r‖1/2L2 ‖Ã1‖L2

. ‖Ã1‖L2‖'r‖3/2L2 ‖Ã‖1/2L2 f ë‖'r‖2L2 +C(ë)‖Ã1‖4L2‖r‖2L2 .

Similarly, we can estimate I4 by

I4 . ‖Ã2‖L∞‖r‖L2‖'r‖L2 . ‖Ã2‖2‖r‖L2‖'r‖L2 f ë‖'r‖2L2 + C(ë)‖Ã2‖22‖r‖2L2 .

On the other hand, we test the w-equation by w:

1

2

d

dt
‖w‖2L2 + ‖'w‖2L2 = g

∫

Ω
w · rez f

1

2
‖w‖2L2 +

g2

2
‖r‖2L2 .

Consider E(t) := ‖w‖2L2+‖r‖2L2 . Collecting the estimates above and choosing ë > 0 to be sufficiently
small, we have the following inequality:

dE

dt
f C(‖Ã2‖22 + ‖Ã1‖4L2 + g2)E(t) =: Cf(t)E(t).

Note that as (Ãi, ui) are regular solutions for i = 1, 2, we particularly have Ã1 * C([0, T7];V ) and
Ã2 * L2((0, T7);H

2 + V ). Hence f * L1(0, T7). Since (r, w) assumes zero initial condition, we have
E(0) = 0. Then an application of Grönwall’s inequality implies

E(t) = 0, t * [0, T7],

and uniqueness is proved.

2.5 Regularity Criterion

In this section, we aim to prove Theorem 1.2. We first need the following fact on the monotonicity
of L1 norm of cell density Ã:

Lemma 2.7. Assume Ω to be a smooth domain in either R2 or R3. Let (Ã, u) be a smooth solution
to problem (1.1) on [0, T ]. Suppose also that Ã0 is nonnegative. Then for any t * [0, T ], we have

d

dt
‖Ã(t)‖L1 f 0.
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Proof. First, we note that by parabolic maximum principle, we must have Ã(t, x) g 0 in [0, T ]×Ω.
Using (1.1), we compute that

d

dt
‖Ã(t, ·)‖L1 =

d

dt

∫

Ω
Ã(t, x)dx =

∫

Ω

(

2u · 'Ã+∆Ã2 div(Ã'(2∆)21Ã)
)

dx

=

∫

Ω
div('Ã2 Ã'(2∆)21Ã)dx =

∫

∂Ω

"Ã

"n
2 Ã

"

"n
(2∆)21ÃdS

=

∫

∂Ω

"Ã

"n
dS,

where ∂
∂n denotes the outward normal derivative and dS denotes the surface unit. We also used the

incompressibility of u, divergence theorem, and the Dirichlet boundary condition in the derivation
above. In view of parabolic maximum principle, we must have

"Ã

"n

∣

∣

∂Ω
f 0.

Hence, we conclude that
d

dt
‖Ã(t, ·)‖L1 f 0, t * [0, T ].

Now, we are ready to give a proof of the L2 regularity criterion:

Proof of Theorem 1.2. Assume (Ã, u) is a solution to (1.1) with smooth data (Ã0, u0). Let T0 > 0
be its maximal lifespan.

1. d = 2. Suppose T0 <> and

lim
t�T0

∫ t

0
‖Ã‖2L2ds =M <>.

First, we test the u-equation in (1.1) by Au, which yields:

1

2

d

dt
‖'u‖2L2 + ‖Au‖2L2 = g

∫

Ω
Au · Ãe2 f

1

2
‖Au‖2L2 +

g2

2
‖Ã‖2L2 , t * [0, T0).

Rearranging the above inequality, using Grönwall inequality, Theorem A.1 and the assumption,
we obtain that

sup
t*[0,T0]

‖u‖21 +
∫ T0

0
‖u‖22ds f ‖u0‖21 +

g2M

2
<>. (2.31)

Testing Ã-equation by 2∆Ã, one obtains that

1

2

d

dt
‖'Ã‖2L2 + ‖∆Ã‖2L2 =

∫

Ω
∆Ãu · 'Ã2

∫

Ω
∆ÃÃ2 +

∫

Ω
∆Ã'Ã · '(2∆)21Ã

=: Q1 +Q2 +Q3.

Similarly to the estimate (2.9), we have for any ë > 0

Q1 f ‖∆Ã‖L2‖'Ã‖L2‖u‖L∞ f ë‖∆Ã‖2L2 + C(ë)‖'Ã‖2L2‖u‖22,

Q2 f ë‖∆Ã‖2L2 + C(ë)‖Ã‖4L4 f ë‖∆Ã‖2L2 + C(ë)‖Ã‖2L2‖'Ã‖2L2 .
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The term that we have to treat differently is Q3. Using Hölder inequality, Sobolev embedding,
and an Lp-based elliptic estimate, we have:

Q3 f ‖∆Ã‖L2‖'Ã‖L3‖'(2∆)21Ã‖L6 . ‖∆Ã‖L2‖'Ã‖L3‖'(2∆)21Ã‖1, 3
2

. ‖∆Ã‖L2‖'Ã‖L3‖Ã‖L3/2 . ‖∆Ã‖L2‖Ã‖1/3
L2 ‖'2Ã‖2/3

L2 ‖Ã‖2/3L1 ‖'Ã‖1/3L2

. ‖∆Ã‖5/3
L2 ‖Ã‖1/3L2 ‖Ã‖2/3L1 ‖'Ã‖1/3L2 f ë‖∆Ã‖2L2 + C(ë)‖Ã‖2L2‖Ã‖4L1‖'Ã‖2L2 ,

where we used the Gagliardo-Nirenberg-Sobolev inequalities

‖f‖L3/2 f C‖f‖2/3
L1 ‖'f‖1/3L2 , ‖'f‖L3 f C‖f‖1/3

L2 ‖'2f‖2/3
L2 ,

in the fourth inequality, and Young’s inequality in the last step. By Lemma 2.7, we know that
for t * [0, T0), ‖Ã(t, ·)‖L1 f ‖Ã0‖L1 . Then we have

Q3 f ë‖∆Ã‖2L2 + C(Ã0, ë)‖Ã‖2L2‖'Ã‖2L2 .

Choosing ë > 0 sufficiently small and using the estimates of Li above, the Ã-estimate can be
rearranged as:

d

dt
‖'Ã‖2L2 + ‖∆Ã‖2L2 f C(Ã0)(‖u‖22 + ‖Ã‖2L2)‖'Ã‖2L2 . (2.32)

Using Grönwall inequality, we have:

sup
0ftfT0

‖'Ã(t, ·)‖2L2 +

∫ T0

0
‖Ã‖22ds . ‖'Ã0‖2L2 exp

(

C(Ã0)

∫ T0

0
(‖u‖22 + ‖Ã‖2L2)ds

)

f C(Ã0, u0,M, g, T0),

where we used the assumption, (2.31), and elliptic estimate. But this implies that one can
extend the solution (Ã, u) beyond the supposed lifespan T0 by Theorem 1.1. This yields a
contradiction.

2. d = 3. Suppose T0 <> and

lim
t�T0

∫ t

0
‖Ã‖4L2ds =M <>.

Testing the u-equation in (1.1) by Au and deploying estimates similar to the d = 2 case, we
have

sup
t*[0,T0]

‖'u‖2L2 +

∫ T0

0
‖u‖22ds f ‖u0‖21 +

g2
:
MT0
2

<>.

A derivation identical to (2.9) yields:

d

dt
‖'Ã‖2L2 + ‖∆Ã‖2L2 .

(

‖Ã‖4L2 + ‖u‖22
)

‖'Ã‖2L2 .

Applying Grönwall inequality and combining the two estimates above, we have for t * [0, T0]
that

‖'Ã(t, ·)‖2L2 +

∫ T0

0
‖Ã‖22ds . ‖Ã0‖21 exp

(

C(Ã0)

∫ T0

0
(‖Ã‖4L2 + ‖u‖22)ds

)

f C(Ã0, u0,M, g, T0).

And this contradicts the assumption that T0 is the maximal lifespan in view of Theorem 1.1.

The proof is thus completed.
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3 Proof of the Main Theorem: Suppression of Chemotactic Blowup

In this section, our goal is to conclude Theorem 1.3 that (1.1) is globally regular in the regime of
sufficiently large g. In particular, we will see that the coupling of the Keller-Segel equation to the
Stokes flow with sufficiently robust buoyancy term is regularizing, in the sense that the solution
Ã(t, x) approaches zero exponentially fast as g is sufficiently large. For the rest of the section, Ω
denotes any smooth, bounded domain in either 2D or 3D.

3.1 Velocity Control

In this subsection, we remark on two controls on the velocity field u in (1.1) that will be instrumental
in our main proof. The first lemma is in fact a standard H1

t,x control of u, which is hidden in our
proof of energy estimate in Proposition 2.3. We give a brief derivation here for clarity.

Lemma 3.1. Let (Ã, u) be a regular solution to problem (1.1) with initial data Ã0 * H1
0 , u0 * V .

We have
‖u‖2H1([0,T∗]×Ω) f C(Ã0, u0)(g

2 + 1). (3.1)

Proof. In view of the estimate (2.5) in Proposition 2.1, it suffices to show that

∫ T∗

0
‖"tu(t)‖2L2dt f C(Ã0, u0)(g

2 + 1). (3.2)

Testing the u equation in (1.1) by "tu, we have

‖"tu‖2L2 +
1

2

d

dt
‖'u‖2L2 = g

∫

Ω
"tu · (Ãez)dx f 1

2
‖"tu‖2L2 +

g2

2
‖Ã‖2L2 ,

where we used incompressiblity of u and Cauchy-Schwarz inequality above. Rearranging, integrating
in time, and using (2.4) we obtain

∫ t

0
‖"tu(s)‖2L2ds+ ‖'u(t)‖2L2 f g2

∫ t

0
‖Ã(s)‖2L2ds + ‖'u0‖2L2

f g2(2T7‖Ã0‖2L2) + ‖u0‖21
f C(Ã0, u0)(g

2 + 1).

By taking supremum of t over [0, T7], we have arrive at the estimate (3.2).

The following lemma yields a key additional control over the velocity field by genuinely exploiting
the buoyancy forcing structure of the fluid equation in (1.1):

Lemma 3.2. Let (Ã, u) be a regular solution to problem (1.1) with initial data Ã0 * H1
0 , u0 * V .

Then
∫ T∗

0
‖u(t)‖2L2dt f C(Ω, Ã0, u0)(g + 1). (3.3)

Remark 3.1. Note that a straightforward L2 estimate of u only yields a bound
∫ T∗

0 ‖u(t)‖2L2dt . g2.
What we display in the lemma is that the structure of buoyancy forcing “gains a g21”.
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Proof. Without loss of generality, assume that Ω contains the origin. Denote L := diam(Ω) > 0.
Multiplying the Ã-equation of (1.1) by z 2 L (recall that z = xd when Ω ¢ Rd, d = 2, 3) and
integrating over Ω, we have

d

dt

∫

Ω
(z 2 L)Ãdx+

∫

Ω
(z 2 L)(u · 'Ã)dx2

∫

Ω
(z 2 L)∆Ãdx+

∫

Ω
(z 2 L) div(Ã'(2∆)21Ã)dx = 0.

Moreover using the Dirichlet conditions Ã|∂Ω = 0 and u|∂Ω = 0, we note that via integration by
parts:

∫

Ω
(z 2 L)(u · 'Ã)dx = 2

∫

Ω
Ãuzdx+

∫

∂Ω
(z 2 L)Ãundx = 2

∫

Ω
Ãuzdx,

2
∫

Ω
(z 2 L)∆Ãdx =

∫

Ω
"zÃdx2

∫

∂Ω
(z 2 L)

"Ã

"n
dS,

∫

Ω
(z 2 L) div(Ã'(2∆)21Ã)dx = 2

∫

Ω
Ã"z(2∆)21Ãdx,

where un denotes the normal component of u along "Ω, and dS denotes the surface measure induced
on "Ω. Collecting the above computations, we have

∫

Ω
Ãuzdx =

d

dt

∫

Ω
(z 2 L)Ãdx+

∫

Ω
"zÃdx2

∫

∂Ω
(z 2 L)

"Ã

"n
dS 2

∫

Ω
Ã"z(2∆)21Ãdx. (3.4)

On the other hand, testing the u-equation of (1.1) by u, we also have

1

2

d

dt
‖u‖2L2 + ‖'u‖2L2 = g

∫

Ω
Ãuz. (3.5)

From Lemma 2.7, we also know that "Ã/"n f 0 on "Ω in [0, T7]. Hence, we have
∫

∂Ω(z2L)
∂ρ
∂ndS g 0

by definition of L. Combining this fact with (3.4), (3.5), and integrating on [0, T7], we have

‖u(t)‖2L2 2 ‖u0‖2L2 f 2g

[
∫

Ω
(z 2 L)(Ã(t, x) 2 Ã0(x)) dx +

∫ t

0

∫

Ω
"zÃ dx2

∫ t

0

∫

Ω
Ã"z(2∆)21Ã dx

]

f C(Ω)g(‖Ã0‖L1 +
√

T7

(
∫ T∗

0
‖'Ã‖2L2dt

)1/2

+

∫ T∗

0
‖Ã‖2L2dt)

f C(Ω, Ã0)g,

where we used elliptic estimate in the second inequality, and (2.4) in the final inequality. The proof
is therefore completed after integrating in time again.

3.2 A Key Theorem

In this part, we prove a quantitative characterization of the regularizing effect of the Stokes-
Boussinesq flow in (1.1). With a rigidity-type argument inspired by [7], we show that the flow
with sufficiently large g can suppress the L2 energy of Ã to be arbitrarily small within the time scale
of local existence, as elucidated in the following theorem:

Theorem 3.1. Let Ã0 * H1
0 , u0 * V be initial conditions for the problem (1.1), and consider (Ã, u)

to be the regular solution. For arbitrary ë > 0, there exists g7 = g7(Ã0, u0, ë) such that for any
g g g7,

inf
t*[0,T∗]

‖Ã(t, ·)‖L2 f ë.
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Proof. Suppose for the sake of contradiction that there exists ë0 > 0 such that there is a sequence
{(Ãn, un, gn)}n which are regular solutions to (1.1) with Ã = Ãn, u = un, g = gn and gn ³ +>
(corresponding to initial data Ã0, u0). Indeed, we may without loss of generality assume that the
sequence {gn}n is increasing by picking a subsequence if necessary. Also, for any t * [0, T7], and for
all n

‖Ãn(t, ·)‖L2 > ë0. (3.6)

Note that indeed we can use the uniform choice of time T7 here, since T7 only depends on Ã0.
Moreover, we consider the normalized velocity ūn = un/gn. We will divide the proof into the
following steps:

• Step 1: Convergence properties of (Ãn, un). From (3.1), we have ‖ūn‖H1([0,T∗]×Ω) f
C(Ã0, u0). Using weak compactness and the Sobolev compact embedding theorem, we obtain
that there exists ū> * H1([0, T7]×Ω) such that

ūn á ū> in H1([0, T7]× Ω), and ūn ³ ū> in L2([0, T7]× Ω).

In fact, observe that from the estimate (3.3) of Lemma 3.2 it follows that ‖ūn‖L2([0,T∗]×Ω) ³ 0
as n ³ >, so ū> = 0. In addition, from the energy estimate (2.4), we may pick a further
subsequence, still indexed by n, such that there exists Ã> * L2(0, T7;H

1
0 (Ω)) and

Ãn á Ã> in L2(0, T7;H
1
0 (Ω)).

• Step 2: Derivation of the limiting fluid equation. Since (Ãn, un) is a regular solution to
(1.1) with parameter gn on [0, T7], un in particular solves the fluid equation in (1.1) weakly.
That is,

2
∫ T∗

0

∫

Ω
("tÇ)ūndxdt+

∫ T∗

0

∫

Ω
(AÇ)ūndxdt =

∫ T∗

0

∫

Ω
Ãn(Ç · ez)dxdt,

for any smooth vector field Ç * C>
c ([0, T7]×Ω) with divÇ = 0. By the convergence properties

of Ãn, un as shown in Step 1, and by Lemma 3.2 we find that

Ã>ez = 'p>, (t, x) * [0, T7]× Ω (3.7)

holds in a weak sense.

• Step 3: Nontriviality of Ã>. By maximum principle, we know that Ãn, and thus Ã>,
is nonnegative. We would also like to claim that Ã> 6c 0. To show this fact, we need the
following proposition.

Proposition 3.1. Let Ω ¢ Rd, d = 2, 3, be a smooth, bounded domain. Assume (Ã, u) to be
the regular solution of problem (1.1) on [0, T7] with initial condition Ã0 g 0 * H1

0 , u0 * V . If
there exists M > 0 such that sup0ftfT∗

‖Ã(t)‖L2 fM , then we have

sup
0ftfT∗

‖Ã(t)‖L∞ f CM
4

4−d .

Here C is a constant that may only depend on d and Ω.

A variant of this result has been proved in [19] (Proposition 9.1), in a two dimensional periodic
setting. The proof of Proposition 3.1 is similar and for the sake of completeness will be provided
in the appendix.

Next, we need the following lemma.
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Lemma 3.3. Let D ¢ Rd, d * N, be a bounded domain, and let {fn}n ¢ L2(D) be a sequence
of nonnegative functions that weakly converges to a function f * L2(D). Assume that there
exist M, ë > 0 such that ‖fn‖L2 > ë, ‖fn‖L∞ fM for all n. Then f 6c 0.

Proof. Suppose for the sake of contradiction that f c 0. Consider the characteristic function
Ç = ÇD Since D is bounded, Ç * L2(D). Then the weak convergence informs us that

lim
n³>

∫

D
fn = 0.

As fn g 0 for all n, this is equivalent to limn³> ‖fn‖L1 = 0. Since ‖fn‖L∞ f M , by
interpolation we have

‖fn‖2L2 f ‖fn‖L∞‖fn‖L1 ³ 0

as n³ >. But this contradicts with the assumption that ‖fn‖L2 > ë.

Observe that from (2.4), we know that ‖Ãn(t, ·)‖L2 f 4‖Ã0‖L2 for all t * [0, T7] and all n.
Thus applying Proposition 3.1 to Ãn we get that ‖Ãn(t, ·)‖L∞ f M for all t * [0, T7], and all

n, where M = C(d,Ω)‖Ã0‖
4

4−d

L2 . Then Lemma 3.3 implies that Ã> 6c 0.

• Step 4: Derivation of a contradiction. Let us consider

Ën(x) :=

∫ T∗

0
Ãn(t, x)dt, Ë>(x) :=

∫ T∗

0
Ã>(t, x)dt.

In particular, Ë> 6c 0 and Ë> g 0 by Step 3. On one hand, picking arbitrary · * L2(Ω), we
have

∣

∣

∣

∣

∫

Ω
·(x)(Ën(x)2 Ë>(x))dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T∗

0

∫

Ω
·(x)(Ãn(t, x)2 Ã>(t, x))dxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T∗

0

∫

Ω
·(x)Ç[0,T∗](t)(Ãn(t, x)2 Ã>(t, x))dxdt

∣

∣

∣

∣

,

which converges to 0 as Ãn á Ã> in L2([0, T7] × Ω). This implies that Ën á Ë> in L2(Ω).
On the other hand, we note that by Minkowski inequality and Hölder inequality,

‖'Ën‖L2 f
∫ T∗

0
‖'Ãn‖L2dt f

√

T7‖'Ãn‖L2([0,T∗]×Ω) f C(Ã0),

where we used (2.4) in the last step. Since Ãn|∂Ω = 0, we know that Ën * H1
0 (Ω) with

a uniform H1-norm bound from above. Hence by weak compactness and Sobolev compact
embedding theorem, there exists a subsequence, still denoted by Ën, and Ë̃> * H1

0 (Ω) such
that

Ën á Ë̃> in H1
0 (Ω), Ën ³ Ë̃> in L2(Ω).

Indeed, we must have Ë̃> = Ë> due to the uniqueness of weak limit, and hence Ë> * H1
0 (Ω).

But now, integrating (3.7) with respect to time, we have

'P = Ë>ez,

where P (x) :=
∫ T∗

0 p>(t, x)dt. But this implies that Ë>(x) = h(z), where h is some single-
variable function. Moreover, we know that Ë> * H1

0 (Ω). These two facts imply that Ë> c 0.
However, this contradicts the fact that Ë> > 0. This completes the proof of the theorem.
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3.3 Proof of Global Well-Posedness with Large g

Now we are ready to prove the main theorem. As we will see below, ‖Ã‖L2 enjoys a Riccati-type
differential inequality which preserves smallness. This structure combined with Theorem 3.1 gives
the boundedness of ‖Ã(t)‖2L2 globally in time (and actually smallness in large time). The proof is
thus done after we invoke Theorem 1.2.

Proof of Theorem 1.3. Say the solution (Ã, u) is regular up to a maximal time T0, which may or
may not be infinite. Suppose first that T0 <>. Similarly to the proof of Proposition 2.1, using the
energy estimate of Ã, a Gagliardo-Nirenberg-Sobolev inequality, Young’s inequality and Poincaré
inequality, we have for t * (0, T0) that

1

2

d

dt
‖Ã‖2L2 f 2‖'Ã‖2L2 +

1

2
‖'Ã‖2L2 + C‖Ã‖

12−2d
4−d

L2

f 2 1

2Cp
‖Ã‖2L2 + C‖Ã‖

12−2d
4−d

L2 =: fd(‖Ã‖2L2), (3.8)

where Cp denotes the Poincaré constant that only depends on domain Ω. Since 2 < 1222d
42d when

d = 2, 3, we fix ë * (0, 1) sufficiently small that fd(ë) < 2 1
4Cp

ë. Note that such choice of ë only

depends on domain Ω. By Theorem 3.1, there exists g7 = g7(Ã0, u0) such that there exists Ç * [0, T7]
with ‖Ã(Ç)‖2L2 f ë for any g g g7. Now we consider the problem (1.1) starting from t = Ç . Then

from the inequalities above, we note that d
dt‖Ã(t, ·)‖2L2 |t=τ < 0; by (3.8) this inequality also holds

for all t * [Ç, T0]. Hence, there exists M > 0 depending on Ã0 such that supt*[0,T0] ‖Ã(t, ·)‖2L2 f M,
which yields

∫ T0

0
‖Ã(t, ·)‖

4

4−d

L2 dt fM
2

4−dT0 <>.

By the regularity criterion, this contradicts the definition of T0. Therefore, we conclude that T0 = >
and the solution is globally regular. To prove (1.3), we note from above that suptgτ ‖Ã(t, ·)‖2L2 f ë.
In fact, by our choice of ë and (3.8), we have

d

dt
‖Ã‖2L2 f 2 1

4Cp
‖Ã‖2L2 , t g Ç.

Using Grönwall inequality, ‖Ã(Ç)‖2L2 f ë < 1, and Ç f T7 f 1, we have: for t g Ç ,

‖Ã(t)‖2L2 f ‖Ã(Ç)‖2L2e
2 1

4Cp
(t2τ) f e

2 1

4Cp
t
e

1

4Cp
τ

f Ce
2 1

4Cp
t
,

where C = e1/4Cp is a constant that only depends on domain Ω. This yields (1.3) after rearranging
the inequality above.

A Appendix

In the appendix, we will remark on one regularity estimate for Stokes operator A that plays an
essential role in our energy estimates. What follows will be a proof of Proposition 3.1 that appear
in the proof of the main lemma.

The regularity result for Stokes operator stated below is standard; proofs can be found for
example in [6]:
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Theorem A.1. Let Ω be a bounded C2 domain. Then there exists a constant C = C(Ω) such that
for all u * D(A) = H2(Ω) +H1

0 (Ω),

‖u‖2 f C(Ω)‖Au‖L2 .

Moreover, there exist constants c0, C0 only depending on domain Ω such that

c0‖'u‖L2 f ‖A1/2u‖L2 f C0‖'u‖L2

We will now give a proof for Proposition 3.1; its statement is reiterated below.

Proposition A.1. Let Ω ¢ Rd, d = 2, 3, be a smooth, bounded domain. Assume Ã, u to be the
regular solution of problem (1.1) on [0, T ] with initial condition Ã0 * H1

0 and Ã0 g 0. If there exists
M > 0 such that sup0ftfT ‖Ã(t)‖L2 fM , we then have

sup
0ftfT

‖Ã(t)‖L∞ f CM
4

4−d ,

where C is a constant only depending on domain Ω.

Proof. In the proof, we shall suppress the variable t. Let p g 1 be an integer. We start with the
following computation using (1.1):

d

dt
‖Ã‖2p

L2p = 2p

∫

Ω
Ã2p21(2(u · ')Ã2 div(Ã'(2∆)21Ã) + ∆Ã) dx = 2p(I + J +K).

Using incompressibility of u, we can compute that

I = 2
∫

Ω
Ã2p21(u · ')Ã dx = 2 1

2p

∫

Ω
uj"jÃ

2p = 0.

Integrating by parts, we have

J = (2p 2 1)

∫

Ω
Ã2p21"jÃ"j(2∆)21Ãdx =

2p 2 1

2p

∫

Ω
"j(Ã

2p)"j(2∆)21Ãdx =
2p2 1

2p

∫

Ω
Ã2p+1dx

Using chain rule, we also have

K = 2(2p 2 1)

∫

Ω
Ã2p22"jÃ"jÃdx = 22p 2 1

p2

∫

Ω
|'Ãp|2dx.

Collecting all computations above, we observe that

d

dt
‖Ã‖2p

L2p = (2p 2 1)‖Ã‖2p+1
L2p+1 2

(

42 2

p

)

‖'Ãp‖2L2 . (A.1)

Now we shall estimate ‖Ã‖L2n inductively on n. The base case n = 1 is dealt with by our assumption.
Assume for t * [0, T ] we have the bound

‖Ã‖L2n f Bn, Bn g 1

for any t * [0, T ]. Define f = Ã2
n
, and apply p = 2n to (A.1), we obtain that

d

dt

∫

Ω
f2dx f 22‖'f‖2L2 + 2n+1‖f‖2+2−n

L2+2−n . (A.2)
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Applying a Gagliardo-Nirenberg-Sobolev inequality (see [1], for example), we can estimate using
Young’s inequality that

‖f‖2+2−n

L2+2−n . ‖'f‖d2−n−1

L2 ‖f‖2+2−n2d2−n−1

L2 f d22n22‖'f‖2L2 + C‖f‖
2+2

−n
−d2−n−1

1−d2−n−2

L2 , (A.3)

‖f‖L2 . ‖'f‖
d

d+2

L2 ‖f‖
2

d+2

L1 . (A.4)

The constants in the above inequalities do not depend on n. Plugging (A.3), (A.4) to (A.2), we
obtain

d

dt

∫

Ω
f2dx f 22‖'f‖2L2 +

d

2
‖'f‖2L2 + C22

n+1‖f‖
2+2

−n
−d2−n−1

1−d2−n−2

L2

f 2C1‖f‖
2d+4

d

L2 ‖f‖2
4

d

L1 + C22
n+1‖f‖

2+2
−n

−d2−n−1

1−d2−n−2

L2 , (A.5)

where C1, C2 are constants only depending on d. Note that given d = 2, 3, we have 2+2−n2d2−n−1

12d2−n−2 <
2d+4
d for n g 1. Moreover, observe that

‖f‖L1 f B2n
n <>.

Then for each n g 1, the right hand side of (A.5) becomes negative when ‖f‖L2 is sufficiently large.
In particular, one can compute that ‖Ã‖

L2n+1 will never reach the value Bn+1, where Bn+1 is defined
by the following recursive relation:

logBn+1 =
2n+2 2 d

2n+2 2 2d
logBn +

d

2n
[logC + (n+ 1) log 2] ,

where C is a constant independent of n. Note that we have

n
∏

j=1

2n+2 2 d

2n+2 2 2d
=

42 d22n

42 d
³ 4

42 d

as n ³ >, where in the first equality we used the telescoping nature of the product. Then via an
inductive argument, there exists some dimensional constant C > 0 such that for all n g 1,

Bn f CM
4

4−d .

As Ω is bounded, we have

‖Ã‖L∞ = lim
n³>

‖Ã‖L2n f CM
4

4−d ,

and the proof of the lemma is complete.
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