Downloaded 05/04/25 to 152.3.102.254 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. MATH. ANAL. @ 2024 Society for Industrial and Applied Mathematics
Vol. 56, No. 6, pp. 7866-7902

SUPPRESSION OF CHEMOTACTIC SINGULARITY VIA VISCOUS
FLOW WITH LARGE BUOYANCY*

ZHONGTIAN HUT

Abstract. In this work, we study the Keller—Segel-Navier—Stokes equation with low Reynolds
number and subject to large buoyancy force. We show that, for initial cell density with arbitrarily
large mass (i.e., the L' norm), the solution remains regular for all times in the regime of sufficiently
large buoyancy and viscosity. The major blowup suppression mechanism is a norm-stabilizing prop-
erty possessed by a “static problem,” where the full problem can be seen as a perturbation of this
quasi-stationary model.
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1. Introduction. We consider the parabolic-elliptic Keller—Segel equation in a
periodic channel Q =T x [0, 7] subject to the influence of the buoyancy-driven Navier—
Stokes equation:

Oep+u-Vp—Ap+div(pV(=An) " (p— pm)) =0,
v,
pm=—— | p(t,z)dz,
(1) o Jo ")
Ou+u-Vu— ﬂAzu—Vp:Rap(O,l)T,
divu =0.

We equip the system with initial data p(0,z) = po(z), u(0,2) = ug(x), where pg is a
nonnegative scalar function and wug is a divergence-free vector field. We also consider
the following set of boundary conditions:

(1.2) Dop=Vp-n=0, uy=u-n=0, w=V>-u=0  on I

Here, T := [—7, m) is the one-dimensional torus, and a function f defined on T means
that f assumes the periodic boundary condition with period 27; n = (0,1)7 denotes
the unit normal derivative along 92 = T x {0, 7}; V+ denotes the differential operator
(—0a,01).

The first equation in (1.1) is the classical parabolic-elliptic Keller—Segel equation with
advection. This equation characterizes a population of bacteria with the density p
that moves in response to an attractive chemical that the bacteria themselves se-
crete. Specifically, the chemical-induced aggregation effect is modeled by the term
div(pV(—=AnN)"1(p — pm)), indicating a scenario where chemicals homogenize much
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faster than the motion of micro-organisms. Here, —Apy denotes a homogeneous Neu-
mann Laplacian that represents the classical condition of zero chemical flux across
boundary 0. Furthermore, chemotaxis usually takes place in ambient viscous flu-
ids, which are classically modeled by Navier—Stokes equations with velocity w and
pressure p. In nature, the micro-organisms and the fluid can interact through vari-
ous means (see, e.g., [25]). The main interaction on which we focus is the coupling
by buoyancy, which originates from the variation of bacterial density in the domain.
Mathematically, such interactions appear in the fluid equation through the forcing
term Rap(0,1)T, where Ra denotes the Rayleigh number measuring relative buoy-
ancy strength due to density variation.

In this work, we focus on the study of chemotaxis-fluid interaction in a canonical
domain T x [0,7]. We remark that previous studies classically consider domains
without boundaries, e.g., R?, T2, T x R, in order to study chemotaxis-fluid interaction
in the bulk of fluid (see [2, 24, 40, 25]). Our work, in contrast, intends to investigate
the buoyancy effect along the vertical direction. From this perspective, it is interesting
to consider a domain with a top and bottom boundary and study the chemotaxis-
fluid interaction via buoyancy when taking boundary effects into account. We also
emphasize the boundary conditions that we insist for the rest of this work: On one
hand, we assert the classical homogeneous Neumann boundary condition for the cell
density. On the other hand, we impose the Lions boundary condition onto the fluid
equation: u-nlgn =0, w|spn = 0. This particular boundary condition, as a special case
of the more general Navier boundary condition, is prevalent in simulations of flows in
the presence of rough boundaries, such as in hemodynamics. It was first introduced
and rigorously studied by J.-L. Lions [42] and P.-L. Lions [43]. We refer the readers
to works such as [39, 23, 12, 58] and references therein for a more thorough discussion
regarding the Navier boundary condition.

When the ambient fluid is absent (i.e., when Ra = 0 and v = 0 in (1.1)), we
recover the classical parabolic-elliptic Keller—Segel equation:

(1.3) Op—Ap+div(pV(=AN) " (p— pm)) =0 in Q.

First introduced by Patlak [49] and Keller and Segel [38], (1.3) has been classically
studied in various settings. We refer the interested readers to the following list of
works: [1, 3,4, 5, 6, 8,9, 28, 29, 36, 45, 46]. A remarkable feature enjoyed by (1.3) is
that the solution can form singularity in finite time when dimension is greater than
1. In dimension 2, (1.3) is L'-critical. For any initial datum po with finite second
moment, the solution is globally regular if the initial mass ||po||: < 87; see, e.g.,
[3, 6, 9, 36, 55]. If the initial mass is strictly greater than 8, a finite-time singularity
forms, as seen in [6, 8, 36, 45]. A more careful analysis of such blowup solutions is
also carried out [13, 14, 52, 53, 54].

It is also curious to understand the behavior of the Keller—Segel equation under
the influence of fluid advection, given the fact that most chemotactic processes take
place in ambient fluid. The presence of fluid advection can bring complicated effects to
chemotaxis. Among these effects, we would like to focus on the reqularization effects
induced by fluid advection. That is, we would like to understand how the transport
term u - Vp could prevent potential singular behaviors in (1.3). For the past decade,
much progress has been made to understand such regularization effects in the context
of the Keller—Segel equation. In the regime of passive advection (i.e., the fluid velocity
w is given and is not coupled to the Keller—Segel equation), Kiselev and Xu in [40] first
demonstrate that, given any initial datum pg, there exists a relaxation-enhancing flow
(see [17] for a precise definition) with sufficiently large amplitude that can suppress
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the singularity formation. This result is later generalized by [35] to a larger class
of passive flows and more general aggregation equations. Moreover, in [2, 24], the
authors exploit the enhanced dissipation phenomenon induced by strong monotone
shear flows. Such flows effectively reduce the dimensionality of the problem, where in
two dimensions, the singularity can be suppressed. The fast-splitting scenario induced
by hyperbolic flows is also explored in [26, 27].

There also have been numerous attempts to investigate the regularity properties of
the Keller—Segel equation coupling to active fluid models, many of which address the
global regularity of solutions to such coupled systems. We highlight that, among those
results, either there is a smallness assumption on initial data (e.g., [10, 19, 44, 20])
or the global regularity of both the chemotaxis equation and fluid equation still hold
if they are uncoupled (e.g., [56, 57]). We also note that the authors in [25, 59] study
the blowup suppression mechanism of the Keller-Segel-Navier—Stokes equation near
a strong Couette flow. These results are almost linear in a sense that the main driven
mechanism is still brought by a dominating passive background flow.

Recently, in a series of works [33, 32] by the author joining with Kiselev and Yao,
they analyze how buoyancy effects in fluid equations suppress chemotactic singulari-
ties in a genuinely nonlinear setting. In [33], the authors investigated the Keller—Segel
equation evolving in ambient porous media under the influence of buoyancy. The au-
thors demonstrated that a coupling with the porous media equation via an arbitrarily
weak buoyancy constant suffices to arrest any potential chemotactic blowup. The
key argument in [33] is a careful analysis of a potential energy and the coercive term
|01p|| ;1 in its time derivative. The authors observed that this H, ' norm has to
be small and induces an anisotropic mixing effect along xi-direction. This effect ren-
ders the system quasi-one-dimensional and therefore suppresses finite-time blowup.
On the other hand, [32] studies how Stokes—Boussinesq flow with strong buoyancy
suppresses blowup of a Keller—Segel equation equipped with zero Dirichlet boundary
condition. A rather soft argument in [32] shows that the flow quenches the L? norm
of cell density to be sufficiently small in the regime of large buoyancy.

The other motivation for studying the regularization by active fluid advection in
the Keller—Segel equation is its connection to the global regularity of other equations
that potentially have singular behaviors, such as some fluid equations. In fact, such
a regularizing phenomenon is the main factor that competes with the main blowup
mechanisms in some of the most classical fluid equations. For 3D Euler equations, a
lack of/a weakened advection term is sufficient to induce finite-time singularities; see
[15, 21]. The same is also observed in 3D Navier—Stokes equations; see [41, 30]. The
crucial role played by advection stands out even more when one considers certain 1D
models capturing Euler and Navier—Stokes dynamics; see [11, 37]. The Keller—Segel
equation much resembles these fluid equations since it is also a critical equation that
exhibits potential singularities. Hence, studying the regularization by fluid advection
in the Keller-Segel equation contributes to a more substantial understanding in the
problem of global existence for many fluid equations.

In this work, we plan to investigate (1.1) in the case where the fluid has large
viscosity and exerts significant buoyancy onto the bacteria. We remark that not only
do micro-organisms generally live in a viscous environment (see [50]), but intrigu-
ing biological phenomena also occur in a viscous fluid and in a buoyancy-dominating
regime. For example, [51] studies an interesting phenomenon called the chemotac-
tic Boycott effect in this regime, which describes the sedimentation process of both
bacteria and fluid. In numerical experiments, the canonical choice of the coupling
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fluid is the Navier-Stokes flow with parameters Ra ~ 10% and Re ! ~ 10%. Hence,
while the chemotaxis model used in [51] is different from (1.1), the parameter regime
Ra > % > 1 is still highly relevant in the study of chemotaxis in viscous environ-
ment. Moreover, from an analytical perspective, this is also a first step to showing
the blowup suppression by Navier—Stokes flow with only large buoyancy and moderate
viscosity.

To make the problem more amenable to analysis, it is convenient to write B =
Re™! and g = Ra-Re. Another handy transformation is that, in the periodic channel
Q, one can reduce the Lions boundary condition in the following way: The no-flux
boundary is equivalent to wus|s, = 0. Since d; is the tangential derivative on 9%,
we have the extra boundary constraint Bfu2|ag =0 for all kK € N. Thus, the Lions
boundary condition can be equivalently written as

uz2on =0, wlag = Oaui|aq =0.

To sum up, we will work with the following equivalent, yet more convenient form of
(1.1):

(1.4a) dp+u-Vp—Ap+div(pV(=Ax) " (p—pm)) =0 inQ,
(1.4b) O 41 - Vu — BAu+Vp=Bgp(0,1)T, divu=0 inQ,
(1.4c) 52/)‘8Q:O, uzlon =0, Oaur|aq =0,

(1.4d) p(0,2) = po(x) >0, u(0,x) = ug(x).

1.1. Main theorem. The main result of this work is that the regular solution'
of (1.4) with arbitrary large mass is in fact globally regular given both parameters B
and g sufficiently large, whose sizes only depend on initial data (pg,ug). The precise
statement of the main result is given as follows.

THEOREM 1.1. Suppose initial data (po,uo) with po € H' nonnegative and ug €'V,
where V is the class of H', divergence-free vector fields that satisfy the no-flux bound-
ary condition.? There exists a couple (g1,B1) = (91(pm. |lpo — pmllz2) Bi(pm, |lpo —
Pz, lJuoll1)) such that, if g> g1, B> BngeQQ, (1.4) admits a unique, reqular, and
global-in-time solution.

Remark 1.2. We compare this result with [32]. Firstly, the two works treat differ-
ent scenarios: [32] investigates a Keller—Segel equation with zero Dirichlet boundary
condition, while we study the Keller-Segel equation with classical zero Neumann
boundary conditions. Secondly, the blowup-suppressing mechanism in the two works
are different precisely due to the first difference above. In [32], the blowup is sup-
pressed by an increased interaction between cells and the cold boundary induced by
the strong buoyancy force. This mechanism forces the L? norm of cell density to drop
below the mass threshold in short time. In our work, we instead use a dimension-
reduction mechanism similar to that in [33]. It stabilizes the L? norm of cell density
around a possibly large number.

1.2. Main strategy of proof. In this section, we would like to first emphasize
the main difficulty of proving Theorem 1.1, after which we briefly sketch the idea of
proving this main result.

IRoughly speaking, the solution pair (p,u) is called a regular solution if it is C> in space and
for positive times. We will give a rigorous definition in section 3.
2The exact definition of V will be given in section 2.2.
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The main obstacle is that, given the appearance of time derivative and advection
term in the fluid equation (1.4b), the problem suffers from loss of an explicit velocity
law, which directly connects density p and fluid velocity u. In general, such a loss
prevents us from obtaining precise control of u in a way similar to [33]. In the
parameter regime specified in Theorem 1.1, however, we will show that (1.4) is a
suitable perturbation of a static problem (1.6), which actually has a velocity law that
can be analyzed with tools developed in [33]. Thus, we arrange the proof into the
following steps.

Step 1. Study of static problem (1.6). We first discuss the intuition of deriving
the static problem (1.6). We start with dividing on both sides of (1.4b) by B. This
yields

%(@u +u-Vu) —Au+ %szgp(o, nT, divu=0.

In the regime of large B, it is natural to treat the term %(atu—l—u-Vu) perturbatively.
In fact, it is reasonable to guess that the following velocity law dominates the velocity
evolution:

(1.5) ~Au+ VP =gp(0,1)T, divu =0,

where we write P = B~!'p. We remark that the scaling B~! in front of the pressure is
irrelevant due to incompressibility. This motivates us to first understand the following
system, which we will later refer to as the static problem:

(1.6a) Oip+u-Vp—Ap+div(pV(=Ax)"Hp— pm)) =0,
(1.6b) —Au+Vp=gp0,1)", divu=0,
(1.6¢) 82;)’89 =0, uz)an =0, dauiloq =0, p(0,z) = po(z) >0.

We remark that we do not specify the initial datum for w. Indeed, the problem (1.6)
is closed by itself due to a remarkable property of (1.6b)—(1.6¢) that one may reduce
them to the compact form

(1.7) u=—gV*+(=Ap)~2dp

thanks to Proposition 2.2. Here, —Ap denotes a homogeneous Dirichlet Laplacian,
and (—Ap) 2= (-Ap)~to(~Ap)~t. This renders no degree of freedom over choos-
ing the initial datum for » in problem (1.6). We will work with the more convenient
form (1.7) instead of the original formulation.

We also remark that the static problem (1.6) is reminiscent of the Keller—Segel
equation coupling to Darcy’s law studied in [33], whose velocity law is given by

(1.8) u=gV*+(~Ap)~toip.

In [33], the authors exploited an anisotropic mixing effect that is sufficient to prevent
chemotactic blowup when p achieves a large L? norm. However, the velocity law (1.7)
yields a more regular fluid flow. The extra regularity induces a weaker mixing effect
comparing to (1.8). To remedy this issue, we introduce a large g so that the flow has
large amplitude to generate sufficient mixing effect. This treatment differs our work
from [33]. In the large amplitude setting, we can achieve a crucial norm stabilizing
property of (1.6). That is, the L? norm of p stabilizes around a level Ny, whose
size only depends on the initial datum py in the regime of g sufficiently large. The
abovementioned property is formalized in the statement below.
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PROPOSITION 1.3 (norm-stabilizing property). Consider problem (1.6) with non-
negative initial datum py € H*. Assume that to > 0 is inside the lifespan of the unique
regular local solution p(t,x). Then, there exist No = No(pm, ||po — pmll2), a time
T. =T« (No, pm), and go := go(No, pm) > 0 such that the following statement holds: If
o(to) — pml|22 < 22, then, for all g > go, the regular solution p(t,z) can be continued
in interval [to,to + Ty] with estimate

(1.9) sup |[p(t) = pmll72 < No.
te[t07t0+T*]

Moreover, there exists a time instance T € [to + %,to +T.] such that

No
3

We will devote section 4 to the proof of this key result. As a direct consequence,
we will also see that the static problem (1.6) is globally regular.
Step 2. Continuation argument. In fact, one may view Proposition 1.3 as a
damping mechanism induced by the static problem (1.6). Keeping in mind that the
full problem (1.4) is a perturbation of (1.6), we employ a bootstrap argument to show
that the solution to the full problem is L2-close to the solution of the static problem for
all times. Fixing initial condition py and ug, we choose large Ny as in Proposition 1.3.
Define 7g to be the largest time such that the following bootstrap assumption holds:

(1.10) 10(T) = pul32 <

(L11) sup_[[p(t) — pmllZ2 < INo.
0

Our goal is to prove the following improved estimate.

PROPOSITION 1.4. Consider initial data py € H' that are nonnegative and ug €
V. There exists a couple (g1, B1) = (91(Pm, |0 — pmll£2)s B1(Pm, P00 — pm L2, [|uoll1))

2

such that, if g > g1, B> B1g*e? , the following improved estimate holds:

(1.12) sup_[[p(t) — pml2z <5No.
0<t<To
The main ingredient of this step is based on various nonlinear estimates pertaining
to the Navier—Stokes equation equipped with Lions boundary conditions. We devote
section 5 to the proof of these estimates as well as that of Proposition 1.4.
Step 3. Closing the proof of Theorem 1.1. In the final step, we finish the proof
of Theorem 1.1 using estimate (1.12).

Proof of Theorem 1.1. Using Proposition 1.4 and regularity criteria in Theo-
rem 3.3, [0,7p] is both open and closed. This implies that 75 = oo, and we have
obtained global existence of (1.4). 0

1.3. Organization of the paper. The paper is organized as follows. In sec-
tion 2, we introduce notations and conventions used throughout this paper. We will
also lay out a functional-analytic framework for studying the Stokes problem equip-
ping the Lions boundary condition. In section 3, we state the local well-posedness of
the full system (1.4) and the static problem (1.6); we also show corresponding L?-
based regularity criteria in the same section. In section 4, we study the static problem
(1.6) and prove the key Proposition 1.3, from which the global well-posedness of (1.6)
follows. In section 5, we perform nonlinear estimates and prove the improved estimate
(1.12). That is, we prove Proposition 1.4.
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2. Preliminaries.

2.1. Notation and conventions. We will denote the usual L? norm by || - || z»
or || - |lzr(). The second notation will be adopted if we would like to emphasize
the domain. Similarly, we will denote the Sobolev H® norm by || -||s for s > 1.

We define the space HE(€) to be the completion of C'°(2) with respect to norm
| - ||1 and consider its dual space Hy (). Moreover, the following equivalence is

standard:
1/2
£y =C ([ 12017 1a)
Q

where C' is a constant that only depends on domain . We also recall that Ap
denotes the homogeneous Dirichlet Laplacian. We simply regard C' =1 because the
exact value of this constant is inessential.

Recall the mean of p on Q: p,(t) = ﬁ Jo p(t,x)dz. We remark that pp,(t) is
nonnegative and a conserved quantity along evolution given the initial datum py being
nonnegative due to a parabolic maximum principle and the divergence structure of
the Keller-Segel equation (see Proposition 4.1 for the proof of this fact). Thus, we
will omit the time dependence of the mean and write p,,.

We also consider the following decomposition to any function p € L?(Q) that
would play a crucial role in our analysis of the static problem: We write p = p+ p,
where

_ 1 ~ _

plz) = o / p(z1,22)dz1, p=p—p.
mJr

Note that p is exactly the projection onto the zeroth mode corresponding to direction

x1, and p is the orthogonal complement. We remark that p— p,, and p are orthogonal
in L?(Q):

/. (ﬁ(12) - pm)ﬁ(l’lsx2)d$1d$2 =0.
JQ

One can connect the 1D and 2D L? norms for p — p,, by a simple relation |p —
pmll720) = 2715 = pmllF2(0,x)- In the rest of the paper, we will only use the 1D L?
norm for p. We always refer to the 1D L? norm when we write ||p — pp || 22

We will denote a universal constant in the upper bounds by uppercase letters and
that in lower bounds by lowercase letters. Constants without subscripts (i.e., ¢, C,C)
are subject to change from line to line. Constants with subscripts (i.e., ¢;,C;,C;)
are fixed once they are chosen. All such constants mentioned above only depend on
domain Q by default. We will also use the notation C(X) to denote a constant C'
depending on quantity X. For two positive quantities X, Y, we write X <Y to
mean that X < CY for some universal constant C' that might only depend on domain
Q. X 2Y is similarly defined. We will use [;, i € N to denote terms that will be
estimated; this notation will be local to each lemma and will be reused in the proofs
of other lemmas. Lastly, we also use summation convention. That is, the repeated
indices are summed over.

2.2. Steady Stokes equation with Lions boundary condition. In this sub-
section, we introduce suitable functional-analytic settings for our study of the Stokes
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equation equipped with the Lions boundary condition. We shall first study the fol-
lowing static Stokes equation and investigate its well-posedness:

—Au+Vp=f in Q,
(2.1) divu=0 in €,

uzloq =0, Oaui|aq = 0.
In particular, we will derive suitable elliptic estimates similar to those satisfied by
the classical Stokes operator that corresponds to the no-slip boundary condition for

velocity (see [16]).
We introduce the following function spaces following the spirit of [39, 12]:

H= {veL‘Z(Q) x L*(Q) : dive =0, / zzl(a:)d:z:—O},
JQ

V= {veHl(Q) x HY(Q) :divv =0, va|gq =0, / Ul(:zr)dxzo},
Q

W={veVn(H*Q))?:dvi|sq =0},

where we equip H with L? topology, V with topology induced by the inner product
(u.v)v = [, Osu;divjde, and W with H? topology. For u € V, the following Poincaré
inequality holds.

PROPOSITION 2.1. Let u € V. Then, the following estimate holds:
(2:2) lull2 < CplIVul| L2,

where Cp is a positive constant that only depends on the domain 2.

Moreover, we have the following well-posedness and regularity result concerning
(2.1).

PROPOSITION 2.2. Assuming that f € H, then (2.1) admits a unique solution
u € W with estimate

(2.3) l[ull2 < CILfIl 2
In fact, u assumes the following explicit formula:
(2.4) u=V*(=Ap)~*(daf1 — D1 fa),

where V+ := (—0,01). In addition, if f € H* N H, s > 1, we have the following
improved regularity estimate:

(2.5) [ullst2 < CIflls-

We delay the proofs of the propositions above to the appendix.

3. Local well-posedness and regularity criteria. In this section, we show
the local well-posedness for regular solutions to problems (1.4) and (1.6) and state
L? regularity criteria for both problems. We start with giving rigorous definitions of
a strong solution and a regular solution to both the full system (1.4) and the static
problem (1.6).
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DEFINITION 3.1.
1. Given initial data po € H', ug € V, we say that the pair (p(t,z),u(t,z)) is a
strong solution to (1.4) on [0,T], T >0 if

peC[0.T); HYY N L2((0.T); H?), w € C°([0,T]; V)N L3((0,7); W),
dpe L*([0,T); L?), 8yu € L*([0,T); H),

and (p,u) satisfies (1.4) in the sense of distribution. Moreover, a solution is
regular if it is strong and, additionally,

peC®((0,T] x Q), weC®((0,T] x Q).

2. Given initial datum py € H', we say that p(t,z)is a strong solution to (1.6)
on [0,T], T >0 if

peC([0,T); H')NL*((0,T);: H?), 9,pe€ L*([0,T);L?),

and p is said to be regular if it is strong and p € C*°((0,7T] x Q).
With the definition above, we state the following local well-posedness result.

THEOREM 3.2. Given initial datum po € H' (resp., po € H',ug € V) such that
po >0, there exists Tioe = Tioc(po) >0 (resp., Tioe = Tioc(po) > 0) so that there exists
a unique strong solution p (resp., (p,u)) to (1.6) (resp., (1.4)) on [0,T}oc) (resp.,
[0, Tioc)). Moreover, the strong solutions are regular.

We conclude this section by stating the following regularity criteria for both (1.4)
and (1.6).

THEOREM 3.3. If the mazimal lifespan T of the strong solution to (1.4) (resp.,
(1.6) ) is finite, then necessarily,

t
(3.1) lim/ 1o(t) = pralZ2dt = oc.
t—T 0

We briefly comment on the proof of Theorem 3.2 and Theorem 3.3, as the details
follow almost verbatim to section 2 of [32]. To prove the existence part of Theorem 3.2,
we use the standard Galerkin’s method to construct a solution to both (1.4) and (1.6)
since €2 is a compact domain. Hence, it suffices to show L?-based a priori estimates as
in [32]. As for the a priori estimates of (1.4), all estimates in section 2 of [32] carry over.
The only extra estimate one has to make is on the advection term w - Vu because we
study the Navier—Stokes equation in our case. The treatment of such terms, however,
is standard in the study of well-posedness of 2D Navier—Stokes equations. We refer
interested readers to the proof of [7, Theorem V.2.10] for related details. As for the
a priori estimates of (1.6), we repeat the same proof as we do for (1.4) with the only
change of applying Proposition 2.2 whenever we see ||ul|2. Finally, uniqueness follows
from the aforementioned a priori estimates that we have derived from the proof of
existence in [32]. Higher regularity follows from standard parabolic smoothing. This
ends the proof of Theorem 3.2.

The proof of Theorem 3.3 is the same as that of [32, Theorem 1.2] by studying
the L? estimate of the p equation. The reason why the proofs of [32, Theorem 1.2] can
be carried over is that [32, Theorem 1.2] only use divu =0, p nonnegative, and ||p|| .
nonincreasing. These properties hold in both (1.4) and (1.6) (see Proposition 4.1).
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4. Analysis of the static problem. In this section, we perform a detailed
analysis of (1.6), which serves as a starting point prior to the study of the full problem
(1.4). In section 4.1, we establish a series of a priori estimates concerning both cell
density p and velocity field u of the static problem. We will further show a Nash-
type inequality that elucidates an anisotropic mixing effect in the regime of large g.
Finally, we prove Proposition 1.3 in section 4.2.

4.1. Key a priori estimates. As a first step, we establish several key energy
estimates concerning the system (1.6). We first prove several a priori estimates for
the Keller—Segel equation advected by a general incompressible flow. Then, we focus
on showing estimates corresponding to the fluid equation (1.6b), which turn out to
be crucial in establishing the norm-stabilizing property and global well-posedness of
(1.6).

4.1.1. Estimates for a general Keller—Segel equation with advection. In
this section, we derive appropriate estimates for the Keller—Segel equation advected
by a general incompressible flow u, which may or may not depend on the cell density
p itself:

Oip+u-Vp—Ap+div(pV(=An) " (p— pm)) =0,

(4.1) ‘
p(0,) = po(x) > 0, Daplog = 0.

Here, u is a smooth, divergence-free vector field that satisfies no-flux boundary con-
dition (i.e., uz|sn =0). We allow such a generality in (4.1) so that all results in this
subsection hold for both the static problem (1.6) and the full problem (1.4). This
is because an incompressible, viscous flow satisfying the Lions boundary condition
necessarily satisfies all requirements prescribed in (4.1).

Our first result reveals that (4.1) conserves mass.

PROPOSITION 4.1. Assume that p(t,x) is a regular solution to (4.1) on [0,T]
with u being C1 and divergence-free. Then, p(t,x) >0 and ||p(t,-)||zr = ||lpollzr for all
te[0,T].

Proof. First, p(t,z) >0 for all t € [0,7] comes from the facts that pp >0 and the

parabolic maximum principle. To prove the conservation of mass, we use nonnegativ-
ity of p(t,x) to obtain that

Lot e =5 [ ptt.a)da
= [ (Vo g v (-B) (o= o)) )z =0,

where we integrated by parts and used that u is divergence-free, us|spq = 0, and
02p]a00 = 0. 0

The next result, originally proved in [33], gives two variants of L? energy estimates
of (4.1), which play a major role in establishing the norm-stabilizing property of
(1.6). We point out that [33, Proposition 4.2 and Corollary 4.3] are proved where u is
governed by Darcy’s law (1.8). However, their proofs only used that u is divergence-
free and satisfies the no-flux boundary condition. Hence, the proof of the result below
follows verbatim from that of [33, Proposition 4.2 and Corollary 4.3].

PROPOSITION 4.2 (essentially Proposition 4.2, Corollary 4.3 of [33]). Assume
p(t,x) to be a regular, nonnegative solution to (4.1) on [tg,to+T] for some to >0 and
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T >0. Then, for any t € (to,to+1"), there exists a constant Cy depending only on the
domain Q such that

d
(4.2) Tl = pmlize + 10l < Collo = pmllzz + 20mllp = pmlliz-

Furthermore, if ||p(t,") — pml|[22 > pm/4 for all t € [to,to + T, then there exists a
positive constant Cy depending only on the domain Q such that

d
(4.3) Do~ pullza + 1913 < Cullo — ot
and
(4.4) o= pml2e < — = 15— oS + Gl
: dt LR = Ot milL L

for any t € [to, to + 1.

The next proposition shows that one can upgrade the L{° L2 control of p to an
L LS° control.

PROPOSITION 4.3. Let p(t,x) be a regular solution to (4.1) on [to,to+T) for some
to >0 and N > max(1, p,) be an arbitrary number. If ||p(t, ) — pmllL2 < 2N for all
t € [to,to + T, then we also have that sup, <;<; 7 |p(t,-) — pml L~ < CN?, where C
is a domain dependent constant.

Proof. The proof follows verbatim from that of [40, Proposition 9.1], where it is
handled for T2. We can do this since all integrations by parts do not introduce any
boundary terms due to the Neumann boundary condition that p satisfies as well as
the no-flux boundary condition satisfied by wu. 0

Finally, we establish a corollary that shows a doubling time for the L? norm
1o~ pmll7z-

COROLLARY 4.4. Suppose that p(t,x) is a reqular solution to (4.1) on [to,to+ T
for some to >0 with T >0 and N >0 being an arbitrary number. If ||p(to) — pm||32 <

. -1 1
N, then there exists a time Ty (N, py) = minlV_pp ) g min(N Y p 1) such that

(4.5) sup p(t) = pml7> < 2N
to<t<to+T«(N,pm)
and
tO+T*(N»p’m)
(4.6) / IV p(t)|22dt < 2N.
to

Here, Cy 1is fized as in Proposition 4.2.

Proof. To show (4.5), we employ a standard barrier argument: Suppose that there
exists a time 7 € [to, to+T%(N, pp)] such that ||p(7) = pp |22 = 2N and |[p(t) — pm || 72 <
2N for any t € [tg, 7). Integrating (4.2) from t to 7, we have that

T T
OIN = [|p(r) — plZe < N + 2p,n / 10(5) — pualZadi + Cy / 19(5) — prallLads
to to
<N +4p,,NT, + 4AN?CyT, < 2N,

where we used the definition of 7 in the final inequality. However, this yields a
contradiction.
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To show (4.6), we integrate (4.2) from tg to tg + Tx(N, ppm), which yields

to+Tx (fV,pm)
lo(to + T (N, ) — prm2s + / V()22 dt

to

to+Tu(N,pm) ) to+Tx (N,pm) .
<N+2, I6(6) = 3t + Co [ 10(t) — poll4zdt
to to
N CoN
<N +2p,,(2N)T, 4+ Co(4N*T, < N + + < 2N.
= pm(2N) o(4N7) 2(1+Co) ' 2(1+ Co)
The proof is thus complete. 0

4.1.2. Estimates for static problem (1.6). Now, we turn to some estimates
concerning the system (1.6), which crucially exploit the structure of the Biot—Savart-
type relation (1.7). As our first step, we prove the following key estimate, which
displays the smallness of a mixing-type norm in the regime of large parameter g.

PROPOSITION 4.5. Let p(t, ) be a reqular solution to (1.6) on [ty,to+T] for some
to >0 and T > 0. Let N >0 be an arbitrary number. If ||p(to) — pm |72 < N, the
following bound holds:

tO+T*(N7pm)
(4.7) / 1(=Ap) 1 0rp|2adt < Clom)g ™"

to

Proof. On one hand, we compute that

to+Tu(N,pm) to+T%(N,pm)
/ I(~A0) 0rpltade = [ [ (-80)01p(80) " 0spadt

to to Q

to+Tx(N,pm)
_ / / 01 p(—Ap) 201 pdadt

to Q

t0+T*(1V7pm)
_ / / 0 (—Ap) 20, pdad
to Q

1 t0+T*(N,Pm)
(4.8) :_/ /pugd:vdt.

g to Q
Note that we have used the self-adjointness of (—Ap)~! in the second equality, in-

tegration by parts in the third equality, and (1.7) in the last equality. On the other
hand, we test the p equation of (1.6) by o, which yields

(4.9)
/ pugdx = —/ xo(u-Vp)dr :/ xo (Opp — Ap + div(pV(—ANn) " p — pm))) da
Q Q

Q
3
= Zli’
=1

where the first equality follows from integration by parts and the no-flux boundary
condition satisfied by u. Integrating in time from tg to tg + T%(N, pn) and using
Proposition 4.1 as well as the bound (4.6), we estimate time integrals of I, Is by
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t0+Tx (N, pm) .
[ ] = | [ 2a(plto + T (N, ) = plta))d| < Clpull i1 Com,
Jto JQ

o+ T (N, pm) o+ T (Nopm) [
Jto Jito JQ

to+To(N,pm) 1/2
< OT. (N, p) V2 / Vo2t | <cC.

to

Here, we used the definition of T.(N,p,,) and (4.6) in the final inequality of the
I, estimate. To estimate the term I3 in (4.9), we use Sobolev embedding, elliptic
estimates, and interpolation inequality to obtain that

I3 :/QP32(—AN)_1(P = pm) < lolle2102(=AN) " o — o)l 2

<(lp = pmllz2 + V27 pm)[102(~AN) " (p = pm)lwr.e/s

< C(Hp— Pm||L2 + v 27Tpm)||p - pmHLG/5

1/3
<Cpp = pmll 152 Nl0 = iz + pim)

=C(pY[P N6 + p23N?/3).
Then, we may estimate the time integral of Az by

to+Tx (N, pm)
/ I3dt <Cmin(N~1 p 1) <p?,{3N1/6 + pf,{3N2/3)

to

B A s N<L ooy
— pfr{BN_S/ﬁ'i‘pgr{BN_l/B, N>1 — mj:

Collecting the estimates above yields

to+Tu(N,pm)
/ / pusdzxdt
to Q

(4.10) <C(pm),

Therefore, by (4.8),

to+T% (N,pm)
/ I(~Ap) " Bupl2adt < Clpm)g ™",

to
which concludes the proof. 0

Note that the norm ||[(=Ap) =10 p| 12 could be viewed as a quantity that encodes
information on mixing. This is because, formally, this quantity has the same scaling
as the classical mix norm ||p — pp || Hit (see [34], for example). Since, generally, the
smallness of ||p— pm ||z 1 induces enhanced dissipation by creating large gradients, it
is tempting to uncover a similar effect by exploiting the smallness of ||(—=Ap) =01 p| 2
in our setting. In order to achieve this goal, we follow the approach taken in [33],
which studies a similar quantity ||0;p||;-1. The technical ingredient that we need is
a Nash’s inequality with improved coefficient; let us recall the following result from
[33], which is valid for any function p € L?([s,7], H'(£2)), 0 < s <71 < 00.
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PROPOSITION 4.6 (Corollary 6.2 of [33]). Assume that, for some K >0, there is

(4.11) [ onpl e <567 [z

Then, there exists a constant C >0 depending only on  such that

r r 1/2 . 1/2
wi [ ([pga) ([ ivagaa)

Note that the original statement in Corollary 6.2 of [33] only considers the case
when K > 1. However, one could extend the result for any K > 0 in a rather trivial
way: For K € (0,1), we simply invoke the original Nash’s inequality for p without
using the assumption (4.11). The fact that K~'/* > 1 immediately yields the result.

With the proposition above, we may conclude the following crucial lemma, which
precisely characterizes the creation of large gradients when the norm || (—Ap) =18 p| 2
is small in an appropriate sense.

LEMMA 4.7. Fiz g > 0. Assume that there is some constant C >0 so that

r r 2
(4.13) [ W0 ouplear < ([ i)

Then, the following estimate holds:

r 3 r —4/5 , o 8/5
w1 [ IVl Co ( / ||p—pm||%1dt) (/ IﬁI%zdt)

for some constant C >0 that only depends on the domain Q0 and constant C' appearing
in (4.13).

Proof. Using the definition of the Hj ! norm and the Cauchy-Schwarz inequality,
we have that

||51ﬁ||§;51 Z/Qalﬁ(—AD)_lalﬁde 0100l 2 |(=Ap) 1 pl| 2
< |IVpllL2ll(=Ap) " d1pll L2,

where we used the fact that 0,p = 0;p. Integrating the above inequality from s to r
and applying the Cauchy—Schwarz inequality again, we have that

r r 1/2 , 1/2
[ 10t i< ([ 1an) ouplaae) ([ 1vptzea)

, 1/2 ,r
< O1/24=9/20 (/ |Vp|2L2dt) /Ilﬁllizdt-

Then, an application of Proposition 4.6 via replacing N by C~1/2¢49/20
(ST IVpl|22dt)=*/2 > 0 implies (4.14) after some rearrangements of the inequality. 0

4.2. Norm-stabilizing property of the static problem. With the a priori
estimates set up in previous sections, we are ready to prove the norm-stabilizing
property (i.e., Proposition 1.3), from which the global existence of the static problem
(1.6) follows.
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Proof of Proposition 1.3. We first fix our choice of Ny and T} as follows: Choose
Ny so that

(4.15) No > max{1,2pm,2po — pmll72},
(4 16) NO S 32301p;1n(15/8 + 20160)
. il 460 )

and set T, = ¢p min(2N§1,pm) = QCoN(;l. Recall that Cy,Cq are universal constants
fixed in Proposition 4.2; ¢q is also a universal constant fixed in Corollary 4.4. More-
over, we fix g > go(No, pm ), where the threshold gg will be chosen sufficiently large in
the course of the proof.

We first observe that, by Corollary 4.4, given ||p(to) — pm||3: = No/2, we have
that

to+Tu
(4.17) / Vpl|22dt < No,

to

and in particular, (1.9) holds.

We thus focus on the proof of (1.10). Assume, for the sake of contradiction,
that [[p(t) — pml|22 > No/8 for any t € [to+ L=, to +Ti]. For g > go, we discuss the
following dichotomy.

Case 1: Small ||p||Lz2.

to+Tx
(4.18) [ alBade < cog .
to+T. /2

In this case, we first observe that, due to the contradiction assumption, there is a
lower bound

tot+T. T.Ny Co
lp = pm|Fadt > === .
/to-i-T*/Z L 16 16

Combining with (4.18) and using orthogonality between p and p, we have that

ot 2 1 1/20 Co
419 5 polZadt> [ — — g~ > @
(4.19) /W*/Q”" ol _<16 g >Co_32

if we choose
(4.20) go > 32%0.

On the other hand, an application of Holder’s inequality implies that

to+T. 7\ 2/3 to+T. 1/3
[ 1ol < (7) [ Np )
t0+T*/2 to+T./2

Combining the inequality above with (4.19), we have that

3
to+T. 4 to+Tx 4¢3 4CON2
(4.21) / IIﬁ—meIsztZ—/ 17— pmllFedt | > oais = —oat

to+T./2 g T2\ Jiorr.)2 v 32372 323

Now, we shall invoke energy estimate (4.4) and integrate the differential inequality
from T} /2 to T.. Note that we can do this since ||p(t) — pm |32 > No/8 > py, /4 for any
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t€ [to+ L, to + T.] by our contradiction assumption and our choice of Ny in (4.15).
Therefore, we arrive at

lp(to +T:) = pmllZ>

to+Tx to+Ts

1 _ .
< ||/)(t0+T*/2)_/)m”2L2 Ot / ||/)_/)m||%2dt+ol/ ”/)H%ﬂ#
1Pm Jto+T./2 to+T. /2
N lo—pmlls [ 117
<2Ng— ———N; + C1 sup P — Pm / o||72dt
3230 p8, "0 to+T. /2<t<to+T. /2 L2 to+T. /2 L
4C0 2 ~1/2 4(,’0
<2Ng— ———N, 2C1 co N /20 < 9Ny — ——2 N2 1+ 20 ¢coNo.
=20 = 5, pa Mo +2C1coNog =20 50 pn Y +2C1coNo

Here, we used (4.21) in the second inequality, (4.18) in the third inequality, and
g > go > 1 in the last inequality. Then, by (4.16), a straightforward computation
yields

4c N
2 0 2 0
||p(t0 +T*) — pm||L2 S 2N0 — m]vo + 201CON0 < ?,
which is a contradiction to our assumption.
Case 2: Large ||p||L=-
to+Tx

(4.22) / 15|22t > cog~1/?0.

to+T./2

In this case, we first use estimate (4.7) to obtain that
to+Tx to+Tx 2
[ A ot <Clpmg™ < Clomle s ([ alfaat )
Jto+T./2 Jto+T. /2
Then, we can invoke Lemma 4.7 with C = C(py,)cy 2 to conclude that

(4.23)

to+T. to+T. —4/5 1 ot T 8/5
/ IV pl22dt > Cprm) g%/ / 1512, dt / 15112t
to+T./2 to+T./2 to+T./2

> Clpn) 15 g°/0g 2% = C(p )Ny * /1.

Here, we applied Proposition 4.1 in the first inequality, applied (4.22) in the second
inequality, and used the definition of 7, in the final inequality. Now, choose gg
sufficiently large that

(4.24) C(pm)NJ*g"/10 > Ny,
Then, together with (4.23), we would arrive at fttoori*p [Vpl32dt > No. However,

this contradicts the a priori estimate (4.17). Up until this point, both cases in the
dichotomy lead to a contradiction, and we have completed the proof. ]

Remark 4.8.
1. The specific choice of parameters Ny, Ty, and gy are summarized as follows:
We first fix Ny according to (4.15) and (4.16), and we set T\ = 2co N,y . After
Ny, T, are fixed, we choose go sufficiently large that (4.20) and (4.24) hold.
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2. We also remark that the choice of No > 2[|pg — pm |32 does not play a role in
the proof of Proposition 1.3. However, it is a rather technical choice that will
play a role in the proofs of Corollary 4.9 and Proposition 1.4, which rely on
a barrier argument.

Note that we can conclude the global well-posedness of system (2.1) from Propo-
sition 1.3.

COROLLARY 4.9. For arbitrary nonnegative initial data py € H', there exists
go = go(pm) > 0 sufficiently large that the solution of the static problem (1.6) is
globally regular for all g > go.

Proof. Let go, No be chosen as in Proposition 1.3 (and therefore, T is fixed). Let
to > 0 be the first time such that ||p — pm||2. = No. If to = oo, then this means that
p(t) = pml|22 < Ny for all ¢t >0 because Ny > ||po — pm||%2. Hence, by the regularity
criterion stated in Theorem 3.3, we are already done. We may then suppose that
to < oo. By Proposition 1.3, there exists Ty € [to + Tx/2,to + Ty such that ||p(to +
T1)—pm||32 = No/8 < No. Moreover, we know that supg<,<, 7. [2(t)—pmlF. < 2No.
Then, let 1 to be the first time after to+77 such that ||p—pm %2 = No. Repeating the
argument above, there exists 15 € [t1 4+ 1% /2,t1 + T%] such that ||p(t1 + 1) — pm |22 =
No/8 and sup; 1, <i<t,+7. 12(t) — pm |72 < 2No. Repeating such steps indefinitely
and using T} > 0,

sup [|p(t) = pim |72 < 2N < o0,
t>0

which implies global well-posedness by the L? criterion in Theorem 3.3. 0

5. Analysis of the full Keller-Segel-Navier—Stokes problem. In this sec-
tion, we study the full Keller-Segel-Navier—Stokes system (1.4), and we prove Propo-
sition 1.4. For the readers’ convenience, let us recall the system (1.4) here:

(5.1a) Bip+u-Vp—Ap+div(pV(-Ax) " p— pm)) =0,
(5.1b) diu+u-Vu— BAu+ Vp=Bgp(0,1)T, divu=0,
(5.1c) 92| 5o = 0, u2lan =0, drur|aq =0,
(5.1d) p(0,2) = po(z) >0, u(0,z) = up(x).

As pointed out in section 1.2, we will prove Proposition 1.4 with bootstrap as-
sumption (1.11). We will do so by appropriately setting up a comparison scheme
between the full problem (5.1) and the static problem (1.6). By examining Propo-
sition 1.3 more closely, we observe that the damping effect induced by the static
problem (1.6) becomes significant only when the L? norm of the cell density becomes
sufficiently large, i.e., Ny as specified in the statement of Proposition 1.3. Therefore,
in the case of the full problem (5.1), we decompose the full solution (p,u) into the
static problem dynamics (ps,us) and the remainder term (r,v) as the L? norm of p
turns to the level of Ny. We then show suitable estimates for the remainder term
(r,v) and show that they can be dominated by the damping effect introduced by the
static part.

For now, given initial data (pp,up), we fix Ny and T, as in Proposition 1.3.
Namely, we choose N so large that (4.15) and (4.16) hold, and then set T\ = 2¢o N, '
Moreover, the thresholds g1, B; > 1 are chosen to be sufficiently large in the course of
our proof, whose exact values will be summarized in Remark 5.8. For the rest of this
section, we assume g > g; and B > By by default.
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We organize this section in the following way: In section 5.1, we prove preliminary
estimates of various derivatives to both p and u given bootstrap assumption (1.11). In
section 5.2 and section 5.3, we prove suitable estimates for u-Vu and 0,u, respectively,
which are crucial in closing the bootstrap argument. In section 5.4, we set up a
comparison scheme in between the full problem (5.1) and the static problem (1.6) so
as to close the bootstrap argument.

5.1. Preliminary estimates. For the rest of this section, we will consider a
solution (p,u) to system (1.4) with initial data (pg,uo). We begin with several pre-
liminary estimates for p, u and some of their derivatives. Such estimates will be
instrumental in later estimates of dyu and v - Vu under the bootstrap assumption.
First, we introduce a time-integrated bound for Vp on any time interval of scale 7.

LEMMA 5.1. For arbitrary to € [0, 7o) and given bootstrap assumption (1.11), we
have that

to+T«/9
(5.2) / Vpl|32dt < 18 Np.

to
Here, we recall that [0, To] is the bootstrap horizon.
Proof. This lemma follows directly from applying Corollary 4.4 with M =9N,. O

We then give an estimate of u that is uniform over the time interval [0, To + 7% /9],
which is slightly longer than the bootstrap horizon. In the meantime, we also show a
bound on Vu on an interval of scale T.

LEMMA 5.2. Given bootstrap assumption (1.11), the following estimate holds:

(5.3) sup u(t)l[72 < C(pms [luollL2)g” No-
0<t<To+T, /9

Moreover, for arbitrary to € [0, To], we have the following gradient bound:

to+Ts /9
(5.4) / IV u(s)|22ds < Cpm. 0] 12)g

to

Proof. Fix t €[0,To+ Tx/9]. Testing (5.1b) by u and using the Cauchy—Schwarz
inequality, we obtain that

1d ' ' '
(5.5)  =—|lull3:+ / ujOju;uide + B / uAudr = By / puzdx < By||pllrz vl Lz
2dt Jo Ja Ja
To treat the second and third terms on the left-hand side above, we use divu =0 and

uz2|sq =0 to deduce that

1 2 1 . 2 2|27
ujojuude = = [ w;0;lul*de=—< [ divulul“de+ [ us|ul dxy =0.
Similarly,
m To=T
/ uAudr = // u;0;0;u;dxodr, = —||Vu|\%2 + / u; 021 ’ dxq
Q T Jo T 22=0

To2=T0
==Vl + [ (s +waou)|” oy ==Vl
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where we used the Lions boundary condition in the final equality. Combining the two
identities above with (5.5), we have that

L

2dt
On the other hand, we apply the Poincaré inequality (2.2) and the Cauchy—

Schwarz inequality to (5.6), which yields the following differential inequality:

d B
S llull3e < —ZlulZs +4CBg ol

(5.6) |ullZ> + B[ Vul[L2 < Byllpl 2]|ull 2.

Furthermore, invoking Duhamel’s formula, we deduce from the above estimate that
t

(5.7) a3 < e Eunlf +4CBg? [ B o(o) ads
0

for t € [0, 7o + T./9]. To estimate (5.7), we first use bootstrap assumption (1.11) and
Corollary 4.4 to conclude that

sup  [|p(t) = pm |72 < 18Ny
0<t<To+Tx/9

Then, we deduce from (5.7) that

t
lu(®)l|Z2 < lluollZ2 +4CBg® < sup  |[p(t) = pm 72 + 27T2an> / e ¢ (=9)ds
0<t<To+Tx/9 0
< ||uol22 +4CBg* (18 Ny + 272p2) - B~(1 — e )
< JluollZ2 + C(pm)g* No < C(pm l|uol £2) g No,
where the third inequality follows from p?n < % pmNo due to our choice of Ny > 2p,,.
We also used g, Ng > 1 in the final inequality. This concludes the proof of (5.3).
To show (5.4), we start with (5.6) to deduce that

1d
5 g lullEz + BIVuliz < Clpm. luoll2) Bg(18N + 27, )/ 2g Ny 2
< Cpm. luo | 2) Bg* No,

where we invoked the bootstrap assumption and (5.3) in the second inequality. Fixing
to € [0, To] and integrating the above from tg to to + Tix/9, we obtain that

to+T%/9
B/ IVu(t)|[72dt < ||uol|72 + C(pm. |uollL2)Bg* No - coNg *

to
< C(pm, |luollr2) By,

where the last inequality holds as g, B > 1. Now, the desired estimate follows from
dividing on both sides of the above inequality by B. 0
We conclude this subsection by an estimate on the time derivative of cell density p.

LEMMA 5.3. Assume the bootstrap assumption (1.11). For any to € [0,To|, we
have that

to+T./9
(58) [ Mol vt < o ol 12)5N3:

to
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Proof. Picking arbitrary ¢ € H} and using (5.1a), we have that

/ O¢pipdx
Jo

< ‘/ u - Vppdx
Ja
3

S
i=1

Using the incompressibility of u and integrating by parts, we first see that

—|—‘/ Appdx
Ja

" ‘ [ (a9 (2w (o pa s

I = <llp = pmllzoellull 2] Vel L2

/Q u-V(p— pm)dz

Applying integration by parts in a similar fashion and using Sobolev embeddings as
well as Holder’s inequality, we also have that

Iz=’/QV,0-V<,0d:v <|IVoll2IVell L2,

Ii=|| pVe: V(=AN)" o = pm)dz| < [pllallV(=AN) T (o = pm)ll 24| Vol 2

1/2

3/2
<||P||L4||ﬂ 2 Vel < [l o = oI35 191 12

Combining the estimates of I; above and using duality, we conclude that, for any
te [t07t0 + T*/g}a

10epl5y 1 S llp = pmliesllullZe + [ VolLz + llollllp — pmll72
5/2
< Cpm, luoll12) (9 N5 + Ng'?) + VI3
< Clpm, lluollz2)g” NG + IV pll2,
where we used the bootstrap assumption (1.11), Proposition 4.3, and Lemma 5.2 in

the second inequality. Finally, we integrate over [to,to + T%/9] and invoke Lemma 5.1
to conclude that

t0+T*/9 ON 1
/ ||5tP||H 1dt < —=L—-C(pm, [luoll2)g> N + 18No < C(pm, lluollL2)g> N§
to

since g >1 and Ny > 1. 0

5.2. Control of the advection term. In this subsection, we estimate the ad-
vection term u - Vu on any time interval of length 7" in the bootstrap horizon.

LEMMA 5.4. Assume that the bootstrap assumption (1.11) holds, and fix arbitrary
T € (0,70 +T:/9). There exists a constant Co = Co(pm, ||uollzz) such that, for B >
CogNé/2, the following estimate holds:

to+T
(5.9) / l[u- Vu()|[Z2dt < C(pm, [luoll1)g*No(g° NoT + 1)
to

for any to € 0,70+ 1%/9 —T].
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Proof. First, using Holder’s inequality and Ladyzhenskaya’s inequality in two
dimensions, we observe that

1/2 1/2

- Vallze < flull o[ Vull o S lull 22l [ Vul/

1/2 1/2 1/2
<l 32 (el o2 + [Vl o2 ) (| V] 262+ [V 2l 262

3/2 1/2 3/2 1/2 1/2 3/2
= a2Vl 157+ Il 2222l 15+ a2 Vul 3

1/2 1/2
+ ) 2 V| 2 [ V2 52

We show how to estimate the most singular term ||u||1L/22||Vu||L2||V2u||i/22, and the

rest of the terms follow from a similar argument. Using the interpolation inequality
[Vul|2, < ||lul|z2||Aul| 2 for w € W and the calculus Lemma A.3, we have that

(5.10) [ull 22| VullZ2 | Vull L2 < [l 7o ]| Aull7.

Integrating (5.10) in time from ¢y to to + T and using (5.3), we have that

to+T to+T
/ lull 7| Aull72dt < sup HU(UHQH/ [ Au(t)||7-dt
to 0<t<To+T%/9 to

to+T
< Clpm, uoll£2)5* No / | Au(t)|2.dt,
to

we used (5.3) in the second inequality. Proceeding similarly with other terms, we can
conclude the following bound:

to+T to+T
(5.11) / lu V|22t < Cpm, Juol] 12)g* No / | A2 dt.

to to

Thus, to close the estimate, we need to obtain a control of Au over an interval of
length T'. Testing (5.1b) by —Au, we obtain that, for any ¢ € (to,t0 + 1),

1d
(5.12) 5auv«uniz + B||Aul2,
:/(Au)(u-Vu)d:JH—Bg/ pAusdx
Q Q
B
< ||Aul|zz(|u - Vul| L2 + ZIIAUIliz +Bg®|plli> < Cllull 2| AulZ-
B
+ ZHMII% + Bg*|pll-
<C NY21Au2s + 2l Au)Z, + Bg?lpl?
< C(pm, lluollz2)gNy"~ || UHL2+4H ul[z2 + Bg7[lpllz2,

where we used (5.10) in the second inequality and (5.3) in the last inequality above.
Choose

(5.13) B > 4C(pm, o 12)gNe'? =: CogN}/?,

where constant C(p.,, ||ugl|z2) is the one appearing in the last inequality of (5.12).
Plugging (5.13) into (5.12) and rearranging, we have that

d
S 1Vulliz + Bl Aulz. <2Bg?|pll7 <2Bg*(18No +27°p],)

for t € (to,to+T). Here, we used the bootstrap assumption (1.11) and Corollary 4.4.
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Now, integrating from ty to tg + 7', we obtain that
to+T
B/ [Au(t)||F2dt < [[Vuoll 72 + C(pm)Bg* NoT < C(pm, [[uoll)(Bg* NoT +1).
to
After dividing by B,

to+T
[ I8uOladt < o ) (6N + 1),

to

where where we used B > 1 in the inequality. Combining with (5.11), we obtain the
desired result. 0

5.3. Control of 9;u. In this section, our ultimate goal is to show both a
pointwise-in-time and a time-integrated bound on the time derivative d;u. As the first
step, we show an estimate of 0;u near time zero, which is presented in Lemma 5.5. The
fundamental reason that we prove this lemma is rather technical; we do not assume
appropriate compatibility condition on initial datum wug. For such a general datum,
one generally cannot obtain a pointwise-in-time control of ||0;u(0,)||L2 by naively
taking the limit of ¢ — 0 using the equation. (We refer to [22] for a more detailed
discussion on compatible data for parabolic problems.) While control of d;u exactly
at time zero is not available in general, we may instead control ||O;u||z2 at some later
time due to parabolic smoothing. More precisely, we have Lemma 5.5.

LEMMA 5.5. Define a time instance so := comin(||po — pml| 72, pimt), where cq is
fized as in Corollary 4.4. Then, for B > gmax(CoN&N,No), where Cy is defined in
Lemma 5.4, we have that

50
(5.14) / 10cu(t)|[72dt < C(pm, [uoll1) B>g?.
J0

In particular, there exists 1o € (0,5s0) such that

C(pm, l|uoll1) B*g?

(5.15)  [|Bcu(ro)|7: <
S0

=:C1(pm, |lpo — pm L2, |uoll1) B*g>.

Proof. Note that, given (5.14), (5.15) directly follows from Chebyshev’s inequality.
Hence, we focus on showing (5.14). Multiplying d¢u on both sides of (5.1b) and
integrating in space, we have that

(5.16) [|Opu||3 2 +B/ atu-(—Au)dz:Bg/p@tquaz—/Btu(u-Vu)da;.
0 0 o

Since u € W, we can further compute that

1d

2Vl = / 01Oy Dy = / - (—Awyde+ | Bpusdau,dS
Q Q

o0
:/ Ou - (—Au)dz +
Q

:/ Opu - (—Au)dz,
Q

atulaguldS + / atuQaqudS
oN o
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where we used the boundary conditions us|sq = dau1|on = 0 in the third inequality
above. Combining with (5.16) and using the Cauchy—Schwarz inequality, we obtain
the following energy inequality:

bd

|Beuls + 5 =

1 3
IVullZe < 5llovulzz + 7 (B*6*llpllZe + llu- Vulzz) ¢ €0, 0],

Rearranging and integrating in time from 0 to sg, we have that

So
(5.17) Bl Vau(so) |2 +/ 1Byu(t) [2adt
0

3 [0
<BIVulia+3 [ (B IOI: + - Vu) ) .

Invoking Lemma 5.4 with to =0, T = sg, we arrive at
50
| V) B ade < ) Vol Noso + 1.
0

Note that we can indeed invoke Lemma 5.4 here due to sg < Ty and our assumption
on B. Combining this bound with (5.17), we conclude that

S0
/ 18su(t)||72dt < B[ Vuol|72+C(pm. luoll1)(B?g* [ 00— pmlIZ - so+9" N§ s0+9No)
0
< C(pum, luoll1)(B + B*¢* + g Niiso + 9> No) < C(pm, |luoll1) B*g?,
where the last inequality follows from choosing B2 > g>Ng > Ny, as well as the fact
that sg < p;,}. Hence, we have shown (5.14). 0

With the L? estimate (5.15) of dyu near time zero above, we may further derive
the following crucial estimates of d;u up to 7y thanks to the bootstrap assumption
(1.11). More precisely, see Lemma 5.6.

LEMMA 5.6. Assume the bootstrap assumption (1.11) holds. There exists 7o < s
and Bo(pm. ||uoll1) large so that, for any B > Bog?,

(5.18) sup _[|0yu(t) |72 < 5C1(pm, oo — pmll e, uoll) B2g?,

T0<t<To
where Cy is defined in (5.15). Moreover, for any to € [0, To], we have that
to+Tx%/9
(5.19) [ lowledt < Clom ol B,
to
Additionally, if to € [0, To — %T*], then
to+Tx
(5.20) [ It ade < o ol B
to

Remark 5.7. We remark that (5.19) does not follow directly from integrating
(5.18) in time. In fact, doing so will only lead to an insufficient upper bound of size
B%2g?N; .
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Proof. The proof for this lemma is rather lengthy, so we split the proof in several
steps.
Step 1: Energy estimate for d;u. We start with the evolution of dyu. By differ-
entiating (5.1b) in time, it is straightforward to check that Opu satisfies the following
equation:

O*u+ Oyu - Vu+u - Vou — BAdwu + Vop= Bg(9:p)(0,1)T.

Testing by Oyu, using div(d;u) = 0 and the fact that O;u still satisfies the Lions
boundary condition, we have, for arbitrary € > 0, that

ld
2 dt
=~ [ @) @) 0w+ By [ 0updruads

Q Q

<- / (O (By145) Do) + e By |y + C () Bo2 ol
Q

|9pul + B Vol
(5.21)
< [ @) (@yus) Oru)ds + CCBIV Ol + (B Dol

JQ

where we used the Hj—Hy ! duality in the first inequality and the Poincaré inequality
in the final inequality. The use of duality is indeed valid since the Lions bound-
ary condition implies that uo, and thus O;us, satisfies the zero Dirichlet boundary
condition.

To estimate the first term on the right-hand side of the estimate above, an ap-
plication of Ladyzhenskaya’s inequality in two dimensions and the Cauchy—Schwarz
inequality gives

(5.22)
/Q(atu,j)(ajui)(ﬁtui)dr <||Oul|3a || Vel 2 < CllOpue]| 2 (| O] 2 + || VOpul 12| V| 12

B C
< 7 IVowllz: + S0l zz ] VullZe + Clow| Z2 ] Vul 2.

Now, choosing e > 0 sufficiently small in (5.21), combining with (5.22), and rear-
ranging, we have the following differential inequality:

(5.23)

d C
EH&%UH%? < - B|Voull7- + Ellatul\lelvltHQp +C|0pul| 2l Vull 22 + CBg?||0epll,

c B
< (Enwniz +C|[Vull 2 — C—P) |0ulZ: + CBg?|upll7 -+

where we used the Poincaré inequality (2.2) in the second inequality.
Choose 7y as in Lemma 5.5. We write (5.23) in Duhamel form and use (5.15) to
obtain that, for any t € [y, 70 + 7% /9],
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(5.24)
[Bsu(t)]|72

<, B exp( / (—nw 922 + [Vus >||Lz) ds)

+0392[:exp( <C Diof (—uw s + V(o) ) ar

2
N0y ds < Cuexp (24 o ual) (4 + 90 - m)2) )

rong? [ e (2L 4l ual) ( = a(t =) ) 1)l s

70

Here, we used (5.4) in the second inequality above. We also utilized the following
consequence of (5.4): For any 70 <a <b<a+T,/9,

b atT, /9 1/2
/lIVU(S)|IL2d8§(b—a)1/2 (/ ||VU(5)||%2dS> < Clpm, l[uoll)g(b—a)'/>.

Then, we choose B sufficiently large that

C
> 2 2

5.25
( ) - logQg

where Cy := C(pm, ||ugl||1) is the constant that appeared in (5.24). This reduces (5.24)
to

(5.26)
19pu(t)|22 < 20, B2 exp ( B(t—m)

oo + Cag(t — 70)1/2)

t B(t—s
—|—C’Bg2/ exp (—% + Cag(t — 3)1/2) ||ﬁtp(s)||§{0,1ds =11 + Ir.
0

This concludes the proof of energy estimates that we will use in later steps.

Step 2: Proof of (5.18). The plan of proving (5.18) is as follows: We first show
a uniform bound similar to the desired control (5.18), yet on a shorter time interval,
together with an improved bound at the endpoint of this interval. Namely, we will
show that

(5.27) sup  ||Qpu(t)||72 <5C1B*g?,
To<t<To+T.%/9

and additionally,

(5.28) 0vu(o + T /9)||32 < C1B*¢* = ||0yu(m0) |32

With (5.27) and (5.28), we can prove (5.18) using an iteration argument.

Step 2.1: Proof of (5.27) and (5.28). To prove the desired estimates (5.27) and

(5.28), we study the inequality (5.26). The key point is that we have to estimate
(5.26) in two different time scales. Roughly speaking, we will choose B™! <« T,
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i.e., the dissipation time for w being much smaller than that for p. In this scenario,
|0su]| = may grow on time interval [rg, 79 + B~!], but it will not grow much due to
the smallness of B!, Yet, on [rg + B™1,79 + T./9], the dissipation effect becomes
significant and is sufficient to damp growth generated by nonlinear terms.

More precisely, let us choose B such that

100013 Co T* 1000]36% 2
5.29 o _ L g 20CRGY
(5:29) B SoN, 9 ©7 og22 ¥
where C'p is the Poincaré constant that appeared in (5.26). From (5.29), we obtain
B(t—a) 1 > < B(t—a)) (10 CPCQQ)
5.30) exp | ———— +Cog(t —a)"/? | <exp | ————2 )exp [ ———22 ) <2
630 exp (-2 Cagte - @12 <op (P Yo (1) <

for any time a so that 0 <t —a < %.
Estimate on [r9,70 + %]. If t € [r0,70 + 22%°2], we may invoke (5.30) to
estimate I; and Iy by

To+T% /9
I, <4C,B*¢®, I < CBg? / 19ep(5) |3+ ds < C(pm, ||uollz2) Bg* NG,
70
where we used Lemma 5.3 in the last inequality. We choose B sufficiently large that
B
(5.31) Clpm, lluoll2)g” Ng < 177

where C'(pm, ||uol|r2) is the constant appearing in the previous estimate. We then
conclude that

(5.32) sup [9pu(t)]|72 < 5C1 B¢

To<t<To+ 25

Estimate on (79 + 10%0" s 7o + T /9]. Suppose that ¢ € (1o + 12€2 70 + T, /9]. In

this case, we further choose B large so that
5.33 B>——"""g°.
( ) — 100Cp

Such a choice guarantees that, for any time a € [79,t — %ﬂ], we have that

B(t—a) 1/2 B(t—a)
. _ — < TN
(5.34) cr +Cog(t —a)t/? < 2

Therefore, using (5.34), we can bound I; and I in (5.26) by

< —=50.

B(t — To)

5.35 I, <20 B?%¢? —
( ) 1<2C,B%g exp( 20

1
) <500, B2g? < 16132 2

(5.36)
R B(t—s)
_ 2 _ bt~ al/2 2
I,=CByg </T +/t_m(§P>exp< an +Cag(t — s) >|8tp(s)||H0_1ds

0

T0+T%/9
<CBA™ 42 [ ) s < Ol o) By NG,

7o
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where we used (5.34) to estimate the first integral and (5.30) to estimate the second
integral in the first inequality above. Then, we choose B even larger that

Ci
2

where C'(pm, ||uollz2) is the constant appearing in the last line of (5.36). Combining
(5.37) with (5.36), we conclude that I5 in (5.26) can be bounded as follows:

(5.37) Cpm, luol 12)g> NG < 2B,

C
(5.38) I < ?1325;2.
Finally, we combine (5.35) and (5.38) to deduce that

(5.39) sup |9pu(t)||72 < C1B*g>.
o+ 292 <4< 70+T. /9

Collecting both (5.32) and (5.39) directly yields (5.27) and (5.28).

Step 2.2: Tterative procedure. With (5.27) and (5.28), we may start to iterate Steps
2.1 and 2.2 for subsequent time intervals [19+4T% /9, 7o+ (i+1)T% /9], i > 1. Notice that
all estimates involved in Steps 2.1 and 2.2 only used that [rg, 70+ T%/9] C [0, To+T%/9]
and [|0yu(70)||3. < C1B?*¢*. Hence, we may define i, to be the largest natural number
so that [ro + i.T%/9,70 + (i« + 1)T%/9] C [0,T0 + Tx/9]. The above arguments will
conclude that

sup ||6tu(t)|‘%2 S5ClB2g2.
T0<t<7o+(i++1)T%/9

We may, without loss of generality, consider Ty < co. In this case, by definition of .,
we must have 7o+ (i.+1)7T%/9 > T since otherwise, [1o+(ix+1)T%/9, o+ (ix+2)T% /9] C
[0, To + T4 /9], contradicting the maximality of i,. We may then conclude that

wp [Bu®lZ<  swp B2 <505
T0<t<To To<t<To+(ix+1)T% /9

This concludes the proof of (5.18) after we choose threshold By so large that (5.25),
(5.29), (5.31), (5.33), and (5.37) hold for all B > Byg?. Note that we can indeed
choose such By since all conditions of choosing B assume the form B > Cg? with
some C.
Step 3: Proof of (5.19). We write (5.26) in Duhamel form starting at time to €
[To,%]:

(5.40)

to+T%/9
/ |Bput)||2 2t

to

) to+Tx/9 B L2
§2||6tu(t0)||L2/ exp <—C—(t—t0)+02g(t—to) / )dt
to P

to+T./9 [t B
+ CBgQ/ / exp (——(t —5)+Cog(t — 3)1/2) 10ep(5)[|3, 1 dsdt
to Jto Cp 0

to+Tx /9 B
<10C,B*g* / exp (O—(t —to) + Cag(t — to)1/2>dt
P

Jto

to+T./9 ot B
vomg [T [Cew (<t s) + Cagle - 92 ) 1000y st
to to Cp 0
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Here, we used (5.18) in the second inequality. Since (5.29) and (5.33) hold, we may
run a similar argument in deducing (5.30) and (5.34) to conclude that

(5.41)
2exp(_m s Ogt_sg%’
fﬂt,. Coa(t — )12 ) < Cp
b Cp( 8)+Caglt =) - B(t —s) 100C T
exp(— °Cp > B’”<t—s§3*

for 0<t—s<T./9. Applying (5.41) to (5.40), we have that
to+T%/9 c o
[ 10wl < O ol B2g? S5 (1 - 75
to
to+Tx/9 5 Bl—s)
+ CBg2/ (/ e~ 20p dt) ||8tp(s)||ilo_1dt
to to

to+Tx/9
<Clomllual)Ba*+Co* [ [oup(o), et

to

< C(pm, [[uoll1)(Bg® + ¢* N§) < C(pm [|luoll) Bg?
if we choose B sufficiently large that
(5.42) B> g?Ng.

Note that we used (5.18) and the Fubini theorem in the first inequality and Lemma 5.3
in the third inequality. This concludes the proof of (5.19) after we choose threshold
By so that (5.25), (5.29), (5.31), (5.33), (5.37), and (5.42) hold for all B > Byg?.
Step 4: Proof of (5.20). Given to € [0, 70 — 3T%], we note that (5.20) follows
directly from (5.19):

to+Tx to+(i+1)T%/9
/ [[Opu(t IIdet—Z/ [0cu(t)]|72dt < C(pm, |[uoll1) B
to to+iT s /9
where we applied (5.19) for each term in the inequality above. 0

5.4. Closing the bootstrap. In this section, we show the improved estimate
as stated in Proposition 1.4. Consider a time instance 77 to be the first time such
that ||p — pm||3. achieves Ny, where we recall that Ny was chosen to satisfy (4.15)
and (4.16). Note that 77 verifies the following two properties:

1. 71 > sg, where sg is chosen as in Lemma 5.5;

2. i+ T <To.
The first property is due to Ng > 2| PO~ pm |72 and Corollary 4.4; the second property
is due to the choice that T, = 2coN_

Now, we set up the following comparison scheme: Let ps, us be the (global) regular
solution to the following static problem:

Ops +us - Vps — Aps + diV(/)sv(_AN)_l(Ps — (ps)m)) =0,
(5.43) —Aug + Vps = gpS(O nT, divuS =0,
D2ps g =0, (ts)2] o = F2(us)1| 5, = 0, ps(0,2) = p(T1,2) > 0
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Define r(t,z) = p(t,z) — ps(t —T1, ), v(t, ) =u(t,x) —us(t —T1,z) for t € [T1, T1 +T4].
A straightforward computation yields the following equations for r and v:

(5.44a)

O — Ar +v-Vp+u,-Vr+div(rV(=Ax) " p — pm)) + div(ps V(=Ax) 1) =0,
(5.44b)
1 1
~Av+V(B'p—py)=—=0u — E(u V) + gr(0,1)7, dive =0,

B
(5-440) 7“(71,:23):0, U(lrlv-r):u(lrlvl') _US(ﬂvx)a
(5.44d) 9arlaq =0, valaq = dav1|aq = 0.

Notice that, in the derivation of (5.44a), we used the fact that

p(t,.’l?) —Pm — ([)S(t - ﬂ’T) - (pS)m) Zp(t,fl,’) —ps(t —Ti,z) ZT(t,l‘),

thanks to the observation that (ps)m = (p(7T1,°))m = pm. Our plan is to establish
appropriate controls of ||r(t)||z2 and ||ps(t —T1) — pm||z2 on time interval [Ty, T1 + T%].
Step 1: Control of ||r(t)||rz. To control the remainder r, we study (5.44a) by
testing this equation by r. By incompressibility of ug, we deduce that, for any t €
[T, T + T,

3l + 197 = [ v Vo= [ raivrV (AN o o)
—/ rdiv(psV(—Ax)"1r)
=K ?i— Ky + K.
We first treat Ko, K3. Integrating by parts, we have that
(5.45)

1 _ 1 1
K= [ V6% VAN 0= pu) =5 [ 10— pn)de < 5llo = pmllio I

To estimate K3, we integrate by parts and obtain that
K3 =/ psVr-V(=An)"trde <[V g2 [l psll s | V(= An) 7 rl s
Q
< 71973 + 23V (~An) I,
(646) < IV + Slolelrle,
where we used the Sobolev embedding H' C L* and elliptic estimates. Finally, we

treat K7, which potentially contributes to the growth of ||r||z2 due to the appearance
of v in the term. In fact, we have that

Klz_/m.vpdx:/div(rv)pdx—/ rugpdo
Q 0 o0

1 3
= /Q Vr-vpde <[Vl [[vllz< llpll 2 < ZI1VrlZe + SllolElllZ:,

where we used va|gq = 0 in the third equality and Sobolev embedding H? C L™ in
the final inequality.
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Now, we claim that —B~'0,u(t,-) — B 'u - Vu + gr( 3(0,1)T € H. Indeed,
because u( -) € W by Theorem 3.2, we have that [, ui(z)dz = 0. This leads to

/(—B_lﬁtu—i—gr(o,l)T)ldx:/ —B_lﬁtuldm:—B_lat/ul(a:)d:rzo.
Q Q

Q

Moreover, we observe that, using the Lions boundary condition satisfied by wu,

/(u-Vu)ldzz/ujajuldas:—/divuuldar+/ usurdS(x) =
Q Q Q a0

The two computations above readily verify the claim. Hence, we are eligible to apply
the elliptic estimate (2.3) and obtain that

lvlz < B2(||3tUIILz +lu- VullZa) + g*||r|Z.-

We therefore estimate K7 by

(5.47) -HVTIILz +C( s (l0wllfe + [lw- VullZ) + g° |T||L2> plZ--

Combining (5.47), (5.45), and (5.46), we have the following differential inequality: For
any te [7—177-1 +T*]7

d
Sz + 1Vrlze <C(gllpllZe + o = pmlloe + llpslZe) lIrl72
C
+ ﬁ”/JHQN (I9sullZs + lu - Vull72)
C
F@)Irlzz + 5z (llp = pmllze +2720%) (100ul7z + [lu- VallZ:)

where we set F(t) = C(g*[|p(t)[172 + [lp(t) — pmllL= + |ps(t = T1)[|74). Note that, by
the bootstrap assumption, Proposition 4.3, Proposition 1.3, and g > 1, we have that

T1+T.
/T F(s)ds < C(pm: 100l 22)g?

Now, we would like to estimate ||r(¢)||2, on [T1, 77 + T.]. Since r(71,z) =0, an
application of Gronwall inequality and bootstrap assumption (1.11) yields that, for
any te [7-177-1 +T*]7
(5.48)

C t
()72 < @/T(llﬂ(') pmll7e +27°05,) (10vu(s)ll72 + llu- Vu(s)|[72) ds

¢
X {exp </ F(s)ds)]
T1
. 1 Ti+T 9 9
Clomlm=pulli)e” 5 [ (oIs + - Valo)F2) .

Choose

(5.49) B > max(Bog?,CogN,"?),
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where By and Cy are chosen as in Lemma 5.6 and Lemma 5.4, respectively. Then, we
may invoke (5.20) (since 71 + Tx < Tg and 71 > sg > 7p) and Lemma 5.4 to estimate
that

T1+T.
[r 19eu(s) 72 + llu- Vu(s)l[72ds < C(pm, [luoll1) (9B + g* NG Ts + g No)
1

= C(pm, uoll1)(9°B + g*No + g*No),

where we used the fact that T} = 2co N, ! in the last equality. Combining this estimate
with (5.48), we obtain that

(9*B+ g*Ny +92N0)eg2
sup Ir(®)[|72 < C(pms 1o — pmll L2, luoll1) 52
(5.50) TistsTiAT.

goes”
B

< C(pm;lpo = pmllL2, [luollr)

where we used g > 1 and (5.49) in the last inequality above. Now, choosing

AC(Pm: 1o = pmllz2,[[ollr) 242

5.51 B>
(551) > M 7

where C(pm,||po — pmllL2, |uoll1) is the constant appearing in the last line of (5.50),
we deduce that
N
(5.52) sup [r(t)[F. < =2
Ti<t<Ti+T. 4

Step 2: Control of ||ps(t — T1) — pm||L2. Since p; satisfies the static problem
(5.43), we shall use Proposition 1.3 to demonstrate that ps; produces sufficient damping
so as to close the bootstrap argument. However, there is a technical caveat: Ny is
chosen according to the initial datum pg, while ps corresponds to the initial datum
p(T1,-), which has a different L? norm from po-_Therefore, applying Proposition 1.3 to
ps will produce new thresholds, which we call Ny, T, and gg. Yet, we will demonstrate
that one is still able to produce sufficient damping from p;.

Recall that (ps)m = pm, and [|ps(0,-) — pm||22 = No by the definition of 7;. Then,
by Proposition 1.3 and setting

~ 23 4 1 2
Nozmax<1,2pm,2N0,3 C1pm(15/8 + Clco)>7

460

1 —
T. =2coNy , there exists go = go(No, prm) such that, for any g > go, we have that
supy.. o7 0s(7) = pm||72 < No, and there exists T € (T%/2,T.) such that |[ps(T) —

pmll3s < %. An elementary but crucial observation is that ]/\70 = 2Ny; this is because
we choose Ny to satisfy (4.15) and (4.16), from which we have that

3230 pt (15/8 4 2C1co)
460 ’

No > max (1,2pm,

and therefore, ]% =2Ny. Thus, by definition, we also have that i = TT

Now, we choose

(5.53) 91=01(lpo = pmll12: pm) = Go (No, pim).
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With the discussions above, we conclude the following: Assuming that g > g1, then
there is

llps(t) — pml|22 < No = 2N,
for t € 0,7 /2]. Moreover, there exists Sy := Te [T, /4,T, /2] such that

No N,
_ 2 20 70
||p5(51) p’meL2 — 8 4
Step 3: Proof of improved estimate (1.12). By the triangle inequality and
(5.52),

sup  p(t) —pml72 <2 sup st —Ti) — pmlZe
Ti<t<Ti+T./2 Ti<t<Ti+T./2
+2  sup  [r(®)]|7-
Ti<t<Ti4+T./2

N,
§4N0+TO<5NO

and

Ny, N
[p(T1 + S1) = 72 < 70 + TO < Np.

Now, we may iterate this argument in a similar spirit to the proof of (5.20) in
Lemma 5.6. For any ¢ > 1 with 7,—; and S;—; € [T./4,T./2] defined, we consider
T: to be the first time instance after 7;_; 4+ S;—1 such that ||p — pm||2L2 = Ny. By
the definition of T;, we have that 7; — T;_1 > S;_1 > T\ /4. Moreover, we note that
T; still verifies that 7; > sg and 7; + T, < Ty. Indeed, the first inequality is due to
the monotonicity of 7; in ¢, and the second inequality holds true since T is the least
doubling time of ||[p — p,,||22 at level Ny. So, we may repeat Steps 2 and 3 above on
interval [T, T; + Tu]:

sup  [lp(t) = pmll7= <5No
Ti<t<Ti+T./2

and
lp(Ti + S5) = pml 72 < No
for some S; € [T /4,T,/2]. Iterating for j,. := L%J + 1 times, we reach the estimate

that

sup  [|p(t) = pmll72 < 5No.
0SIST;. +T./2

However, we must have that 7;, +T%/2 > 7Ty since 7,11 — T; > T, /4 for every i. From

this fact, we conclude that

sp_ o) = pml2 < sup  [lp(t) — pmllZe < 5No,
0<t<To 0<t<Tj, +T./2

which is the improved bound (1.12).

Remark 5.8. We summarize the choice of thresholds g; and B; as follows. We
first choose g1 = g1(pm, |po — pm||z2) as in (5.53). Fixing g > g1, we then choose By =
Bi1(pm, |lpo — pmlLz, [|uoll1) large so that (5.49) and (5.51) hold for all B > Byg?e? .

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/04/25 to 152.3.102.254 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

7898 ZHONGTIAN HU

6. Discussion. In this section, we discuss extensions of Theorem 1.1 and some
open problems.
1. By performing a similar but less laborious analysis, one could prove a similar
result to Theorem 1.1 to the following Keller-Segel-Stokes system:

Op+u-Vp—Ap+div(pV(=Ax) " (p— pm)) =0,

1
pm:—/p(t,x)dx,
(6.1) |f12| 0
3tu — gAU + sz Rap((), 1)T,
divu=0

equipped with boundary conditions
(6.2) Oop=0, us=0, Oou; =0 on 0f).

The proof of this result was contained in an earlier arXiv version of this
work, but we only presented the Keller—Segel-Navier—Stokes case here due to
considerable redundancies in the proof of the Keller—Segel-Stokes case.

2. It is natural to attempt to generalize our main result to the Keller—Segel—
Navier—Stokes system equipping the classical no-slip boundary condition on
the Navier—Stokes equation. However, in this case, the existence of more sin-
gular boundary layers might complicate the analysis. Such effect is manifested
in a different leading-order problem. Instead of considering the Biot—Savart
law u = —gV1(—Ap)~20;p as we did in this work, one needs to use u = V11,
where 1) solves the following biharmonic equation (see [18, 48, 47] for a more
detailed discussion):

63) {A%: 1 p,

Yloa = 921plon = 0.
Appendix A.

A.1. Stokes operator equipped with Lions boundary condition. In this
section, we first rigorously prove Proposition 2.1 and Proposition 2.2, which concern
the Stokes operator corresponding to the Lions boundary condition. For the conve-
nience of the readers, we reiterate the statements of the propositions as follows.

PRrROPOSITION A.1. Letue V. Then, the following estimate holds:
(A.1) l[ull L2 < Cp|[Vul L2,

where Cp is a positive constant that only depends on the domain 2.

Proof. Since [Ju||2, = ||u1 |32 + [Juz]3 2, we will estimate each velocity component
separately. Since u € V, then, in particular, u; has zero spatial mean and us € Hg ().
Thus, (A.1) follows from applying the Poincaré inequality to u; and ug separately. O

PROPOSITION A.2. Assuming that f € H, then (2.1) admits a unique solution
u € W with estimate

(A.2) [ulla <CIIf 2
In fact, u is given by the following explicit formula:

(A.3) u=V"(=Ap)*(daf1 — O1f2).
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More generally, if f € H°NH, s > 1, we have the following improved regularity
estimate:

(A.4) [ulls2 < CIfls-

Proof. To show the well-posedness of problem (2.1), it is convenient to show
on the level of stream function. Since we would find u such that f“ uirdr = 0 and
uzlan = 0, there exists a unique stream function ¢ such that u = V+1 by Hodge
decomposition. Moreover, 1) satisfies the following:

A"/’ =w, 7/’|BQ =0.
Taking V- on (2.1) and denoting w = V= - u, we must have that
—Aw=01f>—02f1, wlon=0.

Therefore, the discussion above motivates us to study the following auxiliary coupled
system:

(A5) {Adi—w, Plaa =0,

—Aw=01fo —0af1, wlon=0.

First, note that, since f € L?, we have that 0, f, — Oaf1 € HO_1 in the sense of
distribution. Then, by standard elliptic theory, there exists a unique w € Hg such that
the w equation holds with estimate |w|jy < C(Q)||f|lL2- Applying standard elliptic
theory again to the 1 equation, we have a unique solution ¢ € H3N H{, with estimate
lv]ls < C(Q)||wl|l1. Define u = V+t4p. Then, u strongly solves (2.1) with boundary
conditions us|aq = Gaui|sn = 0 satisfied in the trace sense. Moreover, we have the
estimate

Jullz < [lbl[s < CE)If L2

Moreover, from the discussion above, we obtain formula (A.3). Finally, to show the
higher regularity estimates (A.4), we note that, given f€ H*NH, s>1, Vf € H* L.
Using the explicit formula (A.3) and standard elliptic estimate, we conclude (A.4). O

Finally, we present the following calculus lemma, Lemma A.3.
LEMMA A.3. ||V2ul|z2 = ||Aul|z2 for u € WNC>®(Q).
Proof. Integrating by parts twice, we obtain that

||Au||izz/aiaiujakakujdx
Q

:/ 8i8kuj3i8kujdx +/ A’LLj@Q’U,jd.’L‘l — / ak62Uj6kUjd£C1
Q N N

=:||V?ul|?; + BT, + BT.
‘We moreover notice that

BT, = Auidouidry + AugOouadry = 0.
o

Now, we observe that, for any = € 052, since u is smooth and belongs to the class W,
we have that

Aug = (912'11,2 + 02211,2 = 0%11,2 = —010ou1 =0,
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where we used us|sq = 0 in the second equality, divu = 0 in the third equality, and

Oy

|ao =0 in the last equality. Using this fact and dsu; =0 for z € 99, we expand

the sum and obtain

BT2 :/ (9102'&101“1(11:1 +/ 01(92U201U2d$1
9} o0

+ azazulazuldl?l + 8282u282u2d$1
oN oN

= / 6)282’&282’&2(111}1,
J o0

where we used the boundary conditions of u in the last equality. Since d5us =
—810ou1; = 0 for x € 99, we finally conclude that BTy = 0, and thus, ||V2u|z: =

[|Au

lz=- 0
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