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SMALL SCALE FORMATION

FOR THE 2-DIMENSIONAL BOUSSINESQ EQUATION

ALEXANDER KISELEV, JAEMIN PARK AND YAO YAO

We study the 2-dimensional incompressible Boussinesq equations without thermal diffusion, and aim to con-
struct rigorous examples of small scale formations as time goes to infinity. In the viscous case, we construct
examples of global smooth solutions satisfying supÄ∈[0,t]∥∇Ä(Ä)∥L2 ≳ t³ for some ³ > 0. For the inviscid
equation in the strip, we construct examples satisfying ∥É(t)∥L∞ ≳ t3 and supÄ∈[0,t] ∥∇Ä(Ä)∥L∞ ≳ t2

during the existence of a smooth solution. These growth results hold for a broad class of initial data, where
we only require certain symmetry and sign conditions. As an application, we also construct solutions to the
3-dimensional axisymmetric Euler equation whose velocity has infinite-in-time growth.

1. Introduction

The incompressible Boussinesq equations describe the motion of incompressible fluid under the influence
of gravitational forces [Gill and Adrian 1982; Majda 2003; Pedlosky 1979]. Let us denote by Ä(x, t) the
density of the fluid (it can also represent the temperature, depending on the physical context) and u(x, t)

the velocity field. Throughout this paper, we consider the 2-dimensional incompressible Boussinesq
equations in the absence of density/thermal diffusivity:

Ät + u · ∇Ä = 0,

ut + u · ∇u = −∇ p − Äe2 + ¿1u, x ∈�, t > 0,

∇ · u = 0,

(1-1)

where the initial condition is u( · , 0)= u0 and Ä( · , 0)= Ä0. Here e2 := (0, 1)T , and ¿ g 0 is the viscosity
coefficient. We assume the spatial domain � is one of the following: the whole space R

2, the torus
T

2 := (−Ã, Ã]2, or the strip T × [0, Ã] that is periodic in x1. When � is the strip, we impose the no-slip
boundary condition u|∂� = 0 if ¿ > 0, and the no-flow boundary condition u · n|∂� = 0 if ¿ = 0.

In the past decade, much progress has been made on the analysis of (1-1) in both the viscous case
¿ > 0 and inviscid case ¿ = 0. Below we briefly review the relevant literature and state our main results
in each case.

1.1. The viscous case ν > 0. If the equation for Ä has an additional thermal diffusion term »1Ä, global
regularity of solutions is well known (see, e.g., [Temam 1988]) and follows from the classical methods
for Navier–Stokes equations. In the absence of thermal diffusion, the first global-in-time regularity results
were obtained by Hou and Li [2005] in the space (u, Ä) ∈ H m(R2)× H m−1(R2) for m g 3, and by

MSC2020: 35Q35, 76B03, 76D03.
Keywords: small scale creation, 2-dimensional Boussinesq system.

© 2025 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.



172 ALEXANDER KISELEV, JAEMIN PARK AND YAO YAO

Chae [2006] in the space H m(R2)× H m(R2) for m g 3. When �¢ R
2 is a bounded domain, Lai, Pan,

and Zhao [Lai et al. 2011] proved global well-posedness of solutions in H 3(�)× H 3(�) with the no-slip
boundary condition, and showed that the kinetic energy is uniformly bounded in time. The function space
was improved by Hu, Kukavica, and Ziane [Hu et al. 2013] to (u, Ä) ∈ H m(�)× H m−1(�) for m g 2,
where � is either a bounded domain, R

2, or T
2. In spaces with lower regularity, global well-posedness of

weak solutions was obtained in [Abidi and Hmidi 2007; Danchin and Paicu 2011; Hmidi and Keraani
2007; Larios et al. 2013]. For the temperature patch problem, Gancedo and García-Juárez [2017; 2020]
proved global regularity in two dimensions and local regularity in three dimensions.

Regarding upper bounds of the global-in-time solutions, for a bounded domain, Ju [2017] obtained
that ∥Ä∥H1(�) ≲ eCt2

. The eCt2
bound was improved to an exponential bound eCt in [Kukavica and

Wang 2020] for �= T
2 or a bounded domain, and a super-exponential bound eCt (1+´)

for some constant
´ ≈ 0.29 for �= R

2. When �= T
2, they also obtained the uniform-in-time bound ∥u∥W 2,p(T2) f C(p)

for all p ∈ [2,∞). In recent work by Kukavica, Massatt, and Ziane [Kukavica et al. 2023], when � is a
bounded domain, the upper bound of the norm of Ä has been improved to ∥Ä∥H2(�) f Cϵe

ϵt for all ϵ > 0,
and they also showed ∥u∥H3 f Cϵe

ϵt for all ϵ > 0.
We would like to point out that all these results deal with upper bounds of solutions, and it is a natural

question whether certain norms of solutions can actually grow to infinity as t → ∞. When ¿ > 0 and
�= R

2, Brandolese and Schonbek [2012] proved that when the initial data Ä0 does not have mean zero,
∥u(t)∥L2(R2) must grow to infinity like (1 + t)1/4. Here the growth mechanism is due to potential energy
converting into kinetic energy, and does not necessarily imply growth in higher derivatives of u or Ä.
To the best of our knowledge, there has been no example in the literature showing that ∥Ä(t)∥Ḣm or
∥u(t)∥Ḣm can actually grow to infinity as t → ∞ for some m g 1. The goal of this paper is exactly to
construct such examples in R

2 and T
2, where ∥Ä(t)∥Ḣm → ∞ as t → ∞ for all m g 1. Since ∥Ä(t)∥L2

is preserved in time, growth of ∥Ä(t)∥Ḣm implies that Ä has some small scale formation as t → ∞.

In the viscous case, we set the spatial domain to be either R
2 or T

2, and assume that the initial
data (Ä0, u0) satisfies the following assumptions (here we write u0 = (u01, u02)

T ). See Figure 1 for an
illustration of the assumptions on Ä0.

(A1) Ä0, u0 ∈ C∞(�). If �= R
2, assume in addition that Ä0, u0 ∈ C∞

c (R
2).

(A2) Ä0 and u02 are odd in x2, and u01 is even in x2. If �= T
2, assume in addition that Ä0 and u02 are

even in x1, u01 is odd in x1, and Ä0 = 0 on the x2-axis.1

(A3) Ä0 is not identically zero, and Ä0 g 0 for x2 g 0.

As we show in Section 2.1, under these assumptions, both the potential energy EP(t) :=
∫

�
Ä(x, t)x2 dx

and kinetic energy EK (t) = 1
2∥u(t)∥2

L2(�)
of the solution remain bounded for all times, and the total

energy is decreasing in time. We prove that, for all s g 1, the Sobolev norm ∥Ä(t)∥Ḣ s grows to infinity at
least algebraically in t .

1Note that if the Ä0 = 0 on the x2-axis assumption is removed, the initial data would include some steady states with
horizontally stratified density, which clearly would not lead to any growth.
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Figure 1. Illustration of the symmetry and sign assumptions on Ä0 in the plane R
2 (left)

and torus T
2 (right) for the viscous Boussinesq equations. Here red denotes positive Ä0

and blue denotes negative Ä0.

Theorem 1.1. Assume ¿ > 0, and let �= R
2 or T

2. For any initial data (Ä0, u0) satisfying (A1)–(A3),
the global-in-time smooth solution (Ä, u) to (1-1) satisfies the following:

• If �= R
2, we have

lim sup
t→∞

t−s/10∥Ä(t)∥Ḣ s(�) = +∞ for all s g 1. (1-2)

• If �= T
2, we have

lim sup
t→∞

t−s(2s−1)/(8s−2)∥Ä(t)∥Ḣ s(�) = +∞ for all s g 1. (1-3)

Remark 1.2. It is a natural question whether these growth rates are sharp. While the powers are likely
nonsharp, we point out that ∥Ä(t)∥H1 cannot have exponential growth under the assumptions (A1)–(A3).
Namely, following arguments similar to [Kukavica and Wang 2020], we show in Proposition 2.4 that,
under the assumptions (A1)–(A3), ∥Ä(t)∥H1 has a refined subexponential upper bound

∥Ä(t)∥H1(�) ≲ exp(Ct³) for all t > 0

for some constant ³ ∈ (0, 1). Therefore in this setting, the fastest possible growth rate of ∥Ä(t)∥H1(�) is
somewhere between algebraic and subexponential.

The proof of Theorem 1.1 is motivated by a recent result on small scale formation in solutions to
incompressible porous media (IPM) equation by the first and third author [Kiselev and Yao 2023]. The
main idea there was to use the monotonicity of the potential energy EP(t)=

∫

Ä(x, t)x2 dx : on the one
hand, for solutions with certain symmetries, EP(t) is bounded below with E ′

P(t)= −∥∂1Ä(t)∥2
Ḣ−1 , thus

the integral
∫ ∞

0 ∥∂1Ä(t)∥2
Ḣ−1 dt is finite; on the other hand, under certain symmetries, one can show that

∥∂1Ä(t)∥2
Ḣ−1 can only be small if ∥Ä(t)∥H s k 1 for some s > 0, leading to growth of Ä in Sobolev norms.

The IPM and Boussinesq equations are related in the sense that, in both equations, the density Ä is
transported by an incompressible u, where u = −∇ p−Äe2 in IPM, whereas Du/Dt = −∇ p−Äe2 +¿1u

in Boussinesq equations. Since the velocity in Boussinesq equations has one more time derivative than
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IPM, we formally expect that E ′′
P(t) should be related to −∥∂1Ä(t)∥2

Ḣ−1 . While this turns out to be true,
the situation is more delicate for the Boussinesq equations because E ′′

P(t) also contains other terms
coming from the pressure and viscosity terms. By carefully controlling these additional terms, we prove
that if ∥Ä(t)∥H s grows too slowly for s g 1, E ′

P(t) would become unbounded below, contradicting the
uniform-in-time bound of energy.

1.2. The inviscid case ν = 0. For the inviscid Boussinesq equations in two dimensions, it is well known
that the system (1-1) can be rewritten into an equivalent system for the density Ä and the vorticity
É = ∂1u2 − ∂2u1:

Ät + u · ∇Ä = 0,

Ét + u · ∇É = −∂1Ä,
(1-4)

where the velocity u can be recovered from the vorticity É from the Biot–Savart law u = ∇§(−1)−1É.
While local well-posedness results are available in a variety of functional spaces for �= R

2, T
2, or a

bounded domain [Chae and Nam 1997; Chae et al. 1999; Danchin 2013], whether smooth initial data in
T

2 or R
2 with finite energy can develop a finite-time singularity is an outstanding open question in fluid

dynamics. Note that smooth, infinite-energy initial data can lead to a finite-time blowup, as shown in
[Sarria and Wu 2015].

In the presence of boundary, there have been many exciting developments regarding finite-time
singularity formation of solutions in the past few years. Luo and Hou [2014] provided numerical evidence
for finite-time blowup in smooth solutions of the 3-dimensional axisymmetric Euler equation in a cylinder.
When the domain has a corner, Elgindi and Jeong [2020] proved that blow-up can happen for inviscid
Boussinesq equations with smooth initial data. When � = R

2
+ is the upper half-plane, Chen and Hou

[2021] proved that solutions with C1,³ velocity and density can have a nearly self-similar finite-time
blowup. Recently, for smooth initial data, Wang, Lai, Gómez-Serrano, and Buckmaster [Wang et al.
2023] used physics-informed neural networks to construct an approximate self-similar blow-up solution
numerically. In a very recent preprint, Chen and Hou [2022] put forward an argument combining
impressive analytical tools and computer assisted estimates to show that smooth initial data can lead to a
stable nearly self-similar blowup.

Note that the inviscid Boussinesq equations (1-4) become the 2-dimensional Euler equation when
Ä ≡ 0, where it is well known that ∥∇É(t)∥L∞ can have infinite-in-time growth [Denisov 2009; 2015;
Kiselev and Šverák 2014; Nadirashvili 1991; Zlatoš 2015]. Therefore we will only focus on proving
infinite-in-time growth of either ∇Ä (since Ä itself is preserved along the trajectory, one can at most
obtain growth results for ∇Ä) or L p norms of É itself not involving any derivatives (where such growth
is not possible for the 2-dimensional Euler equation since ∥É∥L p is preserved in time).

Our first result is set up in the periodic domain � = T
2. We show that, for all smooth initial data

(Ä0, É0) in T
2 under some symmetry assumptions, as long as Ä0 takes values of different sign along

the two line segments {0} × [0, Ã] and {Ã} × [0, Ã] (see the left figure of Figure 2 for an illustration),
∥∇Ä(t)∥L∞ must grow to infinity at least algebraically in time for all time during the existence of a
smooth solution.
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Figure 2. Illustration of the symmetry and sign assumptions on Ä0 in the torus T
2 (left)

and the strip T × [0, Ã] (right) for the inviscid Boussinesq equation. Here red denotes
positive Ä0 and blue denotes negative Ä0.

Theorem 1.3. Let Ä0 ∈ C∞(T2) be odd in x2 and even in x1, and É0 ∈ C∞(T2) be odd in both x1 and x2.

Assume Ä0 g 0 on {0}×[0, Ã] with k0 := supx2∈[0,Ã ] Ä0(0, x2) > 0, and Ä0 f 0 on {Ã}×[0, Ã]. Then there

exists some constant c(Ä0, É0) > 0 such that the corresponding solution (Ä, É) to (1-4) satisfies

sup
Ä∈[0,t]

∥∇Ä(Ä)∥L∞(T2) > c(Ä0, É0)t
1/2 for all t ∈ [0, T ), (1-5)

where T is the lifespan of the smooth solution (Ä, É).

Next we consider the inviscid Boussinesq equation in the strip T × [0, Ã]. Here the presence of
boundary allows us to obtain a faster growth rate in ∥∇Ä(t)∥L∞ : we prove that the growth is at least
like t2 in the strip (as compared to t1/2 in Theorem 1.3). We are also able to obtain a superlinear lower
bound for ∥É(t)∥L p (for p = ∞ it grows like t3) and a linear lower bound for ∥u(t)∥L∞ . Although these
algebraic lower bounds are far from finite-time blowup, they hold for a broad class of initial data: no
assumption on É0 is needed other than being odd in x1, and Ä0 only needs to be even in x1 and satisfy
some sign conditions along two line segments (see the right figure of Figure 2 for an illustration). The
proofs are soft but might provide an insight into the behavior of smooth solutions during their lifespan.

Theorem 1.4. Let �= T ×[0, Ã]. Let Ä0 ∈ C∞(�) be even in x1 and É0 ∈ C∞(�) be odd in x1. Assume

that there exists k0 > 0 such that Ä0 g k0 > 0 on {0}× [0, Ã] and Ä0 f 0 on {Ã}× [0, Ã]. Then there exist

some constants T0(Ä0, É0) g 0 and c(Ä0, É0) > 0 such that the corresponding solution (Ä, É) to (1-4)
satisfies

∥É(t)∥L p(�) g ct3−2/p for all p ∈ [1,∞], t ∈ [T0, T ), (1-6)

∥u(t)∥L∞(�) g ct for all t ∈ [T0, T ), (1-7)

and

sup
Ä∈[0,t]

∥∇Ä(Ä)∥L∞(�) > ct2 for all t ∈ [0, T ), (1-8)

where T is the lifespan of the smooth solution (Ä, É). In particular, if
∫

[0,Ã ]×[0,Ã ] É0 dx g 0, then T0 = 0
in all the estimates above.
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Remark 1.5. In the estimates for ∥É(t)∥L p(�) and ∥u(t)∥L∞(�) above, it is necessary to have a “waiting
time” T0 depending on the initial data. This is because, for any t1 > 0, there exists some initial data
satisfying the assumption of Theorem 1.4 withÉ( · , t1)≡0. (To see this, one can start withÉ( · , t1)≡0 and
go backwards in time.) That being said, it can be easily seen from the proof that, if

∫

[0,Ã ]×[0,Ã ] É0 dx g 0,
no waiting time is needed.

Remark 1.6. If the symmetry assumptions on Ä0 and É0 are dropped, we still have ∥É(t)∥L1(�) ≳ t for
t k 1. This infinite-in-time growth implies that, given any steady state És for the 2-dimensional Euler
equation on the strip, we have (0, És) is a nonlinearly unstable steady state for the inviscid Boussinesq
equation. See Remark 3.3 for more discussions.

Remark 1.7. Note that the growth result in Theorem 1.4 also holds for the rectangular domain [−Ã, Ã]×
[0, Ã], since the symmetries imposed on the initial data automatically implies u · n = 0 on all boundaries
of [−Ã, Ã] × [0, Ã] for all time. However, the proof of Theorem 1.4 does not apply to domains with
smooth boundary. That being said, for any bounded domain that is symmetric about both the x1 and
x2 axis and has a smooth boundary, one can proceed similarly as in Theorem 1.3 (and Lemma 3.1) to
obtain the same growth of ∥∇Ä∥L∞ as in Theorem 1.3. We leave the details of the argument to interested
readers.

For both Theorems 1.3 and 1.4, the proof is based on an interplay between various monotone and
conservative quantities. Under the symmetry assumptions, one can easily check that the sign assumptions
Ä g 0 on {0} × [0, Ã] and Ä f 0 on {Ã} × [0, Ã] remain true for all times. This allows us to make
the elementary but important observation that the vorticity integral

∫

[0,Ã ]×[0,Ã ] É(x, t) dx is monotone
increasing for all times. More precisely, for the strip, the growth is linear for all times during the existence
of a smooth solution, whereas in T

2 we relate the growth with ∥∇Ä(t)∥L∞ . Another key ingredient is the
relation between the vorticity integral and kinetic energy: since the kinetic energy has a uniform-in-time
bound, we prove that if the vorticity integral is large, the L p norm of vorticity must be much larger.
For a strip, this allows us to upgrade the linear growth of ∥É(t)∥L1 to superlinear growth for ∥É(t)∥L p

for p ∈ (1,∞].

1.3. Infinite-in-time growth for the 3-dimensional axisymmetric Euler equation. The question whether
the incompressible Euler equation in R

3 can have a finite-time blowup from smooth initial data of finite
energy is an outstanding open problem in nonlinear PDE and fluid dynamics. As we mentioned earlier, for
the 3-dimensional axisymmetric Euler equation, when the equation is set up in a cylinder with boundary,
Luo and Hou [2014] gave convincing numerical evidence that smooth initial data can lead to a finite-time
singularity formation on the boundary. Recent numerical evidence by Hou and Huang [2022; 2023]
and Hou [2022] suggests that the blowup can also happen in the interior of domain, but apparently
not in self-similar fashion. The first rigorous blow-up result for finite-energy solutions was established
in domains with corners by Elgindi and Jeong [2019]. For initial data in C1,³ in R

3, Elgindi [2021]
showed that such initial data can lead to a self-similar blowup. Very recently, using the connection
between 3-dimensional axisymmetric Euler and Boussinesq equations, Chen and Hou [2022] set up a
computer-assisted argument that smooth solutions to 3-dimensional axisymmetric Euler equation can
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form a stable nearly self-similar blowup. The singularity formation happens for initial data in a small
neighborhood of a profile that is selected carefully with computer assistance.

In addition to the blow-up v.s. global-in-time regularity question, it is also interesting to investigate
whether Sobolev norms of solutions to the 3-dimensional Euler equation can have infinite-in-time growth
for broader classes of initial data. Choi and Jeong [2023] constructed smooth compactly supported initial
data in R

3 with ∥∇2É(t)∥L∞ growing algebraically for all times, and ∥É(t)∥L∞ growing exponentially
for finite (but arbitrarily long) time. It is also well known that the “two-and-a-half dimensional” solutions
(i.e., where u only depends on x , y, not z) can lead to infinite-in-time linear growth of É; see [Bardos
and Titi 2007, Remark 3.1] for example. See the excellent survey [Drivas and Elgindi 2023] for more
results on growth and singularity formation for 2-dimensional and 3-dimensional Euler equations.

It is well known that, away from the axis of symmetry, the 3-dimensional axisymmetric Euler equation
is closely related to the inviscid 2-dimensional Boussinesq equations; see [Majda and Bertozzi 2002,
Section 5.4.1]. To see this connection, recall that the 3-dimensional axisymmetric Euler equation can be
reduced to the system

Dt(ru¹ )= 0, Dt

(
É¹

r

)

= ∂z(ru¹ )2

r4
, (1-9)

where u¹ and É¹ only depend on r , z, t , and Dt := ∂t +ur∂r +uz∂z is the material derivative. Heuristically
speaking, ru¹ plays the role of Ä in the Boussinesq equation, whereas É¹/r plays the role of É in the
Boussinesq equation. Here (ur , uz) can be recovered from É¹/r by the Biot–Savart law

(ur , uz)= 1

r
(−∂zÈ, ∂rÈ), where − 1

r
∂r

(
1

r
∂rÈ

)

− 1

r2
∂2

zÈ = É¹

r
. (1-10)

We note that the analog of Theorem 1.4 holds for the 3-dimensional axisymmetric Euler equation. We
set the spatial domain to be a (not rotating) Taylor–Couette tank

�= {(r, ¹, z) : r ∈ [Ã, 2Ã ], ¹ ∈ T, z ∈ T}, (1-11)

with no-penetration boundary condition at r = Ã, 2Ã and periodic boundary conditions in z. Our
assumptions and results are as follows.

Theorem 1.8. Consider the 3-dimensional axisymmetric Euler equation (1-9)–(1-10) set on the domain�

in (1-11). Let u¹0 ∈ C∞(�) be even in z and É¹0 ∈ C∞(�) be odd in z. Assume that there exists k0 > 0
such that u¹0 g k0 > 0 on z = Ã and |u¹0| f 1

8 k0 on z = 0. Then there exist some constants T0(u0)g 0 and

c(u0) > 0 such that the corresponding solution satisfies

∥É¹ (t)∥L p(�) g ct3−2/p for all p ∈ [1,∞], t ∈ [T0, T ) (1-12)

and

∥u(t)∥L∞(�) g ct for all t ∈ [T0, T ), (1-13)

where T is the lifespan of the smooth solution. In particular, if
∫ Ã

0

∫ 2Ã
Ã
É¹0 dr dz g 0, then T0 = 0 in both

estimates above.
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Figure 3. Illustration of the domain and assumptions on u¹0 for the 3-dimensional
axisymmetric Euler equation. The left figure illustrates u¹0 on the r z plane, and the right
figure shows the 3-dimensional setting. Here red denotes positive u¹0 (and deeper color
means larger magnitude), and green denotes u¹0 with a smaller magnitude (whose sign
can be positive or negative). With such initial data, we will show that the “secondary
flow” within the yellow square Q grows to infinity as t → ∞.

See Figure 3 for an illustration of the domain and initial data. Note that our setting is almost the same
as the Hou–Luo scenario [Luo and Hou 2014], except that we replace the cylinder by an annular cylinder.
While our growth estimates are far from a finite-time blowup, they hold for a broad class of initial data:
in addition to some symmetry assumptions on u¹0 and É¹0 , all we need is u¹0 being uniformly positive on
z = Ã and having small magnitude on z = 0. The proof is a simple argument analogous to Theorem 1.4
for Boussinesq equations, where the key idea is the interplay between the monotonicity of a vorticity
integral and the boundedness of kinetic energy.

After the completion of this manuscript, we became aware of work by Serre [1991; 1999], where he
studied the 3-dimensional axisymmetric Euler equation in the same domain as in our setting and obtained
linear growth of vorticity.

2. Small scale formation for viscous Boussinesq equation

In this section, we aim to prove Theorem 1.1. To begin with, we discuss some properties on the solution
(Ä, u) when the initial data satisfies (A1)–(A3). Under the assumption (A1), it is well known that Ä( · , t)

and u( · , t) remain in C∞(�). And if �= R
2, we have Ä( · , t) ∈ C∞

c (R
2) and u( · , t) ∈ H k(R2) for all

k ∈ N and t g 0; see, e.g., [Chae 2006; Hou and Li 2005].
Note that the symmetry in (A2) holds true for all times thanks to the uniqueness of solutions. If �= T

2,
the additional symmetry in x1 leads to u1( · , t)= 0 on the x2-axis for all times, thus Ä(0, x2, t)= 0 for
all x2 ∈ T and t g 0.

The symmetry in x2 in (A2) also gives u2( · , t) = 0 on the x1-axis for all times, and combining it
with (A3) gives Ä(x, t)g 0 for x2 g 0 and all t g 0.

We also note that, due to the incompressibility of u, all L p norms of Ä are conserved in time; that is,

∥Ä(t, · )∥L p(�) =∥Ä0∥L p(�) for all t g 0, p ∈ [1,∞]. (2-1)
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2.1. Evolution of the potential and kinetic energy. Let us define the potential energy and kinetic energy

of the solution as, respectively,

EP(t) :=
∫

�

Ä(x, t)x2 dx and EK (t) := 1
2

∫

�

|u(x, t)|2 dx . (2-2)

As we will see, the evolution of these energies plays a crucial role in the proof of Theorem 1.1. The rate
of change of EP can be easily computed as

E ′
P(t)=

∫

�

Ät x2 dx =
∫

�

−u · (∇Ä)x2 dx =
∫

�

Äu2 dx, (2-3)

where the last equality follows from the divergence theorem and ∇ · u = 0, and note that the boundary
integral in the divergence theorem is zero: in R

2 it follows from Ä( · , t) having compact support, and
in T

2 it follows from the symmetries in (A2).
Similarly, one can compute the rate of change of the kinetic energy EK as

E ′
K (t)= −

∫

�

Äu2 dx − ¿
∫

�

|∇u|2 dx .

Combining the two equations, the total energy EP(t)+ EK (t) is nonincreasing in time, and more precisely
we have

EP(t)+ EK (t)+ ¿
∫ t

0

∫

�

|∇u(x, s)|2 dx ds = EK (0)+ EP(0) for all t g 0. (2-4)

From our discussion above, Ä( · , t) remains odd in x2 for all t g 0, and the property (A3) holds for all
t g 0. Thus EP(t) is positive for all times. Combining this with (2-4) gives

0 f EP(t)f EP(0)+ EK (0) and 0 f EK (t)f EP(0)+ EK (0) for all t g 0. (2-5)

In addition, using that EP(t)g 0 and EK (t)g 0 for all t g 0, we can send t → ∞ in (2-4) to obtain

¿

∫ ∞

0
∥∇u(t)∥2

L2(�)
dt f EP(0)+ EK (0). (2-6)

In the next lemma we compute the second derivative of EP , which will be used later.

Lemma 2.1. Let (Ä, u) be a solution to (1-1) with initial data (Ä0, u0) satisfying (A1)–(A3). Then the

potential energy EP defined in (2-2) satisfies

E ′′
P(t)= A(t)+ B(t)− ¶(t) for all t g 0, (2-7)

where

A(t) :=
2

∑

i, j=1

∫

�

((−1)−1∂2Ä)∂i u j∂j ui dx, B(t) :=¿
∫

�

Ä1u2 dx, and ¶(t) :=∥∂1Ä∥2
Ḣ−1(�)

. (2-8)

Proof. Differentiating (2-3) in time, we get

E ′′
P(t)=

∫

�

−u · ∇(Äu2)+ Ä(−∂2 p − Ä+ ¿1u2) dx =
∫

�

Ä(−∂2 p − Ä+ ¿1u2) dx, (2-9)
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where the second equality follows from the incompressibility of u and the fact that the boundary integral
is zero as we apply the divergence theorem: for �= R

2 it follows from Ä( · , t) having compact support,
whereas for �= T

2 we are using u ·n = 0 on the boundary of [−Ã, Ã]2 due to our symmetry assumptions
in (A2). Comparing (2-9) with our goal (2-7), it suffices to show that

∫

�

Ä(−∂2 p − Ä) dx = A(t)− ¶(t). (2-10)

To do so, we take divergence in the equation for u in (1-1). Using the incompressibility of u, we get
∇ · (u · ∇u)= −1p − ∂2Ä, and hence

p = (−1)−1∇ · (u · ∇u)+ (−1)−1∂2Ä,

where (−1)−1 is the inverse Laplacian in � (which is either R
2 or T

2) defined in the standard way using
Fourier transform (for �= R

2) or Fourier series (for �= T
2). Therefore it follows that

−∂2 p − Ä = −∂2(−1)−1∇ · (u · ∇u)− (−1)−1∂22Ä− Ä

= −
2

∑

i, j=1

∂2(−1)−1(∂i u j∂j ui )+ (−1)−1∂11Ä.

This immediately yields that
∫

�

Ä(−∂2 p − Ä) dx = −
2

∑

i, j=1

∫

�

Ä∂2(−1)−1(∂i u j∂j ui ) dx +
∫

�

Ä(−1)−1∂11Ä dx

= A(t)− ¶(t),

where the second equality follows from integration by parts. This finishes the proof. □

The relation between ¶(t) and ∥Ä(t)∥Ḣ s(�) has been investigated in [Kiselev and Yao 2023]. Below
we state the results from that paper and give a slightly improved estimate for the �= R

2 case.2 For the
sake of completeness, we give a proof in the Appendix. In the statement of the lemma we replace Ä(t)
by µ to emphasize that the estimate does not depend on the equation that Ä(t) satisfies.

Lemma 2.2. (a) Assume �= R
2. Consider all µ ∈ C∞

c (R
2) that are odd in x2 and not identically zero.

For all such µ, there exists c1(s, ∥µ∥L1, ∥µ∥L2) > 0 such that

∥µ∥Ḣ s(R2) g c1(∥∂1µ∥2
Ḣ−1(R2)

)−s/4 for all s > 0. (2-11)

(b) Assume �= T
2. Consider all µ ∈ C∞(T2) that are not identically zero, odd in x2, even in x1, with

µ = 0 on the x2-axis, and µ g 0 in T × [0, Ã]. For all such µ, there exists c2
(

s,
∫

T×[0,Ã ] µ
1/3 dx

)

> 0
such that

∥µ∥Ḣ s(T2) g c2(∥∂1µ∥2
Ḣ−1(T2)

)−s+1/2 for all s > 1
2 . (2-12)

2In [Kiselev and Yao 2023], the estimate corresponding to (2-11) is [Kiselev and Yao 2023, (3.4)], where an extra condition
∥∂1µ∥2

Ḣ−1 <
1
4∥µ∥2

L2 was imposed. In this lemma we give a slightly improved estimate where this assumption is dropped.
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2.2. Infinite-in-time growth of Sobolev norms. Using Lemma 2.1, for any t2 > t1 g 0, integrating E ′′
P

from t1 to t2 we get

E ′
P(t2)− E ′

P(t1)=
∫ t2

t1

A(t) dt +
∫ t2

t1

B(t) dt −
∫ t2

t1

¶(t) dt. (2-13)

In the next lemma we estimate the two integrals
∫ t2

t1
A(t) dt and

∫ t2
t1

B(t) dt on the right-hand side.

Lemma 2.3. Assume ¿ > 0. Let (Ä, u) be a solution to (1-1) with initial data (Ä0, u0) satisfying (A1)–(A3).
Then, for all t2 > t1 g 0, A(t) defined in (2-8) satisfies

∫ t2

t1

|A(t)| dt f C(Ä0)

∫ t2

t1

∥∇u(t)∥2
L2(�)

dt. (2-14)

Furthermore, for all s g 1 and t2 > t1 g 0, B(t) defined in (2-8) satisfies

∫ t2

t1

|B(t)| dt f C(s, Ä0)¿

(∫ t2

t1

∥∇u(t)∥2
L2(�)

dt

)1/2(∫ t2

t1

∥Ä(t)∥2/s
Ḣ s(�)

dt

)1/2

. (2-15)

Proof. Let us show (2-14) first. Let f := (−1)−1∂2Ä; we claim that

∥ f ( · , t)∥L∞(�) f C(Ä0) for all t g 0. (2-16)

Once this is proved, it follows that
∫ t2

t1

|A(t)| dt f
∫ t2

t1

∥ f ∥L∞(�)∥∇u∥2
L2(�)

dt f C(Ä0)

∫ t2

t1

∥∇u∥2
L2(�)

dt.

To estimate ∥ f ∥L∞(�), we recall the following Hardy–Littlewood–Sobolev inequality for �= R
2 or T

2:
(

when �= T
2, the function g needs to satisfy an additional assumption

∫

�
g(x) dx = 0

)

∥(−1)−³/2g∥Lq (�) f C(³, p, q)∥g∥L p(�) for 0< ³ < 2, 1< p < q <∞, and 1
q

= 1
p

− ³

2
.

We choose ³ = 1, q = 4, p = 4
3 , and g = (−1)1/2 f ( · , t) (note that g = (−1)−1/2∂2Ä indeed has mean

zero when �= T
2). Then the above inequality becomes

∥ f ( · , t)∥L4(�) f C∥(−1)1/2 f ∥L4/3(�) = C∥(−1)−1/2∂2Ä∥L4/3(�) f C∥Ä∥L4/3(�) f C(Ä0),

and we also have

∥(−1)1/2 f ( · , t)∥L4(�) = ∥(−1)−1/2∂2Ä∥L4(�) f C∥Ä∥L4(�) f C(Ä0).

In the above two estimates, the second-to-last inequality in both equations is due to the Riesz transform
being bounded in L p(�) for 1 < p < ∞, and the last inequality in both equations comes from (2-1).
Combining these estimates together, we have

∥ f ( · , t)∥W 1,4(�) f C(Ä0) for all t g 0.

Then the boundedness of f follows immediately from Morrey’s inequality W 1,4(�) ¢ C0,1/2(�) for
both � = R

2 and T
2. This leads to ∥ f ( · , t)∥L∞(�) f C∥ f ( · , t)∥W 1,4(�) f C(Ä0) for all t g 0, which

proves (2-16).
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Now we turn to the estimate for B(t). Applying the divergence theorem to the definition of B(t)

from (2-8), we see that

∫ t2

t1

|B(t)| dt = ¿

∫ t2

t1

∣
∣
∣
∣

∫

�

∇Ä ·∇u2 dx

∣
∣
∣
∣
dt f ¿

(∫ t2

t1

∥u(t)∥2
Ḣ1(�)

dt

)1/2(∫ t2

t1

∥Ä(t)∥2
Ḣ1(�)

dt

)1/2

, (2-17)

where we used the Cauchy–Schwarz inequality in the last step. Using the Gagliardo–Nirenberg interpola-
tion inequality, we obtain

∫ t2

t1

|B(t)| dt f ¿

(∫ t2

t1

∥∇u(t)∥2
L2(�)

dt

)1/2(∫ t2

t1

C(s)∥Ä(t)∥2(1−1/s)
L2 ∥Ä(t)∥2/s

Ḣ s(�)
dt

)1/2

f C(s, Ä0)¿

(∫ t2

t1

∥∇u(t)∥2
L2(�)

dt

)1/2(∫ t2

t1

∥Ä(t)∥2/s
Ḣ s(�)

dt

)1/2

,

where the last inequality follows from (2-1). This finishes the proof of (2-15). □

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The main idea of the proof is to estimate all terms in (2-13) for t1 = T and t2 = 2T

for T k 1, and obtain a contradiction if supt∈[T,2T ] ∥Ä(t)∥Ḣ s grows slower than a certain power of T .
First, to bound the left-hand side of (2-13), note that (2-3) and the Cauchy–Schwarz inequality yield

|E ′
P(t)| f∥Ä(t)∥L2∥u(t)∥L2 f ∥Ä0∥L2

√

2EK (t)f C(Ä0, u0) <∞ for all t g 0, (2-18)

where the second inequality follows from (2-1) and the definition of EK in (2-2), and the third inequality
follows from (2-5). Thus

|E ′
P(2T )− E ′

P(T )| f C0(Ä0, u0) <∞ for all T > 0. (2-19)

Plugging the estimates (2-19) and (2-14) into the identity (2-13), we have
∫ 2T

T

¶(t) dt f C0(Ä0, u0)+ C1(Ä0)

∫ 2T

T

∥∇u(t)∥2
L2(�)

dt +
∫ 2T

T

|B(t)| dt for all T > 0. (2-20)

Next we will bound the two integrals on the right-hand side from above, and
∫ 2T

T
¶(t) dt from below. Let

us define

¸(T ) :=
∫ 2T

T

∥∇u(t)∥2
L2(�)

dt and Ms(T ) := sup
t∈[T,2T ]

∥Ä(t)∥Ḣ s(�).

Combining (2-4) and (2-5) yields
∫ ∞

0
∥∇u(t)∥2

L2(�)
dt f ¿−1C(Ä0, u0) <∞,

where we also used the assumption ¿ > 0. This implies

lim
T →∞

¸(T )= 0. (2-21)
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To bound
∫ 2T

T
|B(t)| dt , we use (2-15) and the definitions of ¸(T ) and Ms(T ) to get

∫ 2T

T

|B(t)| dt f C(s, Ä0)¿

(∫ 2T

T

∥∇u∥2
L2(�)

dt

)1/2(∫ 2T

T

∥Ä∥2/s
Ḣ s(�)

dt

)1/2

f C2(s, Ä0, ¿)¸(T )
1/2 Ms(T )

1/s T 1/2 for all s g 1, T > 0. (2-22)

Next we will bound the integral
∫ 2T

T
¶(t) dt from below. If � = R

2, assumption (A2) allows us to
apply Lemma 2.2 (a) to Ä( · , t) (and note that its L1 and L2 norms are preserved in time), so there exists
c3(s, Ä0) > 0 such that

∥Ä(t)∥Ḣ s(R2) g c3(s, Ä0)¶(t)
−s/4 for all s > 0, t > 0. (2-23)

And if � = T
2, using assumptions (A2) and (A3)

(

note that these imply that
∫

T×[0,Ã ] Ä(x, t)1/3 dx is
preserved in time

)

, by Lemma 2.2 (b), there exists c4(s, Ä0) > 0 such that

∥Ä(t)∥Ḣ s(T2) g c4(s, Ä0)¶(t)
−(s−1/2) for all s > 1

2 , t > 0. (2-24)

Let us rewrite (2-23) and (2-24) above in a unified manner for the two cases �= R
2 and T

2, so we do
not need to repeat similar proofs twice. For � either being R

2 or T
2, let us define

³� :=
{1

4 s �= R
2,

s − 1
2 �= T

2,
s� :=

{

0 �= R
2,

1
2 �= T

2,
c�(s, Ä0) :=

{

c3(s, Ä0) �= R
2,

c4(s, Ä0) �= T
2.

(2-25)

With this notation, (2-23) and (2-24) become

∥Ä(t)∥Ḣ s(�) g c�(s, Ä0)¶(t)
−³� for all s > s�, t > 0. (2-26)

Combining (2-26) with the definition of Ms gives
∫ 2T

T

¶(t) dt g
∫ 2T

T

c
1/³�
� ∥Ä(t)∥−1/³�

Ḣ s(�)
dt g c

1/³�
� Ms(T )

−1/³�T for all s > s�, T > 0. (2-27)

Applying the bounds (2-22) and (2-27) and the definition of ¸(T ) to the inequality (2-20) (and noting
that s� < 1), we have

c5 Ms(T )
−1/³�T f C0 + C1¸(T )+ C2¸(T )

1/2 Ms(T )
1/s T 1/2 for all s g 1, T > 0,

where c5 := c�(s, Ä0)
1/³� , C0 := C0(Ä0, u0), C1 := C1(Ä0), and C2 := C2(s, Ä0, ¿)— note that they are

all strictly positive and do not depend on T . Rearranging the terms, the inequality is equivalent to

(c5 − C2¸(T )
1/2T −1/2 Ms(T )

1/s+1/³�)Ms(T )
−1/³�T f C0 + C1¸(T ) for all s g 1, T > 0. (2-28)

We claim that this implies

lim sup
T →∞

T −1/2 Ms(T )
1/s+1/³� = +∞ for all s g 1. (2-29)

Towards a contradiction, assume

A := lim sup
T →∞

T −1/2 Ms(T )
1/s+1/³� <∞ for some s g 1.
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Combining this assumption with (2-21) gives

lim sup
T →∞

¸(T )1/2T −1/2 Ms(T )
1/s+1/³� =

(

lim sup
T →∞

T −1/2 Ms(T )
1/s+1/³�

)(

lim
T →∞

¸(T )1/2
)

= 0,

so the parenthesis in (2-28) converges to c5 as T → ∞. For the remaining term on the left-hand of (2-28),
we have

lim inf
T →∞

Ms(T )
−1/³�T = lim inf

T →∞
(T −1/2 Ms(T )

1/s+1/³�)−s/(s+³�)T (s+2³�)/(2(s+³�))

= lim inf
T →∞

A−s/(s+³�)T (s+2³�)/(2(s+³�)) = +∞. (2-30)

The above discussion yields that the liminf of the left-hand side of (2-28) is +∞. This contradicts (2-21),
which says the right-hand side of (2-28) goes to C0 < ∞ as T → ∞. This finishes the proof of the
claim (2-29).

Finally, using the definition of Ms , we have that (2-29) is equivalent to

lim sup
t→∞

t−1/2∥Ä(t)∥1/s+1/³�
Ḣ s

= +∞.

Recalling the definition of ³� from (2-25), we see that the desired estimates (1-2) and (1-3) follow
immediately. □

Although it is unclear whether the algebraic rates are sharp, in the next proposition we show that, under
the assumptions (A1)–(A3), ∥Ä(t)∥H1(�) can at most have subexponential growth.

Proposition 2.4. Let � = R
2 or T

2. For any initial data (Ä0, u0) satisfying (A1)–(A3), ∥Ä(t)∥H1(�)

satisfies the subexponential bound

∥Ä(t)∥H1(�) ≲ exp(Ct³) for all t > 0,

for some constant ³ ∈ (0, 1).

Proof. The proposition can be proved by making a slight modification to [Kukavica and Wang 2020,
Theorem 3.1]. For the sake of completeness, we will provide a sketch of the proof. For both � = T

2

and R
2, standard energy estimates give that ∥∇Ä(t)∥L2(�) satisfies the estimate

d

dt
∥∇Ä(t)∥L2(�) f ∥∇u(t)∥L∞∥∇Ä(t)∥L2(�),

which leads to

∥∇Ä(t)∥L2(�) ≲ exp

(∫ t

0
∥∇u(s)∥L∞(�) ds

)

∥∇Ä0∥L2(�). (2-31)

Recall that (2-6) gives
∫ ∞

0
∥∇u(t)∥2

L2 dt f C(¿, Ä0, u0). (2-32)

Here the time integrability of ∥∇u(t)∥2
L2 follows from the symmetry assumptions in our setting, and it

allows us to obtain a refined upper bound compared to [Kukavica and Wang 2020, Theorem 3.1]. Namely,
combining (2-32) with the Gagliardo–Nirenberg inequality

∥∇u∥L∞(�) f ∥∇u∥(p−2)/(2p−2)
L2(�)

∥∇2u∥p/(2p−2)
L p(�) for p > 2 (2-33)
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and Hölder’s inequality, the exponent in (2-31) can be bounded above by

∫ t

0
∥∇u(s)∥L∞(�) ds f C(p, ¿, Ä0, u0)

(∫ t

0
∥∇2u∥(2p)/(3p−2)

L p(�) ds

)(3p−2)/(4p−4)

. (2-34)

When �= T
2, by [Kukavica and Wang 2020, Theorem 2.1], ∥u(t)∥W 2,p < C(p, ¿, Ä0, u0) for all p <∞.

So one can choose p k 1 to obtain the subexponential upper bound

∥∇Ä(t)∥L2 f C(Ä0) exp(C(ϵ, ¿, Ä0, u0)t
3/4+ϵ) for any ϵ > 0, t > 0. (2-35)

Next we move on to the �= R
2 case. In this case, it suffices to prove ∥∇2u(t)∥L p < C(p, ¿, Ä0, u0)

for all p <∞ under our symmetry setting. Once this is shown, an identical argument as (2-31)–(2-35)
again leads to the subexponential growth, since all these estimates also hold for R

2.
To begin with, we show that ∥É(t)∥L2 is uniformly bounded in time under our symmetry assumptions.

Noting from (1-1) that É satisfies Ét + u · ∇É = ¿1É− ∂1Ä, we can obtain a standard energy inequality

d

dt
∥É(t)∥2

L2(R2)
+ ¿∥∇É(t)∥2

L2(R2)
= 2

∫

R2
Ä(t, x)∂1É(t, x) dx

f 1
2¿∥∇É(t)∥

2
L2(R2)

+ C(¿)∥Ä(t)∥L2(R2).

Since ∥Ä(t)∥L2 is conserved, the above estimate leads to (d/dt)∥É(t)∥2
L2(R2)

f C(¿, Ä0). Combining this
with (2-32) (and recall ∥É∥L2 = ∥∇u∥L2), we have

∥É(t)∥L2(R2) < C(¿, Ä0, u0) for all t g 0. (2-36)

Following the notation from [Kukavica and Wang 2020], let us define · = É− ∂1(I −1)−1Ä to be the
modified vorticity. Since one has ∥∂1(I −1)−1Ä∥W 1,p f C(p, Ä0) for all 1< p <∞, it implies

∥· −É∥L p f C(p, Ä0) and ∥∇· − ∇É∥L p f C(p, Ä0). (2-37)

Combining (2-36) and (2-37) gives a uniform-in-time bound ∥·(t)∥L2 < C(¿, Ä0, u0). Now, let us define
Èp(t) :=

∫

R2 |∇·(t)|p for p g 2. Using (1-1), one can express the equation for · as [Kukavica and Wang
2020, (2.21)]

·t + u · ∇· = ¿1· + F, F := [∂1(I −1)−1, u · ∇]Ä− ((I −1)−11− I )∂1Ä.

A straightforward calculation yields that È ′
2(t)= 2

∫

R2 ∇· · ∇F dx − 2¿
∫

R2 |∇2· |2 dx . Using the inter-
polation inequality

∥∇2·∥L2 g
∥∇·∥2

L2

C∥·∥L2
,

we obtain

È ′
2(t)+

È2
2

C∥·∥2
L2

f 2
∫

R2
∇· · ∇F dx .
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To obtain an estimate of the right-hand side, a more careful analysis is required, and the same argument
as in [Kukavica and Wang 2020, (3.2)] gives that

È ′
2(t)+

È2
2

C∥·∥2
L2

f CÈ2 + C.

Thus the above uniform-in-time bound for ∥·∥2
L2 gives a uniform-in-time bound for È2(t). For any

2 f p <∞, [Kukavica and Wang 2020, (3.3)] gives

È ′
2p(t)+

È2
2p

CÈ2
p

f Cp2È2p + Cp5È
(p−1)/p

2p .

One can use induction (for p = 2, 4, 8, . . . ) to obtain a uniform-in-time bound Èp(t)f C(p, ¿, Ä0, u0),
and combining this bound with (2-37) gives

∥∇2u(t)∥L p f C(p)∥∇É(t)∥L p f C(p)(∥∇·(t)∥L p + C(p, Ä0))f C(p, ¿, Ä0, u0).

Finally, choosing an arbitrarily large p k 1 and plugging the above uniform-in-time estimate into (2-34),
we again have the subexponential upper bound (2-35) for �= R

2. □

3. Infinite-in-time growth for inviscid Boussinesq and 3-dimensional Euler

3.1. Vorticity lemma for flows with fixed kinetic energy. Before proving the main theorems, let us start
with a simple observation: it says that for any vector field u in a square Q = [0, Ã]2 with a fixed kinetic
energy, if its vorticity integral A :=

∫

Q
É dx is big, then, for 1< p f ∞, ∥É∥L p must be even bigger, at

least of order A3−2/p.

Lemma 3.1. Let Q := [0, Ã]2. For any vector field u ∈ C∞(Q), let É := ∂1u2 − ∂2u1. Let us define

E0 :=
∫

Q

|u|2 dx and A :=
∫

Q

É(x) dx .

Then we have the following lower bound for ∥É∥L p(Q):

∥É∥L p(Q) g c0 max{E
−1+1/p

0 |A|3−2/p, |A|} for all p ∈ [1,∞], (3-1)

where c0 = (128Ã2)−1 > 0 is a universal constant.

Proof. Without loss of generality, assume A > 0. (If A < 0, we can prove the estimate for −u, whose
vorticity integral would be positive.) By Green’s theorem, we have

∫

∂Q

|u(x)| ds g
∫

∂Q

u(x) · dl =
∫

Q

É(x) dx = A,

where the integral in ds denotes the (scalar) line integral with respect to arclength, and the integral in dl

denotes the (vector) line integral counterclockwise along ∂Q.
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For any r ∈
[

0, Ã2
)

, let us define

Qr := [r, Ã − r ] × [r, Ã − r ].

Note that Q0 = Q and Qr shrinks to a point as r · Ã
2 . Let us define

r0 := inf

{

r ∈
[

0, Ã2
)

:
∫

∂Qr

|u(x)| ds = 1
2 A

}

.

Since
∫

∂Q0

|u(x)| ds > A and
∫

∂Qr

|u(x)| ds → 0 as r · Ã
2 ,

the above definition leads to a well-defined r0 ∈
(

0, Ã2
)

, and in addition we have
∫

∂Qr

|u(x)| ds > 1
2 A for all r ∈ [0, r0).

Next we claim that

r0 < 16ÃE0 A−2. (3-2)

To show this, note that, for all 0< r < r0, we can apply the Cauchy–Schwarz inequality on ∂Qr (and use
|∂Qr |< 4Ã ) to obtain

∫

∂Qr

|u|2 ds g 1
4Ã

(∫

∂Qr

|u| ds

)2

>
A2

16Ã
.

Integrating the above inequality for r ∈ (0, r0) over the direction transversal to ∂Qr

(

and noting that
⋃

r∈(0,r0)
∂Qr = Q \ Qr0

)

, we obtain

E0 g
∫

Q\Qr0

|u|2 dx =
∫ r0

0

∫

∂Qr

|u|2 ds dr >
A2r0

16Ã
,

which yields the claim (3-2). Note that (3-2) implies

|Q \ Qr0 | =
∫ r0

0
|∂Qr | dr f min{4Ãr0, Ã

2} f min{64Ã2 E0 A−2, Ã2}. (3-3)

By Green’s theorem and the definition of r0,
∫

Q\Qr0

É dx =
∫

∂Q

u · dl −
∫

∂Qr0

u · dl g A − 1
2 A = 1

2 A. (3-4)

Finally, we apply Hölder’s inequality to bound ∥É∥L p(Q) from below for p ∈ [1,∞]:

∥É∥L p(Q) g ∥É∥L p(Q\Qr0 )
g

(∫

Q\Qr0

É dx

)

|Q \ Qr0 |−1+1/p for all p ∈ [1,∞].

Applying the estimates (3-4) and (3-3) in the above inequality finishes the proof of (3-1) with a universal
constant c0 = (128Ã2)−1. □
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3.2. Infinite-in-time growth for inviscid Boussinesq equations. Now we are ready to prove the infinite-
in-time growth results. Let us start with Theorem 1.3 for �= T

2.

Proof of Theorem 1.3. Using the Biot–Savart law u = ∇§(−1)−1É, one can easily check that, in
T

2 = (−Ã, Ã]2, the even-odd symmetry of Ä and odd-odd symmetry of É is preserved for all times. This
implies the odd-even symmetry of u1 and even-odd symmetry of u2 hold for all times. In particular,
defining

Q := [0, Ã] × [0, Ã],
we have u · n = 0 on ∂Q for all times.

For any x ∈ T
2 and t g 0, let 8t(x) be the flow map defined by

∂t8t(x)= u(8t(x), t), 80(x)= x .

Using u ·n = 0 on ∂Q for all times (and u = 0 at the four corners of ∂Q), for any x ∈ ∂Q, 8t(x) remains
on the same side of ∂Q for all times during the existence of a smooth solution. Combining this with the
fact that Ä is preserved along the flow map, the assumptions on Ä0 implies

Ä(0, x2, t)g 0 and Ä(Ã, x2, t)f 0 for all x2 ∈ [0, Ã], t g 0. (3-5)

Note that the odd-in-x2 symmetry of Ä0 yields Ä0(0, 0) = Ä0(0, Ã) = 0, so the supremum in k0 :=
supx2∈[0,Ã ] Ä0(0, x2) > 0 is achieved at some Ä(0, a) for a ∈ (0, Ã). In addition, by continuity of Ä0, there
exists some b ∈ (0, a) such that Ä0(0, b)= 1

2 k0 and Ä0 g 1
2 k0 on {0} × [b, a].

Since u · n = 0 on ∂Q for all times, 8t(0, a) and 8t(0, b) remain on the line segment {0}× (0, Ã) for
all times. Define

h(t) := |8t(0, b)−8t(0, a)|, (3-6)

which is strictly positive as long as u remains smooth. Note Ä(8t(0, a), t)= k0 and Ä(8t(0, b), t)= 1
2 k0

for all times. This implies

∥∇Ä(t)∥L∞(Q) g
|Ä(8t(0, b), t)− Ä(8t(0, a), t)|

|8t(0, b)−8t(0, a)| g 1
2 k0h(t)−1 (3-7)

for all times during the existence of a smooth solution.
Next let us define

A(t) :=
∫

Q

É(x, t) dx;

we make a simple but useful observation about the monotonicity of A(t). Using the symmetries and the
facts ∇ · u = 0 in Q and u · n = 0 on ∂Q, we find

A′(t)= −
∫

Q

u(x, t) · ∇É(x, t) dx −
∫

Q

∂x1Ä(x, t) dx

=
∫ Ã

0
Ä(0, x2, t) dx2 −

∫ Ã

0
Ä(Ã, x2, t) dx2 g 1

2 k0h(t), (3-8)
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where the inequality follows from (3-5), the definition of h(t), and the fact that Ä( · , t)g 1
2 k0 on the line

segment connecting 8t(0, a) and 8t(0, b). We now integrate (3-8) in [0, t] and apply (3-7). This yields

A(t)g 1
4 k2

0

∫ t

0
∥∇Ä(Ä)∥−1

L∞(Q) dÄ + A(0). (3-9)

In order to apply Lemma 3.1, we need to bound ∥u(t)∥2
L2(Q)

from above. From the same calculation in
Section 2.1, the sum of the kinetic and potential energies is conserved in T

2, and hence it is also conserved
in Q due to the symmetries

1
2

∫

Q

|u(x, t)|2 dx +
∫

Q

x2Ä(x, t) dx = 1
2

∫

Q

|u0(x)|2 dx +
∫

Q

x2Ä0(x) dx .

Since Ä is advected by the flow, ∥Ä(t)∥L1(Q) is conserved in time, so
∣
∣
∫

Q
x2Ä(x, t) dx

∣
∣ f Ã∥Ä0∥L1(Q) for

all times. This implies
∫

Q

|u(x, t)|2 dx f
∫

Q

|u0(x)|2 dx + 4Ã∥Ä0∥L1(Q) =: E0(Ä0, u0)

for all times. Now we can apply Lemma 3.1 with p = +∞ to conclude

∥É(t)∥L∞ g c0 E−1
0 A(t)3 g c0 E−1

0

(

1
4 k2

0

∫ t

0
∥∇Ä(Ä)∥−1

L∞ dÄ + A(0)

)3

, (3-10)

where we used (3-9) in the last step. Note that A(0) may be positive or negative.
On the other hand, the Lagrangian form of the evolution equation for vorticity

d

dt
É(8t(x), t)= −∂x1Ä(8t(x), t)

implies that

∥É(t)∥L∞ f
∫ t

0
∥∇Ä(Ä)∥L∞ dÄ + ∥É0∥L∞ . (3-11)

Combining (3-10) and (3-11), we arrive at
∫ t

0
∥∇Ä(Ä)∥L∞ dÄ + ∥É0∥L∞ g c0 E−1

0

(

1
4 k2

0

∫ t

0
∥∇Ä(Ä)∥−1

L∞ dÄ + A0

)3

. (3-12)

Let us define

F(t) :=
∫ t

0
∥∇Ä(Ä)∥L∞ dÄ.

Since the Cauchy–Schwarz inequality yields
∫ t

0
∥∇Ä(Ä)∥−1

L∞ dÄ g t2
(∫ t

0
∥∇Ä(Ä)∥L∞ dÄ

)−1

g t2 F(t)−1 for all t > 0,

plugging it into (3-12) gives an inequality relating F(t) to itself:

F(t)g c0 E−1
0

(

1
4 k2

0 t2 F(t)−1 + A0

)3

− ∥É0∥L∞ . (3-13)

Our goal is to show that there exists some c1(Ä0, É0) > 0 such that

F(t)g c1(Ä0, É0)t
3/2 for all t g 1. (3-14)
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Towards a contradiction, suppose (3-14) does not hold at some t1 g 1, so t2
1 F(t1)

−1 g c−1
1 t

1/2
1 . Since

t1 g 1, one can choose c1 sufficiently small (only depending on initial data) such that the right-hand side
of (3-13) is bounded below by 4−4c0 E−1

0 k6
0c−3

1 t
3/2
1 . On the other hand, the left-hand side is bounded

above by c1t
3/2
1 . Thus we obtain a contradiction if we further require c1 < 4−1(c0 E−1

0 k6
0)

1/4.
Finally, note that (3-14) directly implies supÄ∈[0,t] ∥∇Ä(Ä)∥L∞ g c1(Ä0, É0)t

1/2 for all t g 1. For
t ∈ (0, 1), recall that the definition of k0 and the fact Ä(0, 0, t)= 0 yield

∥∇Ä(t)∥L∞ g 1
Ã

k0 g
( 1
Ã

k0
)

t1/2 for t ∈ (0, 1).

Combining these two estimates finishes the proof. □

Remark 3.2. Theorem 1.3 does not give us an infinite-in-time growth result for É( · , t). All we have is
the following conditional growth estimate coming from (3-10): if lim supt→∞ t−1∥∇Ä(t)∥L∞ <∞, this
must imply limt→∞ ∥É(t)∥L∞ = ∞.

Proof of Theorem 1.4. The proof is similar to the previous one, and in fact it is easier due to the uniform
positivity of Ä0 on {0} × [0, Ã]. Using the Biot–Savart law, one can check that the even-in-x1 symmetry
of Ä and odd-in-x1 symmetry of É is preserved for all times. Defining Q := [0, Ã]×[0, Ã], the symmetries
and the boundary condition yield that u · n = 0 on ∂Q for all times. In particular, this implies

Ä(0, x2, t)g k0 > 0 and Ä(Ã, x2, t)f 0 for all x2 ∈ [0, Ã], t g 0, (3-15)

during the existence of a smooth solution.
Again, let us define A(t) :=

∫

Q
É(x, t) dx . A calculation similar to the previous proof shows that in

this case

A′(t)g
∫ Ã

0
Ä(0, x2, t) dx2 −

∫ Ã

0
Ä(Ã, x2, t) dx2 g k0Ã,

where the last inequality follows from (3-15). This gives us a lower bound

A(t)g k0Ã t + A(0) for all t g 0. (3-16)

An identical argument as in the proof of Theorem 1.3 gives
∫

�

|u(x, t)|2 dx f E0(Ä0, u0)

uniformly in time; thus we can apply Lemma 3.1 to obtain

∥É∥L p(Q) g c0 E
−1+1/p

0 |A(t)|3−2/p for all p ∈ [1,∞]. (3-17)

Also, note that Green’s theorem yields

A(t)=
∫

∂Q

u · dl f 4Ã∥u(t)∥L∞ . (3-18)

Regarding the growth of ∇Ä, note that (3-11) still holds in a strip, so

sup
Ä∈[0,t]

∥∇Ä(Ä)∥L∞ g t−1(∥É(t)∥L∞ − ∥É0∥L∞) for all t > 0. (3-19)

Below we discuss two cases.
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Case 1: A(0)g 0. In this case (3-16) gives

A(t)g k0Ã t for all t > 0.

We then apply (3-17) and (3-18) to obtain lower bounds for ∥É(t)∥L p(Q) and ∥u(t)∥L∞ :

∥É(t)∥L p(Q) g c1(Ä0, É0)t
3−2/p for all p ∈ [1,+∞], t g 0, (3-20)

∥u(t)∥L∞(Q) g 1
4 k0t for all t g 0. (3-21)

Regarding the growth of ∇Ä, we apply (3-20) with p = +∞ and combine it with (3-19) to obtain

sup
Ä∈[0,t]

∥∇Ä(Ä)∥L∞ g t−1(c1(Ä0, É0)t
3 − ∥É0∥L∞),

which implies

sup
Ä∈[0,t]

∥∇Ä(Ä)∥L∞ g c1(Ä0, É0)t
2 for all t g

( ∥É0∥L∞

c1(Ä0, É0)

)1/3

.

Combining this large time estimate with the trivial lower bound ∥∇Ä(t)∥L∞ g 1
Ã

k0 for all times, there
exists some c2(Ä0, É0) > 0 such that

sup
Ä∈[0,t]

∥∇Ä(Ä)∥L∞ g c2(Ä0, É0)t
2 for all t g 0. (3-22)

Case 2: A0 < 0. In this case the right-hand side of (3-16) becomes positive for t > |A0|/(k0Ã). In
addition, we have

A(t)g 1
2 k0Ã t for all t g T0 =: 2|A0|

k0Ã
.

Once we obtain this (positive) linear lower bound for t g T0, we can argue as in Case 1 to obtain lower
bounds for ∥É(t)∥L p(Q), ∥u(t)∥L∞ , and supÄ∈[0,t] ∥∇Ä(Ä)∥L∞ for all t g T0. In addition, combining the
lower bound for ∥∇Ä(t)∥L∞ for t g T0 with the trivial lower bound ∥∇Ä(t)∥L∞ g k0/Ã for all times, we
again have (3-22) with a smaller coefficient c(Ä0, É0) > 0 that only depends on the initial data. □

Remark 3.3. If the assumptions on symmetries of Ä0 and É0 are dropped, the following simple argument
still gives ∥É(t)∥L1 ≳ t for t k 1. Let Qt := {8t(x) : x ∈ [0, Ã] × [0, Ã]}, and denote by

01
t := {8t(x) : x ∈ {0} × [0, Ã]} and 02

t := {8t(x) : x ∈ {Ã} × [0, Ã]}

the left and right boundary of Qt . (Since u · n = 0 on ∂�, the top and bottom boundaries of Qt remain
on ∂� for all times.) In addition, since Ä is preserved along the flow, at each t we have Ä( · , t)|01

t
g k0> 0

and Ä( · , t)|02
t
f 0. Thus a computation similar to (3-8) in the moving domain Qt gives

d

dt

∫

Qt

É(x, t) dx =
∫

Qt

−∂x1Ä(t) dx g k0Ã for all t g 0.

Therefore, as long as the solution (Ä, É) remains smooth, we have

∥É(t)∥L1 g
∫

Qt

É(x, t) dx g k0Ã t − ∥É0∥L1 for all t g 0. (3-23)

However, since Qt is in general largely deformed from a square for t k 1, we are not able to apply
Lemma 3.1 to obtain faster growth rate for higher L p norms.
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Note that given any steady state És of the 2-dimensional Euler equation on the strip �, (0, És) is
automatically a steady state of the inviscid Boussinesq equations (1-4). Thus the infinite-in-time growth
estimate (3-23) directly implies that any such steady state (with zero density) is nonlinearly unstable, in
the sense that, for any 0 < k0 j 1, an arbitrarily small perturbation Ä0 = k0 cos(x1), É0 = És leads to
limt→∞∥É(t)∥L1 = ∞. See [Bedrossian et al. 2023; Castro et al. 2019; Deng et al. 2021; Doering et al.
2018; Masmoudi et al. 2022; Tao et al. 2020; Zillinger 2023] for more results on stability/instability of
steady states of the inviscid or viscous Boussinesq equations.

3.3. Application to 3-dimensional axisymmetric Euler equation. In this subsection we will prove
Theorem 1.8, whose proof is a close analog of Theorem 1.4.

Proof of Theorem 1.8. Using the Biot–Savart law, one can easily check that É¹ remains odd in z and u¹

remains even in z for all times while the solution stays smooth. Combining these symmetries with the
Biot–Savart law (1-10) gives uz = 0 for z = 0 and z = Ã for all times. For a point x on the r z-plane, let
us define the flow-map 8t(x) : [Ã, 2Ã ] × T → [Ã, 2Ã ] × T, given by

d

dt
8t(x)= (ur (8t(x), t), uz(8t(x), t)).

Since uz = 0 on z = Ã , for any x ∈ [Ã, 2Ã ] × {Ã}, we have 8t(x) remains on [Ã, 2Ã ] × {Ã}. From the
first equation in (1-9), we have ru¹ is conserved along the trajectory. Thus, for any point (r, Ã) with
r ∈ [Ã, 2Ã ], we have

ru¹ (r, Ã, t)g Ãu¹0(8
−1
t (r, Ã), 0)g Ãk0,

where the last inequality follows from the assumption u¹0 g k0 > 0 on z = Ã and the fact that 8−1
t (r, Ã) ∈

[Ã, 2Ã ] × {Ã}. This implies

u¹ (r, Ã, t)g 1
2 k0 > 0 for all r ∈ [Ã, 2Ã ], t g 0. (3-24)

Applying a similar argument for z = 0, the assumption |u¹0|< 1
8 k0 on z = 0 leads to

|u¹ (r, 0, t)| f 1
4 k0 for all r ∈ [Ã, 2Ã ], t g 0. (3-25)

Defining Q := [Ã, 2Ã ] × [0, Ã] to be a square on the r z-plane, the above symmetry results give
(ur , uz) ·n = 0 on ∂Q for all times. Using this boundary condition as well as the divergence-free property
of (rur , ruz) in (r, z) (which follows from (1-10)), we apply the divergence theorem to obtain

d

dt

∫

Q

É¹ (r, z, t) dr dz =
∫

Q

(rur , ruz) · ∇r,z

(
É¹

r

)

+ ∂z(u
¹ )2

r
dr dz

=
∫

Q

∂z(u
¹ )2

r
dr dz

=
∫ 2Ã

Ã

1

r
(u¹ (r, Ã, t)2 − u¹ (r, 0, t)2) dr

g ln 2 3
16 k2

0 g 1
10 k2

0
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for all times during the existence of a smooth solution, where the last inequality follows from (3-24)
and (3-25). This directly implies

A(t) :=
∫

Q

É¹ (r, z, t) dr dz g 1
10 k2

0 t +
∫

Q

É¹0 dr dz.

In particular, if
∫

Q
É¹0 dr dz g 0, this implies

A(t)g 1
10 k2

0 t for all t g 0, (3-26)

and if
∫

Q
É¹0 dr dz < 0, we have

A(t)g 1
20 k2

0 t for all t g T0 =: 20k−2
0

∣
∣
∣
∣

∫

Q

É¹0 dr dz

∣
∣
∣
∣
. (3-27)

Another ingredient we need is the energy conservation. It is well known that the kinetic energy is
conserved for the 3-dimensional Euler equation, i.e.,

∫

�
|u(x, t)|2 dx =

∫

�
|u0|2 dx . Since � has an inner

boundary with positive radius Ã , this implies, in the domain Q in the r z plane, we also have
∫

Q

(ur (r, z, t)2 + uz(r, z, t)2) dr dz f E0(u0).

Recall that É¹ and (ur , uz) are related by É¹ = ∂r uz − ∂zur . Thus we can apply Lemma 3.1 to conclude
that

∥É¹ (t)∥L p(Q) g c0 E
−1+1/p

0 |A(t)|3−2/p for all p ∈ [1,∞], t g 0,

which directly leads to (1-12) once we plug estimates (3-26) and (3-27) of A(t) into the above equation.
Finally, applying Green’s theorem in Q, we have

A(t)=
∫

Q

É¹drdz =
∫

Q

(∂r uz − ∂zur ) dr dz =
∫

∂Q

u · dl f 4Ã∥u(t)∥L∞ .

Combining this with the estimates (3-26) and (3-27) directly gives (1-13), finishing the proof. □

Appendix: Proof of Lemma 2.2

In the appendix we prove Lemma 2.2. The proof is almost the same as in [Kiselev and Yao 2023] other
than a small improvement in part (a). We sketch a proof for both parts below for the sake of completeness.

Proof of Lemma 2.2 (a). Here the proof mostly follows [Kiselev and Yao 2023, (3.4)], except that we
make a small improvement dropping the assumption ∥∂1µ∥2

Ḣ−1 <
1
4∥µ∥2

L2 in that paper. Let us define

¶ := ∥∂1µ∥2
Ḣ−1(R2)

, A := ∥µ∥2
L2(R2)

.

Clearly,

¶ =
∫

R2

À 2
1

|À |2 |µ̂|2 dÀ f A.

Let us discuss the following two cases.
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Case 1: ¶ < 1
4 A. In this case let us define

D¶ :=
{

(À1, À2) : |À1|
|À | g

√

2¶

A

}

.

By definition of D¶, we have

¶ g
∫

D¶

À 2
1

|À |2 |µ̂(À)|2 dÀ g 2¶
A

∫

D¶

|µ̂|2 dÀ.

This gives
∫

D¶
|µ̂|2 dÀ f 1

2 A, and thus
∫

Dc
¶
|µ̂|2 dÀ g 1

2 A. Note that Dc
¶ can be expressed in polar

coordinates as

Dc
¶ =

{

(r cos ¹, r sin ¹) : r g 0, | cos ¹ |<
√

2¶

A

}

.

Since µ ∈ C∞
c (R

2), we have

∥µ̂∥L∞(R2) f (2Ã)−1∥µ∥L1(R2) =: B.

Let h¶>0 be such that |Dc
¶∩{|À2|<h¶}|= (4B2)−1 A, which we will estimate later. Such a definition gives

∫

Dc
¶∩{|À2|gh¶}

|µ̂|2 dÀ =
∫

Dc
¶

|µ̂|2 dÀ −
∫

Dc
¶∩{|À2|<h¶}

|µ̂|2 dÀ g 1
2 A − (4B2)−1 AB2 = 1

4 A,

which implies

∥µ∥2
Ḣ s(R2)

g
∫

R2
|À2|2s |µ̂|2 dÀ g h2s

¶

∫

Dc
¶∩{|À2|gh¶}

|µ̂|2 dÀ g 1
4 Ah2s

¶ . (A-1)

To estimate h¶, let us define ¹0 := cos−1(
√

2¶/A). Since Dc
¶ ∩ {|À2| < h¶} consists of two identical

triangles with height h¶ and base 2h¶ cot ¹0, we have

(4B2)−1 A = |Dc
¶ ∩ {|À2|< h¶}| = 2h2

¶ cot ¹0 f 4
√
¶A−1/2h2

¶,

where the inequality follows from cos ¹0 =
√

2¶/A and sin ¹0 =
√

1 − 2¶/A g 1/
√

2, due the assumption
¶ < 1

4 A in Case 1. Therefore h¶ g (4B)−1 A3/4¶−1/4. Plugging it into (A-1) yields

∥µ∥Ḣ s(R2) g 1
2

√
Ahs

¶ g c(s, A, B)¶−s/4,

finishing the proof of Lemma 2.2 in Case 1.

Case 2: ¶g 1
4 A. As in Case 1, let us define ∥µ̂∥L∞(R2)f (2Ã)−1∥µ∥L1(R2)=: B. Let r0 := (A/(2ÃB2))1/2.

Such a definition leads to ∫

B(0,r0)

|µ̂|2 dÀ f Ãr2
0∥µ̂∥2

L∞(R2)
f 1

2 A,

and thus

∥µ∥2
Ḣ s(R2)

g
∫

B(0,r0)c
|À |2s |µ̂|2 dÀ g r2s

0
1
2 A g c(s, A, B)¶−s/4,

where the last inequality follows from the assumption ¶ g 1
4 A in Case 2. This finishes the proof of

part (a). □
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Proof of Lemma 2.2 (b). This part is equivalent to the last (unnumbered) equation in the proof of
Theorem 1.2 in [Kiselev and Yao 2023]. We sketch a proof below for completeness, and also to clarify
the dependence of c2

(

s,
∫

T×[0,Ã ] µ
1/3 dx

)

in (2-12).

For any k = (k1, k2) ∈ Z
2, the Fourier coefficient µ̂(k1, k2) can be written as

µ̂(k1, k2)= 1

(2Ã)2

∫

T

e−ik1x1

∫

T

e−ik2x2µ(x1, x2) dx2 dx1

= 1

(2Ã)2

∫

T

e−ik1x1(−2i)

∫ Ã

0
sin(k2x2)µ(x1, x2) dx2

︸ ︷︷ ︸

=:g(x1,k2)

dx1, (A-2)

where the last identity is due to µ being odd in x2. With g(x1, k2) defined in the last line of (A-2), when
setting k2 = 1, we claim that g(x1, 1) satisfies the following properties:

(a) g(x1, 1) is even in x1 and nonnegative for all x1 ∈ T.

(b) g(0, 1)= 0.

(c)
∫

T
g(x1, 1) dx1 g c

(∫

D
µ(x)1/3 dx

)3
for some universal constant c > 0.

Here property (a) follows from the facts that µ is even in x1 and nonnegative on D := [0, Ã]2. Property (b)
follows from µ(0, · )≡ 0. For property (c), note that

∫

T

g(x1, 1) dx1 = 2
∫ Ã

0
g(x1, 1) dx1 = 2

∫

D

sin(x2)µ(x) dx .

Combining Hölder’s inequality with the fact that sin(x2)µ(x)g 0 in D, we have

∫

D

sin(x2)µ(x) dx g
(∫

D

sin(x2)
−1/2 dx

)−2(∫

D

µ(x)1/3 dx

)3

g c0

(∫

D

µ(x)1/3 dx

)3

for some universal constant c0 > 0. This proves property (c).
For any k1 ∈ Z, let ĝ(k1) be the Fourier coefficient of g( · , 1); that is,

ĝ(k1) := 1
2Ã

∫

T

e−ik1x1 g(x1, 1) dx . (A-3)

Denote by ḡ := 1
2Ã

∫

T
g(x1, 1) dx1 the average of g( · , 1). Applying the definition of ĝ to (A-2) gives

µ̂(k1, 1)= −2i

2Ã
ĝ(k1) for any k1 ∈ Z. (A-4)

This allows us to bound ¶ := ∥∂1µ∥2
Ḣ−1(T2)

from below as

¶ g (2Ã)2
∑

k1∈Z\{0}

k2
1

k2
1 + 1

|µ̂(k1, 1)|2

g 2
∑

k1∈Z\{0}
|ĝ(k1)|2 = 1

Ã

∫

T

|g(x1, 1)− ḡ|2 dx1. (A-5)
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By property (c), ḡ g c
(∫

D
µ(x)1/3 dx

)3
> 0. Applying [Kiselev and Yao 2023, Lemma 3.3] to g(x1, 1)

yields

∥g( · , 1)∥Ḣ s(T) g c

(

s,

∫

D

µ(x)1/3 dx

)

¶−s+1/2 for all s > 1
2 . (A-6)

Note that

∥g( · , 1)∥2
Ḣ s(T)

= 2Ã3
∑

k1 ̸=0

|k1|2s |µ̂(k1, 1)|2 f Ã√
2
∥∂1µ∥2

Ḣ s−1(T2)
f Ã√

2
∥µ∥2

Ḣ s(T2)
, (A-7)

where the first inequality follows by the assumption s> 1
2 . Finally, combining inequalities (A-6) and (A-7)

gives (2-12). □
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