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Optical distortion caused by changes in the refractive index of fluid flow is a common issue in flow visualization6

using techniques such as Particle Image Velocimetry (PIV). In thermally-driven convection, this distortion can severely7

interfere with PIV results due to the ubiquitous density and therefore refractive index heterogeneity in the fluid. The8

distortion also varies spatially and temporally, adding to the challenge. We propose a composite filter, the SA-PIVR9

filter, which combines a series of conventional image filters to address this issue, focusing on optical distortion of10

thermal plumes in laminar flow. For the first time, we effectively mitigate the optical distortion from plumes while11

preserving the in-plane plume velocity and overall flow pattern, with the PIV data alone. Our filter is efficient and12

does not require additional measurements, expensive ray tracing, or a large dataset to begin with. It can be extended13

to separate the flow field and the effect of optical distortion in other fluid experiments when the two components are14

visually distinct. Additionally, this filter can serve as a baseline algorithm for comparison when developing more15

advanced methods like neural networks.16

I. INTRODUCTION17

Particle Image Velocimetry (PIV) is a widely utilized tech-18

nique for measuring flow velocity. The fundamental prin-19

ciple of PIV involves tracking clusters of seeding particles20

or tracers between two sequentially captured frames of the21

same illuminated plane, using cross-correlation to determine22

their displacement1. This displacement is typically attributed23

solely to fluid flow. However, when fluid density heterogene-24

ity is present, it leads to changes in the refractive index and25

perturbations in the light ray paths from the tracers to the26

camera2. Such density heterogeneity can result from volume27

changes in compressible fluids due to external forces (e.g.,28

shock waves in air3) or thermally-driven convection4. In the29

presence of refractive index anomalies in the fluid, the posi-30

tion, shape, and displacement of tracers result from both the31

flow and the fluid density distribution, which can pose sig-32

nificant challenges in interpreting PIV results2. This is es-33

pecially severe for PIV imaging of thermal convection ex-34

periments in viscous fluids where the flow is dominated by35

plumes/thermals5,6. The ubiquitous plumes change the light36

ray path within the whole fluid domain, cast shadows in planes37

behind the plumes, and corrupt the PIV results. From here on38

out, we refer to these optical distortions on the particle image39

as "plume shadow" and the affected region of PIV vectors as40

Shadow-Affected PIV Region (SA-PIVR) for short.41

Previous studies have tried to account for optical distor-42

tion effects in PIV by mapping the distorted particle images43

to the undistorted state, or by directly correcting the affected44

PIV vectors2,7–13. The proposed solutions were limited to45

simplified scenarios (e.g., 2D steady flow or fixed distor-46

tions), depended on additional distortion measurements (cf.47

Sec. II), and usually relied on computationally expensive48

ray tracing10–12. For time-dependent flow, where all particle49
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images are distorted differently, these solutions are not ad-50

equate, and the additional measurements and computational51

cost make them impractical or prohibitive.52

Here, we build a filter based on the combination of a series53

of conventional image filters, to correct the SA-PIVR. The fil-54

ter removes visually distinct regions of corrupted PIV results.55

Our method is efficient and robust and does not require ad-56

ditional measurements, or large synthetic datasets, which are57

hard to produce for time-dependent flow, or with computa-58

tionally expensive ray tracing. It needs only the existing PIV59

data. Because of its efficiency, our filter is suitable for pro-60

cessing the massive datasets produced by scanning PIV for61

long experiments. Though we focus on viscous thermal con-62

vection, the filter can be effective as long as the length scale63

of the shadow affected PIV region is smaller than that of the64

in-plane flow. We also show that the distortions are more than65

a nuisance and they provide quantitative clues on plume mor-66

phology.67

We first review previous solutions to the PIV optical dis-68

tortion in the literature (Sec. II), followed by a theoretical69

derivation of the origin of the optical distortions coupled with70

an analysis of the plume shadow and corresponding SA-PIVR71

in a thermal convection experiment Sec. III) . In Sec. IV,72

we introduce the workflow and the design of the PIV plume73

filter to remove SA-PIVR. We validate our method with a syn-74

thetic test, and present quality assessment, error analysis, and75

energy spectra compared to the PIV results on undistorted im-76

ages in Sec. V. In the last two sections, we apply the filters to77

a laboratory experiments of Rayleigh-Bénard convection in a78

very viscous fluid (Sec. VI) and discuss other implications of79

the plume shadow and broader applications of the filter. We80

conclude with a final summary in Sec. VII.81

II. PREVIOUS SOLUTIONS TO THE PIV OPTICAL82

DISTORTION83

Extensive previous efforts have been directed towards PIV84

optical distortion due to a refractive index n anomaly fixed in85
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space and time (e.g., the wall of the test section or air outside86

the test section). The distorted particle images are "dewarped"87

to the undistorted state, using a back-projection function that88

matches the experimentally obtained image with a calibra-89

tion target8,9. Alternatively, ray tracing through the known90

refractive index field n can be performed to dewarp the parti-91

cle images10,11 or correct the PIV vectors directly7. A hybrid92

method combining the approaches described above has been93

developed and applied to PIV experiments with a known mov-94

ing n anomaly by Zha et al.12. However, the fluid’s refractive95

index or density distribution is usually not directly available.96

Elsinga et al.2 pointed out that Background Oriented97

Schlieren (BOS)14 can be a useful tool to estimate n of the98

fluid itself and to evaluate the PIV error introduced by optical99

distortion. BOS relies on a high contrast pattern (e.g., random100

dots) at the back of the fluid of interest (usually air). In BOS,101

the camera will capture the image without any optical distor-102

tion as the reference, and an image through the working fluid103

which shows the distortion. By comparing the two images us-104

ing cross-correlation, one can obtain the displacement of the105

background dots integrated through the n anomalies. Note that106

here BOS and PIV are both affected by optical distortion, but107

the background pattern in BOS is static, while the illuminated108

particles in PIV are dynamic.109

Elsinga et al.2 suggested that the PIV error due to optical110

distortion can be decomposed into the PIV vector position111

error and the velocity error. They were able to analyze and112

correct the PIV results based on BOS but with several as-113

sumptions and simplifications not applicable to 3D transient114

flow (e.g. thermal convection): steady 2D flow and n field,115

and air as the working and ambient fluid. In 3D flow, the116

3D refractive index field needs to be reconstructed using ray117

tracing for every single frame, which typically requires more118

cameras and corresponding BOS backgrounds15,16. Such a119

configuration and the required inverse reconstruction problem120

are hard and computationally expensive. Adding a simulta-121

neous PIV system to acquire the BOS images would signifi-122

cantly increase the cost and computational challenge (Elsinga123

et al.2 only performed single-camera asynchronous PIV/BOS124

measurements). Even with all the additional data, the PIV125

algorithm may still fail to find the correct tracer pair in the126

presence of large optical distortions!127

More recently deep learning algorithms have been used for128

general planar-PIV tasks. They are usually end-to-end meth-129

ods that directly convert particle image pairs to final velocities130

using trained neural networks. Training the neural networks131

requires large datasets (1000 to 10000) of particle image pairs132

with corresponding ground truth velocities17,18. Very few133

studies have applied deep learning to PIV with optical distor-134

tions. Gao et al.13 provided a special example in which the135

water-air interface caused optical distortions in planar PIV.136

Their experimental setup allowed them to use a deformable137

mirror to simulate the water-air interface and obtain both the138

distorted and undistorted PIV images in situ. A wavefront sen-139

sor simultaneously measured the interface topography. With140

these measurements they obtained 20,000 pairs of PIV im-141

ages and water-air interface data to train a Convolutional Neu-142

ral Network (CNN)19, which dewarped the optically distorted143

PIV image to its undistorted state. Unfortunately, their suc-144

cess with a semi-2D refractive index anomaly (water-air inter-145

face) does not apply to 3D flow and n anomaly within the fluid146

domain: The undistorted particle images would not be acces-147

sible experimentally, because the tracer distribution changes148

with the time-dependent flow. In addition, creating a suf-149

ficiently large synthetic dataset of particle images, requires150

computationally expensive ray tracing and direct numerical151

simulations of the fluid flow, with no guarantee they would be152

faithful one-to-one replicas of the experimental flow.153

To our knowledge, there are no existing practical solutions154

to remove the PIV optical distortion from 3D transient flow.155

We have developed one based on the PIV data and the visu-156

ally distinct SA-PIVR. It takes advantage of the difference be-157

tween the distorted and undistorted regions in the raw particle158

images or PIV vectors. It allows for self-correction of the dis-159

tortion without additional measurements or computationally160

expensive numerical simulations/ray tracing.161

III. PLUME SHADOW AND SA-PIVR162

A. Optical displacement generated by plumes163

When a light ray passes through a medium with a density164

and refractive index gradient, it follows Snell’s law20:165

nsin! =C. (1)166

where ! is the incident angle and C is a constant. The differ-167

ential form of Eq. 1 can be obtained by taking the derivative168

on both sides:169

→cot! d! =
dn
n

(2)170

tan∀ d∀ =
dn
n
. (3)171

with ∀ as the complementary angle of ! . If we limit the light172

ray to the x→ y plane and let n = n(y), tan∀ = dy/dx. Eq. 3 is173

then transformed into174

d∀ =
1
n

dn
dy

dx (4)175

!∀ =
∫ 1

n
dn
dy

dx. (5)176

Eq. 5 provides the deflection angle after traveling through177

the density gradient. In 3D a general form can be written as:178

!∀ =
∫ 1

n
∀ndx. (6)179

#a = (ZD +Zd) tan!∀ ↑ ZD!∀ ↑ ZD

n0

∫
∀ndz. (7)180

When the ambient medium and the working fluid are the181

same (e.g., PIV in air, Fig. 1), the displacement # seen by the182

camera is given by:183
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FIG. 1. Schematic cartoon of the light ray path responsible for the plume shadow considered in this study.

# = M#a = M
ZD

n0

∫
∀ndz. (8)184

where the magnification factor M = f
ZD+ZA→ f , here ZA is the185

distance from the density gradient to the lens (Fig. 1), and186

f is the focal length of the lens. For liquids including air,187

water, and syrup, the refractive index can be described with188

the Gladstone-Dale relation:189

n = 1+K∃. (9)190

∀n = K∀∃. (10)191

where ∃ is the fluid density, and K is the fluid-dependent192

Gladstone-Dale constant. Eq. 8 now becomes:193

# = M#a = M
ZD

n0

∫
K∀∃dz. (11)194

This # expression not only applies to PIV affected by opti-195

cal distortion but also to BOS21 and shadowgraphs22. As ∃ is196

linearly dependent on the fluid temperature T , thermal anoma-197

lies are n anomalies. We discuss n instead of ∃ for the rest of198

the paper.199

From Eq. 8, the optical displacement is proportional to the200

integrated ∀n along the ray path. In viscous thermal convec-201

tion experiments dominated by plumes, ∀n is the largest near202

the edge of the plumes as seen in shadowgraphs23.203

An estimate of the optical displacement # can be calculated204

from Eq. 8. However, complexities arise when the ambient205

medium (e.g., air) is not the same as the working fluid (e.g.,206

syrup), as we discuss in Sec. V. Instead, the optical displace-207

ment can be directly measured from particle images such as208

those in Fig. 2a,b, as we show below.209

B. E!ects of optical distortions induced by in-plane and210

out-of-plane flow on PIV vectors211

Figure 2a,b illustrate these distortive optical effects in the212

raw particle images acquired during an experiment of vigor-213

ous thermal convection experiments in a viscous fluid heated214

from below (c.f. Sec. VI A). The flow is dominated by ther-215

mal plumes with large (up to ↓ 5‰) variation in refractive216

index. Around the plume head and stem the tracers are often217

elongated. Parallel linear segments perpendicular to the edges218

of the plume head are particularly obvious (Fig. 2b). Away219

from the edge of a plume head, including in its interior, the220

optical distortions are more subtle.221

PIV algorithms match similar patches in particle image222

pairs. However, plume shadows complicate this process.223

Time-dependent fluid flow not only alters in-plane tracer con-224

figurations but also causes varying optical distortions between225

frames. The PIV algorithm attempts to match these distorted226

patches, which may include different optical displacements227

and elongation of already different tracers (displacement into228

or outside the illuminated plane). This complexity contrasts229

with the 2D steady flow case studied by Elsinga et al.2, where230

the optical distortion is fixed in time. Hence, the resulting231

SA-PIVR is a product of a nonlinear process in the time-232

dependent flow. This nonlinearity stems from frame-to-frame233

differences in optical distortion and tracer patterns, despite the234

optical displacement being proportional to the integrated re-235

fractive index anomalies (Eq. 8).236

To quantify how the PIV results are affected by the shad-237

ows cast by plumes in front of the illuminated planes of inter-238

est, we first compute the lateral displacement from multiple239

methods. Fig. 2c, d show the lateral displacement captured240

by optical flow24 and cross-correlation based PIV (CCPIV)241

combined with the Window Deformation Iterative Multi-grid242

scheme (WiDIM)25,26. We use a 32↔32 pixels CCPIV win-243
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FIG. 2. Example of Particle Image Velocimetry with optical distortion from the experiment in Sec. VI A. (a) Raw Image from a thermal
convection experiment. Red rectangle outlines the zoomed panel in (b), where dashed white lines outline the tracer elongation from the
distortions caused by the shadows of plumes in front of the illuminated plane. (c) Lateral displacement from optical flow24. (d) Lateral
displacement from cross correlation and WiDIM25,26. Dashed green boxes bound the in-plane plumes. Dashed black boxes bound the SA-
PIVR caused by the shadows cast by plumes in front of the illuminated plane. Dashed ovals bound the plume core, the fastest part of each
in-plane plume. SA-PIVR appear as discontinuous bands.

dow with 50% overlapping. We further apply a standard 3↔3244

median filter27 to the CCPIV results. Optical flow provides a245

denser (per-pixel) velocity estimation compared to the lower246

resolution CCPIV. The black dashed line boxes in Fig. 2c,247

d bound the SA-PIVR. It is thin and sharp, while that from248

the in-plane plume flow, bounded by dashed line green boxes,249

is broad and smooth. This is particularly clear in the optical250

flow results (Fig. 2c) and we will focus on optical flow results251

when analyzing SA-PIVR. Although the optical distortion in252

the particle image may be subtle, the corresponding SA-PIVR253

is distinct.254

To better understand the SA-PIVR, its characteristics thick-255

ness, and differences with the PIV of in-plane plume flow,256

we look carefully at the distortions caused by the head of a257

plume in front (between the plane and the camera) of the illu-258

minated plane (pi f ). It is a region away from in-plane plumes259

(pip) where the in-plane flow is near zero, so the direction260

and amplitude of the PIV vectors are dominated by the optical261

distortion alone (Fig. 3a,b). This part of the plume shadow262

consists of two layers: the outer layer with parallel line seg-263

ments perpendicular to the plume head, and the inner layer264

that still shows the dot pattern in tracers. The two layers have265

a comparable thickness (about 6 mm), which is also the up-266

per bound of the optical displacement based on the extent of267

the tracer elongation (Fig. 3a). For the outer layer, tracers at268

the inner edge experience strong outward elongation, and vice269

versa. In the inner layer, the optical distortion is subtle. A270

close comparison of the two image frames reveals weak out-271

ward stretching. We interpret the outer layer to result from272

light rays traveling near the top edge of pi f , where |∀T | and273

|∀n| are the strongest28 (Fig. 1). The inner layer should in-274

stead receive light rays that pass through the interior and lower275

part of the head of pi f , which has a much smaller |∀T | and276

|∀n|.277

As the pi f grows, the head becomes larger and sits higher278

in frame 1 (t1) compared with frame 0 (t0). The outer layer279

correspondingly migrates upwards. Consequently, the tracers280

originally atop the outer layer in frame 0 are now elongated in-281

ward in frame 1; tracers located at the inner edge of the outer282

layer, originally elongated outward, are now destretched. The283

changes in the two layers are easily detected by optical flow284

(Fig. 3c). The inner shadow layer simply presents an out-285

ward flow, consistent with weak stretching. The outer shadow286

layer shows inward displacement overall, dominated by in-287

ward elongation of tracers atop the outer layer in frame 0 (Fig.288

3a). Locally, the PIV algorithm is also affected by the outward289

elongation of tracers near the inner edge of the outer layer290

(dashed box in Fig. 3c). The thickness of the SA-PIVR shown291

here is the largest amongst all areas affected by optical distor-292

tions from the out of plane plumes (↓ 6 mm, Fig. 2c, Fig. 3c),293

but still less than half of the typical thickness of the head from294

in-plane plumes (Fig. 3d). The ambient in-plane flow is even295

broader. The SA-PIVR computed with optical flow is visually296

distinct (usually with large apparent displacement amplitude297
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FIG. 3. Raw particle images of distortion in the plume head and corresponding SA-PIVR of the illuminated plane. (a) Raw particle images of
the head of the plume shadow frame 0. (b) Like (a) but for frame 1. The plume shadow includes an outer layer with strong tracer elongation
(outwards for tracers near the inner edge and vice versa (thin white arrows), and an inner layer undergoing weak outward stretching (thick
white arrow). (c) Corresponding X displacement from optical flow. The inner layer shows outward movement, but the outer layer shows
overall inward movement. The thicknesses of the two layers are comparable (double-sided arrows in (c) and (a)), but much smaller than the
typical thickness of the in-plane plume flow (double-sided arrow in (d)). (d) Zoomed-in view of the right green box in Fig. 2d.

of ↓ 3 pixels) compared with the in-plane flow for the same298

image pair. Thanks to these two characteristics, the SA-PIVR299

can be separated from the largest displacements (dashed line300

ovals in Fig. 2c,d) caused by the fastest part of each in-plane301

plume ("plume core"). In lateral displacement as shown here,302

near the roots and heads (Fig. 2c), and vertically along the303

plume stem.304

The results are similar using a CCPIV algorithm (Fig. 2d).305

Although CCPIV can only produce lower resolution results306

compared to optical flow, we again find the characteristic307

length scale of the plume core to be typically twice as thick308

as that of the SA-PIVR (Fig. 2c). If no distinguishable, dis-309

tinct, SA-PIVR exists, it is safe to assume that ∀n and the310

accompanying optical distortion along the ray path are negli-311

gible.312

IV. THE PIV PLUME FILTER313

Based on the analysis above we construct a workflow for a314

filter to be applied to the SA-PIVR. We refer to this filter as315

the PIV plume filter. The proposed workflow is shown in Fig.316

4.317

A. Workflow318

1. Run CCPIV algorithm on the particle image pair of in-319

terest and use a 3↔3 median filter, which helps further320

reduce the thickness of the SA-PIVR ("Raw CCPIV",321

Fig. 4a).322

2. Perform non-local means filter on the Raw CCPIV re-323

sult using a large search window size S#, template win-324

dow size SB , and filter strength h (e.g., 21↔ 21, 7↔ 7,325

20, respectively, Fig. 4b). Calculate the absolute dif-326

ference before and after (Fig. 4c). Additional median327

filters can be used in preprocessing to enhance the dif-328

ferences.329

3. Use a threshold to convert the highlighted region in step330

2 to a binary mask (Fig. 4d).331

4. Perform morphological opening on the previous mask332

to remove the SA-PIVR and obtain a final mask, con-333

taining mostly the plume core region (Fig. 4e).334

5. Combine the raw CCPIV result within the plume core335

mask (Fig. 4f), and the non-local means result outside336

the plume core mask (Fig. 4g) and stitch them together337

(Fig. 4h). The displacement can be scaled up (↔1.1) to338

compensate for the loss of amplitude in the next step.339

6. Perform non-local means again on the stitched result,340

with small S#, SB, h (e.g., 9↔9, 3↔3, 3, respectively,341
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FIG. 4. Flowchart for the PIV plume filter.

Fig. 4b). This step can smooth out the stitching bound-342

ary from step 5, and any remaining SA-PIVR.343

This workflow largely removes the SA-PIVR, fills it with344

interpolated PIV data from its neighborhood, and preserves345

the overall in-plane flow pattern and the strength of the in-346

plane plume flow (defined as the amplitude of the displace-347

ment in the plume core). Key to the filter’s success is the348

construction of masks (steps 2, 4, and 6) for the SA-PIVR and349

separately for the in-plane plume flow. Below, we offer further350

details of the masks obtained by combining non-local means351

and morphological opening image filters.352

B. Non-local means filter353

Both the plume core and the SA-PIVR are characterized by354

large displacements in the PIV image, and/or high displace-355

ment gradients. Common gradient filters only sensitive to356

high gradients are therefore inadequate at highlighting the af-357

fected region. These include the Sobel X (Fig. 5b) and Sobel358

Y filters, (Fig. 5c) which are based on the gradient of lateral359

displacement along the x or y directions, and the Laplacian360

(Fig. 5d) of the displacement. The non-local means filter29
361

we use in step 2 is a more effective "gradient detector", which362

offers a finite filtering window size instead of only focusing363

on every two pixels.364

The non-local means filter is an image denoising algo-365

rithm that averages pixels of similar neighborhoods. A fil-366

tered single-channel (gray) image INL can be obtained from367

the original image I by:368

INL(i) =
1

C(i) ∃
j↗#(i)

w(i, j)I( j) (12)369

w(i, j) = exp
(
→ |I(B(i))→ I(B( j))|2

h2

)
. (13)370

where i and j are the pixel index (or vector index for CCPIV),371

C(i) is a normalization factor, #(i) is a search window cen-372

tered at i with a size S#, w(i, j) is the weighting factor, B(i)373

is the template window centered at i with a size SB , h is the fil-374

ter strength. The proper setup of w(i, j) enables the non-local375

means filter to only average similar patches (template win-376

dow) within a larger search window with a strength controlled377

by h. With a large search window size (e.g., S# = 21↔ 21)378

and template window size (e.g., SB = 7↔7), and a large filter379

strength (h = 20), we can smooth out small-scale features but380

still preserve the large-scale differences. Conversely, small381

search and template windows and small h apply a more mod-382

est smoothing but retain more texture locally. By taking the383

absolute difference of the CCPIV results before and after ap-384

plying the non-local means mask (Fig. 2d), we effectively385

highlight the plume core and the SA-PIVR. The latter have386

sharp boundaries (green and red dashed line boxes in Fig. 5a).387

A pixel can be replaced by the location of each PIV vector388

when applying the non-local means filter to the PIV results.389

We now have an image with sharp boundaries, which allows390

us to create a binary mask using just a threshold value.391
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FIG. 5. Comparison of the gradients detected in lateral displacement in the SA-PIVR in Fig. 2d. (a) Absolute difference before and after the
non-local means filter (after additional median filters). The SA-PIVR and the in-plane plume are bounded by red and green dashed line boxes,
respectively. (b) Amplitudes using Sobel X. (c) Sobel Y. (d)Laplacian filters.
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FIG. 6. The steps of morphological opening. (a) A binary mask with wide and thin features. (b) Erosion operation on (a). (c) Dilation operation
on (b)

.

C. Morphological opening392

To separate the plume core from the distinct, thinner and393

discontinuous SA-PIVR bands (c.f. Fig. 2d), we adopt an394

image processing tool called morphological opening30. Mor-395

phological opening is comprised of two steps: erosion and396

dilation (Fig. 6). A structuring element B (e.g., a square, an397

ellipse) is used to sweep the image A that contains our binary398

mask. For a patch of A that the structuring element completely399

fits within, the erosion step will remove boundary pixels, and400

the subsequent dilation step will restore the size of the remain-401

ing shapes. Choosing B with a size between the wider and402

thinner features, we can effectively remove the thinner fea-403

tures (Fig. 6b), while keeping the wider ones with their orig-404

inal size. Ideally, morphological opening helps to produce a405

mask with only the core region of the plume.406

V. TESTING THE FILTER WITH SYNTHETIC IMAGES407

To verify the validity of the proposed PIV plume filter, we408

introduce a synthetic test based on ray tracing. We also pro-409

vide qualitative and quantitative evaluation of the filter against410

the synthetic particle images generated from a numerical sim-411

ulation of vigorous thermal convection in a viscous fluid and412

dominated by plumes.413

A. Setup of the synthetic test414

1. Overall configuration415

We follow Fig. 1 to design the synthetic test. We created416

particle images very similar to the experiment (c.f. Sec. VI)417

(Fig. 2). The nominal test section is 40 cm ↔ 40 cm ↔ 27.5418

cm along x,y,z. A light sheet (thickness Dlight = 5 mm) illu-419
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FIG. 7. Particle images and refractive index distribution in the synthetic test. (a) Particle image without the SA-PIVR at t0 (frame 0). (b) Particle
image with the SA-PIVR at t0 SA-PIVR highlighted in yellow. Red dashed line rectangles are zoomed in from red solid line rectangles. (c)
Central vertical cross section of the refractive index field n at t0. (d),(e),(f) as (a),(b),(c) for t1 (frame 1). The SA-PIVR is highlighted in yellow
in (b) and (e). Three reference lines (dashed red) are plotted across (c) and (f) to compare the size and position of the plume-like structure at
t0 and t1.
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FIG. 8. Ground truth displacement used in the synthetic test. (a) Y displacement. (b) X displacement.

minates a plane within the test section, of which we simulate420

a smaller inset (22.5 cm↔22.5 cm). This smaller plane con-421

tained in the original image just fits the image of 1024↔1024422

pixels taken by a camera facing the center of the plane. A423

plume-like structure exists between the plane and the cam-424

era, at ZD = 13 cm from the illuminated plane. The working425

fluid has the same properties as the experimental fluid with426

n0 = 1.4961 at ambient (reference) conditions (25 ↘C). To427

simplify the synthetic test and save computational cost, the428

ambient medium is set to be the same as the working fluid,429
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TABLE I. Comparison of the synthetic test and the laboratory exper-
iment

Synthetic Experiment
working fluid syrup syrup
ambient medium syrup (n0 = 1.4961)a air (n0 = 1)
| %n

n |max 3.5 ‰ 4.8 ‰
ZD 13 cm 0↓40 cm
ZA 227 cm 68↓107 cmb

f 171 mm 15 mm
Rhead 24 mm 10↓100 mm
Rstem 3.6 mm 2.5↓3.5 mm
Rtracer 550±200 µm 320±200c µm
Dlight 5 mm 5 mm
tracer density 7.3 per 16↔16 pixels 7.3 per 16↔16 pixels
pixel size 0.22 mm 0.22 mm
image size 1024↔1024 pixels 1837↔1247 pixels
max Y displacement 15 pixels 25 pixels

a at 25 ↘C
b ZD +ZA = 107 cm
c apparent size; actual size 15±1.5 µm

instead of air (n = 1) as in the experiment. To compensate for430

this simplifying assumption (c.f. Appendix A) and create par-431

ticle images as similar to the experiment as possible, we use432

the same pixel size, and tracer density, but a larger ZA, f and433

tracer size Rtracer (Table I). Fig. 7 shows the final synthetic434

image used in the test.435

2. Density gradient436

We model a refractive index gradient zone with a volume of437

60 mm ↔135 mm ↔60 mm along x,y,z centered at the plume-438

like structure (representing pi f ), with a resolution of 0.6 mm439

for piece-wise linear ray tracing. This plume-like n anomaly440

consists of a cylindrical stem and half a spherical shell head441

(cross section in Fig. 3c for frame 0). The cylinder has a ra-442

dius Rstem = 3.6 mm, with a Gaussian | %n
n | negative anomaly:443

a central peak of 3.5‰ and a half width at half maximum of444

2.1 mm (or standard deviation & = 1.8 mm). The spherical445

shell has an average radius of Rhead = 24 mm, and a thick-446

ness of 6 mm, | %n
n | which decays quadratically from 2.3‰ at447

1/4 thickness from the top to 0 at the edge. These two simple448

geometrical components are designed to generate similar (ac-449

tually stronger) tracer elongation in the particle images com-450

pared to the experiment (Fig. 2, 3). The synthetic particle451

images at frame 0 (t0) with (and highlighted plume shadow)452

and without the density gradient are shown in Fig. 7a, b.453

The synthetic particle images are simulated using photon31.454

photon is a Python-CUDA program that provides PIV/BOS455

image generation, powered by accurate non-linear ray trac-456

ing through density gradients using fourth-order Runge-Kutta457

schemes optimized for GPUs. More than a billion light rays458

are traced for each particle image.459

3. Inter-frame flow460

The in-plane flow for the synthetic images is taken from461

a numerical simulation with the same initial/boundary con-462

ditions and fluid properties as the experiment in Sec. VI.463

The numerical simulation is performed with the Finite Ele-464

ment package Firedrake32. The computational mesh is con-465

structed with more than a half million unstructured tetrahe-466

drons refined towards the bottom of the section.467

For the ray tracing computation, we model the in-plane flow468

as 2D. We select a 22.5↔22.5 cm region at a z-plane at a lo-469

cation and time close to those of the experiment. This plane470

contains a complete plume on the right and part of the root of471

another plume on the lower left corner (Fig. 8). We adopt a 2472

s inter-frame delay, so the maximum displacement is 15 pixels473

along y. The tracers are then advected using the displacement474

in Fig. 8. The larger displacement of the synthetic test makes475

it more challenging to remove the SA-PIVR while preserving476

the in-plane plume flow, which makes it a more challenging477

test of the filter design.478

We expand the average Rhead by 4% from frame 0 (t0) to479

frame 1 (t1) for pi f . We also shift the entire structure 1 mm480

to the left, mimicking the behavior of a real growing pi f (Fig.481

7f). Fig. 7d and e show the synthetic particle images at t1 with482

and without the density gradient.483

Applying the CCPIV algorithm along with WiDIM and a484

median filter, to the synthetic particle image pairs with a pi f ,485

we find an obvious SA-PIVR at the center of the image (Fig.486

9a) with a thickness comparable to those in the experiment487

(Fig. 2d) and about half of the plume core thickness.488

B. Filtering of the synthetic data489

Fig. 9 shows the filter applied to the synthetic PIV lateral490

displacement results. PIV results without density gradients491

are shown in Fig. 10a,d for comparison. The binary mask492

covering the plume core (green dashed line boxes) and the SA-493

PIVR (red dashed line box) constructed using the non-local494

means filter (corresponding to Fig. 4d) is shown in Fig. 9b.495

Both are captured accurately. To remove the SA-PIVR from496

the mask, we apply morphological opening (Fig. 9c). The497

plume core is overall unchanged. The final filtered CCPIV498

result can be found in Fig. 9d. For completeness, we also499

present the raw CCPIV result with the SA-PIVR and the fil-500

tered version for the vertical displacement in Fig. 10b,c.501

C. Quality assessment of the filtered PIV results502

Below we combine qualitative and quantitative evaluation503

of the PIV plume filter using the following criteria:504

1. Remove the SA-PIVR effectively.505

2. Preserve the strength of the in-plane plume flow.506

3. Maintain the overall flow pattern (in the spatial and507

spectral domains)508
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FIG. 9. PIV plume filter applied to the X displacement in the synthetic test. (a) Raw X displacement after PIV calculation. The SA-PIVR and
the in-plane plume are bounded by black and green dashed line boxes, respectively. (b) Binary mask containing both the plume core region
and SA-PIVR. Boxes as in (a). (c) Mask after applying morphological opening to (b). (d) Final X displacement after applying the PIV plume
filter.

1. Qualitative assessment509

We start with visual inspection of the result. Before the fil-510

tering, the visually distinct SA-PIVR is located in the center511

(black dashed line box in Fig. 9a); after the filtering, no ob-512

vious anomalous lateral displacement can be seen within the513

same area of the image (Fig. 9d). The lateral displacement514

of the plume core (within the green dashed line boxes in Fig.515

9a) is consistent in shape and amplitude before and after the516

filtering (Fig. 9d). The large-scale in-plane flow is overall un-517

touched (e.g., interface between the red and blue dashed line518

rectangles in Fig. 9a, d). This is also true for the vertical dis-519

placement (10b,c). The filter passes the qualitative evaluation.520

2. Quantitative assessment521

To objectively assess the quality of the proposed filter, we522

use several different metrics to compare the raw and filtered523

PIV results against the PIV without a density gradient (or n524

anomaly) and therefore no shadow. First, we use the Root525

Mean Squared Error (RMSE) as one of the main error indi-526

cators. RMSE is the square root of the mean of the squared527

Euclidean distances between two vectors:528

RMSE =

√
1
N

N

∃
i=1

≃ui →u0,i≃2. (14)529

where ui is the displacement at the i-th point, u0 is the PIV530

result in the absence of a plume shadow, and N represents the531

number of vectors.532

A variant of RMSE called Average Endpoint Error (AEE)533

directly uses the mean of the Euclidean distances (or endpoint534

errors):535

AEE =
1
N

N

∃
i=1

≃ui →u0,i≃ . (15)536
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FIG. 10. (Top) PIV of the synthetic image before and after filtering. (a) PIV without SA-PIVR. (b) Unfiltered (raw) PIV result if SA-PIVR
present. (c) PIV after filtering applied to (b). (Bottom) Error metrics averaged over two components of the PIV vector compared to the
synthetic ground truth in (a). Lower values are higher quality, except for SSIM. (d) RMSE: root mean square error. (e) AEE: Average Endpoint
Error. (f) DA: Dissimilar Area. SSIM: Structural Similarity Index Measure.
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FIG. 11. Map of Structural Similarity Index Measure (SSIM) of (a) Raw PIV result and (b) filtered result for the X displacement in the
synthetic test. DA: Dissimilar Area, relative ratio of number of pixels with SSIM < 0.5 over that of the total pixels.

Compared with RMSE, AEE is less sensitive to large out-537

liers because outliers are weighted less. For the in-plane flow,538

RMSE focuses more on the plume core (larger displacements539

are prone to larger error), while AEE is more representative540

of the contribution from the large-scale flow with smaller dis-541

placements. For the SA-PIVR, the error will usually be large,542

and the contribution from SA-PIVR will be larger for RMSE.543

The Structural Similarity Index Measure (SSIM)33 is a544

great candidate for measuring the differences in the neighbor-545

hood of a PIV vector between two results, as well as differ-546

ences in the PIV vector itself. It is therefore ideal for assessing547

the quality of the SA-PIVR filter removal. It is defined as:548

SSIM(i) =
(2µuµu0 +C1)(2&uu0 +C2)

(µ2
u+µ2

u0
+C1)(&2

u+&2
u0

+C2)
for B(i). (16)549

where B(i) is a 7↔7 window centered at vector i, µu is the550

mean displacement within B(i), &u the corresponding vari-551

ances. The subscript u refers to the PIV result to be checked,552

and u0 the PIV result in the absence of a plume shadow. &uu0553
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FIG. 12. Power Spectral Density (PSD) of the displacement vector
of the synthetic test. Gray: ground truth from Fig. 8. Green: CCPIV
with no shadow. Black: raw CCPIV with shadow. Red: filtered
CCPIV with shadow. Dashed yellow oval highlights the frequency
to which the SA-PIVR contributes.

is the covariance. C1 and C2 are constants to stabilize the di-554

vision with a weak denominator. SSIM for different compo-555

nents (ux,uy) is computed separately. A final SSIM can be556

obtained by averaging the SSIM map from Eq. 16 over both557

components at all points. SSIM ranges from 1 (perfect match)558

to →1 (completely unmatched).559

Finally, based on the SSIM map, we introduce a new metric560

called Dissimilar Area (DA):561

DA =
∃N

i=1 I(SSIM(i)< 0.5)
N

. (17)562

where I is an indicator function that is either 1 (if the condi-563

tion is true) or 0 if false. DA provides the relative area of the564

dissimilar region. Compared with SSIM, DA offers a metric565

on the similarity of the planforms of the PIV results affected566

or unaffected by the plume shadow.567

The four error metrics for the raw CCPIV and the filtered568

results compared to the PIV when a density gradient is present569

are summarized in Fig. 10. Lower values represent a higher570

quality result except for SSIM, for which the opposite is true.571

The filtered version is significantly and systematically better572

than the pre-filtered version. Both RMSE and AEE drop by573

11% after filtering. The average SSIM is only marginally574

higher with our filter ( due to the small total area of the SA-575

PIVR), but DA decreases by 34%. To illustrate the improve-576

ments due to the filter, we further show the SSIM map for577

the lateral displacement in Fig. 11, with a SSIM=0.5 con-578

tour plotted as red dashed lines. The raw CCPIV result con-579

tains a large dissimilar patch in the center due to the SA-PIVR580

(Fig. 11a), which almost completely vanishes after the filter-581

ing (Fig. 11b). Taken together these metrics suggest that the582

SA-PIVR filter can largely eliminate the SA-PIVR while re-583

taining the pattern and amplitude of the fast in-plane flow due584

to plumes.585

In addition to the error metrics above, we also inspect586

the frequency-dependent flow distribution by computing the587

Power Spectral Density (PSD). We apply a 2D Fourier trans-588

form to the lateral and vertical displacements as the real and589

imaginary parts ux + juy. In this way, both components can590

be included at the same time (the order of ux and uy does not591

matter). If the x and y dimensions do not agree (as in the ex-592

periment), we scale x to y in frequency. We obtain a 1D PSD593

by binning data radially (along
√

k2
x + k2

y , where k is the wave594

vector) in the 2D spectral domain.595

PSD P(k) at different wave vectors k is plotted in Fig. 12596

for the ground truth, i.e., the synthetic PIV results for the flow597

in the absence of shadows cast by plumes in front of the il-598

luminated plane of interest, in the presence of shadows, and599

after filtering. P(k) of the raw CCPIV result is characterized600

by a few peaks at k ↓ 0.1 to 0.2, much higher (up to 60%601

higher) than that of the ground truth or the SA-PIVR (within602

the dashed oval in Fig. 12). This could be mistakenly inter-603

preted as the existence of a vigorous flow at smaller scales604

than the in-plane plume flow. After the filtering (red line in605

Fig. 12), P(k) reduces to levels similar to those of the PIV not606

affected by shadows, and the two curves (red and green) are607

largely consistent. The only exception is at the highest k, an608

anomalous peak appears in the filtered result, which is likely609

a by-product of stitching (Fig. 4f,g,h). Nevertheless, this peak610

contributes only negligibly to the PSD.611

The synthetic test shows that the PIV plume filter preserves612

the in-plane flow strength in the spatial and spectral domains613

and removes the SA-PIVR as defined in our original goals.614

Most importantly after filtering the PIV results are as satisfac-615

tory as if no density gradient were present.616

VI. APPLICATION TO EXPERIMENTAL DATA617

A. Experiments in Viscous Fluids618

1. Thermal Convection in Viscous Fluids619

In viscous fluids, the strength of the convective flow and its620

time dependence can be represented by the global Rayleigh621

number Ra, which describes the ratio of the diffusive over622

convective time-scales for heat transport. Ra is defined as:623

Ra =
∋diff

∋conv
=

H2/(
H

∃)!T gH2/∗
=

∃g)!T H3

∗(
(18)624

where ∃ is the reference density, g is gravity, ) thermal ex-625

pansivity, !T , the temperature difference driving the flow, H626

is the thickness of the convective region, ∗ , the viscosity and627

( , the thermal diffusivity.628

The effect of inertia is described by the Prandtl number Pr:629

Pr =
∗/∃

(
=

+
(

(19)630

, where + is the kinematic viscosity. For viscous enough fluids631

(Pr>1000), the effect of inertia is essentially negligible34.632
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2. Experimental setup633

We conducted a thermal convection experiment with basal634

heating in a very viscous fluid (Pr > 3000) undergoing vig-635

orous convection (Ra = 1.9↔106, while the critical Rayleigh636

number is Rac = 170835) dominated by plumes. The goal of637

the experiment was to study the collective dynamics and mor-638

phological evolution of plumes applicable to Earth’s interior.639

We used scanning stereoscopic PIV to acquire 3D velocity640

over time, covering the clusters of plumes in the fluid domain.641

The plumes frequently cast shadows on the illuminated planes642

and corrupted the PIV results.643

3. Test section and initial/boundary condition644

The test section has internal dimensions of 40 cm ↔ 40 cm645

↔ 27.5 cm along x,y,z. It is made of 1 cm thick acrylic walls646

with a refractive index nearly identical to that of the working647

fluid (↓ 1.49) and low thermal diffusivity (10→7 m2/s) effec-648

tively insulating the sides. The tank has an aluminum top lid649

and an aluminum false bottom. The lid of the tank was kept at650

room temperature (25 ↘C), while the false bottom of the tank651

was heated (80 ↘C) with a silicone heating mat controlled by652

a PID controller. The heater was turned on at t = 0 s, and653

the temperature of the bottom increased nearly linearly from654

25 ↘C to 80 ↘C in 250 s. The bottom temperature thence re-655

mained constant until the end of the experiment (↓ 8000 s).656

The ambient medium outside the tank is air.657

4. Working fluid658

The working fluid was Gateway Du-Crose 3 63/43 corn659

syrup, clear and chemically stable, characterized by high and660

strongly temperature-dependent viscosity. Its slight super-661

exponential temperature dependency was measured with an662

Ametek Brookfield DV2TLV viscometer and is given by:663

∗ = exp(4.642↔10→4T 2 →1.246↔10→1T +6.325). (20)664

Here T is in ↘C, ∗ is in Pa·s. With temperatures between 25 to665

80 ↘C the maximum viscosity contrast (, = ∗max/∗min) was666

65.667

The refractive index n was obtained using a Hanna instru-668

ments refractometer HI96800 and is given by:669

n =→2.058↔10→4T +1.5012. (21)670

The temperature dependence of the density ∃ (in kg/m3)671

was measured with a Cole-Parmer Specific Gravity Hydrom-672

eter Set as:673

∃ =→5.875↔10→1T +1442. (22)674

The Gladstone-Dale constant K was determined with675

Eq. 9, 21, 22 to be K = 3.5↔10→4 m3/kg.676

Table II summarizes all the properties of the fluid measured677

in the lab or obtained from the manufacturer.678

Properties Symbol Value

Density ∃ 1427 kg/m3

Dynamic viscosity ∗ 33.1 Pa·s
Kinematic viscosity + 0.023 m2/s
Index of refraction n 1.4961
Thermal expansion coefficient ) 4.1↔10→4K→1

Thermal conductivity k 0.346 W·m→1K→1
Specific heat capacity CP 2300 J/kg·K
Thermal diffusivity ( = k/(∃CP) 1.05↔10→7 m2/s
Prandtl number Pr = +/( 2.2↔105

TABLE II. Corn syrup properties at 25↘C. CP and k are from the
manufacturer.

5. Stereoscopic Scanning PIV system679

Different from Fig. 1, we used a 3D Scanning Stereoscopic680

PIV system (Fig. 13). The test section sits on an New-681

port RPR-510-12 optical table. Two JAI AT-200 CL CCD682

RGB cameras (1620 ↔ 1236 pixel resolution) with Fujinon683

TF15DA-8 15 mm lenses, with a separation angle of 17.8↘684

are mounted on a movable arm, at the height of the center of685

the test section. A white LED light source (Hecho S5000 with686

up to 572 000lx luminance) is connected to a Volpi fiber op-687

tic lightline with a cylindrical lens (300 mm length, 13.1 mm688

diameter). A 305 mm by 15 mm Fresnel lens (51mm focal689

length) is mounted in front of the cylindrical lens to produce690

a non-divergent thin (5mm) light sheet illuminating a plane691

section of the fluid. The distance from the light plane to the692

cameras is 107 cm. The stereoscopic arrangement captures693

the out-of-plane velocity.694

The cameras and the lightline are mounted on motion-695

controlled linear slides with pitched screws, connected to696

Applied Motion Products’ stepper motors HT34-489D-YAA697

with 1.8↘ step angle, powered by Applied Motion Products’698

Stac6-Si drives within a controller. The data acquisition pro-699

cess involves synchronously and simultaneously driving the700

cameras and the lightline using separate stepper motors, con-701

trolled by signals from the controller.702

We use Potters Conduct-O-Fil SP30S20 silver-coated poly-703

mer spheres as tracer particles (30 ppm, or 2 g for the whole704

fluid volume). This tracer is neutrally buoyant (density 1487705

kg/m3), highly reflective with a radius distribution of 15±1.5706

mum. Due to the finite thickness of the light plane (layers of707

tracers collapsed into a 2D image), possible tracer agglomer-708

ation, and the refraction at the tank-air interface, the apparent709

tracer size determined from the particle images is much larger710

(320±220 µm), which permits the optical elongation of trac-711

ers.712

For this paper, we show only 2D in-plane flow. The parti-713

cle images from the camera on the left were dewarped (now714

1837↔ 1247 pixels resolution) as if the camera were facing715

the middle of the tank (i.e., the line of the sight and the tank716

are perpendicular). The particle images (Fig. 2a, 3a,b) were717

taken at t = 704 s with an inter-frame delay of 1.5 s. The loca-718

tion of this plane (along z) is 7 cm from the center of the tank719
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FIG. 13. Experimental setup for the 3-D scanning, Stereoscopic, Particle Image Velocimetry system. The bottom and lid (not shown) of the
tank are made of aluminum. The lightline (therefore light sheet) and cameras can move simultaneously, driven by the stepper motor controlled
by the controller and the computer.

away from the cameras.720

The | %n
n |max is estimated using the numerical simulation721

(c.f. Sec. V) and a typical plume stem center temperature of722

↓ 60 ↘C. The size of the plume head/stem is estimated from723

Fig. 2c. Other details of the experiment are summarized in724

Table I.725

B. Filtering of the experimental PIV data726

Compared to the simple synthetic PIV case with 1 pip and727

1 pi f , the experimental raw data show 2 pip and at least 7 pi f728

(Fig. 2).729

For the lateral displacement, the mask created with non-730

local means picks up both the SA-PIVR (black or red dashed731

line rectangles) and the plume core (green dashed line rect-732

angles) regions, as desired (Fig. 14a,b). As we apply the733

morphological opening, the majority of the SA-PIVR is re-734

moved from the mask. Only very small patches are left (cyan735

dashed line rectangles), while the plume core region is mostly736

preserved (Fig. 14c). Subsequent operations, especially the737

final non-local means smoothing after stitching (Fig. 4f,g,h,i),738

make the contribution of the leftover SA-PIVR (Fig. 14c) neg-739

ligible (Fig. 14d), while the amplitude of the displacement in740

the plume core and overall flow pattern are maintained. The741

filtering applied to the vertical displacement also yields the de-742

sired result (Fig. 15). There are some left over regions of SA-743

PIVR in the final mask (Fig. 15c), which have an area larger744

than that for the lateral displacement (Fig. 14c). However,745

these regions mostly cover areas dominated by the smooth in-746

plane flow, not SA-PIVR (leftmost and rightmost cyan dashed747

line rectangles in Fig. 15c). They are included in the mask748

because they are in the vicinity of the SA-PIVR. The filtered749

end results still contain the two strong upwellings (up to 25750

pixels displacement) and the large-scale flow pattern, and no751

visible SA-PIVR.752

Although none of the error metrics in Sec. V can be com-753

puted for the experiment, we can still compare the PSD before754

and after the filtering (Fig. 16). P(k) of the filtered result (red)755

is systematically smaller than that from the raw CCPIV result756

(black) for a broad frequency range (k > 0.08, yellow oval).757

This is consistent with the PSD comparison with the synthetic758

case (Fig. 12), while the broader frequency range of smaller759

powers after filtering seen here is likely due to the presence760

of many more pi f in the real experiment (7 instead of 1 in the761

synthetic test).762

Taken together, the proposed filter is still effective on real763

life experimental data. Applied to PIV results without any764

SA-PIVRs, it preserves the in-plane flow pattern. This post-765

processing filter costs ↓ 1 s of computational time. Therefore,766

it can be adopted for all the data in an experiment. It does not767

interfere with the normal PIV interrogation, but enhances it.768

C. Discussion769

1. Using the SA-PIVR to measure plume morphology770

Up to now we have tried to eliminate the effects of the771

shadow casts by plumes. However, the SA-PIVR is not just772

a nuisance. Similar to BOS that can be used to construct the773

density gradient distribution, the SA-PIVR is useful for un-774

derstanding the location, size, morphology and evolution of775

plumes (including the radius of the plume head and stem in776

Table I). The dense velocity estimates from optical flow are777

particular useful here because the extent of the SA-PIVR can778

be determined with pixel-level accuracy (Fig. 2c). Since the779

optical displacement is sensitive to large |∀n|, the SA-PIVR780
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FIG. 14. PIV plume filter applied to the X displacement data from the laboratory experiment. (a) X displacement from CCPIV. SA-PIVRs and
in-plane plumes bounded by black and green dashed line boxes, respectively. (b) Mask after non-local means containing both the plume core
and the SA-PIVR. Boxes as in (a). (c) Mask after applying with morphological opening to (b). (d) Final filtered X displacement.

is inherently consistent with material surfaces at the edge of781

plumes tracked by Lagrangian analysis like Finite-Time Lya-782

punov Exponent (FTLE)36. As a result, the SA-PIVR can783

be used as a benchmark on plume morphology from the PIV784

experimental measurements and its digital twin. The optical785

distortion in the particle image, including the elongation of786

tracers (Fig. 2a,b, Fig. 3a,b), can be compared against simu-787

lated particle images (e.g., Fig. 7b), a more direct proxy for788

∀n itself. The scanning, stereoscopic nature of our PIV setup789

offers many more possibilities, since the particle images of790

each plane provide information of the pip and pi f at different791

times. The 4D velocity obtained enables the calculation of the792

FTLE field, the tracking of Lagrangian Coherent Structures37
793

defining the plumes, which can then be compared with the794

SA-PIVR bands6.795

2. Applicability to other scenarios796

Our PIV plume filter can be easily tuned for other laminar797

flow experiments with visually distinct optical distortion ef-798

fects. It will be applicable as long as the length scale of the799

distortion effect is smaller than the typical length scale of the800

in-plane flow. The only input needed for the tuning are a few801

pairs of images. Indeed, our filter is suitable for any displace-802

ment measurement with two or more visually distinct features803

characterized by different length scales. For example, laminar804

flow with missing data due to obstruction of thin objects. It805

can be used for general denoising purposes, thanks to the em-806

bedded non-local means filter. The tracer elongation due to807

the large (effective) tracer size and high ∀n makes the distor-808

tion harder to remove in our case, therefore our filter should809

work even better in the absence of the elongation.810

VII. CONCLUSIONS811

We presented an algorithm to mitigate a common issue in812

PIV: optical distortion due to density gradients in the fluid813

itself. We focused on visually distinct anomalous PIV vec-814

tors in viscous thermal convection with plumes and analyzed815

the difference between the in-plane flow and the contribution816

from the optical distortion in PIV results from a laboratory ex-817

periment. The proposed PIV plume filter is based on a series818

of conventional image processing tools including non-local819

means denoising and morphological opening. This filter is820

designed to extract the domain affected by the optical distor-821

tion (SA-PIVR) and the fast in-plane flow related to plumes822

(plume core) in the PIV. It creates a mask that removes the823

SA-PIVR and only contains the plume core.824



16

( )a

Raw CCPIV

0

5

10

15

20

Y
 D

is
p

la
ce

m
e

n
t 
(p

ix
e

l)

( )b

Mask after
Non-local Means

0

1

( )c

Mask after
Morphological Opening

0

1 ( )d

Filtered CCPIV

0

5

10

15

20

Y
 D

is
p

la
ce

m
e

n
t 
(p

ix
e

l)

FIG. 15. Y displacement. Panels as in Fig. 14
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FIG. 16. Power Spectral Density (PSD) of the displacement vectors
for the laboratory experiment. Raw shadow affected CCPIV (black
line) and filtered CCPIV (red line) results. The dashed yellow oval
highlights the contribution of the SA-PIVR.

A synthetic test shows the filter performs well. In the825

test, light rays scattered from particles in an illuminated plane826

travel through the density and refractive index gradient con-827

taining a plume-like structure, exit the working fluid, enter828

the ambient medium, and finally hit the lens and sensor of the829

camera. The in-plane flow velocity was taken from a numeri-830

cal simulation replicating a laboratory experiment with a high831

Ra fluid (corn syrup) heated from below. Synthetic particle832

images were created by tracking billions of light rays using833

the photon on GPUs, and PIV results with and without the834

density gradient were obtained. We compared the filtered and835

unfiltered PIV results against the version without any density836

gradient qualitatively and quantitatively. In the quantitative837

assessment, four error metrics (RMSE, AEE, SSIM, DA) were838

calculated along with the PSD. We find that the filtered PIV is839

systematically better than the unfiltered version, and our goals840

to remove the SA-PIVR, preserve the in-plane plume strength841

and the overall flow pattern were fulfilled.842

We applied the PIV plume filter to a laboratory experi-843

ment. Over 60 kg of corn syrup was heated from below844

and cooled from above for 8000 s, at a Ra = 1.9↔ 106 and845

a Pr ⇐ 3.4↔ 103. The vigorous flow was effectively inertia-846

free and dominated by plumes. We use a bespoke 3D scanning847

stereoscopic PIV system to obtain flow velocities. For the pur-848

poses of this study we focus only on its equivalent 2D result849

in one plane. For the examined plane, at least 7 plumes were850

in front of the illuminated plane, casting shadows on the raw851

image and creating significant bands of SA-PIVR. There were852

at least two in-plane plumes. Despite of the more challenging853

conditions, the proposed filter successfully removed the SA-854
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PIVR bands and kept the in-plane flow largely untouched.855

Compared with in principle more sophisticated, end-to-end856

approaches with deep learning, our filter is fast, robust, and857

does not require ray tracing or a large training dataset. Given858

its effectiveness and efficiency, this filter could be used as a859

baseline method to be compared with other approaches. Our860

PIV plume filter can be used not only for removing the distinct861

optical distortion effects in laminar flow, but also to fill miss-862

ing flow measurements and for general denoising purposes.863

Finally, the optical distortion cast by the plumes in the parti-864

cle image and PIV results can be directly used to estimate the865

plume morphology and geometry and serve as a benchmark866

for the integrated 4D PIV experimental results or their digital867

twins through Lagrangian analysis.868
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Appendix A: Camera in the syrup approximation877

In the ray tracing code photon31, only light rays with an-878

gles that connect the source point (tracer) and the camera879

(aperture-lens-sensor) will be modeled, which saves compu-880

tational cost (yellow highlighted area in Fig. 17). However,881

when the working fluid is syrup (n > 1.49) and the ambient882

medium is air (n = 1), a light ray may undergo total reflec-883

tion, if the source point is not at the center (dashed line and884

dotted arrow in Fig. 17). In contrast, a light ray from the same885

source point (green arrow) could hit the camera sensor, with886

an angle outside of those covered in the ray tracing. Even if887

we change the code to solve this issue, we will still need to888

expand the modeled density gradient volume from the region889

of interest (60 mm ↔135 mm ↔60 mm) to a much larger re-890

gion (at least 400 mm ↔275 mm ↔180 mm) that covers the891

entire syrup-air interface. To save the computational cost, we892

instead approximate the camera in the air (camera 0) with a893

camera in the syrup (camera 1, Fig. 17). By moving the cam-894

era further from the test section, we can still capture the light895

from the source point at the camera sensor (dashed-dotted ar-896

row). To fit the particle image into the sensor, the focal length897

of the lens will need to be larger; tracers also need to be larger898

to compensate for the longer object distance (ZA +ZD, while899

ZD is fixed). The longer object distance leads to longer tracer900

elongation with the same ∀n, so a smaller | %n
n max| than that901

of the experiment is needed. These parameters (ZA, f , Rtracer,902

Test section with working fluid (syrup)

Ambient medium

Light sheet

Camera 1
(syrup as
ambient medium)

Camera 0
(air as
ambient meidum)

Source point

Source point
ray angles
covered
for camera 0

Source point
ray angles
covered
for camera 1

Total reflection

FIG. 17. Schematic illustration of how the camera in the air at posi-
tion 0 is approximated with camera in the syrup at position 1.

| %n
n max|) are adjusted to have similar effective tracer size and903

elongation as the experiment (Table I).904
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