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Abstract19

The relationship between snowmelt and spring streamflow is changing under warming20

temperatures and diminishing snowpack. At the same time, the hydrologic connectiv-21

ity across catchment landscape elements, such as snowpack and surface wetlands, can22

play a critical role in controlling the routing of snowmelt to streams. The role of hydro-23

logic connectivity is important in headwater regions of the continental northern latitudes,24

where catchments have low topographic relief and seasonally frozen ground. Neverthe-25

less, the e!ects of soil frost on the sequence, timing, and magnitudes of hydrologic events26

that drive the movement of water from a snowpack to a stream are not fully understood.27

Therefore, we examine two questions: first, what is the flowpath that snow melt and pre-28

cipitation from spring rain events takes to generate spring streamflow, and second, what29

hydrologic, climatic, or landscape variables exert the most control on the magnitude of30

streamflow? Here, we use long-term hydrological records from the two reference basins31

at the Marcell Experimental Forest in northern Minnesota to analyze the cascading ef-32

fects across precipitation, snow, water table elevation, soil frost, and streamflow in peatland-33

dominated headwater catchments. We identify a sequence of fill-and-spill e!ects across34

the landscape that control the timing of spring streamflow generation. Then, we use step-35

wise regression to show that soil frost is a key supporting predictor for both the mag-36

nitude of streamflow in the spring as it adds significantly to the predictive power of pre-37

cipitation and water table elevation. Our results highlight the importance of recogniz-38

ing the role of soil frost, when present, on the partitioning of snowmelt between over-39

land runo! and water table recharge during the critical snowmelt period, as well as the40

later partitioning between evapotranspiration and subsurface flows.41

1 Introduction42

In snow-dominated, seasonally-frozen catchments, spring streamflow timing and mag-43

nitude have been a!ected by a warming winter climate. For instance, estimates have shown44

that, over the last century, spring streamflow peaks have shifted earlier by 4.5 to 8.6 days45

in the northern hemisphere (Hodgkins & Dudley, 2006) and 8.7 to 14.3 days in the north-46

central United States (Ryberg et al., 2016). These shifts in streamflow responses par-47

tially result from decreases in snow pack size (Ford et al., 2020), including shifts in pre-48

cipitation from snow to rain. Decreasing snowfall fraction, or the portion of precipita-49
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tion falling in the form of snow, within a single catchment has been shown to lead to ear-50

lier spring streamflow peaks (Barnett et al., 2005), as well as decreases in mean annual51

streamflow (Berghuijs et al., 2014; Foster et al., 2016).52

However, the influence of snow fraction on streamflow can be complicated by the direct53

e!ects of warming air temperature on the rate of snowmelt. Faster snowmelt rates, which54

can occur when spring warming arrives earlier, have been shown to lead to larger spring55

streamflow peaks and increased runo! and flood risk (Trujillo & Molotch, 2014). At the56

same time, warming temperatures can also increase surface energy and evapotranspira-57

tion later in the spring, which can have a counteracting e!ect that decreases streamflow58

(Badger et al., 2021). Even so, the relative importance of snow fraction versus temperature-59

driven land surface evaporative loss on streamflow remains unclear, with studies show-60

ing that either could serve as a dominant driver of streamflow in di!erent future climate61

scenarios (Foster et al., 2016). Therefore, the complex interactions among climate, snow,62

and hydrological processes as the spring progresses remains an open research question.63

The climatic e!ects on streamflow are mediated by the hydrologic connectivity on the64

landscape, which is controlled by a range of surface and subsurface storage components65

that accelerate or inhibit the flow pathways connecting water as precipitation inputs to66

streamflow (Pringle, 2003). For instance, snow-water equivalent (SWE), the total amount67

of water stored in a snowpack, represents a temporary storage of precipitation in a frozen68

state on the land surface, until it is released during the spring as snowmelt. This stor-69

age behavior temporarily “halts” the flow of water until it becomes available in liquid70

form again (Musselman et al., 2021). As such, the timing of snow disappearance and the71

duration of snowmelt period exhibit strong influence on snowmelt runo!, streamflow peaks,72

and overall water availability in the spring. The relationships between snowmelt and stream-73

flow are commonly studied in sites monitored using the SNOTEL network in the west-74

ern United States (Leuthold et al., 2021; Heldmyer et al., 2021; Trujillo & Molotch, 2014),75

where, due to the well-defined surface topography and bedrock geology in mountainous76

regions, the flow path from snowmelt to streamflow is fairly direct (Schneider & Molotch,77

2016). Surface wetlands represents another storage for precipitation. Surface wetlands78

may occur in areas of low topographic relief, and water within wetlands is stored until79

the water table elevation (WTE) increases over a threshold elevation, causing overland80

flow or lateral flow out of the wetland. The WTE to streamflow relationship is often the81

focus in studies on geographically isolated wetlands, which demonstrate clear connec-82
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tivity among precipitation, WTE, and surface runo! (Cohen et al., 2016; Golden et al.,83

2016; Verry et al., 2011). In geographically isolated wetlands, the WTE is the most im-84

portant predictor of landscape connectivity because it determines the level of isolation85

between the wetland and its surrounding surface water bodies (Winter & LaBaugh, 2003).86

As the height of the water table rises above the wetland surface levels, the excess wa-87

ter flows over the landscape to a surrounding stream, demonstrating the ‘fill-and-spill’88

flow dynamics characteristic of hydrologic storage mechanisms (Cohen et al., 2016; Win-89

ter & LaBaugh, 2003; McDonnell et al., 2021; Leibowitz & Vining, 2003).90

Despite the importance of snowpack and wetlands in determining the connectivity to and91

therefore timing and magnitude of streamflow, these near-surface storage components92

have rarely been studied together, especially in conjunction with another important land-93

scape driver: soil frost. In areas of seasonally frozen ground, air temperature, snow, and94

soil moisture content control frost depths, which influence the snowmelt partitioning be-95

tween overland flow and subsurface recharge (Aygün et al., 2019; Verry et al., 2011). Frozen96

ground restricts the infiltration of snowmelt and water table recharge, thereby increas-97

ing surface runo! (Zhao & Gray, 1999; Kane & Stein, 1983). The combined e!ects of98

rising winter temperatures and shrinking snowpack will also reduce the frost layer, re-99

sulting in an overall increase in the rate of groundwater recharge due to earlier snow melt100

and higher infiltration rates (Jyrkama & Sykes, 2007). The importance of frost is depen-101

dent on a diverse range of factors, some of which are di”cult to predict or remain un-102

certain; while frost is more likely to a!ect streamflow in small catchments, cold climates103

and forested land cover can limit the e!ects frost has on streamflow (Ala-Aho et al., 2021).104

For example, a soil frost model developed using data from a catchment in northern Swe-105

den showed no clear e!ect of soil frost on either the timing or magnitude of streamflow106

runo!. This lack of connection between frost and streamflow was likely due to limited107

frost occurrence (frost formed in only slightly more than half the years) or because the108

frost often had thawed before spring melt and streamflow onset (Lindström et al., 2002).109

In contrast, at a site in southern Switzerland, only 25-35% of the melt water infiltrated110

into the soil in a winter with thin snowpack and thick frost layer, compared to 90-100%111

in a di!erent winter that had a deep snowpack and thin frost layer (Bayard et al., 2005).112

As the e!ect of frost is variable across catchments and its presence can greatly a!ect spring113

runo!, it is important to consider that, first, soil frost can be quite heterogeneous across114

the landscape, a variability that is not captured in soil profile studies (Zhao & Gray, 1999;115
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Kane & Stein, 1983). Second, soil frost varies from year to year, depending on winter116

climate and precipitation. Capturing these spatial and temporal variations is key to bet-117

ter understanding the relationship between soil frost and streamflow generation. In this118

study, we use long-term climatological and hydrological data to show a clear cascade of119

hydrological connectivity throughout the landscape and to determine the relative strengths120

of climatic and land surface variable in predicting annual streamflow trends.121

Peatlands provide an ideal environment in which to study interacting surface and sub-122

surface flows in the spring snowmelt season. The majority of peatlands are located in123

northern latitudes, where seasonal soil frost is becoming more dynamic under climate124

change, as soils transition from permanently frozen to seasonally frozen soils (Bridgham125

et al., 2013). Additionally, wetlands, including peatlands, are the single largest natural126

source of methane, contributing about a third of total global emissions (Gorham, 1991),127

with methane emissions from peatlands strongly controlled by seasonal water table dy-128

namics and snowmelt dynamics (Feng et al., 2020). Therefore, it is critical to understand129

how the increasingly dynamic frost conditions will impact wetland water table, and by130

consequence, the role that peatlands play in both global and regional methane budgets.131

Regionally, headwater streams and wetlands provide innumerable ecosystem services, in-132

cluding regulating streamflow responses and improving downstream water quality (Colvin133

et al., 2019; Alexander et al., 2007). This critical hydrological landscape provides the ideal134

location to examine the e!ects of shifting spring hydrologic cascades on the wider net-135

work of low-relief catchments.136

We focus on relationships among climate, hydrology, and landscape elements by exam-137

ining two questions related to hydrologic connectivity in snow-dominated, low-relief peat-138

land catchments: how do snow, frost, and surface wetlands mediate the flow paths from139

precipitation to spring streamflow? And what hydrologic, climatic, or landscape vari-140

ables most control the magnitude of streamflow? As the e!ect of frost is variable across141

catchments and its presence can greatly a!ect spring runo!, it is important to consider142

that, first, soil frost can be quite heterogeneous across the landscape, a variability that143

is not captured in soil profile studies (Zhao & Gray, 1999; Kane & Stein, 1983). Second,144

soil frost varies from year to year, depending on winter climate and precipitation. In this145

study, we will examine these questions in two peatland catchments at the Marcell Ex-146

perimental Forest (MEF) in northern Minnesota (USA), using statistical approaches ap-147

plied to the analysis of long-term datasets. By focusing on two watersheds with long data148
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records, we contribute new findings to both unresolved complexities of the importance149

of soil frost in forested catchments and expand upon existing soil profile, event-scale, and150

modeling soil frost studies. We first parameterize the processes that occur in the spring151

season by extracting key hydrological events from the long-term time series and analyze152

the timing across each of these events through ranking. Then, we use stepwise regres-153

sion to identify the importance of winter and spring season variables for predicting an-154

nual streamflow. Together, answers to these questions will illustrate the importance of155

considering soil frost in headwater catchments.156

2 Methodology157

2.1 Site Description158

Our catchments are located within the USDA Forest Service Marcell Experimental For-159

est (MEF, Lat. 47:31:52N, Long. 93:28:07W) near Grand Rapids, Minnesota (USA). The160

MEF sits on the climatic transition region between areas of seasonally frozen ground and161

northern boreal regions, and has six peatland dominated catchments that have been un-162

der long term observation since 1961 (Sebestyen et al., 2011). The S2 and S5 research163

catchments are reference basins with central peatlands surrounded by upland forests on164

mineral soils. Records for these sites include hydrologic, meterological, and water chem-165

istry data (Sebestyen, Lany, et al., 2021). Minnesota climate is strongly continental with166

warm, humid summers and cold, dry winters. From 1961 to 2019, mean annual temper-167

ature at the catchments was 3.5 °C (Sebestyen, Lany, et al., 2021). Average annual tem-168

perature has been increasing by 0.4 °C per decade since 1961 with the majority of the169

warming occurring over the winter months (Sebestyen et al., 2011, January to March,170

0.7 °C per decade). Annual precipitation averages 79 cm, with one third of precipitation171

falling in the form of snow (Sebestyen, Lany, et al., 2021). Snow cover in the peatland172

starts in late October and November and usually lasts until March or April of the fol-173

lowing year. There has been no change over time in maximum snow water equivalent un-174

der coniferous and open areas but significant decline under deciduous covers (Sebestyen175

et al., 2011).176
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2.1.1 South Unit - S2 Bog177

The S2 watershed has a total size of 9.7 ha which is made up of a 3.2 ha domed peat-178

land encircled by upland forests. The upland vegetation is dominated by aspen (Pop-179

ulus tremuloides, Populus grandidentata) stands. The peatland is covered by black spruce180

Picea mariana and Sphagnum mosses. The bog topography is characterized by a slightly181

domed peat surface rising 18 cm at its peak with a presumed parallel peatland water ta-182

ble. There is a streamflow outlet elevation of 420 m above sea level (Richardson et al.,183

2010). Measurements of the peatland WTE are taken near the highest elevation of the184

bog using a stripchart recorder and daily maximum water table is recorded (Sebestyen185

et al., 2011). Streamstage is measured using a V-notch weir and strip chart recorder at186

the South-west end of the catchment (Verry et al., 2018, for data and metadata). Win-187

ter snow and frost depth were measured biweekly from 1962 to 2021 starting in Febru-188

ary and continuing through snow disappearance (Sebestyen, Burdick, et al., 2021, for data189

and metadata). In S2 snow and frost measurements were taken biweekly on two upland190

snow courses in aspen stands and one bog snow course in a black spruce stand.191

2.1.2 North Unit - S5 Bog192

S5 is a larger peatland on the North Unit of the Marcell Experimental Forest that is 52.6193

ha in size and contains five small satellite peatlands that drain into a central peatland194

that is 6.1 ha. The S5 uplands are have some older growth and more diverse with species195

of aspen, white cedar (Thuja occidentalis), white spruce (Picea glauca), balsam fir (Abies196

balsamea), pine (Pinus strobus, Pinus resinosa, Pinus banksiana), and mixed hardwoods197

with an average stand age of 100 years. Bog water table elevations are measured in a198

similar way as in S2 using stripchart recorders to monitor a central peatland well. Stream-199

stage is measured using a V-notch weir at the Northeast corner of the watershed. Sim-200

ilar to the S2 watershed, snow depth, SWE, and frost depth measurements are taken bi-201

weekly in S5 beginning in February and continue through snow disappearance. There202

are four snow courses in S5, one in an upland clearing with the S5 meteorological sta-203

tion, one in the bog, and two in the uplands (Sebestyen et al., 2011; Sebestyen, Lany,204

et al., 2021).205
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Figure 1. Daily water table elevation in the S2 bog. Annual water table time series colored

by year from 1995 (light green) to 2020 (dark blue).

2.1.3 Forestry Sciences Laboratory, Grand Rapids, MN206

To increase the temporal resolution and coverage of the snow course data from the MEF,207

we used supplemental data with a longer record from the USDA Forest Service Grand208

Rapids Forestry Sciences Laboratory (Lat. 47:14:9.2N, Long. 93:31:41.9W), approximately209

48 km south of the MEF. Here precipitation, snow inputs, and snow depth are all taken210

daily from 1915 (precipitation) and 1948 (snow inputs, depth) onwards. A correlation211

between precipitation inputs at the two sites is shown in Figure S1. In Grand Rapids212

the mean annual temperature from 1950 to 2020 was 4.5°C and precipitation was 71 cm.213

Snow depth data from 1974-1989 were missing most of the daily values and so these years214

were removed from the analysis.215

2.2 Characterizing the timing and magnitude of hydrological events216

We first identified hydrological events in the winter and spring periods and derived met-217

rics characterizing two key aspects of these events: magnitude and timing in the water218

year (defined here as October 1st to September 30th). These standardized metrics can219

be used to compare hydrological events across multiple years (1995-2020) and detect trends220

over time. We focused on the winter to spring seasonal transition, because this transi-221
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tion is a period of high flow that often contributes the most to the annual streamflow222

yield.223

The metrics for the snowpack dataset were calculated based on the triangle method used224

by Trujillo and Molotch (2014) for SWE data. The method, which was developed to iden-225

tify key snow appearance, disappearance, and peak values for snowpacks in the western226

United States, has not been applied to snow depth data in Minnesota before. However,227

annual snow depth time series from Grand Rapids demonstrate a similar triangle struc-228

ture, so we anticipate that the method will be e!ective for our needs. Here, we applied229

the triangle method to the Grand Rapids snow depth data to derive snowpack metrics230

for both the S2 and S5 catchments. The MEF snowpack data were not used for these231

metrics because the biweekly data did not have high enough temporal resolution. Im-232

plementing this method involved identifying three key dates in the snow season: the date233

of snow appearance (DOA), the date of peak snow depth (DOP), and the date of snow234

disappearance (DOD). The DOA and DOD values for each water year were determined235

to be the first and last non-zero value of snow depth (with a seven-day bu!er to control236

any erratic early or late season snow events). To determine the DOP that best approx-237

imates the transition between snow accumulation and ablation, it was necessary to iden-238

tify first all potential peaks and then investigate the fit to a triangular function for snow239

depth evolution. To do so, the find peaks function from the scipy.signal package in Python240

3.8 (Virtanen et al., 2020) was used to first identify all potential peak values between241

the timing of the 10th and 90th percentile of snow accumulation (to ensure the detected242

snowpack peak occurred near the middle of the snow season) which had snow depths above243

half the annual mean. Then, each of the potential peaks was used to simulate snow depth244

using a triangular function, where snow depth increases linearly from DOA to the date245

of potential peak, then decreases linearly until it reaches zero at DOD. Each of these fits246

(with its corresponding DOP) was then compared to the measured snow depth data us-247

ing a nonparametric Mann-Kendall test for monotonic trends. The DOP whose corre-248

sponding fit resulted in the highest correlation coe”cient against measured snow depth249

was selected for that year. The snow depth at DOP was also identified, as well as the250

duration and rates of the accumulation and melt periods.251

For the WTE metrics, we observed that the spring recharge period begins with a typ-252

ically annual low value right before the spring climb to a seasonal high (Figure 1). For253

measuring the magnitude of the spring climb, the overall duration of the recharge pe-254
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riod and total WTE recharge of the season were also identified. The find peaks function255

was again used to select possible dates for the seasonal WTE trough and peak during256

the spring recharge period. For each of the several possible trough/peak pairs identified,257

the Mann-Kendall test was again used to compare a linear function of WTE recharge258

generated against the measured data. The pair with the highest correlation was selected259

for the timing metrics and their WTE values were recorded.260

The spring streamflow timing metrics were selected as the maximum value of the first261

major peak of the spring season and the timing of first nonzero value as the onset of spring262

streamflow. The magnitude of the first spring streamflow peak was also recorded. Due263

to the limited resolution (i.e., biweekly) frost data from the MEF sites, we only identi-264

fied the maximum frost depth value and date of maximum.265

2.3 Rank and Correlational Analysis266

Each timing metric across the data record was examined for annual trends using linear267

regression across each water year (October 1st – September 30th). This analysis included268

examining six timing metrics to quantify spring seasonal hydrology: the peak snow depth269

(Speak), the date of snow disappearance (SDOD), the date of WTE trough (Wtrough),270

the date of WTE peak (Wpeak), the date of streamflow onset (Qonset), and the date of271

the first streamflow peak (Qpeak).272

A correlation analysis was used to examine the relationships between the timings of each273

of the same six variables of interest. For each year, the day of the water year in which274

these events occurred was recorded in a list and used to rank each of the variables (e.g.,275

if the maximum WTE occurred first among the six events in water year 2012, then it276

was given rank 1). The ranks for each event were then averaged across all years.277

2.4 Multivariate Regression278

We used multiple regression to examine the interactions among hydrological and clima-279

tological variables in controlling streamflow generation in the spring and throughout the280

year. A stepwise multiple regression model was built to predict the magnitude of total281

annual streamflow from a set of site-dependent and shared precipitation variables. A to-282

tal of six predictor variables were used: air temperature (XAvgTemp), snowpack depth283

(XSnowPeak), max annual frost thickness (XMFT ), average annual WTE (XWTE), to-284
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Table 1. Magnitude variables used in the regression model

Variable Description Units

YFlow Total annual streamflow, normalized by area m
XSnowPeak Depth of the snow pack at its peak cm
XMFT Maximum thickness of frost cm
XWTE Annual average water table elevation m
IWatershed Watershed, 0 for S2, 1 for S5 -
XAvgTemp Average annual temperature →C
XTotPrecip Total annual precipitation cm

tal annual precipitation (XTotPrecip), and an indicator to designate either the S2 or S5285

watershed (IWatershed) (Table 1). All data used in this model is site-specific. A random286

sampling of 60% of the years (1995-2020) were used for the stepwise analysis. This sub-287

set was then used to build sub-multiple regression models using di!erent combinations288

of the predictor variables using a stepwise analysis. Each model tested was a subset of289

the full model, which contains all the predictor variables and all potential combinations290

of interaction terms. Here P() is the power set, or all combinations of the interaction term.291

YFlow → ω0+P(ωi,j,k,lXi,SnowPeakXj,MFTXk,WTEIl,Watershed)+ω2XAvgTemp+ω3XTotPrecip

(1)292

A total of 668 sub-models were constructed from the full model shown in Equation (1).293

For each model, a second-order bias-corrected Akaike’s Information Criterion (AICc) was294

used to compare predictive capacity, and the models with lower AICc (#AICc < 2) were295

taken as ’candidate’ models (Burnham et al., 2011). #AICc is the di!erence between296

the AICc value of the best fit model and the model of interest. A model with a similar297

goodness of fit to the best fit model will have a minimized #AICc. Each candidate model298

was then used to predict the remaining 40% of the data set and validated for linearity,299

constant variance, and normality. In addition, each model was given a weight, Wi, which300

is the probability of the model given the data (Burnham et al., 2011). Wi is computed301

as the likelihood of a given model over the total number of models and can be read as302

“the probability of model i is wi”. For each predictor variable, these weights were summed303

across the sub-models containing that particular predictor variable to obtain the over-304

all relative importance of each variable. This process was then repeated 1000 times with305

a di!erent random sampling of years for each candidate model to determine an expected306
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range of RMSE. This processes was repeated to predict the magnitude of the first spring307

streamflow peak, QPeak, which is outlined in the supplementary materials.308

To further evaluate the results from the variable importance analysis, a separate dom-309

inance analysis was run to determine the independent e!ects of each predictor variable310

within the best fit model (Budescu, 1993; Murray & Conner, 2009). This method allows311

us to consider the amount of variation in the annual streamflow data that is explained312

by each individual predictor variable while removing any covariance between predictors.313

It determines the relative explanatory power of each variable within a single model. This314

dominance analysis is di!erent then the step-wise regression model analysis which de-315

termines variable importance between models. The dominance analysis was run using316

all of the data, not only the 60% random sampling.317

3 Results318

Total annual streamflow, normalized by respective catchment areas, decreased in S2 at319

a rate of 1.9 cm per water year over 25 years (p < 0.005, 1995-2020) and in S5 at a rate320

of 2.9 cm per water year also over 25 years (p < 0.05, Figure 2a). The decrease in an-321

nual streamflow occurred despite no statistically significant changes in snowfall fraction322

(p = 0.69; Figure 2b), annual precipitation (p = 0.331), snowfall inputs (p = 0.829), or323

winter air temperature (p = 0.47; Figure 2c) and only a small increase in mean annual324

air temperature of 0.4 °C per decade (p = 0.0005, Sebestyen et al. (2011)). Furthermore,325

annual streamflow across multiple years shows no statistically significant correlation with326

mean annual air temperature (p = 0.775). However, average annual WTE in the S2 peat-327

land is decreasing at a rate of 4 cm/decade (p = 0.002) with the trough WTE decreas-328

ing at a slightly faster rate of 6.5 cm/decade (p = 0.066).329

3.1 Streamflow Generation330

Results from the signal processing of hydrological data showed a consistent sequence of331

events as water traveled from the snowpack through the landscape to generate stream-332

flow. Figure 3 shows the relationship between the streamflow and WTE in S2 and S5.333

First, there is a clear WTE threshold that dictates the initiation of streamflow in both334

S2 and S5 (Figure 3a-b), which demonstrates the surface water storage must first be ”filled”335

before it ”spills” into the stream. There is also a direct and statistically significant re-336
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Figure 2. (A) Summary of decreasing annual streamflow trends in S2 and S5 at the MEF,

(B) lack of snow or precipitation trends from the Grand Rapids meteorological station, and (C)

lack of winter air temperature trends from the MEF meteorological station (Dec. 1st - March

31st). ω values in (A) show the rate of water table change over time in S2 and S5. P-values show

the insignificance of the annual trends in (B) and (C). Stars indicate the level of significance for

each trend with ’***’ denoting p < 0.001 and ’*’ denoting p < 0.05. Shaded areas indicate a 95%

confidence interval.

lationship between the timing of peak WTE and the first streamflow peak in both catch-337

ments across years (Figure 3c - d).338

Figure 4 shows the ranked estimates for the timing of each hydrological event for 2013339

(top panel) and for all years of record (bottom panel). When averaged across years and340

catchments, dates of Speak, Wtrough, Qonset, SDOD, Wpeak, and Qpeak occurred sequen-341

tially with mean dates of 135, 156, 166, 170, 187, and 190 respectively. Dates for WTE342

trough (Wtrough) and peak (Wpeak) were similar in S2 and S5, with S5 showing more vari-343

ation in trough dates and less variation in peak dates than S2. Streamflow onset (Qonset)344

in S5 typically occurred later than in S2 and with much higher temporal variation (mean345

164.7 and 168; SD of 14.8 and 21.7 respectively). Date of first streamflow peak (Qpeak)346

was similar for both catchments, 190.4 and 190.1 respectively. While there is a clear se-347

quence of events during spring, the timing for most of the individual events is not cor-348

related (with the exception of Qpeak and Wtrough as shown in Figure 3). For instance,349

the timing of peak snow, the timing of the WTE trough, and the timing of streamflow350

onset are not correlated (Figure S4).351

3.2 Relative Impacts of Landscape Controls on Streamflow352

The stepwise regression model (Equation 1) was used to determine the relative explana-353

tory power of each hydrological and climatological input variable on annual streamflow.354
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Figure 3. The non-linear relationship between water table elevation (WTE) and streamflow.

(A - B) The thresholds for streamflow initiation in S2 and S5 respectively, shown at the daily

time scale. (C-D) Show the relationship between the timing of peak WTE and the first detected

streamflow peak in S2 and S5 respectively. ω values are the slopes of the relationships in (C)

and (D). The statistical significance of the relationships is shown using ’*’ to represent p < 0.05.

Shaded areas indicate a 95% confidence interval.
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Figure 4. Hydrologic cascade from snowfall to streamflow. (A) A sample year, 2013, showing

each data element overlayed with critical points derived using the parameterization methods. (B)

Annual trends in the derived statistics for magnitude compiled over both catchments. Dark blue

dots show the average date of occurrence for each metric over the time period from 1995-2020.

The water year is defined as October 1st through September 31st of the following Gregorian cal-

endar year.
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Select model candidates (smallest values of # AICc) for predicting the total annual flow355

are shown in Table 2. The base model was ranked last of the 668 models with the high-356

est #AICc. Also listed are K, the degrees of freedom in the selected model, and wi, or357

the probability of the model given the data. Of the metrics shown in Table 2, the value358

of wi, or weight, is the most important as it shows the probability that of all of the mod-359

els considered, that model is the best model for making predictions.360

Each model in Table 2 shows zero mean and standardized residuals, but all of the can-361

didate models also show a slight increasing trend in the variance as a function of the resid-362

uals, which may violate the constant variance assumption. The direction of the increase363

is not consistent. Using Cook’s distance (1 > distance > 0.5), discharge in Model 3 for364

year 2013 and S2 was identified as an outlier (Cook, 2000). All other models show no365

outliers. The remaining validation years were then used to predict values of total annual366

flow and compare to the observed flows from the same year. Sample plots of these val-367

ues are shown in Figure 5.368

Frost was an important predictor in the summed weights for each of the predictor vari-369

ables (Figure 5). The individual variables (top four rows) showed the highest importance,370

with maximum frost thickness being the most highly weighted variable with a weight of371

0.98 out of a possible normalized score of 1, meaning that frost had the most additive372

predictive power when present in a model. Mean frost thickness in S2 was 5.7 cm with373

a range of 0 to 36 cm (1995-2020). In S5, mean frost thickness is 10.5 cm with a range374

of 0 to 42 cm. The date of maximum frost at S5 occurred later in the season when com-375

pared to S2, and when ranked with other spring variables, occurred last. Total annual376

precipitation was ranked as the second most important predictor variable. However, when377

the dominance analysis is used on the top model, YFlow,1, only 12.3% of the total vari-378

ance explained by the model is explained by the maximum frost thickness. 49.4% of the379

total variance is explained by the water table elevation, 26% by precipitation, and 12.3%380

by the frost thickness and water table interaction term. When regression was also ap-381

plied to predict the magnitude at Qpeak, shown in Tables S1 and S2 of the supplemen-382

tary materials, snow depth was the most highly weighted variable (0.971) followed closely383

by maximum frost depth (0.923). Within the top weighted model, however, it was the384

snow depth and catchment interaction term that was describing the majority of the vari-385

ance (42.9%) followed by catchment (34.8%), maximum frost thickness (17.5%), and then386

snow depth (4.8 %). As a result, while frost may have a large weight when each model387
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Figure 5. Model results showing: Left, variable importance from the stepwise regression

model. Terms of order 3 or higher have been removed because of insignificance (summed weight

= 0) (A-B) show a sample of two observed models from candidate model YFlow,1 and YFlow,2

with the minimum RMSE values from all 1000 iterations. Green line shows the one to one rela-

tionship.

Table 2. Selected Models for total annual streamflow in order of AICc

Model K AICc # AICc Weight

YFlow,1 → ω0 + ω1XMFT + ω2XWTE + ω3XTotPrecip +
ω4XMFTXWTE

6 5.13 0 0.16

YFlow,2 → ω0 + ω1XMFT + ω2XWatershed +
ω3XTotPrecip + ω4XMFTXWatershed

6 5.84 0.71 0.11

YFlow,3 → ω0+ω1XMFT +ω2XWatershed+ω3XTotPrecip 5 7.07 1.94 0.06
YFlow,4 → ω0 + ω1XMFT + ω2XWTE + ω3XTotPrecip 5 7.08 1.96 0.06
YFlow,5 → ω0 + ω1XMFT + ω2XWTE + ω3XTotPrecip +
ω4XMFTXWTE + ω5XAvgTemp

7 7.95 2.82 0.04

...

YFlow → ω0 + ω1XSnowPeakXMFTXWTEIWatershed +
ω2XAvgTemp + ω3XTotPrecip

19 111.2 106.06 1.50E-24

is considered as a whole during the step-wise regression analysis, frost is not always the388

most important variable within each model.389

Additionally, of the models tested with only a single predictor, the model with WTE had390

the most predictive power with a #AICc of 14.25 followed successively by the models391

with the catchment indicator (#AICc 15.25), average annual temperature (#AICc 25.11),392

total annual precipitation (#AICc 26.03), maximum frost thickness (#AICc 29.58), and393

finally peak snow depth (#AICc 31.38). Catchment indicator is high in these rankings394
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Figure 6. (A) Snow-Stream Onset Delay (Date of Stream Onset – Date of Peak Snow at

MEF) as controlled by frost thickness. (B) Peak WTE, normalized by average WTE in each

catchment, as a function of frost thickness. Beta values show the slopes for each relationship.

Stars indicate the level of significance for each trend with ’***’ denoting p < 0.001. Shaded areas

indicate a 95% confidence interval.

because of the high correlation between catchment and average WTE. This result, and395

the results from the dominance analysis, suggest that frost is not the singular best in-396

dicator of streamflow, but is an important predictor in the context of other better stream-397

flow predictors like precipitation and WTE.398

From the candidate models, it is important to note the interchangeability of WTE and399

catchment. Because the average WTE in S2 is lower than S5 (421m vs. 423m), WTE400

acts as a pseudo indicator variable for catchment but there is a slight dominance of WTE401

over catchment. For example the top two models in Table 2 are the same components402

other than the presence of either XWTE variables in YFlow,1 or IWatershed in YFlow,2. Ad-403

ditionally, XWTE has a slightly higher weight than IWatershed (Figure 5).404

4 Discussion405

We examined the interactions among climatological and hydrological drivers of stream-406

flow in snow-dominated catchments. Using long-term data from two headwater catch-407

ments at the Marcell Experimental Forest in northern Minnesota (S2 and S5), our anal-408

ysis showed that the annual streamflow decreased between 1995 and 2017, with S5 de-409

creasing at a faster rate than S2. In fact, S5 has shown little to no streamflow out of the410

peatland in the last 4 years of the record. These declining streamflow trends showed a411

small significant correlation (p = 0.044) with maximum annual snowpack (Figure S3)412
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but no significant correlation with various other climatic variables such as snowfall frac-413

tion (Figure 2b) and winter air temperature (Figure 2c). This lack of correlation sug-414

gests that the observed changes in streamflow must be considered in conjunction with415

other land surface drivers. One possible driver may be an increase in evapotranspiration416

caused by increases in surface energy and air temperature (Badger et al., 2021). How-417

ever, there is no correlation between air temperature and streamflow (p > 0.5), which418

means that while increasing evapotranspiration is still a possible cause, it likely is not419

the whole explanation (we could not perform direct analysis with respect to ET since420

direct measurements of ET are not available). Instead, we hypothesize that the decrease421

in streamflow is a result of the shifts in both hydrological connectivity within the wet-422

lands and how this connectivity regulates the streamflow generation processes. By ex-423

ploring the role of other climatological and hydrological drivers within the peatland catch-424

ments, our results illustrate the complex relationships between snow, water table eleva-425

tions, and streamflow, as well as the important role of soil frost in controlling these re-426

lations.427

4.1 Hydrologic Connectivity428

Our results show that within peatland catchments, there is a clear connection between429

WTE and streamflow, where the shift in peak WTE towards later in the spring induces430

a parallel shift in the first streamflow peak (Figure 3). This coupling between WTE and431

streamflow highlights the importance of hydrological connectivity within this system. Due432

to the elevated WTE in the spring compared to the rest of the year (Figure 1), this cou-433

pling also identifies the spring season as the most important part of the year for dictat-434

ing annual streamflow magnitude.435

This hydrologic connectivity is also supported by the ranking analysis from Figure 4 which436

gives the sequence of events that lead to streamflow generation from the snowpack (Fig-437

ure 4). The first event in the ordering is the timing of the peak snowpack, indicating the438

beginning of the snow melt season. The second event is the timing of the lowest point439

in the WTE, the trough, which precedes recharge. There is a delay between these first440

two events potentially due to peatland storage, the refreezing of water into the snowpack441

as it melts (Heldmyer et al., 2021), ripening of the snowpack, or sublimation of snow back442

to the atmosphere. Once the water has begun reaching the peatland water table, the rank-443

ing scheme indicates that the water table then acts as a secondary storage system un-444
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til streamflow initiates. Streamflow onset is then initiated only after the WTE rises above445

a threshold relative to the outlet stream elevation (Figure 3a-b).446

The date of frost disappearance was excluded from this ranking because of the low data447

resolution for frost depth, so the timing of soil frost in relation to water table recharge448

and streamflow onset is unknown. Past studies that have found no dependence between449

frost and streamflow timing have shown this is likely due to the frost thawing before recharge450

begins (Lindström et al., 2002), while other sites that have shown dependence between451

streamflow and soil frost have identified rapid streamflow response when precipitation452

is falling on frozen snow-free ground (Shanley & Chalmers, 1999). For our results to be453

put into context of these previous studies, higher frequency soil frost monitoring is needed.454

4.2 Explanatory Power of Soil Frost455

Although the role of soil frost disappearance timing remains uncertain, the stepwise mul-456

tiple regression model built to predict streamflow from both climatological and hydro-457

logical variables demonstrated a strong dependence on soil frost thickness. The five best458

performing models for streamflow each contains a combination of frost thickness, water459

table elevation, catchment, air temperature, and total annual precipitation. Peak snow-460

pack depth at the MEF is not selected as an important predictive variable in these top461

models, which was unexpected, given that past studies commonly use SWE to predict462

streamflow (Bayard et al., 2005; Ryberg et al., 2016). However, in our case, snow depth463

may not capture the same temporal variability in snow density as SWE, limiting the abil-464

ity to predict spring streamflow from snow depth.465

Maximum frost thickness is the most highly weighted predictor variable when compared466

to all other possible predictors (with weight defined in Section 2.4). This result runs counter467

to the expectation that precipitation or snowpack, the more commonly used predictors468

for streamflow, would have the most weight. Total annual precipitation was the second469

highest weighted predictor followed by both WTE and catchment. However, it is impor-470

tant to note two things. First, when each of the predictor variables are used to predict471

streamflow on their own, maximum frost thickness has the second lowest explanatory472

power. Second, within the best model for streamflow, frost was only describing 12% of473

the total model variance. Similar to snowpack, soil frost is not present every year, and474

therefore should not be directly relied upon to solely predict streamflow. Instead, in ar-475
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eas where frost may appear, it should be considered as an important driver of stream-476

flow generation and a supporting predictor for streamflow amount.477

This result is not unexpected, given the wealth of data showing the influence of soil frost478

on infiltration in both modelled soil columns (Zhao & Gray, 1999) and catchments on479

short time scales (<3 years, Shanley and Chalmers (1999)). Nevertheless, it reinforces480

the idea that frost is an important hydrologic factor even across long time scales. Ad-481

ditionally, while many of these analyses have looked at the e!ects of soil frost on infil-482

tration or streamflow (Ala-Aho et al., 2021; Bayard et al., 2005; Lindström et al., 2002),483

our results show how these e!ects extend to streamflow, lateral dynamics, and connec-484

tive fluxes across the catchment. Specifically, in areas where the season of frozen ground485

overlaps with the spring recharge season, as does in much of northern North America,486

soil frost is sometimes a dominant factor a!ecting both the timing and magnitude of recharge487

and streamflow in forested catchments. While it is unclear why soil frost seems to be par-488

ticularly influential in our studied catchments compared to forested catchments (Aho et489

al. 2021), one reason may be that the perched water table may make peatlands more sus-490

ceptible to higher frost contents in the upper ground layers. Higher frost content in the491

upper layers would cause more drastic restrictions in infiltration and a larger fraction492

of snowmelt being routed to streamflow.493

4.3 Applications to Water Balance Partitioning494

The presence of increased soil frost depth is generally known to either limit the infiltra-495

tion of water to the water table, making the recharge and baseflow processes slower and496

delaying streamflow initiation, or limit recharge altogether and cause rapid streamflow497

generation through overland flow (Ala-Aho et al., 2021; Fuss et al., 2016; Shanley & Chalmers,498

1999). These processes dictate the division of water between that which is available to499

plants for transpiration, and that which flows to streams. While the e!ects of di!erent500

plant cover types, soil types, and snow cover distributions on water partitioning have been501

studied (Hammond et al., 2019), the coupled e!ects of soil frost on partitioning are still502

understudied. In this section we present several hypotheses and preliminary results to503

illustrate how frost could control snowmelt partitioning.504

In the MEF catchments, the decoupled timing between snowpack melt and streamflow505

initiation implies that there may be an influence of frost on this partitioning in both S2506
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Figure 7. Conceptual diagram representing the e!ects that frost could have on the partition-

ing of precipitation into evapotranspiration and annual streamflow during and after snowmelt.

Light blue shading represents frost depth. Relative magnitude of SWE due to snowfall is shown

in dark blue. SWE splits into diverging arrows to show the relative partition between evapotran-

spiration (dark green) and streamflow (purple) respectively. The center column shows frost depth

data (light blue) and total annual streamflow data (purple) from the MEF partitioned into each

of the four scenarios. Deep vertical drainage, though known to occur in S2 and S5 (Verry et al.,

2011), is not depicted for simplicity.
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and S5. Figure 7 shows a depiction of how di!erent snowfall and winter temperature sce-507

narios may dictate (i) the depth of the frost layer and (ii) the partitioning of SWE for508

spring streamflow and evapotranspiration. In each proposed scenario, data from the S2509

and S5 catchments (1995-2020) have been divided into each of four winter temperature510

and snowfall scenarios. Years with winter temperatures above the average are consid-511

ered ’warmer winter’ and years with snowfall totals above the average are considered ’more512

snowfall’ (and vice versa). Scenario A shows the baseline conditions at the MEF where513

there is more snowfall and colder winter temperatures compared to future projected con-514

ditions. In this scenario, a large snowpack and colder temperatures result in a lower max-515

imum frost thickness compared to a deeper frost depth in scenario B (see light blue box-516

plots in upper row), where there is little snow and less insulation, or the thin frost layer517

in C where there are warmer temperatures. Because of the deeper snowpacks, scenar-518

ios A and C will have more water available than in scenarios B and D respectively (Fig-519

ure 7, dark blue areas in the arrows).520

Snow water equivalent represents the amount of water that is available to recharge soil521

storage or runo! to spring streamflow, thus less SWE can result in a reduction in over-522

all streamflow water availability (Barnett et al. (2005) ; Figure 7A to B, or C to D, pur-523

ple arrows and boxplots). Additionally, the depth of soil frost may control the partition-524

ing of SWE over two steps: first, by controlling the amount of soil water availability in525

early spring, and then, the amount of soil water taken up by evapotranspiration in the526

late spring. In the first stage, the presence of frost limits early snowmelt infiltration and527

enhances surface runo! to streamflow, but we hypothesize that a reduction in vertical528

drainage may also increase saturation in the top part of the peat soil column. In the sec-529

ond stage, transpiration is assumed to start only after the ground has thawed and af-530

ter leaf out (Mellander et al., 2006). Here, because the melting of the frost layer depends531

on the insulation e!ects of snow, snow also plays a role in determining the timing of tran-532

spiration onset. Therefore, the magnitude of spring evapotranspiration will depend both533

on the timing of soil frost disappearance and the amount of soil frost. For example, in534

scenario A, there is a large amount of water available in the snowpack, and because of535

the deep frost layer coupled with the deep snowpack, more of the water is lost to over-536

land flow due to inhibited infiltration and delayed transpiration onset (therefore Q in A537

> Q in C and ET in A < ET in C despite the same snowfall inputs). However, compar-538

ing scenario B to A, there is a thicker frost layer, as confirmed by the MEF data, but539
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a larger fraction of the available water is directed towards evapotranspiration because540

the frost layer melts out more quickly due to the small snowpack, leaving more time for541

transpiration in the spring. This is reflected in the data from S2 and S5 which respec-542

tively show a lower amount of annual streamflow in scenario B compared to scenario A.543

There is also a lot more variation in the data during the years with less snowfall, likely544

due a patchy snow cover.545

This redistribution of soil water storage toward earlier spring evapotranspiration with546

deep frost and little snowfall could lead to overall increases in the evaporative fraction547

of meltwater inputs. We can see that if winter temperatures increase and snowfall rates548

stay constant (A ↑↓ C), there may actually be overall increase in evapotranspiration549

at the expense of streamflow. If winter temperatures remain constant but snowfall de-550

creases (A ↑↓ B) the rates of evapotranspiration may remain relatively constant despite551

the decrease in water availability, because of the shift in partitioning due to frost. If there552

are simultaneous increases in temperature and decreases in snowfall (A ↑↓ D) the par-553

tition remains relatively the same. Accordingly, we could observe decreases in both evap-554

otranspiration rates and overland runo!. Therefore, it is important to consider the in-555

teractions of snow, frost, and water table dynamics, when determining SWE partition-556

ing in headwater catchments like the MEF.557

5 Conclusions558

Our results demonstrated the hydrologic connectivity between the snowpack, water ta-559

ble, frost, and streamflow during the winter-spring transition, and highlights the impor-560

tance of frost in streamflow generation in peatlands. This research shows that in the con-561

text of catchment management, it is important to monitor the snow pack and the frost562

layer. Together, the interactions between snow and frost give a more holistic understand-563

ing of streamflow generation. These interactions need to be properly accounted for in564

hydrological and land surface models, so that we can improve our abilities to predict long-565

term catchment response to environmental change and improve water management.566

6 Open Research567

All data used in this paper is accessible online at the following locations:568

–24–



manuscript submitted to Journal of Hydrology

• MEF precipitation: Sebestyen, S.D., D.T. Roman, J.M. Burdick, N.K. Lany,569

R.L. Kyllander, A.E. Elling, E.S. Verry, and R.K. Kolka. 2021. Marcell Exper-570

imental Forest daily precipitation, 1961 - ongoing ver 2. Environmental Data Ini-571

tiative. https://doi.org/10.6073/pasta/61c7154b78f521841!8e25fc6db9987572

• MEF soil frost: Sebestyen, S.D., E.S. Verry, A.E. Elling, R.L. Kyllander, D.T.573

Roman, J.M. Burdick, N.K. Lany, and R.K. Kolka. 2020. Marcell Experimental574

Forest biweekly bog frost depth, 1985 - ongoing ver 1. Environmental Data Ini-575

tiative. https://doi.org/10.6073/pasta/0f184840135054ab017c8aad6496c353576

• MEF snow and SWE: Sebestyen, S.D., J.M. Burdick, D.T. Roman, N.K. Lany,577

R.L. Kyllander, A.E. Elling, E.S. Verry, and R.K. Kolka. 2021. Marcell Exper-578

imental Forest biweekly snow depth, frost depth, and snow water equivalent, 1962579

- ongoing ver 2. Environmental Data Initiative.580

https://doi.org/10.6073/pasta/2!0a9c2cce5a130b7b51fefe7!38c6581

• MN DNR snow and SWE: Courtesy of the Minnesota Department of Natu-582

ral Resources Grand Rapids Forestry Lab - Station 213303. Data available here:583

https://www.dnr.state.mn.us/climate/historical/daily-data.html584

• MEF streamflow: Verry, Elon S.; Elling, Arthur E.; Sebestyen, Stephen D.; Kolka,585

Randall K.; Kyllander, Richard. 2018. Marcell Experimental Forest daily stream-586

flow data. Fort Collins, CO: Forest Service Research Data Archive.587

https://doi.org/10.2737/RDS-2018-0009588

• MEF WTE: Sebestyen, S.D., J.M. Burdick, D.T. Roman, N.K. Lany, R.L. Kyl-589

lander, A.E. Elling, E.S. Verry, and R.K. Kolka. 2021. Marcell Experimental For-590

est daily peatland water table elevation, 1961 - ongoing ver 2. Environmental Data591

Initiative. https://doi.org/10.6073/pasta/2a75c323256252a763e9343f0df7b6af592
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