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ABSTRACT

The standard way to teach models is by feeding them lots of data.
However, this approach often teaches models incorrect ideas be-
cause they pick up on misleading signals in the data. To prevent such
misconceptions, we must necessarily provide additional informa-
tion beyond the training data. Prior methods incorporate additional
instance-level supervision, such as labels for misleading features or
additional labels for debiased data. However, such strategies require
a large amount of labeler effort. We hypothesize that people are
good at providing textual feedback at the concept level, a capability
that existing teaching frameworks do not leverage. We propose
Clarify, a novel interface and method for interactively correcting
model misconceptions. Through Clarify, users need only provide a
short text description of a model’s consistent failure patterns. Then,
in an entirely automated way, we use such descriptions to improve
the training process. Clarify is the first end-to-end system for user
model correction. Our user studies show that non-expert users can
successfully describe model misconceptions via Clarify, leading to
increased worst-case performance in two datasets. We addition-
ally conduct a case study on a large-scale image dataset, ImageNet,
using Clarify to find and rectify 31 novel hard subpopulations.
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1 INTRODUCTION

Machine learning systems trained with supervised learning often
learn high-level misconceptions. For example, an image classifier
trained to recognize birds may erroneously rely on background fea-
tures like water rather than the visual appearance of the bird itself.
Such misconceptions can cause unexpected failures when the model
is deployed in new environments, leading to poor performance on
specific subpopulations [3, 27, 32, 45, 49, 77]. These misconceptions
arise because models are trained to extract correlations from the
training data, which may contain spurious or misleading signals.
Identifying such failure modes in advance is challenging due to
the vast space of possible misconceptions. Left unaddressed, such
misconceptions can repeatedly cause the model to make similar
errors, significantly degrading real-world performance.

Existing methods have sought to mitigate misconceptions by
providing additional supervision beyond the training data. Prior
methods incorporate additional annotations about the spurious
features, such as separate group indices indicating whether a bird
image contains water, to encourage the model to ignore the spurious
feature [72]. Alternatively, one can collect additional labeled data
from a debiased distribution, for example, carefully curating images
so that bird species is not correlated with the background [39]. A
common theme in these approaches is that they require extensive
human involvement in the form of additional instance-level super-
vision: in these approaches, additional annotations are needed at a
scale comparable to that of the original training data. This makes
these strategies prohibitively costly for settings where the original
training data is already close to the full annotation budget. This
is especially true in scenarios such as interactive machine learn-
ing [22, 24], rapid model correction, or data-driven exploration.

We posit that far less supervision suffices if we provide targeted
feedback at the level of concepts rather than instances. Targeted
feedback is a cornerstone for robustness in various contexts outside
teaching machine learning models. Psychological studies under-
score the pivotal role of corrective feedback in enhancing learning
and decision-making [4, 31, 33, 40]. In causal inference, targeted
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Clarify: An Interface for Interactive Model Correction
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Figure 1: CLARIFY is an interface for interactively correcting model failures due to spurious correlations. (a) Given a model trained with
supervised learning, (b) a human describes consistent failure modes of the model entirely in natural language. (c) We automatically incorporate
these descriptions to improve the training process by reweighting the training data based on image-text similarity.

interventions allow us to identify causal effects, going beyond the
limitations of observational studies, which can only capture correla-
tions [64, 71, 74]. Despite such insights, existing forms of annotation
for robustness in supervised learning fall short in this regard: they
lack the specificity of targeted feedback and are provided with-
out knowledge of the actual behavior of naively trained models.
Through a lifetime of speaking and writing, people are highly adept
at thinking and communicating at higher levels of abstraction. How-
ever, existing frameworks for teaching models are not adequately
designed to leverage people’s ability to provide concept-level feed-
back. This paper proposes a specific form of targeted feedback that
aligns with these principles: natural language descriptions of model
misconceptions.

We introduce Corrective Language Annotations for Robust In-
Ference (CLARIFY), a novel system that allows users to interactively
correct failures of image classifiers using natural language. We con-
sider image classifiers obtained by fine-tuning pre-trained models
such as CLIP [67]. Although such classifiers achieve high average
performance on held-out data, they often still suffer from high-level
misconceptions. CLARIFY consists of an interface for collecting hu-
man feedback and a method for automatically incorporating this
feedback to improve the training process. During interactions with
the system, users observe a trained model’s predictions on a held-
out dataset and write short text descriptions that identify consistent
failure modes. For instance, for a bird classifier relying on a spuri-
ous correlation between bird species and their backgrounds, a user
might succinctly write that the model is mistakenly focusing on the
“water background”. We note that our system diverges substantially
from standard supervised learning: we collect annotations after
initial training and use these annotations in an entirely automated
way to re-train the model based on the feedback. Please refer to
Figure 1 for an overview of CLARIFY in relation to traditional su-
pervised learning, and Figure 2 for a visualization of key interface
features.

We instantiate CLARIFY in a web app implementation to carry
out non-expert user studies (N=26) and evaluate the gathered feed-
back in addition to re-trained models. We find that within just a

few minutes of interaction, non-expert users could use CLARIFY to
identify consistent failure modes of models trained with standard
supervised learning. Incorporating this feedback into the training
process yields a statistically significant improvement in robustness:
an average 17.1% increase in the accuracy of the worst-performing
subpopulations. To further explore the ceiling of performance gains
with CLARIFY, we perform a case study on a large and diverse
dataset, ImageNet, using an expert annotator. This case study goes
beyond standard datasets for spurious correlations with known
failure modes and entails discovering and correcting previously
unknown issues in a public dataset. We were able to identify 31
novel hard subpopulations in the dataset. We leveraged this infor-
mation to improve the average worst-case accuracy across these
subpopulations from 21.1% to 28.7% with only a 0.2% drop in av-
erage accuracy. With CLARIFY, we demonstrate that non-expert
users can train and correct models by directly talking with them—
opening up new design space for more efficient and accessible ways
to design machine learning systems.

2 RELATED WORK

Our work draws upon literature in machine learning and human-
computer interaction on strategies to efficiently correct machine
learning models—whether to reduce training and annotation effort,
bolster model robustness, or combat harmful failures.

2.1 ML Perspectives on Model Correction

Model correction methods in the machine learning literature tend
to focus on developing novel algorithms while leaving user-facing
processes intact, primarily focusing on using available labeled data
more effectively.

Teaching ML models. As machine learning models require
more and more resources to train, it becomes increasingly important
to optimize the training process. The machine teaching literature
aims to formalize the optimal training set for a given task and
characterize its training complexity. While well-studied [18, 28, 54,
80, 97, 98], its application to large-scale models has been limited,
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likely due to the substantial annotation burden required to teach a
model from scratch.

Supervised learning, the dominant paradigm for training task-
specific models, requires explicit labels for each instance and shows
diminishing returns from additional human effort. Although active
learning methods aim to reduce this annotation burden by select-
ing the most informative datapoints for labeling [47, 76], they still
require humans to label individual datapoints. Our work proposes
a new form of supervision that can rectify spurious correlations in
labeled datasets: natural language descriptions of model errors. This
form of supervision operates at a higher level of abstraction, provid-
ing a more efficient way to teach models with minimal additional
annotation effort.

Robustness to spurious correlations. Models trained with
standard supervised learning often exhibit a bias towards short-
cut features—simple features that perform well on the train-
ing distribution yet fail to capture the underlying causal struc-
ture [3, 27, 65, 77]. Recent works have proposed methods to mitigate
this issue, such as learning multiple functions consistent with the
data [46, 62, 84, 85] and reweighting instances to render shortcut
features non-predictive [13, 39, 57, 72]. However, these approaches
often entail significant overhead for additional supervision, such
as group labels indicating spurious features or carefully curated
data free of spurious correlations. In contrast, CLARIFY requires
only a few natural language descriptions of model errors, which
are substantially easier to collect, rendering it especially practical
for addressing misconceptions in large datasets.

Discovering failure modes. Our work builds upon a grow-
ing body of literature aimed at identifying and correcting model
failure modes. Previous works discover poorly-performing sub-
sets of data [5, 11, 16], devise methods to rectify specific fail-
ures [34, 55, 73, 94], or perform counterfactual data augmentation
to penalize model reliance on erroneous features [37, 70, 87, 88, 92].
More closely related to our work are methods that leverage
vision-language models to describe failure modes with natural
language [20, 21, 38, 58, 90, 96]. Natural language descriptions of
error slices have the advantage of being interpretable and natu-
rally grounded in human understanding. However, many of the
descriptions generated by these fully automated methods do not
correspond to true model failures. For example, Zhang et al. [96] re-
ports that DOMINO [21] can make nonsensical descriptions such as
“mammoth” for a bird classification task. Our approach avoids such
errors by incorporating humans in the loop, making it possible to
discover spurious correlations in large datasets such as ImageNet.

2.2 Interactive Approaches to Model Correction

Meanwhile, the HCI literature tends to approach model correction
by leaving existing algorithms largely intact, but amplifying user
involvement through new interactions and visualizations.
Making ML models more accessible. The concept of a "low
threshold" motivates HCI research on building systems accessible to
non-experts [56]. Many works have specifically focused on lowering
the bar for end-users’ participation in various stages of creating
and using machine learning models. Prior works have built tools
for end-user data exploration [43, 63, 86], labeling [26, 69], feature
selection [19, 22], model training [9, 24, 29, 44, 52, 53, 59], prompt
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engineering [36, 83, 91], and model auditing [7, 8, 15, 17, 41, 78, 82,
89, 93]. In line with this rich literature, our work aims to enable non-
expert end users to correct high-level misconceptions in machine
learning models. Since there is often a high effort barrier for users
to engage in model development, we sought to demonstrate the
efficacy of our approach even for limited amounts of user input.
To our best knowledge, CLARIFY is the first to enable non-experts
to use natural language to improve models in a fully end-to-end
manner.

Interactive ML. The field of interactive machine learning (IML)
demonstrated that by engaging users in the model development
process through interactive labeling, users could rapidly develop
models that better aligned with their needs [2, 19, 22, 25]. Subse-
quent work on interactive machine teaching (IMT) further explored
how users could act as teachers rather than just low-level data
labelers [68, 79]. Both of these literatures have explored how to
instantiate high-level concepts with user-selected examples and
demonstrations as well as predefined features and knowledge
bases [6, 23, 24, 68]. Building on this body of work, we find that
concepts are a helpful level of abstraction for non-technical users,
as they align well with how users tend to decompose and commu-
nicate knowledge [60]. CLARIFY goes further by allowing users to
specify arbitrary concepts in natural language to repair existing
image classifiers that do not already use concept-based abstractions.

Eliciting high-level concepts. In our view, the most closely
related works are those that elicit high-level concepts from hu-
mans [42, 81]. However, a key difference between these works and
ours is that we focus on negative knowledge—teaching the model
what not to learn—as opposed to these works, which specify what
features the model should use. Especially for intuitive tasks like im-
age classification, user knowledge is often facit rather than explicit,
making it hard to specify precisely [66]. Thus, it is easier for annota-
tors to describe the failures of an existing model rather than define
the desired behavior upfront. Restricting the feedback to negative
knowledge is also important for scalability, as it is much easier to
identify a few failure modes in an otherwise well-performing model
than to specify the full set of useful concepts. This scalability is
crucial for correcting spurious correlations in large-scale datasets
such as ImageNet.

3 CLARIFY: A NATURAL LANGUAGE
INTERFACE FOR MODEL CORRECTION

We now describe Corrective Language Annotations for Robust
InFerence (CLARIFY), a novel system for identifying and mitigating
spurious correlations in models trained with supervised learning.
The main idea behind CLARIFY is to allow users to provide targeted
natural language feedback to a model, helping the model focus on
relevant features and ignore spurious ones. We employ a natural
language interface to facilitate this process, which we describe
in detail in this section. First, we describe the problem setting
in Section 3.1. We then describe a concrete example of an interaction
with the interface in Section 3.3, and two methods for incorporating
this feedback into the training process in Section 3.4.
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B: Assess description quality
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Figure 2: The CLARIFY interface enables users to iteratively (A) identify and describe model failures and (B) assess the quality of these
descriptions. Users can review image examples of correct and incorrect predictions on one class, such as “square” (A1). Based on observed
differences, they can input short, natural language descriptions of model failures, such as “red” squares (A2). The system surfaces feedback by
splitting the data using the provided description (B1) and displaying an error score (B2). Users can repeat the process to generate improved

descriptions.

3.1 Supervised Learning Problem Setup

We consider a standard supervised learning setting, where we are
given a dataset D = {(x;, yi)}f\il of N labeled samples. Each label
y; belongs to one of C different classes: y; € {1,...,C}. A model
is trained to minimize the average loss across the training set, i.e.,
% Zfil £(f(xi;0),yi), where ¢ is a pointwise loss function such
as cross-entropy, f is the model, and 0 denotes model parameters.
However, the dataset may inadvertently contain spurious corre-
lations that hinder the model’s ability to generalize to new distri-
butions. To formalize spurious correlations, we can consider an
extended dataset that includes an unknown attribute s; for each
instance, resulting in {(x;, yi, si)}fil where s; € {1,...,S}. For ex-
ample, for a task where the labels y; are bird species, the spurious
attributes s; could correspond to the background of the image x;,
which would be easier to infer from the input than the true label
(i.e., bird species). A model trained on D may learn to rely on s; to
make predictions, thereby failing on new distributions where the
previous correlation between s; and y; no longer holds. In general,
we do not have annotations for these spurious attributes s; or even
know what they are in advance. Our goal is to correct the model’s
reliance on these spurious attributes without knowing a priori what
they are.

3.2 Measuring Image-Text Similarity

To describe spurious attributes given only class-labeled image data,
we leverage the capabilities of multimodal models such as CLIP [67],
which encodes images and text into a shared embedding space. For
a given image input I and text input T, CLIP outputs representa-
tions from separate vision and language branches, e; = f;(I) and
e; = fi(T), respectively. This model is trained to maximize the
similarity between the image and text representations for corre-
sponding image-text pairs and minimize it for non-corresponding
pairs through a contrastive loss function. We can estimate the simi-
larity between a pair of image and text inputs by computing the

cosine similarity of their respective representations:

sim(I,T) = — ¢t 1)
lleillllec|]
This black-box similarity function allows us to determine the rel-
evance of a given image and text pair. The next section describes
how CLARIFY leverages this relevance function to mitigate spurious
correlations based solely on natural language feedback on a labeled
validation set.

3.3 Interaction Workflow

To demonstrate how CLARIFY enables non-expert users to correct
model misconceptions, we will walk through a user’s workflow
with the system (Figure 2). We will use a running example of a
model trained to classify images of sprites as squares or ovals but
mistakenly focuses on color rather than shape.

Reviewing model behavior. First, the user is presented with
a summary view of the model’s current behavior. The goal of this
interface is to scaffold the user in rapidly identifying reasons under-
lying model failures. Drawing from a validation dataset, we display
one class at a time (i.e., images of squares) and divide the examples
into those that the model correctly classified (i.e., images classified
as squares) on the left versus those that it incorrectly classified (i.e.,
images classified as ovals) on the right (Figure 2, A1). By present-
ing the images in this way, CLARIFY streamlines the user’s task to
one of identifying differences between sets. In our example, all of
the images on the page are indeed squares, but the model is only
making accurate predictions for the examples on the left and not
those on the right. Comparing the images on the two sides, the
user notices that the correct cases contain blue squares while the
incorrect cases contain red squares.

Describing model failures. Now that the user has an initial
idea of the model’s misconception, they are tasked with describing
this failure mode. Our system accepts short natural language de-
scriptions of model failures (Figure 2, A2). In particular, users are
asked to complete the following fill-in-the-blank sentence: “The
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Waterbirds

CelebA

Phrase Cate-
gory
Best WGA (per-
user)

a bird with no head or as landbirds and a red outline, a blurry vision and
they don’t look like real birds, artic birds, beak, bird swims water, dark
backgrounds and tall trees, forest, forest, forest, forest, forest, forests,
forests, grass, greenery, landscape, landscapes, leaves, no water, plants,
red, sandy beaches, seagulls, seagulls, trees, water, water

any other hair color than blonde or light hair color, backgrounds, bleach
blonds, brown hair, buns, curls, curly hair, dyed hair, females, glasses,
light background, light colors, men, men, men or short hair, older women,
orange hair, pink, red, red, short hair, short hair, short haired men, smiles,
white backgrounds, women

Best Error Score
(per-user)

artic birds, birds, dark backgrounds and tall trees, ducks, forest, forest,
forest, forest, forest, forests, forests, greenery, landscape, motion blur or
can’t make out a real bird, plants, sandy beaches, seagulls, trees, trees,
trees, trees, water, water, water, waterfowl, wings

any other hair color than blonde or light hair color, bleach blonds, blond
highlights, brown, darker blond hair, darker blonde, darker blonde hair,
darker than blond, females, grey, males, men, men, men, men, men, men,
men, men, men, men, men, pink, short white hair, very short hair, white,
white, white

All Others

alot of dark colors and no blue water, a lot of tree trunks, aqua blue water,
been generated by ai, bird, bird wading in water, birds, birds floating,
birds floating in water, birds standing in water, birds water, black, blue,
blue, branches, branches, dark backgrounds, dark backgrounds and small
birds, dark colors, darker backgrounds and a lot of trees, extended wings,
eyes, flightless birds, flowers, game birds, grass, green, green, green,
green, green plants, humans, land, landscapes, length of leg, lots of tree
trunks, more dark colors than light colors and a lot of trees, mountains,
no water, no water, no water and dark backgrounds, ocean coasts, people,
people, people, plants, reeds, seagulls, shadows, sticks, tree trunk, trees,
trees, trees, trees, trees, trees, very dark backgrounds and a lot of trees,

bad lighting, bangs, beards, black hair, blue, blue, blue background, blue
or black, brown, brown or dark hair, dark hair, darker hair, dim lighting,
fair hair, flaxen, gold, golden hair, hair, hair, hats, hats, hats or bows,
hazy, letters, light hair, little visible hair, long hair, males, males, males,
men, more dark colors than light colors, non-blond hair. dark hair color.
not blond, nondarkened hair, not blond, orange hair, people not facing
the camera, red hair, red hair, redheads, short, short hair, short or curly
hair, short or pulled back hair, shoulders, signs, skin color that is similar
to their hair color, smiles, smiling faces, sunglasses, tan skin, teenagers,
teeth, very tan skin, women

water plants, wings, woods

Table 1: The full set of model failure description phrases provided by non-expert annotators in our user study. The “Best WGA” and “Best Error
Score” phrases were selected by identifying the phrase that achieved the highest Worst-Group Accuracy or Error Score, respectively, for each

== Class Prompt
== Group Prompt
ERM (best)
Clarify (avg)

participant.
Non-Expert Completion Time Non-Expert Worst Group Accuracy
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Figure 3: For both datasets, (left) non-experts completed annotation tasks using CLARIFY in less than 3 minutes on average, and (right) models
retrained with non-expert annotations outperformed existing baselines in worst-group accuracy.

N

(a) Typical (b) Bleach (c) Dirty
Blond Blond

Figure 4: (a) Typical images from the “blond” class of CelebA. Non-
experts provided textual feedback corresponding to hard subpopula-
tions of (b) lighter and (c) darker hair colors.

Al is often wrong on images that have ___ in it” We find that this
question is effective since users may not be familiar with the gen-
eral concept of model failures or features. Continuing our running
example, the user enters the phrase “red” here to describe what
they observed.

Assessing descriptions. After the user submits their failure
mode description, the CLARIFY interface helps them assess whether
the description effectively describes the model’s misconception. The
system uses the CLIP model to compute the image-text similarity
between each validation image and the user’s description. Images
with a similarity score above a threshold are considered to contain
the feature described by the user. The interface presents a summary
visualization that partitions the validation dataset based on this
threshold, with matching images on the right and non-matching
images on the left (Figure 2, B1). Additionally, we display a 0 — 1
score that indicates how well the description separates the error
cases from the correct predictions (Figure 2, B2). We note that
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while the interface only shows validation data using the provided
description, the user’s natural language annotation will later be
incorporated to partition the training data for model retraining.

Iterating on descriptions. As users may not be successful on
their first attempt, CLARIFY aids users in iterating on their descrip-
tions. Descriptions can fail for two reasons: (1) the description may
be a valid differentiator, but may be modeled inaccurately due to
the user’s word choice and the limitations of CLIP-based similarity
scoring, or (2) the description may not sufficiently differentiate the
correct and incorrect cases. CLARIFY allows users to identify both
of these failure modes. For example, the user can see if the model
is not accurately identifying images with the color red based on
the keyword “red” alone. In this case, they can experiment with
alternate keywords to better isolate the difference, such as “red
square” or “crimson”. After iterating and isolating the red examples,
the user can see if the provided score is still low, indicating that
this description is not sufficient to repair model errors. With this
information, users can revisit the original view and brainstorm addi-
tional descriptions, such as phrases related to the size or orientation
of sprites.

We describe other details about the interface in Appendix A,
including additional features that help users to refine their descrip-
tions and assess their effectiveness. In Section 4.1, we evaluate the
performance of non-expert annotators using CLARIFY and demon-
strate that they can identify and describe model misconceptions.

3.4 Automatic Fine-Tuning

After collecting textual feedback from users, we incorporate this
feedback into the training process for fine-tuning a foundation
model. While the strategy below applies to any form of training,
in this paper, we consider fine-tuning only the last layer on top
of a pre-trained backbone network with frozen parameters. An
error annotation is a tuple (¢, T, 7), where c is the class label, T is
the textual description, and r is a threshold on the similarity func-
tion. Given such an error annotation, we partition the training data
within class ¢ into two subsets: D> = {(xj,y;) | sim(x;, T) > 7} and
D< = {(xi,y;) | sim(x;, T) < r}. These two subsets correspond to
images that are more and less similar to the provided text prompt,
respectively, and serve as indicators of the model misconception
identified by the annotator. Having identified these two subsets, we
want to train a final model insensitive to the identified misconcep-
tion, i.e., to achieve low training loss without using the feature that
separates the two subsets.

We propose to use a simple distributionally robust optimization
(DRO) objective function to achieve this goal. Having identified the
two subsets Ds and D, we propose to minimize the maximum
loss over the two subsets to achieve robustness to the identified
misconception; the loss function is given by:

max (L(fg, D>), L(fp. D<), (2)

where L(fy, D) is the average loss over the subset D. This objective
ensures the model performs well on both subsets, avoiding the pre-
vious reliance on the spurious attribute. We optimize this objective
using stochastic gradient descent with the max operator computed
for each minibatch. We use this objective to train the last layer on
top of a frozen pre-trained backbone model. In Section 4, we will
measure the effectiveness of this fine-tuning approach based on
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language feedback. We note that this stage is fully automated, and
there are no additional hyperparameters to tune beyond what was
in the original training process.

4 EVALUATION

First, we note that our setup diverges substantially from assump-
tions in traditional supervised learning. CLARIFY involves collecting
annotations after an initial round of training, and these annota-
tions consist of targeted concept-level feedback rather than model-
agnostic instance-level feedback. We consider this deviation from
the conventional setup necessary to efficiently address the chal-
lenge of learning robust prediction rules from observational data.
We seek to empirically answer the following questions about the
CLARIFY system for interactively correcting model errors:

(1) Can non-expert users use CLARIFY to identify and describe spu-
rious correlations in models trained with supervised learning?

(2) Can CrArIFY discover and rectify novel spurious correlations
in large datasets such as ImageNet?

(3) How does CLARIFY compare to various automated methods
which do not require human feedback?

For detailed experimental setup including datasets, models, and
Prolific participants, see Appendix B.

4.1 User Study: Non-Expert Annotators Can
Describe Model Errors

Identifying and annotating spurious correlations is a more nuanced
task than conventional forms of annotation such as class labeling.
This raises the question of whether non-expert annotators can
perform this task, and if so, how efficiently they can do so. To answer
these questions, we conduct a user study (N=26) to assess the ability
of non-expert users to identify and describe spurious correlations
in models trained with supervised learning (see Appendix B for
study details).

In this study, we asked each participant to interact with models
trained on the Waterbirds and CelebA datasets using the CLAR-
IFY interface. In addition to qualitatively examining the feedback
provided by participants, we evaluate the performance of the mod-
els trained on the feedback. We measure the robustness of these
re-trained models using the worst-group accuracy (WGA) metric,
which measures the accuracy of the worst-performing subpopu-
lation in the dataset. For example, in the Waterbirds dataset, the
worst-group accuracy is the minimum average accuracy across
the four subpopulations (“landbird in land”, “landbird in water”,
“waterbird in land”, and “waterbird in water”).

We summarize the results of our user study in Figure 3 and
Table 3, comparing to zero-shot prompting and fine-tuning base-
lines. Users were able to achieve these performance improvements
with minimal annotation effort, averaging 2.7 minutes (SD=2.5) per
dataset. As a point of comparison, Chang et al. [10] found that anno-
tators required 4.4 and 10.2 minutes to provide high-quality labels
for 100 examples in the much simpler MNIST and K-MNIST datasets,
respectively. For the best-performing annotation from each user, the
average worst-group accuracy was 69.8 (SD=9.0, max=382.5) for Wa-
terbirds and 83.6 (SD=3.1, max=88.9) for the CelebA dataset. Single-
factor ANOVAs showed a statistically significant increase in worst-
group accuracy from using CLARIFY: F(1,24) = 12.96,p < 0.002 for
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Waterbirds and F(1,24) = 262.44,p < 0.001. We then conducted
Tukey HSD posthoc tests to compare conditions between all pairs of
methods. This test confirmed statistical significance at the p < .005
level for all pairwise between CLARIFY and the baselines for both
datasets. In summary, non-expert annotations using CLARIFY sig-
nificantly outperformed the baseline methods we considered.

We additionally find that non-expert annotators identified pre-
viously unknown spurious correlations in the CelebA dataset. In
addition to the known spurious correlation between hair color and
gender, participants identified subpopulations of “dirty blonde” and
“bleach blond” individuals, which models consistently misclassified
(Figure 4). Our findings suggest that CLARIFY can enable non-expert
annotators to identify and describe model misconceptions. This
opens up the possibility of leveraging a broader workforce for in-
teractively improving models trained on web-scale datasets such

as ImageNet or LAION [14, 75].

4.2 Case Study: Discovering and Mitigating
Model Misconceptions in ImageNet

Class Name Spurious Feature

cup tea cup

weasel snow weasel

wool yarn ball

space bar computer mouse
letter opener silver

loupe person holding a magnifying glass
mouse desk and laptop
bakery store front

sunscreen person with sunburns
minivan black minivan

plate rack machine

briard shaggy dog

lens cap camera equipment
bighorn rocky hillside
mushroom red

rifle wooden barrel
spotlight shining

chocolate sauce | pastries with chocolate
terrapin pond

sidewinder sand

bikini group of people
flatworm coral reef

monitor monitor on a desk
breastplate museum display
projectile rocket in a building
academic gown | many people in robes
velvet pink velvet

bathtub person

sliding door car

partridge tall grass

ear green

Table 2: The 31 identified spurious features in the ImageNet dataset.
All annotation was performed on the validation split.
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We now evaluate whether CLARIFY can be used to discover novel
model misconceptions in models trained on the ImageNet training
set. It is important to develop tools to find consistent errors and
methods to mitigate them for such widely used large-scale datasets.
For this evaluation, the authors of this paper use the CLARIFY inter-
face for ImageNet and additionally evaluate whether the resulting
annotations can improve model robustness.

Identified subpopulations. Using CLARIFY, we identified 31
model misconceptions in ImageNet; we show a full list in Section 4.2
and visualize many of them in Figure 5 Despite ImageNet being
a widely studied dataset, to our best knowledge, no prior works
have identified these misconceptions. For example, we visualize a
spurious correlation in the “sliding door” class in Figure 6: sliding
doors are negatively correlated with cars in the training set, causing
standard models to misclassify cars with sliding doors. We further
evaluate the performance of a standard ImageNet model on each
identified minority and majority split. Results in Figure 11 show that
a naively fine-tuned ERM model consistently underperforms on the
minority split for each class, indicating that standard models indeed
rely on each of these spurious correlations. This trend continues to
hold on ImageNet-V2, which follows a different distribution from
the validation set we use to collect feedback.

Fine-tuning while avoiding spurious correlations. We use
the collected annotations to fine-tune a model on ImageNet and
evaluate this fine-tuned model on various splits of the ImageNet
validation set. Results in Figure 8 show that the retrained model
achieves higher minority split performance on many classes. Ag-
gregate metrics in Figure 7 show that fine-tuning with CLARIFY an-
notations improves the average minority-split accuracy from 21.1%
to 28.7%, with only a 0.2% drop in overall average accuracy. We
emphasize that no additional data was used during fine-tuning—the
annotations from CLARIFY were only used to find a better reweight-
ing of the same training data used to train the original ERM model.

4.3 Technical Evaluation

We compare CLARIFY with various automated methods for handling
model misconceptions. We note that none of the following com-
parisons are apples-to-apples: CLARIFY operates in a new problem
setting that involves targeted human feedback, while the automated
methods are designed to use pre-existing data, annotations, or mod-
els. Our goal is to see how the new form of targeted supervision
in CLARIFY compares to prior approaches since it is substantially
more information-dense and expressive and thus scalable to large
datasets.

Comparison with zero-shot prompting methods. We com-
pare the re-trained classifier using CLARIFY annotations with zero-
shot prompting methods in Table 4. CLARIFY shows substantially
better worst-group accuracy and robustness gap on the Water-
birds and CelebA datasets. Among these points of comparison,
RoboShot [1] is notable as it is an automated method that leverages
state-of-the-art foundation models [12, 35, 61]. We note that this is
not necessarily a fair comparison in either direction: RoboShot uses
a powerful language model to alter its prompts, whereas CLARIFY
leverages targeted human feedback. Nevertheless, this comparison
is still informative in that it shows that we can get much more
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Figure 5: Representative samples corresponding to nine identified spurious correlations in ImageNet. All images shown are in the ImageNet
validation set, and belong to the class shown in the first column. Similarity to the specified text annotation splits separates the “easy” and
“hard” examples.

leverage out of natural language feedback by having it directly correlations. We compare with representative prior methods, which
address gaps in existing training data. similarly fine-tune CLIP models and/or reweight training data. In

Comparison with methods for spurious correlations. We as- addition to CLARIFY, we evaluate zero-shot CLIP [67] with class-
sess how re-training a model with expert annotations from CLARIFY based and group-based prompts, DFR [39], and Group DRO [72].

compares to existing automated methods for addressing spurious We describe experimental details for each method in Appendix B.
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Figure 6: An example of a spurious correlation found on ImageNet. Within the “sliding door”  Figure 7: Average accuracies on ImageNet
class, the model successfully classifies (a) images of sliding doors inside buildings. However, itis  data. Fine-tuning with Clarify substan-
wrong on all instances of (b) sliding doors on cars. This is one of the 31 spurious correlations we  tially improves accuracy on hard splits,

found; please refer to Figure 5 for more visualizations.

while keeping overall accuracy intact.
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Figure 8: Average minority split accuracy for each of the 31 identified spurious correlations. Fine-tuning with textual feedback from CLARIFY

improves minority split accuracy in many classes.

Waterbirds CelebA
WG Avg Gap WG Avg Gap

36.6 922 556 740 819 79
559 878 319 708 826 118

Data Assumptions Method

Zero-Shot Class Prompt
Group Prompt
ERM

Labels ERM (ours)

ERM (ours, class-balanced)
ERM (ours, worst-class)

79 935 856 119 947 828
63.4 96.0 32.6 311 954 643
48.6 952 467 658 934 276
55.9 958 399 569 941 372

CLARIFY (avg non-expert)
Labels, Text Feedback CrLARIFY (best non-expert)
CrLARIFY (author)

69.8 84.1 133 837 932 95
82.5 907 82 888 929 41
757 838 8.1 89.1 921 3.0

DFR (downsample)
DFR (upsample)

Labels, Group Labels DFR (our implementation)

63.9 918 279 769 925 156
513 924 411 896 918 22
78.7 908 12.1 90.6 919 1.3

Group DRO (our implementation) 81.3 88.1 6.8 89.2 918 2.7

Table 3: Evaluation of methods for group robustness using the CLIP-ResNet50 backbone. For CLARIFY, we show the average and best participant
from our non-expert user study (N=26) in addition to feedback from an author of this paper. Fine-tuning with annotations from CLARIFY
consistently outperforms methods that use only text (zero-shot) or label information. All results other than ours are from Zhang and Ré [95].

Our results on the Waterbirds and CelebA datasets, summarized
in Table 3, demonstrate that CLARIFY consistently outperforms
approaches that use zero-shot prompts or class labels in terms
of worst-group accuracy and robustness gaps and is competitive
with specialized methods that use instance-level annotations for

spurious attributes. We show extended results with an alternative
network architecture as the pre-trained backbone in Table 6.
Moreover, the key advantage of CLARIFY is its scalability to large
datasets, a feature that no prior automated method has demon-
strated. Such scalability is crucial when applying these ideas to
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Model Method Waterbirds CelebA
Avg WG(T) Gap() AVG WG(T) Gap(l)
Class Prompt  72.0  50.3 21.7 81.8 77.2 4.6
ALIGN Group Prompt  72.5 5.8 66.7 78.3 67.4 10.9
RoboShot [1] 509  41.0 9.9 86.3 834 2.9
Class Prompt ~ 90.1 35.8 54.3 82.3 79.7 2.6
AItCLIP Group Prompt 824 294 53.0 82.3 79.0 3.3
RoboShot [1] 785  54.8 23.7  86.0 77.2 8.8
Class Prompt ~ 88.7 27.3 61.4 80.6 74.3 6.3
. Group Prompt  70.7  10.4 60.3 77.9 68.9 9.0
CLIP (VIT-L/14) RoboShot [1] 799 452 34.7 855  82.6 2.9
CLARIFY 96.8 818 149 909 8838 2.1

Table 4: Comparison with different zero-shot CLIP prompting strategies for group robustness. Fine-tuning with CLARIFY substantially
outperforms RoboShot, a method that leverages state-of-the-art foundation models to automatically generate text prompts. All results besides

ours are from Adila et al. [1].

real-world problems where the scale and diversity of data are ever-
increasing.

Comparison with automated bias discovery. Since annota-
tion time is a key cost of CLARIFY, we investigate whether such
feedback brings concrete benefits over fully automated methods
for discovering model biases. Specifically, we compare CLARIFY
with Bias-to-Text [38], a representative method for automated bias
discovery. We evaluated the automated Bias-to-Text pipeline on
several classes in the ImageNet validation set, in which we identi-
fied spurious correlations. We find that Bias-to-Text can identify
relevant keywords for each class, but it has specific pitfalls that
make it difficult to use without human oversight. In Table 5, we
show 10 keywords identified by Bias-to-Text for 6 classes in Ima-
geNet. We note that the top identified keywords, i.e., the ones with
the highest CLIP score, often describe something highly related to
the class label, such as “goat” for the “bighorn”. Additionally, we
numerically compare the discovered annotations in their ability to
improve model robustness in Figure 9. The annotations for Bias-
to-Text show substantially higher minority split accuracy (Clarify
21.1%, Bias-to-Text 45.2%), with a smaller gap with the majority split.
Furthermore, after re-training with these annotations, we observe a
slight decrease in held-out minority split accuracy (45.2% to 44.3%).
This is in contrast to re-training with Clarify annotations, which
substantially improved minority split accuracy (21.1% to 28.7%).
However, we note that automated discovery methods are highly
useful in the context of CLARIFY, as they can prime annotators with
a set of candidate keywords or help prioritize the most promising
parts of the dataset.

5 DISCUSSION

Our evaluation demonstrates that CLARIFY enables non-expert users
to identify and address misconceptions within machine learning
models in an end-to-end manner. User feedback is immediately
actionable and can be used to improve model robustness without
any additional data collection. Allowing users to improve models
end-to-end is important for both scalability and building public
trust. The worst-case accuracy gains from re-training with CLARIFY

annotations are substantial, and the method is competitive with or
outperforms existing automated methods for addressing spurious
correlations. Furthermore, we show that CLARIFY can be used to
discover novel misconceptions from training on large-scale datasets
such as ImageNet and that the resulting annotations can be used to
improve model robustness.

5.1 Comparison to Supervised Learning

Our approach to teaching machines diverges substantially from
standard supervised learning. We highlight two key properties of
CrARIFY which offer complementary strengths to conventional su-
pervised learning. First, we collect annotations after initial training,
allowing the model’s behavior to inform the annotation process.
Interacting with a model after training enables our interface to
specifically elicit negative knowledge from users, i.e., telling the
model what not to focus on. People are often better at identifying
errors than articulating complex rules, and negative knowledge
can fill the gaps in the positive knowledge in the original labeled
training set. Second, annotations from CLARIFY have a substantially
higher information density than conventional forms of annota-
tions. Unlike instance-specific labels, textual feedback encapsulates
concept-level “global” insights applicable across the entire dataset,
making it a more efficient mode of human-AI communication.

5.2 Limitations

However, we acknowledge certain limitations of CLARIFY in its
current form. While we find that non-expert users can provide
meaningful feedback on model errors, eliciting high-quality feed-
back from non-experts remains challenging. Their feedback can be
too generic, e.g., “the model is wrong” or directly describing the
class label rather than the spurious correlation; signaling the right
level of granularity to the user is a challenge in this mode of interac-
tion. We also find that some users could only find model errors that
are very visually salient, such as the presence of a specific large
object in the image. While many users provided useful feedback,
some struggled, likely because they had no prior knowledge of the
model’s capabilities.
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In general, CLARIFY can only help with model failures that can be
concisely described in natural language. This excludes more com-
plex failures, such as those requiring domain-specific knowledge
or not easily articulated in text. Also, as much as CLARIFY benefits
from using a pre-trained backbone model for bridging between
natural language descriptions and images, it inherits the limitations
of the pre-trained CLIP model. This includes biases in the training
distribution and limited coverage of specialized domains such as
medical imaging or scientific data.

5.3 Future Work

A natural extension of CLARIFY is to apply this framework of col-
lecting textual feedback on model errors to large language models
(LLMs). A key challenge in this direction is in designing effective
user interfaces that allow users to quickly understand a model’s
overall behavior and develop strategies to elicit specific, actionable
user feedback. Enabling this mode of interaction, where users can
teach LLMs by critiquing their mistakes, could be a promising ap-
proach for making powerful models easier to align and adapt to
specific user and community needs without requiring extensive
annotation costs. Collecting feedback after initial model training is
especially appealing in the context of current LLMs, where the full
scope of a model’s emergent behaviors can be difficult to predict in
advance.

We are also excited about increasing expressivity by designing in-
terfaces that allow users to provide more nuanced and open-ended
feedback, potentially through extended text passages or interactive
multi-turn dialogue with the model. Such interfaces could leverage
more knowledge and expertise from people, including domain ex-
perts, which may be particularly valuable in specialized domains
such as healthcare or scientific discovery. We intentionally scoped
our evaluation to non-experts to demonstrate the broad applicabil-
ity of our end-to-end approach. Our non-expert results establish
a floor for improvement from the proposed workflow, and further
iterations will only benefit from richer user feedback from users
with more expertise. Allowing for richer feedback will also likely be
critical in more complex tasks like open-ended instruction follow-
ing and in data modalities such as video or audio, where the model’s
behavior is more complex and harder to summarize succinctly.

6 CONCLUSION

This paper introduces CLARIFY, a novel interface for correcting high-
level model misconceptions in machine learning models. CLARIFY
enables non-expert users to provide targeted feedback on model
errors, which can be used to improve model robustness. We also
show that CLARIFY can be used to discover novel misconceptions
in large-scale datasets such as ImageNet. We believe that the gen-
eral idea of correcting models with targeted textual feedback has
the potential to substantially improve model performance while
reducing the need for extensive manual annotation.
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A ADDITIONAL INTERFACE DETAILS

In this section, we provide additional details about the CLARIFY
interface, which we found helpful for eliciting natural language
feedback from non-expert users.

Error score. The provided Error Score is a rough proxy for how
well a given text description predicts model errors. We emphasize
that this score is not used in the training process and is only meant
to give non-expert users a rough idea of what descriptions are
useful. It is computed as follows. Consider input text prompt T,
and let Dcorrect and Derror be subsets of the validation dataset for a
given class that the model made correct and incorrect predictions
on, respectively. We denote the cosine similarities between the
T and the images in each subset as Scorrect = {sim(I,T) | I €
Dcorrect} and Serror = {Sim(I, T) | I € Derror}- To quantify how well
image similarity with T can predict model errors, we compute the
best class-balanced binary classification accuracy among similarity
thresholds 7. Denoting this accuracy as Accy, the error score is
computed as 2x (Accy —0.5), so that uninformative prompts receive
a score of 0 and prompts that perfectly predict model errors receive
a score of 1.

Similarity threshold. For each natural language threshold, we
determine a similarity threshold z, which can be chosen by the user
after inspecting the similarity scores for a representative sample of
images or can be automatically chosen as the threshold that maxi-
mizes the Error Score. For each class, only the textual feedback with
the highest Error Score is used for retraining. Together with this
threshold, we can specify a spurious correlation using a tuple of the
form (class label, text prompt, similarity threshold) corresponding
to a binary classifier that predicts model errors on that class.

Additional backend features for large datasets. We found
that a few more optional features can help annotate spurious cor-
relations in larger datasets like ImageNet. We begin by narrowing
down the 1000 classes to a smaller number of classes (e.g., 100) most
likely to have identifiable spurious correlations. To do so, we first
prune out classes with too low or too high accuracy (e.g. accuracy
below 0.2 or above 0.8), to ensure a sufficient number of correct and
incorrect predictions for each class. For the remaining classes, we
caption each image with an image captioning model [48, BLIP] and
use a keyword extraction model [30, KeyBERT] to suggest a pool of
up to 50 keywords for each class, a procedure inspired by Kim et al.
[38]. Through CrARIFY, we interact with the top 100 classes accord-
ing to the maximum error score across the candidate keywords. The
user is shown the top 10 candidate keywords during interactions as
a helpful starting point. We expect that these features will similarly
be helpful for other large datasets.

B EXPERIMENTAL DETAILS

Datasets. We run experiments on three datasets: Waterbirds [72],
CelebA [51], and ImageNet [14]. Waterbirds and CelebA have a
known spurious correlation between the class label and a spuri-
ous attribute; we have access to ground truth spurious attribute
labels for these datasets. We use these datasets to evaluate whether
CLARIFY can correct model failures due to spurious correlations.
To our knowledge, ImageNet does not have any previously known
spurious correlations.

Yoonho Lee, Michelle S. Lam, Helena Vasconcelos, Michael S. Bernstein, and Chelsea Finn

Backbone models. All experiments use pre-trained CLIP mod-
els [67] as the feature extractor. The CLARIFY interface uses the
CLIP ViT-L/14 vision and language backbones for calculating image-
text similarity. We use the CLIP ResNet-50 and ViT-L/14 models
for Waterbirds and CelebA and only the CLIP ViT-L/14 model for
ImageNet. We use frozen backbone models and only train a final lin-
ear layer for classification, following related works for addressing
spurious correlations [39, 95]. We use no data augmentation and
normalize all embeddings before computing similarity or training.

Methods. Table 3 and Table 6 show results for CLARIFY and
several representative prior methods for addressing spurious corre-
lations. We experiment with several variants of standard ERM train-
ing with a labeled training set: uniform weighting, class-balanced
weighting, and “worst-class”, a DRO-like weighting scheme that
adaptively trains on only the class with the highest loss. We exper-
iment with two variants of training a model with CLARIFY anno-
tations: reweighting data so that each of the two slices has equal
weight (slice-balanced), and a DRO-like weighting scheme which
adaptively trains on only the slice with the highest loss (worst-slice).

Annotators. We recruit 26 non-expert users through Prolific
(https://www.prolific.co/). These participants had no qualifications
beyond being native English speakers and having some program-
ming experience and did not necessarily have any prior knowledge
about machine learning. We provide a brief tutorial on using the
interface and ask each participant to annotate the class with the
highest error rate for each dataset. After completing the user study,
we retrained the models for both datasets using each user-provided
annotation. The authors of this paper collected another set of an-
notations for Waterbirds and CelebA, which we use as a baseline
for comparison. Additionally, annotations for the ImageNet dataset
were collected by paper authors.

C ADDITIONAL DETAILS FOR BIAS-TO-TEXT
EXPERIMENT

Here, we provide additional details for the comparison between
CrLARIFY and Bias-to-Text [38], an automated bias discovery method.
The automated pipeline of Bias-to-Text consists of two steps: (1)
extracting keywords from image captions of incorrect examples
and (2) ranking these potential keywords based on how well they
separate correct and incorrect examples. More specifically, they
look for keywords that maximize CLIP score, which is defined as

scLp(a; D) = sim (a, Dywrong ) — sim (@, Deorrect ) ®)

where Dyrong and Deorrect are the sets of incorrect and correct ex-
amples, respectively. A keyword with a high CLIP score will likely
describe something in common between the incorrect examples
and thus may correspond to a spurious correlation. For each key-
word, they also report the subgroup accuracy, which is the model’s
accuracy on the subset of examples containing the keyword. This
method is representative of the state-of-the-art in automated bias
discovery and was shown to outperform other recent automated
bias discovery methods such as ERM confidence [50], Failure Di-
rection [34], and Domino [21].

We evaluated the automated pipeline of Bias-to-Text on several
classes in the ImageNet validation set in which we identified spuri-
ous correlations and found specific pitfalls that make it difficult to
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Spotlight class (ours: “shining”)

Keyword CLIP Score Subgroup Acc

street lamp  3.32 0.0 (N=1)
lamp 2.50 66.7 (N=6)

top  2.46 0.0 (N=1)
kitchen 2.22 50.0 (N=2)
street 2.07 33.3 (N=3)

suite 1.94 0.0 (N=1)

city 1.87 0.0 (N=3)

room 1.77 0.0 (N=2)

light 1.51 81.8 (N=22)

night 1.12 80.0 (N=5)

Academic Gown class (ours: “many people in robes”)

Keyword CLIP Score Subgroup Acc

person 0.51 25.0 (N=24)
photo  0.50 27.3 (N=11)
graduate 0.23 13.3 (N=15)
graduates  0.21 25.0 (N=8)
graduation 0.16 13.3 (N=15)
pose 0.12 20.0 (N=10)
poses  0.01 0.0 (N=4)
students -0.25 0.0 (N=7)
graduation ceremony -0.57 16.7 (N=12)
ceremony -1.27 23.1 (N=13)

Loupe class (ours: “person holding a magnifying glass”)

Keyword CLIP Score Subgroup Acc

black 0.01 0.0 (N=4)
camera -0.08 28.6 (N=7)
book  -0.65 33.3 (N=3)
compact -0.72 0.0 (N=2)
compact camera -1.12 0.0 (N=2)
watch  -1.50 0.0 (N=1)
pocket -1.84 0.0 (N=1)
pocket watch  -2.05 0.0 (N=1)
glass -2.30 57.1 (N=14)
magnifying glass -6.19 71.4 (N=7)
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Rifle class (ours: “wooden barrel”)

Keyword CLIP Score Subgroup Acc

person 1.59 14.3 (N=14)
soldier 0.60 0.0 (N=8)
project picture  0.20 0.0 (N=3)
soldiers 0.18 0.0 (N=5)
dark room -0.47 0.0 (N=1)
machine -0.95 20.0 (N=5)
gun  -1.69 30.0 (N=20)
nice gun -1.98 0.0 (N=2)
machine gun  -2.00 20.0 (N=5)
weapons -2.01 42.9 (N=7)

Bighorn class (ours: “rocky hillside”)

Keyword CLIP Score Subgroup Acc

goat 1.39 5.9 (N=17)
sheep 1.35 0.0 (N=9)
mountain goat  0.11 0.0 (N=2)
biological 0.06 28.6 (N=7)
biological species  0.00 28.6 (N=7)
species -0.03 28.6 (N=7)
bighorn sheep -0.04 0.0 (N=4)
bighorn sheep stands -0.29 0.0 (N=2)
stands  -1.32 0.0 (N=7)
herd -2.27 14.3 (N=7)

Weasel class (ours: “snow weasel”)

Keyword CLIP Score Subgroup Acc

bear cub sits  1.72 0.0 (N=1)
black bear cub  1.62 50.0 (N=2)
young black bear 0.81 0.0 (N=1)
biological species -0.17 85.7 (N=14)
dead squirrels -0.19 0.0 (N=1)
file photo  -0.19 0.0 (N=2)
undated file -0.36 0.0 (N=2)
undated file photo  -0.41 0.0 (N=2)
grass -0.87 85.7 (N=7)
squirrels were found -0.87 0.0 (N=1)

Table 5: Comparison to Bias-to-Text [38], an automated bias discovery method on ImageNet. We show the top 10 keywords identified by
Bias-to-Text in descending order of their recommended score. We also show the text feedback provided through CLARIFY for comparison.
The keywords identified by Bias-to-Text often include irrelevant words or correspond to very small subpopulations, indicating that current

automated methods ultimately require human oversight or intervention to discover the most relevant and biased subpopulations.

use alone in practice. In Table 5, we show 10 keywords identified
by Bias-to-Text for four of the classes for which we identified spuri-
ous correlations. We note that the top identified keywords, i.e., the
ones with the highest CLIP score, often describe something highly
related to the class label, such as “goat” for the “bighorn”. We fur-
ther note that the method also identifies very small subpopulations,
for example “baby shower” which only appears in three of the 50
examples in the “bakery” class. Text feedback from CLARIFY never

the top keyword recommended by Bias-to-Text, and was only in
the top 10 for 5 out of 31 classes.

In its current form, automated bias discovery methods such as
Bias-to-Text ultimately require oversight to identify the most rele-
vant keywords. The human-in-the-loop nature of CLARIFY can be
seen as recognizing this dependency and providing a more direct
way for users to inspect and correct model failures. However, we
note that automated discovery methods are still highly useful in
the context of CLARIFY, as they can prime annotators with a set
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of candidate keywords or help prioritize the most promising parts
of the dataset. We believe a more integrated combination of auto-
mated discovery methods and human-in-the-loop methods such as
CrarrIry will be a fruitful direction for future work.

Finally, we compare the annotations discovered by Clarify and
Bias-to-Text. We take the top keyword identified by Bias-to-Text for
each class and compare the model’s accuracy on the majority and
minority splits in Figure 9. The annotations for Bias-to-Text show
substantially higher minority split accuracy (Clarify 21.1%, Bias-to-
Text 45.2%), with a smaller gap with the majority split. Furthermore,
after re-training with these annotations using our reweighting
procedure, we observed a slight decrease in held-out minority split

Yoonho Lee, Michelle S. Lam, Helena Vasconcelos, Michael S. Bernstein, and Chelsea Finn

accuracy (45.2% to 44.3%). This is in contrast to re-training with
Clarify annotations, which substantially improved minority split
accuracy (21.1% to 28.7%). These results indicate that automated
bias discovery methods such as Bias-to-Text fail to identify the most
relevant or consistent subpopulations, highlighting the need for
oversight.

D QUALITATIVE FEEDBACK

We collected qualitative feedback from the non-expert participants
in our user study. We found that the interface was easy to use and
provided useful insights into the strengths and weaknesses of the
method in Table 7.
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Waterbirds CelebA
Assumptions Method WG Avg Gap WG Avg Gap
Zero-Shot Class Prompt 36.6 922 556 740 819 79
Group Prompt 559 878 319 708 82.6 118
ERM 79 935 856 119 947 828
Labels ERM (ours) 63.4 96.0 326 311 954 643
ERM (ours, class-balanced) 48.6 952 46.7 65.8 934 27.6
ERM (ours, worst-class) 559 95.8 399 569 941 372
(=3
o CLARIFY (avg non-expert) 69.8 84.1 133 837 932 95
% Labels, Text Feedback CLARIFY (best non-expert) 82.5 90.7 82 838 929 41
~ CLARIFY (author) 757 838 81 89.1 921 3.0
= DER (downsample) 639 918 27.9 769 925 156
O
DFR ! 513 924 411 89.6 918 22
Labels, Group Annotation (upsample)
DFR (our implementation) 787 90.8 12.1 90.6 919 1.3
Group DRO (our implementation) 813 881 6.8 892 918 27
ERM Adapter 60.8 96.0 352 36.1 942 581
Labels, Additional Params WiSE-FT 498 91.0 41.2 856 886 3.0
Contrastive Adapter 83.7 894 5.7 90.0 907 0.7
Class Prompt 257 873 616 621 719 938
Zero-Shot
eromsho Group Prompt 274 855 581 724 818 94
ERM 659 97.6 31.7 283 947 664
Labels ERM (our implementation) 795 974 179 25.7 94.6 68.9
ERM (our implementation, class-balanced) 71.1 97.2 26.1 63.7 92.6 28.9
= ERM (our implementation, worst-class) 743 97.1 228 569 933 364
E Labels, Text Feedback CLARIFY (author) 81.8 968 149 888 909 2.1
=z DFR (downsample) 519 957 438 763 921 158
= . DFR 1 659 96.1 302 837 912 75
) Labels, Group Annotation (upsample)
DFR (our implementation) 8.9 935 76 89.0 909 1.9
Group DRO (our implementation) 88.5 927 41 8.1 911 29
ERM Adapter 784 978 194 36.7 942 575
Labels, Additional Params WIiSE-FT 659 976 31.7 80.0 874 74
Contrastive Adapter 869 962 9.3 846 904 5.8

Table 6: Evaluation of methods for improving group robustness of CLIP models. Grouped by data and expressivity, with best worst-group (WG)
and robustness gaps bolded. All metrics are averaged over three seeds.
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Figure 9: Comparison of annotations discovered by Clarify and Bias-to-Text.-We show the accuracy of an ImageNet-trained model on the
validation setFor each class with an identified spurious correlation, we show majority split and minority split accuracy. The annotations
for Bias-to-Text show substantially higher minority split accuracy (Clarify: 21.1%, Bias-to-Text 45.2%), with a smaller gap with the majority
split.This indicates that Clarify was substantially more accurate in identifying hard subpopulations.

Clarity

> Study seemed a little confusing

> It was a little confusing at first, but then became clear and challenging.

> Compared to the example task, they were a bit more difficult but still understandable.
> Yes I understood what was being measured.

Strategies and Thought Processes

> Yes, to find a pattern among the red (incorrect) squares and determine a relevant phrase or description that captures the similarity

> Yes. I just tried to figure out what characteristics mainly led to something wrong.

> I was honestly having fun trying different prompts.

> It was clear in that I had to try to figure out the AI's weakness, but finding that weakness was hard. I tried to do related topics, then used what I saw in the pictures for
fodder.

> Yes, I would look for what was different about the incorrect images and enter my first guess then work from there.

> was trying to spot what the common things were that the Al was struggling to pick up in the photos it was getting wrong.

> The study seemed to be about helping correct the misbehavior of AL My thought process was mostly linked to trying to find shared features that miscategorized images
included.

> The only thing I wasn’t really sure of was how detailed we could be, how many criteria we could give. I tried to keep it low (one of my higher scorers was just rhen) but
sometimes I had to chain them (dark backgrounds and a lot of treesér similar) to score well.

Difficulty

> The last one was pretty difficult, but I think I saw all the images correctly. For a second I thought one was a young blonde Trudeau with a flipped-up haircut, but realized
that wasn’t him

> more difficult than I thought to come up with various prompts

Suggestions for Improvement

> It might be nice if our most recent guess was highlighted in the table on the left. Every time I'd submit a guess I found my self trying to remember exactly how I'd phrased
it and trying to find it in the table to see how well I did.

> Look at the different images, try to find commonalities that might be affecting identification

Table 7: Open-ended qualitative feedback from participants, grouped by topic.
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Figure 10: Non-experts used CLARIFY to identify high-quality descriptions with Error Scores that matched or exceeded the authors’ expert
annotations.

Accuracies for the ImageNet Classes with Identlfled Spurlous Correlations
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Figure 11: Accuracy of a model trained on the ImageNet train set, on the ImageNet validation set (top), and on ImageNet-V2 (bottom). For
each class with an identified spurious correlation, we show majority and minority split accuracy. The model achieves lower accuracy on the
minority split for all classes in the validation set and all but 6 classes in ImageNet-V2, indicating that the model relies on each identified
spurious feature.
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