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ABSTRACT 
The standard way to teach models is by feeding them lots of data. 
However, this approach often teaches models incorrect ideas be-
cause they pick up on misleading signals in the data. To prevent such 
misconceptions, we must necessarily provide additional informa-
tion beyond the training data. Prior methods incorporate additional 
instance-level supervision, such as labels for misleading features or 
additional labels for debiased data. However, such strategies require 
a large amount of labeler e�ort. We hypothesize that people are 
good at providing textual feedback at the concept level, a capability 
that existing teaching frameworks do not leverage. We propose 
Clarify, a novel interface and method for interactively correcting 
model misconceptions. Through Clarify, users need only provide a 
short text description of a model’s consistent failure patterns. Then, 
in an entirely automated way, we use such descriptions to improve 
the training process. Clarify is the �rst end-to-end system for user 
model correction. Our user studies show that non-expert users can 
successfully describe model misconceptions via Clarify, leading to 
increased worst-case performance in two datasets. We addition-
ally conduct a case study on a large-scale image dataset, ImageNet, 
using Clarify to �nd and rectify 31 novel hard subpopulations. 
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1 INTRODUCTION 
Machine learning systems trained with supervised learning often 
learn high-level misconceptions. For example, an image classi�er 
trained to recognize birds may erroneously rely on background fea-
tures like water rather than the visual appearance of the bird itself. 
Such misconceptions can cause unexpected failures when the model 
is deployed in new environments, leading to poor performance on 
speci�c subpopulations [3, 27, 32, 45, 49, 77]. These misconceptions 
arise because models are trained to extract correlations from the 
training data, which may contain spurious or misleading signals. 
Identifying such failure modes in advance is challenging due to 
the vast space of possible misconceptions. Left unaddressed, such 
misconceptions can repeatedly cause the model to make similar 
errors, signi�cantly degrading real-world performance. 

Existing methods have sought to mitigate misconceptions by 
providing additional supervision beyond the training data. Prior 
methods incorporate additional annotations about the spurious 
features, such as separate group indices indicating whether a bird 
image contains water, to encourage the model to ignore the spurious 
feature [72]. Alternatively, one can collect additional labeled data 
from a debiased distribution, for example, carefully curating images 
so that bird species is not correlated with the background [39]. A 
common theme in these approaches is that they require extensive 
human involvement in the form of additional instance-level super-
vision: in these approaches, additional annotations are needed at a 
scale comparable to that of the original training data. This makes 
these strategies prohibitively costly for settings where the original 
training data is already close to the full annotation budget. This 
is especially true in scenarios such as interactive machine learn-
ing [22, 24], rapid model correction, or data-driven exploration. 

We posit that far less supervision su�ces if we provide targeted 
feedback at the level of concepts rather than instances. Targeted 
feedback is a cornerstone for robustness in various contexts outside 
teaching machine learning models. Psychological studies under-
score the pivotal role of corrective feedback in enhancing learning 
and decision-making [4, 31, 33, 40]. In causal inference, targeted 
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Figure 1: C������ is an interface for interactively correcting model failures due to spurious correlations. (a) Given a model trained with 
supervised learning, (b) a human describes consistent failure modes of the model entirely in natural language. (c) We automatically incorporate 
these descriptions to improve the training process by reweighting the training data based on image-text similarity. 

interventions allow us to identify causal e�ects, going beyond the 
limitations of observational studies, which can only capture correla-
tions [64, 71, 74]. Despite such insights, existing forms of annotation 
for robustness in supervised learning fall short in this regard: they 
lack the speci�city of targeted feedback and are provided with-
out knowledge of the actual behavior of naively trained models. 
Through a lifetime of speaking and writing, people are highly adept 
at thinking and communicating at higher levels of abstraction. How-
ever, existing frameworks for teaching models are not adequately 
designed to leverage people’s ability to provide concept-level feed-
back. This paper proposes a speci�c form of targeted feedback that 
aligns with these principles: natural language descriptions of model 
misconceptions. 

We introduce Corrective Language Annotations for Robust In-
Ference (C������), a novel system that allows users to interactively 
correct failures of image classi�ers using natural language. We con-
sider image classi�ers obtained by �ne-tuning pre-trained models 
such as CLIP [67]. Although such classi�ers achieve high average 
performance on held-out data, they often still su�er from high-level 
misconceptions. C������ consists of an interface for collecting hu-
man feedback and a method for automatically incorporating this 
feedback to improve the training process. During interactions with 
the system, users observe a trained model’s predictions on a held-
out dataset and write short text descriptions that identify consistent 
failure modes. For instance, for a bird classi�er relying on a spuri-
ous correlation between bird species and their backgrounds, a user 
might succinctly write that the model is mistakenly focusing on the 
“water background”. We note that our system diverges substantially 
from standard supervised learning: we collect annotations after 
initial training and use these annotations in an entirely automated 
way to re-train the model based on the feedback. Please refer to 
Figure 1 for an overview of C������ in relation to traditional su-
pervised learning, and Figure 2 for a visualization of key interface 
features. 

We instantiate C������ in a web app implementation to carry 
out non-expert user studies (N=26) and evaluate the gathered feed-
back in addition to re-trained models. We �nd that within just a 

few minutes of interaction, non-expert users could use C������ to 
identify consistent failure modes of models trained with standard 
supervised learning. Incorporating this feedback into the training 
process yields a statistically signi�cant improvement in robustness: 
an average 17.1% increase in the accuracy of the worst-performing 
subpopulations. To further explore the ceiling of performance gains 
with C������, we perform a case study on a large and diverse 
dataset, ImageNet, using an expert annotator. This case study goes 
beyond standard datasets for spurious correlations with known 
failure modes and entails discovering and correcting previously 
unknown issues in a public dataset. We were able to identify 31 
novel hard subpopulations in the dataset. We leveraged this infor-
mation to improve the average worst-case accuracy across these 
subpopulations from 21.1% to 28.7% with only a 0.2% drop in av-
erage accuracy. With C������, we demonstrate that non-expert 
users can train and correct models by directly talking with them— 
opening up new design space for more e�cient and accessible ways 
to design machine learning systems. 

2 RELATED WORK 
Our work draws upon literature in machine learning and human-
computer interaction on strategies to e�ciently correct machine 
learning models—whether to reduce training and annotation e�ort, 
bolster model robustness, or combat harmful failures. 

2.1 ML Perspectives on Model Correction 
Model correction methods in the machine learning literature tend 
to focus on developing novel algorithms while leaving user-facing 
processes intact, primarily focusing on using available labeled data 
more e�ectively. 

Teaching ML models. As machine learning models require 
more and more resources to train, it becomes increasingly important 
to optimize the training process. The machine teaching literature 
aims to formalize the optimal training set for a given task and 
characterize its training complexity. While well-studied [18, 28, 54, 
80, 97, 98], its application to large-scale models has been limited, 
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likely due to the substantial annotation burden required to teach a 
model from scratch. 

Supervised learning, the dominant paradigm for training task-
speci�c models, requires explicit labels for each instance and shows 
diminishing returns from additional human e�ort. Although active 
learning methods aim to reduce this annotation burden by select-
ing the most informative datapoints for labeling [47, 76], they still 
require humans to label individual datapoints. Our work proposes 
a new form of supervision that can rectify spurious correlations in 
labeled datasets: natural language descriptions of model errors. This 
form of supervision operates at a higher level of abstraction, provid-
ing a more e�cient way to teach models with minimal additional 
annotation e�ort. 

Robustness to spurious correlations. Models trained with 
standard supervised learning often exhibit a bias towards short-
cut features—simple features that perform well on the train-
ing distribution yet fail to capture the underlying causal struc-
ture [3, 27, 65, 77]. Recent works have proposed methods to mitigate 
this issue, such as learning multiple functions consistent with the 
data [46, 62, 84, 85] and reweighting instances to render shortcut 
features non-predictive [13, 39, 57, 72]. However, these approaches 
often entail signi�cant overhead for additional supervision, such 
as group labels indicating spurious features or carefully curated 
data free of spurious correlations. In contrast, C������ requires 
only a few natural language descriptions of model errors, which 
are substantially easier to collect, rendering it especially practical 
for addressing misconceptions in large datasets. 

Discovering failure modes. Our work builds upon a grow-
ing body of literature aimed at identifying and correcting model 
failure modes. Previous works discover poorly-performing sub-
sets of data [5, 11, 16], devise methods to rectify speci�c fail-
ures [34, 55, 73, 94], or perform counterfactual data augmentation 
to penalize model reliance on erroneous features [37, 70, 87, 88, 92]. 
More closely related to our work are methods that leverage 
vision-language models to describe failure modes with natural 
language [20, 21, 38, 58, 90, 96]. Natural language descriptions of 
error slices have the advantage of being interpretable and natu-
rally grounded in human understanding. However, many of the 
descriptions generated by these fully automated methods do not 
correspond to true model failures. For example, Zhang et al. [96] re-
ports that DOMINO [21] can make nonsensical descriptions such as 
“mammoth” for a bird classi�cation task. Our approach avoids such 
errors by incorporating humans in the loop, making it possible to 
discover spurious correlations in large datasets such as ImageNet. 

2.2 Interactive Approaches to Model Correction 
Meanwhile, the HCI literature tends to approach model correction 
by leaving existing algorithms largely intact, but amplifying user 
involvement through new interactions and visualizations. 

Making ML models more accessible. The concept of a "low 
threshold" motivates HCI research on building systems accessible to 
non-experts [56]. Many works have speci�cally focused on lowering 
the bar for end-users’ participation in various stages of creating 
and using machine learning models. Prior works have built tools 
for end-user data exploration [43, 63, 86], labeling [26, 69], feature 
selection [19, 22], model training [9, 24, 29, 44, 52, 53, 59], prompt 

engineering [36, 83, 91], and model auditing [7, 8, 15, 17, 41, 78, 82, 
89, 93]. In line with this rich literature, our work aims to enable non-
expert end users to correct high-level misconceptions in machine 
learning models. Since there is often a high e�ort barrier for users 
to engage in model development, we sought to demonstrate the 
e�cacy of our approach even for limited amounts of user input. 
To our best knowledge, C������ is the �rst to enable non-experts 
to use natural language to improve models in a fully end-to-end 
manner. 

Interactive ML. The �eld of interactive machine learning (IML) 
demonstrated that by engaging users in the model development 
process through interactive labeling, users could rapidly develop 
models that better aligned with their needs [2, 19, 22, 25]. Subse-
quent work on interactive machine teaching (IMT) further explored 
how users could act as teachers rather than just low-level data 
labelers [68, 79]. Both of these literatures have explored how to 
instantiate high-level concepts with user-selected examples and 
demonstrations as well as prede�ned features and knowledge 
bases [6, 23, 24, 68]. Building on this body of work, we �nd that 
concepts are a helpful level of abstraction for non-technical users, 
as they align well with how users tend to decompose and commu-
nicate knowledge [60]. C������ goes further by allowing users to 
specify arbitrary concepts in natural language to repair existing 
image classi�ers that do not already use concept-based abstractions. 

Eliciting high-level concepts. In our view, the most closely 
related works are those that elicit high-level concepts from hu-
mans [42, 81]. However, a key di�erence between these works and 
ours is that we focus on negative knowledge—teaching the model 
what not to learn—as opposed to these works, which specify what 
features the model should use. Especially for intuitive tasks like im-
age classi�cation, user knowledge is often tacit rather than explicit, 
making it hard to specify precisely [66]. Thus, it is easier for annota-
tors to describe the failures of an existing model rather than de�ne 
the desired behavior upfront. Restricting the feedback to negative 
knowledge is also important for scalability, as it is much easier to 
identify a few failure modes in an otherwise well-performing model 
than to specify the full set of useful concepts. This scalability is 
crucial for correcting spurious correlations in large-scale datasets 
such as ImageNet. 

3 CLARIFY: A NATURAL LANGUAGE 
INTERFACE FOR MODEL CORRECTION 

We now describe Corrective Language Annotations for Robust 
InFerence (C������), a novel system for identifying and mitigating 
spurious correlations in models trained with supervised learning. 
The main idea behind C������ is to allow users to provide targeted 
natural language feedback to a model, helping the model focus on 
relevant features and ignore spurious ones. We employ a natural 
language interface to facilitate this process, which we describe 
in detail in this section. First, we describe the problem setting 
in Section 3.1. We then describe a concrete example of an interaction 
with the interface in Section 3.3, and two methods for incorporating 
this feedback into the training process in Section 3.4. 
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Figure 2: The C������ interface enables users to iteratively (A) identify and describe model failures and (B) assess the quality of these 
descriptions. Users can review image examples of correct and incorrect predictions on one class, such as “square” (A1). Based on observed 
di�erences, they can input short, natural language descriptions of model failures, such as “red” squares (A2). The system surfaces feedback by 
splitting the data using the provided description (B1) and displaying an error score (B2). Users can repeat the process to generate improved 
descriptions. 

3.1 Supervised Learning Problem Setup 
We consider a standard supervised learning setting, where we are 
given a dataset D = {(G8 ,~8 )}8# 

=1 of # labeled samples. Each label 
~8 belongs to one of ⇠ di�erent classes: ~8 2 {1, . . . ,⇠}. A model 
is trained to minimize the average loss across the training set, i.e.,
1 Õ 

8
# 
=1 ✓ (5 (G8 ; \ ),~8 ), where ✓ is a pointwise loss function such # 

as cross-entropy, 5 is the model, and \ denotes model parameters. 
However, the dataset may inadvertently contain spurious corre-
lations that hinder the model’s ability to generalize to new distri-
butions. To formalize spurious correlations, we can consider an 
extended dataset that includes an unknown attribute B8 for each 
instance, resulting in {(G8 ,~8 , B8 )}8# 

=1 where B8 2 {1, . . . , (}. For ex-
ample, for a task where the labels ~8 are bird species, the spurious 
attributes B8 could correspond to the background of the image G8 , 
which would be easier to infer from the input than the true label 
(i.e., bird species). A model trained on D may learn to rely on B8 to 
make predictions, thereby failing on new distributions where the 
previous correlation between B8 and ~8 no longer holds. In general, 
we do not have annotations for these spurious attributes B8 or even 
know what they are in advance. Our goal is to correct the model’s 
reliance on these spurious attributes without knowing a priori what 
they are. 

3.2 Measuring Image-Text Similarity 
To describe spurious attributes given only class-labeled image data, 
we leverage the capabilities of multimodal models such as CLIP [67], 
which encodes images and text into a shared embedding space. For 
a given image input � and text input ) , CLIP outputs representa-
tions from separate vision and language branches, 48 = 58 (� ) and 
4C = 5C () ), respectively. This model is trained to maximize the 
similarity between the image and text representations for corre-
sponding image-text pairs and minimize it for non-corresponding 
pairs through a contrastive loss function. We can estimate the simi-
larity between a pair of image and text inputs by computing the 

cosine similarity of their respective representations: 
48 · 4C sim(� ,) ) = . (1)k48 kk4C k 

This black-box similarity function allows us to determine the rel-
evance of a given image and text pair. The next section describes 
how C������ leverages this relevance function to mitigate spurious 
correlations based solely on natural language feedback on a labeled 
validation set. 

3.3 Interaction Work�ow 
To demonstrate how C������ enables non-expert users to correct 
model misconceptions, we will walk through a user’s work�ow 
with the system (Figure 2). We will use a running example of a 
model trained to classify images of sprites as squares or ovals but 
mistakenly focuses on color rather than shape. 

Reviewing model behavior. First, the user is presented with 
a summary view of the model’s current behavior. The goal of this 
interface is to sca�old the user in rapidly identifying reasons under-
lying model failures. Drawing from a validation dataset, we display 
one class at a time (i.e., images of squares) and divide the examples 
into those that the model correctly classi�ed (i.e., images classi�ed 
as squares) on the left versus those that it incorrectly classi�ed (i.e., 
images classi�ed as ovals) on the right (Figure 2, A1). By present-
ing the images in this way, C������ streamlines the user’s task to 
one of identifying di�erences between sets. In our example, all of 
the images on the page are indeed squares, but the model is only 
making accurate predictions for the examples on the left and not 
those on the right. Comparing the images on the two sides, the 
user notices that the correct cases contain blue squares while the 
incorrect cases contain red squares. 

Describing model failures. Now that the user has an initial 
idea of the model’s misconception, they are tasked with describing 
this failure mode. Our system accepts short natural language de-
scriptions of model failures (Figure 2, A2). In particular, users are 
asked to complete the following �ll-in-the-blank sentence: “The 
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Phrase Cate- Waterbirds CelebA 
gory 

Best WGA (per- a bird with no head or as landbirds and a red outline, a blurry vision and any other hair color than blonde or light hair color, backgrounds, bleach 
user) they don’t look like real birds, artic birds, beak, bird swims water, dark blonds, brown hair, buns, curls, curly hair, dyed hair, females, glasses, 

backgrounds and tall trees, forest, forest, forest, forest, forest, forests, light background, light colors, men, men, men or short hair, older women, 
forests, grass, greenery, landscape, landscapes, leaves, no water, plants, orange hair, pink, red, red, short hair, short hair, short haired men, smiles, 
red, sandy beaches, seagulls, seagulls, trees, water, water white backgrounds, women 

Best Error Score artic birds, birds, dark backgrounds and tall trees, ducks, forest, forest, any other hair color than blonde or light hair color, bleach blonds, blond 
(per-user) forest, forest, forest, forests, forests, greenery, landscape, motion blur or highlights, brown, darker blond hair, darker blonde, darker blonde hair, 

can’t make out a real bird, plants, sandy beaches, seagulls, trees, trees, darker than blond, females, grey, males, men, men, men, men, men, men, 
trees, trees, water, water, water, waterfowl, wings men, men, men, men, men, pink, short white hair, very short hair, white, 

white, white 
All Others a lot of dark colors and no blue water, a lot of tree trunks, aqua blue water, bad lighting, bangs, beards, black hair, blue, blue, blue background, blue 

been generated by ai, bird, bird wading in water, birds, birds �oating, 
birds �oating in water, birds standing in water, birds water, black, blue, 

or black, brown, brown or dark hair, dark hair, darker hair, dim lighting, 
fair hair, �axen, gold, golden hair, hair, hair, hats, hats, hats or bows, 

blue, branches, branches, dark backgrounds, dark backgrounds and small 
birds, dark colors, darker backgrounds and a lot of trees, extended wings, 

hazy, letters, light hair, little visible hair, long hair, males, males, males, 
men, more dark colors than light colors, non-blond hair. dark hair color. 

eyes, �ightless birds, �owers, game birds, grass, green, green, green, 
green, green plants, humans, land, landscapes, length of leg, lots of tree 
trunks, more dark colors than light colors and a lot of trees, mountains, 

not blond, nondarkened hair, not blond, orange hair, people not facing 
the camera, red hair, red hair, redheads, short, short hair, short or curly 
hair, short or pulled back hair, shoulders, signs, skin color that is similar 

no water, no water, no water and dark backgrounds, ocean coasts, people, 
people, people, plants, reeds, seagulls, shadows, sticks, tree trunk, trees, 

to their hair color, smiles, smiling faces, sunglasses, tan skin, teenagers, 
teeth, very tan skin, women 

trees, trees, trees, trees, trees, very dark backgrounds and a lot of trees, 
water plants, wings, woods 

Table 1: The full set of model failure description phrases provided by non-expert annotators in our user study. The “Best WGA” and “Best Error 
Score” phrases were selected by identifying the phrase that achieved the highest Worst-Group Accuracy or Error Score, respectively, for each 
participant. 

Figure 3: For both datasets, (left) non-experts completed annotation tasks using C������ in less than 3 minutes on average, and (right) models 
retrained with non-expert annotations outperformed existing baselines in worst-group accuracy. 

AI is often wrong on images that have ___ in it.” We �nd that this 
question is e�ective since users may not be familiar with the gen-
eral concept of model failures or features. Continuing our running 
example, the user enters the phrase “red” here to describe what 
they observed. 

Assessing descriptions. After the user submits their failure 
mode description, the C������ interface helps them assess whether 
the description e�ectively describes the model’s misconception. The 
system uses the CLIP model to compute the image-text similarity 
between each validation image and the user’s description. Images 
with a similarity score above a threshold are considered to contain 
the feature described by the user. The interface presents a summary 
visualization that partitions the validation dataset based on this 
threshold, with matching images on the right and non-matching 
images on the left (Figure 2, B1). Additionally, we display a 0 � 1 
score that indicates how well the description separates the error 
cases from the correct predictions (Figure 2, B2). We note that 

Figure 4: (a) Typical images from the “blond” class of CelebA. Non-
experts provided textual feedback corresponding to hard subpopula-
tions of (b) lighter and (c) darker hair colors. 
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while the interface only shows validation data using the provided 
description, the user’s natural language annotation will later be 
incorporated to partition the training data for model retraining. 

Iterating on descriptions. As users may not be successful on 
their �rst attempt, C������ aids users in iterating on their descrip-
tions. Descriptions can fail for two reasons: (1) the description may 
be a valid di�erentiator, but may be modeled inaccurately due to 
the user’s word choice and the limitations of CLIP-based similarity 
scoring, or (2) the description may not su�ciently di�erentiate the 
correct and incorrect cases. C������ allows users to identify both 
of these failure modes. For example, the user can see if the model 
is not accurately identifying images with the color red based on 
the keyword “red” alone. In this case, they can experiment with 
alternate keywords to better isolate the di�erence, such as “red 
square” or “crimson”. After iterating and isolating the red examples, 
the user can see if the provided score is still low, indicating that 
this description is not su�cient to repair model errors. With this 
information, users can revisit the original view and brainstorm addi-
tional descriptions, such as phrases related to the size or orientation 
of sprites. 

We describe other details about the interface in Appendix A, 
including additional features that help users to re�ne their descrip-
tions and assess their e�ectiveness. In Section 4.1, we evaluate the 
performance of non-expert annotators using C������ and demon-
strate that they can identify and describe model misconceptions. 

3.4 Automatic Fine-Tuning 
After collecting textual feedback from users, we incorporate this 
feedback into the training process for �ne-tuning a foundation 
model. While the strategy below applies to any form of training, 
in this paper, we consider �ne-tuning only the last layer on top 
of a pre-trained backbone network with frozen parameters. An 
error annotation is a tuple (2,) , g), where 2 is the class label, ) is 
the textual description, and g is a threshold on the similarity func-
tion. Given such an error annotation, we partition the training data 
within class 2 into two subsets: ⇡> = {(G8 ,~8 ) | sim(G8 ,) ) > g } and 
⇡< = {(G8 ,~8 ) | sim(G8 ,) )  g }. These two subsets correspond to 
images that are more and less similar to the provided text prompt, 
respectively, and serve as indicators of the model misconception 
identi�ed by the annotator. Having identi�ed these two subsets, we 
want to train a �nal model insensitive to the identi�ed misconcep-
tion, i.e., to achieve low training loss without using the feature that 
separates the two subsets. 

We propose to use a simple distributionally robust optimization 
(DRO) objective function to achieve this goal. Having identi�ed the 
two subsets ⇡> and ⇡< , we propose to minimize the maximum 
loss over the two subsets to achieve robustness to the identi�ed 
misconception; the loss function is given by: 

max (L(5\ , ⇡>), L(5\ , ⇡<)) , (2) 

where L(5\ , ⇡) is the average loss over the subset ⇡ . This objective 
ensures the model performs well on both subsets, avoiding the pre-
vious reliance on the spurious attribute. We optimize this objective 
using stochastic gradient descent with the max operator computed 
for each minibatch. We use this objective to train the last layer on 
top of a frozen pre-trained backbone model. In Section 4, we will 
measure the e�ectiveness of this �ne-tuning approach based on 

language feedback. We note that this stage is fully automated, and 
there are no additional hyperparameters to tune beyond what was 
in the original training process. 

4 EVALUATION 
First, we note that our setup diverges substantially from assump-
tions in traditional supervised learning. C������ involves collecting 
annotations after an initial round of training, and these annota-
tions consist of targeted concept-level feedback rather than model-
agnostic instance-level feedback. We consider this deviation from 
the conventional setup necessary to e�ciently address the chal-
lenge of learning robust prediction rules from observational data. 
We seek to empirically answer the following questions about the 
C������ system for interactively correcting model errors: 
(1) Can non-expert users use C������ to identify and describe spu-

rious correlations in models trained with supervised learning? 
(2) Can C������ discover and rectify novel spurious correlations 

in large datasets such as ImageNet? 
(3) How does C������ compare to various automated methods 

which do not require human feedback? 
For detailed experimental setup including datasets, models, and 
Proli�c participants, see Appendix B. 

4.1 User Study: Non-Expert Annotators Can 
Describe Model Errors 

Identifying and annotating spurious correlations is a more nuanced 
task than conventional forms of annotation such as class labeling. 
This raises the question of whether non-expert annotators can 
perform this task, and if so, how e�ciently they can do so. To answer 
these questions, we conduct a user study (N=26) to assess the ability 
of non-expert users to identify and describe spurious correlations 
in models trained with supervised learning (see Appendix B for 
study details). 

In this study, we asked each participant to interact with models 
trained on the Waterbirds and CelebA datasets using the C����
��� interface. In addition to qualitatively examining the feedback 
provided by participants, we evaluate the performance of the mod-
els trained on the feedback. We measure the robustness of these 
re-trained models using the worst-group accuracy (WGA) metric, 
which measures the accuracy of the worst-performing subpopu-
lation in the dataset. For example, in the Waterbirds dataset, the 
worst-group accuracy is the minimum average accuracy across 
the four subpopulations (“landbird in land”, “landbird in water”, 
“waterbird in land”, and “waterbird in water”). 

We summarize the results of our user study in Figure 3 and 
Table 3, comparing to zero-shot prompting and �ne-tuning base-
lines. Users were able to achieve these performance improvements 
with minimal annotation e�ort, averaging 2.7 minutes (SD=2.5) per 
dataset. As a point of comparison, Chang et al. [10] found that anno-
tators required 4.4 and 10.2 minutes to provide high-quality labels 
for 100 examples in the much simpler MNIST and K-MNIST datasets, 
respectively. For the best-performing annotation from each user, the 
average worst-group accuracy was 69.8 (SD=9.0, max=82.5) for Wa-
terbirds and 83.6 (SD=3.1, max=88.9) for the CelebA dataset. Single-
factor ANOVAs showed a statistically signi�cant increase in worst-
group accuracy from using C������: F(1, 24) = 12.96, ? < 0.002 for 
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Waterbirds and F(1, 24) = 262.44, ? < 0.001. We then conducted 
Tukey HSD posthoc tests to compare conditions between all pairs of 
methods. This test con�rmed statistical signi�cance at the ? < .005 
level for all pairwise between C������ and the baselines for both 
datasets. In summary, non-expert annotations using C������ sig-
ni�cantly outperformed the baseline methods we considered. 

We additionally �nd that non-expert annotators identi�ed pre-
viously unknown spurious correlations in the CelebA dataset. In 
addition to the known spurious correlation between hair color and 
gender, participants identi�ed subpopulations of “dirty blonde” and 
“bleach blond” individuals, which models consistently misclassi�ed 
(Figure 4). Our �ndings suggest that C������ can enable non-expert 
annotators to identify and describe model misconceptions. This 
opens up the possibility of leveraging a broader workforce for in-
teractively improving models trained on web-scale datasets such 
as ImageNet or LAION [14, 75]. 

4.2 Case Study: Discovering and Mitigating 
Model Misconceptions in ImageNet 

Class Name Spurious Feature 
cup tea cup 
weasel snow weasel 
wool yarn ball 
space bar computer mouse 
letter opener silver 
loupe person holding a magnifying glass 
mouse desk and laptop 
bakery store front 
sunscreen person with sunburns 
minivan black minivan 
plate rack machine 
briard shaggy dog 
lens cap camera equipment 
bighorn rocky hillside 
mushroom red 
ri�e wooden barrel 
spotlight shining 
chocolate sauce pastries with chocolate 
terrapin pond 
sidewinder sand 
bikini group of people 
�atworm coral reef 
monitor monitor on a desk 
breastplate museum display 
projectile rocket in a building 
academic gown many people in robes 
velvet pink velvet 
bathtub person 
sliding door car 
partridge tall grass 
ear green 

Table 2: The 31 identi�ed spurious features in the ImageNet dataset. 
All annotation was performed on the validation split. 

We now evaluate whether C������ can be used to discover novel 
model misconceptions in models trained on the ImageNet training 
set. It is important to develop tools to �nd consistent errors and 
methods to mitigate them for such widely used large-scale datasets. 
For this evaluation, the authors of this paper use the C������ inter-
face for ImageNet and additionally evaluate whether the resulting 
annotations can improve model robustness. 

Identi�ed subpopulations. Using C������, we identi�ed 31 
model misconceptions in ImageNet; we show a full list in Section 4.2 
and visualize many of them in Figure 5 Despite ImageNet being 
a widely studied dataset, to our best knowledge, no prior works 
have identi�ed these misconceptions. For example, we visualize a 
spurious correlation in the “sliding door” class in Figure 6: sliding 
doors are negatively correlated with cars in the training set, causing 
standard models to misclassify cars with sliding doors. We further 
evaluate the performance of a standard ImageNet model on each 
identi�ed minority and majority split. Results in Figure 11 show that 
a naively �ne-tuned ERM model consistently underperforms on the 
minority split for each class, indicating that standard models indeed 
rely on each of these spurious correlations. This trend continues to 
hold on ImageNet-V2, which follows a di�erent distribution from 
the validation set we use to collect feedback. 

Fine-tuning while avoiding spurious correlations. We use 
the collected annotations to �ne-tune a model on ImageNet and 
evaluate this �ne-tuned model on various splits of the ImageNet 
validation set. Results in Figure 8 show that the retrained model 
achieves higher minority split performance on many classes. Ag-
gregate metrics in Figure 7 show that �ne-tuning with C������ an-
notations improves the average minority-split accuracy from 21.1% 
to 28.7%, with only a 0.2% drop in overall average accuracy. We 
emphasize that no additional data was used during �ne-tuning—the 
annotations from C������ were only used to �nd a better reweight-
ing of the same training data used to train the original ERM model. 

4.3 Technical Evaluation 
We compare C������ with various automated methods for handling 
model misconceptions. We note that none of the following com-
parisons are apples-to-apples: C������ operates in a new problem 
setting that involves targeted human feedback, while the automated 
methods are designed to use pre-existing data, annotations, or mod-
els. Our goal is to see how the new form of targeted supervision 
in C������ compares to prior approaches since it is substantially 
more information-dense and expressive and thus scalable to large 
datasets. 

Comparison with zero-shot prompting methods. We com-
pare the re-trained classi�er using C������ annotations with zero-
shot prompting methods in Table 4. C������ shows substantially 
better worst-group accuracy and robustness gap on the Water-
birds and CelebA datasets. Among these points of comparison, 
RoboShot [1] is notable as it is an automated method that leverages 
state-of-the-art foundation models [12, 35, 61]. We note that this is 
not necessarily a fair comparison in either direction: RoboShot uses 
a powerful language model to alter its prompts, whereas C������ 
leverages targeted human feedback. Nevertheless, this comparison 
is still informative in that it shows that we can get much more 
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Figure 5: Representative samples corresponding to nine identi�ed spurious correlations in ImageNet. All images shown are in the ImageNet 
validation set, and belong to the class shown in the �rst column. Similarity to the speci�ed text annotation splits separates the “easy” and 
“hard” examples. 

leverage out of natural language feedback by having it directly 
address gaps in existing training data. 

Comparison with methods for spurious correlations. We as-
sess how re-training a model with expert annotations from C������ 
compares to existing automated methods for addressing spurious 

correlations. We compare with representative prior methods, which 
similarly �ne-tune CLIP models and/or reweight training data. In 
addition to C������, we evaluate zero-shot CLIP [67] with class-
based and group-based prompts, DFR [39], and Group DRO [72]. 
We describe experimental details for each method in Appendix B. 
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Figure 6: An example of a spurious correlation found on ImageNet. Within the “sliding door” 
class, the model successfully classi�es (a) images of sliding doors inside buildings. However, it is 
wrong on all instances of (b) sliding doors on cars. This is one of the 31 spurious correlations we 
found; please refer to Figure 5 for more visualizations. 

Figure 7: Average accuracies on ImageNet 
data. Fine-tuning with Clarify substan-
tially improves accuracy on hard splits, 
while keeping overall accuracy intact. 

Figure 8: Average minority split accuracy for each of the 31 identi�ed spurious correlations. Fine-tuning with textual feedback from C������ 
improves minority split accuracy in many classes. 

Waterbirds CelebA 

Data Assumptions Method WG Avg Gap WG Avg Gap 

Zero-Shot Class Prompt 
Group Prompt 

36.6 
55.9 

92.2 
87.8 

55.6 
31.9 

74.0 
70.8 

81.9 
82.6 

7.9 
11.8 

Labels 

ERM 
ERM (ours) 
ERM (ours, class-balanced) 
ERM (ours, worst-class) 

7.9 
63.4 
48.6 
55.9 

93.5 
96.0 
95.2 
95.8 

85.6 
32.6 
46.7 
39.9 

11.9 
31.1 
65.8 
56.9 

94.7 
95.4 
93.4 
94.1 

82.8 
64.3 
27.6 
37.2 

Labels, Text Feedback 
C������ (avg non-expert) 
C������ (best non-expert) 
C������ (author) 

69.8 
82.5 
75.7 

84.1 
90.7 
83.8 

13.3 
8.2 
8.1 

83.7 
88.8 
89.1 

93.2 
92.9 
92.1 

9.5 
4.1 
3.0 

DFR (downsample) 63.9 91.8 27.9 76.9 92.5 15.6 

Labels, Group Labels DFR (upsample) 
DFR (our implementation) 

51.3 
78.7 

92.4 
90.8 

41.1 
12.1 

89.6 
90.6 

91.8 
91.9 

2.2 
1.3 

Group DRO (our implementation) 81.3 88.1 6.8 89.2 91.8 2.7 
Table 3: Evaluation of methods for group robustness using the CLIP-ResNet50 backbone. For C������, we show the average and best participant 
from our non-expert user study (N=26) in addition to feedback from an author of this paper. Fine-tuning with annotations from C������ 
consistently outperforms methods that use only text (zero-shot) or label information. All results other than ours are from Zhang and Ré [95]. 

Our results on the Waterbirds and CelebA datasets, summarized spurious attributes. We show extended results with an alternative 
in Table 3, demonstrate that C������ consistently outperforms network architecture as the pre-trained backbone in Table 6. 
approaches that use zero-shot prompts or class labels in terms Moreover, the key advantage of C������ is its scalability to large 
of worst-group accuracy and robustness gaps and is competitive datasets, a feature that no prior automated method has demon-
with specialized methods that use instance-level annotations for strated. Such scalability is crucial when applying these ideas to 
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Model Method Waterbirds CelebA 

Avg WG(") Gap(#) AVG WG(") Gap(#) 
Class Prompt 72.0 50.3 21.7 81.8 77.2 4.6 

ALIGN Group Prompt 72.5 5.8 66.7 78.3 67.4 10.9 
RoboShot [1] 50.9 41.0 9.9 86.3 83.4 2.9 

Class Prompt 90.1 35.8 54.3 82.3 79.7 2.6 
AltCLIP Group Prompt 82.4 29.4 53.0 82.3 79.0 3.3 

RoboShot [1] 78.5 54.8 23.7 86.0 77.2 8.8 

Class Prompt 88.7 27.3 61.4 80.6 74.3 6.3 

CLIP (ViT-L/14) Group Prompt 
RoboShot [1] 

70.7 
79.9 

10.4 
45.2 

60.3 
34.7 

77.9 
85.5 

68.9 
82.6 

9.0 
2.9 

C������ 96.8 81.8 14.9 90.9 88.8 2.1 
Table 4: Comparison with di�erent zero-shot CLIP prompting strategies for group robustness. Fine-tuning with C������ substantially 
outperforms RoboShot, a method that leverages state-of-the-art foundation models to automatically generate text prompts. All results besides 
ours are from Adila et al. [1]. 

real-world problems where the scale and diversity of data are ever-
increasing. 

Comparison with automated bias discovery. Since annota-
tion time is a key cost of C������, we investigate whether such 
feedback brings concrete bene�ts over fully automated methods 
for discovering model biases. Speci�cally, we compare C������ 
with Bias-to-Text [38], a representative method for automated bias 
discovery. We evaluated the automated Bias-to-Text pipeline on 
several classes in the ImageNet validation set, in which we identi-
�ed spurious correlations. We �nd that Bias-to-Text can identify 
relevant keywords for each class, but it has speci�c pitfalls that 
make it di�cult to use without human oversight. In Table 5, we 
show 10 keywords identi�ed by Bias-to-Text for 6 classes in Ima-
geNet. We note that the top identi�ed keywords, i.e., the ones with 
the highest CLIP score, often describe something highly related to 
the class label, such as “goat” for the “bighorn”. Additionally, we 
numerically compare the discovered annotations in their ability to 
improve model robustness in Figure 9. The annotations for Bias-
to-Text show substantially higher minority split accuracy (Clarify 
21.1%, Bias-to-Text 45.2%), with a smaller gap with the majority split. 
Furthermore, after re-training with these annotations, we observe a 
slight decrease in held-out minority split accuracy (45.2% to 44.3%). 
This is in contrast to re-training with Clarify annotations, which 
substantially improved minority split accuracy (21.1% to 28.7%). 
However, we note that automated discovery methods are highly 
useful in the context of C������, as they can prime annotators with 
a set of candidate keywords or help prioritize the most promising 
parts of the dataset. 

5 DISCUSSION 
Our evaluation demonstrates that C������ enables non-expert users 
to identify and address misconceptions within machine learning 
models in an end-to-end manner. User feedback is immediately 
actionable and can be used to improve model robustness without 
any additional data collection. Allowing users to improve models 
end-to-end is important for both scalability and building public 
trust. The worst-case accuracy gains from re-training with C������ 

annotations are substantial, and the method is competitive with or 
outperforms existing automated methods for addressing spurious 
correlations. Furthermore, we show that C������ can be used to 
discover novel misconceptions from training on large-scale datasets 
such as ImageNet and that the resulting annotations can be used to 
improve model robustness. 

5.1 Comparison to Supervised Learning 
Our approach to teaching machines diverges substantially from 
standard supervised learning. We highlight two key properties of 
C������ which o�er complementary strengths to conventional su-
pervised learning. First, we collect annotations after initial training, 
allowing the model’s behavior to inform the annotation process. 
Interacting with a model after training enables our interface to 
speci�cally elicit negative knowledge from users, i.e., telling the 
model what not to focus on. People are often better at identifying 
errors than articulating complex rules, and negative knowledge 
can �ll the gaps in the positive knowledge in the original labeled 
training set. Second, annotations from C������ have a substantially 
higher information density than conventional forms of annota-
tions. Unlike instance-speci�c labels, textual feedback encapsulates 
concept-level “global” insights applicable across the entire dataset, 
making it a more e�cient mode of human-AI communication. 

5.2 Limitations 
However, we acknowledge certain limitations of C������ in its 
current form. While we �nd that non-expert users can provide 
meaningful feedback on model errors, eliciting high-quality feed-
back from non-experts remains challenging. Their feedback can be 
too generic, e.g., “the model is wrong” or directly describing the 
class label rather than the spurious correlation; signaling the right 
level of granularity to the user is a challenge in this mode of interac-
tion. We also �nd that some users could only �nd model errors that 
are very visually salient, such as the presence of a speci�c large 
object in the image. While many users provided useful feedback, 
some struggled, likely because they had no prior knowledge of the 
model’s capabilities. 
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In general, C������ can only help with model failures that can be 
concisely described in natural language. This excludes more com-
plex failures, such as those requiring domain-speci�c knowledge 
or not easily articulated in text. Also, as much as C������ bene�ts 
from using a pre-trained backbone model for bridging between 
natural language descriptions and images, it inherits the limitations 
of the pre-trained CLIP model. This includes biases in the training 
distribution and limited coverage of specialized domains such as 
medical imaging or scienti�c data. 

5.3 Future Work 
A natural extension of C������ is to apply this framework of col-
lecting textual feedback on model errors to large language models 
(LLMs). A key challenge in this direction is in designing e�ective 
user interfaces that allow users to quickly understand a model’s 
overall behavior and develop strategies to elicit speci�c, actionable 
user feedback. Enabling this mode of interaction, where users can 
teach LLMs by critiquing their mistakes, could be a promising ap-
proach for making powerful models easier to align and adapt to 
speci�c user and community needs without requiring extensive 
annotation costs. Collecting feedback after initial model training is 
especially appealing in the context of current LLMs, where the full 
scope of a model’s emergent behaviors can be di�cult to predict in 
advance. 

We are also excited about increasing expressivity by designing in-
terfaces that allow users to provide more nuanced and open-ended 
feedback, potentially through extended text passages or interactive 
multi-turn dialogue with the model. Such interfaces could leverage 
more knowledge and expertise from people, including domain ex-
perts, which may be particularly valuable in specialized domains 
such as healthcare or scienti�c discovery. We intentionally scoped 
our evaluation to non-experts to demonstrate the broad applicabil-
ity of our end-to-end approach. Our non-expert results establish 
a �oor for improvement from the proposed work�ow, and further 
iterations will only bene�t from richer user feedback from users 
with more expertise. Allowing for richer feedback will also likely be 
critical in more complex tasks like open-ended instruction follow-
ing and in data modalities such as video or audio, where the model’s 
behavior is more complex and harder to summarize succinctly. 

6 CONCLUSION 
This paper introduces C������, a novel interface for correcting high-
level model misconceptions in machine learning models. C������ 
enables non-expert users to provide targeted feedback on model 
errors, which can be used to improve model robustness. We also 
show that C������ can be used to discover novel misconceptions 
in large-scale datasets such as ImageNet. We believe that the gen-
eral idea of correcting models with targeted textual feedback has 
the potential to substantially improve model performance while 
reducing the need for extensive manual annotation. 
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A ADDITIONAL INTERFACE DETAILS 
In this section, we provide additional details about the C������ 
interface, which we found helpful for eliciting natural language 
feedback from non-expert users. 

Error score. The provided Error Score is a rough proxy for how 
well a given text description predicts model errors. We emphasize 
that this score is not used in the training process and is only meant 
to give non-expert users a rough idea of what descriptions are 
useful. It is computed as follows. Consider input text prompt ) , 
and let ⇡correct and ⇡error be subsets of the validation dataset for a 
given class that the model made correct and incorrect predictions 
on, respectively. We denote the cosine similarities between the 
) and the images in each subset as (correct = {sim(� ,) ) | � 2 
⇡correct} and (error = {sim(� ,) ) | � 2 ⇡error}. To quantify how well 
image similarity with ) can predict model errors, we compute the 
best class-balanced binary classi�cation accuracy among similarity 
thresholds g . Denoting this accuracy as Accg , the error score is 
computed as 2⇥ (Accg �0.5), so that uninformative prompts receive 
a score of 0 and prompts that perfectly predict model errors receive 
a score of 1. 

Similarity threshold. For each natural language threshold, we 
determine a similarity threshold g , which can be chosen by the user 
after inspecting the similarity scores for a representative sample of 
images or can be automatically chosen as the threshold that maxi-
mizes the Error Score. For each class, only the textual feedback with 
the highest Error Score is used for retraining. Together with this 
threshold, we can specify a spurious correlation using a tuple of the 
form (class label, text prompt, similarity threshold) corresponding 
to a binary classi�er that predicts model errors on that class. 

Additional backend features for large datasets. We found 
that a few more optional features can help annotate spurious cor-
relations in larger datasets like ImageNet. We begin by narrowing 
down the 1000 classes to a smaller number of classes (e.g., 100) most 
likely to have identi�able spurious correlations. To do so, we �rst 
prune out classes with too low or too high accuracy (e.g. accuracy 
below 0.2 or above 0.8), to ensure a su�cient number of correct and 
incorrect predictions for each class. For the remaining classes, we 
caption each image with an image captioning model [48, BLIP] and 
use a keyword extraction model [30, KeyBERT] to suggest a pool of 
up to 50 keywords for each class, a procedure inspired by Kim et al. 
[38]. Through C������, we interact with the top 100 classes accord-
ing to the maximum error score across the candidate keywords. The 
user is shown the top 10 candidate keywords during interactions as 
a helpful starting point. We expect that these features will similarly 
be helpful for other large datasets. 

B EXPERIMENTAL DETAILS 
Datasets. We run experiments on three datasets: Waterbirds [72], 
CelebA [51], and ImageNet [14]. Waterbirds and CelebA have a 
known spurious correlation between the class label and a spuri-
ous attribute; we have access to ground truth spurious attribute 
labels for these datasets. We use these datasets to evaluate whether 
C������ can correct model failures due to spurious correlations. 
To our knowledge, ImageNet does not have any previously known 
spurious correlations. 

Backbone models. All experiments use pre-trained CLIP mod-
els [67] as the feature extractor. The C������ interface uses the 
CLIP ViT-L/14 vision and language backbones for calculating image-
text similarity. We use the CLIP ResNet-50 and ViT-L/14 models 
for Waterbirds and CelebA and only the CLIP ViT-L/14 model for 
ImageNet. We use frozen backbone models and only train a �nal lin-
ear layer for classi�cation, following related works for addressing 
spurious correlations [39, 95]. We use no data augmentation and 
normalize all embeddings before computing similarity or training. 

Methods. Table 3 and Table 6 show results for C������ and 
several representative prior methods for addressing spurious corre-
lations. We experiment with several variants of standard ERM train-
ing with a labeled training set: uniform weighting, class-balanced 
weighting, and “worst-class”, a DRO-like weighting scheme that 
adaptively trains on only the class with the highest loss. We exper-
iment with two variants of training a model with C������ anno-
tations: reweighting data so that each of the two slices has equal 
weight (slice-balanced), and a DRO-like weighting scheme which 
adaptively trains on only the slice with the highest loss (worst-slice). 

Annotators. We recruit 26 non-expert users through Proli�c 
(https://www.proli�c.co/). These participants had no quali�cations 
beyond being native English speakers and having some program-
ming experience and did not necessarily have any prior knowledge 
about machine learning. We provide a brief tutorial on using the 
interface and ask each participant to annotate the class with the 
highest error rate for each dataset. After completing the user study, 
we retrained the models for both datasets using each user-provided 
annotation. The authors of this paper collected another set of an-
notations for Waterbirds and CelebA, which we use as a baseline 
for comparison. Additionally, annotations for the ImageNet dataset 
were collected by paper authors. 

C ADDITIONAL DETAILS FOR BIAS-TO-TEXT 
EXPERIMENT 

Here, we provide additional details for the comparison between 
C������ and Bias-to-Text [38], an automated bias discovery method. 
The automated pipeline of Bias-to-Text consists of two steps: (1) 
extracting keywords from image captions of incorrect examples 
and (2) ranking these potential keywords based on how well they 
separate correct and incorrect examples. More speci�cally, they 
look for keywords that maximize CLIP score, which is de�ned as 

� � 
BCLIP (0; D) := sim 0, Dwrong � sim (0, Dcorrect ) (3) 

where Dwrong and Dcorrect are the sets of incorrect and correct ex-
amples, respectively. A keyword with a high CLIP score will likely 
describe something in common between the incorrect examples 
and thus may correspond to a spurious correlation. For each key-
word, they also report the subgroup accuracy, which is the model’s 
accuracy on the subset of examples containing the keyword. This 
method is representative of the state-of-the-art in automated bias 
discovery and was shown to outperform other recent automated 
bias discovery methods such as ERM con�dence [50], Failure Di-
rection [34], and Domino [21]. 

We evaluated the automated pipeline of Bias-to-Text on several 
classes in the ImageNet validation set in which we identi�ed spuri-
ous correlations and found speci�c pitfalls that make it di�cult to 
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Spotlight class (ours: “shining”) Ri�e class (ours: “wooden barrel”) 
Keyword CLIP Score Subgroup Acc Keyword CLIP Score Subgroup Acc 

street lamp 3.32 0.0 (N=1) person 1.59 14.3 (N=14) 
lamp 2.50 66.7 (N=6) soldier 0.60 0.0 (N=8) 
top 2.46 0.0 (N=1) project picture 0.20 0.0 (N=3) 

kitchen 2.22 50.0 (N=2) soldiers 0.18 0.0 (N=5) 
street 2.07 33.3 (N=3) dark room -0.47 0.0 (N=1) 
suite 1.94 0.0 (N=1) machine -0.95 20.0 (N=5) 
city 1.87 0.0 (N=3) gun -1.69 30.0 (N=20) 

room 1.77 0.0 (N=2) nice gun -1.98 0.0 (N=2) 
light 1.51 81.8 (N=22) machine gun -2.00 20.0 (N=5) 
night 1.12 80.0 (N=5) weapons -2.01 42.9 (N=7) 

Academic Gown class (ours: “many people in robes”) Bighorn class (ours: “rocky hillside”) 
Keyword CLIP Score Subgroup Acc Keyword CLIP Score Subgroup Acc 

person 0.51 25.0 (N=24) goat 1.39 5.9 (N=17) 
photo 0.50 27.3 (N=11) sheep 1.35 0.0 (N=9) 

graduate 0.23 13.3 (N=15) mountain goat 0.11 0.0 (N=2) 
graduates 0.21 25.0 (N=8) biological 0.06 28.6 (N=7) 
graduation 0.16 13.3 (N=15) biological species 0.00 28.6 (N=7) 

pose 0.12 20.0 (N=10) species -0.03 28.6 (N=7) 
poses 0.01 0.0 (N=4) bighorn sheep -0.04 0.0 (N=4) 

students -0.25 0.0 (N=7) bighorn sheep stands -0.29 0.0 (N=2) 
graduation ceremony -0.57 16.7 (N=12) stands -1.32 0.0 (N=7) 

ceremony -1.27 23.1 (N=13) herd -2.27 14.3 (N=7) 

Loupe class (ours: “person holding a magnifying glass”) 
Keyword CLIP Score Subgroup Acc 

black 0.01 0.0 (N=4) 
camera -0.08 28.6 (N=7) 
book -0.65 33.3 (N=3) 

compact -0.72 0.0 (N=2) 
compact camera -1.12 0.0 (N=2) 

watch -1.50 0.0 (N=1) 
pocket -1.84 0.0 (N=1) 

pocket watch -2.05 0.0 (N=1) 
glass -2.30 57.1 (N=14) 

magnifying glass -6.19 71.4 (N=7) 

Weasel class (ours: “snow weasel”) 
Keyword CLIP Score Subgroup Acc 

bear cub sits 1.72 0.0 (N=1) 
black bear cub 1.62 50.0 (N=2) 

young black bear 0.81 0.0 (N=1) 
biological species -0.17 85.7 (N=14) 

dead squirrels -0.19 0.0 (N=1) 
�le photo -0.19 0.0 (N=2) 

undated �le -0.36 0.0 (N=2) 
undated �le photo -0.41 0.0 (N=2) 

grass -0.87 85.7 (N=7) 
squirrels were found -0.87 0.0 (N=1) 

Table 5: Comparison to Bias-to-Text [38], an automated bias discovery method on ImageNet. We show the top 10 keywords identi�ed by 
Bias-to-Text in descending order of their recommended score. We also show the text feedback provided through C������ for comparison. 
The keywords identi�ed by Bias-to-Text often include irrelevant words or correspond to very small subpopulations, indicating that current 
automated methods ultimately require human oversight or intervention to discover the most relevant and biased subpopulations. 

use alone in practice. In Table 5, we show 10 keywords identi�ed 
by Bias-to-Text for four of the classes for which we identi�ed spuri-
ous correlations. We note that the top identi�ed keywords, i.e., the 
ones with the highest CLIP score, often describe something highly 
related to the class label, such as “goat” for the “bighorn”. We fur-
ther note that the method also identi�es very small subpopulations, 
for example “baby shower” which only appears in three of the 50 
examples in the “bakery” class. Text feedback from C������ never 

the top keyword recommended by Bias-to-Text, and was only in 
the top 10 for 5 out of 31 classes. 

In its current form, automated bias discovery methods such as 
Bias-to-Text ultimately require oversight to identify the most rele-
vant keywords. The human-in-the-loop nature of C������ can be 
seen as recognizing this dependency and providing a more direct 
way for users to inspect and correct model failures. However, we 
note that automated discovery methods are still highly useful in 
the context of C������, as they can prime annotators with a set 
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of candidate keywords or help prioritize the most promising parts 
of the dataset. We believe a more integrated combination of auto-
mated discovery methods and human-in-the-loop methods such as 
C������ will be a fruitful direction for future work. 

Finally, we compare the annotations discovered by Clarify and 
Bias-to-Text. We take the top keyword identi�ed by Bias-to-Text for 
each class and compare the model’s accuracy on the majority and 
minority splits in Figure 9. The annotations for Bias-to-Text show 
substantially higher minority split accuracy (Clarify 21.1%, Bias-to-
Text 45.2%), with a smaller gap with the majority split. Furthermore, 
after re-training with these annotations using our reweighting 
procedure, we observed a slight decrease in held-out minority split 

accuracy (45.2% to 44.3%). This is in contrast to re-training with 
Clarify annotations, which substantially improved minority split 
accuracy (21.1% to 28.7%). These results indicate that automated 
bias discovery methods such as Bias-to-Text fail to identify the most 
relevant or consistent subpopulations, highlighting the need for 
oversight. 

D QUALITATIVE FEEDBACK 
We collected qualitative feedback from the non-expert participants 
in our user study. We found that the interface was easy to use and 
provided useful insights into the strengths and weaknesses of the 
method in Table 7. 
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Waterbirds CelebA 

Assumptions 

Zero-Shot 

Labels 

Method 

Class Prompt 
Group Prompt 

ERM 
ERM (ours) 
ERM (ours, class-balanced) 
ERM (ours, worst-class) 

WG 

36.6 
55.9 

7.9 
63.4 
48.6 
55.9 

Avg 

92.2 
87.8 

93.5 
96.0 
95.2 
95.8 

Gap 

55.6 
31.9 

85.6 
32.6 
46.7 
39.9 

WG 

74.0 
70.8 

11.9 
31.1 
65.8 
56.9 

Avg 

81.9 
82.6 

94.7 
95.4 
93.4 
94.1 

Gap 

7.9 
11.8 

82.8 
64.3 
27.6 
37.2 

CL
IP

 V
iT
-L
/1
4 

CL
IP

 R
es
N
et
-5
0 

Labels, Text Feedback 
C������ (avg non-expert) 
C������ (best non-expert) 
C������ (author) 

69.8 
82.5 
75.7 

84.1 
90.7 
83.8 

13.3 
8.2 
8.1 

83.7 
88.8 
89.1 

93.2 
92.9 
92.1 

9.5 
4.1 
3.0 

Labels, Group Annotation 

DFR (downsample) 
DFR (upsample) 

DFR (our implementation) 
Group DRO (our implementation) 

63.9 
51.3 

78.7 
81.3 

91.8 
92.4 

90.8 
88.1 

27.9 
41.1 

12.1 
6.8 

76.9 
89.6 

90.6 
89.2 

92.5 
91.8 

91.9 
91.8 

15.6 
2.2 

1.3 
2.7 

Labels, Additional Params 
ERM Adapter 
WiSE-FT 
Contrastive Adapter 

60.8 
49.8 
83.7 

96.0 
91.0 
89.4 

35.2 
41.2 
5.7 

36.1 
85.6 
90.0 

94.2 
88.6 
90.7 

58.1 
3.0 
0.7 

Zero-Shot Class Prompt 
Group Prompt 

25.7 
27.4 

87.3 
85.5 

61.6 
58.1 

62.1 
72.4 

71.9 
81.8 

9.8 
9.4 

ERM 65.9 97.6 31.7 28.3 94.7 66.4 

Labels ERM (our implementation) 
ERM (our implementation, class-balanced) 
ERM (our implementation, worst-class) 

79.5 
71.1 
74.3 

97.4 
97.2 
97.1 

17.9 
26.1 
22.8 

25.7 
63.7 
56.9 

94.6 
92.6 
93.3 

68.9 
28.9 
36.4 

Labels, Text Feedback C������ (author) 81.8 96.8 14.9 88.8 90.9 2.1 

Labels, Group Annotation 

DFR (downsample) 
DFR (upsample) 

DFR (our implementation) 
Group DRO (our implementation) 

51.9 
65.9 

85.9 
88.5 

95.7 
96.1 

93.5 
92.7 

43.8 
30.2 

7.6 
4.1 

76.3 
83.7 

89.0 
88.1 

92.1 
91.2 

90.9 
91.1 

15.8 
7.5 

1.9 
2.9 

ERM Adapter 78.4 97.8 19.4 36.7 94.2 57.5 
Labels, Additional Params WiSE-FT 65.9 97.6 31.7 80.0 87.4 7.4 

Contrastive Adapter 86.9 96.2 9.3 84.6 90.4 5.8 
Table 6: Evaluation of methods for improving group robustness of CLIP models. Grouped by data and expressivity, with best worst-group (WG) 
and robustness gaps bolded. All metrics are averaged over three seeds. 
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Figure 9: Comparison of annotations discovered by Clarify and Bias-to-Text.We show the accuracy of an ImageNet-trained model on the 
validation setFor each class with an identi�ed spurious correlation, we show majority split and minority split accuracy. The annotations 
for Bias-to-Text show substantially higher minority split accuracy (Clarify: 21.1%, Bias-to-Text 45.2%), with a smaller gap with the majority 
split.This indicates that Clarify was substantially more accurate in identifying hard subpopulations. 

Clarity
> Study seemed a little confusing 
> It was a little confusing at �rst, but then became clear and challenging. 
> Compared to the example task, they were a bit more di�cult but still understandable. 
> Yes I understood what was being measured. 

Strategies and Thought Processes
> Yes, to �nd a pattern among the red (incorrect) squares and determine a relevant phrase or description that captures the similarity 
> Yes. I just tried to �gure out what characteristics mainly led to something wrong. 
> I was honestly having fun trying di�erent prompts. 
> It was clear in that I had to try to �gure out the AI’s weakness, but �nding that weakness was hard. I tried to do related topics, then used what I saw in the pictures for 
fodder. 
> Yes, I would look for what was di�erent about the incorrect images and enter my �rst guess then work from there. 
> I was trying to spot what the common things were that the AI was struggling to pick up in the photos it was getting wrong. 
> The study seemed to be about helping correct the misbehavior of AI. My thought process was mostly linked to trying to �nd shared features that miscategorized images 
included. 
> The only thing I wasn’t really sure of was how detailed we could be, how many criteria we could give. I tried to keep it low (one of my higher scorers was just men)̈ but ¨ 
sometimes I had to chain them (d̈ark backgrounds and a lot of treesör similar) to score well. 

Di�culty
> The last one was pretty di�cult, but I think I saw all the images correctly. For a second I thought one was a young blonde Trudeau with a �ipped-up haircut, but realized 
that wasn’t him 
> more di�cult than I thought to come up with various prompts 

Suggestions for Improvement
> It might be nice if our most recent guess was highlighted in the table on the left. Every time I’d submit a guess I found my self trying to remember exactly how I’d phrased 
it and trying to �nd it in the table to see how well I did. 
> Look at the di�erent images, try to �nd commonalities that might be a�ecting identi�cation 

Table 7: Open-ended qualitative feedback from participants, grouped by topic. 

https://Bias-to-Text.We
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Figure 10: Non-experts used C������ to identify high-quality descriptions with Error Scores that matched or exceeded the authors’ expert 
annotations. 

Figure 11: Accuracy of a model trained on the ImageNet train set, on the ImageNet validation set (top), and on ImageNet-V2 (bottom). For 
each class with an identi�ed spurious correlation, we show majority and minority split accuracy. The model achieves lower accuracy on the 
minority split for all classes in the validation set and all but 6 classes in ImageNet-V2, indicating that the model relies on each identi�ed 
spurious feature. 
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