

Speciation Genes

Benjamin K. Blackman, University of California, Berkeley, CA, United States

© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

This is an update of B.K. Blackman, Speciation Genes, Editor(s): Richard M. Kliman, Encyclopedia of Evolutionary Biology, Academic Press, 2016, Pages 166–175, ISBN 9780128004265, <https://doi.org/10.1016/B978-0-12-800049-6.00066-4>.

Introduction	2
What are Speciation Genes and How are They Identified?	2
An Inclusive Definition	2
Genetic Characterization of Speciation Genes	3
Candidate Gene Identification	3
Functional Characterization of Speciation Genes	4
Evolutionary Characterization of Speciation Genes	5
What Have We Learned From Known Speciation Genes?	6
The Identities of Speciation Genes are Predictable for Some Isolating Barriers	6
Hybrid Incompatibilities Evolve by Diverse Paths and are Often Polymorphic	6
Diverse Evolutionary Models Supported	9
Ecological Speciation	9
Evolutionary Arms Races, Mutation Pressure, and Hybrid Incompatibilities	10
Roles for Evolutionary Forces Other Than Positive Selection in the Emergence of Incompatibilities	10
Hybridization as a Driver of Speciation	11
Conclusion	11
Acknowledgment	11
References	11

Key Points

- Speciation genes are genes that bear allelic variation contributing to the splitting of two lineages by reducing the amount of gene flow between them.
- Applications of classical and modern genetics, genomics, and transcriptomics methods across increasingly diverse systems have identified an ever-growing number of speciation genes.
- The types of genes that contribute to reproductive isolation appear to be predictable for some prezygotic and postzygotic isolation barriers.
- Incompatibilities that cause hybrid sterility or inviability evolve by diverse paths and are often polymorphic.
- Evaluation of the evolutionary forces that have promoted divergence in speciation genes provides support for multiple mechanisms proposed to explain how species originate.

Glossary

Bateson-Dobzhansky-Muller incompatibility combination of alleles at two or more loci that interact epistatically to reduce the fitness of hybrid progeny

cis-regulatory variation polymorphisms affecting the transcription of a gene that are located within non-coding DNA sequences that are proximate to the gene itself

Coalescence the merging of all descendant gene copies within a lineage at a single ancestral gene copy occurring within that lineage going back in time

Divergent selection selection that favors different optima for one or multiple traits in alternate environments or niches

Ecological speciation the process by which barriers to gene flow evolve between populations as a result of ecologically based divergent selection

Epistasis dependency of the effects of an allele at one locus on the genotype at one or more additional loci

Genome editing targeted alteration of DNA through expression of factors that bind to specific nucleotide sequences and make double strand breaks or other modifications proximate to them

Genomic conflict a phenomenon where the proliferation or non-Mendelian transmission inheritance of selfish genetic elements occurs at the expense of the host genome, which itself may in turn evolve to suppress the deleterious effects of those elements

High-throughput genotyping determination of the allelic composition at thousands of loci for hundreds to thousands of individuals using next-generation sequencing or oligonucleotide array-based technologies
Hybrid zone geographic region where two species ranges intersect and interbreeding naturally yields hybrid offspring at some frequency
Incipient species populations that share a recent common ancestor and that are partially reproductively isolated
Knockout mutants organisms carrying mutations that eliminate the function of a given gene
Linkage disequilibrium non-random association of alleles
Meiotic drive distortion of Mendelian inheritance during meiosis by alleles that are preferentially transmitted to the mature gamete pool (e.g., by inactivating sperm or pollen carrying alternate alleles)
Near isogenic lines accessions generated by repeated backcrossing that have identical genomes except for differences at one or a few narrow genomic blocks.
Reproductive isolating barriers biological features of organisms that impede the exchange of genes with members of other populations
RNAi RNA interference; includes several methods by which dsRNA can be introduced to trigger the degradation or inhibit the translation of specific endogenous transcripts
Sexual conflict a phenomenon where alleles that confer higher fitness to one sex also confer lower fitness to another sex, which may lead to antagonistic co-evolution
SNP single nucleotide polymorphism
trans-acting variants polymorphisms affecting the transcription of a gene that are not located within or nearby that gene but are instead located elsewhere in the genome

Abstract

Speciation genes, or loci harboring allelic variants that have contributed to the evolution of reproductive isolation between lineages, have been identified by recent efforts in many systems. The normal functions of these genes and their patterns of evolutionary change confirm several classic theoretical predictions and spur new questions about the process of speciation.

Introduction

As speciation proceeds, genetic changes accumulate that restrict and eventually lead to the cessation of gene flow between populations sharing common ancestry, allowing these lineages to become increasingly evolutionarily independent. Because many questions about the nature of the molecular mechanisms and evolutionary forces that drive speciation can only be addressed with knowledge of the specific genes involved, researchers have long sought to identify the genes contributing to this process. However, these loci, dubbed “speciation genes”, have been understandably quite difficult to identify. Genetic analysis is a formidable challenge when the organisms of interest are naturally recalcitrant to mating or their offspring cannot produce progeny of their own.

Fortunately, through advances in genetic and genomic resources, creative experimental design, and considerable brute force effort, the field of speciation genetics has made rapid progress over the past three decades (Berdan et al., 2024; Bock et al., 2023; Bomblies, 2010; Cutter, 2023; Fishman and Sweigart, 2018; Kitano et al., 2022; Maheshwari and Barbash, 2011; Merrill et al., 2024; Moyle et al., 2014; Noor and Feder, 2006; Nosil and Schlüter, 2011; Orr and Presgraves, 2000; Presgraves, 2010; Rieseberg and Blackman, 2010; Wu and Ting, 2004; Zhang et al., 2021). Allelic differences between lineages that cause reproductive isolation (RI) by compromising successful fertilization (pre- or post-mating prezygotic RI) or the fitness of hybrid progeny (postzygotic RI) have been identified in diverse systems. Moreover, although their number is still relatively modest, these case studies—whether considered individually or as set—have validated, deepened, and at times challenged longstanding ideas as well as promoted new directions for investigation. The aims of this entry are two-fold. First, the conceptual history of the term “speciation gene” and, following from this, empirical approaches for meeting the criteria implied by that definition will be reviewed. Second, insights into the speciation process that have emerged from the study of known speciation genes will be highlighted. Though the present focus is on genic changes that increase RI, how chromosomal rearrangements and polyploidy may also contribute is reviewed elsewhere in this volume.

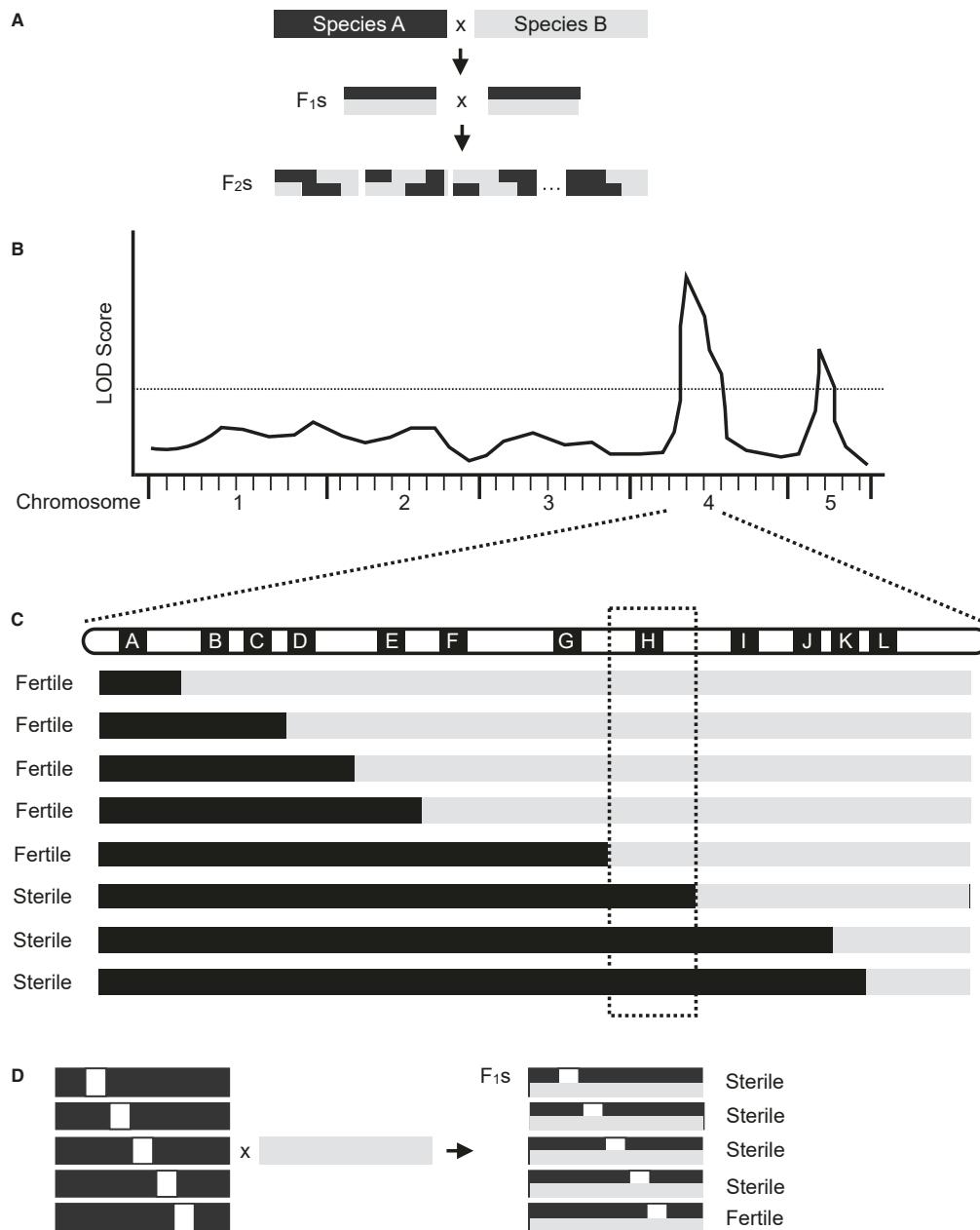
What are Speciation Genes and How are They Identified?

An Inclusive Definition

As emphasis on particular forms of RI has shifted over time, how authors have defined the term “speciation gene” has evolved as well. Most early discussions were restricted in scope, focusing solely on genes contributing to intrinsic postzygotic isolation in

sexually reproducing organisms (Orr et al., 2004; Orr, 2005; Orr and Presgraves, 2000). This narrow definition was partly motivated by the argument that although prezygotic barriers or extrinsic postzygotic barriers may be important early in speciation, they may also erode due to shifts in the environment or may be insufficient to maintain divergence when allopatric populations come into secondary contact. In contrast, intrinsic hybrid inviability and sterility are generally predicted to be environment-independent and were considered essential to complete speciation (Muller, 1942). Moreover, the genes underlying intrinsic postzygotic barriers had historically been subject to more fervent attention by geneticists and in the literature due to the greater inherent mystery surrounding their identity (Coyne and Orr, 2004). Traits contributing to prezygotic isolation can be studied within species, and it was expected that the proteins that ordinarily function in the genetic networks regulating these phenotypes within species would also contribute to divergence between species. In contrast, intrinsic hybrid inviability and sterility were predominantly studied only in interspecific crosses. Consequently, beyond the prediction that alleles from each parent genome would interact epistatically (Bateson, 1909; Dobzhansky, 1936; Muller, 1942), few *a priori* expectations existed regarding the functions of genes harboring variants affecting intrinsic postzygotic barriers.

The scope of the term “speciation gene” has since broadened to also include loci contributing to prezygotic barriers and extrinsic postzygotic barriers. As defined by Rieseberg and Blackman (2010), a “speciation gene can be strictly defined as a gene that contributes to the splitting of two lineages by reducing the amount of gene flow between them.” Additional authors have advanced similar definitions (Noor and Feder, 2006; Nosil and Schlüter, 2011; Wu and Ting, 2004). This more inclusive definition has emerged in part because many have recognized that the speciation process is best understood as continuum proceeding from absent to complete RI. In addition, as the genetics of both prezygotic and postzygotic barriers have received more intense study, it has become clear that postzygotic incompatibilities can diverge contemporaneously with prezygotic barriers, often segregate within species (Cutter, 2012), may be genetically related to prezygotic barriers through pleiotropy (Lee et al., 2008), and may even involve allelic variation that is solely epigenetic and thus potentially transient (Agorio et al., 2017; Blevins et al., 2017; Durand et al., 2012).


Genetic Characterization of Speciation Genes

To satisfy the above definition, the contribution of allelic differences to a contemporary barrier phenotype must be characterized with sufficient empirical rigor to make a compelling case for causality. In addition, it has been argued that speciation genes should fulfill several evolutionary criteria that demonstrate these changes contributed to speciation historically, though assessing these requirements can be less than straightforward.

Candidate Gene Identification

For most of the past three decades, quests for speciation genes commonly started with forward genetics approaches in controlled crosses (Fig. 1). Because winnowing the genomic regions containing causal loci down to segments of tens to several hundred possible candidates requires performing quantitative trait locus (QTL) mapping on panels of related individuals segregating for variation in focal barrier phenotypes, this strategy has often meant working in systems where speciation is incipient and incomplete (Fig. 1A and B). That is, existing barriers can be somehow overcome, and F_2 or BC_1 generation progeny descended from partially or fully fertile F_1 s are recoverable for at least one of the cross directions between two parental populations. Only classic model organisms, most notably *Drosophila*, where more advanced genetic toolboxes allow for deficiency and introgression mapping in F_1 s, have been exceptions to this rule (Fig. 1D; Orr, 2005). When feasible, QTL intervals are further narrowed by fine mapping in advanced-generation crosses (Fig. 1C), by linkage disequilibrium (LD) mapping approaches that exploit historical recombination events in natural populations, or both. Investigators working in systems without sequenced genomes often supplement their mapping efforts with polymorphic markers specifically developed in candidate genes chosen *a priori* for their known functions in the gene networks governing barrier traits (e.g., Kronforst et al., 2006). Even when promising associations between these targeted markers and phenotypic variation are found, fine mapping or LD mapping remain worthwhile pursuits, as they serve to exclude potential contributions of neighboring genes.

More recently, fueled by advances in array- and sequencing-based methods for high-throughput genotyping as well as the now routine generation of high-quality reference genomes for non-model taxa, population genomic screens for speciation genes based on patterns of sequence diversity within and among natural populations have become increasingly common alternative strategies to forward genetics approaches (Noor and Feder, 2006; Seehausen et al., 2014). Differentiation studies scour the genomes of incipient species pairs for regions of elevated divergence relative to polymorphism using metrics like F_{ST} (e.g., Chapman et al., 2013; Hench et al., 2019). Hybrid zone studies scan for SNPs that do not introgress and thus maintain much steeper allele frequency clines across space relative to genome-wide patterns of introgression (e.g., Powell et al., 2020; Teeter et al., 2010). Although powerful, a drawback of these methods is that do not provide any immediate, concrete connection from genotypes back to specific barrier phenotypes, and establishing this link is often challenging. Moreover, positional information alone may be insufficient for assigning highly differentiated SNPs residing in non-coding regions to the genes they functionally affect. In addition, evolutionary causes other than the presence of a speciation gene may produce outliers of high differentiation, leading to false positives (Cruickshank and Hahn, 2014). Consequently, the need to follow up these studies with functional and evolutionary characterization of specific loci is compelling.

Fig. 1 Identifying speciation genes by forward genetics. (A) Genetic mapping requires generating recombinant progeny, a prospect that may be impossible because reproductive isolating barriers in interspecific crosses prevent production of F_1 s or leave them infertile. If RI barriers can be overcome, then the phenotypes of recombinants segregating for parental genomic segments can be obtained in the F_2 (shown) or BC_1 generation (not shown). Note that only effects detectable when comparing the heterozygous genotype to the backcross parent homozygote can be studied in a BC_1 generation while effects differentiating the heterozygote and either parental homozygote genotype can be studied in an F_2 generation. (B) Recombinant progeny are genotyped for polymorphic markers throughout the genome, and the effect of the genotype across a coarse genomic interval on segregating variation in a barrier trait is then detected by QTL mapping. The LOD score is the \log_{10} likelihood ratio comparing a model with a QTL present in the interval to a model with no QTL present. (C) Finally, fine mapping may be conducted in the current panel and/or subsequent generations. The QTL interval is narrowed to a region containing one or a handful of genes by genotyping of the subset of progeny recombinant in that interval for additional markers. In the schematic, the region of chromosome 4 contained in the dashed line box is the minimal interval defined by recombination breakpoints affecting hybrid sterility, strongly implicating gene H as the causal locus. (D) In species with libraries of deletions or knockout lines, deficiency mapping can be performed for genes causing F_1 hybrid dysfunction. In the schematic, the genomic interval of Species A spanned by the rightmost deficiency segment contains a hybrid sterility allele.

Functional Characterization of Speciation Genes

The gold standard for validating candidate speciation genes is experimental manipulation by genetic transformation. Before proceeding with these studies, comparisons of parental coding sequences and gene expression levels in relevant tissues may provide

circumstantial evidence useful for reducing the candidate gene set and bolstering support for particular genes in systems where transformation is prohibitively difficult. Allele-specific expression patterns in F_1 hybrids may be evaluated to corroborate that observed expression differences derive wholly or in part from *cis*-regulatory variation affecting the gene itself rather than *trans*-acting variants located elsewhere in the genome (e.g., [Hopkins and Rausher, 2011](#); [Klahre et al., 2011](#)). Indeed, on its own, a transcriptome-wide survey of allele-specific expression for RI-relevant tissues in F_1 hybrids can be productive starting point for identifying candidate speciation genes (e.g., [Combs et al., 2018](#); [Yarahmadov et al., 2020](#)). Network centered approaches that integrate mapping of barrier traits and gene expression (i.e., QTL and eQTL mapping, respectively) may facilitate description of complex gene interactions often characteristic of postzygotic isolation phenotypes as well (e.g., [Turner et al., 2014](#)).

Allelic replacement of one species' sequence with that of another, and vice versa, by genetic transformation is the most rigorous experiment for validating a speciation gene. Such tests have historically been possible in only a few model systems, but new genome editing approaches have begun to extend the capability for allelic replacement to any transformable system ([Ansai and Kitano, 2022](#); [Turner, 2014](#)). Even when conversion of one species' sequence to that of another is not possible, alternative manipulative experiments may yield solid support. For instance, if crosses involving knockout mutants or individuals carrying RNAi constructs that knockdown expression of a candidate gene exhibit reduced RI relative to control crosses, then the candidate gene is necessary for the isolating barrier (e.g., [Presgraves et al., 2003](#)). Likewise, if introducing another species' sequence for a candidate gene causes increased RI in an intraspecific cross, then the candidate gene is sufficient for enhancing the isolating barrier (e.g., [Phadnis and Orr, 2009](#)). For genes whose protein function can be assessed biochemically, the effects of interspecific substitutions can be determined by *in vitro* assays (e.g., [Wessinger and Rausher, 2015](#)). Although not sufficiently rigorous to show causality of a specific gene since contributions of linked variation cannot be excluded, near isogenic lines carrying alternate species alleles in either background can be particularly advantageous for demonstrating a genomic region's effect on RI in field settings (e.g., [Bradshaw and Schemske, 2003](#)).

Evolutionary Characterization of Speciation Genes

Recognizing that the evolution of RI is a temporally dynamic process that begins prior to and continues after speciation, the definition advanced above also requires that the gene "contributes to the splitting of two lineages." Genetic changes that contribute to contemporary barriers to reproduction between fully isolated species may have accumulated long after speciation was already complete. Likewise, the relative importance of different barriers to gene flow, and consequently the impact of particular alleles on total RI, may change over time. Therefore, it has been argued that speciation genes must meet two additional evolutionary criteria ([Nosil and Schlüter, 2011](#)). First, divergence at the locus must have occurred before speciation was complete. Second, the gene should have had a measurable effect on RI at the time it diverged. Obtaining empirical data addressing the first criterion can be straightforward, but demonstrating a gene meets the second criterion is potentially far more challenging.

The divergence time criterion is automatically met for genes that contribute to barriers between incipient species. For species pairs that are already completely isolated, divergence time can be assessed with gene trees or genealogies ([Nosil and Schlüter, 2011](#)). If divergence at a putative speciation gene occurred prior to full cessation of gene flow, then its genealogy should be discordant with genealogies of unlinked neutral loci, which are more likely to show shallower coalescence and greater evidence of gene flow. Such tests can be problematic, however, in that they may yield false negatives depending on the evolutionary process driving divergence ([Lessios, 2011](#)). For instance, RI between species often arises as a byproduct of accelerated sequence evolution driven by arms races mediated by sexual or genomic conflict within species that continue well after speciation is complete. Thus, a pattern of coalescence within species, rather than a pattern of coalescence prior to the timing of species divergence, may be expected and has been observed for some speciation genes evolving in this manner ([Palumbi, 2009](#)).

As for the second criterion, it is unclear whether a speciation gene's effect on RI relative to all other current barriers at the time of its divergence can be rigorously estimated for any species. The absolute effect of allelic divergence at a speciation gene on the strength of a contemporary RI barrier may be readily estimated by the methods discussed above. Moreover, a speciation gene's relative contribution to contemporary RI as a whole may also be estimated to the extent that the full genetic architecture for the barrier trait and the relative strength of that barrier relative to other barrier traits on RI are known. All these parameters are important because isolating barriers, to a large extent, act sequentially to prevent successful fertilization or to impair hybrid fitness, and hence it is possible that loci with major effects on later acting barriers (e.g., hybrid dysfunction) may only have minor contributions to overall RI.

By extension then, estimating a speciation gene's contribution to historical levels of RI would require not only knowledge of the temporal dynamics of evolution at a given locus (and interacting loci if RI is caused by epistatic incompatibilities) in one or both lineages, but also the past history of all other loci contributing to the cessation of gene flow. Thus, meeting this criterion may only be possible in rare systems where speciation in action can be followed over observable time scales. Alternatively, in species pairs isolated by few barriers with tractable genetics, it is conceivable that the historical series of genotypes at speciation loci could be reconstructed if the order of substitutions causing RI were inferable from genes trees or observable in ancient DNA time series. Estimates of absolute and relative contributions to contemporary RI may help determine the bounds to paths historically possible in other systems. However, given the pragmatic hurdles to determining historical dynamics (irrespective of any complexity introduced by gene x environment effects), it seems sufficient to demonstrate a speciation gene affects contemporary isolation and acknowledge the caveat that the specific contribution to total RI at the time of divergence is unknown.

What Have We Learned From Known Speciation Genes?

Beyond important basic knowledge of whether the types of genes or mutations involved follow predictable functional patterns, identifying speciation genes allows many models about the molecular and evolutionary mechanisms that drive speciation to be tested. In addition, while some questions are addressable without knowing the underlying loci, having causal allelic sequences in hand is often a boon. For instance, patterns of intraspecific polymorphism for RI can be more efficiently assessed by sequencing-based surveys of allelic diversity than through expansive crossing schemes in most systems. Although only a modest set of speciation genes and other strong candidates is known (Table 1), the emerging picture supports a plurality of mechanisms while also revealing some broad patterns.

The Identities of Speciation Genes are Predictable for Some Isolating Barriers

As noted above, speciation genes for prezygotic barriers were broadly predicted to be members of networks that govern these phenotypes within species. Although the number of genes known remains insufficient to test this prediction for some barriers (e.g., temporal and mechanical isolation), identification of speciation genes affecting certain forms of RI in multiple systems has proven informative and largely confirms the expectation (Table 1). Pollinator isolation stands out in this regard (Yuan et al., 2013a). For floral color and scent, enzymes in pigment and volatile biosynthetic pathways and components of the transcriptional complexes that regulate their expression (often R2R3 MYB transcription factors) are responsible for species differences (e.g., Byers et al., 2014; Esfeld et al., 2018; Hoballah et al., 2007; Hopkins and Rausher, 2011; Klahre et al., 2011; Lüthi et al., 2022; Schwinn et al., 2006; Streisfeld et al., 2013; Yuan et al., 2013b). One particularly impressive example of convergence at the genetic level is in the genus *Penstemon*, where function-compromising variants in F3'5'H contribute to flower color shifts in 13 independent transitions from bee to hummingbird pollination (Wessinger and Rausher, 2015). The repeated observation of rapid protein evolution affecting gamete recognition systems in free-spawning marine invertebrates (Lessios, 2011; Palumbi, 2009) and the evolution of odorant and gustatory receptors affecting host plant choice for oviposition or mate choice may represent similar cases of predictable speciation gene identity (Álvarez-Ocaña et al., 2023; Matsuo et al., 2007; van Schooten et al., 2020). Although the recent identification of the YUP locus as a taxon-specific region that produces small RNAs that alter floral pigmentation patterns and thus affect pollinator specificity to monkeyflower species would appear to be an exception to this trend (Bradshaw and Schemske, 2003; Liang et al., 2023), similar involvement of novel small RNAs in floral pigmentation variation across a hybrid zone between subspecies of snapdragon suggest this mechanism may at least be a convergent evolutionary path to promote reproductive isolation (Bradley et al., 2017).

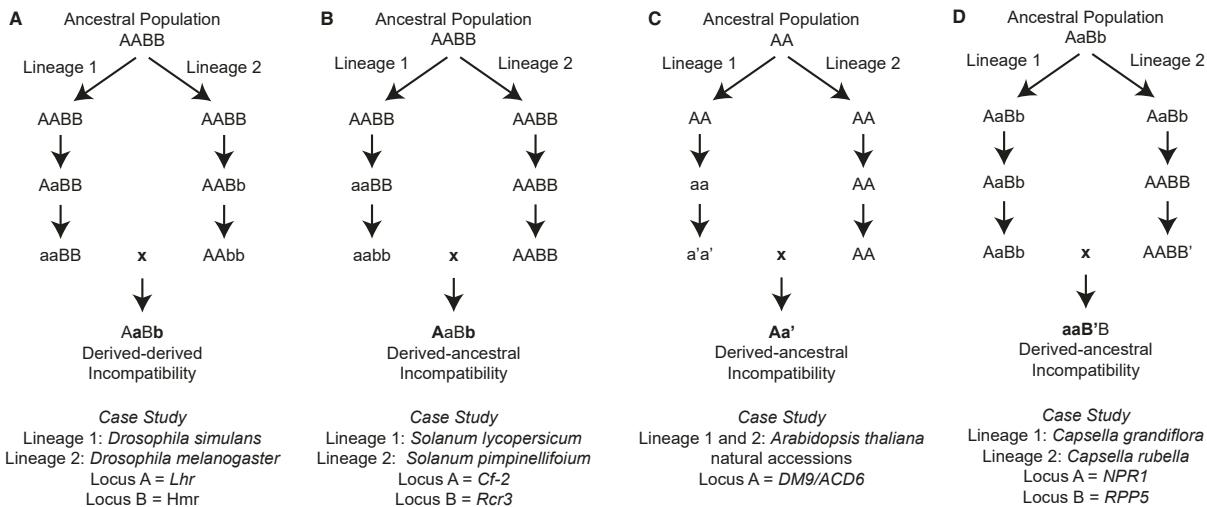
More surprisingly, the molecular basis of some postzygotic barrier traits in plants also appears predictable. Intra- and interspecific crosses in various groups often yield progeny exhibiting a form of hybrid inviability—hybrid necrosis—in which F₁ or F₂ hybrids show lesioning and compromised growth (Bomblies and Weigel, 2007). Across several systems, the vast majority of loci involved are immune receptors whose faulty epistatic interactions trigger errant autoimmune responses (Bomblies et al., 2007; Chae et al., 2014; Chen et al., 2014; Krüger et al., 2002; Rooney et al., 2005; Sicard et al., 2015; Todesco et al., 2010). The genetic basis of cytoplasmic male sterility (CMS) barriers appears similarly predictable (Rieseberg and Blackman, 2010). Chimeric mitochondrial transcripts that cause sterility evolve as selfish elements, and the majority of nuclear fertility restorer genes identified to date are members of the pentatricopeptide repeat (PPR) gene family. Although most genetic studies of CMS have been conducted in crosses of cultivated plants to wild species, exciting work in fully wild crosses are showing these results bear out for natural populations as well (Barr and Fishman, 2010; Case et al., 2016; Case and Willis, 2008; Durand et al., 2021).

Similar patterns of repeated involvement of common genes or gene families have not emerged for postzygotic isolation barriers in animals or fungi (Presgraves, 2010). An absence of trends here may signal that disruptions to viability or fertility in hybrids are more phenotypically idiosyncratic and taxon-specific in these groups relative to plants, where hybrid necrosis and CMS are widespread isolating barriers. Alternatively, the number of genes identified to date may be too small to reveal trends, but existing examples that implicate particular complexes of proteins regulating recombination, transposable element suppression, and chromosome segregation may prove general (Table 1). For instance, allelic differences in the histone methyltransferase PRDM9, a major determinant of recombination hotspots in mammals, have been shown to cause hybrid male sterility in some crosses between subspecies of *Mus musculus* (Flachs et al., 2012; Mihola et al., 2009). Signatures of positive selection altering the number and sequence of zinc finger domains across diverse rodent, primate, and other metazoan species raise the possibility that PRDM9 gene contributes to hybrid sterility in diverse systems (Oliver et al., 2009).

Hybrid Incompatibilities Evolve by Diverse Paths and are Often Polymorphic

The Bateson-Dobzhansky-Muller (BDM) model of reproductive incompatibilities provides a simple and powerful explanatory framework for how alleles that cause hybrid inviability or sterility evolve among lineages that recently shared freely interbreeding ancestors (Bateson, 1909; Dobzhansky, 1936; Muller, 1942). In its most commonly expressed form, Lineage 1 fixes a derived allele at Locus A and Lineage 2 fixes a derived allele at Locus B, but when newly brought onto the same genomic background through hybridization, negative epistatic interactions leading to dysfunction emerge (Fig. 2A). Empirical examples of such BDM incompatibilities have been described, as have additional mechanisms. For instance, recent work has described how substitutions of multiple

Table 1 Representative speciation genes and candidates.


Stage	Isolation type	Gene(s)	Species	Phenotype(s)	References
Prezygotic, Pre-mating	Habitat	Odorant-binding proteins <i>OBP57d/OPB57e</i> and Ionotropic receptor 75b (<i>Ir75b</i>)	<i>Drosophila sechellia/D. simulans</i>	Oviposition preference	(Matsuo et al., 2007; Álvarez-Ocaña, 2023)
		<i>Ectodysplasin (Eda)</i>	Marine and freshwater <i>Gasterosteus aculeatus</i>	Lateral plate number and growth rate*	(Colosimo et al., 2005; Barrett et al., 2009)
		<i>high mobility AT-hook 2 (HMGA2)</i>	<i>Geospiza scandens/G. fortis</i>	Beak size, possibly also leading to assortative mating*	(Lamichhaney et al., 2016)
	Temporal	<i>FLOWERING LOCUS C (FLC)</i>	<i>Arabidopsis suecica/A. arenosa</i> and <i>A. thaliana</i>	Delayed flowering of allopolyploid	(Wang et al., 2006)
		<i>R2R3- and R3-MYB</i> transcription factors (e.g., <i>anthocyanin2</i> , <i>ROSE INTENSITY 1</i> , <i>LIGHT AREAS 1</i> , <i>MYB-FL</i>)	Various <i>Petunia</i> , <i>Antirrhinum</i> , <i>Phlox</i> , and <i>Mimulus</i> species pairs	Flower color differences leading to pollinator shift	(Quattrochio et al., 1999; Hoballah et al., 2007; Schwinn et al., 2006; Hopkins and Rausher, 2011, 2012; Streisfeld et al., 2013; Yuan et al., 2013a,b; Yuan et al., 2016; Sheehan et al., 2016; Esfeld et al., 2018; Berardi et al., 2021; Lüthi et al., 2022)
	Pollinator/Behavioral	Flavonoid 3',5'-hydroxylase (F3'5'H)	Various <i>Penstemon</i> species; <i>Phlox drummondii/P. cuspidata</i>	Flower color differences leading to pollinator shift	(Hopkins and Rausher, 2011, 2012; Wessinger and Rausher, 2014, 2015)
		Methyl-branched CHC-specific fatty acid synthase (<i>mFAS</i>)	<i>Drosophila serrata/D. birchii</i>	Cuticular hydrocarbon profile differences affect mate choice	(Chung et al., 2014)
		<i>ODORANT1</i> and <i>cinnamate-CoA ligase 1 (CNL1)</i>	<i>Petunia axillaris/P. exserta</i>	Floral scent differences leading to pollinator shift	(Amrad et al., 2016; Klahre et al., 2011)
		Stearoyl-acyl carrier protein desaturases 1 and 2 (<i>SAD1/SAD2</i>)	Various <i>Ophrys</i> species	Floral scent differences leading to pollinator shift	(Xu et al., 2012)
		<i>OCIMENE SYNTHASE</i>	<i>Mimulus lewisii/M. cardinalis</i>	Floral scent differences leading to pollinator shift	(Byers et al., 2014)
		<i>slowpoke (slo)</i> <i>optix, aristaless</i>	<i>Drosophila simulans/D. mauritiana</i> Various <i>Heliconius</i> species	Courtship song Wing color pattern contributing to assortative mating*	(Ding et al., 2016) (Heliconius Genome Consortium, 2012; Reed et al., 2011; Westerman et al., 2018; Van Belleghem et al., 2023)
		<i>regucalcin1</i> <i>ui1.1</i> (Cullin 1); <i>ui6.1</i> (S-Locus F-box)	Various <i>Heliconius</i> species Various <i>Solanum</i> species	Mating preference for wing color pattern Unilateral incompatibility accompanying mating system shift	(Rossi et al., 2024) (Li and Chetatal, 2010, 2015)
		S-locus-related glycoprotein 1 (<i>SLR1</i>) Bindin Lysin Cysteine-rice peptide <i>LURE1</i>	<i>Arabidopsis lyrata/Arabidopsis arenosa</i> Various sea urchin genera <i>Haliotis rufescens/H. corrugata</i> <i>Torenia concolor/T. fournieri; Arabidopsis thaliana/A. lyrata</i>	Unilateral incompatibility Species-specific fertilization Species-specific fertilization Species-specific chemoattraction of pollen tubes	(Liu et al., 2024) (Palumbi, 2009; Lessios, 2011) (Palumbi, 2009; Lessios, 2011) (Kanaoka et al., 2011; Takeuchi and Higashiyama, 2012)
Postzygotic, Extrinsic	Ecological	<i>optix, aristaless</i>	Various <i>Heliconius</i> species	Wing color pattern intermediates suffer greater predation*	(Heliconius Genome Consortium, 2012; Reed et al., 2011; Westerman et al., 2018; Van Belleghem et al., 2023)
		<i>R2R3-MYB</i> transcription factor	<i>Phlox cuspidate/P. drummondii</i>	Flower color intermediates less attractive to pollinators	(Hopkins and Rausher, 2011, 2012)

(Continued)

Table 1 Representative speciation genes and candidates.—cont'd

Stage	Isolation type	Gene(s)	Species	Phenotype(s)	References
Postzygotic, Intrinsic	Hybrid Inviability	Various NLR immune receptors (e.g., <i>DANGEROUS MIX 1</i>)	<i>Arabidopsis thaliana</i> (intraspecific); <i>Oryza rufipogon/O. sativa</i> ; <i>Solanum lycopersicum/S. pimpinellifolium</i> ; <i>Capsella grandiflora/C. rubella</i> ; <i>C. orientalis/C. rubella</i>	Hybrid necrosis	(Krüger et al., 2002; Bomblies et al., 2007; Todesco et al., 2010; Chae et al., 2014; Chen et al., 2014; Sicard et al., 2015; Świadek et al., 2017)
		<i>HISTIDINE BIOSYNTHESIS 6A and 6B (HISN6A/HISN6B)</i>	<i>Arabidopsis thaliana</i> (intraspecific)	Arrest of seed development	(Bikard et al., 2009; Blevins et al., 2017)
		Nucleoporins Nup96 and Nup160	<i>Drosophila melanogaster/D. simulans</i>	Hybrid lethality	(Presgraves et al., 2003; Tang and Presgraves, 2009)
		<i>Lethal hybrid rescue (Lhr)/Hybrid male rescue Drosophila melanogaster/D. simulans (Hmr)/Suppressor of Killer-of-prune [Su(Kpn)]—glutathione-S-transferase-containing FLYWCH zinc finger protein (gfz)</i>	<i>Drosophila melanogaster/D. simulans</i>	Hybrid lethality	(Barbash et al., 2003; Brideau et al., 2006; Thomae et al., 2013; Satyaki et al., 2014; Phadnis et al., 2015)
		Duplicates of <i>PLASTID TRANSCRIPTIONALLY</i> <i>Mimulus guttatus/M. nasutus ACTIVE CHROMOSOME 14 (PAC14)</i>		Hybrid lethality	(Zuellig and Sweigart, 2018a,b)
		Melanoma receptor tyrosine-protein kinase <i>Xiphophorus malinche/X. birchmannii (xmrk)</i> and <i>cd97</i>	<i>Xiphophorus malinche/X. birchmannii</i>	Hybrid lethality	(Powell et al., 2020)
		NADH dehydrogenase ubiquinone iron—sulfur protein 5 (<i>ndufs5</i>) and NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 (<i>ndufa13</i>)	<i>Xiphophorus malinche/X. birchmannii</i>	Hybrid lethality; nuclear components of a mitonuclear incompatibility	(Moran et al., 2024)
		<i>Odysseus (Ods)</i>	<i>Drosophila simulans/D. mauritiana</i>	Hybrid male sterility	(Ting et al., 1998; Sun et al., 2004; Bayes and Malik, 2009)
		<i>JYAlpha</i>	<i>Drosophila Melanogaster/D. simulans</i>	Hybrid male sterility	(Masly et al., 2006)
		<i>PR domain-containing 9 (PRDM9)</i>	<i>Mus musculus musculus/M m domesticus</i>	Hybrid male sterility	(Mihola et al., 2009)
		<i>Overdrive</i>	<i>Drosophila pseudoobscura pseudoobscura/D. pseudoobscura p. bogotana</i>	Hybrid male sterility	(Phadnis and Orr, 2009)
		<i>FOLATE TRANSPORTER 1 and 2 (FOLT1/FOLT2)</i>	<i>Arabidopsis thaliana</i> (intraspecific)	Hybrid pollen sterility	(Durand et al., 2012)

Genes were selected to illustrate the breadth of isolation barriers for which speciation genes or strong candidates have been characterized, and the table is not intended to be comprehensive. Although compelling evidence linking genotype to phenotype has been provided in all cases, the direct impact of allelic variation on RI may not be fully demonstrated for some candidates (*asterisks). That is, an impact on the prevention of fertilization or hybrid dysfunction is assumed based on the phenotypes changed by these alleles but reproductive isolation has not been explicitly examined following allelic replacement by transformation or introgression for these candidates.

Fig. 2 BDM incompatibilities evolve by multiple evolutionary mechanisms. (A) Classic BDM model where incompatible derived substitutions fix at alternative loci in each lineage, as observed for F_1 hybrid male lethality in crosses of two *Drosophila* species (Brideau et al., 2006). (B) Substitution of a derived allele at Locus A permits the evolution of a second derived allele at Locus B in the same lineage, leading to incompatibility with the ancestral allele at Locus (A) In the case study, hybrid necrosis arises in 3/16 of F_2 progeny of crosses between wild tomato species, because *bb* homozygotes are incompatible with *AA* or *Aa* genotypes (Rooney et al., 2005). (C) A succession of substitutions at a single locus leads to the evolution of an incompatibility between a derived and ancestral allele. Some loci involved in incompatibilities that cause hybrid necrosis in intraspecific crosses among *Arabidopsis thaliana* accessions likely evolved by this mechanism (Chae et al., 2014; Todesco et al., 2010). Incompatible alleles are highlighted in bold. (D) Differential sorting of ancestral polymorphisms during speciation can contribute to the origin of incompatibilities. Two ancestral balanced polymorphisms segregating in outcrossing *Capsella grandiflora* became fixed through the mating system transition and associated genetic bottleneck that occurred during the origin of the selfing species *C. rubella* (Sicard et al., 2015). Further evolution at one locus within *C. rubella* then led to the emergence derived-ancestral incompatibility.

derived alleles in a single lineage can lead to derived-ancestral incompatibilities between lineages involving two unlinked loci (e.g., Krüger et al., 2002; Phadnis and Orr, 2009; Rooney et al., 2005; Sicard et al., 2015, Fig. 2B) or multiple alleles of a single locus (e.g., Chae et al., 2014; Świadek et al., 2017; Todesco et al., 2010, Fig. 2C). Multiple examples of hybrid incompatibilities involving changes at three speciation genes have now been described as well (Moran et al., 2024; Phadnis et al., 2015).

In the classic BDM model, the time required for fixation of derived alleles is assumed to be instantaneous, relative to the time spent in allopatry, for mathematical convenience (Cutter, 2012; Orr, 2005). However, numerous empirical studies involving many well-known speciation genes have found that alleles involved in BDM incompatibilities are polymorphic (e.g., Brideau et al., 2006; Mihola et al., 2009; Phadnis and Orr, 2009; Sicard et al., 2015). In other words, only some strains will produce dysfunctional hybrids in interspecific crosses because the contributing alleles segregate within species. Moreover, intraspecific standing variation in BDM incompatibilities is often found (e.g., Bomblies et al., 2007; Jiao et al., 2021). Describing the evolutionary causes of these polymorphisms and determining whether variable reproductive isolation maintained within an ancestral lineage eventually contributes to postzygotic RI among lineages are major theoretical and empirical challenges in the field of speciation genetics (Cutter, 2012).

Diverse Evolutionary Models Supported

Because many evolutionary models in the field of speciation genetics are grounded in specific molecular mechanisms, identifying speciation genes is essential to test their biological merit. In addition, knowing key sequences facilitates the application of population genetic tests to determine whether drift, selection, and/or migration have been the predominant forces driving the evolution of RI. The speciation genes identified to date lend support to diverse processes.

Ecological Speciation

A classic model of speciation—ecological speciation—postulates that RI evolves as a byproduct of ecologically-based divergent natural selection (Schluter and Conte, 2009). In other words, the mechanism by which individual populations differentially adapt to local selection pressures is genetically linked to the evolution of RI between populations. Pleiotropy, tight physical linkage, capture by a chromosomal inversion, or one-allele assortative mating all represent alternative mechanisms by which recombination between the loci contributing to locally adaptive phenotypes and the loci causing RI may be sufficiently frustrated to allow the joint evolution of both traits (Nosil, 2012).

Speciation genes provide ample empirical evidence that supports this model for prezygotic or extrinsic postzygotic barriers. For instance, *cis*-regulatory changes that eliminate expression of mFAS, a fatty acid synthase responsible for methyl-branched cuticular

hydrocarbon production, in the humid habitat specialist *Drosophila birchii* relative to the habitat generalist *Drosophila serrata* are pleiotropic (Chung et al., 2014; Chung and Carroll, 2015). They alter both desiccation sensitivity and mate choice. Likewise, allelic differences that specialize plants to different pollinators or to alternative mating systems necessarily also reduce gene flow between plant species (e.g., Byers et al., 2014; Hoballah et al., 2007; Li and Chetelat, 2015). In *Heliconius* butterflies, wing color patterns are essential for both predation avoidance through mimicry and mate choice (Jiggins et al., 2001). Thus, genetic differences that have evolved in response to divergent selection favoring alternative mimicry patterns could lead directly to behavioral isolation between color pattern races as well as extrinsic postzygotic isolation since hybrids with intermediate, non-mimicking color patterns are more susceptible to predation (Westerman et al., 2018). However, one recent report demonstrates that interspecific differences in butterfly color pattern are caused by genetic changes distinct from those responsible for interspecific divergence in mating preference for different wing patterns (Rossi et al., 2024).

Theoretical models and experimental evolution studies both provide strong evidence that intrinsic postzygotic RI can evolve through ecological speciation as well (Dettman et al., 2007; Gavrilets, 2004; Kulmuni and Westram, 2017; Schlüter and Conte, 2009). Although several speciation genes exhibit evolutionary patterns consistent with this process, their histories may also be consistent with other models or their contribution to interspecific barriers remains to be fully affirmed (Chae et al., 2014; Lee et al., 2008).

Evolutionary Arms Races, Mutation Pressure, and Hybrid Incompatibilities

Multiple deterministic and stochastic processes may drive the fixation of alleles within lineages that cause postzygotic incompatibilities between lineages. However, incompatibilities are predicted to arise more rapidly if positive selection is involved. Consistent with this expectation, many speciation genes known to be involved in BDM incompatibilities appear to rapidly evolve within lineages due to ongoing evolutionary arms races. These patterns of substitution and counter-substitution can be driven by mutation pressure and selection to resolve genomic conflicts rather than ecological pressures (Coughlan, 2023; Presgraves, 2010). Within lineages, selfish genetic elements may parasitize host genomes through elevated transposition rates or biasing transmission in their favor through meiotic drive and gamete-killing segregation distortion. Host genomes respond to these strong selection pressures by evolving mechanisms that suppress these activities or compensate for their deleterious effects. If parasitic elements are separated from their corresponding suppressors or if different host genome compensatory mechanisms are incompatible in hybrid genetic backgrounds, dysfunction may manifest.

For instance, the speciation genes *Lhr* and *Hmr* interact as part of a protein complex that represses satellite DNA and transposable elements (TEs), and epistatic interactions between *Lhr* and *Hmr* in *Drosophila melanogaster* x *Drosophila simulans* hybrids lead to mis-expression of TEs and consequently hybrid lethality (Brideau et al., 2006; Satyaki et al., 2014; Thomae et al., 2013). Rapid co-evolution of repetitive DNA regions and the proteins that regulate their segregation during meiosis and mitosis, and other systems that compensate for mechanisms that distort chromosomal segregation patterns, have also been implicated in intrinsic postzygotic barriers (Bayes and Malik, 2009; Ferree and Barbash, 2009; Finseth et al., 2021; Fishman and Saunders, 2008; Phadnis and Orr, 2009), providing support for a prescient mechanistic model (Henikoff et al., 2001). The evolution of CMS and restorer genes reflects a similar case of postzygotic RI that evolves due to genomic conflict within lineages (Case et al., 2016; Rieseberg and Blackman, 2010). The speciation genes involved in these types of arms races—as well as host-pathogen systems related to hybrid necrosis—exhibit high levels of coding sequence divergence, often in tandem with copy number evolution. Whether the cumulative effects of all substitutions are necessary for BDM incompatibilities, or whether substitutions that cause incompatibilities are rare and only these types of genes evolve rapidly enough to hit upon them, remains an open question. Moreover, support for a driving role for genetic conflict, compared to alternative evolutionary models, is incomplete for many recent examples of one-locus incompatibilities that cause hybrid sterility through gamete killing (Sweigart et al., 2019).

Roles for Evolutionary Forces Other Than Positive Selection in the Emergence of Incompatibilities

A major role for genetic drift has been considered unlikely particularly because models predict that the waiting times for BDM incompatibilities to emerge in the absence of selection are predicted to be quite long and further lengthened in the presence of gene flow (Gavrilets, 2003). However, relaxation of purifying selection, particularly following gene or genome duplication, may accelerate rates of substitution through genetic drift. In the case of gene or genome duplication, if resolution of functional redundancy among recent duplicates occurs by gene silencing or sub-functionalization within populations such that different descendant lineages maintain function in separate map locations, postzygotic RI may also result (Lynch and Force, 2000; Werth and Windham, 1991). In this scenario, F₁ gametophytes or F₂ generation hybrids may inherit a chromosome set that lacks either a full complement of ancestral functions or any functional copy period. Examples of speciation genes consistent with this form of RI arising from gene movement driven by passive mutational silencing and/or epigenetic silencing of gene duplicates have been observed in intraspecific crosses in *Arabidopsis* and interspecific crosses among rice, monkeyflower, and *Drosophila* species (e.g., Bikard et al., 2009; Blevins et al., 2017; Durand et al., 2012; Jiao et al., 2021; Masly et al., 2006; Yamagata et al., 2010; Zuellig and Sweigart, 2018a, 2018b). However, theoretical models raise doubts about whether the differential resolution of gene duplications occurs frequently enough on time scales effective to promote speciation (Muir and Hahn, 2015). These concerns are elevated by the recent identification of additional paralogs beyond the initially described pair of duplicates for multiple intraspecific examples in *Arabidopsis thaliana* because this added copy number variation further reduces the probability that incompatible genotypic combinations are assembled (Jiao et al., 2021).

Another role for stochastic forces in speciation may be through differential sorting of polymorphisms maintained by balancing selection, as shown by a case study in the genus *Capsella* (Sicard et al., 2015). The outcrossing plant species *Capsella grandiflora* segregates for highly divergent alleles at one disease resistance locus, *NON-EXPRESSOR OF PR-GENES 1* (*NPR1*), and for a presence/absence polymorphism at a second disease resistance locus, *RECOGNITION OF PERONOSPORA PARASITICA 5* (*RPP5*; Fig. 2D). The selfing species *Capsella rubella* evolved from a common ancestor with *C. grandiflora* and as a consequence of its founding and mating system change has become fixed one allele of *NPR1* and the presence of *RPP5*. A subsequent change in *RPP5* within a subset of *C. rubella* accessions then leads to hybrid necrosis when crossed to *C. grandiflora* individuals with the *NPR1* lost in *C. rubella*. Notably, *C. rubella* is also incompatible with *Capsella orientalis*, another selfing species independently derived from an ancestor with *C. grandiflora*, because *C. orientalis* fixed the alternate *NPR1* allele. Thus, the stochastic lineage sorting of balanced polymorphisms as a result of mating system divergence and/or genetic bottlenecks appears to have facilitated the emergence of BDM incompatibilities in this system.

Hybridization as a Driver of Speciation

Reinforcement, allopolyploid speciation, and homoploid hybrid speciation are documented ways that hybridization may foster speciation. Speciation gene sequences have revealed an additional, perhaps surprising way that hybridization may actually promote the cessation of gene flow. In several cases, gene flow has facilitated the spread of alleles contributing to the evolution of RI between lineages. For instance, *optix* sequences involved in wing pattern divergence have been passed among *Heliconius* species and repeatedly re-used in the independent evolution of mimetic races (Heliconius Genome Consortium, 2012; Reed et al., 2011). Adaptive introgression has also been observed for sequences of *regucalcin1*, which regulates wing pattern mating preference in *Heliconius* (Rossi et al., 2024). In the threespine stickleback and Darwin's finches, alleles that contribute to habitat adaptation and may also contribute to behavioral isolation due to size-mediated assortative mating in these systems have also spread across populations or species through hybridization (Barrett et al., 2009; Colosimo et al., 2005; Lamichhaney et al., 2016; McKinnon et al., 2004; Schlüter and Conte, 2009). It remains to be determined whether alleles that initiate or resolve genomic conflicts similarly introgress among species and, if so, whether gene flow of such alleles would facilitate or impede the speciation process (Sweigart et al., 2019).

Conclusion

Although still modest in overall number, the set of speciation genes has grown rapidly in the last few decades. This growth is poised to continue and accelerate as reference genomes and tools for functional genomics are being established in an ever-increasing number of fascinating natural systems. Substantial organismal and evolutionary insights that confirm and challenge classic models of the speciation process have been gained from the speciation genes already in hand, and continued work in this area is sure to enrich our understanding of the genetic mechanisms and the deterministic or stochastic forces that promote the origin of species even further.

Acknowledgment

Support for this work was provided by a National Science Foundation grant to B.K.B. (IOS-2222464).

References

Agorio, A., Durand, S., Fiume, E., Brousse, C., Gy, I., Simon, M., Anava, S., Rechavi, O., Loudet, O., Camilleri, C., Bouché, N., 2017. An *Arabidopsis* natural epiallele maintained by a feed-forward silencing loop between histone and DNA. *PLoS Genet.* 13, e1006551. <https://doi.org/10.1371/journal.pgen.1006551>.

Álvarez-Ocaña, R., Shahandeh, M.P., Ray, V., Auer, T.O., Gompel, N., Benton, R., 2023. Odor-regulated oviposition behavior in an ecological specialist. *Nat. Commun.* 14, 3041. <https://doi.org/10.1038/s41467-023-38722-z>.

Amrad, A., Moser, M., Mandel, T., de Vries, M., Schuurink, R.C., Freitas, L., Kuhlemeier, C., 2016. Gain and loss of floral scent production through changes in structural genes during pollinator-mediated speciation. *Curr. Biol.* 26, 3303–3312. <https://doi.org/10.1016/j.cub.2016.10.023>.

Ansai, S., Kitano, J., 2022. Speciation and adaptation research meets genome editing. *Phil. Trans. Biol. Sci.* 377, 20200516. <https://doi.org/10.1098/rstb.2020.0516>.

Barbash, D.A., Siino, D.F., Tarone, A.M., Roote, J., 2003. A rapidly evolving MYB-related protein causes species isolation in *Drosophila*. *Proc. Natl. Acad. Sci. U S A* 100, 5302–5307. <https://doi.org/10.1073/pnas.0836927100>.

Barr, C.M., Fishman, L., 2010. The nuclear component of a cytonuclear hybrid incompatibility in *Mimulus* maps to a cluster of pentatricopeptide repeat genes. *Genetics* 184, 455–465. <https://doi.org/10.1534/genetics.109.108175>.

Barrett, R.D.H., Rogers, S.M., Schlüter, D., 2009. Environment specific pleiotropy facilitates divergence at the *Ectodysplasin* locus in threespine stickleback. *Evolution* 63, 2831–2837. <https://doi.org/10.1111/j.1558-5646.2009.00762.x>.

Bateson, W., 1909. Heredity and variation in modern lights. In: Seward, A.C. (Ed.), *Darwin and Modern Science*. Cambridge University Press, pp. 85–101.

Bayes, J.J., Malik, H.S., 2009. Altered heterochromatin binding by a hybrid sterility protein in *Drosophila* sibling species. *Science* 326, 1538–1541. <https://doi.org/10.1126/science.1181756>.

Berardi, A.E., Esfeld, K., Jäggi, L., Mandel, T., Cannarozzi, G.M., Kuhlemeier, C., 2021. Complex evolution of novel red floral color in *Petunia*. *Plant Cell* 33, 2273–2295. <https://doi.org/10.1093/plcell/koab114>.

Berdan, E.L., Aubier, T.G., Cozzolino, S., Faria, R., Feder, J.L., Giménez, M.D., Joron, M., Searle, J.B., Mérot, C., 2024. Structural variants and speciation: multiple processes at play. *Cold Spring Harbor Perspect. Biol.* 16, a041446. <https://doi.org/10.1101/cshperspect.a041446>.

Bikard, D., Patel, D., Le Mette, C., Giorgi, V., Camilleri, C., Bennett, M.J., Loudet, O., 2009. Divergent evolution of duplicate genes leads to genetic incompatibilities within *A. thaliana*. *Science* 323, 623–626. <https://doi.org/10.1126/science.1165917>.

Blevins, T., Wang, J., Pflieger, D., Pontvianne, F., Pikaard, C.S., 2017. Hybrid incompatibility caused by an epiallele. *Proc. Natl. Acad. Sci. U.S.A.* 114, 3702–3707. <https://doi.org/10.1073/pnas.1700368114>.

Bock, D.G., Cai, Z., Elphinstone, C., González-Segovia, E., Hirabayashi, K., Huang, K., Keais, G.L., Kim, A., Owens, G.L., Rieseberg, L.H., 2023. Genomics of plant speciation. *Plant Commun.* 4. <https://doi.org/10.1016/j.xplc.2023.100599>.

Bombrias, K., 2010. Doomed lovers: mechanisms of isolation and incompatibility in plants. *Annu. Rev. Plant Biol.* 61, 109–124. <https://doi.org/10.1146/annurev-arplant-042809-112146>.

Bombrias, K., Lempe, J., Epple, P., Warthmann, N., Lanz, C., Dangl, J.L., Weigel, D., 2007. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. *PLoS Biol.* 5, e236. <https://doi.org/10.1371/journal.pbio.0050236>.

Bombrias, K., Weigel, D., 2007. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. *Nat. Rev. Genet.* 8, 382–393. <https://doi.org/10.1038/nrg2082>.

Bradley, D., Xu, P., Mohorianu, I.-I., Whibley, A., Field, D., Tavares, H., Couchman, M., Copsey, L., Carpenter, R., Li, M., Li, Q., Xue, Y., Dalmay, T., Coen, E., 2017. Evolution of flower color pattern through selection on regulatory small RNAs. *Science* 358, 925–928. <https://doi.org/10.1126/science.aoa3526>.

Bradshaw, H.D., Schemske, D.W., 2003. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. *Nature* 426, 176–178. <https://doi.org/10.1038/nature02106>.

Brideau, N.J., Flores, H.A., Wang, J., Maheshwari, S., Wang, X., Barbash, D.A., 2006. Two Dobzhansky-Muller genes interact to cause hybrid lethality in *Drosophila*. *Science* 314, 1292–1295. <https://doi.org/10.1126/science.1133953>.

Byers, K.J.R.P., Vela, J.P., Peng, F., Riffell, J.A., Bradshaw, H.D., 2014. Floral volatile alleles can contribute to pollinator-mediated reproductive isolation in monkeyflowers (*Mimulus*). *Plant J.* 80, 1031–1042. <https://doi.org/10.1111/tpj.12702>.

Case, A.L., Finseth, F.R., Barr, C.M., Fishman, L., 2016. Selfish evolution of cytonuclear hybrid incompatibility in *Mimulus*. *Proc. Biol. Sci.* 283, 20161493. <https://doi.org/10.1098/rspb.2016.1493>.

Case, A.L., Willis, J.H., 2008. Hybrid male sterility in *Mimulus* (Phrymaceae) is associated with a geographically-restricted mitochondrial rearrangement. *Evolution*. <https://doi.org/10.1111/j.1558-5646.2008.00360.x>.

Chae, E., Bombrias, K., Kim, S.-T., Karelina, D., Zaidem, M., Ossowski, S., Martín-Pizarro, C., Laitinen, R.A.E., Rowan, B.A., Tenenboim, H., Lechner, S., Demar, M., Habring-Müller, A., Lanz, C., Rätsch, G., Weigel, D., 2014. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. *Cell* 159, 1341–1351. <https://doi.org/10.1016/j.cell.2014.10.049>.

Chapman, M.A., Hiscock, S.J., Filatov, D.A., 2013. Genomic divergence during speciation driven by adaptation to altitude. *Mol. Biol. Evol.* 30, 2553–2567. <https://doi.org/10.1093/molbev/mst168>.

Chen, C., Chen, H., Lin, Y.-S., Shen, J.-B., Shan, J.-X., Qi, P., Shi, M., Zhu, M.-Z., Huang, X.-H., Feng, Q., Han, B., Jiang, L., Gao, J.-P., Lin, H.-X., 2014. A two-locus interaction causes interspecific hybrid weakness in rice. *Nat. Commun.* 5, 3357. <https://doi.org/10.1038/ncomms4357>.

Chung, H., Carroll, S.B., 2015. Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. *Bioessays* 37, 822–830. <https://doi.org/10.1002/bies.201500014>.

Chung, H., Loehlin, D.W., Dufour, H.D., Vaccarro, K., Millar, J.G., Carroll, S.B., 2014. A single gene affects both ecological divergence and mate choice in *Drosophila*. *Science* 343, 1148–1151. <https://doi.org/10.1126/science.1249998>.

Colosimo, P.F., Hosemann, K.E., Balabhadra, S., Villarreal, G., Dickson, M., Grimwood, J., Schmutz, J., Myers, R.M., Schlüter, D., Kingsley, D.M., 2005. Widespread parallel evolution in sticklebacks by repeated fixation of *Ectodysplasin* alleles. *Science* 307, 1928–1933. <https://doi.org/10.1126/science.1107239>.

Combs, P.A., Krupp, J.J., Khosla, N.M., Bua, D., Petrov, D.A., Levine, J.D., Fraser, H.B., 2018. Tissue-specific *cis*-regulatory divergence implicates *eloF* in inhibiting interspecies mating in *Drosophila*. *Curr. Biol.* 28, 3969–3975. <https://doi.org/10.1016/j.cub.2018.10.036>.

Coughlan, J.M., 2023. The role of conflict in shaping plant biodiversity. *New Phytol.* 240, 2210–2217. <https://doi.org/10.1111/nph.19233>.

Coyne, J.A., Orr, H.A., 2004. Speciation. Sinauer Associates, Inc., Sunderland, Massachusetts, USA.

Cruickshank, T.E., Hahn, M.W., 2014. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. *Mol. Ecol.* 23, 3133–3157. <https://doi.org/10.1111/mec.12796>.

Cutter, A.D., 2023. Speciation and development. *Evol. Dev.* 25, 289–327. <https://doi.org/10.1111/ede.12454>.

Cutter, A.D., 2012. The polymorphic prelude to Bateson-Dobzhansky-Muller incompatibilities. *Trends Ecol. Evol.* 27, 209–218. <https://doi.org/10.1016/j.tree.2011.11.004>.

Dettman, J.R., Sirjus Singh, C., Kohn, L.M., Anderson, J.B., 2007. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. *Nature* 447, 585–588. <https://doi.org/10.1038/nature05856>.

Ding, Y., Berrocal, A., Morita, T., Longden, K.D., Stern, D.L., 2016. Natural courtship song variation caused by an intronic retroelement in an ion channel gene. *Nature* 536, 329–332. <https://doi.org/10.1038/nature19093>.

Dobzhansky, T., 1936. Studies on hybrid sterility. II. Localization of sterility factors in *Drosophila pseudoobscura* hybrids. *Genetics* 21, 113–135.

Durand, S., Bouché, N., Perez Strand, E., Loudet, O., Camilleri, C., 2012. Rapid establishment of genetic incompatibility through natural epigenetic variation. *Curr. Biol.* 22, 326–331. <https://doi.org/10.1016/j.cub.2011.12.054>.

Durand, S., Ricou, A., Simon, M., Dehaene, N., Budar, F., Camilleri, C., 2021. A restorer-of-fertility-like pentatricopeptide repeat protein promotes cytoplasmic male sterility in *Arabidopsis thaliana*. *Plant J.* 105, 124–135. <https://doi.org/10.1111/tpj.15045>.

Esfeld, K., Berardi, A.E., Moser, M., Bossolini, E., Freitas, L., Kuhlemeyer, C., 2018. Pseudogenization and resurrection of a speciation gene. *Curr. Biol.* 28, 3776–3786. <https://doi.org/10.1016/j.cub.2018.10.019>.

Ferree, P.M., Barbash, D.A., 2009. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in *Drosophila*. *PLoS Biol.* 7, e1000234. <https://doi.org/10.1371/journal.pbio.1000234>.

Finseth, F.R., Nelson, T.C., Fishman, L., 2021. Selfish chromosomal drive shapes recent centromeric histone evolution in monkeyflowers. *PLoS Genet.* 17, e1009418. <https://doi.org/10.1371/journal.pgen.1009418>.

Fishman, L., Saunders, A., 2008. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. *Science* 322, 1559–1562. <https://doi.org/10.1126/science.1161406>.

Fishman, L., Sweigart, A.L., 2018. When two rights make a wrong: the evolutionary genetics of plant hybrid incompatibilities. *Annu. Rev. Plant Biol.* 69, 707–731. <https://doi.org/10.1146/annurev-arplant-042817-040113>.

Flachs, P., Mihola, O., Simeček, P., Gregorová, S., Schimenti, J.C., Matsui, Y., Baudat, F., de Massy, B., Píálek, J., Forejt, J., Trachulec, Z., 2012. Interallelic and intergenic incompatibilities of the *Prdm9* (*Hst7*) gene in mouse hybrid sterility. *PLoS Genet.* 8, e1003044. <https://doi.org/10.1371/journal.pgen.1003044>.

Gavrilets, S., 2003. Perspective: models of speciation: what have we learned in 40 years? *Evolution* 57, 2197–2215. <https://doi.org/10.1111/j.0014-3820.2003.tb00233.x>.

Gavrilets, S., 2004. Fitness Landscapes and the Origin of Species, Monographs in Population Biology. Princeton University Press, Princeton.

Heliconius Genome Consortium, 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. *Nature* 487, 94–98. <https://doi.org/10.1038/nature11041>.

Hench, K., Vargas, M., Höppner, M.P., McMillan, W.O., Puebla, O., 2019. Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. *Nat. Ecol. Evol.* 3, 657–667. <https://doi.org/10.1038/s41559-019-0814-5>.

Henikoff, S., Ahmad, K., Malik, H.S., 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. *Science* 293, 1098–1102. <https://doi.org/10.1126/science.1062939>.

Hoballah, M.E., Gübitz, T., Stuurman, J., Broger, L., Barone, M., Mandel, T., Dell'Olivo, A., Arnold, M., Kuhlemeier, C., 2007. Single gene-mediated shift in pollinator attraction in *Petunia*. *Plant Cell* 19, 779–790. <https://doi.org/10.1105/tpc.106.048694>.

Hopkins, R., Rausher, M.D., 2012. Pollinator-mediated selection on flower color allele drives reinforcement. *Science* 335, 1090–1092. <https://doi.org/10.1126/science.1215198>.

Hopkins, R., Rausher, M.D., 2011. Identification of two genes causing reinforcement in the Texas wildflower *Phlox drummondii*. *Nature* 469, 411–414. <https://doi.org/10.1038/nature09641>.

Jiao, W.-B., Patel, V., Klasen, J., Liu, F., Pecinkova, P., Ferrand, M., Gy, I., Camilleri, C., Effgen, S., Koornneef, M., Pecinka, A., Loudet, O., Schneeberger, K., 2021. The evolutionary dynamics of genetic incompatibilities introduced by duplicated genes in *Arabidopsis thaliana*. *Mol. Biol. Evol.* 38, 1225–1240. <https://doi.org/10.1093/molbev/msaa306>.

Jiggins, C.D., Naisbit, R.E., Coe, R.L., Mallet, J., 2001. Reproductive isolation caused by colour pattern mimicry. *Nature* 411, 302–305. <https://doi.org/10.1038/35077075>.

Kanaoka, M.M., Kawano, N., Matsubara, Y., Susaki, D., Okuda, S., Sasaki, N., Higashiyama, T., 2011. Identification and characterization of *TcCRP1*, a pollen tube attractant from *Torenia concolor*. *Ann. Bot.* 108, 739–747. <https://doi.org/10.1093/aob/mcr111>.

Kitano, J., Ishikawa, A., Ravinet, M., Courtier-Orgogozo, V., 2022. Genetic basis of speciation and adaptation: from loci to causative mutations. *Phil. Trans. Biol. Sci.* 377, 20200503. <https://doi.org/10.1098/rstb.2020.0503>.

Klahre, U., Gurba, A., Hermann, K., Saxenhofer, M., Bossolini, E., Guerin, P.M., Kuhlemeier, C., 2011. Pollinator choice in *Petunia* depends on two major genetic loci for floral scent production. *Curr. Biol.* 21, 730–739. <https://doi.org/10.1016/j.cub.2011.03.059>.

Kronforst, M.R., Young, L.G., Kapan, D.D., McNeely, C., O'Neill, R.J., Gilbert, L.E., 2006. Linkage of butterfly mate preference and wing color preference cue at the genomic location of *wingless*. *Proc. Natl. Acad. Sci. U.S.A.* 103, 6575–6580. <https://doi.org/10.1073/pnas.0509685103>.

Krüger, J., Thomas, C.M., Golstein, C., Dixon, M.S., Smoker, M., Tang, S., Mulder, L., Jones, J.D.G., 2002. A tomato cysteine protease required for *Cf-2*-dependent disease resistance and suppression of autonecrosis. *Science* 296, 744–747. <https://doi.org/10.1126/science.1069288>.

Kulmuni, J., Westram, A.M., 2017. Intrinsic incompatibilities evolving as a by-product of divergent ecological selection: considering them in empirical studies on divergence with gene flow. *Mol. Ecol.* 26, 3093–3103. <https://doi.org/10.1111/mec.14147>.

Lamichhaney, S., Han, F., Berglund, J., Wang, C., Almén, M.S., Webster, M.T., Grant, B.R., Grant, P.R., Andersson, L., 2016. A beak size locus in Darwin's finches facilitated character displacement during a drought. *Science* 352, 470–474. <https://doi.org/10.1126/science.aad8786>.

Lee, H.-Y., Chou, J.-Y., Cheong, L., Chang, N.-H., Yang, S.-Y., Leu, J.-Y., 2008. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. *Cell* 135, 1065–1073. <https://doi.org/10.1016/j.cell.2008.10.047>.

Lessios, H.A., 2011. Speciation genes in free-spawning marine invertebrates. *Integr. Comp. Biol.* 51, 456–465. <https://doi.org/10.1093/icb/icr039>.

Li, W., Chetelat, R.T., 2015. Unilateral incompatibility gene *uit.1* encodes an S-locus F-box protein expressed in pollen of *Solanum* species. *Proc. Natl. Acad. Sci. U.S.A.* 112, 4417–4422. <https://doi.org/10.1073/pnas.1423301112>.

Li, W., Chetelat, R.T., 2010. A pollen factor linking inter- and intraspecific pollen rejection in tomato. *Science* 330, 1827–1830. <https://doi.org/10.1126/science.1197908>.

Liang, M., Chen, W., LaFountain, A.M., Liu, Y., Peng, F., Xia, R., Bradshaw, H.D., Yuan, Y.-W., 2023. Taxon-specific, phased siRNAs underlie a speciation locus in monkeyflowers. *Science* 379, 576–582. <https://doi.org/10.1126/science.adf1323>.

Liu, B., Li, M., Qiu, J., Xue, J., Liu, W., Cheng, Q., Zhao, H., Xue, Y., Nasrallah, M.E., Nasrallah, J.B., Liu, P., 2024. A pollen selection system links self and interspecific incompatibility in the Brassicaceae. *Nat. Ecol. Evol.* 8, 1129–1139. <https://doi.org/10.1038/s41559-024-02399-4>.

Lüthi, M.N., Berardi, A.E., Mandel, T., Freitas, L.B., Kuhlemeier, C., 2022. Single gene mutation in a plant MYB transcription factor causes a major shift in pollinator preference. *Curr. Biol.* 32, 5295–5308. <https://doi.org/10.1016/j.cub.2022.11.006>.

Lynch, M., Force, A., 2000. The probability of duplicate gene preservation by sunfunctionalization. *Genetics* 154, 459–473. <https://doi.org/10.1093/genetics/154.1.459>.

Maheshwari, S., Barbash, D.A., 2011. The genetics of hybrid incompatibilities. *Annu. Rev. Genet.* 45, 331–355. <https://doi.org/10.1146/annurev-genet-110410-132514>.

Masly, J.P., Jones, C.D., Noor, M.A.F., Locke, J., Orr, H.A., 2006. Gene transposition as a cause of hybrid sterility in *Drosophila*. *Science* 313, 1448–1450. <https://doi.org/10.1126/science.1128721>.

Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T., Fuyama, Y., 2007. Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in *Drosophila sechellia*. *PLoS Biol.* 5, e118. <https://doi.org/10.1371/journal.pbio.0050118>.

McKinnon, J.S., Mori, S., Blackman, B.K., David, L., Kingsley, D.M., Jamieson, L., Chou, J., Schluter, D., 2004. Evidence for ecology's role in speciation. *Nature* 429, 294–298.

Merrill, R.M., Arenas-Castro, H., Feller, A.F., Harenčar, J., Rossi, M., Streisfeld, M.A., Kay, K.M., 2024. Genetics and the evolution of prezygotic isolation. *Cold Spring Harbor Perspect. Biol.* 16, a041439. <https://doi.org/10.1101/cshperspect.a041439>.

Mihola, O., Trachtač, Z., Vlcek, C., Schimenti, J.C., Forejt, J., 2009. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. *Science* 323, 373–375. <https://doi.org/10.1126/science.1163601>.

Moran, B.M., Payne, C.Y., Powell, D.L., Iverson, E.N.K., Donny, A.E., Banerjee, S.M., Langdon, Q.K., Gunn, T.R., Rodriguez-Soto, R.A., Madero, A., Baczenas, J.J., Kleczko, K.M., Liu, F., Matney, R., Singhal, K., Leib, R.D., Hernandez-Perez, O., Corbett-Detig, R., Frydman, J., Gifford, C., Schartl, M., Havird, J.C., Schumer, M., 2024. A lethal mitonuclear incompatibility in complex I of natural hybrids. *Nature* 626, 119–127. <https://doi.org/10.1038/s41586-023-06895-8>.

Moyle, L.C., Jewell, C.P., Kostyuk, J.L., 2014. Fertile approaches to dissecting mechanisms of premating and postmating prezygotic reproductive isolation. *Curr. Opin. Plant Biol.* 18, 16–23. <https://doi.org/10.1016/j.pbi.2013.12.005>.

Muir, C.D., Hahn, M.W., 2015. The limited contribution of reciprocal gene loss to increased speciation rates following whole-genome duplication. *Am. Nat.* 185, 70–86. <https://doi.org/10.1086/679108>.

Muller, H.J., 1942. Isolating mechanisms, evolution and temperature. *Biol. Symp.* 6, 71–125.

Noor, M.A.F., Feder, J.L., 2006. Speciation genetics: evolving approaches. *Nat. Rev. Genet.* 7, 851–861. <https://doi.org/10.1038/nrg1968>.

Nosil, P., 2012. Ecological Speciation. Oxford University Press.

Nosil, P., Schlüter, D., 2011. The genes underlying the process of speciation. *Trends Ecol. Evol.* 26, 160–167. <https://doi.org/10.1016/j.tree.2011.01.001>.

Oliver, P.L., Goodstadt, L., Bayes, J.J., Birtle, Z., Roach, K.C., Phadnis, N., Beatson, S.A., Lunter, G., Malik, H.S., Ponting, C.P., 2009. Accelerated evolution of the *Prdm9* speciation gene across diverse metazoan taxa. *PLoS Genet.* 5, e1000753. <https://doi.org/10.1371/journal.pgen.1000753>.

Orr, H., Masly, J., Presgraves, D., 2004. Speciation genes. *Curr. Opin. Genet. Dev.* 14, 675–679. <https://doi.org/10.1016/j.gde.2004.08.009>.

Orr, H.A., 2005. The genetic basis of reproductive isolation: insights from *Drosophila*. *Proc. Natl. Acad. Sci. U.S.A.* 102 (1), 6522–6526. <https://doi.org/10.1073/pnas.0501893102>.

Orr, H.A., Presgraves, D.C., 2000. Speciation by postzygotic isolation: forces, genes and molecules. *Bioessays* 22, 1085–1094. [https://doi.org/10.1002/1521-1878\(200012\)22:12<1085::AID-BIE6>3.0.CO;2-G](https://doi.org/10.1002/1521-1878(200012)22:12<1085::AID-BIE6>3.0.CO;2-G).

Palumbi, S.R., 2009. Speciation and the evolution of gamete recognition genes: pattern and process. *Heredity* 102, 66–76. <https://doi.org/10.1038/hdy.2008.104>.

Phadnis, N., Baker, E.P., Cooper, J.C., Frizzell, K.A., Hsieh, E., de la Cruz, A.F.A., Shendure, J., Kitzman, J.O., Malik, H.S., 2015. An essential cell cycle regulation gene causes hybrid inviability in *Drosophila*. *Science* 350, 1552–1555. <https://doi.org/10.1126/science.aac7504>.

Phadnis, N., Orr, H.A., 2009. A single gene causes both male sterility and segregation distortion in *Drosophila* hybrids. *Science* 323, 376–379. <https://doi.org/10.1126/science.1163934>.

Powell, D.L., García-Olazábal, M., Keegan, M., Reilly, P., Du, K., Díaz-Loyo, A.P., Banerjee, S., Blakkan, D., Reich, D., Andolfatto, P., Rosenthal, G.G., Schartl, M., Schumer, M., 2020. Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish. *Science* 368, 731–736. <https://doi.org/10.1126/science.aba5216>.

Presgraves, D.C., 2010. The molecular evolutionary basis of species formation. *Nat. Rev. Genet.* 11, 175–180. <https://doi.org/10.1038/nrg2718>.

Presgraves, D.C., Balagopalan, L., Abmayr, S.M., Orr, H.A., 2003. Adaptive evolution drives divergence of a hybrid inviability gene between two species of *Drosophila*. *Nature* 423, 715–719. <https://doi.org/10.1038/nature01679>.

Quattrochio, F., Wing, J., van der Woude, K., Souer, E., de Vetten, N., Mol, J., Koes, R., 1999. Molecular analysis of the *anthocyanin2* gene of petunia and its role in the evolution of flower color. *Plant Cell* 11, 1433–1444.

Reed, R.D., Papa, R., Martin, A., Hines, H.M., Counterman, B.A., Pardo-Diaz, C., Jiggins, C.D., Chamberlain, N.L., Kronforst, M.R., Chen, R., Halder, G., Nijhout, H.F., McMillan, W.O., 2011. *Optix* drives the repeated convergent evolution of butterfly wing pattern mimicry. *Science* 333, 1137–1141. <https://doi.org/10.1126/science.1208227>.

Rieseberg, L.H., Blackman, B.K., 2010. Speciation genes in plants. *Ann. Bot.* 106, 439–455. <https://doi.org/10.1093/aob/mcq126>.

Rooney, H.C.E., Van't Klooster, J.W., van der Hoorn, R.A.L., Joosten, M.H.A.J., Jones, J.D.G., de Wit, P.J.G.M., 2005. *Cladosporium Avr2* inhibits tomato *Rcr3* protease required for *Cf-2*-dependent disease resistance. *Science* 308, 1783–1786. <https://doi.org/10.1126/science.1111404>.

Rossi, M., Hausmann, A.E., Alcamí, P., Moest, M., Roussou, R., Van Belleghem, S.M., Wright, D.S., Kuo, C.-Y., Lozano-Urrego, D., Maulana, A., Melo-Flórez, L., Rueda-Muñoz, G., McMahon, S., Linares, M., Osman, C., McMillan, W.O., Pardo-Diaz, C., Salazar, C., Merrill, R.M., 2024. Adaptive introgression of a visual preference gene. *Science* 383, 1368–1373. <https://doi.org/10.1126/science.adj9201>.

Satyaki, P.R.V., Cuykendall, T.N., Wei, K.H.-C., Bridea, N.J., Kwak, H., Aruna, S., Ferree, P.M., Ji, S., Barbash, D.A., 2014. The *Hmr* and *Lhr* hybrid incompatibility genes suppress a broad range of heterochromatic repeats. *PLoS Genet.* 10, e1004240. <https://doi.org/10.1371/journal.pgen.1004240>.

Schlüter, D., Conte, G.L., 2009. Genetics and ecological speciation. *Proc. Natl. Acad. Sci. U.S.A.* 106, 9955–9962. <https://doi.org/10.1073/pnas.0901264106>.

Schwinn, K., Venail, J., Shang, Y., Mackay, S., Alm, V., Butelli, E., Oyama, R., Bailey, P., Davies, K., Martin, C., 2006. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus *Antirrhinum*. *Plant Cell* 18, 831–851. <https://doi.org/10.1105/tpc.105.039255>.

Seehausen, O., Butlin, R.K., Keller, I., Wagner, C.E., Boughman, J.W., Hohenlohe, P.A., Peichel, C.L., Sætre, G.-P., Bank, C., Bränström, A., Brelsford, A., Clarkson, C.S., Eroukhmanoff, F., Feder, J.L., Fischer, M.C., Foote, A.D., Franchini, P., Jiggins, C.D., Jones, F.C., Lindholm, A.K., Lucek, K., Maan, M.E., Marques, D.A., Martin, S.H., Matthews, B., Meier, J.I., Möst, M., Nachman, M.W., Nonaka, E., Rennison, D.J., Schwarzer, J., Watson, E.T., Westram, A.M., Widmer, A., 2014. Genomics and the origin of species. *Nat. Rev. Genet.* 15, 176–192. <https://doi.org/10.1038/nrg3644>.

Sheehan, H., Moser, M., Klahre, U., Esfeld, K., Dell'Olivo, A., Mandel, T., Metzger, S., Vandenbussche, M., Freitas, L., Kuhlemeier, C., 2016. *MYB-FL* controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation. *Nat. Genet.* 48, 159–166. <https://doi.org/10.1038/ng.3462>.

Sicard, A., Kappel, C., Josephs, E.B., Lee, Y.W., Marona, C., Stinchcombe, J.R., Wright, S.I., Lenhard, M., 2015. Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in *Capella*. *Nat. Commun.* 6, 7960. <https://doi.org/10.1038/ncomms8960>.

Streisfeld, M.A., Young, W.N., Sobel, J.M., 2013. Divergent Selection Drives Genetic Differentiation in an R2R3-MYB transcription factor that contributes to incipient speciation in *Mimulus aurantiacus*. *PLoS Genet.* 9, e1003385. <https://doi.org/10.1371/journal.pgen.1003385>.

Sun, S., Ting, C.-T., Wu, C.-I., 2004. The normal function of a speciation gene, *Odysseus*, and its hybrid sterility effect. *Science* 305, 81–83. <https://doi.org/10.1126/science.1093904>.

Sweigart, A.L., Brandvain, Y., Fishman, L., 2019. Making a murderer: the evolutionary framing of hybrid gamete-killers. *Trends Genet.* 35, 245–252. <https://doi.org/10.1016/j.tig.2019.01.004>.

Świadek, M., Proost, S., Sieh, D., Yu, J., Todesco, M., Jorzig, C., Rodriguez Cubillos, A.E., Plötner, B., Nikoloski, Z., Chae, E., Giavalisco, P., Fischer, A., Schröder, F., Kim, S.-T., Weigel, D., Laitinen, R.A.E., 2017. Novel allelic variants in *ACD6* cause hybrid necrosis in local collection of *Arabidopsis thaliana*. *New Phytol.* 213, 900–915. <https://doi.org/10.1111/nph.14155>.

Takeuchi, H., Higashiyama, T., 2012. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in *Arabidopsis*. *PLoS Biol.* 10, e1001449.

Tang, S., Presgraves, D.C., 2009. Evolution of the *Drosophila* nuclear pore complex results in multiple hybrid incompatibilities. *Science* 323, 779–782. <https://doi.org/10.1126/science.1169123>.

Teeter, K.C., Thibodeau, L.M., Gompert, Z., Buerkle, C.A., Nachman, M.W., Tucker, P.K., 2010. The variable genomic architecture of isolation between hybridizing species of house mice. *Evolution* 64, 472–485. <https://doi.org/10.1111/j.1558-5646.2009.00846.x>.

Thomae, A.W., Schade, G.O.M., Padeken, J., Borath, M., Vetter, I., Kremmer, E., Heun, P., Imhof, A., 2013. A pair of centromeric proteins mediates reproductive isolation in *Drosophila* species. *Dev. Cell* 27, 412–424. <https://doi.org/10.1016/j.devcel.2013.10.001>.

Ting, C.T., Tsaur, S.C., Wu, M.L., Wu, C.I., 1998. A rapidly evolving homeobox at the site of a hybrid sterility gene. *Science* 282, 1501–1504.

Todesco, M., Balasubramanian, S., Hu, T.T., Traw, M.B., Horton, M., Epple, P., Kuhns, C., Sureshkumar, S., Schwartz, C., Lanz, C., Laitinen, R.A.E., Huang, Y., Chory, J., Lipka, V., Borevitz, J.O., Dangl, J.L., Bergelson, J., Nordborg, M., Weigel, D., 2010. Natural allelic variation underlying a major fitness trade-off in *Arabidopsis thaliana*. *Nature* 465, 632–636.

Turner, L.M., White, M.A., Tautz, D., Payseur, B.A., 2014. Genomic networks of hybrid sterility. *PLoS Genet.* 10, e1004162. <https://doi.org/10.1371/journal.pgen.1004162>.

Turner, T.L., 2014. Fine-mapping natural alleles: quantitative complementation to the rescue. *Mol. Ecol.* 23, 2377–2382. <https://doi.org/10.1111/mec.12719>.

Van Belleghem, S.M., Ruggieri, A.A., Concha, C., Livraghi, L., Hebberecht, L., Rivera, E.S., Ogilvie, J.G., Hanly, J.J., Warren, I.A., Planas, S., Ortiz-Ruiz, Y., Reed, R., Lewis, J.J., Jiggins, C.D., Counterman, B.A., McMillan, W.O., Papa, R., 2023. High level of novelty under the hood of convergent evolution. *Science* 379, 1043–1049. <https://doi.org/10.1126/science.adc0004>.

van Schooten, B., Meléndez-Rosa, J., Van Belleghem, S.M., Jiggins, C.D., Tan, J.D., McMillan, W.O., Papa, R., 2020. Divergence of chemosensing during the early stages of speciation. *Proc. Natl. Acad. Sci. U.S.A.* 117, 16438–16447. <https://doi.org/10.1073/pnas.1921318117>.

Wang, J., Tian, L., Lee, H.-S., Chen, Z.J., 2006. Nonadditive regulation of *FLC* Loci mediates flowering-time variation in *Arabidopsis* allopolyploids. *Genetics* 173, 965–974. <https://doi.org/10.1534/genetics.106.056580>.

Wessinger, C.A., Rausher, M.D., 2015. Ecological transition predictably associated with gene degeneration. *Mol. Biol. Evol.* 32, 347–354. <https://doi.org/10.1093/molbev/msu298>.

Werth, C.R., Windham, 1991. A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. *Am. Nat.* 137, 515–526. <https://doi.org/10.1086/285180>.

Wessinger, C.A., Rausher, M.D., 2014. Predictability and irreversibility of genetic changes associated with flower color evolution in *Penstemon barbatus*. *Evolution* 68, 1058–1070. <https://doi.org/10.1111/evo.12340>.

Westerman, E.L., VanKuren, N.W., Massardo, D., Tenger-Trolander, A., Zhang, W., Hill, R.I., Perry, M., Bayala, E., Barr, K., Chamberlain, N., Douglas, T.E., Buerkle, N., Palmer, S.E., Kronforst, M.R., 2018. *Aristaless* controls butterfly wing color variation used in mimicry and mate choice. *Curr. Biol.* 28, 3469–3474. <https://doi.org/10.1016/j.cub.2018.08.051>.

Wu, C.-I., Ting, C.-T., 2004. Genes and speciation. *Nat. Rev. Genet.* 5, 114–122. <https://doi.org/10.1038/nrg1269>.

Xu, S., Schlüter, P.M., Grossniklaus, U., Schiestl, F.P., 2012. The genetic basis of pollinator adaptation in a sexually deceptive orchid. *PLoS Genet.* 8, e1002889. <https://doi.org/10.1371/journal.pgen.1002889>.

Yamagata, Y., Yamamoto, E., Aya, K., Win, K.T., Doi, K., Sobral, Ito, T., Kanamori, H., Wu, J., Matsumoto, T., Matsuoka, M., Ashikari, M., Yoshimura, A., 2010. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice. *Proc. Natl. Acad. Sci. U.S.A.* 107, 1494–1499. <https://doi.org/10.1073/pnas.0908283107>.

Yarahmadov, T., Robinson, S., Hanemian, M., Pulver, V., Kuhlemeier, C., 2020. Identification of transcription factors controlling floral morphology in wild *Petunia* species with contrasting pollination syndromes. *Plant J.* 104, 289–301. <https://doi.org/10.1111/pj.14962>.

Yuan, Y.-W., Byers, K.J.R.P., Bradshaw, H.D., 2013a. The genetic control of flower-pollinator specificity. *Curr. Opin. Plant Biol.* 16, 422–428. <https://doi.org/10.1016/j.jopb.2013.05.004>.

Yuan, Y.-W., Rebocho, A.B., Sagawa, J.M., Stanley, L.E., Bradshaw, H.D., 2016. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between *Mimulus* species. *Proc. Natl. Acad. Sci. U.S.A.* 113, 2448–2453. <https://doi.org/10.1073/pnas.1515294113>.

Yuan, Y.-W., Sagawa, J.M., Young, R.C., Christensen, B.J., Bradshaw, H.D., 2013b. Genetic dissection of a major anthocyanin QTL contributing to pollinator-mediated reproductive isolation between sister species of *Mimulus*. *Genetics* 194, 255–263. <https://doi.org/10.1534/genetics.112.146852>.

Zhang, L., Reifová, R., Halenková, Z., Gompert, Z., 2021. How important are structural variants for speciation? *Genes* 12, 1084. <https://doi.org/10.3390/genes12071084>.

Zuellig, M.P., Sweigart, A.L., 2018a. A two-locus hybrid incompatibility is widespread, polymorphic, and active in natural populations of *Mimulus*. *Evolution* 72, 2394–2405. <https://doi.org/10.1111/evo.13596>.

Zuellig, M.P., Sweigart, A.L., 2018b. Gene duplicates cause hybrid lethality between sympatric species of *Mimulus*. *PLoS Genet.* 14, e1007130. <https://doi.org/10.1371/journal.pgen.1007130>.