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We prove that the Fubini—Study currents associated to a sequence of singular
Hermitian holomorphic line bundles on a compact normal Moishezon space dis-
tribute asymptotically as the curvature currents of their metrics.
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1. INTRODUCTION

Let (L, h) be a positive Hermitian holomorphic line bundle on a projective
manifold X and set (LP, h?) = (L®P, h®P). Kodaira’s embedding theorem states
that for all p sufficiently large, the Kodaira map ®, : X — IE"(HO(X7 Lp)*)
associated to (LP,hP) is an embedding. Hence, one can consider the Fubini-
Study forms on X, v, = ®}(wrs), where wrg denotes the Fubini-Study form
on a projective space. A celebrated theorem of Tian (see [33]) shows that
%yp — c1(L,h) as p — oo, in the C? topology on X (see also [29] for the
C* topology). Tian’s theorem follows from the first term asymptotics of the
Bergman kernel function associated to the space H°(X, LP) endowed with the
inner product determined by AP and a volume form on X. We refer to the
book [24] for an exposition of these topics as well as for the full asymptotic
expansion of the Bergman kernel in different contexts.

In [7], we extended Tian’s theorem to the case when (L, h) is a singular
Hermitian holomorphic line bundle with strictly positive curvature current on
a compact Kéhler manifold X, the above convergence now being in the weak
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sense of currents. Later, we extended Tian’s theorem further to general classes
of compact Kéhler spaces X [8, 9]. In all these situations, one has to replace
the space H°(X, L?) with the Bergman space H (02) (X, LP) of square integrable
holomorphic sections. See [21] for a version of Tian’s theorem for CR manifolds.

In [9, Theorem 1.1], we generalized Tian’s theorem by considering se-
quences (Ly, hy), p > 1, of singular Hermitian holomorphic line bundles over a
compact normal Kéhler space X, in place of the sequence of powers (LP, hP) of
a line bundle (L, h). Assuming that the curvature currents ci(Ly, hy) satisfy a
natural growth condition, we proved that the Fubini-Study currents -, asso-
ciated to the Bergman spaces H (02)(X ,Lp) (see (4)) distribute asymptotically
like ¢1(Lp, hyp).

The purpose of this note is to show that the preceding result holds more
generally for compact normal spaces X which are not assumed to be Kahler.
The precise setting is the following:

(A) X is a compact, reduced, irreducible, normal complex space of di-
mension n, X;e; denotes the set of regular points of X, X, denotes the set
of singular points of X, and w is a Hermitian form on X.

(B) (Lp, hp), p > 1, is a sequence of holomorphic line bundles on X with
singular Hermitian metrics h, whose curvature currents verify

> i = 0.
(1) c1(Lp, hy) > apw on X, where a, > 0 and plggo a, = 00

We let Ay, = [y c1(Lp, hp) Aw"™ ! and assume that
(2) 3Ty € T(X) such that ¢ (Ly, hy) < ATy, Vp>1.

Condition (B) implies that L, are big line bundles, hence X is a Moishezon
space.

Let d° := 3 (0 — ), so dd° = L9d. We consider currents on X in
the sense of [13], and denote by 7 (X) the set of positive closed currents of
bidegree (1,1) on X which have local plurisubharmonic (psh) potentials, i.e.,
T = ddv holds in a neighborhood of each point of X for some psh function v.
We refer to [9, Section 2.1]) for a review of the notions of differential forms,
psh functions and currents on complex spaces. We denote by PSH(U) the set
of psh functions on an open set U C X. The notions of singular Hermitian
metric on a line bundle over a complex space X, and its curvature current, are
defined as in the case when X is smooth (see [14], [9, Section 2.2]).

Let H (02) (X, Lp) be the Bergman space of L2-holomorphic sections of L,
relative to the metric h;, and the volume form induced by w on X,

H?Q) (X7 Lp) = H&) (X7 va hp7 wn)

(3) w”
~{semL,) - 1812 = [ 15, % < oo},
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endowed with the obvious inner product. Let P,,7, be the Bergman kernel
function and the Fubini-Study current of the space H ?2) (X,Lp,). They are
defined as follows.

Let ST, ... ,Sgp be an orthonormal basis of HE)Q) (X,Lp). If z € X let ¢,
be a holomorphic frame of L, on a neighborhood U, of x and write Sf = s? ep

with 7 € Ox(Up). Then

dp

d
1. . L
() Pa) = 187, « pl, = 5 oo 3 11 ).
j=1

j=1

We have that P,, v, are independent of the choice of basis. Moreover, v, =
3 (wrs), where @), : X --» IP’(H(OQ)(X, Ly)*) is the (meromorphic) Kodaira
map associated to the Bergman space H ?2)(X ,Lp).

Our main result is the following theorem.

THEOREM 1.1. Assume that X,w, (Ly, hy), p > 1, satisfy conditions (A)-
(B). Then the following hold:

: 1 : 1 n
(i) a; log P, = 0 as p— o0, in L (X,w").
(ii) Aip (vp — c1(Lp, hp)) = 0 as p — oo, in the weak sense of currents on X.

Note that a complex space X that verifies (A)-(B) is a Moishezon space.
Thus, Theorem 1.1 applies to any compact normal Moishezon space X, which
is not necessarily assumed to be Kahler. Indeed, a singular Hermitian holomor-
phic line bundle (Ly, h,) over X with strictly positive curvature current as in
(1) is big, hence X is Moishezon (see, e.g., [9, Proposition 2.3], [4, Propositions
3.2 and 3.3]). We recall that a (reduced) compact irreducible complex space X
of dimension n is called a Moishezon space if there exist n algebraically inde-
pendent meromorphic functions on X (see [34, Definition 3.5], [4, Section 3]).
We refer to [4, Section 3] and the references therein for the definition and some
basic properties of big line bundles over complex spaces.

Theorem 1.1 is proved in Section 2. An important special case is pro-
vided by the sequence of powers (L, h,) = (LP,h”) of a singular Hermitian
holomorphic line bundle (L,h) with strictly positive curvature current. See
Theorem 3.1 in Section 3, which gives a full generalization of Tian’s theorem
to the singular setting. We recall in Section 3 a few other important applica-
tions of Theorem 1.1, in particular to the asymptotic distribution of the zeros
of random sequences of holomorphic sections (see Theorem 3.3).
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2. PROOF OF THEOREM 1.1

By a theorem of Moishezon ([25], [34, Theorem 3.6]), X is bimeromorphi-
cally equivalent to a projective manifold. More precisely, since X is assumed
to be normal, we have that codim X, > 2 and the following holds (see [4,
Theorem 3.1]).

THEOREM 2.1. If X is a compact, irreducible, normal Moishezon space
then there exists a connected projective manifold X and a surjective holomor-
phic map 7 : X — X, given as a composition of finitely many blow-ups with
smooth center, such that m : X \ ¥ — X \'Y is a biholomorphism, where Y
is an analytic subset of X, codimY > 2, Xgne C Y, and ¥ = 7 1(Y) is a
normal crossings divisor.

Let X,w, (Ly, hy) verify assumptions (A)-(B) and  : X — X be as in
Theorem 2.1. In [9], we assumed that X is a normal Kéahler space, and we
showed that the desingularization X obtained by finitely many blow-ups with
smooth centers as in [6, 19] is K&hler. This is crucial for the construction of
peak sections by using methods involving 0. In our present situation, we obtain
a projective desingularization X since X is Moishezon.

We follow the arguments from the proof of [9, Theorem 1.1], working with
7: X — X instead of the desingularization of X given in [9, Section 2.3], and
using a Kéahler form w on the projective manifold X. We recall the following
lemmas that are needed in the proof.

LEMMA 2.2 ([9, Lemma 2.1]). If
S . W*w”
HY (X, 7*Ly) = {S e HO(X,n* / 82 en, }

the map 7 : H&) (X, Lp) — H&) (X,W*Lp) is an isometry and the Bergman
kernel function of H(Oz) (X, w*Ly) is ]5p =P,om.

LEMMA 2.3 (]9, Lemma 2.2, Lemma 3.2]). There exist o € (0,1), by, € N,

a Hermitian form  on X and singular Hermitian metrics h on Lp‘)?\z
such that Q > 7w, b, — oo and by,/A, — 0 as p — oo, hp > oszw*hp and
c(m *Lp,h ) > b2 on X \ 2. Moreover, for every relatz'vely compact open

subset U ofX \ X there exists a constant Bg > 1 such that h < B ”7r*h onU.

The Hermitian form €2 is obtained as 2 = Cn*w + ¢1(F,0), where 0 is
a suitable metric on ' = Og(—X) and C' > 0 is an appropriate constant. If
b, € Nis a sequence such that b, — 00, ap > Cbp, by,/A, — 0 and if ¢ is a

weight of # on X \ ¥, one defines the metric h = e ®v¢71*h, on 7 LP‘X\Z
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and shows that it has the desired properties. In particular, the positivity of
c1(m* Ly, hy) is needed to solve a d-equation on X \ 2, by using the following
version of Demailly’s estimates for the d-operator [12, Théoréme 5.1] (see also
[9, Theorem 2.5]).

THEOREM 2.4. Let Z, dimZ = n, be a complete Kahler manifold and
© be a Kdhler form on Z (not necessarily complete) such that its Ricci form
Ricg > —2mBO for some constant B > 0. Let (Ly, hy,) be singular Hermitian
holomorphic line bundles on Z such that c¢i(Lp, hp) > 2a,0, where a, > B.
If g € Lal(Z, Ly, loc) verifies dg = 0 and |, ]g]%p O" < oo then there exists

u € L%yO(Z, Ly, loc) such that Ou =g and [, ]u|%p o" < é [ |g[%p or.
Proof of Theorem 1.1. By (4), we have that log P, € L'(X,w™) and
1
Yo — €1(Lp, hp) = 3 dd®log P,.

Thus, (ii) follows at once from (i). To prove (i), we proceed in two steps.

Step 1.  We prove that A%) log P, — 0 as p — oo, in L (X \ Y,w"). Fix
€ X\Y C Xyeg, W € X\Y a contractible Stein coordinate neighborhood of
x, ro > 0 such that the (closed) ball V' := B(x,2r¢) C W, and set U = B(x,rg).
Note that the currents {A%, ¢1(Lyp, hp)} have uniformly bounded mass. By [17,
Proposition A.16] (see also [18] and [22, Theorem 3.2.12]), we infer that there
exist psh functions 1, on int V' such that dd“y, = ¢i(Ly, h,) and the sequence
{Aip Yp} is relatively compact in L (int V,w™). Since L,|w is holomorphically
trivial, we can find holomorphic frames e, for Lp|inty such that v, are the
corresponding psh weights of h,, so [ep|n, = e Vr.

Let @ be a Kihler form on X , and € be the Hermitian form from
Lemma, 2.3. Then there exists constants d1,d2 > 0 such that

(5) Q Z 51&7, w 2 (SQQ Z 5271'*(,0.

With {b,} as in Lemma 2.3, we prove that there exist C; > 1 and pg € N
such that

(6) _bplog Cy < log Py(2) < log(Cyr=2") N 2 (
Ap Ap Ap Ap
holds for all p > pg, 0 < r < 19, and z € U with ¢,(2) > —oco. The upper
bound in (6) follows from the subaverage inequality, exactly as the upper bound
from [7, (7)].
We show next that there exist ¢ € (0,1) and pp € N with the following
property: if p > pg and z € U is such that ¢,(z) > —oo, then there exists

max 1, — ¢p(2)>

B(z,r)
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S.p € H(Q)( L,) with S, ,(z) # 0 and

(7) CprSsz?) < ‘Szm(z)’%p-
This yields the lower bound in (6), since P,(z) > |Sz7p(z)\%p/||5’z7p 2> chr. To

using the metric Ep from Lemma 2.3. By

this end, we work first on 7*L,| s

estimates (5),
01(7r L |X\2’h ) > by > 61w onX\Z where b, — o0.

We have that ~X \ ¥ has a complete Kahler metric [12, 26], and that
Ricg > —27Bw on X for some B > 0. Using ideas from [15, Proposition 3.1],
[16, Section 9], we apply the Ohsawa—Takegoshi extension theorem [27] and
Theorem 2.4 as in the proof of [7, Theorem 5.1] to show that there exist
Cy > 1, po € N, such that if p > pg and z € 7~ 1(U), ¢ o 7(Z) > —o0, then
there is S € HY(X \ 3, 7*L,) verifying S(2) # 0 and

~9 om ~ 9
2 <K 2.
/)}\Z S~ < CalSE)E
By Lemma 2.3 and (5), we obtain

(8) 5ot / 82, T < oS3
X TL

where 8 > 1 is so that hp < BU7*h, on 771 (U). As 7 : X\Z > X\Yisa
biholomorphism, we let z = 7(2) and S ;, be the section of L;|x\y induced by
S. Since X is normal and codimY > 2, S, extends to a holomorphic section
on X and (7) follows from (8).

Recall that {A%, Yp} is relatively compact in Ll _(int V,w™), hence it is
locally uniformly upper bounded in int V. It follows from (6) that there is a
constant C3 > 0 such that

1 2
(9) ‘Ilogpp‘ §C3—A—1/)p a.e. on U, Vp > pg.
D p

Moreover, if a subsequence A%_ Yy, — P in Llloc(int V,w™") and, a.e., on int V,
J

where 9 is psh on int V', we infer from equation (6) and the Hartogs lemma

[22, Theorem 3.2.13] that

log P, (2) ) log Py, (2) < 2(
A

0 < liminf < limsup

Pj pj

s~ 0(2)

B(z,r)
holds for, a.e., z € U and every r < ro. Thus, A -log P, — 0, a.e., on U, and

hence in L' (U, w™) by (9) and the generalized Lebesgue dominated convergence
theorem. We conclude that A log P, — 0 as p — oo in L] (X \ Y,w™).
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Step 2. We finish the proof of (i) by showing that there exists a com-
pact set K C X such that Y C int K and 4 logP — 0 in LY(K,w"). Let

H ?2) (X ,mLy) be the Bergman spaces from Lemma 2.2. Tt follows by (2) that
there exists M > 0 such that

(10) /~ e (T Ly, mhy) ANQ" L < MA,, Vp>1.
X

Let y € ¥. By (10), we can proceed as in Step 1 to find an open neigh-

borhood W of y and holomorphic frames e, of 7*L with corresponding psh

! ol
weights v, of m*h,, such that the sequence {A%, p} is relatively compact in
LL (W,Qm). Let {:S’Vp : 1 < j <d,} be an orthonormal basis of H(OZ) (X, 7*L,)
and Sp ey, with 5% € O (W) By Lemma 2.2,
1 1 1 &
A—'ﬁp - A—pwp 2A log P, o m, where v, = = log <]Z:; ‘gf‘;‘?> € PSH(W).

We claim that logP om — 0in LlOC(W, Q™). Indeed, assume that a
subsequence {T ij} converges in LlOC(W Q) to a psh function ¢ on W. By
Step 1, A log P,om — 0 in LIOC(W \ 2,Q"), hence A - Up; — ¥ in LIOC(W\
3, Q™). Tt follows that {H Up, } is locally uniformly upper bounded in W and

1~ T 1l (T On . .
A, Up; — 1 in Ly, (W, Q™). This proves our claim.

Since % is compact, we infer by the above that there exists a compact set
K C X such that Y C int K and - logP om — 0in LY (77 }(K),Q"). Then

— \logP|w”—/ |log P, o | m*w"
AP/K 8 Ap Jr1(x) g
1
g/ |log Pyom|Q" — 0
Ap Jr1x)

as p — oo, and the proof is finished. [

3. APPLICATIONS

In the case of the sequence of powers of a single line bundle, Theorem 1.1
yields the following generalization of Tian’s theorem to the setting of big line
bundles on Moishezon spaces.

THEOREM 3.1. Let X be a compact, reduced, irreducible, normal com-
plex space of dimension n and (L,h) be a singular Hermitian holomorphic line
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bundle on X such that c1(L, h) > ew, where e > 0 is a constant and w is a Her-
mitian form on X. If P,, v, are the Bergman kernel function and Fubini-Study
current of H(OQ) (X, LP hP w™) then, as p — oo,

1 1
~log P, — 0 in LY(X,w™), - — c1(L, h) weakly on X.
p p

Proof. 1f |ley (L, h)|| = [y c1(L,h) Aw™t, then the assumptions (A)-(B)
hold with

ap =pe, Ap = plles(L, b, To = er(L; h)/ller (L, b -

Recall that a Kéhler current is a positive closed current T' of bidegree
(1,1) on X such that T > ew for some constant € > 0. Let (L, h) be a singu-
lar Hermitian holomorphic line bundle on X with positive curvature current
c1(L,h) > 0, and such that L has a singular Hermitian metric hg whose curva-
ture is a Kéhler current. As in [9, Corollary 5.2], Theorem 1.1 can be applied
to the sequence of line bundles (LP, kP~ ® h(?), where n, € N and n, — oo,
nyp/p — 0 as p — oo. One can also apply Theorem 1.1 to the sequence of tensor
products of powers of several line bundles as in [9, Corollary 5.11]. We refer to
[9, Section 5] for the details.

Let us consider now the special case when X is smooth, i.e., a connected
compact complex manifold of dimension n. If X is assumed to be Kéhler
then the domination condition (2) is not needed as one can work directly on
X without the use of a modification m. More precisely, in [9] we proved the
following.

THEOREM 3.2 ([9, Theorem 1.2]). Let (X,w) be a compact Kdihler man-
ifold of dimension n and (Ly, hyp), p > 1, be a sequence of singular Hermitian
holomorphic line bundles on X which satisfy ci1(Ly, hy) > apw, where ap > 0
and ap, — oo. If P, vy, are the Bergman kernel function and Fubini-Study
current of H?z)(X, Ly), and if Ay = [y c1(Ly, hy) A WL, then Aiplog P, —0
in LY (X,w") and A% (vp — c1(Lyp, hp)) — 0 weakly on X.

However, if X is a Moishezon manifold which is not Kéahler, and hence
not projective, we still have to use in our proof of Theorem 1.1 the modification
X > X provided in Theorem 2.1. So, we have to require the domination
condition (2) in assumption (B).

One of the main applications of Tian’s theorem is to the study of the
asymptotic distribution of zeros of random sequences of sections in H%(Z, LP) as
p — 00, where L is a holomorphic line bundle over a compact complex manifold
Z. This started with the pioneering work of Shiffman and Zelditch [31] in the
case of a positive line bundle (L, h) over a projective manifold Z (see also [32,
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30]). It is shown in [31] that for almost all sequences {0, € H*(Z, LP)},>1, with
respect to the spherical measure, one has that %[ap = 0] — c1(L, h) weakly
on Z, where [s = 0] denotes the current of integration over the zero divisor of
a holomorphic section s. In the case of singular Hermitian holomorphic line
bundles, we proved that similar results hold in different contexts [7, 8, 10, 11].

The study of the asymptotic distribution of zeros of random sections in
the Bergman spaces H (02) (X, Lp) for an arbitrary sequence of singular Hermitian
holomorphic line bundles (L, h,) over a compact normal Kéhler space X was
pursued in [9, 3]. In particular, we considered in [3, Theorem 1.1] very general
probability measures on the spaces H (02) (X, Lyp), as follows. We identify the

spaces H (02) (X,L,) ~ C% using fixed orthonormal bases S, ..., Sgp and we
endow them with probability measures o, such that the following holds:

(C) There exist a constant v > 1 and for every p > 1 constants C, > 0
such that

/ | log |{a, u)||” dop(a) < Cy, for any u € C% with |lu|| = 1.
cip

Note that [3, Theorem 1.1] holds in our present context. Indeed, we
can apply the general equidistribution result [3, Theorem 4.1] together with
Theorem 1.1. We recall one of its assertions here.

THEOREM 3.3. Assume that X,w, (L, hy),op verify (A), (B), (C) and

consider the product probability space

(H,0) = <H H(OQ)(X7 Ly), H UP) :
p=1 p=1

If 3202, CpAyY < oo then for o-a.e. sequence {sp} € H we have, as p — o0,

Ai log [sp|n, — 0 in LY (X, w"), Ai([sp = 0] — ¢1(Lp, hp)) — 0 weakly on X.
P P

We refer to [3, 2] for general classes of measures o, that satisfy condition
(C), including Gaussians, Fubini-Study volumes, and area measure of spheres.
Note that if the measures o, verify (C) with constants C}, = I', independent
of p (like the Gaussians and the Fubini-Study volumes) then the hypothesis of
Theorem 3.3 becomes » 2| A" < oco.

We close the paper with some remarks on Moishezon manifolds. By a
theorem of Moishezon, a Moishezon manifold is projective if and only if it
carries a Kéhler metric, see [25] and [24, Theorem 2.2.26]. Moreover, any
Moishezon manifold of dimension two is projective, by Theorem 2.1. Indeed,
in dimension two we can blow up only points and the blow-up X at a point
of a compact manifold X is projective if and only if X is projective. Hence,



442 D. Coman, X. Ma, and G. Marinescu 10

non-projective Moishezon manifolds have dimension greater than two. The
first example of this kind was obtained by Hironaka in his thesis (1961) and is
described in [20, Appendix B, Example 3.4.1]. It is a manifold which contains
a curve which is homologous to zero, which is impossible on a Kéhler manifold.
Further examples can be found in [1, 5, 23, 28], see also [24, Section 2.3.4].
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